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Abstract
Background: Throughout the COVID-19 pandemic, many hospitals conducted routine testing of hospitalized patients for
SARS-CoV-2 infection upon admission. Some of these patients are admitted for reasons unrelated to COVID-19 and inciden-
tally test positive for the virus. Because COVID-19–related hospitalizations have become a critical public health indicator, it
is important to identify patients who are hospitalized because of COVID-19 as opposed to those who are admitted for other
indications.
Objective: We compared the performance of different computable phenotype definitions for COVID-19 hospitalizations that
use different types of data from electronic health records (EHRs), including structured EHR data elements, clinical notes, or a
combination of both data types.
Methods: We conducted a retrospective data analysis, using clinician chart review–based validation at a large academic
medical center. We reviewed and analyzed the charts of 586 hospitalized individuals who tested positive for SARS-CoV-2
in January 2022. We used LASSO (least absolute shrinkage and selection operator) regression and random forests to fit
classification algorithms that incorporated structured EHR data elements, clinical notes, or a combination of structured data
and clinical notes. We used natural language processing to incorporate data from clinical notes. The performance of each
model was evaluated based on the area under the receiver operator characteristic curve (AUROC) and an associated decision
rule based on sensitivity and positive predictive value. We also identified top words and clinical indicators of COVID-19–
specific hospitalization and assessed the impact of different phenotyping strategies on estimated hospital outcome metrics.
Results: Based on a chart review, 38.2% (224/586) of patients were determined to have been hospitalized for reasons other
than COVID-19, despite having tested positive for SARS-CoV-2. A computable phenotype that used clinical notes had
significantly better discrimination than one that used structured EHR data elements (AUROC: 0.894 vs 0.841; P<.001) and
performed similarly to a model that combined clinical notes with structured data elements (AUROC: 0.894 vs 0.893; P=.91).
Assessments of hospital outcome metrics significantly differed based on whether the population included all hospitalized
patients who tested positive for SARS-CoV-2 or those who were determined to have been hospitalized due to COVID-19.
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Conclusions: These findings highlight the importance of cause-specific phenotyping for COVID-19 hospitalizations. More
generally, this work demonstrates the utility of natural language processing approaches for deriving information related
to patient hospitalizations in cases where there may be multiple conditions that could serve as the primary indication for
hospitalization.
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Introduction
Hospitalization due to COVID-19 has become a key public
health indicator. One of the primary goals of vaccination
against SARS-CoV-2, the etiological agent of COVID-19, is
to reduce the incidence of severe disease and death, with
hospitalization serving as a primary end point in vaccine
efficacy trials [1]. Further, hospitalization has become a
primary indicator of community transmission levels of
SARS-CoV-2 infection [2], including disease severity and
health system capacity [3-6]. Similarly, hospitalization due
to COVID-19 is a typical outcome of interest in public
health studies of COVID-19 using real-world data sources,
such as electronic health record (EHR) data [7-10]. Finally,
because of the rise of rapid, at-home testing for SARS-CoV-2
infection, COVID-19 cases that do not rise to the level
of requiring medical attention are likely to be missed or
underreported, affecting assessments of COVID-19 preva-
lence [11]. Thus, there is a critical need to rapidly and
accurately identify hospitalizations due to COVID-19.

Due to concerns related to the hospital-based spread of
SARS-CoV-2, many institutions routinely perform SARS-
CoV-2 testing in patients who are admitted to the hospi-
tal, regardless of the primary reason for admission [12,13].
Although SARS-CoV-2 testing is important for guiding care
and ensuring that health care professionals take precautions to
prevent infection, such routine testing potentially complicates
retrospective studies using real-world data sources. Specifi-
cally, it becomes challenging to distinguish a patient who was
admitted because of COVID-19 from a patient who inci-
dentally tested positive for SARS-CoV-2 infection. In both
cases, patients would have a positive laboratory test result
and would (presumably) have an International Classification
of Diseases, 10th Revision (ICD-10) code for COVID-19.
Previous reports have noted that incidental positives may
account for around 26% of all COVID-19–positive patients
[14].

Given the public health importance of identifying
hospitalizations due to COVID-19 rather than hospitalizations
in which SARS-CoV-2 infection was identified incidentally,
methods (ie, computable phenotypes) are needed to dis-
tinguish the two conditions in retrospective data sources.
Such phenotypes would be instrumental in retrospective
studies of patients with COVID-19 and in public health
surveillance. In this study, we seek to (1) motivate the
need to identify patients who were admitted because of
COVID-19 versus patients who incidentally tested positive

for SARS-CoV-2 during admission, (2) explore the potential
of using both structured data (ie, diagnosis codes, medica-
tions, and procedure codes) and unstructured data (ie, clinical
notes) to construct computable phenotypes, and (3) illustrate
the inferential biases that may arise if phenotyping methods
cannot distinguish the reason for hospitalization.

Methods
Study Setting
We performed a retrospective study of patients aged >18
years who were hospitalized with a documented positive
SARS-CoV-2 test result during January 2022. We conduc-
ted our study at Duke University Health System (DUHS),
which consists of 1 quaternary academic medical center and 2
associated community-based hospitals.
Ethical Considerations
This study was designated as exempt human subjects research
by the DUHS Institutional Review Board (IRB number:
Pro00109397).
Study Data

Source Data
Using DUHS EHR data, we identified all patients who
were admitted during the week of January 16 to 22, 2022,
with documentation of a positive SARS-CoV-2 test result in
the prior 20 days. Charts from this week were specifically
reviewed in part due to a data request from the North Carolina
Division of Public Health to understand the epidemiology of
COVID-19–related hospitalizations. We excluded individuals
with a resolved COVID-19 isolation status, as well as those
who were admitted prior to January 1, 2022, to create a cohort
of patients who were likely infected with the Omicron variant
of SARS-CoV-2. During this period, the Omicron variant was
the predominant SARS-CoV-2 variant in circulation within
the United States and was associated with the largest wave
[8] of SARS-CoV-2 infections to date. For each patient, we
extracted the following data: medical record number, date of
admission, hospital unit, and level of care.

To generate a criterion standard for classification, 6
trained health care professionals manually reviewed patient
records for the index admission to adjudicate whether
SARS-CoV-2 infection was the primary reason for admission
or an incidental finding. Health care professionals attributed
hospitalizations as those due to COVID-19 if admissions were
due to primary manifestations of SARS-CoV-2 infection,
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such as hypoxia or the need for supplemental oxygen, or due
to COVID-19–associated complications, such as dehydration
or weakness.

Analytic Data
For each admission reviewed, we extracted structured EHR
data elements recorded during hospitalization and captured
within the Duke Clinical Research Datamart—an EHR
database that is based on an extension of the PCORnet
Common Data Model (National Patient-Centered Clinical
Research Network) [15]. Clinical notes were extracted
from the Duke University Electronic Data Warehouse. We
extracted admission data, daily progress data, and discharge
summary notes. Extracted structured data elements included
demographics, service encounter characteristics, diagnoses,
laboratory tests, COVID-19 vaccination status, and medica-
tions (Table S1 in Multimedia Appendix 1). Clinical notes
included emergency department admission notes, progress
notes, operative notes, history and physical examination
notes, and discharge summaries.

Clinical Note Analysis
To analyze the clinical notes, we used the term fre-
quency–inverse document frequency (TF-IDF) approach. The
TF-IDF approach [16] generates, across the set of notes for
each patient, a numeric value for each word. The word value
is based on how common the word is in a patient’s set of
notes (term frequency), divided by how common the word is
across all of the patient’s notes (inverse document frequency),
resulting in a numeric representation for each word on
a per-patient basis. Although this is a simple word-based
representation, this approach has the following two advan-
tages over deep learning embedding–based approaches: (1)
it is possible to directly assess the importance of individual
words, and (2) the TF-IDF tends to be more robust with small
data sets. Notes were extracted as CSV files and concatenated
for the entire encounter. We used the nltk package in Python
(Python Software Foundation) [17] to tokenize words into a
dictionary. For each document, we calculated word counts
and removed any words that appeared fewer than 50 times.
We then generated the corresponding weight matrix, which
served as a numeric input for downstream analyses.
Analytic Approach
We first described the clinical characteristics of patients
hospitalized due to COVID-19 versus those with incidental
COVID-19 by using standardized mean differences (SMDs),
with an SMD of 0.10 indicating a clinically meaningful
difference. Next, we developed 3 classification models for
COVID-19–specific hospitalization; one was based entirely
on structured EHR data elements, a second was based on
clinical notes alone, and a third used both structured data
elements and clinical notes. We used LASSO (least abso-
lute shrinkage and selection operator) [18] logistic regression
and random forests [19] to estimate the models. Due to
the relatively small sample size, we presented our results
based on 10-fold cross-validation. We performed the TF-IDF
approach separately within each cross-validation fold.

We evaluated the six classification models by calculat-
ing the area under the receiver operator characteristic curve
(AUROC), along with associated 95% CIs. We identified the
top clinical features and words that appeared in clinical notes
based on the LASSO and random forest models. We plotted
the precision-recall curve to better understand the perform-
ance of a classification model and assessed the impact of
different rule-based phenotypes.

As a way to understand the importance and potential
impact of accurate phenotyping, we performed an illustra-
tive association analysis, evaluating the relationship between
vaccination status and the following hospital outcome
metrics: length of stay, intensive care unit (ICU) utiliza-
tion, and in-hospital mortality. These were chosen, since
they are standard quality metrics for operational purposes.
We regressed each outcome onto vaccination status. We
used a log-linear model for length of stay and used logis-
tic regression for ICU utilization and in-hospital mortality.
Each regression was performed by using the full cohort and
compared to a model that only included patients who were
determined to have been hospitalized due to COVID-19.
We also tested for an interaction between vaccination status
and the cause of hospitalization. We emphasize that these
were illustrative analyses, and they were not meant to infer
any causal effects of vaccination but rather to illustrate the
importance of using cause-specific phenotyping for relevant
COVID-19 outcomes.

All work was performed in R version 4.1.2 (R Founda-
tion for Statistical Computing) [20] and Python version 3.9.1
(Python Software Foundation) [21]. The processing code is
available in our GitLab (GitLab Inc) [22].

Results
Patient Characteristics
In total, we reviewed the charts of 630 patients who
were admitted and tested positive for SARS-CoV-2. After
excluding patients younger than 18 years and patients with
privacy restrictions, our data set included 586 unique patients
who were hospitalized and had tested positive for SARS-
CoV-2. Of these, 224 (38.2%) were determined, through
clinician review, to have been hospitalized for reasons
other than COVID-19. During their assessments, our chart
reviewers noted that it was often readily apparent which
hospitalizations were attributable to COVID-19 and which
were not.

Characteristics, by admission cause, are shown in Table
1. Compared with patients hospitalized for indications other
than COVID-19, patients hospitalized due to COVID-19
were, on average, older (age: mean 62.7 years vs mean
51.9 years; SMD 0.587), and their admissions were more
commonly labeled as emergency admissions (346/362,
95.6% vs 165/224, 73.7%; SMD 0.641). Furthermore,
patients hospitalized due to COVID-19 were substantially
more likely to receive COVID-19 therapies, including
steroids (233/362, 64.4% vs 54/224, 24.1%; SMD 0.887) and
the antiviral agent remdesivir (247/362, 68.2% vs 55/224,
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24.6%; SMD 0.974), during their hospitalization. Patients
hospitalized due to COVID-19 had lower lymphocyte counts
on average compared with those of patients hospitalized for
reasons other than COVID-19. Normal levels of C-reactive

protein and the lack of dimerized plasmin fragment D
(D-dimer) testing were associated with hospitalizations for
reasons other than COVID-19.

Table 1. Cohort description.
Characteristics Hospitalized due to COVID-19 Standardized mean difference

No (n=224) Yes (n=362) Total (N=586)
Sex (female), n (%) 120 (53.6) 181 (50) 301 (51.4) 0.072
Age (years), mean 51.9 62.7 58.6 0.587
Patient outcome at discharge, n (%) 0.169

Dead 18 (8) 39 (10.8) 57 (9.7)
Home 176 (78.6) 258 (71.3) 434 (74.1)
Other facility 30 (13.4) 65 (18) 95 (16.2)

Admission type, n (%) 0.641
Emergency admission 165 (73.7) 346 (95.6) 511 (87.2)
Routine elective admission 24 (10.7) 4 (1.1) 28 (4.8)
Urgent admission 35 (15.6) 12 (3.3) 47 (8)

Transfer to intensive care unit, n (%) 45 (20.1) 78 (21.5) 123 (21) 0.036
Encounter type, n (%) 0.181

Emergency 2 (0.9) 1 (0.3) 3 (0.5)
Emergency to inpatient 180 (80.4) 314 (86.7) 494 (84.3)
Inpatient 31 (13.8) 35 (9.7) 66 (11.3)
Observation stay 11 (4.9) 12 (3.3) 23 (3.9)

Race and ethnicity, n (%) 0.168
Hispanic 21 (9.4) 20 (5.5) 41 (7)
Non-Hispanic Black 106 (47.3) 175 (48.3) 281 (48)
Non-Hispanic White 90 (40.2) 152 (42) 242 (41.3)
Non-Hispanic Asian 7 (3.1) 14 (3.9) 21 (3.6)
Other races 0 (0) 1 (0.3) 1 (0.2)

Length of stay (days), mean 10.2 9.9 10 0.026
BMI, n (%) 0.203

Missing 9 (4) 9 (2.5) 18 (3.1)
Normal 65 (29) 89 (24.6) 154 (26.3)
Obese 85 (37.9) 147 (40.6) 232 (39.6)
Overweight 60 (26.8) 98 (27.1) 158 (27)
Underweight 5 (2.2) 19 (5.2) 24 (4.1)

Raw payer type value, n (%) 0.305
Private 102 (45.5) 180 (49.7) 282 (48.1)
Public 88 (39.3) 144 (39.8) 232 (39.6)
Self-pay 21 (9.4) 9 (2.5) 30 (5.1)
Other 13 (5.8) 29 (8) 42 (7.2)

Vaccinated against COVID-19, n (%) 113 (50.4) 178 (49.2) 291 (49.7) 0.026
Comorbidities, n (%)

Surgery 200 (89.3) 302 (83.4) 502 (85.7) 0.171
Cancer 29 (12.9) 45 (12.4) 74 (12.6) 0.015
Cardiovascular 75 (33.5) 146 (40.3) 221 (37.7) 0.142
Hypertension 73 (32.6) 151 (41.7) 224 (38.2) 0.19
Chronic liver disease 30 (13.4) 46 (12.7) 76 (13) 0.02
Chronic obstructive pulmonary disease 21 (9.4) 50 (13.8) 71 (12.1) 0.139
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Characteristics Hospitalized due to COVID-19 Standardized mean difference
No (n=224) Yes (n=362) Total (N=586)

Asthma 18 (8) 39 (10.8) 57 (9.7) 0.094
Chronic renal disease 44 (19.6) 111 (30.7) 155 (26.5) 0.256
Diabetes 45 (20.1) 103 (28.5) 148 (25.3) 0.196

Medications, n (%)
Bronchodilator 44 (19.6) 159 (41.2) 193 (32.9) 0.481
Steroid 54 (24.1) 233 (64.4) 287 (49) 0.887
Anticoagulant antiplatelet 121 (54) 284 (78.5) 405 (69.1) 0.535
Diuretic 60 (26.8) 131 (36.2) 191 (32.6) 0.203
Cough suppressant 44 (19.6) 162 (44.8) 206 (35.2) 0.558
Paralytic 10 (4.5) 30 (8.3) 40 (6.8) 0.157
Expectorant 14 (6.3) 56 (15.5) 70 (11.9) 0.3
Remdesivir 55 (24.6) 247 (68.2) 302 (51.5) 0.974
Inhaled steroid 24 (10.7) 42 (11.6) 66 (11.3) 0.028

Laboratory tests, n (%)
Absolute lymphocyte count 0.345

High 1 (0.4) 2 (0.6) 3 (0.5)
Low 12 (5.4) 47 (13) 59 (10.1)
Normal 23 (10.3) 59 (16.3) 82 (14)
Not taken 188 (83.9) 254 (70.2) 442 (75.4)

Lymphocyte count 0.528
Low 17 (7.6) 71 (19.6) 88 (15)
Normal 131 (58.5) 233 (64.4) 364 (62.1)
Not taken 76 (33.9) 56 (15.5) 132 (22.5)
High 0 (0) 2 (0.6) 2 (0.3)

C-reactive protein 0.602
High 62 (27.7) 203 (56.1) 265 (45.2)
Normal 11 (4.9) 9 (2.5) 20 (3.4)
Not taken 151 (67.4) 150 (41.4) 301 (51.4)

Ferritin 0.361
High 39 (17.4) 107 (29.6) 146 (24.9)
Low 2 (0.9) 3 (0.8) 5 (0.9)
Normal 17 (7.6) 44 (12.2) 61 (10.4)
Not taken 166 (74.1) 208 (57.5) 374 (63.8)

D-dimera 1.187
High 19 (8.5) 117 (32.3) 136 (23.2)
Normal 36 (16.1) 156 (43.1) 192 (32.8)
Not taken 169 (75.4) 89 (24.6) 258 (44)

Procalcitonin 0.524
High 4 (1.8) 22 (6.1) 26 (4.4)
Missing 208 (92.9) 268 (74) 476 (81.2)
Normal 12 (5.4) 72 (19.9) 84 (14.3)

aD-dimer: dimerized plasmin fragment D.

Performance of Classification Models
After tokenizing words and removing terms with fewer than
50 occurrences, our models included 7953 unique terms.
There was minimal difference between the LASSO and
random forest models. The random forest model based solely
on clinical notes, the one based solely on structured data

elements, and the one that used both clinical notes and
structured data elements had AUROCs of 0.882 (95% CI
0.85-0.909), 0.829 (95% CI 0.794-0.864), and 0.890 (95% CI
0.864-0.916), respectively. The LASSO model based solely
on clinical notes (AUROC=0.894, 95% CI 0.868-0.920)
had better discrimination than the LASSO model based
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solely on structured data elements (AUROC=0.841, 95% CI
0.809-0.874; P<.001). The LASSO model using both clinical
notes and structured data elements (AUROC=0.893, 95% CI
0.868-0.919) had similar discrimination to that of the LASSO
model based solely on clinical notes (P=.91).

Next, we examined the top structured data elements and
terms in each model (Figure 1). Highly predictive data
elements and words corresponded to patient characteristics
with large SMDs (Table 1). Words that are reflective of
hospitalization due to COVID-19 have positive coefficients,
while words reflective of hospitalization for other reasons
have negative coefficients. Terms reflective of COVID-19–
specific hospitalization were related to the care of patients

with COVID-19, such as “remdesivir” and “dexamethason.”
Other structured elements related to the likelihood of being
hospitalized for COVID-19 included receipt of steroids, low
lymphocyte counts, and underweight BMIs. Terms reflective
of hospitalizations due to indications other than COVID-19
included strings that may be related to surgical procedures
(eg, “surgic” for “surgical” or “dress” for “dressing”). For
structured data elements, a lack of D-dimer collection and low
ferritin levels were most commonly associated with admis-
sions for reasons other than COVID-19. Similar features
were identified from the random forest model (Figure S1 in
Multimedia Appendix 1).

Figure 1. The top regression coefficients from the LASSO models, as reflective of variable importance for (A) the model using just structured data
elements and (B) the model using just clinical notes. Values greater than 0 indicate that the feature has a positive association with hospitalization due
to COVID-19, while values less than 0 indicate that a feature has a negative association.

Impact of Correct Classification
In order to assess the performance of a computable pheno-
type–based decision rule, we examined the precision-recall
curve of the different models (Figure 2). For example, a
rule that maintains a sensitivity of 90% (ie, one that would
capture 90% of all patients hospitalized due to COVID-19)
resulted in positive predictive values of 76%, 82%, and
84% and corresponding F1-scores of 0.824, 0.858, and
0.869 based on structured data elements, clinical notes, and
their combination, respectively. To illustrate the impact of
these differences, we considered the impact of implementing
each of these phenotypes at a 90% sensitivity to classify
patients during the January Omicron wave. Within our health
system, 1378 people were hospitalized and tested positive
for SARS-CoV-2. Based on our analyses, using the LASSO-
based phenotype that incorporates structured data, clinical
notes, or their combination would result in approximately
244, 165, and 142 false positives, respectively.
We next sought to evaluate the potential impact of different
phenotyping methods on hospital outcome metrics, com-
paring a method that incorporates the reason for hospital-
ization versus one that does not. We used a regression
analysis to assess the marginal relationship. As a use case,
we evaluated associations between vaccine status and the

following three hospital outcome metrics: length of stay, risk
of ICU utilization, and in-hospital mortality. These evalua-
tions were performed with the following three cohorts: all
hospitalized patients, those who were determined to have
been hospitalized due to COVID-19, and those who tested
positive for SARS-CoV-2 but were hospitalized for unrela-
ted reasons (Table 2). For length of stay, the magnitude of
the effect of vaccine status changed based on the cohort
used. In the cohort of all hospitalized patients, vaccinated
patients had a shorter length of stay (relative rate 0.81,
95% CI 0.71-0.93). However, when limiting the analytic
cohort to patients hospitalized due to COVID-19, there was
no significant difference in length of stay for vaccinated
patients versus unvaccinated patients (relative rate 0.98, 95%
CI 0.83-1.16; P value for interaction<.001). We found similar
patterns in analyses of other in-hospital outcomes; vaccina-
tion was associated with reduced risks of ICU utilization and
in-hospital mortality among patients hospitalized for reasons
other than COVID-19 when compared to those among
patients hospitalized due to COVID-19. Effects were robust
to adjustment for age (Table S2 in Multimedia Appendix 1).
These results illustrate the impact of selecting the correct
cohort for analysis and the potential ramifications of using a
cohort in which the reason for hospitalization has not been
determined.
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Table 2. Marginal association between vaccine statusa and outcome metrics, unadjusted for age.
Outcome Full cohort Hospitalized due to COVID-19 Hospitalization unrelated to COVID-19 P valueb

Length of stay, relative rate (95% CI) 0.81 (0.71-0.93) 0.98 (0.83-1.16) 0.59 (0.47-0.74) <.001
ICUc utilization, odds ratio (95% CI) 1.04 (0.70-1.56) 1.25 (0.75-2.07) 0.77 (0.40-1.49) .26
Mortality, odds ratio (95% CI) 1.02 (0.59-1.78) 1.45 (0.74-2.88) 0.48 (0.16-1.29) .08
aUnvaccinated patients are the reference group.
bP value is for hospitalization due to COVID-19 versus hospitalization unrelated to COVID-19.
cICU: intensive care unit.

Discussion
Principal Findings
Due to the public health importance of the accurate identifi-
cation of COVID-19–related hospitalizations, there is a need
for methods and computable phenotypes to identify hospital
admissions in which the primary cause is COVID-19 [23].
We used machine learning methods and a physician chart
review to develop a classification algorithm for hospitaliza-
tion due to COVID-19. We found that 38.2% (224/586) of
patients who were hospitalized at our institution during the
Omicron wave and tested positive for SARS-CoV-2 infection
were hospitalized for reasons other than COVID-19. These
findings are in line with other recent studies, which found
that an average of 26% of hospitalized patients with a
positive SARS-CoV-2 test result had a primary indication
for hospitalization that was unrelated to COVID-19 [14]. We
found that a model based on clinical notes performed better
than one based solely on structured EHR data elements. This
work has important implications for retrospective analyses
using EHR data to assess outcomes related to COVID-19,
including vaccine effectiveness and health system capacity
[24].

Prior work by Lynch and colleagues [25] evaluated the
utility of ICD-10 codes for COVID-19 diagnosis in inpa-
tient, outpatient, emergency care, and urgent care settings
during time periods across the pandemic; using a weighted,

random sample of 1500 records from the Department of
Veterans Affairs, they found that the COVID-19 ICD-10
code (U07.1) had a relatively low positive predictive value
across settings and time periods. These findings highlight
the need for additional contextual data to identify acute
cases of COVID-19. The Consortium for Clinical Character-
ization of COVID-19 by EHR (4CE) conducted a similar
study of EHR data from 12 clinical sites to identify com-
binations of structured data elements to generate a reliable
computable phenotype for hospitalization due to COVID-19,
with a reported AUROC of 0.903 [26]. Similarly, we
derived an AUROC of 0.841 based solely on structured
data elements; however, we also found that that inclusion
of clinical notes significantly improved the performance of
the classification model (AUROC=0.893; P<.001). This result
is not surprising, as the clinical narrative often includes
important nuance, and as our chart reviewers noted, it was
often readily apparent which hospitalizations were attribut-
able to COVID-19 and which were not. Of note, chart
reviewers in our study classified hospitalizations that were
indirectly due to SARS-CoV-2 infection, such as those due to
COVID-19–related weakness or delirium, as hospitalizations
due to COVID-19, which could partly explain the observed
difference in discriminatory ability between our study and the
study conducted by the 4CE.

By using the TF-IDF approach in conjunction with
LASSO regression, we identified both individual terms and
the direction of the association between each term and the

Figure 2. Precision-recall (positive predictive value and sensitivity) curve for the different classification algorithms. This illustrates the trade-off
between the identification of patients hospitalized due to COVID-19 (x-axis: sensitivity) and the accuracy of that capture (y-axis: positive predictive
value). There is minimal difference between using just notes or notes with structured data elements. The model with only structured data elements
performs notably worse in terms of positive predictive value at the same sensitivity thresholds. AUPRC: area under the precision-recall curve.
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hospitalization indication. Although the TF-IDF approach
is a simple natural language processing (NLP) approach, it
is also very scalable, interpretable, and implementable. Our
results highlight the power of even simple natural language
models. The terms that best predicted hospitalizations due
to COVID-19 included common descriptors that were used
in the clinical care of patients with COVID-19, such as
“hypox” (likely shortened from “hypoxia” or “hypoxic”),
or COVID-19 therapies like remdesivir. Conversely, the
terms that were not associated with hospitalizations due to
COVID-19 included words related to surgery—a common
indication for hospital admission that is generally unrelated to
SARS-CoV-2 infection.

To help contextualize our results, we also assessed
the real-world impact of using an accurate phenotype for
COVID-19–specific hospitalization. In studying hospitalized
patients with COVID-19, the simplest analysis would be to
include all patients with a COVID-19–positive test result.
As our illustrative analysis showed, when using this full but
heterogeneous cohort, the results suggested that vaccination
status is associated with a shorter length of stay. However,
when we limited the analysis to only include patients who
were identified as having been hospitalized due to COVID-19
(ie, people with symptoms of COVID-19), the analysis
indicated that vaccines are not associated with a shorter
length of stay. We interpreted these data as indicating that,
conditional on someone being sick enough to be hospitalized
due to COVID-19, vaccines provide no additional benefit
in terms of the length of hospitalization. Similar patterns
were found for other hospital outcome metrics. Although
this analysis was not intended to be a causal analysis, it
did illustrate how the use of accurately classified cohorts is
important for the calculation of standard outcome metrics and
likely impacts other related association analyses.

More broadly, this work highlights the importance and
challenge of phenotyping cause-specific events. Although
there is rich literature on computable phenotypes, most of
this literature is geared toward the identification of chronic
diseases (eg, presence of asthma). However, few computa-
ble phenotypes have focused on cause-specific events (eg,
asthma exacerbation). Such cause-specific phenotypes often
exhibit poor specificity and can require algorithms that are

more complex than those required for chronic conditions.
As this work shows, and as suggested by others, NLP-based
phenotyping approaches are becoming more common, and
further comparisons between NLP approaches and other
methods will be needed to determine whether using text data
can improve cause-specific phenotypes.

Although our study used rigorous methods, there are
some key limitations. First and most notably, our findings
are primarily illustrative and may not represent a generaliza-
ble algorithm for phenotyping COVID-19–specific hospitali-
zations. This study was conducted across a single hospital
system, and it may not be reflective of practices at other
institutions. Importantly, we would not expect our specific
phenotype algorithm to be generalizable to other institutions.
Second, we only looked at 1 period of time, namely the
January 2022 Omicron wave; however, there are documen-
ted differences in the rate of hospitalization and positive test
results over the course of the pandemic, and our models may
not accurately reflect distinguishing factors in other waves.
Third, another limitation is that, given the time constraints of
chart reviews, we were only able to analyze a relatively small
sample. In particular, the small sample size limited our ability
to apply more sophisticated NLP-based approaches, such as
the use of n-grams.
Conclusions
Overall, our results show that a sizable number of people who
were hospitalized and tested positive for SARS-CoV-2 were
hospitalized for reasons other than COVID-19. The confla-
tion of these individuals can impact our understanding of
hospital outcome metrics. We constructed a strong classifica-
tion model that can be used as a computable phenotype to
distinguish patients who were hospitalized due to COVID-19
from those who incidentally tested positive for SARS-CoV-2
but were hospitalized for other reasons. Moreover, we found
that while structured data elements are useful in construct-
ing such a phenotype, clinical notes had a higher positive
predictive value than that of structured data elements alone.
Future work should seek to explore the generalizability of
such phenotypes across institutions and different waves of the
COVID-19 pandemic.
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