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Abstract

Background: The COVID-19 pandemic has significantly altered the global health and medical landscape. In response to the
outbreak, Chinese hospitals have established 24-hour fever clinics to serve patients with COVID-19. The emergence of these
clinics and the impact of successive epidemics have led to a surge in visits, placing pressure on hospital resource allocation and
scheduling. Therefore, accurate prediction of outpatient visits is essential for informed decision-making in hospital management.

Objective: Hourly visits to fever clinics can be characterized as a long-sequence time series in high frequency, which also
exhibits distinct patterns due to the particularity of pediatric treatment behavior in an epidemic context. This study aimed to build
models to forecast fever clinic visit with outstanding prediction accuracy and robust generalization in forecast horizons. In addition,
this study hopes to provide a research paradigm for time-series forecasting problems, which involves an exploratory analysis
revealing data patterns before model development.

Methods: An exploratory analysis, including graphical analysis, autocorrelation analysis, and seasonal-trend decomposition,
was conducted to reveal the seasonality and structural patterns of the retrospective fever clinic visit data. The data were found to
exhibit multiseasonality and nonlinearity. On the basis of these results, an ensemble of time-series analysis methods, including
individual models and their combinations, was validated on the data set. Root mean square error and mean absolute error were
used as accuracy metrics, with the cross-validation of rolling forecasting origin conducted across different forecast horizons.

Results: Hybrid models generally outperformed individual models across most forecast horizons. A novel model combination,
the hybrid neural network autoregressive (NNAR)-seasonal and trend decomposition using Loess forecasting (STLF), was
identified as the optimal model for our forecasting task, with the best performance in all accuracy metrics (root mean square
error=20.1, mean absolute error=14.3) for the 15-days-ahead forecasts and an overall advantage for forecast horizons that were
1 to 30 days ahead.

Conclusions: Although forecast accuracy tends to decline with an increasing forecast horizon, the hybrid NNAR-STLF model
is applicable for short-, medium-, and long-term forecasts owing to its ability to fit multiseasonality (captured by the STLF
component) and nonlinearity (captured by the NNAR component). The model identified in this study is also applicable to hospitals
in other regions with similar epidemic outpatient configurations or forecasting tasks whose data conform to long-sequence time
series in high frequency exhibiting multiseasonal and nonlinear patterns. However, as external variables and disruptive events
were not accounted for, the model performance declined slightly following changes in the COVID-19 containment policy in
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China. Future work may seek to improve accuracy by incorporating external variables that characterize moving events or other
factors as well as by adding data from different organizations to enhance algorithm generalization.

(JMIR Med Inform 2023;11:e45846) doi: 10.2196/45846
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Introduction

Background
COVID-19 is the most severe global pandemic of the 21st
century, which has brought major changes to the global health
care environment [1]. According to statistics from the World
Health Organization, there have been >760 million confirmed
cases of COVID-19 worldwide, including nearly 7 million
deaths to date. Although the World Health Organization has
declared that COVID-19 no longer constitutes a “public health
emergency of international concern,” it remains a serious
infectious disease that will persist for the foreseeable future.
Moreover, since the onset of the epidemic, numerous epidemic
infections have also emerged, including influenza A, respiratory
syncytial virus infection, and mycoplasma pneumonia.
Successive waves of respiratory infections led to a significant
increase in the number of patients presenting with fever. This
prompted governments and hospitals to take measures for patient
management to prevent viral transmission and control the risk
of hospital-acquired infections [2,3].

In China, since the outbreak of COVID-19, most public hospitals
have established fever clinics that can achieve individual
closed-loop management in the clinics themselves (as shown
in Figure 1). This enables the centralized treatment of patients
with fever infections. As mandated by the National Health
Commission, the allocation of resources and the operation in
fever clinics must strictly adhere to established guidelines [4]
to minimize the risk of hospital infection. Some hospitals even
operate their fever clinics 24/7. Despite the relaxation of China’s

epidemic containment policy since the end of 2022, many
hospitals continue to operate their fever clinics as usual.

The presence of epidemics and the establishment of continuously
operating fever clinics are altering visitation patterns,
particularly among pediatric patients. Compared with adult
patients, pediatric patients require more attentive care from both
their guardians and medical staff, and their conditions are more
prone to relapse, resulting in a continuous and intensive trend
of fever clinic visits among pediatric patients during the
pandemic. This poses great challenges for hospital outpatient
management and the prevention of hospital-acquired infections.
In this context, there is growing interest in the study of
outpatient visit forecasting.

Forecasting visits to fever clinics offers numerous benefits for
hospital management. Accurate and timely visit forecasts can
facilitate the rational allocation of manpower and medical
consumables in outpatient departments as well as the refined
management and scheduling of medical equipment and facilities.
Moreover, hour-level outpatient visit forecasts can provide a
valuable decision-making reference for patients’ time
management, enhancing efficiency for both hospitals and
patients. Hourly visits to fever clinics can be characterized as
a long-sequence time series in high frequency owing to their
high sampling rate and large time window. The unique visitation
patterns of children with fever will also certainly be reflected
in the time-series data. Therefore, a peer-to-peer approach
capable of uncovering the intrinsic patterns of pediatric fever
clinic visit time series and establishing accurate and fine-grained
visit forecast models is highly desirable.
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Figure 1. Fever clinic deployment instructions in the designated hospital.

Related Work
Time-series analysis and forecasting have been widely applied
in various fields, such as disease analysis [5-9], hospital
operation management [10-14], and drug management [15-18].
Numerous studies have been conducted to forecast daily and
hourly arrivals or occupancies in emergency departments.
Hertzum [19] and Choudhury and Urena [20] effectively
predicted hourly arrivals using autoregressive integrated moving
average (ARIMA) models, whereas Becerra et al [21] studied
a seasonal ARIMA (SARIMA) forecast model based on daily
emergency admissions for respiratory outpatients. Cheng et al
[22] and Whitt and Zhang [23] applied SARIMA with an
external repressor to forecast hourly occupancy. Deep learning
algorithms, such as the variational autoencoder proposed by
Harrou et al [24] and the long short-term memory (LSTM) used
by Etu et al [25], have also been applied to such problems,
demonstrating that prediction results can significantly aid
decision support in hospital management. Zhang et al [26] and
Sudarshan et al [27] incorporated external variables, such as
calendar and meteorological information, into the LSTM model,
verifying the improvement in the accuracy of the models
established in their research case.

Khaldi et al [28] investigated a hybrid model combining artificial
neural networks with ensemble empirical mode decomposition,
which exhibited better approximation and generalization
capabilities than the benchmarking models when applied to
weekly arrivals in emergency departments. Deng et al [29]
proposed a hybrid ARIMA-LSTM model optimized by the
backpropagation neural networks that achieved more accurate
and stable predictions than the respective single models and the
traditional hybrid model when forecasting weekly and monthly
outpatient visits to the respiratory department. Perone [30] used
single-step time-series methods and their feasible ensembles to

forecast the arrival of hospitalized patients with COVID-19
presenting with mild symptoms, as well as those in intensive
care units. They discovered that hybrid models were
significantly better at capturing linear, nonlinear, and seasonal
pandemic patterns than their respective single models on both
time series.

Although numerous studies have been dedicated to forecasting
outpatient visits, the time-series models used in existing hospital
visit forecasting studies are limited in their ability, for they
handle only a single seasonality pattern. When applied to
long-sequence time series in high frequency, these models are
unable to capture all seasonal patterns present in the data,
resulting in the loss of data features and increased difficulty in
forecasting. This is the significant drawback of
single-seasonal-pattern models. Additionally, although
cross-validation has been conducted in previous time-series
studies to evaluate model performance, it has rarely been used
as a basis for comparing the forecasting performance of models
across different forecast horizons, leading to an incomplete
analysis and evaluation of the predictive capabilities of different
models. This study aimed to address these limitations.

Objective
In this study, we aimed to develop a reliable forecasting model
for the hospital management of fever clinics. Unlike previous
studies, we focused on establishing models suitable for
long-sequence time series in high frequency. The model needed
to meet the following 3 requirements to facilitate our fever clinic
visit forecast task. Firstly, we prioritized hourly forecasts over
daily forecasts to predict fever clinic visits, as this allows for
greater flexibility in hospital management and resource
allocation. Second, an ideal model should be capable of making
medium- to long-term forecasts (eg, 15 days) on high-frequency
time-series data to aid hospital managers in making informed
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decisions. Finally, the model should be scalable and stable and
exhibit robust performance.

To this end, we first conducted an exploratory analysis of
time-series data to uncover the patterns and features of fever
clinic hourly visit time series and then used an ensemble of
time-series models and their combinations for fever clinic visit
forecasting. For model evaluation, we used cross-validation to
compare the accuracy of all models across different forecast
horizons and analyzed the results. Exploratory analysis can help
discover the inherent laws of data, which makes it easier to find
models that fit the characteristics of the data. Cross-validation
across different forecast horizons helps find models with
superior scalability and stability. These are the 2 points that
represent the main highlights of our research compared with
existing work.

Methods

Ethical Considerations
The authors are accountable for all aspects of the work and are
responsible for ensuring that questions related to the accuracy

or integrity of any part of the work are appropriately investigated
and resolved. This study was conducted in accordance with the
Declaration of Helsinki (as revised in 2013). The study was
approved by the Academic Ethics Committee of the Children’s
Hospital of Zhejiang University School of Medicine (2020-RIB-
058). The requirement for individual consent for this
retrospective analysis was waived.

Study Participants
This study focused on the Children's Hospital of Zhejiang
University School of Medicine, a preeminent comprehensive
class A tertiary children’s hospital located in the Zhejiang
province, China. In response to the COVID-19 outbreak in 2020,
the hospital’s fever clinic transitioned to a 24-hour emergency
operation mode, providing uninterrupted care for pediatric
patients. The fever clinic operates as an autonomous department
fully equipped with comprehensive medical resources. Figure
2 presents data illustrating the proportion of fever clinic visits
relative to the total number of outpatient visits over the past 4
years. The data revealed a consistent increase in the proportion
of fever clinic visits, with a notable surge in 2020.

Figure 2. The ratio of fever clinic visits to the total number of outpatient visits over the past 4 years.

Data Collection and Preprocessing
The data set used in this study consisted of authentic data
extracted from the electronic medical record (EMR) text of the
aforementioned hospital’s fever clinic. Data were collected from
January 23, 2020, to May 23, 2023, encompassing the onset of
the COVID-19 outbreak and the phases of strict containment
policy (January 2021 to November 2022) and open containment
policy (December 2022 to present) implemented in the region.
We tallied hourly fever clinic visits based on patients’ initial
visit records in the EMR and divided each day’s 24-hour data
into 24 nonoverlapping segments. Our data set comprises a time
series of 29,208 data points (1217 days × 24 hours) representing
hourly visits. Our data set exhibited a paucity of missing data,
which we addressed by filling sporadic gaps in the hourly count
with a value of 0. Outliers were identified through the remainder

sequence obtained via seasonal-trend decomposition using Loess
(STL) decomposition and defined as values exceeding 3 IQRs
from the central 50% of the data. These outliers were
subsequently smoothed using linear interpolation.

To further scrutinize our data set, we conducted statistical
analyses based on children’s developmental stages as determined
by their educational level [31]. The total number of patients
was 1,590,909, and we divided them into the following 5 groups:
infants (aged 0-2 years; n=661,425, 41.58%), preprimary
children (aged 3-5 years; n=599,464, 37.68%), primary school
children (aged 6-11 years; n=302,046, 18.99%), junior secondary
students (aged 12-14 years; n=25,364, 1.59%), and senior
secondary students (aged 15-17 years; n=2610, 0.16%). Table
1 depicts fever clinic visits for each group, revealing that the
patients were predominantly infants and preprimary children.
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Furthermore, we extracted International Classification of
Diseases, 10th Revision disease diagnosis codes [32] from the
EMR data and compiled statistics on related diseases in the
fever clinic. Our results indicate that respiratory diseases
constitute the largest proportion (738,635/1,590,909, 46.43%)

of fever clinic cases, followed by infectious and parasitic
diseases (347,199/1,590,909, 21.82%) and digestive diseases
(174,814/1,590,909, 10.99%), all of which are influenced by
climate change.

Table 1. Distribution of patients who visited the fever clinic across age groups from January 23, 2020, to May 23, 2023.

15-17 years12-14 years6-11 years3-5 years0-2 years

122110,887141,768283,567297,590Girls, n

138914,477160,278315,897363,835Boys, n

Exploratory Data Analysis
Before constructing forecasting models, it is imperative to
comprehend the behavior of data in the time domain. Using
statistical graphics and data visualization techniques, time-series
patterns can be extracted and interpreted, facilitating model
selection and minimizing errors.

Graphic Analysis
Figure 3 depicts the hourly fever clinic visit time series from
our data set. We plotted time-series data before and after the
changes in the epidemic containment policy, with December
19, 2022, as the separation point. To identify the underlying
patterns in the time series, we analyzed the data from a seasonal
perspective. Given that our data are hourly, they may exhibit 3
types of seasonality: daily, weekly, and yearly. These patterns
are plotted in Figures 4-6.

As illustrated in Figure 4, the diurnal pattern of fever clinic
visits exhibited relatively fewer visits during the early morning
hours, with 3 prominent peaks occurring at 9 AM, 2 PM, and
8 PM, indicating heightened visitation. Figure 5 reveals that
visitation peaks are most pronounced on Mondays and Tuesdays,
diminishing on Wednesdays and Thursdays before a resurgence
from Friday through the weekend. Despite an overall decline
in fever clinic visits in 2023 due to the relaxation of COVID-19
policies, the time series which consists of data spanning over 3
years still exhibits clear annual periodicity. As shown in Figure
6, values fluctuate systematically with seasonal and even
monthly variations, with elevated values during winter,
diminished values during spring, and peak outpatient periods
coinciding with summer vacation. The location of troughs in
Figure 6 appears to be influenced by movable holidays such as
the Chinese New Year. From Figures 4-6, we can deduce that
the time series exhibits conspicuous multiseasonal patterns,
including daily, weekly, and yearly seasonalities, thereby
exhibiting robust predictability.

Figure 3. Time-series plot of hourly fever clinic visits from January 23, 2020, to May 23, 2023.
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Figure 4. Daily seasonal patterns in the hourly fever clinic visit time series.

Figure 5. Weekly seasonal patterns in the hourly fever clinic visit time series.
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Figure 6. Yearly seasonal patterns in the hourly fever clinic visit time series.

Autocorrelation Function Analysis
The analysis of autocorrelation function (ACF) and partial ACF
(PACF) for sample data is a crucial approach for identifying
the characteristics of seasonal time series and proposing
appropriate candidate models [33]. The lag k autocorrelation
coefficient rk, as measured by ACF, quantifies the linear
correlation between 2 observations, yt and yt−k can be expressed
per the following formula:

where yt represents the value of the time series at time t, is
the mean, and T is the length of the time series. PACF, by
contrast, measures the direct correlation between yt and yt−k

while isolating the effects of periods other than k from the
analysis.

Figures 7 and 8 depict the sample ACF and PACF for the initial
48 lags derived from the hourly fever clinic visitation data and
their corresponding seasonal differential data. As illustrated in
Figure 7, the ACF values are uniformly positive and exhibit
symmetrical, humped shapes with spike values occurring at
multiples of 24-hour intervals, whereas the PACF values exhibit
decay in seasonal lags at multiples of 24 hours. These
observations suggest that the hourly visit time series is
nonstationary and lacks a discernible trend, yet it exhibits strong
daily seasonality. Consequently, a seasonal difference by daily
period (24 hours) can be applied to generate a stationary time
series. As demonstrated in Figure 8, the ACF decays
exponentially to approximately 0 after 5 lags, with a downward
spike at the first seasonal lag, whereas the PACF exhibits tailing
off within each daily periodicity. This indicates the presence of
short-term autocorrelation within the differential series as well
as a strong negative autocorrelation with 1 seasonal lag.
Therefore, it is feasible to achieve short-term forecasts and
single seasonal (daily seasonal) forecasts through
autocorrelation-based modeling.
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Figure 7. Autocorrelation function (ACF) and partial autocorrelation function (PACF) of the hourly fever clinic visit time series.
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Figure 8. Autocorrelation function (ACF) and partial autocorrelation function (PACF) of the seasonal differential hourly fever clinic visit time series.

STL Analysis
The decomposition of a time series can be used to assess its
strength of trend and seasonality. The STL, developed by
Cleveland et al [34], constitutes a filtering procedure for
decomposing a time series into trend, seasonal, and remainder
components in an additive manner. This methodology was
subsequently extended to facilitate the decomposition of time
series exhibiting multiple seasonal patterns [35].

Figure 9 shows the application of STL to hourly fever clinic
visit data, yielding multiple seasonal components as well as
trend and remainder components. As expected, 3 seasonal
patterns were evident, corresponding to the time of day (third
panel), time of week (fourth panel), and time of year (fifth
panel).

Note the vertical scales of all panels in Figure 9; the trend panel
has the widest bar compared with the other panels, which means
that the trend has the narrowest range and, consequently,
accounts for only a small proportion of the variation within the
data series. The weekly seasonality panel exhibits similar
characteristics. In addition, the bars on the daily and yearly

seasonality panels are only slightly larger than that on the data
panel, indicating that the daily and yearly seasonality signals
are largely related to variations in the data series.

It can be inferred that the number of visits exhibited an upward
trend during the first 2 years, followed by a modest decline
commencing at the end of 2022. However, the impact of this
change in trend on the overall time series is negligible.
Consequently, the influence of changes in the epidemic
containment policy on the data can be ignored. Concurrently,
the weekly seasonality inherent within the series is relatively
weak and exerts minimal influence on temporal variations within
the time series, whereas daily and yearly seasonalities exert a
more pronounced effect. Furthermore, it is evident that the daily
seasonal pattern undergoes temporal variations, whereas the
yearly seasonal pattern appears relatively fixed. Therefore, for
long-term forecasting, it is advisable to incorporate yearly
seasonal lag data. Finally, the panel at the bottom exhibits large
random fluctuations owing to its slightly larger size relative to
the data panel. This suggests the presence of additional nonlinear
signals infiltrating the residual components, potentially
attributable to outliers or unaccountable factors.
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Figure 9. Seasonal-trend decomposition using Loess on the hourly fever clinic visit time series.

Theory and Calculations
This section delineates the models used in this study and
explains the forecast accuracy measures used in the evaluation
of model performance.

Forecasting Models
Before conducting experiments, we established a benchmark
method as the standard to ensure that the performance of the
other selected models surpasses that of it. As a benchmark
approach, it is reasonable to consider the prevailing seasonality
in the time series. We set the seasonal naive (SNaive) method
as our benchmark, given its utility for highly seasonal data. This
method sets each forecast such that it is equal to the last
observed value from the corresponding season. Here, the
predicted value for the forecast horizon h is considered to be
equivalent to the observed value from the previous day.
Formally, the forecast for time T+h is expressed as

where m represents the specified seasonal period. This approach
requires no parameterization or setup and is frequently used as
a benchmark method rather than a model of choice.

Time series exhibiting trends or seasonality are not stationary,
as their statistical properties vary over time. In such instances,
nonstationary time series can be rendered stationary through
the application of differencing techniques. The ARIMA model
constitutes a combination of differencing with autoregressive
and moving average (MA) components, which were first
proposed by Box and Jenkins [36], and is commonly denoted
as ARIMA(p,d,q). Autoregressive refers to the regression of a
variable in the model on its own lagged or prior values, whereas
MA incorporates the dependency between an observation and
a residual error derived from an MA model applied to lagged
observations. However, the ARIMA model is only applicable
to nonseasonal data. The SARIMA model, denoted as
ARIMA(p,d,q)(P,D,Q)m, was derived by incorporating additional
seasonal terms into the ARIMA model. It should be noted that
the SARIMA model can only specify a single seasonal period
parameter, rendering it capable of handling only single
seasonality. A mathematical exposition of the ARIMA and
SARIMA models can be found in Multimedia Appendix 1.

As demonstrated in the STL analysis section, STL has been
applied to the hourly fever clinic visit time series exhibiting
multiple seasonality. This can be conceptualized as
decomposition into 3 seasonal components and seasonally
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adjusted components. The STL method is based on the
performance of weighted local regressions (Loess) on seasonal
indices and the trend, with Loess constituting a methodology
for estimating nonlinear relationships. This approach confers
benefits upon statistical methods by providing a more versatile
and robust decomposition procedure than their intrinsic
mechanism [37]. The improved algorithm for multiple
seasonality uses an iterative method to obtain seasonal
components sequentially in ascending order of cycles and finally
to compute the trend component in the last iteration [35]. The
forecasting approach based on the STL method is defined as
the STL forecasting (STLF) model. In this approach, each
seasonal component is forecasted by the SNaive method
corresponding to the seasonal lags, whereas seasonally adjusted
data are forecasted using a nonseasonal ARIMA model.
Evidently, this forecasting approach has an advantage in
handling multiple seasonal patterns for a long time series, in
contrast to the SARIMA model, which is limited to handling
single seasonality.

Artificial neural network is based on a structure comprising an
input layer, hidden layers, and an output layer, facilitating the
modeling of complex nonlinear relationships between response
variables and their predictors. The neural network autoregressive
(NNAR) model uses lagged values of the time series as inputs
to the neural network, with the last observed values from the
corresponding season also incorporated as inputs. Generally,
the notation NNAR(p,P,K)n is used to denote the presence of p
lag inputs, P seasonal lag inputs, and K neuron nodes in the
hidden layer, where m represents the seasonal period. A model
can be defined as yt=f(yt−1,yt−2,...,yt−p,yt−m,...yt−Pm)+ εt, where
f represents the nonlinear function of the feed-forward network
with a single hidden layer, and εt is the residual series. In
contrast to traditional time-series methods, the network may be
applied iteratively, with predictions incorporated as inputs
alongside historical data when forecasting additional steps
ahead.

In addition, hybrid combinations of the aforementioned models
include hybrid SARIMA-STLF, hybrid NNAR-STLF, hybrid
SARIMA-NNAR, and hybrid SARIMA-NNAR-STLF. In these
hybrid models, multiple forecasts are combined by averaging
the forecasts of individual models. This constitutes a
straightforward yet effective means of enhancing the forecast
accuracy [38]. Moreover, fixed weights facilitate the
identification of optimal solutions more effectively than weights
that are based on the random statistical variables derived from
changing data.

Accuracy Measures
We used root mean squared error (RMSE) and mean absolute
error (MAE) to assess the performance of the applied models.
Given that the training set is denoted as {y1,y2,...yT} and the
testing set as {yT+1,yT+2,...}, the forecast deviation between the
actual observations yt on the testing set and the corresponding

forecasts can be denoted as . The formulas for
calculating each of these metrics are as follows:

where n represents the total number of observations for the
evaluation process. Both RMSE and MAE are scale-dependent
metrics. RMSE operates on the principle of averaging errors
and is more sensitive to outliers, whereas MAE is calculated
from the median of errors and is more robust to outliers.

Results

Overview
In this section, we present the results of the evaluations of all
the candidate forecasting models. Hourly visits to the fever
clinic were forecasted for the subsequent 15 days, with accuracy
calculated based on the forecasted values over this period. The
8 evaluated models were SNaive (as a benchmark), SARIMA,
STLF, NNAR, and combinations of these models (excluding
SNaive), hybrid SARIMA-STLF, hybrid NNAR-STLF, hybrid
SARIMA-NNAR, and hybrid SARIMA-NNAR-STLF. For
model training, we used data from January 23, 2020, to April
23, 2023, as the training set and data from April 24, 2023, to
May 8, 2023, as the testing set. The performances of the models
were compared based on the accuracy of their forecasting results
on the testing set.

Model Estimation
Given that the SNaive, SARIMA, and NNAR models are only
capable of handling a single seasonal period, we used a daily
season period as the seasonal frequency parameter for hourly
data. This corresponds to a lag of 24 in SNaive and m=24 in
both SARIMA and NNAR. The specifications and estimations
for all the models are detailed in Tables 2 and 3. For the
selection of hyperparameters and fitting of model parameters,
we used the fable toolkit in the R programming language (R
Core Team) for implementation.

The SARIMA modeling process was implemented using a
variation of the Hyndman-Khandakar algorithm [39], in which
parameter D was chosen by an extended Canova-Hansen test
[40], and d was chosen through successive
Kwiatkowski-Phillips-Schmidt-Shin unit-root tests [41]. Once
d and D were determined, a stepwise search was conducted to
traverse the ARIMA order space from the initial candidate
parameters, selecting values for p, q, P, and Q by minimizing
the corrected Akaike’s information criterion until the residuals
met the white noise conditions. The modeling process for
nonseasonal ARIMA was similar, with the exception that the
seasonal hyperparameters were set to 0 (P=D=Q=0). After
identifying the model orders (hyperparameters p, d, q, P, D, and
Q) with the lowest corrected Akaike’s information criterion,
the model parameters were estimated on the training set using
the maximum log-likelihood estimation. In this study, the
best-fitting models for SARIMA and STLF on our training data
were ARIMA(0,0,5)(0,1,1)24 for SARIMA and ARIMA(2,1,2)

JMIR Med Inform 2023 | vol. 11 | e45846 | p. 11https://medinform.jmir.org/2023/1/e45846
(page number not for citation purposes)

Zhang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


for STLF. The estimated coefficients for these models are listed
in Table 4.

For the NNAR model, the seasonal parameter P was set to 1,
and the p parameter was selected from the optimal linear
autoregressive(p) model fitted to the seasonally adjusted data
(obtained through STL) according to the AIC. The k parameter
was rounded to the nearest integer of (p+P+1)/2. In this study,

the best-fitting model for this approach was an average of 20
networks NNAR(44,1,22)24, each consisting of a 44×22×1
network with inputs {yt−1,yt−2,...yt−44} and 22 neurons in the
hidden layer. For 1-step-ahead (1 hour ahead) forecasting,
available historical inputs were used, whereas for 2-step-ahead
forecasting, the 1-step forecast was used as an input along with
historical data. This process was executed iteratively until all
the required forecasts were computed [38].

Table 2. Summary of the specifications and estimations for different models.

σ2Model and specification

SNaivea

156.9503SNaive(24)

SARIMAb

103ARIMAc(0,0,5)(0,1,1) [24]

NNARd

87.6NNAR(44,1,22) [24]

STLFe

55.04ARIMA(2,1,2)

1.4266SNaive(24)

0.2336SNaive(168)

0.0045SNaive(8766)

aSNaive: seasonal naive.
bSARIMA: seasonal autoregressive integrated moving average.
cARIMA: autoregressive integrated moving average.
dNNAR: neural network autoregressive.
eSTLF: seasonal and trend decomposition using Loess forecasting.

Table 3. Summary of information criterion for autoregressive integrated moving average (ARIMA) models.

ARIMA(2,1,2)ARIMA(0,0,5)(0,1,1) [24]Information criterion

195,029212,731.5AICa

195,029212,731.5AICcb

195,070.2212,789.3BICc

–97,509.48–106,358.8Log likelihood

aAIC: Akaike information criterion
bAICc: corrected Akaike information criterion.
cBIC: Bayesian information criterion.
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Table 4. Estimated coefficients of autoregressive integrated moving average (ARIMA) models.

P valuet-statisticCoefficient (SE)Model and term

ARIMA(0,0,5)(0,1,1) [24]

<.00152.490.3226 (0.0061)MAa(1)

<.00134.610.2177 (0.0063)MA(2)

<.00130.210.1728 (0.0057)MA(3)

<.00119.780.1189 (0.0060)MA(4)

<.00118.820.1088 (0.0058)MA(5)

<.001–150–0.6929 (0.0046)SMAb(1)

ARIMA(2,1,2)

<.0019.370.6138 (0.0655)ARc(1)

.08–2.11–0.0276 (0.0131)AR(2)

<.001–21.51–1.4031 (0.0652)MA(1)

.017.080.4333 (0.0612)MA(2)

aMA: moving average.
bSMA: seasonal moving average.
cAR: autoregressive.

Forecasting Results
The forecasting results of all the evaluated models are shown
in Figures 10 and 11. The distribution of the predicted values
varies among the models. However, for short-term future data,
each model appears to be capable of capturing the majority of
their hourly features. It is evident that the prediction and
observation lines of all the models are in reasonable agreement.
However, as the forecast horizon increases, the agreement

between the predicted and actual values of each model
diminishes significantly. For further quantitative comparison
of the model performance, we calculated the forecast errors
within the subsequent 15 days for each model using the accuracy
metrics RMSE and MAE. All results are presented in Table 5,
which reveals that the hybrid SARIMA-NNAR-STLF model
has both the lowest MAE (8.16) and the lowest RMSE (11.09),
whereas STLF performs the worst.
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Figure 10. Comparison of 15-day forecasts generated using single models with actual observations. NNAR: neural network autoregressive; SARIMA:
seasonal autoregressive integrated moving average; SNaive: seasonal naive; STLF: seasonal and trend decomposition using Loess forecasting.
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Figure 11. Comparison of 15-day forecasts generated using hybrid models with actual observations. NNAR: neural network autoregressive; SARIMA:
seasonal autoregressive integrated moving average; STLF: seasonal and trend decomposition using Loess forecasting.

Table 5. Accuracy metrics for all the models on forecasts for the subsequent 15 days (April 24, 2023, to May 8, 2023).

MAEbRMSEaModel

8.3811.22Hybrid NNARc-STLFd

8.5411.67Hybrid SARIMAe-STLF

8.1811.24Hybrid SARIMA-NNAR

8.1611.09Hybrid SARIMA-NNAR-STLF

8.5811.65NNAR

8.3311.51SARIMA

9.6913.03STLF

9.6613.02SNaivef

aRMSE: root mean squared error.
bMAE: mean absolute error.
cNNAR: neural network autoregressive.
dSTLF: seasonal and trend decomposition using Loess forecasting.
eSARIMA: seasonal autoregressive integrated moving average.
fSNaive: seasonal naive.

Cross-Validation
To mitigate the risk of overfitting and determine the optimal
hyperparameters for our models, we employed a cross-validation

technique based on a rolling forecasting origin [42]. The
forecasting origin was advanced incrementally by a fixed
number of observations, with forecasts generated at each origin.
As the origin progressed, the testing set was incorporated into
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the training set for subsequent iterations. Figure 12 illustrates
the construction of our cross-validated training and testing sets.
To ensure the complete coverage of each month in the testing
set, we initiated our analysis with a training set comprising
19,848 observations (827 days), incrementing the size of
successive training sets by 720 steps (30 days) with each
iteration. This allowed us to generate 1-to-720-step-ahead
forecasts and conduct 13 iterations of cross-validation to
evaluate the forecasts throughout the entire year. During these
iterations, the largest validation set spanned from January 23,
2020, to May 23, 2023, with the training set ranging from
January 23, 2020, to April 23, 2023, and the testing set from
April 24, 2023, to May 23, 2023.

Forecast accuracy was computed by averaging over the testing
sets. This cross-validation method is well suited to account for
the temporal dependency between observations in time series,
effectively mitigating overfitting while providing a more robust
evaluation of model performance [43]. Furthermore, the
construction of a rolling length training set is advantageous for
validation in multiseasonality cases. The forecast accuracy of
all the models for the subsequent 15 days, as determined by
cross-validation, is presented in Table 6. The results indicate
that the hybrid NNAR-STLF model is the optimal model for
this case, as it has both the lowest RMSE (20.1) and the lowest
MAE (14.3).

Figure 12. Illustration of the rolling forecasting origin cross-validation methodology.

Table 6. Accuracy metrics of all the models for the 15-day forecast by cross-validation.

MAEbRMSEaModel

14.320.1Hybrid NNARc-STLFd

14.621.1Hybrid SARIMAe-STLF

15.522.7Hybrid SARIMA-NNAR

14.520.4Hybrid SARIMA-NNAR-STLF

15.522.2NNAR

16.324.1SARIMA

15.520.8STLF

17.725.3SNaivef

aRMSE: root mean squared error.
bMAE: mean absolute error.
cNNAR: neural network autoregressive.
dSTLF: seasonal and trend decomposition using Loess forecasting.
eSARIMA: seasonal autoregressive integrated moving average.
fSNaive: seasonal naive.

Forecast Horizon Accuracy
Although cross-validation has been used in previous studies for
performance evaluation, it has rarely been conducted across
different forecast horizons. In this study, we not only assessed
the accuracy of hourly forecasts for fever clinic visits within a
15-day window but also examined the accuracy of various

forecast horizons to provide a more robust basis for identifying
the optimal model. Forecast errors across forecast horizons
ranging from 1 to 30 days ahead were compared using
cross-validation. Specifically, the forecast horizon accuracy
was calculated by comparing all the predicted values with their
corresponding observed values in the hourly series within a
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specific 1-day range, representing the model’s predictive power
on the i-th day ahead (i=1,...,30). As such, the accuracy metrics
for different forecast horizons are independent of one another.
The results of our analysis are presented in Figures 13 and 14,
which depict the RMSE and MAE values for all the models
across different forecast horizons. The calculation of RMSE
and MAE was based on the average value obtained across all
rolling testing sets in cross-validation.

As shown in Figures 13 and 15, for all the models, the RMSE
and MAE values exhibit an overall upward trend as the forecast
horizon increases, although not strictly monotonically in some
cases. In general, the further ahead we forecast, the greater the
uncertainty associated with our predictions. Moreover, the
disparity in forecast accuracy among the models also increases
with the number of days ahead of the forecast, indicating a
widening gap in performance.

Among single models, STLF exhibited superior predictive
performance only when forecasting more than 5 days in advance,
with the RMSE and MAE values remaining relatively low,
especially when forecasting more than 10 days in advance. This
highlights the model’s advantages in medium- to long-term
forecasting. Compared with the benchmark SNaive model, the
largest difference in RMSE occurred at a forecast lead time of
17 days, with STLF achieving a value of 22.5 (7.4 lower than

that of SNaive), whereas the largest difference in MAE occurred
at a forecast lead time of 24 days, with STLF achieving a value
of 20.5 (6.2 lower than that of SNaive). In addition, the NNAR
model exhibited considerable advantages in short-term
forecasting, particularly for forecasts that were 1 to 3 days in
advance, with both RMSE and MAE values being the lowest
among all the single models (RMSE: 14.3, 15.6, and 16.7; MAE:
10.6, 11.3, and 12.3). However, its performance in medium- to
long-term forecasting is more modest.

For hybrid models, the performance was generally superior to
that of their constituent single models. Comparing the results
for both single and hybrid models, the hybrid NNAR-STLF
model exhibited the lowest values for both RMSE and MAE
across nearly all forecast horizons, with RMSE ranging from
13.6 (1st day ahead) to 28.3 (30th day ahead) and MAE ranging
from 10.8 (1st day ahead) to 21.5 (23rd day ahead). It is evident
that the hybrid NNAR-STLF model outperforms in all 3 cases
(short-, medium-, and long-term forecasting), indicating that it
may be considered the optimal model. However, not all the
hybrid models performed well. For example, the hybrid
SARIMA-NNAR model exhibited a relatively poor performance
compared with both single and other hybrid models.
Nonetheless, on the whole, the hybrid approach did have a
positive impact on forecasting.

Figure 13. Root mean squared error (RMSE) values calculated for different forecast horizons ranging from 1 to 30 days ahead. NNAR: neural network
autoregressive; SARIMA: seasonal autoregressive integrated moving average; SNaive: seasonal naive; STLF: seasonal and trend decomposition using
Loess forecasting.
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Figure 14. Mean absolute error (MAE) values calculated for different forecast horizons ranging from 1 to 30 days ahead. NNAR: neural network
autoregressive; SARIMA: seasonal autoregressive integrated moving average; SNaive: seasonal naive; STLF: seasonal and trend decomposition using
Loess forecasting.

Figure 15. Monthly aggregated root mean squared error (RMSE) and mean absolute error (MAE) box plot.

Discussion

Principal Findings
The hourly visit data from our hospital’s fever clinic can be
characterized as a time series of long sequences in high
frequency. Through exploratory analysis using data

visualization, ACF, and STL methods, we observed that the
time series exhibited multiseasonality and nonlinearity in its
temporal patterns. To achieve our goal of generating hourly
forecasts of fever clinic visits in the medium- to long-term
horizons, we evaluated an ensemble of individual and hybrid
models. In selecting and combining models, we considered their
ability to capture multiseasonality and handle nonlinear features.
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Our analysis revealed that hybrid models generally outperformed
individual models, with the hybrid NNAR-STLF model
emerging as the optimal model for our purposes. It exhibited
the smallest error in the 15-day forecast horizon (RMSE at 20.1
and MAE at 14.3) and demonstrated a stable advantage in
prediction accuracy across forecast horizons ranging from 1 to
30 days ahead. This indicates that it possesses strong scalability
and generalization capabilities for predicting multiseasonal
periods in time-series data.

Hourly forecasts of fever clinic visits can be leveraged to
enhance intelligent outpatient management and provide a sound
basis for resource allocation at multiple levels. On the one hand,
hospitals can use forecast results to implement flexible
scheduling strategies, such as adjusting the number of doctors
on duty and modifying registration limitations for specialist
doctors and their working hours. On the other hand, during peak
seasons and times, hospitals can adapt their facilities and human
resources, including the number of service windows, medical
technicians, nurses, and outpatient volunteers, to better meet
the demands of outpatient operations in accordance with the
forecast results. Furthermore, accurate visit forecasts can be
used to schedule patient appointments and recommend optimal
visitation times, thereby improving efficiency for both hospitals
and patients. It is evident that hourly visit forecasts can more
effectively support these requirements.

Interpretation of the Findings

Single Models
SNaive and SARIMA are applicable only to time series with a
single seasonal pattern. However, the time series for hourly
fever clinic visits exhibits 3 seasonal patterns: daily, weekly,
and yearly. This results in poor forecast accuracy for both
SNaive and SARIMA. By contrast, NNAR takes lagged values
as input to the neural network, establishing a more complex
nonlinear relationship between forecasts and historical
observations than statistical models, allowing it to capture the
asymmetry of cycles. However, as it uses forecast values from
previous steps as variables for subsequent steps, errors can
propagate through the forecast process. In addition, its use of
only a single seasonal lag as a forecast variable limits its
effectiveness in medium- to long-term forecasting. STLF uses
a strategy that captures more comprehensive data characteristics
during the forecasting process. It first uses the SNaive method
to forecast 3 seasonal components separately and then applies
the ARIMA model to forecast seasonally adjusted data. Because
hourly data exhibit large daily seasonality variation, relatively
low weekly seasonality variation, and relatively fixed yearly
seasonality variation, STLF is particularly effective for time
series exhibiting yearly seasonal patterns. As such, STLF has
an advantage in forecasting long-sequence time series. However,
the remainder of STL is somewhat large, indicating that there
may be additional factors not accounted for in STLF, such as
calendar effects or special events [44].

Hybrid Models
The hybrid model integrating STLF and NNAR has the
enhanced ability to capture the multiseasonal and nonlinear
characteristics of time series and thus improved forecast

accuracy across various forecast horizons. This can explain why
the hybrid NNAR-STLF model exhibits the best overall
performance among all the models. By contrast, the hybrid
SARIMA-NNAR-STLF model exhibits a strengthened
autocorrelation between its components and the daily seasonal
lag owing to the single-season cycle limitation imposed by the
SARIMA component. As a result, the prediction accuracy gap
between hybrid NNAR-STLF and hybrid
SARIMA-NNAR-STLF widens with increasing forecast
horizon, although the inclusion of NNAR does result in a slight
improvement in prediction accuracy. The hybrid
SARIMA-NNAR model, which lacks the ability to handle
multiseasonal patterns, exhibits a distinct disadvantage in
medium- to long-term forecasting, with the poorest performance
in both cases.

Implication of Errors on Real-World Applications
Inaccurate forecasts can impede effective hospital management
and even interfere with decision-making processes. For example,
if predicted visits are significantly lower or higher than the
actual number, this can result in either inadequate or redundant
allocation of personnel, consumables, and facilities. The former
can negatively impact the patient’s treatment experience through
long wait times, overcrowding, and resource shortage, whereas
the latter can lead to resource waste and increased operating
cost for the hospital.

Limitations and Future Prospects
In this study, we used individual time-series models and their
combinations to forecast hourly visits to fever clinics in
children’s hospitals. Although the optimal hybrid NNAR-STLF
model was able to capture the multiseasonality and nonlinear
characteristics present in the time-series data, it still produced
large errors in forecasting certain months owing to unaccounted
external factors. Figure 15 displays the RMSE and MAE box
plots for the forecast results from all the models across different
months. Statistically, forecast errors were the largest in January
and February, with suboptimal errors also observed in March
and April. This may be attributed to the influence of the Chinese
New Year, which typically falls in January or February.
According to Chinese tradition, economic and social activities
throughout the community are affected in the months before
and after the festival.

Furthermore, the relaxation of COVID-19 containment policies
in December of the previous year may have also impacted fever
clinic visits. As January was the peak of the first wave of
positive COVID-19 cases following the policy adjustment, data
after this month lacked sufficient historical training samples,
resulting in decreased prediction accuracy after January 2023.
Despite this, the continued prevalence of respiratory epidemics
in the postepidemic era has led to the retention of high levels
of fever clinic visits, because of which fever clinic visit
forecasting is still of great significance for clinical
decision-making.

In future work, we will account for the effects of moving
holidays and disruptive events, as the incorporation of external
variables may improve the forecast accuracy [45]. The data set
used in this study was obtained from a prominent provincial
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public children’s hospital in the Yangtze River Delta region of
China. Our findings have implications for large hospitals in
other regions that have established 24-hour fever clinics.
However, to enhance the generalizability of our model, we will
incorporate fever clinic visit data from additional medical
institutions and construct high-quality, multicenter data sets for
model training. Furthermore, this study used a naive averaging
strategy to integrate the hybrid model results. The development
of more effective fusion strategies represents another important
direction for future research.

Conclusions
In this study, we investigated the problem of visit forecasting
in a fever clinic in a large public children’s hospital in China.
Given the changes in clinics’ operational mode and patient
visitation patterns following the outbreak of the COVID-19
epidemic, developing new forecasting models is essential for
supporting intelligent hospital management. The retrospective
data on hourly visits to the fever clinic can be characterized as
a long-sequence time series in high frequency, with distinct
temporal patterns and statistical characteristics inherent to
pediatric clinics. Therefore, to identify appropriate models that
accurately fit the data and exhibit robust generalization for

practical management, we conducted an exploratory data
analysis to reveal the seasonality and structural properties of
the time-series data. On the basis of these results, we validated
an ensemble of time-series models, including individual models
and their combinations. We cross-validated their accuracy
performance across different forecast horizons. The hybrid
NNAR-STLF model was identified as the optimal model for
our problem because of its ability to fit multiseasonal patterns
and nonlinearity in the time-series data. Its strong performance
across different forecast horizons, as indicated by the
cross-validation results, further demonstrates its robustness for
multiseasonal time series. The model identified in this study is
applicable to hospitals with similar outpatient configurations
or time series characterized as long sequence in high frequency.
We also provided a new research paradigm for other time-series
studies, that is, conducting an exploratory analysis revealing
data characteristics before model development. However, the
existing models do not account for the effects of exogenous
variables, such as moving holidays and disruptive events. Future
work will explore more comprehensive methods for
incorporating external variables and other factors (eg,
temperature, humidity, and pollutant levels) into the models to
improve their prediction accuracy.
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STL: seasonal-trend decomposition using Loess
STLF: seasonal and trend decomposition using Loess forecasting
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