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Abstract

Background: The clinical narrative in electronic health records (EHRs) carries valuable information for predictive analytics;
however, its free-text form is difficult to mine and analyze for clinical decision support (CDS). Large-scale clinical natural
language processing (NLP) pipelines have focused on data warehouse applications for retrospective research efforts. There remains
a paucity of evidence for implementing NLP pipelines at the bedside for health care delivery.

Objective: We aimed to detail a hospital-wide, operational pipeline to implement a real-time NLP-driven CDS tool and describe
a protocol for an implementation framework with a user-centered design of the CDS tool.

Methods: The pipeline integrated a previously trained open-source convolutional neural network model for screening opioid
misuse that leveraged EHR notes mapped to standardized medical vocabularies in the Unified Medical Language System. A
sample of 100 adult encounters were reviewed by a physician informaticist for silent testing of the deep learning algorithm before
deployment. An end user interview survey was developed to examine the user acceptability of a best practice alert (BPA) to
provide the screening results with recommendations. The planned implementation also included a human-centered design with
user feedback on the BPA, an implementation framework with cost-effectiveness, and a noninferiority patient outcome analysis
plan.

Results: The pipeline was a reproducible workflow with a shared pseudocode for a cloud service to ingest, process, and store
clinical notes as Health Level 7 messages from a major EHR vendor in an elastic cloud computing environment. Feature engineering
of the notes used an open-source NLP engine, and the features were fed into the deep learning algorithm, with the results returned
as a BPA in the EHR. On-site silent testing of the deep learning algorithm demonstrated a sensitivity of 93% (95% CI 66%-99%)
and specificity of 92% (95% CI 84%-96%), similar to published validation studies. Before deployment, approvals were received
across hospital committees for inpatient operations. Five interviews were conducted; they informed the development of an
educational flyer and further modified the BPA to exclude certain patients and allow the refusal of recommendations. The longest
delay in pipeline development was because of cybersecurity approvals, especially because of the exchange of protected health
information between the Microsoft (Microsoft Corp) and Epic (Epic Systems Corp) cloud vendors. In silent testing, the resultant
pipeline provided a BPA to the bedside within minutes of a provider entering a note in the EHR.

JMIR Med Inform 2023 | vol. 11 | e44977 | p. 1https://medinform.jmir.org/2023/1/e44977
(page number not for citation purposes)

Afshar et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:majid.afshar@wisc.edu
http://www.w3.org/Style/XSL
http://www.renderx.com/


Conclusions: The components of the real-time NLP pipeline were detailed with open-source tools and pseudocode for other
health systems to benchmark. The deployment of medical artificial intelligence systems in routine clinical care presents an
important yet unfulfilled opportunity, and our protocol aimed to close the gap in the implementation of artificial intelligence–driven
CDS.

Trial Registration: ClinicalTrials.gov NCT05745480; https://www.clinicaltrials.gov/ct2/show/NCT05745480

(JMIR Med Inform 2023;11:e44977) doi: 10.2196/44977
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Introduction

Background
As of 2017, >95% of the hospitals in the United States adopted
an electronic health record (EHR), and >80% are collecting
electronic clinical notes [1]. Clinical decision support (CDS)
and intelligent data-driven alerts are part of federal incentive
programs for Meaningful Use [2,3]. With the increasing capacity
of EHR data and financial incentives to improve quality care,
hospitals are increasingly well equipped to leverage
computational resources to improve case identification and care
throughput [4].

The unstructured narrative of EHRs provides a rich source of
information on patients’conditions that may serve as CDS tools.
Detailed medical information is routinely recorded in providers’
intake notes. However, this information is neither organized
nor prioritized during routine care for augmented intelligence
at the bedside. Moreover, clinical notes’ free-text format hinders
efforts to perform analytics and leverage the large domain of
data. The computational methods of natural language processing
(NLP) can derive meaning from clinical notes, from which
machine learning algorithms can screen for conditions such as
opioid misuse.

In 2020, overdose deaths from opioid misuse soared to an
all-time high, with a record 93,000 deaths nationwide during
the pandemic year [5]. Substance misuse ranks second among
the principal diagnoses for unplanned 7-day hospital readmission
rates [6]. Screening for patients at risk for opioid use disorders
is not part of the admission routine at many hospitals, and many
hospitalized patients in need are never offered opioid treatment.
The high prevalence rate of substance use disorders in
hospitalized adults exceeds the rates in the general population
or outpatient setting and reveals the magnitude of this lost
opportunity [7]. We previously trained a convolutional neural
network (CNN) that outperformed a rule-based approach and
other machine learning methods for screening opioid misuse in
hospitalized patients. The CNN substance misuse classifier had
>80% sensitivity and specificity and demonstrated that clinical
notes captured during hospitalization may be used to screen for
opioid misuse [8].

There remains a paucity of evidence on the implementation of
clinical NLP models in an interoperable and standardized CDS
system for health operations and patient care [9]. The
interactions among an artificial intelligence (AI) system, its
users, its implementation, and the environment influence the

AI intervention’s overall potential effectiveness. Few health
systems have been able to accommodate the complexities of an
NLP deep learning model integrated into an existing operational
ecosystem and EHR [10]. Much of the literature on NLP-driven
CDS has described retrospective studies [11,12] outside the
clinical workflow or simulated clinical environments [13,14].
Others have used NLP for information extraction efforts aimed
at quality improvement without direct integration into the
clinical workflow and operations [15,16]. Few provide a
real-time NLP system but do not share an implementation
framework or pipeline details to ensure fidelity and
reproducibility [17]. Although the field of AI-driven CDS is
growing, sharing knowledge in development and operations for
health care delivery is lacking in best practices for processes
and technologies in application planning, development, delivery,
and operations.

This Study
This protocol describes a cloud service designed to ingest,
process, and store clinical notes as standardized and
interoperable messages from a major EHR vendor in an elastic
cloud computing environment. We subsequently demonstrate
the use of multiple open-source tools, including an open-source
NLP engine for processing EHR notes and feeding them into a
deep learning algorithm for screening for opioid misuse. Our
resultant NLP and deep learning pipeline can process clinical
notes and provide decision support to the bedside within minutes
of a provider entering a note into the EHR.

To our knowledge, this is the first protocol for a bedside
implementation of an NLP-driven CDS tool. We expect that
our protocol will serve as a guide for other health systems to
leverage open-source tools across interoperable data standards
and ontologies. We provide an implementation framework and
a cost-effectiveness analysis of a tool developed for the
automated screening of hospitalized adults for opioid misuse.
We aimed to describe a hospital-wide protocol and computing
architecture for implementing a real-time NLP-driven CDS tool.

Methods

Hospital Setting and Study Period
The NLP CDS tool was implemented at the University of
Wisconsin (UW) Hospital across the surgical and medical
hospital inpatient wards. The EHR system used at the UW
Health is Epic (Epic Systems Corp). The tool was designed for
hospitalized adults (aged ≥18 years) and was assessed using a
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pre-post quasi-experimental study design over 30 months (24
months of usual care and 6 months for the implementation of
automated screening). The study was a quality improvement
initiative by the health system to provide an automated
hospital-wide screening system for opioid misuse and was
registered on ClinicalTrials.gov (NCT05745480).

Preintervention Period: Usual Care With Ad Hoc
Addiction Consultations
The UW Hospital launched an Addiction Medicine inpatient
consult service in 1991 to address the high prevalence of
substance use disorders among hospitalized adults. A screening,
brief intervention, and referral to treatment program [18] was
instituted for alcohol misuse. Screening, intervention flow
sheets, and consult order sets were built into EHR-driven
workflows for inpatient nurses and social workers for alcohol
screening using the Alcohol Use Disorders Identification
Test–Concise [19], a best practice alert (BPA) for patients at
risk of alcohol use disorder, and order sets for withdrawal
treatment. For other drugs, a single screening item queries

“marijuana or other recreational drug use,” but no formal
screening process was in place specifically targeting opioid
misuse. For patients at risk of an opioid use disorder, the practice
was ad hoc consultations at the discretion of the primary
provider.

Postintervention Period: Computing Architecture and
Real-time Implementation

Overview
The technical architecture that enabled the real-time NLP CDS
tool incorporated industry-leading and emerging technological
capabilities. Figure 1 details the overall NLP CDS infrastructure
that exported the notes from the EHR, organized them, and fed
them into an NLP pipeline; input the processed text features
into the opioid screener deep learning model; and delivered the
resultant scores back to the bedside EHR as a BPA. The final
architecture was a real-time NLP CDS tool, and the 6
components of the architecture are further detailed in the
subsequent sections.

Figure 1. Step-by-step implementation of clinical natural language processing (NLP) pipeline. Step 1 ran a scheduled program to ingest notes from
the EHR for each patient organized the notes, and relayed them via an HL7 data feed (Cloverleaf) into the cloud computing environment and data lake
(Microsoft Azure and Databricks) onto a VM (Step 2). The NLP engine (cTAKES) processed the text stored on the VM and mapped them to medical
concepts from the National Library of Medicine’s metathesaurus (CUIs). The machine learning model received the CUIs as inputs and stored the results
in DataBricks. At regular intervals, a custom Python script in Databricks performed the text extraction and linguistic feature engineering via cTAKES
and stored CUIs with the appended data of patient identifiers. The CUIs served as the input to the machine learning model (SMART-AI) at the encounter
level. The output of prediction probabilities and classification was stored in a Databricks table (Step 3). An API call from the EHR cloud is made to
determine whether the cutpoint threshold from the machine learning model was met to trigger a BPA. In Step 4, the EHR cloud made an HTTP call to
Databricks to request the score. The score was returned to the EHR cloud and subsequently delivered as a BPA when the provider opened the patient’s
chart in our on-premise instance of the EHR (Step 5). API: application programming interface; BPA: best practice alert; cTAKES: Clinical Text Analysis
and Knowledge Extraction System; CUI: concept unique identifier; EHR electronic health record; HL7: Health Level 7; SMART-AI: Substance Misuse
Algorithm for Referral to Treatment Using Artificial Intelligence; VM: virtual machine.

Component 1: Transferring Clinical Notes From the
EHR to Cloud Computing
Health Level 7 (HL7) refers to the standards for transferring
health care data between data sources. Cloverleaf (Infor
Cloverleaf Integration Suite) was the UW’s vendor solution
that served as an application programming interface (API)
gateway for accessing the clinical narratives in the EHR using
HL7 version 2. To initialize the data feed, a UW Health interface
analyst created a new entry in the Cloverleaf vendor software

detailing the desired record information, which included clinical
note text and identifiers. The analyst then “activated” the data
feed, which began a continuous Transmission Control Protocol
message–generating process. The Transmission Control Protocol
messages were communicated using the HL7 application
protocol to the Azure Virtual Machine (version 2022; Microsoft
Corp) host at a port designated by the data science engineering
team. This port was reserved by a NET program (the “TCP
listener”), which wrote the message to the cloud file system and
replied to the Cloverleaf server with acknowledgment messages,
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conforming to the HL7 version 2 specification. Ultimately, the
API extracted clinical notes from Epic and transferred them to
a Microsoft Azure cloud computing environment that was under
a business associate agreement with the UW. On-premise relays
with the File Transfer Protocol were used to transfer the clinical
notes to a specified location in the Azure cloud environment.

Component 2: Cloud Analytic Computing Platform
In the Microsoft Azure framework [8], the UW Health invoked
the Databricks (Databricks Inc) analytic resources and services
for scalable computing, data storage, and querying. The
open-source tools from the NLP engine and our trained, publicly
available machine learning model were hosted in Databricks.
The machine learning model life cycle management (MLFlow)
tool in Databricks supported the data flow for the deep learning
model. MLFlow created and scored models when clinical notes
were received and subsequently reported the results upon
request. The final infrastructure was a scalable and
failure-resistant environment for analytic computations.

Component 3: NLP Pipeline
The Clinical Text Analysis and Knowledge Extraction System
(cTAKES; Apache Software Foundation) was built on multiple
open-source Apache projects and incorporated technologies
with the Unstructured Information Management Architecture
framework and the Apache OpenNLP NLP toolkit [20]. This
configuration contained several engines for sentence detection,
tokenization, part-of-speech tagging, concept detection, and
normalization to extract information from the clinical narrative
in the EHR. We did not use the negation module because it was
not used in the current use case; however, this can be turned on
for other use cases. cTAKES is one of the most ubiquitous NLP
engines used in the clinical domain [21]. cTAKES provided
named entities from the free text that were mapped from the
National Library of Medicine’s Unified Medical Language
System (UMLS), which is a repository of groups of words with
relevant clinical contexts (eg, drugs, diseases, symptoms,
anatomical sites, and procedures). Each named entity was
mapped to a concept unique identifier (CUI) using the UMLS
Systemized Nomenclature of Medicine–Clinical Terms and
medical prescription normalized ontologies. For instance,
“heroin misuse” from the text was assigned C0600241 as its
CUI, which was different from the CUI assigned to “history of
heroin misuse,” C3266350. For generalizability, we used the
default cTAKES pipeline [22].

As clinical notes were entered into the EHR for an individual
patient, Cloverleaf relayed the notes via HL7 from the Epic
EHR and used the Azure File Transfer Protocol server running
on a virtual machine to place them at a known location within
the Azure cloud environment. In 15-minute intervals, Databricks
triggered a custom Python script to extract the text and fed it
into the cTAKES pipeline to map and extract the CUIs. The
CUIs were stored in the Azure Data Lake with appended data,
including patient ID, encounter ID, and note time stamp, and
were ready to be fed into any machine learning model. The code
executed for the pipeline consisted of several services that
operated independently and communicated through data stores.
These services were “always on,” but each had a trigger

condition that initiated the code execution. The pseudocode for
these services is provided in Multimedia Appendix 1.

Component 4: Text Feed From the NLP Pipeline Into
the Deep Learning Model
We previously published a substance misuse screening algorithm
using CUIs fed into a CNN called the Substance Misuse
Algorithm for Referral to Treatment Using Artificial Intelligence
(SMART-AI) [8]. SMART-AI was trained on the first 24 hours
of all clinical notes entered into the EHR, starting from the
patient’s arrival time. This approach provided sufficient time
not only for robust training but also for the addiction consult
service to intervene before hospital discharge. For ease of
implementation, the model was not trained on any specific note
type and followed a time stamp approach for all notes filed
within 24 hours of arrival at the hospital. SMART-AI is a
supervised model with target labels that were derived from the
manual screening data of over 50,000 patients who self-reported
on the validated Drug Abuse Screening Test [23] and answered
follow-up questions about opioid use. SMART-AI is publicly
available to run the trained model [24], and more details about
the model architecture and development can be found in the
original development and validation publication [8]. The
model’s development and validation followed guideline
recommendations [25].

Temporal validation of the classifier (trained on data between
2017 and 2019 and tested on data from 2020) at an outside
hospital demonstrated an area under the precision-recall curve
of 0.87 (95% CI 0.84-0.91) for screening for opioid misuse.
Similar results were derived in an external validation at a second
independent health system [8]. Multiple cutoff points were
examined for the optimal threshold selection for the BPA,
including the point on the area under the receiver operating
curve that minimized the difference between sensitivity and
specificity. During validation on the full cohort of hospitalized
patients, the optimal cutoff point for screening for opioid misuse
was 0.05. At that cutoff, the sensitivity was 0.87 (95% CI
0.84-0.90), specificity was 0.99 (95% CI 0·99-0·99), negative
predictive value was 0.99 (95% CI 0.99-0.99), and positive
predictive value was 0.76 (95% CI 0.72-0.88). The number
needed to evaluate was 1.4, which translates to 26 alerts per
1000 hospitalized patients [8]. This was deemed an acceptable
workload for consultation requests in live production for the
UW Addiction Medicine clinicians. Additional silent testing
was performed at the UW Health to examine sensitivity and
specificity with 95% CI in our practice setting.

All notes from the first 24 hours of arrival at the UW Hospital
were combined into a single document per patient encounter
and converted into sequences of vector representations (eg,
embeddings). The CUI embeddings defined the input layer to
the SMART-AI model at the encounter level. The model
provided prediction probabilities for opioid misuse and stored
them in a Databricks table with the predefined cutoff point for
screen positives.

JMIR Med Inform 2023 | vol. 11 | e44977 | p. 4https://medinform.jmir.org/2023/1/e44977
(page number not for citation purposes)

Afshar et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Component 5: Real-time Delivery of the Prediction
Results
The Nebula Cloud Platform was Epic’s Software as a service
platform for integrating new technology and specifically
supported clinical prediction modeling. Nebula capabilities
included the deployment of machine learning models, including
a library of Epic-curated models for health care and custom
algorithms. Our solution leveraged the latter to facilitate triggers
from Epic to call out to the Databricks environment and
provided the predictions for BPAs.

In the case of SMART-AI, we designed a BPA (Figure 2) to
trigger once a clinician opened a patient chart in the EHR. Epic
called its Nebula component to determine whether a BPA should

be generated. Nebula made an HTTP call to Databricks to
request the score. The RESTful HTTP API provided the
SMART-AI model score that was serviced using MLFlow. The
parameters included UMLS dictionaries, model results, patient
identifiers, and other attributes necessary for individual-level
predictions. The score was returned to Nebula, which was used
to trigger a BPA if SMART-AI met the cutoff score for opioid
misuse. For screen positives, the alert recommended the clinician
to consult with the UW’s Addiction Medicine consult service.
The following were internal targets to meet the real-time needs
of the end user at the bedside: (1) a throughput of 1000 notes
per minute (<60 ms each); (2) three-nines (99.9%)
availability—equivalent of <9 hours of downtime annually; and
(3) an established error rate threshold.

Figure 2. In an iterative design with feedback from end users, a final BPA was implemented for bedside care. The BPA triggers upon opening a chart
for a patient that meets the cutpoint predicted probability for opioid misuse from the NLP and deep learning model (SMART-AI). BPA: best practice
alert; NLP: natural language processing; SMART-AI: Substance Misuse Algorithm for Referral to Treatment Using Artificial Intelligence.

Component 6: Cybersecurity
Two principles of security were applied: (1) defense in depth
and (2) zero trust. The zero-trust architecture was outlined in
the National Institute of Standards and Technology Special
Publication 800 to 207 [26]. To secure access between Azure
Databricks MLFlow and Epic’s Nebula, we used an
authentication token and IP range restriction (Databricks admin
utility). The authentication token was issued via Databricks
standard authentication. As a security best practice, we used the
Databricks service principal and its Databricks access token to
provide automated tool and system access to Databricks
resources.

Implementation Framework
The Consolidated Framework for Implementation Research
informed the development of the preimplementation assessments
and will be used during the rapid Plan-Do-Study-Act (PDSA)
cycles after deployment [27]. Key stakeholder interviews were
planned to better understand the context and identify the barriers
to and facilitators of the implementation of the BPA tool.
Selected implementation strategies from the Expert
Recommendations for Implementing Change were chosen to
overcome barriers [28]. For pilot implementation, a regular
cadence of meetings was planned with the implementation team
to process, reflect, and evaluate the barriers to the
implementation and use of the BPA. Process evaluation would
incorporate interviews with providers and addiction specialists
to understand what barriers still existed to using and acting on
the BPA. During pilot implementation, we will collect and

summarize clinical performance data during PDSA cycles to
guide clinicians and administrators in monitoring, evaluating,
and modifying provider behavior. Using the Consolidated
Framework for Implementation Research–Expert
Recommendations for Implementing Change matching tool
[29], we will tailor relevant implementation strategies to enhance
provider uptake and use of the tool. In addition, during the pilot
phase, we will interview providers on the hospital units beyond
the pilot units to identify and explore their determinants for the
use of the BPA. After a pilot implementation period of 3 months,
we will optimize provider training, enhance educational
materials, and institute quality monitoring preparatory to a
hospital-wide rollout.

Patient Outcome Analysis and Power Calculation
The SMART-AI study intervention sample consisted of all
hospitalized patients who were screened positive for opioid
misuse through the NLP CDS tool. The primary effectiveness
measure was the percentage of hospitalized patients in the NLP
CDS intervention sample who screened positive for opioid
misuse and received an intervention by the inpatient addiction
consult service. A control sample was derived by retrospectively
applying the NLP CDS tool to all inpatient EHR records from
the 2 years before this study’s initiation in March 2023.
Hospitalized patients who were screened positive retrospectively
through the NLP CDS tool will form the usual care control
group.

The primary outcome was the percentage of inpatients who
were screened positive (or would have screened positive)
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through the NLP CDS tool and who received an addiction
consult with any of the following interventions: (1) receipt of
opioid use intervention or motivational interviewing (MI), (2)
receipt of medication-assisted treatment (MAT), or (3) referral
to substance use disorder treatment. The primary outcome will
be reported as a percentage in the preintervention and
postintervention periods and will be measured through substance
use screening and treatment service engagement for hospitalized
patients screened for opioid misuse. The secondary outcomes
included the 30-day unplanned hospital readmission rate. The
criteria for unplanned hospital readmissions were adopted from
the Centers for Medicare and Medicaid Services [30].

Hypothesis testing for intervention effects will be conducted
using independent tests of the difference in the proportion of
patients receiving MI, MAT, or referral to substance use disorder
treatment. The null hypothesis was that the proportion of patients
who screened positive and received any of the aforementioned
interventions was lower (inferior) in the postintervention period
than in the preintervention period, that is, H0: p1 − p2 ≥ M, where
M denotes the noninferiority (eg, equivalence) margin, p1

denotes the preperiod proportion, and p2 denotes the postperiod
proportion. The alternative 1-tailed test for noninferiority, that
is, H1: p1 − p2 < M, will be tested using the Z statistic. The
noninferiority design was adopted to demonstrate that
comprehensive screening may be as effective as manual
screening but less costly via automated solutions. Our use case
was an example of an AI system intended to improve efficiency
and throughput within a reasonable timeframe for hospital
operations. In these cases, statistically superior performance on
outcomes may not be expected or required for prospective
implementation, and interventions may be desirable if they are
both substantially equivalent (noninferior) on clinical outcomes
and cost-effective, given the high cost of building IT
infrastructure, hiring vendors, and obtaining licensing and
software support.

In hospital-wide screening, we expected a prevalence of 3% of
adult inpatients with opioid misuse based on prior findings of
hospital-wide analyses. A total sample size of 12,500 patients,
with 10,000 in the preintervention 2-year period and 2500 in
the postintervention 6-month period, had 85% power to detect
a difference of +0.75% in the postintervention period (3.75%)
compared with the preintervention period (3%), with a
noninferiority difference of −0.5% using a 1-sided Z test with
a significance level of 0.025.

Cost-effectiveness Analysis

Overview
Cost-effectiveness analysis will estimate the incremental costs
of the SMART-AI intervention for the 6 months after the
implementation compared with the 6 months before the
implementation (ie, the added costs of the SMART-AI tool in

reference to usual care) relative to the incremental effectiveness
for the primary and secondary outcomes. The health economic
evaluation would determine incremental intervention costs by
examining the following: (1) the opportunity start-up costs of
implementing the SMART-AI tool, (2) the incremental medical
costs resulting from usual care for hospitalized patients with
opioid misuse versus SMART-AI automated
screening–supported care costs, and (3) the ongoing costs of
administering and maintaining the SMART-AI tool.

The start-up costs of establishing SMART-AI substance use
screening care would include the costs associated with
developing and implementing the NLP CDS tool: (1) the cost
of supporting the NLP and machine learning components and
building the BPA in the EHR and (2) the cost of training the
health professionals on tool use. The incremental costs between
usual care and SMART-AI automated screening care were
determined by calculating medical care costs before and after
the implementation of SMART-AI. Medical costs associated
with the hospitalization stay and all subsequent medical costs
for the 30 days following hospital admission for the pre– and
post–SMART-AI intervention periods were derived from
hospital billing records and presented from the single-payer (a
health system) perspective.

The following 3-pronged approach will be applied to identify
the administration and maintenance costs associated with
SMART-AI screening workflow changes introduced by the
NLP CDS tool: (1) conducting in-depth interviews with hospital
administrators, (2) performing activity-based observations of
health care personnel who use SMART-AI, and (3) querying
the clinician messaging system in the EHR. Average hospital
compensation rates were used for valuing health care personnel
time costs. Research-related costs were excluded.

Analytical Approach to Cost-effectiveness Analysis
The cost-effectiveness analysis was reported in terms of the
incremental cost-effectiveness ratio (ICER) per additional
patient who received substance use treatment. For this study,
the ICER was calculated as the difference between
preimplementation and postimplementation intervention costs
divided by the difference between preimplementation and
postimplementation intervention effectiveness as measured by
the rates of patient engagement with substance use treatment
services (ie, primary outcome) and 30-day hospital readmission
(ie, secondary outcome).

The usual care control group and SMART-AI intervention group
were characterized by the pathway probabilities of receiving
substance use treatment and meeting the primary outcome. The
pathway probabilities of patients’ engagement with inpatient
substance use consult, brief intervention or MI, MAT, and
referral to substance use treatment for both study groups would
result in 8 treatment combinations, which are displayed in Figure
3.
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Figure 3. Cost-effectiveness decision tree. AI: artificial intelligence; MAT: medication-assisted treatment; MI: motivational interviewing.

The differential costs pre– and post–SMART-AI intervention
were determined as the difference in the weighted sum of the
individual pathway costs, using the pathway probabilities as
weights for the intervention and control groups. Effectiveness
was determined as the difference in the rates of hospitalized
patients engaging with substance use disorder treatment before
and after the implementation of SMART-AI for the intervention
and control groups. The ICER was calculated as follows:

Sensitivity analyses will introduce uncertainty in substance use
treatment receipt rates and costs for the intervention and control
groups. The Monte Carlo–based simulation estimation used the
rates of substance use treatment service uptake observed in the
intervention and control groups as a reference to simulate a
cohort of postimplementation hospitalized patients and a cohort
of usual care hospitalized patients. The ICER per additional
individual who received an inpatient substance use consult,
brief intervention, MI, MAT, or referral to substance use
treatment was calculated by drawing a random sample with
replacement from the observed distributions for health care
costs (µCOSTi) and substance use treatment services (µTRTi) for
the intervention and control groups. This process was repeated
(n=1000) to produce bootstrap estimates of the 95% CI for the
ICER per additional individual who received an inpatient
substance use consult, brief intervention, MI, MAT, or referral
to substance use treatment. These probabilistic sensitivity
analyses estimated the elasticity of the differential cost per
patient relative to the differential substance use treatment service
rates for the intervention and control groups.

Ethics Approval
This clinical study was reviewed by the UW Institutional Review
Board (ID 2022-0384). The study was part of a larger quality
improvement initiative at the UW Health and met the exemption
status for human participant research according to the UW
Institutional Review Board. The study was secondary research
with the collection of existing EHR data that met category 4
exemption. The study met the requirements for a waiver of
consent, and all study results were anonymized or deidentified.
No compensation was provided in the human participant
research.

Results

Preimplementation Testing and Approvals
Early-stage investigations were performed to assess the AI
system’s predictive performance in a retrospective setting and
evaluate the human factors surrounding the BPA before
initiating the quasi-experimental clinical study. During the silent
testing of SMART-AI at the UW Health, a random sample of
100 adult patient encounters (with an oversampling of patients
with the International Classification of Diseases codes for
substance use) in 2021 were extracted and reviewed by an
inpatient physician and a clinical informatics expert. SMART-AI
performed similarly to previously published reports for screening
for opioid misuse, with a sensitivity of 93% (95% CI 66%-99%)
and specificity of 92% (95% CI 84%-96%).

Before the deployment of SMART-AI, approvals were received
across hospital committees for inpatient operations, EHR super
users, CDS, and nursing documentation. The proposal protocol
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was also reviewed by the Center for Clinical Knowledge
Management to confirm that there were no competing interests
or roles with existing protocols for screening for substance use
conditions in the health system. In addition, SMART-AI was
reviewed by the UW’s Clinical AI and Predictive Analytics
Committee. A model review form providing details on the
clinical problem, model value proposition, model description,

proposed workflow integration, internal validation, and
monitoring strategy (including fairness and equity) was reviewed
and approved by a multidisciplinary committee of clinicians,
informaticians, bioethicists, executive leadership, and data
scientists. The planned workflow from introduction to
implementation is shown in Figure 4.

Figure 4. Flow diagram for the process to bedside implementation and evaluation. AI: artificial intelligence; SMART-AI: Substance Misuse Algorithm
for Referral to Treatment Using Artificial Intelligence.
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Implementation Framework
An end-user interview guide and survey were developed to
examine the user acceptability of the BPA. Open-ended
questions were asked about the barriers to and facilitators of
the use of the BPA. A total of 5 interviews were conducted
(with 3 nurse practitioners, 1 family medicine resident, and 1
surgical attendant), and the responses led the production team
to create an educational flyer, modify the BPA with more details
and options for consultation refusal, and modify when and where
the BPA would trigger. Figure 2 shows the final production
version of the BPA for deployment. Dissemination efforts
included Grand Round presentations to the Addiction Medicine
Division, Department of Family Medicine, and notification via
the hospital’s weekly electronic newsletter.

The longest delay in operational workflow and architecture was
for receiving cybersecurity approvals, especially for the
exchange of protected health information between the Microsoft
and Epic cloud vendors. An additional 6 months of delay
occurred for achieving acceptable security monitors and checks.
The go-live of SMART-AI in the EHR was scheduled for
January 2023.

Discussion

Principal Findings
We offer one of the first protocols that detailed the components
of a real-time NLP-driven CDS system for health care delivery
at the bedside. We further detailed an implementation framework
with human-centered design principles and a planned iterative
process to evaluate the cost-effectiveness and health outcomes
of screening for opioid misuse. We shared the components and
pseudocode with open-source technologies involved in the
implementation of an end-to-end NLP pipeline that processed
the notes entered by the provider and returned a BPA within
minutes for patients at risk of an opioid use disorder. Interviews
and user-centered design as well as educational efforts for
improving adherence led to changes in the BPA. Finally, we
shared an experimental design with a rapid PDSA cycle and
cost-effectiveness setup with a noninferiority design to evaluate
the screening system for continued implementation or
deimplementation.

The digital era in medicine continues to grow exponentially in
terms of both the quantity of unstructured data collected in the
EHR and the number of prediction models developed for
detection and diagnostic, prognostic, and therapeutic guidance.
In parallel, the clinical NLP field has grown in its capabilities
with the advent of transformer architectures and more affordable
and efficient cognitive computing of big data [31]. However, a
major bottleneck remains in the successful implementation of
NLP and deep learning models in clinical practice. Much of the
progress in NLP has focused on information retrieval and
extraction [32]; however, the application of these methods at
scale with a combination of software developers and operations
remains challenging at health care institutions. The role of NLP
in BPAs has been limited to date, and prior BPAs have used
existing technologies embedded into the EHR [33]. Similar to
prior motivations for BPAs delivered to bedside clinicians [34],
our intention was to support and enhance decision-making at

the beside with a recommendation for an Addiction Medicine
consult in patients who may otherwise not receive it or have it
delayed, similar to another NLP-driven BPA [17]. However,
given the lack of capacity of many EHR vendors to incorporate
custom NLP models, we offer an interoperable pipeline to
integrate external AI tools with existing EHRs.

Applied clinical NLP has predominantly remained a rule-based
approach, but statistical machine learning models are now the
leading method in the research literature [21]. Few vendors who
provide NLP services rely entirely on machine learning, and a
gap remains in effectively applying NLP models to EHRs that
go beyond disease detection, which is limited to explicit
keyword mentions [35]. Several barriers exist with neural
language models, including the need to remove protected health
information so that the trained models may be shared and the
computational requirements to run complex deep learning
models in a production environment [9]. We offer solutions for
both barriers using a feature engineering approach to map free
text to coded vocabulary and describe a large computing
infrastructure with a connection between a data science cloud
platform and the EHR to support direct data feeds into any
machine learning model. The NLP CDS pipeline accomplishes
efficiency in data standardization and scalability [36] for
successful implementation and is extensible to other NLP
engines. The benefit of augmented intelligence remains
unknown and its identification using our health care outcomes
and cost-effectiveness analysis is the next step in a clinical
study.

Our implementation framework is largely guided by a team of
implementation scientists supported by the UW’s Clinical and
Translational Science Award. We leveraged our Clinical and
Translational Science Award’s Dissemination and
Implementation Launchpad to help bridge the gap between
evidence-based research and practice [37]. The Dissemination
and Implementation Launchpad serves to accelerate the pace
of disseminating research findings and increase the adoption
and implementation of effective interventions, leading to
sustainable practice and policy changes. It uses strategies from
implementation science, design thinking, and human-centered
engineering for the better integration of AI technologies into
health systems. As part of the preimplementation phase, we
assessed contextual factors that may impact implementation by
engaging both adopters, who are the decision-makers, and end
users, who are the main implementers, of the tool [38]. We
conducted qualitative interviews with end users to evaluate the
need for the tool and BPA design. We involved adopters early
in the process to inform the intervention or implementation
process through consultations during the design, feasibility
testing, and implementation phases. An iterative process ensued
to address the constraints and contextual factors that affect the
adoption and implementation of the tool in our health system.

During the preimplementation phase, the project team clarified
roles with the project management, with the readiness of the
clinical workflow approved through hospital committee
meetings and individual interviews with end users. Our health
system is an early adopter of AI governance with a review
process similar to that of other health systems [39]. The Clinical
AI and Predictive Analytics Committee follows the Minimum
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Information About Clinical AI Modeling checklist [40]. The
offline validation of our model incorporated principles from
multiple reporting guidelines on prediction models, bias,
fairness, and validation [41]. Clinical evaluation after the go-live
of SMART-AI will follow the reporting guideline for the
early-stage clinical evaluation of decision support systems driven
by AI (Developmental and Exploratory Clinical Investigations
of Decision Support Systems Driven by AI) [42].

The build of an enterprise-wide AI infrastructure for data-driven
CDS is an important feature of a data-driven learning health
system. At the UW, learning health system activities dating
back to 2013 established an evidence-based framework with a
series of organizational-level quality improvement interventions
[43]. In 2020, the UW Health reaffirmed its strategic plan for
embedding discovery and innovation as well as diversity, equity,
and inclusion in clinical care. Successful implementation
included coaching staff and administrative leaders for working
in PDSA with lean management to get the problem, analysis,
corrective actions, and action plan down on a single sheet of
large (A3) paper, also known as “A3” thinking [44]. A rapid
PDSA cycle is important in the advent of AI-driven interventions
that require rigorous evaluation for implementation or
deimplementation. Furthermore, the pipeline developed for the
opioid screener use case is applicable to other CDS tools that
use machine learning and NLP. We designed our architecture
to ingest different modalities of data and provide a computing
environment that is flexible to different data modalities and
machine learning algorithms.

Several limitations exist in the deployment and sustainability
of our NLP-driven CDS tool. First, calibration drift is a real

concern with changes in medical practice, evidence, and
demographic shifts over time that may affect model performance
[45]. During implementation, reviews by the Clinical AI and
Predictive Analytics Committee will include quarterly
evaluations of the sustained effectiveness of the tool, an audit
of the fairness of the tool across parity groups, and examination
for alert fatigue. Others have shown benefits in recalibration
approaches and domain adaptation with additional training data
to update the models over time [46]. Furthermore, the start-up
costs of the pipeline may be cost-prohibitive for small health
systems. Our proposed cost-effectiveness analysis will provide
a perspective on both the start-up costs of implementing the
NLP tool and the ongoing incremental costs. The start-up costs
are more of a burden to a small health system than the
incremental costs, but we expect that our results will be
informative in terms of both these costs.

Conclusions
The deployment of medical AI systems in routine clinical care
presents an important yet unfulfilled opportunity [47], and our
protocol aims to close the gap in the implementation of
AI-driven CDS. Our protocol implementation for an
enterprise-wide production environment of an AI opioid misuse
screener provides a model for other health systems to use to
bring NLP models into practice for CDS. We highlight
opportunities to leverage the expertise of our applied data
science team to use the open-source tools for feature engineering
and model development inside a larger infrastructure with
vendor support for hardware and software dependencies. Given
the sensitive nature of health care data, the biggest challenges
are ensuring high standards for cybersecurity and meeting the
privacy requirements for protecting patient data.
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