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Abstract

Background: Transformer-based models are gaining popularity in medical imaging and cancer imaging applications. Many
recent studies have demonstrated the use of transformer-based models for brain cancer imaging applications such as diagnosis
and tumor segmentation.

Objective: This study aims to review how different vision transformers (ViTs) contributed to advancing brain cancer diagnosis
and tumor segmentation using brain image data. This study examines the different architectures developed for enhancing the task
of brain tumor segmentation. Furthermore, it explores how the ViT-based models augmented the performance of convolutional
neural networks for brain cancer imaging.

Methods: This review performed the study search and study selection following the PRISMA-ScR (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. The search comprised 4 popular scientific
databases: PubMed, Scopus, IEEE Xplore, and Google Scholar. The search terms were formulated to cover the interventions (ie,
ViTs) and the target application (ie, brain cancer imaging). The title and abstract for study selection were performed by 2 reviewers
independently and validated by a third reviewer. Data extraction was performed by 2 reviewers and validated by a third reviewer.
Finally, the data were synthesized using a narrative approach.

Results: Of the 736 retrieved studies, 22 (3%) were included in this review. These studies were published in 2021 and 2022.
The most commonly addressed task in these studies was tumor segmentation using ViTs. No study reported early detection of
brain cancer. Among the different ViT architectures, Shifted Window transformer–based architectures have recently become the
most popular choice of the research community. Among the included architectures, UNet transformer and TransUNet had the
highest number of parameters and thus needed a cluster of as many as 8 graphics processing units for model training. The brain
tumor segmentation challenge data set was the most popular data set used in the included studies. ViT was used in different
combinations with convolutional neural networks to capture both the global and local context of the input brain imaging data.

Conclusions: It can be argued that the computational complexity of transformer architectures is a bottleneck in advancing the
field and enabling clinical transformations. This review provides the current state of knowledge on the topic, and the findings of
this review will be helpful for researchers in the field of medical artificial intelligence and its applications in brain cancer.

(JMIR Med Inform 2023;11:e47445) doi: 10.2196/47445
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Introduction

Background
Brain cancer is typically characterized by a brain tumor. A brain
tumor is a mass or development of aberrant brain cells. The
signs and symptoms of a brain tumor vary widely and are
determined by the size, location, and rate of growth of the brain
tumor. Brain tumors can originate in the brain (primary brain
tumors) or move from other body regions to the brain (secondary
or metastatic brain tumors). In general, studying brain cancer
is challenging given the highly complex anatomy of the human
brain, where several sections are responsible for various nervous
system processes [1].

Medical imaging technologies for studying the brain are rapidly
advancing. Therefore, it is critical to provide tools to extract
information from brain image data such that they may aid in
automatic or semiautomatic computer-aided diagnosis of brain
cancer. Artificial intelligence (AI) techniques based on modern
machine learning and deep learning models enable computers
to make data-driven predictions using massive amounts of data.
These techniques have a wide range of applications, many of
which can be customized to extract useful information from
medical images [2-6].

Among AI techniques developed for brain cancer applications,
architectures based on convolutional neural networks (CNNs)
have dominated the research on brain cancer diagnosis and
classification. For example, UNet (an encoder-decoder CNN
architecture) and its variants [7,8] are popular for brain tumor
segmentation tasks. However, CNNs are known to be effective
in extracting only local dependencies in the input image data,
which is mainly attributed to the localized receptive field.
Compared with CNNs, attention-based transformer models
(transformers) [9] are good at capturing long-range
dependencies. Given their ability to learn long-range
dependencies, transformers form the backbone of most
state-of-the-art models in the natural language processing
domain [10].

For image classification tasks, Dosovitskiy et al [11] proposed
the computer vision variants of the transformer architecture,
typically known as vision transformer (ViT). The concept of
attention was applied to images by representing them as a
sequential combination of 16×16-pixel patches. The image
patches were processed in a way similar to tokens (words) in
natural language processing [11]. The sections (with positional
embeddings) are ordered. The embeddings are vectors that can
be learned. Each piece is organized in a straight line and
multiplied by the embedding matrix. The position embedding
result is passed to the transformer encoder.

Given the potential demonstrated by transformer-based
approaches for computer vision tasks, transformers have quickly
penetrated the field of medical imaging. For example, some
studies [12-15] have used them on computed tomography scans
and x-ray images of the lungs to classify COVID-19 and
pneumonia. Similarly, Zhang and Zhang [16] and Xie et al [17]
used ViT for medical image segmentation, and He et al [18]
used ViT for brain age estimation. With the recent developments

of ViTs in computer vision applications, there has been a
growing interest in developing ViT-based architectures for
cancer imaging applications. ViT can also aid in the diagnosis
and prognosis of other types of cancers. For example, Chen et
al [19] showed the scaling of ViTs to large whole-slide imaging
for 33 different cancer types. The benchmarking results
demonstrate that the transformer-based architecture with
hierarchical pretraining outperforms the existing cancer
subtyping and survival prediction methods, indicating its
effectiveness in capturing the hierarchical phenotypic structure
in tumor microenvironments.

Accordingly, many recent efforts have been reported on the
developments of ViT architectures to make progress in brain
cancer applications. With the growing interest in developing
ViT-based methods for brain cancer imaging, there is a dire
need to review the recent developments and identify the key
challenges. To the best of our knowledge, no study (review)
has reported the different ViT architectures for brain cancer
imaging and analyzed how ViT complements CNNs in brain
cancer diagnosis, classification, grading, and brain tumor
segmentation.

A few review and survey articles that are relevant to our work
are by Parvaiz et al [20], Magadza and Viriri [21], Akinyelu et
al [22], He et al [23], and Biratu et al [24]. Among these,
Magadza and Viriri [21] and Biratu et al [24] have surveyed the
articles that used deep learning and machine learning methods
for brain tumor segmentation. In addition, they covered papers
until mid-2021 only and did not cover studies on ViT. Similarly,
the survey by Akinyelu et al [22] has a broad scope, as it covered
different methods including CNNs, capsule networks, and ViT
used for brain tumor segmentation. In addition, it included only
5 studies on ViT, of which 4 were from 2022. Reviews by
Parvaiz et al [20], He et al [23], and Shamshad et al [25] covered
the applications of ViT in medical imaging; however, the scope
of all these reviews is broad, as they included different medical
imaging applications. In addition, they conducted a descriptive
study of ViT for various medical imaging modalities. Similarly,
many relevant recent studies on ViT-based architectures have
been left out, as both the reviews [20,25] were released in early
2022. Nevertheless, the aforementioned reviews could be of
interest to the readers. Table 1 compares our review with the
previously published review articles.

Compared with other existing reviews on ViTs and medical
imaging, our study is specific to brain cancer applications and
covers the most recent developments. This review provides
quantitative insights into the computational complexity and the
required computational resources to implement ViT architectures
for brain cancer imaging. Such insights will be helpful for the
researchers to choose hardware resources and graphics
processing units (GPUs). This review identifies the research
challenges that are specific to ViT-based approaches in brain
cancer imaging applications. These discussions will raise
awareness for the related research directions. This review
identifies the available public data sets and highlights the need
for additional data to motivate the community to develop more
publicly available data sets for brain cancer research.
Furthermore, this review follows a narrative synthesis approach
that would help the readers follow the text quickly.
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Table 1. Comparison with similar review articles.

Comparison with our reviewScope and coverageMonth and yearReview title

March 2022Vision transformers in Medical
Computer Vision—A Contempla-
tive Retrospection [20]

•• Our review is also specific to ViT.The title is specific to ViTa; however,
the full text has a very broad scope with

discussions on deep learning, CNNsb,
and ViT.

• Our review is specific to brain cancer
applications.

• Our review includes more recent studies
on ViT.

• It covers different applications in medi-
cal computer vision, including the clas-
sification of disease, segmentation of
tissues, registration tasks in medical
images, and image-to-text applications.

• Our review provides a comparative
study of the computational complexity
of the ViT-based models.

• It does not provide much text on brain
cancer applications of ViT.

• Many recent studies of 2022 are left out
as the preprint was released in March
2022.

• It does not provide a comparative study
on the computational complexity of
ViT-based models.

January 2022Transformers in medical imag-
ing: A survey [25]

•• Our review is also specific to ViT.It is specific to ViT.
• •It has a broad scope as different medical

imaging applications are included.
Our review is specific to brain cancer
applications.

•• Our review includes more recent studies
on ViT.

It does not include many recent studies
on ViT for brain cancer imaging (as the
preprint was released in January 2022).

August 2022Transformers in Medical Image
Analysis: A Review [23]

•• Our review is also specific to ViT.It is specific to ViT.
• •It has broad scope as different medical

imaging applications are included.
Our review is specific to brain cancer
applications.

•• Our review provides a comparative
study of the computational complexity
of the ViT-based models.

It provides a descriptive review of ViT
techniques for different medical imaging
modalities.

• It does not provide a quantitative analy-
sis of the computational complexity of
ViT-based methods.

July 2022Brain Tumor Diagnosis Using
Machine Learning, Convolution-
al Neural Networks, Capsule
Neural Networks and Vision

Transformers, Applied to MRIc:
A Survey [22]

•• Our review is also specific to brain can-
cer and brain tumor.

It covers applications specific to brain
tumor segmentation.

•• Our review covers more recent studies.It has a broad scope, as it includes stud-
ies on CNNs, capsule networks, and
ViT.

• Our review includes 22 studies on ViT
for brain cancer application.

• It includes only 5 studies on ViT. • Our review provides a comparative
study of the computational complexity
of the ViT-based models.

• Many recent studies are left out as it
covers only 4 studies from 2022.

• It provides no quantitative analysis of
computational complexity.

September 2021A survey of brain tumor segmen-
tation and classification algo-
rithms [24]

•• Our review is specific to ViT.It has a very broad scope as it covers
traditional machine learning and deep
learning methods.

• Our review covers more recent studies.

• It covers studies until early 2021 only.

January 2021Deep learning for brain tumor
segmentation: a survey of state-
of-the-art [21]

•• Our review is specific to ViT.It has a broad scope as it covers different
deep learning methods. • Our review covers more recent studies.

• Many recent studies are left out.

aViT: vision transformer.
bCNN: convolutional neural network.
cMRI: magnetic resonance imaging.

Research Problem
The popularity of transformer-based approaches for medical
imaging has been increasing. Many recent studies have

developed new transformer-based methods for brain cancer
application. Hence, there is a need to review the recent studies
on how transformer-based approaches have contributed to brain
cancer diagnosis, grading, and tumor segmentation. In this study,
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we present a review of the advancements in ViTs for brain
cancer imaging applications. We present the recent ViT
architectures for brain cancer diagnosis and classification,
identify the key pipelines for combining ViT with CNNs, and
highlight the key challenges and issues in developing ViT-based
AI techniques for brain cancer imaging. More specifically, this
review aims to identify the common techniques that were
developed to use ViT for brain tumor segmentation and whether
ViTs were effective in enhancing the segmentation performance.
This review also identifies the common modality of brain
imaging data used for training ViT for brain tumor segmentation.
Moreover, this review identifies the commonly used data sets
for the brain tumor that contributed to developing ViT-based
models. Finally, this review presents the key challenges that
the researchers faced in developing ViT-based approaches for
brain tumor segmentation. We believe that this review will help
researchers in deep learning and medical imaging
interdisciplinary fields to understand the recent developments
on the topic. Furthermore, it will appeal students and researchers
interested to know about the advancements in brain cancer
imaging.

Methods

Overview
We performed a literature search in famous scientific databases
and conducted a scoping review following the PRISMA-ScR
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) guidelines [26].
Multimedia Appendix 1 provides the PRISMA-ScR checklist.
The literature search and the study selection were performed
using the steps described in the following subsections.

Search Strategy

Search Sources
We searched for relevant literature in 4 databases: PubMed,
Scopus, IEEE Xplore, and Google Scholar. The search was
performed between July 31 and August 1, 2022. For Google
Scholar, we retained the first 300 results, as the results beyond
300 lacked relevance to the topic of this review. We also
screened the reference lists of the included studies to retrieve
any additional studies that fulfilled the inclusion criteria.

Search Terms
We defined the key terms for the search by referring to the
available literature and by a discussion with domain experts.
The search terms comprised the terms corresponding to the
intervention (ie, transformers) and the target application (ie,
cancer and tumor). The search strings are provided in
Multimedia Appendix 2.

Search Eligibility Criteria
Our search focused on studies that reported developing
ViT-based architectures for brain tumor segmentation, brain
cancer diagnosis, or prognosis. We considered studies conducted
between January 2017 and July 2022. We included studies that
used ViT with or without combining other deep learning
architectures, such as CNN, and excluded studies that used only
CNN. We excluded studies that reported the diagnosis of other

cancer types, such as lung cancer or colorectal cancer, and did
not report the use of the model for any form of brain cancer.
We included studies that used any type of brain cancer data,
including brain magnetic resonance imaging (MRI) and
histopathology image data. We included studies published as
peer-reviewed articles or conference proceedings and excluded
nonpeer-reviewed articles (preprints), short notes, editorial
reviews, abstracts, and letters to the editor. We excluded survey
and review articles. We did not impose any additional
restrictions on the country of publication and the performance
or accuracy of the ViT used in the studies. Finally, for practical
reasons, we included studies published only in English.

Study Selection
Two reviewers, HA and RQ, independently screened the titles
and abstracts of the studies retrieved in the search process. In
abstract screening, the reviewers excluded the studies that did
not fulfill the inclusion criteria. The studies retained after the
title and abstract were included for full-text reading. At this
stage, disagreements between the 2 reviewers (HA and RQ)
were analyzed and resolved through mutual discussion. Finally,
the study selection was verified by a third reviewer.

Data Extraction
We designed a custom-built data extraction sheet. Multimedia
Appendix 3 presents the different fields of information in the
data extraction sheet. Initially, we pilot-tested the fields in the
extraction sheet by extracting data from 7 relevant studies. Two
reviewers (HA and RQ) extracted the data from the included
studies. The critical information extracted was the application
of ViT, the architectures of ViT, the complexity of the
architectures used, the pipeline for combining ViT and CNNs,
the data sets and their relevant features, and the open research
questions identified in the studies. The 2 reviewers resolved
disagreements through mutual discussions and revisiting the
full text of the relevant study where needed.

Data Synthesis
We followed a narrative approach to synthesize the data after
data extraction. We categorized the included studies based on
applications, such as tumor segmentation, grading, or prognosis.
We also organized the studies based on data type, such as public
versus private data and 2D versus 3D data. We also identified
the modality of the data used in the included studies, such as
MRI or pathology images. Next, we identified the most
frequently used architectures of ViT and the key pipelines for
incorporating ViT in cascade or parallel connections with CNN
models. We also classified the included studies based on the
metrics used to evaluate the performances. Finally, if available,
we identified the public code repositories for the model
implementation as reported in the included studies.

Results

Search Results
A total of 736 studies were retrieved. Of these, we removed 224
duplicates. After the title, abstract, and metadata screening, we
removed 488 studies that did not fulfill the inclusion criteria
and retained 24 studies. In the full-text screening, we removed
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2 studies. Overall, 22 studies were included in this review. We
did not find any additional studies by forward and backward
reference checking. Figure 1 shows the flowchart for the study

selection process. Multimedia Appendix 4 shows a list of all
the included studies.

Figure 1. The PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) flowchart for
the selection of the included studies. ViT: vision transformer.

Demographics of the Included Studies
Among the 22 included studies, 9 (41%) were published in
peer-reviewed journals, whereas 13 (59%) were published as
conference or workshop proceedings. Of the 22 studies, 19

(86%) were published in 2022, whereas only 3 (14%) were
published in 2021. No studies published before 2021 were found.
Among the studies published in 2022, one-third (6/22, 27%)
were published in July. The included studies were published by
authors from 6 different countries (based on first-author
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affiliation). Among the 22 studies, almost half (n=10, 45%)
were published by authors from China and 5 (23%) were
published by authors from the United States. Authors from the
United Kingdom and India published 3 and 2 studies,
respectively, whereas both South Korea and Vietnam published
1 study each. Multimedia Appendix 5 shows a summary of the

year-wise and month-wise studies. Multimedia Appendix 6
shows a summary of the country-wise demographics of the
included studies. Table 2 summarizes the demographics of the
included studies. Figure 2 shows a visualization for the mapping
of the included studies with year, month, and country of
publication.

Table 2. Demographics of the included studies (N=22).

Studies, n (%)

Year and month

2022

2 (9)January

2 (9)February

1 (4.5)March

5 (23)April

1 (4.5)May

2 (9)June

6 (27)July

2021

1 (4.5)August

1 (4.5)September

1 (4.5)November

Countries

10 (45)China

5 (23)United States

3 (14)United Kingdom

2 (9)India

1 (4.5)South Korea

1 (4.5)Vietnam

Type of publication

13 (59)Conference

9 (41)Journal
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Figure 2. Mapping of the included studies with year, month, and country. S1 through S22 are the included studies.

Main Tasks Addressed in the Studies
Among the included studies, 19 (86%) of the 22 studies
addressed the task of segmentation [27-45], and 1 study [46]
reported survival prediction. One study [47] reported the
detection of lesions. One study [48] performed grading of the

tumor. In addition, 1 study [43] performed the diagnosis of
multiple sclerosis, and 1 study [45] performed reconstruction
of fast MRI. One study [44] also performed isocitrate
dehydrogenase (IDH) genotyping in addition to segmentation.
Table 3 shows a summary of the key characteristics and tasks
addressed in the included studies.
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Table 3. Summary of key characteristics of the included studies.

Data sourceTransformer namePurposeImage modality2D model3D modelYearReference

PublicSWINb transformerSegmentationMRIaYesYes2022[27]

PublicSWIN transformerSegmentationMRINoYes2022[28]

PublicSWIN transformerSegmentationMRINoYes2022[29]

PublicNot availableSegmentationMRINoYes2022[30]

PublicSegtransvaeSegmentationMRINoYes2022[31]

PublicTransBTSSegmentationMRINoYes2021[32]

PublicSegTranSegmentationMRIYesYes2021[33]

PublicSWIN transformerSegmentationMRINoYes2022[34]

PublicTransUNetSegmentationMRINoYes2022[35]

PublicNot availableSegmentationMRINoYes2022[36]

PublicTransBTSSegmentationMRINoYes2022[37]

PublicUNETRcSegmentationMRINoYes2022[38]

PublicSWIN transformerSegmentationMRINoYes2022[39]

PublicNot availableSegmentationMRINoYes2021[40]

PublicNot availableSegmentationMRIYesNo2022[41]

Public+privateNot availableSegmentationMRIYesNo2022[42]

PublicAutoregressive trans-
former

Segmentation and diagno-
sis

MRIYesYes2022[43]

PublicNot availableSegmentation and grad-
ing

MRINoYes2022[44]

PublicSWIN transformerSegmentation and recon-
struction

MRIYesNo2022[45]

PublicNot availableSPdMRIYesNo2022[46]

PrivateNot availableDetectionMRIYesNo2022[47]

PrivateNot availableGradingPathologyYesNo2022[48]

aMRI: magnetic resonance imaging.
bSWIN: Shifted Window.
cUNETR: UNet Transformer.
dSP: survival prediction.

Key Architectures of the ViT for Brain Tumor
Segmentation
In the included studies, ViTs were combined with different
variants of a CNN to improve the overall performance of brain
tumor segmentation. Shifted Window (SWIN) transformer [49]
has recently become a popular choice for image-based
classification tasks. Therefore, the most recent studies
[27-29,34,39,45] reported using SWIN transformers in their
models. Some of the studies [28,29,36,38,40,41] incorporated
the transformers module within the encoder or decoder or both
modules of the UNet-like architectures. Some studies
[30-33,35,37,44] used the transformer module as a bottleneck
between the encoder and decoder modules of UNet-like
architectures. One study [41] explored both cascade and parallel
combinations of the transformer module with CNNs. One study
[48] used the transformer module in parallel combination with
a residual network (a CNN). One study [42] implemented the

training of transformers using federated learning over distributed
data for 22 institutions.

Complexity of the Models Used in the Studies
The included studies presented transformer-based models with
different computational complexity. Of these, Fidon et al [35]
used the TransUNet model, which has 116.7 million parameters,
whereas the UNETR model proposed by Hatamizadeh et al [38]
has 92.58 million parameters. The SegTran model proposed by
Li et al [33] has 93.1 million parameters. Compared with the
UNETR [38], the recent variant, that is, SWIN UNETR [34],
has 61.98 million parameters. The Segtransvae [31] has 44.7
million parameters. The BTSWIN-UNet model [28] has 35.6
million parameters that are higher than other SWIN
transformer–based models but much smaller than the UNETR.
For example, the SWIN transformer–based models Trans-BTS
and SWIN-UNet have 30.6 million and 27.1 million parameters,
respectively, on the same data, but UNETR has 102.8 million
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parameters on the same data. The TransConver proposed by
Liang et al [27] has 9 million parameters. The SWINMR [45]
has 11.40 million parameters for reconstruction. Other studies
[28,30,32,36,37,39-44,46-48] did not provide details regarding
the computational complexity of the models. Some studies have
reported a different number of parameters for other models used
on their data. We believe that these minor differences occur
because of the resolution of the input images, which may not
be the same in different studies.

Hardware Use
Wang et al [32] used 8 NVIDIA Titan RTX GPUs for training
their model. Similarly, Hatamizadeh et al [34] and Hatamizadeh
et al [38] trained their models on a DGX-1 cluster with 8
NVIDIA V100 GPUs. Jia and Shu [37] used 4 NVIDIA RTX
8000 GPUs for training the model, whereas Zhou et al [48] used
4 GeForce RTX 2080 Ti GPUs. Liang et al [27] and Liang et
al [29] trained their models on 2 parallel NVIDIA GeForce

2080Ti GPUs. Similarly, Huang et al [45] trained the model on
2 NVIDIA RTX 3090 GPUs with 24 GB GPU memory, and
Cheng et al [44] used 2 NVIDIA V100 GPUs. Zhang et al [30]
and Li et al [47] trained their models on a single NVIDIA Tesla
V100 GPU, Li et al [33] trained the model on a single 24 GB
Titan RTX GPU, Luu and Park [36] used a single NVIDIA RTX
3090 GPU for training the model, Liu et al [39] trained the
model using NVIDIA GTX 3080, and Dhamija et al [41] used
Tesla P-100 GPU.

Types of Data Used in the Studies
All the included studies (except 1 [48]) used MRI data for brain
tumor segmentation. Zhou et al [48] used histopathology images.
In 16 studies, volumetric MRI data were used, whereas in 9
studies, the models were developed for 2D image data. Three
studies [27,33,43] reported experiments on both volumetric data
and image data. Figure 3 shows the Venn diagram for the
number of studies using 3D versus 2D data.

Figure 3. Venn diagrams showing the number of studies that used 3D versus 2D data.

Data Sets Used in the Studies
Three studies [42,47,48] reported using privately developed
data sets or did not provide public access to the data. One study
[42] used both publicly available and privately developed data.
The Brain Tumor Segmentation (BraTS) challenge data set of
brain MRI has been the most popular data used in 17 (77%) of
the 22 studies. More specifically, 6 studies used BraTS 2021
data [28,31,34-37], 5 used BraTS 2020 data [28,32,42,44,46],
7 used BraTS 2019 data [27-29,32,33,39,40], 3 used BraTS
2018 data [27,29,43], and 1 used BraTS 2017 data [45]. Some
of these studies also used >1 data set, either independently or
by combining them. Other data used in the included studies

were MRI data from the Medical Decathlon used by
Hatamizadeh et al [38], the Cancer Imaging Archive data used
by Dhamija at [41], the UK Biobank data used by Pinaya et al
[43], data from the University Hospital of Ljubljana used by
Pinaya et al [43], the Calgary-Campinas Magnetic Resonance
reconstruction data used by Huang et al [45], data from the
University Hospital of Patras Greece used by Zhou et al [48],
and data from the Cancer Hospital and Shenzhen Hospital used
by Li et al [47]. One study [30] did not specify the data. Table
4 summarizes the data sets used in the included studies and
provides the public access links for each data set. Figure 4 shows
the Venn diagram for the number of studies using public versus
private data.
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Table 4. Data sets used in the included studies.

Used by the following stud-
ies

URLAvailableModalityData set name

[28,31,34-37][50]PublicMRIbBraTSa 2021

[28,32,42,44,46][51]PublicMRIBraTS 2020

[27-29,32,33,39,40][52]PublicMRIBraTS 2019

[27,29,43][53]PublicMRIBraTS 2018

[45][50]PublicMRIBraTS 2017

[38][54]PublicMRIDecathlon

[41][55]PublicMRITCIAc

[43][56]PublicMRIUK Biobank

[43][57]PublicMRIUniversity Hospital of Ljubljana

[45][58]PublicMRICalgary-Campinas MRd reconstruc-
tion data set

[48]—ePrivatePathology imagesUniversity Hospital of Patras Greece

[47]—Private—Cancer Hospital and Shenzhen
Hospital data

[30,47]N/AN/AN/AfNot specified

aBraTS: brain tumor segmentation.
bMRI: magnetic resonance imaging.
cTCIA: The Cancer Imaging Archive.
dMR: magnetic resonance.
eNot available.
fN/A: not applicable.

Figure 4. Venn diagrams showing the number of studies that used public versus private data sets.

Evaluation Metrics
The Dice score and the Hausdorff distance measurements are
popular metrics commonly used to evaluate segmentation
performance on the BraTS MRI data sets. Hence, in the included
studies, the Dice score and Hausdorff distance were the most
common metrics used to assess the results of brain tumor
segmentation. In summary, 19 studies [27-45] reported the use
of the Dice score, whereas 15 studies [27-32,34-40,42,44] used

both the Dice score and Hausdorff distance. Two studies [41,45]
reported intersection-over-union. One study [42] reported the
focal score and Tversky score for the federated learning
framework evaluation in addition to the Dice score and
Hausdorff distance for the segmentation evaluation. One study
[45] reported peak signal:noise ratio, structural similarity index,
and Fréchet Inception Distance in the assessment of the
reconstructed MRI in addition to Intersection over Union and
Dice scores for segmentation evaluation. One study [46] used
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the concordance index and hazard ratio to evaluate the
performance of survival analysis. One study [47] reported
sensitivity and precision, and 1 study [48] reported precision
and recall.

Discussion

Principal Findings
In this study, we reviewed the studies that used ViT to aid in
brain cancer imaging applications. We found that most studies
(19/22, 86%) were published in 2022, and almost one-third of
these studies (6/19, 32%) were published in the second quarter
of 2022. As ViT was first proposed in 2020 for natural images,
it has only recently been explored in brain MRI and cancer
imaging. Almost half of the studies (10/22, 45%) were published
by authors from China. Furthermore, the authors from China
published twice the number of studies published by authors
from the United States. Other countries published approximately
one-third of the studies (7/22, 32%).

Motivation of Using Transformers for Segmentation
The transformer module works on the self-attention concept,
that is, calculating pairwise interactions between all input units.
Thus, transformers are good at learning contextualized features.
Although this learning of the contextualization by a transformer
can be related to the upsampling path in a UNet encoder-decoder
architecture, the transformer overcomes the limitation of the
receptive field, and hence, it works better to capture long-range
correlations [34]. In a UNet architecture, one may enlarge the
receptive fields by adding more downsampling layers or by
introducing larger stride sizes in the convolution operations of
the downsampling path. However, the former increases the
number of parameters and may lead to overfitting, whereas the
latter sacrifices the spatial precision of the feature maps [34].
Nevertheless, the initial attempts to introduce transformers for
brain tumor segmentation used the transformer block in the
encoder or decoder or the bottleneck stage of the UNet-like
architectures. These approaches were mainly driven by the
success of UNet-based architectures for segmentation, such as
nnUNet’s success on the BraTS2020 challenge [59]. In addition,
until 2020, CNN-based models were the best performers for
brain tumor segmentation. Therefore, nnUNet [59] was the
winning entry for the BraTS2020 challenge. With improved
strategies and architectures, attention-based models performed
competitively in recent years. Wang et al [32] presented the
TransBTS model, which was the first attempt to incorporate
transformers into a 3D CNN for brain tumor segmentation.
Although Hatamizadeh et al [34] reported SWIN UNETR for
brain tumor segmentation, and it was the first transformer-based
model that performed competitively for the BraTS 2021
segmentation task. The TransBTS model was trained and tested
on the BraTS2018 and BraTS2019 data sets, whereas the SWIN
UNETR has been evaluated on the BraTS 2021 data set.
However, for the BraTS 2021 data set, the winning entry was
an extension of the nnUNet model [59] presented by Luu and
Park [36] who proposed introducing attention in the decoder of
the nnUNet to perform the tumor segmentation. As identified
by Jia and Shu [37], the UNETR removed convolutional blocks
in the encoder, which may result in insufficient extraction of

local context information when applied to volumetric MRI data.
Overall, these approaches of combining transformers and CNNs
are driven by the motivation to use the best of both worlds.
These studies suggested that the best-of-both-worlds approach
can be effective in improving brain tumor segmentation by
combining CNNs with transformers. In theory, there are many
possibilities for how we approach combining the advantages
offered by the 2 different architectures.

Applications Covered in the Studies
Most of the studies included are those that either designed an
attention-based architecture or used existing ViT architectures
to achieve the task of tumor segmentation. In the brain
segmentation tasks, the key focus is the segmentation of gliomas,
which is the most common brain tumor. As most of these studies
used 1 of the variants of the BraTS data set where the MRI data
are annotated for 4 regions, these studies reported segmentation
of the whole tumor, tumor core, enhancing tumor, and
background. Some studies also reported using attention-based
models for other applications related to brain cancer, such as
survival prediction, MRI reconstruction, grading of brain cancer,
and IDH genotyping.

Discussion Related to the Architectures
Among the studies that used the ViT module after a 3D CNN
features extraction, the TransBTS [32] was the first architecture
(released in September 2021) and served as inspiration for many
other architectures. The TransBTS architecture was motivated
by the idea of incorporating global context into the volumetric
spatial features of brain tumors. Furthermore, the work
highlighted the need to use an attention module on image
patches instead of flattened images, unlike previous efforts.
Essentially, the flattening of high-resolution images makes the
implementation impractical, as transformers have a quadratic
computational complexity with respect to the number of tokens
(ie, the dimension of the flattened image). The TranBTS
architecture has downsampling and upsampling layers linked
through skip connections; however, in the bottom part of the
architecture, there are transformer layers that help with the
global context capturing. These transformer layers are in
addition to a linear projection layer and a patch embedding layer
to transfer the image to sequence representation. So, in a way,
the ViT serves as the bottleneck layer to capture long-range
dependencies. Later, Jia and Shu [37] presented a modification
in the TransBTS architecture [32] using 2 ViT blocks after the
encoder part instead of 1 transformer block in the TransBTS.
Specifically, the outputs of the fourth and fifth downsampling
layers pass through a feature embedding of a feature
representation layer, transformer layers, and a feature mapping
layer and then pass through the corresponding upsampling 3D
CNN layers. Compared with the TransBTS architecture, where
the transformer was used at the end of the encoder and features
representation was obtained after the fourth layer, Jia and Shu
[37], increased the depth to 5 layers and used the transformer
in both the fourth and fifth layers. Therefore, after the fourth
layer, the transformer effectively builds a skip connection with
the corresponding layer of the decoder block.

Similarly, Zhang et al [30] used a multihead self-attention–based
transcoder module embedded after the encoder of a 3D UNet.
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However, they replaced the residual blocks of the 3D UNet with
a self-attention layer that operated on a 3D feature map, followed
by progressive upsampling via a 3D CNN decoder module.
Pham et al [31] also used transformer layers after a 3D CNN
module and used a variational encoder to reconstruct the
volumetric images. Li et al [33] presented the SegTran
architecture, which is again based on using the transformer
modules after the features extraction with CNN, thus capturing
the global context. Here, the authors suggested combining the
CNN features with positional encodings of the pixel coordinates
and flattening them into a sequence of local feature vectors.

Fidon et al [35] used the TransUNet architecture [60] as the
backbone of their model and used the test time augmentation
strategy to improve inference. Finally, Cheng et al [44] presented
the MTTUNet architecture, which is a UNet-like
encoder-decoder architecture for multitasking. They used the
CNN layers to extract spatial features, which were then
processed by the bottleneck transformer block. Subsequently,
the decoder network performed the segmentation task. In
addition, the authors also used the transformer output to perform
IDH genotyping, thus making it a multitask architecture.

Hatamizadeh et al [38] presented the UNETR architecture that
redefined the task of 3D segmentation as a 1D
sequence-to-sequence classification that can be used with a
transformer to learn contextual information. Therefore, the
transformer block in the UNETR operates on the embedded
representation of the 3D MRI input data. In effect, the
transformer is incorporated within the encoder part of a UNet
architecture. Compared with other architectures such as
BTSWIN-UNet [30], TransBTS [32], SegTran [33,35], and
BiTr-UNet [37], which use the transformer as a bottleneck layer
of the encoder-decoder architectures, the UNETR directly
connects the encoded representation from the encoder with the
decoder part. Compared with other methods where the encoder
part uses 3D CNN blocks, such as TransBTS [32] and
BiTr-UNet [37], the UNETR does not use a convolutional block
in the encoder. Instead, the UNETR obtains a 2D representation
for the 3D volumes and then uses the 2D ViT architecture that
works on the 2D patches of the images. Each patch is treated
as 1 token for the attention operation. UNETR does not rely on
a backbone CNN for generating the input sequences and directly
uses the tokenized patches.

Luu and Park [36] introduced an attention mechanism in the
decoder of the nnUNet [59] to perform the tumor segmentation.
They extended the nnUNet and modified it by using axial
attention in the decoder of the 3D UNet. Furthermore, they
doubled the number of filters in the encoder while retaining the
same number in the decoder. Sagar [40] presented the Vision
Transformer for Biomedical Image Segmentation architecture,
which used transformer blocks in the encoder and decoder of a
UNet architecture. The architecture introduced multiscale
convolutions for feature extraction that were used as input to
the transformer block.

Dhamija et al [41] explored the sequential and parallel stacks
of transformer-based blocks using a UNet block. In principle,
they used a transformer-based encoder and a CNN-based
decoder connected in parallel with a UNet-based encoder and

then in cascade with a UNet-based encoder. Apparently, the
parallel combination (USegTransformer-P) outperformed the
cascade combination by some margin. Zhou et al [48] designed
a parallel dual-branch network of a CNN (the ResNet
architecture) and ViT and used it to grade brain cancer from
pathology images. The dual-branch network established a duplex
communication between the ResNet and ViT blocks that sends
global information from the ViT to ResNet and local information
from ResNet to the ViT.

Many similar architectures were probably released concurrently
by different research groups or released very close in time to
each other. For example, Li et al [33] found that segmentation
transformer [61] and TransUNet [60] were released concurrently
with their own model. Therefore, it is not surprising that there
are a few similarities between the approaches adopted by these
studies.

Discussion Related to SWIN Transformers
In general, transformers are notoriously popular for the

computational complexity of the order O (n2). For example, as
identified by Jia and Shu [37], UNETR stacks transformer layers
and keeps the sequence data dimension unchanged during the
entire process, which results in expensive computation for
high-resolution 3D images. SWIN transformers helped overcome
the computational complexity. Hence, it became a popular
backbone architecture for many recent studies [27-29,32,39,45]
to overcome the computational complexity of transformer-based
models. For example, Liang et al [27] reported the use of a 2D
SWIN transformer [49] and a 3D SWIN transformer [62] to
replace the traditional architecture of ViT to overcome the
computational complexity. Jiang et al [28] used a SWIN
transformer as the encoder and decoder rather than as the
attention layer. Furthermore, they extended the 2D SWIN
transformer to a 3D variant that provided a base module.
Similarly, Liang et al [29] used a 3D SWIN transformer block
in the encoder and decoder of a 3D UNet-like architecture. The
architecture was inspired by the SWIN transformer and the
SWIN-UNet model; however, they replaced the patchify stem
with a convolutional stem to stabilize the model training.
Furthermore, they used overlapping patch embedding and
downsampling, which helped to enhance the locality of the
segmentation network.

Hatamizadeh et al [34] extended the UNETR architecture to the
SWIN-UNet transformer (SWIN UNETR), which incorporated
a SWIN transformer in the encoder part of the 3D UNet. The
decoder part still used a CNN architecture to upsample the
features to the segmentation masks. As reported previously, the
SWIN UNETR was the first transformer architecture that
performed competitively on the BraTS 2021 segmentation
challenge. Liu et al [39] presented a transition net architecture
that combined a 2D SWIN transformer with a 3D transition
decoder. The transition block transforms the 3D volumetric data
into a 2D representation, which is then provided as an input to
the SWIN transformer. Subsequently, in the decoder part, the
transition block transforms the multiscale feature maps into a
3D representation to obtain the segmentation results. Huang et
al [45] used a cascade of residual SWIN transformers to build
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a feature extraction module, followed by a 2D CNN network.
This architecture was designed for MRI reconstruction.

Discussion Related to Model Complexity
In general, transformer architectures have a high computational
complexity. The number of parameters for the architectures for
the models, such as UNETR and TransUNet, are as large as 92
million and 116 million, respectively. The SWIN
transformer-based architecture has a relatively smaller number
of parameters (of the order of 30-45 million). For models with
a higher number of parameters, the researchers had to rely on
high-end GPU resources. Therefore, the computational setup
reported in some of the included studies was built with as many
as 8 GPUs. However, few studies also reported training the
models on a single GPU with memory sizes ranging from 12
GB to 24 GB.

Discussion Related to 3D Data
Our categorization of a model designed for 3D or 2D data was
either based on direct extraction of the information from the
studies or the description of the model architecture in the
included studies. Therefore, if a study did not specify whether
it used the volumetric data directly or transformed the data into
2D images but provided a 2D model architecture, we placed the
study in the 2D data category. Many modern deep learning
methods for medical imaging, including transformers, rely on
pretrained models as their backbones. These backbones can
generalize well, making them good candidates for use in other
related tasks, as they provide generalization, better convergence,
and improved segmentation performance [39]. However, Liu
et al [39] argued that such backbone architectures are, in general,
difficult to be migrated to 3D brain tumor segmentation. First,
there is a general lack of 3D data, and most publicly available
data sets provide 2D data. Second, medical images such as MRI
vary in their distribution and style compared with natural
images. These variations hinder the direct transformation of the
2D pretrained models for 3D volumetric data. Hence, they
recommended transforming the 3D data into a 2D representation
to enable its use with 2D transformers. However, numerous
other studies have developed and used 3D models directly on
volumetric data.

The most commonly used data in the included studies were the
brain MRI of the BraTS data set. The BraTS data set has been
phenomenal in facilitating the research on brain glioma
segmentation. The BraTS challenge has served as a dedicated
venue for the last 11 years and has established itself as a
foundation data set in helping the community push the
state-of-the-art in brain tumor segmentation. The BraTS data
set has 4 MRI modalities, namely, T1-weighted, postcontrast
T1-weighted, T2-weighted, and T2 fluid-attenuated inversion
recovery. Furthermore, the data set provides baseline
segmentation annotation from physicians.

Discussion Related to Evaluation Metrics
The Dice score and Hausdorff distance measurements have been
more commonly reported, as these metrics are widely used to
evaluate segmentation performance on the BraTS MRI data
sets. In the included studies, the Dice score and Hausdorff

distance were the most common metrics used to assess the
results of brain tumor segmentation.

Strengths and Limitations

Strengths
Although there has been a surge in studies on the use of ViTs
in medical imaging, only a few reviews have been reported on
ViTs in medical imaging [20,23,25]; however, their scopes are
too broad. In comparison, to the best of our knowledge, this is
the first review of the applications and potential of ViTs to
enhance the performance of brain tumor segmentation. This
review covers all the studies that used ViTs for brain cancer
imaging; thus, this is the most comprehensive review. This
review is helpful for the community interested in knowing the
different architectures of ViTs that can help in brain tumor
segmentation. Unlike other reviews [20,23,25] that cover many
different medical imaging applications, this review focuses on
studies that have only developed ViTs for brain tumor
segmentation. In this review, we followed the PRISMA-ScR
guidelines [26]. We retrieved articles from the popular
web-based libraries of medical science and computing to include
as many relevant studies as possible. We avoided bias in study
selection through an independent selection of studies by 2
reviewers and through validation of the selected studies and
data extraction by the third reviewer. This review provides a
comprehensive discussion on the different pipelines to combine
ViTs with CNNs. Hence, this review will be very useful for the
community to learn about the different pipelines and their
working for brain tumor segmentation. In addition, we identify
the computational complexity of the various pipelines to help
the readers understand the associated computational cost of
ViTs for brain tumor segmentation. We provide a comprehensive
list of available data sets for brain MRI and hope that it will
provide a good reference point for researchers to identify
suitable data sets for developing models for BraTS. We maintain
an active web-based repository that will be populated with
relevant studies in the future.

Limitations
In this review, we included studies from 4 major databases.
Despite our best efforts to retrieve as many studies as possible,
the possibility that some relevant studies may be missed cannot
be ruled out. Moreover, the number of publications on the
applications of ViTs in medical imaging is increasing at an
unprecedented rate; hence, recent studies may be published
while we draft this work. For practical reasons, we only included
studies in English. Therefore, non-English text might be
excluded even if it were relevant. Not all studies reported on
the computational complexity and the required training time.
Hence, we provide the computational complexity only for the
studies in which this information was available; thus, the
comparison might not be exhaustive. This review did not analyze
the claims on the performance of the different architectures, as
such an assessment is beyond the scope of this work. We did
not attempt to reproduce the results reported in the studies, as
such an execution of the computer code is beyond the scope of
the review. We included studies that reported working with any
imaging modality for brain cancer and did not evaluate the use
of physiological signals, although understanding physiological
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signals can also play a significant role in brain cancer studies.
We did not evaluate the bias in the training data used in the
included studies; therefore, the performance reported for ViTs
in brain cancer imaging could be occasionally overestimated.

Open Questions and Challenges
Research efforts on developing transformer-based methods for
brain cancer applications are progressing rapidly. Some of the
challenges are highlighted in the following text.

In the included studies, we did not find any study that addresses
the challenge of early detection of brain cancer. Similarly, the
number of studies related to prognosis and tumor growth in the
brain is also minimal. Early detection and prognosis are
applications of great interest where the potential of ViTs can
be explored. One approach is to combine ViT with the sequential
representation of time-based data for tumor growth in the brain.

ViTs lack scale invariance, rotation invariance, and inductive
bias capabilities. Consequently, they do not perform well at
capturing local information and cannot be trained well with a
small amount of data [48]. One way to overcome this limitation
is to provide a larger training data set. Therefore, the
development of large public data sets is encouraged. Another
widely used method in the included studies is combining ViTs
with CNNs.

In general, models pretrained on a large-scale data set
(ImageNet) are known to perform well on many other data sets.
However, using the pretrained transformer-based models and
fine-tuning them for brain cancer imaging did not improve the
performance, as reported by Hatamizadeh et al [38]. Similarly,
Pinaya et al [43] reported that the model trained on 3D data
from the UK Biobank could perform well on the test set.
However, the performance degraded when the model was
evaluated on subsets of other data sets. Therefore, the
generalization of the models is still a challenge.

Combining CNN with ViTs can be achieved through serial
(cascade), parallel connections, or a combination of both. In
serial combination of CNNs and ViTs, the arrangement may
cause training ambiguities in terms of fusing local and global
features. If the learning eventually loses local and global
dependencies in the image data [48,63,64], optimal performance
may not be achieved. In contrast, for parallel combinations,
there will be undesired redundant information captured by the
2 models [33].

The BraTS challenge completed its 10 years in 2021 and has
been a dedicated venue for facilitating the state-of-the-art
developments of methods for glioma segmentation [37]. As the
data set is publicly available, almost all the included studies
have used it. However, there seems to be a very limited effort
in developing other data sets that are publicly available. It would
be interesting to have additional data sets for brain cancer
imaging that can facilitate advancing the research on AI models
for brain cancer diagnosis and prognosis.

The included studies reported advancements in
transformer-based architectures for brain cancer imaging.
However, these studies commonly lack the explanability and
interpretability of the model behavior. Future research should
focus on new methods to address this issue.

ViT-based architectures, as of now, may not always be the best
for brain tumor segmentation. For example, the TransBTS model
(a ViT-based model) had suboptimal performance owing to its
inherently inefficient architecture, where the ViT is only used
in the bottleneck as a stand-alone attention module and does
not have a connection to the decoder at different scales (as
identified by Hatamizadeh et al [34]). In contrast, architectures
based on UNet (eg, nnUNet and SegResNet) have achieved
competitive benchmarks on the BraTS challenge.

As identified by Huang et al [45], one can argue that the heavy
computations in transformers are the main bottleneck in
development, and the performance improvements of
transformers for brain cancer imaging come at the cost of
computational complexity. Therefore, lightweight
implementations of transformer architectures for brain cancer
imaging are a topic of great interest for future research.
Furthermore, the transformer architectures that transform image
data into sequential representation (such as in UNETR) may
not be the best choice. First, the removal of convolutional blocks
in the encoder does not guarantee the capture of context
information in volumetric MRI data. Second, keeping a fixed
sequence during the entire processing of data leads to expensive
computation when the input data are a batch of high-resolution
3D images [37]. Models such as UNETR and TransBTS for
brain tumor segmentation lack cross-plane contextual
information; hence, the 3D spatial context is not fully captured
by these models [29].

Conclusions
In this work, we performed a scoping review of 22 studies that
reported ViT-based AI models for brain cancer imaging. We
identified the key applications of ViTs in developing AI models
for tumor segmentation and grading. ViTs have enabled
researchers to push the state-of-the-art in brain tumor
segmentation, although such an improvement has resulted in a
trade-off between model complexity and performance. We also
summarized the different vision architectures and the pipelines
with ViTs as the backbone architecture. We also identified the
commonly used data sets brain tumor segmentation tasks.
Finally, we provided insights into the key challenges in
advancing brain cancer diagnosis or prognosis using ViT-based
architectures. Although ViT-based architectures have great
potential in advancing AI methods for brain cancer, clinical
transformations can be challenging, as these models are
computationally complex and have limited or no explainability.
We believe that the findings of this review will be beneficial to
the researchers studying AI and cancer.
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