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Abstract

Background: With the advent of the digital economy and the aging population, the demand for diversified health care services
and innovative care delivery models has been overwhelming. This trend has accelerated the urgency to implement effective and
efficient data exchange and service interoperability, which underpins coordinated care services among tiered health care institutions,
improves the quality of oversight of regulators, and provides vast and comprehensive data collection to support clinical medicine
and health economics research, thus improving the overall service quality and patient satisfaction. To meet this demand and
facilitate the interoperability of IT systems of stakeholders, after years of preparation, Health Level 7 formally introduced, in
2014, the Fast Healthcare Interoperability Resources (FHIR) standard. It has since continued to evolve. FHIR depends on the
Implementation Guide (IG) to ensure feasibility and consistency while developing an interoperable health care service. The IG
defines rules with associated documentation on how FHIR resources are used to tackle a particular problem. However, a gap
remains between IGs and the process of building actual services because IGs are rules without specifying concrete methods,
procedures, or tools. Thus, stakeholders may feel it nontrivial to participate in the ecosystem, giving rise to the need for a more
actionable practice guideline (PG) for promoting FHIR’s fast adoption.

Objective: This study aimed to propose a general FHIR PG to facilitate stakeholders in the health care ecosystem to understand
FHIR and quickly develop interoperable health care services.

Methods: We selected a collection of FHIR-related papers about the latest studies or use cases on designing and building
FHIR-based interoperable health care services and tagged each use case as belonging to 1 of the 3 dominant innovation feature
groups that are also associated with practice stages, that is, data standardization, data management, and data integration. Next,
we reviewed each group’s detailed process and key techniques to build respective care services and collate a complete FHIR PG.
Finally, as an example, we arbitrarily selected a use case outside the scope of the reviewed papers and mapped it back to the
FHIR PG to demonstrate the effectiveness and generalizability of the PG.

Results: The FHIR PG includes 2 core elements: one is a practice design that defines the responsibilities of stakeholders and
outlines the complete procedure from data to services, and the other is a development architecture for practice design, which lists
the available tools for each practice step and provides direct and actionable recommendations.

Conclusions: The FHIR PG can bridge the gap between IGs and the process of building actual services by proposing actionable
methods, procedures, and tools. It assists stakeholders in identifying participants’ roles, managing the scope of responsibilities,
and developing relevant modules, thus helping promote FHIR-based interoperable health care services.
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Introduction

Background
The development and innovation of health care service models
have accelerated the demand for data exchange and service
interoperability. In the United States, the Health Information
Technology for Economic and Clinical Health Act took effect
in 2009, specifying health IT–based systems as an integrated
part of the country’s health care reform. It has spurred the
electronic health record (EHR) adoption rate through reward
and punishment measures [1]. In addition, the US Department
of Health and Human Services established a specific agency,
the Office of the National Coordinator for Health Information
Technology, to accelerate the implementation of advanced
medical IT standards, promote the exchange of electronic health
care information, and improve the quality of health care services
throughout the country. In Canada, the federal government
funded an independent, not-for-profit organization called Canada
Health Infoway, tasked with accelerating the adoption of digital
health solutions, such as EHR, across the country. The
government has set a 10-year implementation strategy for EHR
in cooperation with the Canadian Institute for Health
Information [2]. Japan has made great efforts to develop remote
health care technology and has established a communication
system among regional institutions by implementing electronic
medical records (EMRs) in the form of an app or software as a
service [3]. In China’s state health system, major public hospitals
administered by national, provincial, and local health authorities
are the pioneers in reforms. Over the years, the government has
issued a series of policies promoting coordinated care among
health care institutions at different levels of the health system
[4,5], together with many qualitative or quantitative assessment
criteria that guide the establishment of high-standard EMR
system, regional information interoperability, and intelligent
service and management in hospitals. In summary, the demand
for tiered and coordinated care delivery among health care
institutions worldwide is increasing rapidly, and the requirement
for health care data exchange continues unabated.

The enhancement of interoperability is required by transforming
health care service models and tackling the challenges of societal
problems. According to a United Nations report [6], the share
of the population aged ≥65 years is expected to increase from
9.3% in 2020 to approximately 16% in 2050. The rapid aging
of the population unavoidably increases the burden of chronic
disease care, bringing about the requirements for
people-centered and continuous care delivery built on the
foundation of a robust primary health care system. Therefore,
it is necessary to enhance health IT system interoperability to
bridge the gap between uneven health care resource distribution,
remove the barrier of isolated data islands, and comprehensively
improve the quality of health care services.

Health Level 7 Fast Healthcare Interoperability
Resources
Health Level 7 (HL7), founded in 1987, is a not-for-profit,
standards-developing organization dedicated to providing a
comprehensive framework and related standards for the
exchange, integration, sharing, and retrieval of electronic health
information that supports clinical practice and the management,
delivery, and evaluation of health services. It has successively
released many standards, including HL7 version 2, HL7 version
3, and Clinical Document Architecture (CDA). However, with
the constant evolution of the internet and the thriving of the
application programming interface (API) economy, digital
services or assets of health organizations tend to be exposed
even more widely in the form of APIs. In this context, HL7
formally introduced Fast Healthcare Interoperability Resources
(FHIR) in 2014, highlighting the core concept of resources, and
thus, creating a new era for health care service interoperability.
A resource is the smallest exchangeable logical unit in FHIR.
Resources are independent of each other but can be linked or
assembled through specific rules to meet diverse service
requirements. FHIR combines web standards to support resource
operations through RESTful API in XML or JavaScript Object
Notation format. Compared with other alternative standards,
FHIR has more advantages and potential, such as comprehensive
coverage of data definitions, substantial flexibility of data
exchange, explicit semantics, and many available open-source
tools, among others. Therefore, it has attracted constant and
favorable attention from health care stakeholders since its first
release, as shown in Figure 1.

We investigated the literature from the Web of Science and
plotted 2 statistical charts in Figure 1. Figure 1A shows the
promotion trends of different health data standards. By using
the search term “HL7 v2,” “HL7 v3,” “HL7 CDA,” and “FHIR,”
we identified the corresponding papers in the Web of Science
database from 2010 to 2022. The results show that the attention
paid to FHIR has increased rapidly within a short time, far
exceeding the HL7 version 2, HL7 version 3, and CDA
standards. Figure 1B compares FHIR-relevant literature among
different countries. We used the search term “FHIR” to find the
corresponding papers in the Web of Science database from 2014
to 2022. By reading each paper’s abstract and the corresponding
author’s information, we identified the country to which the
work belongs. Countries that record <5 papers fall into the
“others” category. The chart shows that the United States,
Germany, and Canada were the top 3 countries that published
the most studies on FHIR, accounting for 28.39% (197/694),
11.67% (81/694), and 4.18% (29/694), respectively.

In addition to the dissemination activities of enthusiastic
researchers and pioneering health IT ecosystem players, national
health policy makers also play a pivotal role in FHIR adoption,
as evidenced by the actions in the United Kingdom, United
States, and Canada [7]. Overall, FHIR has gradually gained
worldwide recognition and acceptance, and it has the most
potential for future large-scale promotion in the health care
ecosystem.
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Figure 1. Works of literature that focus on health data standards. (A) The attention to Fast Healthcare Interoperability Resources (FHIR) has risen
rapidly within a short time of its first release, far exceeding HL7 version 2, HL7 version 3, and Clinical Document Architecture (CDA) standards. (B)
The United States, Germany, and Canada are the top 3 countries that published the most literature on FHIR. HL: Health Level.

Objectives
Owing to the growing popularity of FHIR, some academic
researchers have authored review papers from their perspectives
in the last few years. Ayaz et al [8] searched for FHIR-related
papers published between 2012 and 2019 in 6 databases (ACM,
IEEE, Springer, Google Scholar, PubMed, and ScienceDirect)
and selected 80 papers for review. They found that FHIR is
identical in supporting intelligent technologies, such as
smartphones, tablets, mobile health apps, smartwatches, and
fitness trackers, which could solve numerous health care
problems that were impossible for the previous standards. Lehne
et al [9] searched for FHIR-related papers in 2 databases (Web
of Science and PubMed) up to 2019 and selected 131 papers
for review. The statistical results revealed that data
model–related topics mainly focusing on constructing profiles
to implement FHIR in specific scenarios were the most attractive
direction. At the same time, analytics-related topics concerning
data analysis, modeling, machine learning, and more were less
attractive because most FHIR projects were still in the initial
development phase, dealing with implementation and data
definitions rather than large-scale data analysis. Barker and
Johnson[10] surveyed 734 apps released up to December 2020
in 5 digital health care application libraries (hosted by Cerner,
Epic, Allscripts, Athenahealth, and Substitutable Medical
Applications Reusable Technologies [SMART]) and measured
their support for FHIR. They found that the number of apps that
support the FHIR standard had increased from 19% in 2019 to
22% in 2020.

However, to our knowledge, there is a lack of systematic reviews
that focus on the FHIR practice. A gap remains between the
FHIR Implementation Guide (IG) and building actual services
because IGs are rules specifying no methods, procedures, or
tools. Thus, stakeholders may feel it nontrivial to participate in
the ecosystem, giving rise to the need for a more actionable
practice guideline (PG) for promoting FHIR’s fast adoption.
Therefore, this study proposed a general FHIR PG to facilitate
stakeholders in the health care ecosystem to understand FHIR
and quickly develop interoperable health care services.

Methods

Article Selection
Figure 2 presents the paper selection flowchart used in this
review. Initially, we identified a total of 487 papers in the Web
of Science and IEEE databases by using the search term “FHIR”
or “Fast Healthcare Interoperability Resources.” The time range
of publications was set from January 1, 2020, to July 1, 2022,
and we finalized 205 articles. After excluding those that merely
mentioned the term FHIR but did not elaborate on it, 65 articles
were retained. A check of duplications from this batch removed
a further 3 articles. Finally, from the references of the remaining
62 articles, we found an additional 23 relevant articles, ending
up with a total of 85 articles as the research materials of this
study.
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Figure 2. Flowchart of paper selection.

Analysis Process
By carefully analyzing and collating the recent studies on the
design of FHIR-based interoperable health care services, we
derived the details of the FHIR PG.

We selected 85 FHIR-related articles and found that building
FHIR-based health care services contains typically 3 stages,
that is, data standardization, data management, and data
integration. Each stage may use different practice methods,
depending on the targeted scenarios and types of services.

The way to categorize these 85 articles is as follows: if an
article’s main innovation feature focused on 1 of the 3 stages,
we assigned it to the corresponding group. Specifically, we
assigned those articles emphasizing the design process of FHIR
profiles or proposing methods for migrating data from specific
clinical data models (CDMs) to FHIR to the data standardization
group, articles discussing the management of RESTful APIs to
the data management group, and articles presenting approaches
for integrating data with specific apps or platforms to the data
integration group.

After categorizing the articles, we reviewed the key techniques
used by each group to build their respective health care services.
We compiled a general FHIR PG through this review. The
workflow of the FHIR PG was derived by linking the stages,
each consisting of multiple steps. It is important to note that
alternative solutions might be identified for certain steps in the
workflow based on different conditions. In addition, we

leveraged the collective experience of our team working on
health care IT projects to further refine and optimize the FHIR
PG.

Finally, as an example, we arbitrarily selected a use case outside
the scope of the reviewed articles and mapped it back to the
FHIR PG to demonstrate the effectiveness and generalizability
of the PG.

Results

Article Classification

Data Standardization
Data standardization typically involves two main steps: (1)
defining profiles based on the data exchange requirements of
interoperable services and (2) filling these profiles with the
corresponding exchange data.

The base FHIR specification provides foundational resources
applicable to various health care contexts. However, health care
services often exhibit significant variability across different
jurisdictions. Therefore, the base FHIR specification typically
requires further adaptation, known as profile definition, to suit
specific application contexts. Profile definition mainly
encompasses three aspects: (1) rules about which resource
elements to use and what additional elements to add to the base
specification, (2) rules about which terminologies to use in
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particular elements, and (3) the restricted value range and
cardinality of the elements.

Table 1 lists the typical profile definitions and the corresponding
FHIR foundational resources discussed in the reviewed articles.
As shown, these articles cover a wide range of categories,
including genomics [10-14], imaging [15-17], cancer [18-20],
diabetes [21,22], COVID-19 [23,24], infections [25],
electrocardiography [26], screening [27], and allergy [28].

There are typically 2 approaches to filling the profiles with
exchange data. One is redesigning the database to align with
the FHIR resource structure, and the other is mapping data from
an existing CDM-based legacy system to the FHIR-based
system. Table 2 lists relevant articles discussing the latter
approach. These articles could roughly fall into 7 groups based
on the types of source CDMs. The groups include informatics
for integrating biology and the bedside [29,30], Observational
Medical Outcomes Partnership (OMOP) [31,32], OpenEHR
[33,34], HL7 version 2 [35], variant call format [36], free text
or arbitrary proprietary data [37,38], and multisource [39-42].
Multisource refers to cases where multiple CDMs are involved.
For example, the study by Lenert et al [40] focused on
transforming data from the OMOP and Patient-Centered
Outcomes Research Network to FHIR. The study by Pfaff et al
[39] aimed to transform data from informatics for integrating
biology and the bedside, OMOP, and Patient-Centered Outcomes
Research Network to FHIR. The study by Prud’hommeaux et
al [41] compared 3 methods for transforming data from various

source CDMs into FHIR. The study by Kiourtis et al [42]
proposed a resource description framework transformation
toolkit to combine FHIR and non-FHIR data.

The studies in Table 2 indicate that the transformation from a
specific CDM type to FHIR typically involves a 2-step mapping
process: model mapping and element mapping. Model mapping
establishes a relationship between the original data model and
the FHIR resource. Element mapping comprises 2 parts, key
mapping and value mapping, which define how to map the data
fields from the source CDM to the corresponding fields in the
FHIR resources. The mapping rules observe the
consensus-mapping relationships established by domain experts.
These experts analyzed the semantic and structural differences
between the source CDMs and FHIR and determined the
appropriate mappings to ensure accurate and meaningful data
transformation. Although current data transformation approaches
intend to support specific source data and target FHIR resource
types, it is worth noting that ongoing research and advancements
in domain-based applied artificial intelligence, including natural
language processing and deep learning, hold great potential for
developing more generalized data transformation algorithms.

As highlighted in previous studies, the granularity of data plays
a crucial role in data standardization. When the granularity of
the source data is finer than that of the target data, there is
potential for information loss during the transformation process:
the severity of information loss increases with the extent of the
granularity gap.
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Table 1. Profile definitions from the reviewed articles.

Involved Fast Healthcare Interoperability ResourcesTheme and study, year

Genomics

DiagnosticReport, Specimen, ServiceRequest, Observation, and TaskMurugan et al [10], 2021

MolecularSequenceSeong et al [11], 2021

DiagnosticReport, ServiceRequest, and ObservationAlterovitz et al [12], 2020

Questionnaire and DocumentKlopfenstein et al [13], 2021

Patient, PractitionerRole, Organization, Specimen, ServiceRequest, Media, RiskAssessment, Task, Medi-
cationRequest, CarePlan, DeviceRequest, NutritionOrder, SupplyRequest, and RequestGroup

Khalifa et al [14], 2021

Imaging

Patient, DiagnosticReport, ImagingStudy, AllergyIntolerance, Condition, MedicationOrder, Specimen,
Organization, Practitioner, and Medication

Kohli et al [15], 2018

MediaMadrigal and Le [16], 2021

ObservationBoufahja et al [17], 2021

Cancer

Observation and DiagnosticReportZong et al [18], 2021

Observation, Device, FamilyMemberHistory, AllergyIntolerance, Condition, Patient, MedicationStatement,
Encounter, Questionnaire, QuestionnaireResponse, and Procedure

Gonzalez-Castro et al [19], 2021

QuestionnaireResponseZong et al [20], 2020

Diabetes

ObservationLudmann et al [21], 2020

Procedure, ProcedureRequest, Communication, Appointment, Observation, Condition, CommunicationRe-
quest, Device, Encounter, Composition, Goal, Order, OrderResponse, MedicationAdministration, Medica-
tionOrder, Organization, Patient, Practitioner, RiskAssessment, QuestionnaireResponse, Basic, and Param-
eters

Glachs et al [22], 2020

COVID-19

QuestionnaireBauer et al [23], 2021

Procedure, Observation, Condition, DiagnosticReport, Procedure, Consent, Immunization, MedicationState-
ment

Sass et al [24], 2020

Infections

Consent, Coverage, DeviceUseStatement, Encounter, HealthcareService, Medication, MedicationAdminis-
tration, MedicationStatement, Observation, Patient, Practitioner, Procedure, ServiceRequest, and Specimen

Shivers et al [25], 2021

Electrocardiogram

ObservationBenhamida et al [26], 2020

Neonatal screening

Patient, ServiceRequest, DiagnosticReport, Contract, Organization, and PractitionerBathelt et al [27], 2020

Allergy

AllergyIntoleranceLenivtceva and Kopanitsa [28],
2021
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Table 2. Data migration from the existing clinical data model to Fast Healthcare Interoperability Resources.

Clinical data model of the sourceStudy, year

Informatics for integrating biology and the bedsideBoussadi and Zapletal [29], 2017; Wagholikar et al [30], 2017

Observational Medical Outcomes PartnershipJiang et al [31], 2017; Fischer et al [32], 2020

OpenEHRLadas et al [33], 2022; Fette et al [34], 2020

HL7a version 2Xiao et al [35], 2021

Variant call formatDolin et al [36], 2021

Free text or arbitrary proprietaryPeterson et al [37], 2020; Wang et al [38], 2020

MultisourceLenert et al [40], 2021; Pfaff et al [39], 2019; Prud’hommeaux et al [41],
2021; Kiourtis et al [42], 2020

aHL7: Health Level 7.

Data Management
Data management includes data storage and data exposure.
Although FHIR defines 5 approaches for data exposure,
including RESTful API, messaging, documents, services, and
persistent store, recent articles predominantly chose to expose
data in the form of APIs because of the rapid growth of the APIs
economy. There are typically 2 methods for data management:
developing a customized FHIR warehouse to store and manage
FHIR data or selecting a mature third-party warehouse to handle
the task.

Table 3 shows various data management choices and their
corresponding targets. It reveals that developing a customized
FHIR warehouse to maintain FHIR data often requires meeting
some special service requirements. For instance, the customized
FHIR warehouse developed by Demurjian et al [43] aimed to
enable sensitivity and multilevel security controls. The one
developed by Chatterjee et al [44] and Saripalle et al [45] served
to integrate with specific terminology. The one developed by
Ruminski et al [46], Saripalle [47], and Yu et al [48] intended
to support multiple Internet of Things protocols. Finally, the
one discussed in the studies by Khvastova et al [49], Dridi et al
[50], Lee et al [51], Tanaka and Yamamoto [52], Cheng et al
[53], Semenov et al [54], and Gruendner et al [55] was used to
support data preprocess plug-ins.

On the other hand, several mature third-party platforms are
available for managing FHIR data. In 2018, a total of 6
technology giants, including Amazon, Microsoft, Google, IBM,
Oracle, and Salesforce, jointly announced that they would be
committed to removing the barriers to adopting health care
interoperability technologies, particularly those enabled through
the cloud [56]. All these companies have launched FHIR data
management platforms, providing FHIR data APIs for resource
operations. Users of these platforms can store their data as FHIR
resources and use the data APIs offered by the cloud platform
for service development. For instance, the studies by Shi et al
[57], Zampognaro et al [58], Ploner and Prokosch [59], and
Kamel and Nagy [60] chose cloud warehouses, and the study
by Mandl et al [61] chose an on-premises warehouse to rapidly
deploy an FHIR development environment.

The abovementioned analysis highlights that choosing between
proprietary and third-party warehouses involves trade-off
considerations. Maintaining FHIR data through a proprietary
warehouse offers 2 advantages: better privacy and greater
flexibility for functional expansion. However, developing a
proprietary warehouse requires extensive knowledge of FHIR
standards and software development skills, resulting in higher
costs. On the other hand, relying on third-party platforms offers
the advantages of lower cost and higher implementation
efficiency. However, storing sensitive data in a third-party
warehouse, with the service provider not being the data owner,
raises security and privacy concerns.
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Table 3. Fast Healthcare Interoperability Resources (FHIR) data management methods and their corresponding targets.

TargetMethod and study, year

Develop FHIR warehouse

Support lattice-based access controlDemurjian et al [43], 2020

Integrate with specific terminologiesChatterjee et al [44], 2022; Saripalle et al [45], 2020

Support multiple IoTa protocolsRuminski et al [46], 2016; Saripalle [47], 2019; Yu et al [48], 2021

Support data preprocess plug-insKhvastova et al [49], 2020; Dridi et al [50], 2020; Lee et al [51], 2020; Tanaka
and Yamamoto [52], 2020; Cheng et al [53], 2021; Semenov et al [54], 2019;
Gruendner et al [55], 2021

Use third-party FHIR warehouse

Rapidly deploy a development environment through a cloud
FHIR warehouse

Shi et al [57], 2021; Zampognaro et al [58], 2021

Ploner and Prokosch [59], 2020; Kamel and Nagy [60], 2018

Rapidly deploy a development environment through an on-
premises FHIR warehouse

Mandl et al [61], 2020

aIoT: Internet of Things.

Data Integration
Data integration plays a vital role in health care across various
domains, including service delivery, public health management,
and clinical medicine or health care economics research,
enabling better decision-making and improving overall health
care outcomes. In service delivery, data integration is crucial
for coordinating multiple IT systems, including the hospital
information system (HIS), laboratory information system,
picture archiving and communication system, EMR, and EHR.
In public health, local governments need to collect health-related
data within their jurisdictions to monitor regional health status
and effectively address public health issues. In clinical medicine
or health care economics research, it is essential to obtain data
from diverse domains to conduct comprehensive studies and
analyses.

There are 2 typical modes of FHIR data integration, as listed in
Table 4.

The first mode of data integration is using an integrated service
platform (ISPf). The ISPf is an orchestrating platform offering

a series of API management functions such as API registration,
API calling authorization, and API routing forward.
Organizations wishing to exchange data through the ISPf must
register their APIs on the platform. Other organizations can
search for the appropriate APIs on the ISPf and make API calls.
The ISPf performs API calling authorization to verify the calling
rights and then routes the API calls to the respective organization
to which the API belongs. This process facilitates data exchange
among multiple organizations [62-75]. An example of this mode
is the efficient transfer of medical records when a patient referral
occurs.

The second mode of data integration is by way of interoperable
apps. Different architectures can be selected for different
application scenarios. In the case of apps with specific functions,
such as statistics and analysis, SMART on FHIR would be a
more efficient option [76-85]. In the case of apps with
customized functions, such as supporting microservice
architecture or blockchain architecture, customized architecture
apps would be a more suitable option [86-94].

Table 4. Fast Healthcare Interoperability Resources data integration modes and their corresponding application scenarios.

Applied scenariosInteroperable modes and study, year

Integrated service platform

Control exchange data through APIsa for service
coordination among multiple organizations.

Nan et al [62], 2021; Taechoyotin et al [63], 2021; Maxi and Morocho [64], 2022; Rosenau
et al [65], 2022; Corici et al [66], 2020; Papaioannou et al [67], 2021; Hidayat and Hermanto
[68], 2020; Sloane et al [69], 2021; Mukhiya and Lamo [70], 2021; Gruendner et al [71],
2022; Gruendner et al [72], 2020; Park et al [73], 2022; Ziminski et al [74], 2021; De et al
[75], 2021

App

Substitutable Medical Applications and Reusable
Technologies app: apps with specific functions,
such as statistics and analysis.

Suraj et al [76], 2022; Michaels et al [77], 2021; Curran et al [78], 2020; Thayer et al [79],
2021; Karhade et al [80], 2021; Wesley et al [81], 2021; Burkhardt et al [82], 2021; Hoffman
et al [83], 2017; Stoldt and Weber [84], 2020; Stoldt and Weber [85], 2021

Other architecture app: apps with customized
functions, such as supporting microservice and
blockchain architecture.

Alamri et al [86], 2021; George and Chacko [87], 2022; Gulden et al [88], 2021; Chaves et
al [89], 2021; Bae and Yi [90], 2022; Bettoni et al [91], 2021; Weber et al [92], 2020; Sfat et
al [93], 2021; Mohammed et al [94], 2021

aAPI: application programming interface.
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FHIR PG Design

Practice Design

We present an FHIR practice design in Figure 3, which defines
the responsibilities of stakeholders and outlines the complete
practice process from data to services.

Figure 3. The general Fast Healthcare Interoperability Resources (FHIR) practice guideline—practice design. API: application programming interface;
IG: Implementation Guide; ISPf: integrated service platform.

IGs Editing Group

The first stakeholder involved in the process is the IGs editing
group, usually coordinated by a government agency or an
institution with significant influence in the ecosystem. The
primary responsibility of this group is to define the data and
service models and release the IGs. The detailed processes are
as follows. First, select necessary FHIR resources based on the
service requirements. Second, for specific requirements beyond
the scope of the original FHIR resources, the group needs to
customize resource structure by FHIR profile. Profile generally
involves 3 aspects: extending the data field by FHIR extension,
linking the local CodeSystem to the CodeableConcept field of
FHIR resources, and restricting the cardinality and ValueSet of
FHIR foundational resource. The customized resources created
by the profile enable better alignment with the data requirements
in various scenarios. After completing the data unification task,
the IGs editing group moves on to the unification of services
workflow, which involves specifying the implementation steps
in the workflow and standardizing the corresponding APIs.
Ultimately, the abovementioned data and workflow
specifications are integrated to form the comprehensive FHIR
IGs that health care IT system vendors can adopt.

Health Care IT System Vendor

The second type of stakeholder is the health care IT system
vendor, responsible for developing and maintaining systems,
such as the HIS, laboratory information system, and picture
archiving and communication system. First, the vendor must
implement the IGs published by the IGs editing group, which
involves standardizing data by redesigning the database
according to the FHIR resource structure or mapping data from
existing CDM-based legacy systems to FHIR-based systems.

Second, with RESTful APIs, the vendor has 2 options for data
exposure: either maintaining the FHIR data and APIs themselves
or selecting a mature third-party platform. FHIR APIs must be
exposed to support resource-level operations regardless of the
chosen option.

It is worth pointing out that in terms of data exposure, FHIR
defines 5 different approaches, and each data exposure approach
has a different data integration method; it would be a lengthy
discussion if all approaches are considered. To make FHIR PG
more compatible with current technology stacks, we chose to
focus on RESTful API rather than on other approaches in this
study.

Health Care Application Developer

The third stakeholder involved in this process is the health care
application developer, responsible for developing interoperable
services using open FHIR APIs. As described in the Data
Integration section, there are 2 typical modes. The first is to
develop an ISPf, that is, an orchestrating platform, for service
interoperability. The ISPf manages open APIs registered by
each organization and enforces access specifications such as
IGs, profiles, and workflows. Any IT systems accessing the
ISPf and exchanging data must comply with these specifications.
When an IT system needs to access multiple ISPfs, it must
support multiple specifications. In such cases, the IT system
can deploy an adapter above its native database to comply with
various specifications. When the IT system acts as a producer,
it reads the corresponding specifications from the adapter to
expose the data. When it acts as a consumer, it reads the
corresponding specifications from the adapter to parse data. The
second mode is to develop specific apps that cater to specific
requirements. For example, an app built with SMART on FHIR
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architecture supports a flexible and switchable application
ecosystem.

Beneficiary

Beneficiaries such as hospitals, patients, public health
institutions, and research institutions can benefit from
high-quality FHIR-based health care services. For instance, if
there is a need to exchange data through APIs to facilitate
service coordination among multiple organizations, they can
easily access the ISPf to fulfill this objective. Alternatively,

they can choose a suitable app from the application gallery that
caters to their needs and functions.

The Development Architecture for the Practice Design

Overview

We presented a 3-stage development architecture for the practice
design, as shown in Figure 4. In addition, we compiled a list of
commonly used tools in Table 5 to support the development
process.

Figure 4. The general Fast Healthcare Interoperability Resources (FHIR) practice guideline—the development architecture for the practice design. IG:
Implementation Guide; ISPf: integrated service platform; SMART: Substitutable Medical Applications Reusable Technologies.
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Table 5. A list of commonly used tools.

AvailabilityTool and description

Data standardization

[95]This tool provides Java APIc for HL7d FHIR clients and serversHAPIa FHIRb

[97]An IG publishing tool that makes your IGs to be visible on the internet [96]IGe Auto-Builder

[98]The official FHIR tool for managing FHIR profilesFirely Forge

[99]A cross-platform command line tool with a range of commands for working with FHIR resources and
installing and publishing FHIR packages

Firely Terminal

Data management

[100]A special type of plug-in that registers services to access the existing data repository. It speaks FHIR in
the front-end and talks directly to native data in the back-end

Firely Facade

[101]A framework used to deploy an FHIR server on AWSFHIR Works on

AWSf

[102]An open-source implementation of FHIR specification designed for the Microsoft cloudFHIR server for
Azure

[103]A cloud application that accelerates health care solution development with fully managed, enterprise-

scale HL7 FHIR, HL7 version 2, and DICOMh APIs
GCPg Healthcare
API

[104]An open-source Java solution that supports the processing, validation, and storage of health care data
according to the HL7 FHIR specification

IBM FHIR server

[105]The foundation of a health care information exchange platform that makes health care data more useful
by supporting the integration and operation of a full spectrum of health care applications

Oracle Healthcare
Data Repository

[106]A tool that combines clinical and nonclinical customer data to drive efficiencies in healthHealth Cloud

Data integration

[107]This tool provides an API Gateway built on top of the Spring EcosystemSpring Cloud
Gateway

[108]This tool provides access to mutable data structures via a set of commands sent using a server-client

model with TCPi sockets and a simple protocol

Redis

[109]The HAPI FHIR Validator API is a simple RESTj API to validate the structure and content of an FHIR
object

Validator

[110]A distributed, RESTful search and analytics engine is at the heart of the Elastic StackElasticsearch

[111]An open standard and decentralized authentication protocol promoted by the nonprofit OpenID FoundationOpenID

[112]An open protocol to allow secure authorization in a simple and standard method from web, mobile, and
desktop applications

OAuth

[113]Define a workflow that an application can use to securely request access to data and then receive and
use that data

SMARTk

aHAPI: Health Level 7 application programming interface.
bFHIR: Fast Healthcare Interoperability Resources.
cAPI: application programming interface.
dHL7: Health Level 7.
eIG: Implementation Guide.
fAWS: Amazon Web Services.
gGCP: Google Cloud Platform.
hDICOM: Digital Imaging and Communications in Medicine.
iTCP: transmission control protocol.
jREST: representational state transfer.
kSMART: Substitutable Medical Applications Reusable Technologies.

Data Standardization

In the data standardization development stage, several
components are defined to ensure the consistent use of codes

within a specific context. The terminology system comprises
essential resources such as CodeSystem, ValueSet, and
ConceptMaps. These resources establish a framework for
determining which codes can be used. Furthermore, the
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conformance system includes resources such as
StructureDefinition, OperationDefinition, CapabilityStatement,
and ImplementationGuide. These resources are crucial in
creating profiles and IGs that adhere to a specific exchange
framework. As mentioned in the Data Standardization section,
the granularity of the data plays a crucial role in information
loss. Pfaff et al [39] pointed out that information loss can be
avoided by defining custom values or extensions during the
data standardization stage. By incorporating custom values or
extensions defined in this stage, it is possible to capture and
preserve the finer-grained information that is likely to be lost
during the transformation process.

During this process, developers can use various tools to facilitate
efficient data standardization. The HL7 API (HAPI) FHIR offers
a Java API for developing HL7 FHIR clients and servers. Forge
serves as a management tool for FHIR profiles. The Firely
Terminal, a cross-platform command line tool, provides a wide
array of commands for working with FHIR resources and
installing and publishing FHIR packages. IG Auto-Builder is
another helpful tool that simplifies the creation and publication
of IGs, available on the internet [96].

Ultimately, the data standardization stage would generate a set
of IGs to ensure consistency and conformity in implementing
higher-level services.

Data Management

Various situations can arise in the data management
development stage, each bringing different challenges. These
situations can fall into 3 options.

The first is to develop an FHIR-native warehouse that the health
care IT system vendor manages. In this scenario, the vendor
assumes responsibility for designing, implementing, and
maintaining the warehouse.

The second is to select a well-established third-party warehouse,
such as FHIR Works on Amazon Web Services, IBM FHIR
Server, Google Cloud Platform Healthcare API, FHIR Server
for Azure, Health Cloud, and Oracle Healthcare Data
Repository, to store and explore the FHIR APIs. This approach
allows vendors to leverage the capabilities of mature third-party
warehouses for FHIR API functionality.

The third is to provide FHIR data using plug-ins. In this
scenario, vendors retain their existing data infrastructure and
use plug-ins to facilitate data transformation from its native
format to the FHIR format. A tool called Facade is available to
facilitate this mapping process.

As discussed in the Data Standardization section, the
discrepancy in granularity between different systems can lead
to potential information loss. To mitigate this issue, developers
can incorporate a mapping log within the transformer
component. When encountering a granularity gap during the
mapping process, the mapping log captures and records the lost
information, associating it with the corresponding target resource
ID. This mapping log serves as a reference for any subsequent
services or systems requiring detailed information about the
mapping process. If the overlying services need to retrieve the
lost information, they can make a request based on the resource

ID recorded in the mapping log. This measure allows them to
access the details lost during the initial mapping, ensuring that
the required information is preserved and available for further
analysis or processing.

Ultimately, the data management stage generates a series of
FHIR APIs. These APIs serve as a foundation for data
exploration and form the backbone of the infrastructure required
for high-level services.

Data Integration

Two types of interoperable services are commonly used in the
data integration development stage.

The first type is the ISPf, which enables interoperability among
multiple organizations. The ISPf comprises 4 key components:
gateway, validator, flow control, and log system. The gateway,
built by the Spring Cloud Gateway, is responsible for API
authorization and forwarding API requests between
organizations. The validator ensures that the structure and
content of the API data comply with the FHIR object defined
in IGs. The HAPI FHIR Validator can build this functionality.
The flow control component is designed to limit the number of
simultaneous API calls to ensure a stable operation. Redis can
effectively fulfill the flow control requirements. As ISPf
manages multiple organizations and facilitates data exchange,
maintaining a comprehensive log system is crucial for history
tracking and auditing. Elasticsearch, a powerful search and
analytics engine, can be used to develop the log system within
the ISPf, enabling efficient storage and retrieval of API call
records.

The second type of interoperable service is represented by apps
built by the SMART on FHIR architecture [114]. This
architecture consists of 3 key components: the resource server,
authorization server, and the SMART on FHIR apps. The
resource server is an access layer between the data management
layer and the SMART on FHIR apps. The authorization server
(an OpenID Connect–compliant web server) authenticates users
and issues access tokens. SMART on FHIR apps is designed
with specific functionalities and can be substituted based on
user preferences.

Use Case
We arbitrarily selected a use case that was in addition to the
reviewed articles. Portugal et al [115] designed a smart bed
infrastructure with an HIS using FHIR. We mapped it back to
the FHIR PG to demonstrate PG’s effectiveness and
generalizability.

In this case, the roles and responsibilities can be mapped to the
FHIR PG–practice design. The authors and their research
partners formed an IGs editing group to define IGs consisting
of profiles and workflows. The profiles were derived from
foundational FHIR resources such as Observation, Device, and
ServiceRequest. The workflows defined the frequency at which
the smart bed would collect vital signs from the smart bed.
Subsequently, the authors’ team, acting as a health care IT
system vendor, developed a gateway that gathers raw data from
sensors and converts it into FHIR for transmission. Although
they did not discuss the final applications in detail, it can be
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inferred that health care application developers can build a better
smart bed monitor based on their infrastructure.

The development architecture described in this paper can also
be mapped back to the FHIR PG–development architecture. In
the data standardization stage, the authors used the HAPI FHIR
for HTTP processing, parsing and serialization, and FHIR REST
semantics. It provided a bare-bones structure to build the API.
In the data management stage, the authors developed a fog server
as a gateway between the smart bed and HIS. This fog server
is responsible for collecting raw data from the HIS, transforming
it into the FHIR format, and facilitating its integration into the
FHIR ecosystem. Finally, in the data integration stage, the
authors enabled the HIS software to monitor patient procedures
and flows, accompanied by the OAuth2 protocol for secure API
communication.

Discussion

Principal Findings
FHIR has shown significant advantages in facilitating
interoperability among health IT systems compared with
established international standards. However, there are
challenges in large-scale implementation and promotion,
particularly in different countries. First, countries without
incentive policies to encourage FHIR research and
implementation may exhibit less enthusiasm for adopting FHIR
standards. Second, the lack of a suitable infrastructure to support
the implementation process can result in high costs associated
with FHIR adoption. Third, the foundational resources provided
by FHIR may not directly align with the specific service
requirements in different regions, necessitating additional
customization processes.

The following steps must be taken to address these challenges.
First, it is crucial to have government policies that encourage
the evolution and adoption of health care data standards. These
policies can stimulate the enthusiasm and investment of
stakeholders in the health care ecosystem to promote FHIR
implementation on a larger scale. Second, strengthening the
infrastructure helps reduce the cost and complexity associated
with FHIR adoption, which includes developing services such
as FHIR data storage, data standard quality control, and managed
services for data operations. Third, FHIR profiles and workflows
should be defined to address the specific requirements and
characteristics of local health systems. By tailoring FHIR IGs

to match the needs of different regions, the gap between FHIR
foundational resources and specific service requirements can
be bridged.

FHIR holds significant potential in standardizing health care
data and promoting service interoperability among health care
institutions. Its adoption can drive the transformation of the
health care service model and enhance the overall quality of
health care services. With the growing recognition of the
benefits of FHIR and its demonstrated impact on health care
interoperability, more stakeholders are expected to actively
participate in enriching its implementation. This collective effort
would lead to the emergence of extensive health care service
innovations, further enhancing the delivery of high-quality
health care services.

Limitations
There are a few current limitations when applying the FHIR
PG: (1) PG is derived from the waterfall model that follows a
sequential and linear approach. Each step must be completed
before proceeding to the next step. Therefore, it is
time-consuming and costly to return and modify the previous
steps if changes are necessary during the development process.
(2) Although PG emphasizes the achievement of interoperability,
it leaves out the security discussion. Developers must
incorporate additional security mechanisms into
PG–development architecture to ensure secure interoperation
among multiple organizations.

Conclusions
Owing to the unique characteristics of FHIR, including
comprehensive coverage of data definitions, substantial
flexibility of data exchange, explicit semantics, and many
available open-source tools, FHIR-based services have attracted
strong interest from stakeholders in the health care ecosystem.
Current studies reveal that many institutions, such as hospitals,
regulators, and researchers, have already begun collaborations
in actively building FHIR foundational frameworks or
application use cases. After conducting the latest literature
review, we proposed a general FHIR PG to bridge the gap
between FHIR IGs and the practice of building usable services.
This PG helps stakeholders identify their participant roles,
manage the scope of responsibilities, and develop relevant
modules, which we believe would effectively facilitate the
application and promotion of HL7 FHIR standards across the
health care ecosystem.
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