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Abstract

Background: Clinical electronic medical records (EMRs) contain important information on patients’ anatomy, symptoms,
examinations, diagnoses, and medications. Large-scale mining of rich medical information from EMRs will provide notable
reference value for medical research. With the complexity of Chinese grammar and blurred boundaries of Chinese words, Chinese
clinical named entity recognition (CNER) remains a notable challenge. Follow-up tasks such as medical entity structuring, medical
entity standardization, medical entity relationship extraction, and medical knowledge graph construction largely depend on medical
named entity recognition effects. A promising CNER result would provide reliable support for building domain knowledge graphs,
knowledge bases, and knowledge retrieval systems. Furthermore, it would provide research ideas for scientists and medical
decision-making references for doctors and even guide patients on disease and health management. Therefore, obtaining excellent
CNER results is essential.

Objective: We aimed to propose a Chinese CNER method to learn semantics-enriched representations for comprehensively
enhancing machines to understand deep semantic information of EMRs by using multisemantic features, which makes medical
information more readable and understandable.

Methods: First, we used Robustly Optimized Bidirectional Encoder Representation from Transformers Pretraining Approach
Whole Word Masking (RoBERTa-wwm) with dynamic fusion and Chinese character features, including 5-stroke code, Zheng
code, phonological code, and stroke code, extracted by 1-dimensional convolutional neural networks (CNNs) to obtain fine-grained
semantic features of Chinese characters. Subsequently, we converted Chinese characters into square images to obtain Chinese
character image features from another modality by using a 2-dimensional CNN. Finally, we input multisemantic features into
Bidirectional Long Short-Term Memory with Conditional Random Fields to achieve Chinese CNER. The effectiveness of our
model was compared with that of the baseline and existing research models, and the features involved in the model were ablated
and analyzed to verify the model’s effectiveness.

Results: We collected 1379 Yidu-S4K EMRs containing 23,655 entities in 6 categories and 2007 self-annotated EMRs containing
118,643 entities in 7 categories. The experiments showed that our model outperformed the comparison experiments, with F1-scores
of 89.28% and 84.61% on the Yidu-S4K and self-annotated data sets, respectively. The results of the ablation analysis demonstrated
that each feature and method we used could improve the entity recognition ability.

Conclusions: Our proposed CNER method would mine the richer deep semantic information in EMRs by multisemantic
embedding using RoBERTa-wwm and CNNs, enhancing the semantic recognition of characters at different granularity levels
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and improving the generalization capability of the method by achieving information complementarity among different semantic
features, thus making the machine semantically understand EMRs and improving the CNER task accuracy.

(JMIR Med Inform 2023;11:e44597) doi: 10.2196/44597
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Introduction

Background
Abundant medical data have been accumulated since the
development of the hospital information system, among which
the electronic medical records (EMRs) contain information
closely related to patients’ diagnosis and treatment processes
[1]. As important records of patients’ medical activities,
effective extraction and use of the medical information contained
in EMRs could provide clinical decision-making support for
doctors and realize personalized medical guidance and health
management for patients. It could also help biomedical
researchers discover the tacit medical knowledge, thus providing
ideas for studies of the association between diseases, the
relationship between symptoms, the prediction of diseases and
therapies, complication prediction, comorbidity analysis, etc.
The medical information would be rapidly extracted from the
unstructured EMRs through named entity recognition (NER).
NER is a basic task of natural language processing, which will
lay the foundation for the construction of medical knowledge
graphs, medical knowledge bases, and so on by steps such as
medical entity structuring, medical entity standardization, and
medical entity relationship extraction. It will also provide
fundamental support for practical application scenarios such as
medical knowledge retrieval systems, clinical decision support
systems, clinical event extraction, and so on [2,3].

Clinical NER (CNER) refers to the recognition of entities such
as anatomy, disease, symptoms, clinical examination,
medication, surgical procedure, and so on from EMRs [4,5].
Chinese CNER is more difficult than English NER for several
reasons. First, Chinese words lack space segmentation and have
blurred boundaries. Second, the composition of a Chinese entity
is complex and may contain various figures, letters, and
abbreviations. Third, Chinese grammar is complicated, and the
same word may represent different entity types in different
contexts. Therefore, Chinese CNER remains a research focus.

Recently, the features of radicals for Chinese characters have
been widely used to improve the efficiency of different Chinese
natural language processing tasks [6-8]. Chinese characters,
known for thousands of years, are highly developed morpheme
scripts that are still used worldwide with unique ideology [9].
Chinese characters include single-component and
multiple-component characters. A single-component character
cannot be divided, for example, “心 (heart),” “手 (hand),” and
“口 (mouth),” and so on; whereas a multiple-component
character is composed of basic components, accounting for
>90% of Chinese characters [10], for example, the radical for
“呕 (vomit)” and “吐 (vomit)” is “口 (mouth),” and the radical

for “肿 (swelling)” and “胀 (swelling)” is “月 (month),” which
refers to meat or organs in ancient times. Chinese characters
are divided into associative compound characters, indicative
characters, pictographic characters, and picto-phonetic characters
based on their characteristics. In addition, Chinese characters
are also called square characters, as they are square, and there
are 8 structures of Chinese characters that are subdivided based
on their intrinsic shape and construction. Therefore, Chinese
characters contain rich deep semantic information. Applying
radicals, phonological codes, shape structures, and other features
would help to improve Chinese CNER accuracy.

The contributions of this study are as follows: (1) using
pretrained language model (PLM) Robustly Optimized
Bidirectional Encoder Representation from Transformers
Pretraining Approach Whole Word Masking (RoBERTa-wwm)
with a dynamic fusion transformer layer to obtain the semantic
features of Chinese characters; (2) using CNNs for extracting
the radicals and picto-phonetic features of Chinese characters
through the 5-stroke code, Zheng code, phonological code, and
stroke code; (3) converting Chinese characters into square
images, extracting Chinese character image features from
another modality by CNNs, and deeply capturing the
pictographic characteristics of Chinese characters; and (4)
improving the semantic recognition ability of the model at
different levels of granularity, achieving information
complementarity between different semantic features, and
improving the effect and generalization ability of the model
based on multisemantic features.

Related Works

Medical NER
In recent decades, the medical NER is still a research focus.
Medical NER research has 3 main development stages as
follows: based on dictionaries and rules, based on statistical
machine learning, and based on deep learning.

The dictionary-based [11-13] methods need to construct a
domain dictionary in advance to achieve medical NER by
matching algorithms. The accuracy of this method is relatively
higher. However, it may be affected by the large number, strong
specialization, and high complexity of Chinese medical entities.
In addition, medical terminologies are updated quickly with the
rapid development of the medical field, and the lack of new
terminologies will also affect medical NER accuracy. The
rule-based [14,15] methods need experts in a particular field to
formulate the rule templates based on information such as
context grammar and structure. However, the rules are poorly
universal in different fields. The methods based on dictionaries
and rules [16-18] are poorly generalized, time-consuming, and
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objective, as much time and labor are required. Therefore, many
scholars have gradually applied methods based on statistical
machine learning on medical NER. The commonly used methods
include maximum entropy [19], support vector machine [20,21],
hidden Markov model [22,23], and conditional random fields
(CRF) [24,25]. However, these methods rely on large-scale
annotation data sets [26] and manual feature selection [13,27].
Moreover, the quality of the selected features will directly affect
the medical NER results.

With the continuous development of deep learning, Cocos et al
[28] found that deep learning has advantages over traditional
machine learning. It can automatically extract the characteristics
of various levels and reduce the subjectivity of artificial feature
selection. This thereby improves the result accuracy. The
commonly used deep learning models include convolutional
neural networks (CNNs) [29], recurrent neural networks [30],
long short-term memory (LSTM) [31], Word to Vector
(Word2Vec) [32], Bidirectional Encoder Representation from
Transformers (BERT) [33], and so on. However, fully extracting
the data features by using a neural network alone is challenging.
Most scholars took Long LSTM-CRF as the main framework
to make up for the medical NER deficiency using a single neural
network [34]. The Bidirectional LSTM-CRF (BiLSTM-CRF)
[35] model was then developed. This model could better capture
contextual information as an important milestone in medical
NER and has been widely used in the medical field [36,37]. To
improve the ability to capture details and extract features of
medical NER models, many studies added Word2Vec with
static representation [38], Global Vectors for Word
Representation [39] with static representation, Embeddings
from Language Models (ELMo) [40,41] with dynamic
representation, CNN [42], and attention mechanism [43] to the
BiLSTM-CRF model. Some studies [44,45] have shown that
the application of the BiLSTM-CRF model combined with the
word vector generated by BERT could significantly improve
medical NER accuracy. BERT provided a more accurate word
representation and achieved better task results than traditional
word vector methods. As per the specialty of medicine and the
characteristics of Chinese characters involved, the clinical
dictionaries, root-level features, parts of speech, radicals, and
phonological codes have been added in the BiLSTM-CRF model
in some studies [46-51] for improving Chinese CNER
performance.

PLMs Technique
PLMs are pretrained on a large-scale corpus to obtain prior
semantic knowledge from unlabeled text and improve the
effectiveness of different downstream tasks. The word vector
generated by a bidirectional language model BERT with stacked
transformer substructures contains not only the preliminary
information from the corpus training but also the encoded
contextual information. Some robust versions of BERT have
been constructed since BERT was proposed in 2018. For
example, the RoBERTa model [52], which replaces the static
(MASK) strategy with a dynamic (MASK) strategy, and the
words (MASK) in each sequence dynamically change in
different epoch trainings. In addition, the RoBERTa model is
retrained with bigger batches and longer sequences, and the
next-sentence prediction task, which is not related to the

downstream task, is canceled during the pretraining. Compared
with the BERT model, the RoBERTa model performs better on
multiple natural language processing tasks. However, the
character-level RoBERTa model does not fit the Chinese natural
language processing, as the different segmentation modes
between Chinese and English words suffer a limitation of
lacking word information. Then, the word-level RoBERTa-wwm
model [53] was proposed based on Chinese characteristics,
which greatly improved the text representation ability in Chinese
[54].

Methods

Data Collection
The Yidu-S4K data set, shared publicly by YiduCloud, is
derived from the Chinese EMRs entity recognition task of the
China Conference on Knowledge Graph and Semantic
Computing 2019 [55]. It contains 1379 EMRs with 6 entity
types, including Disease (medically defined disease and
diagnoses made by physicians based on etiology,
pathophysiology, pathological classification, and clinical
staging); Anatomy (anatomical parts of the body where disease,
signs, and symptoms occurred); Laboratory (physical or
chemical tests performed by the laboratory department in clinical
work); Image (imaging [x-ray, computed tomography, magnetic
resonance imaging, positron emission tomography-computed
tomography, etc], ultrasound, and electrocardiogram); Medicine
(specific chemical substances used for disease treatment); and
Operation (treatments focused on surgery such as excision and
suturing performed by the physician locally on the patient’s
body).

Self-annotated EMR data, collected from publicly desensitized
Chinese EMR websites [56], contain 2007 EMRs. As per the
Terminology of Clinical Medicine issued by the National Health
Commission of the People’s Republic of China, we used the
BIO (B signifies the beginning of an entity, I signifies that the
word is inside an entity, and O signifies that the word is just a
regular word outside of an entity) tagging method to pretag 7
entity types in the EMRs, including Disease (same definition
as the Yidu-S4K data set); Symptoms (abnormal manifestations
as perceived by the sensory organs of patients and physicians);
Anatomy (same definition as the Yidu-S4K data set);
Examination (includes imaging examinations and laboratory
tests mentioned in the Yidu-S4K data set); Instrument (apparatus
and mechanical equipment for disease prevention, diagnosis,
treatment, health care, and rehabilitation); Medicine (the same
definition as the Yidu-S4K data set); and Operation (same
definition as the Yidu-S4K data set). Subsequently, 4 medical
experts manually checked and corrected the tags. The interclass
correlation efficient consistency test revealed that we had good
annotation quality.

The ratio of the training set to the test set of the EMRs was 7:3.
The Yidu-S4K data set was preprovided with 1000 EMRs as
the training data sets (1000/1379, 72.52%) and 379 EMRs as
the test data sets (379/1379, 27.48%). The self-annotated data
set was divided by randomization into 1401 EMRs as the
training data sets (1401/2007, 69.81%) and 379 EMRs as the
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test data sets (606/2007, 30.19%). Table 1 lists the details of the different types of entities in the 2 EMR data sets.

Table 1. The statistics of different types of entities in 2 electronic medical record data sets

Test set, nTraining set, nData sets and entity type

Yidu-S4K

13234212Disease

30948426Anatomy

5901195Laboratory

348969Image

4851822Medicine

1621029Operation

600217,653All entities

Self-annotated

45049470Disease

11,06526,334Symptoms

758817,877Anatomy

874619,664Examination

5601244Instrument

25665314Medicine

11332578Operation

36,16282,481All entities

Ethical Considerations
Ethics approval was not required because the patient’s private
information was masked by the website.

Experiments Settings
In this study, all the experiments were conducted by Python
[57] and PyTorch [58]. Table 2 shows the experimental

parameters. The experiments used RoBERTa-wwm-ext-large
model pretraining data, optimized parameters using Adam W,
dropout to prevent overfitting, the batch size of 32, BiLSTM
hidden layer dimension of 768, maximum sequence length of
510, RoBERTa-wwm dimension of 768, semantic feature
dimension of 124, and image feature dimension of 128. On 2
Chinese CNER data sets, we used the same parameters.

Table 2. Parameter settings.

ValueParameter

0.5Dropout

OptimizationEpoch

Adam WOptimization

0.0001Learning rate

32Batch size

768BiLSTMa hidden layer

510Max_len

768RoBERTa-wwmb feature dimension

124Semantic feature dimension

128Image feature dimension

aBiLSTM: Bidirectional Long Short-Term Memory.
bRoBERTa-wwm: Robustly Optimized Bidirectional Encoder Representation from Transformers Pretraining Approach Whole Word Masking.
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Evaluation Metrics
The experiments used precision, recall, and F1-score to evaluate
the model performance. The formulas for each index are as
follows:

Precision = TP / (TP + FP) (1)

Recall = TP / (TP + FN) (2)

F1-score = (2 × precision × recall) / (precision +
recall) (3)

where precision is the proportion of positive samples in all
samples predicted to be positive; recall is the proportion of
positive samples in all positive samples; F1-score is the harmonic
mean of precision and recall; true positive (TP) is the number
of positive samples predicted to be positive, that is, the number
of correctly recognized entities; false positive (FP) is the number
of negative samples predicted to be negative, that is, the number
of incorrectly recognized other texts as entities; and false

negative (FN) is the number of positive samples predicted to
be negative, that is, the number of unrecognized entities.

Model Overview
In this study, we proposed a CNER model based on
multisemantic features, as shown in Figure 1. First, we used
RoBERTa-wwm, the PLM, to obtain the embedded
representation at the word level. Dynamic fusion is performed
on the semantic representation generated by each transformer
layer to make full use of RoBERTa-wwm representation
information. Then, the embedded Chinese character fine-grained
feature representation, including the 5-stroke code, Zheng code,
phonological code, and stroke code, is extracted by 1D CNN,
whereas the embedded Chinese character image representation
is extracted from another modality by 2D CNN, with the Chinese
characters as square images. Finally, the above multisemantic
vectors were input into the BiLSTM layer for encoding and
were decoded in the CRF layer to predict the tag probability.

Figure 1. The main architecture of our model. 1D CNN: 1D convolutional neural network; 2D CNN: 2D convolutional neural network; B-DIS: beginning
of disease entity; CRF: conditional random fields; h: embedding of output character; I-DIS: inside of disease entity; LSTM: long short-term memory;
O: other type; RoBERTa-wwm: Robustly Optimized Bidirectional Encoder Representation from Transformers Pretraining Approach Whole Word
Masking; x: embedding of input character.
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Multisemantic Embedding Layer

Overview
Many Chinese characters have retained their original
connotations, as they originated from pictographic characters
in ancient times. Moreover, the inherent fine-grained character
information contained in Chinese characters often implies more
additional semantic information. Accordingly, we obtained the
5-stroke code, Zheng code, phonological code, and stroke code
information, as shown in Table 3, of the Chinese characters
from ZDIC [59] and embedded them in the model. In addition,
Chinese characters are squares, and different shapes and
structures express different types of information. Characters
with similar intrinsic characteristics may have similar meanings.
Therefore, we took Chinese characters as graphics and obtained
semantic information on Chinese character connotations from

another modality. Multisemantics could obtain information
comprehensively and learn a better feature representation by
making use of information complementarity and eliminating
the redundancy among different semantic features compared
with a single-semantic feature, resulting in a more generalized
model.

As shown in Figure 2, we converted the Chinese character
5-stroke code, Zheng code, phonological code, and stroke code
into one-hot vector encoding and interpreted the Chinese
characters as 14×14 images. Subsequently, we used a 2-layer
CNN deeply extracting the Chinese character multisemantic
features. Through the Convolution layer with the ReLU
activation function, max pooling layer, and dense layer, we
obtained the multisemantic vectors that could be embedded in
the BiLSTM layer.

Table 3. Example of Chinese characters’ coded information from ZDIC.

Stroke codePhonological codeZheng code5-stroke codeCharacter

2,511,345ǒujhoskaqy呕 (vomit)

251,121tùjbvvkfg吐 (vomit)

35,112,512zhǒngqjiekhh肿 (swelling)

35,113,154zhàngqchetay胀 (swelling)

4544xīnwznyny心 (heart)

3112shǒumdrtgh手 (hand)

Figure 2. The process of obtaining Chinese character multisemantic features by convolutional neural network. ReLU: Rectified Linear Unit function;
Conv 1: first convolutional layer; Conv 2: second convolutional layer; Max pooling 1: first max pooling layer; Max pooling 2: second max pooling
layer; Dense: dense layer.

RoBERTa-wwm With Dynamic Fusion
When RoBERTa-wwm pretrains the corpus, it is segmented on
the language technology platform established by the Harbin
Institute of Technology based on Wikipedia content in Chinese,
which can provide a basis for achieving wwm. As shown in
Figure 3, the word “支气管 (bronchi)” in the RoBERTa-wwm
model is completely masked by random wwm, whereas only
single characters can be randomly masked in the BERT model,

for example, only 1 character “气 (gases)” was masked in the
word “支气管 (bronchi).” Thus, the RoBERTa-wwm model
can learn the word-level semantic representations in Chinese.

The encoder structure of each transformer layer of the BERT
model outputs had different abstract representations of grammar,
semantics, and real knowledge in sentences. Studies have
confirmed that each layer of the BERT model represents text
information differently through 12 natural language processing
tasks [60]. As shown in Figure 4, the low transformer mainly
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learns and encodes surface features; the middle transformer
learns and encodes syntactic features; and the high transformer
learns and encodes semantic features.

The transformer structure of the RoBERTa-wwm model is
consistent with that of the BERT model. To make full use of

the representation information of each transformer layer, we
used the RoBERTa-wwm model with dynamic fusion [61]. This
helped in assigning the initial weight to the representation vector
of 12 transformer layers, determining the weight during training,
and weighing the representation vector generated by each layer.

Figure 3. Mask process of Bidirectional Encoder Representation from Transformers (BERT) and Robustly Optimized Bidirectional Encoder Representation
from Transformers Pretraining Approach Whole Word Masking (RoBERTa-wwm).

Figure 4. Coding representation of Transformer with 12 layers of Bidirectional Encoder Representation from Transformers model.

Assume that the text input sequence seq = (x1,x2,x3, …, xn),
where n is the total length of the character contained in the

sequence; xi is the ith character of the input sequence; and the
fusion formula is as follows:

vi
RoBERTa-wwm=Denseunit=512 (xi) {∑n

i=1αc × hc}, (c ∈
[1,12]) (4)

vi
(RoBERTa-wwm) is the output representation by the

RoBERTa-wwm model with dynamic fusion for the current
character xi; hc is the output representation by each transformer
layer of the RoBERTa-wwm model, and αc is the output weight
value assigned to each layer by RoBERTa-wwm.
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Fine-Grained Semantic Feature

5-Stroke Code

The 5-stroke code is a typical semantic code, which encodes
Chinese characters according to strokes and structures.
Currently, it is widely used to code Chinese characters. The
expression of the 5-stroke code may inevitably repeat with the
phonological code, for example, the 5-stroke code for “亦 (also)”
is “you,” while the phonological code for “亦 (also)” is also
“you” [62]. Hence, we combined the 5-stroke code and Zheng
code to compensate for the encoding deficiency. We used the
5-stroke code in Zdic.net to vectorize the Chinese characters
using the following formulas:

p = ffc (seq) (5)

vifc=efc (pi), (i∈Z ∩ i∈ [1,n]) (6)

where ffc represents the function that maps the input character

sequence into the 5-stroke code and vi
fc represents the 5-stroke

code vector corresponding to xi.

Zheng Code

The Zheng code was created by famous Chinese literature
professors as per the strokes and roots of Chinese characters
through in-depth research on the patterns and structures of
Chinese characters. The early Microsoft operating system in
Chinese adopted the Zheng code as the built-in code. This
indicates that Zheng code is a scientific coding of Chinese
characters. Chinese characters with similar codes may contain
related semantic information. Hence, the potential semantic
relationship of text may be found by mining the structural
information of Chinese characters using Zheng code. The Zheng
code was vectorized as the 5-stroke code and has the following
formulas:

p = fzc (seq) (7)

vizc=ezc (pi), (i∈Z ∩ i∈ [1,n]) (8)

where fzc represents the function that maps the input character

sequence into the Zheng code and vi
zc represents the Zheng code

vector corresponding to xi.

Phonological Code

Over 90% of Chinese characters are picto-phonetic characters
[63]. Hence, pronunciation plays an important role in the
semantic expressions of Chinese characters. We used the
Pypinyin toolkit to vectorize the phonological code of Chinese
characters using the following formulas:

p = fpc (seq) (9)

vipc=epc (pi), (i∈Z ∩ i∈ [1,n]) (10)

where fpc represents the function that maps the input character

sequence into the phonological code and vi
pc represents the

phonological vector corresponding to xi.

Stroke Code

Chinese characters with similar strokes may have similar
meanings. The strokes of each Chinese character were encoded
in ZDIC [59], where 1, 2, 3, 4, and 5 represent the horizontal
stroke, vertical stroke, left-falling stroke, right-falling stroke,

and turning stroke, respectively. We transformed the stroke
code into a 5-dimension vector, where each dimension was the
corresponding number of strokes. The stroke code was
vectorized in the same manner as the 5-stroke code and has the
following formulas:

p = fsc (seq) (11)

visc=esc (pi), (i∈Z ∩ i∈ [1,n]) (12)

where fsc represents the function that maps the input character

sequence into the stroke code and vi
sc represents the stroke code

vector corresponding to xi.

To extract the fine-grained semantic features of Chinese
characters deeply, we trained the character features using CNNs.
The character features were trained by 2 convolutions with a
kernel of 3 and ReLU function as well as max pooling of 2×2,
where the number of output channels was the dimension of each
feature vector. Finally, the 32-dimension Chinese character
vector was obtained through a full connection in the dense layer,
as shown in Figure 2.

Image Feature
Chinese characters have been derived from pictographic symbols
since ancient times, and characters with similar symbolic
appearances have similar image features. However, the fonts
of Chinese characters have changed a lot over time. Simplified
characters have lost much pictographic information compared
with complex characters. Therefore, Cui et al [64] used Chinese
character images to extract Chinese character features and
achieved better performance. Wu et al [65] tried different
character fonts and found that the best result was obtained by
using the NotoSansCJKsc-Regular font. On the basis of these
findings, we used the Python Imaging Library to convert
NotoSansCJKsc-Regular Chinese characters into
black-and-white images and extracted image features by 2D
CNN in depth as per the following formulas:

eif_1=(Max pooling 1 (Conv 1 (K ⊗ H)) (13)

eif_2=(Max pooling 2 (Conv 2 (K ⊗ H) (14)

vi
if=Dense (eif_2) (15)

where K is a kernel; H is the original embedded image matrix;
Conv 1, Max pooling 1, Conv 2, and Max pooling 2 are the first
convolutions with a kernel of 3 and channel of 8, the first max
pooling with the kernel of 2×2, the second convolution with the
kernel of 3 and channel of 32, and the second max pooling with

the kernel of 2×2, respectively; eif_1 is the result after the first

convolution; eif_2 is the result after the second convolution;

Dense is the process of realizing the full connection; and vi
if is

the final 128-dimension Chinese character image vector trained
by convolution, as shown in Figure 2.

Finally, the multisemantic features vi
RoBERTa-wwm, vi

fc, vi
zc, vi

pc,

vi
sc, and vi

if were embedded by the array Concat function. The
formula used is as follows:

vi
input =Concat (vi

RoBERTa-wwm, vi
fc, vi

zc, vi
pc, vi

sc, vi
if)

(16)
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BiLSTM Layer
The role of BiLSTM [66] is essential in NER. As shown in
Figure 1, the forward LSTM and backward LSTM are
responsible for memorizing the previous and subsequent text
information, respectively. By combining the 2, contextual
information can be obtained simultaneously, which helps to
capture the bidirectional semantic dependency information in
the text. The formulas used are as follows:

hi
forward=LSTMforward(α<i-1>, xi) (17)

hi
backward=LSTMbackward(α<i-1>, xi) (18)

hi=[hi
forward; hi

backward] (19)

where α<i> represents the hidden layer state of the current

memory cell; LSTMforward is the feature representation from

front to back; LSTMbackward is the feature representation from

back to front; hi
forward is the forward semantic information

obtained through the forward LSTM at the i-th character

position; hi
backward is the backward semantic information

obtained through the backward LSTM at the i-th character
position; and hi represents a combination of hidden states in
both.

CRF Layer
The BiLSTM can be used to handle contextual relationships.
However, it cannot consider the dependencies between tags.
Therefore, it is necessary to add a constraint relation for the
final predicted label by using the CRF [67] layer to ensure the
predicted label rationality. Given an input sequence where
X={x1,x2,...,xn}, we assume that the training output label
sequence is Y={y1,y2,...,yn}, where n is the number of model
labels. The sequence score of the label and the probability of
the label sequence y are calculated as follows:

P (y|X)=e∑i=1 (Zyi,yi+1 + Pi+1,yi+1) / (∑(y ̃∈Yx) e∑i=1

(Zyi,yi+1 + Pi+1,yi+1) (20)

where Z is the transfer matrix; Zyi,yi+1 is the score of the label
transfer from yi to yi+1; Pi+1,yi+1 is the score of label yi+1

corresponding to the i+1th character of the input sequence; Yx

is the set of all possible label sequences. The final label of the
output sequence is the set of labels with the highest probability.

Finally, we predicted the best label sequences by using the
Viterbi algorithm [68] with the following formula:

y*=argmax(s(X, y)) (21)

Results

To get convincing experimental results, we ran each model 5
times and calculated the average precision, average recall, and
average F1-score.

Performance Comparison With Ensemble Models
To verify the validity of the model, we compared our model
with the existing ensemble models BiLSTM-CRF,
ELMo-Lattice-LSTM-CRF, ELMo-BiLSTM-CRF, all CNNs,
ELMo-encoder from transformer-CRF, and multigranularity
semantic dictionary and multimodal tree-NER on Yidu-S4K
and self-annotated data sets, and the results are shown in Table
4. The F1-scores of the experimental model on the Yidu-S4K
data set were 18.31%, 4.15%, 4.26%, 4.12%, 3.69%, and 2.59%
higher than those of the BiLSTM-CRF, all CNNs,
ELMo-Lattice-LSTM-CRF, ELMo-BiLSTM-CRF,
ELMo-encoder from transformer-CRF, and multigranularity
semantic dictionary and multimodal tree-NER models,
respectively. On the self-annotated data set, it was 5.14% higher
than that of the BiLSTM-CRF. The results showed that the
performance of the experimental model is superior to that of
the existing model.
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Table 4. Performance comparison of ensemble models on the Yidu-S4K and self-annotated data sets.

F1-score (%)Recall (%)Precision (%)Data set and model

Yidu-S4K

70.9772.5869.43BiLSTM-CRFa [64]

85.1387.2983.07ACNNb [69]

85.0285.3584.69ELMoc-lattice-LSTM-CRF [70]

85.16——dELMo-BiLSTM-CRF [41]

85.5986.1282.08ELMo-ETe-CRF [71]

86.6987.2986.09MSD_DT_NERf [72]

89.2888.2290.37Our model

Self-annotated

79.4777.1081.98BiLSTM-CRF

84.6184.9984.24Our model

aBiLSTM-CRF: Bidirectional Long Short-Term Memory-conditional random fields.
bACNN: all convolutional neural network.
cELMo: Embeddings from Language Models.
dNot available.
eET: encoder from transformer.
fMSD_DT_NER: multigranularity semantic dictionary and multimodal named entity recognition.

Performance Comparison With PLMs Related to
BERT
The performance of the PLM, BERT, is a milestone in natural
language processing. To verify the BERT robust version’s
validity of the RoBERTa-wwm model, we compared our model
with the existing ensemble models with the BiLSTM-CRF,
BERT-BiLSTM-CRF, and RoBERTa-wwm-BiLSTM-CRF on

Yidu-S4K and self-annotated data sets, and the results are shown
in Table 5. The F1-scores of the experimental model on the
Yidu-S4K data set were 18.31%, 2.99%, and 0.82% higher than
those of the BiLSTM-CRF, BERT-BiLSTM-CRF, and
RoBERTa-wwm-BiLSTM-CRF models, respectively, and
5.14%, 2.95%, and 1.07% higher on the self-annotated data set,
respectively.

Table 5. Performance comparison of PLMsa on the Yidu-S4K and self-annotated data sets.

F1-score (%)Recall (%)Precision (%)Data set and model

Yidu-S4K

70.9772.5869.43BiLSTMb-CRFc [64]

86.2983.6789.07BERTd-BiLSTM-CRF

88.4686.9090.08RoBERTa-wwme-BiLSTM-CRF

89.2888.2290.37Our model

Self-annotated

79.4777.1081.98BiLSTM-CRF

81.6680.8682.48BERT-BiLSTM-CRF

83.5482.8684.23RoBERTa-wwm-BiLSTM-CRF

84.6184.9984.24Our model

aPLM: pretrained language model.
bBiLSTM: Bidirectional Long Short-Term Memory.
cCRF: conditional random fields.
dBERT: Bidirectional Encoder Representation from Transformers.
eRoBERTa-wwm: Robustly Optimized Bidirectional Encoder Representation from Transformers Pretraining Approach Whole Word Masking.
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Performance Comparison of Each Entity
To comprehensively evaluate our model, we calculated the
F1-score for each entity type on the Yidu-S4K and self-annotated
data sets, as shown in Tables 6 and 7. The F1-score of our model
on the Yidu-S4K data set for each of the 6 entity categories,
except for the Image entity, increased by 0.2% to 7.6%
compared with the data listed in the tables. The F1-score for the
Image entity was 0.35% lower than that of the

ELMo-BiLSTM-CRF model. However, the F1-scores for the
Laboratory entity and Operation entity were 7.6% and 7.54%
higher than those of the ELMo-BiLSTM-CRF model,
respectively. The overall F1-score was 4.12% higher than that
of the ELMo-BiLSTM-CRF model. For the self-annotated data
set, our model improved each entity in 7 categories ranging
from 0.09% to 14.49% over the listed data, with a greater
improvement for Instrument entities.

Table 6. Performance comparison of each entity category on the Yidu-S4K data set.

F1-score for each category (%)Model

OperationMedicineLaboratoryImageAnatomyDiseaseAll

86.7994.4975.6588.0185.9982.8185.16ELMoa-BiLSTMb-CRFc [41]

93.1189.4677.9883.4386.3687.1486.29BERTd-BiLSTM-CRF

92.4990.1479.6981.5285.4786.1887.12BERT-wwme-BiLSTM-CRF

92.8793.2282.3686.6987.0187.7188.46RoBERTaf-wwm-BiLSTM-CRF

94.3394.9883.2587.6687.4787.9189.28Our model

aELMo: Embeddings from Language Models.
bBiLSTM: Bidirectional Long Short-Term Memory.
cCRF: conditional random fields.
dBERT: Bidirectional Encoder Representation from Transformers.
ewwm: Whole Word Masking.
fRoBERTa: Robustly Optimized Bidirectional Encoder Representation from Transformers Pretraining Approach.

Table 7. Performance comparison of each entity category on the self-annotated data set.

F1-score for each category (%)Model

OperationMedicineInstrumentExaminationAnatomySymptomsDiseaseAll

79.7589.7260.3890.3683.8685.8781.3381.66BERTa-BiLSTMb-CRFc

68.4985.6354.7688.8481.2383.8974.9181.58BERT-wwmd-BiLSTM-CRF

81.1791.0466.0191.2184.6886.6981.9983.54RoBERTae-wwm-BiLSTM-CRF

82.4991.2869.2591.3085.6286.9382.3484.61Our model

aBERT: Bidirectional Encoder Representation from Transformers.
bBiLSTM: Bidirectional Long Short-Term Memory.
cCRF: conditional random fields.
dwwm: Whole Word Masking.
eRoBERTa: Robustly Optimized Bidirectional Encoder Representation from Transformers Pretraining Approach.

Ablation Analysis

Ablation Experiments for Multisemantic Features
To verify the fine-grained semantic features and image features
of Chinese characters, dynamic fusion was effective. We used
the RoBERTa-wwm-BiLSTM-CRF model as the baseline to
perform ablation experiments for the above contents on 2 EMR
data sets, and the results are shown in Figure 5.

The performance of the model was significantly improved with
the dynamic fusion of RoBERTa-wwm. After incorporating the
semantic features of Chinese characters into the model alone,
the overall performance of the model was not as high as that

after dynamic fusion. However, the performance on both data
sets was superior to that of the baseline. The performance of
the model was unstable when image features of Chinese
characters were added to the model alone. On the Yidu-S4K
data set, the model’s performance was inferior to that of the
baseline, whereas on the self-annotated data set, the model’s
performance only improved slightly. After adding the semantic
and image features of Chinese characters to the model, the
performance of the model on the Yidu-S4K data set was superior
to that of the baseline. Furthermore, it was better than that of
the model with semantic or image features of Chinese characters
alone. The performance of the model on the self-annotated data
set was superior to that of the baseline and better than that of
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the model with the image features of Chinese characters alone.
When the model combined dynamic fusion with the semantic
features and image features of Chinese characters, it was found
that the performance of the model was significantly improved
on the 2 data sets. Dynamic fusion with image features of
Chinese characters showed the best comprehensive performance
on the Yidu-S4K data set, whereas dynamic fusion with
semantic features of Chinese characters achieved the best
comprehensive performance on the self-annotated data set. After

combining the semantic and image features of the Chinese
characters and dynamic fusion, it was noted that the performance
of the model was superior to that of the baseline. Because the
quality of the self-annotated EMRs is inferior to that of the
public Chinese EMRs corpus and the self-annotated data set
contains a wider coverage of departments, the comprehensive
effect of the self-annotated data set is lower than that of the
YiduS4K data set in Figure 5.

Figure 5. The results of ablation experiments for mutisemantic features on the Yidu-S4K and self-annotated data sets. BiLSTM: Bidirectional Long
Short-Term Memory; CRF: Conditional Random Fields; RoBERTa-wwm: Robustly Optimized Bidirectional Encoder Representation from Transformers
Pretraining Approach Whole Word Masking.

Ablation Experiments for Fine-Grained Semantic
Features
The fine-grained semantic features of Chinese characters used
in this study included the 5-stroke code, Zheng code,

phonological code, and stroke code. To verify the effectiveness
of these features, we used the RoBERTa-wwm-BiLSTM-CRF
model as the baseline to perform ablation experiments for the
4 features on the 2 EMR data sets, and the results are shown in
Figure 6 and Figure 7.
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Figure 6. The results of ablation experiments for fine-grained semantic features on the Yidu-S4K data set. BiLSTM: Bidirectional Long Short-Term
Memory; CRF: conditional random fields; RoBERTa-wwm: Robustly Optimized Bidirectional Encoder Representation from Transformers Pretraining
Approach Whole Word Masking.

Figure 7. The results of ablation experiments for fine-grained semantic features on the self-annotated data set. BiLSTM: Bidirectional Long Short-Term
Memory; CRF: conditional random fields; RoBERTa-wwm: Robustly Optimized Bidirectional Encoder Representation from Transformers Pretraining
Approach Whole Word Masking.

The F1-score of the model on the Yidu-S4K data set ranked in
the top 2 for the 5-stroke code and Zheng code, whereas the

F1-score on the self-annotated data set ranked in the top 2 for
the phonological code or Zheng code. The performance of the
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model combining 2 features (the combination of 5-stroke code
and Zheng code or the combination of phonological code and
stroke code) was better than that of the model with only 1
feature, regardless of the data set. On the Yidu-S4K data set,
the model combining 5-stroke code+phonological code+stroke
code showed the best comprehensive performance, followed
by the combinations of 5-stroke code+Zheng code+phonological
code, 5-stroke code+Zheng code+stroke code, and Zheng
code+phonological code+stroke code. On the self-annotated
data set, the model combining the 5-stroke code+Zheng
code+phonological code showed the best comprehensive
performance, followed by Zheng code+phonological
code+stroke code, 5-stroke code+phonological code+stroke
code, and 5-stroke code+Zheng code+stroke code. On the
Yidu-S4K data set, only the model combining the 5-stroke
code+phonological code+stroke code showed a comprehensive
performance superior to that of the baseline. However, on the
self-annotated data set, the comprehensive performance of all
combinations was superior to that of the baseline. The
performance of the model combining 3 features was less stable.
The model combined 4 features on the Yidu-S4K and
self-annotated data sets and achieved the best comprehensive
performance among all the combinations.

Error Analysis
From Tables 6 to Table 7, our model improved the entity
recognition performance of each entity category to different
degrees. However, the entity recognition effect differs for each
category. The F1-scores of Disease, Anatomy, Image,
Laboratory, Medicine, and Operation entity recognition on the
Yidu-S4K data set were 87.91%, 87.47%, 87.66%, 83.25%,
94.98%, and 94.33%, respectively. The F1-scores of Disease,
Symptoms, Anatomy, Examination, Instrument, Medicine, and
Operation entity recognition on the self-annotated data set were
82.34%, 86.93%, 85.62%, 91.31%, 69.25%, 91.28%, and
82.49%, respectively. On the Yidu-S4K data set, the precision
of Laboratory entity recognition was the lowest, followed by
the Anatomy entity, Image entity, and Disease entity. On the
self-annotated data set, the precision of Instrument entity
recognition was the lowest, followed by the Disease entity,
Anatomy entity, and Operation entity. We concluded the
following 7 main causes of the errors that occurred based on a
review of the data set and model prediction results, as shown
in Table 8.

We strictly controlled the annotation quality of both data sets.
Hence, the probability of causes (1-3) was relatively low. Causes
(4-6) were more likely to occur, and cause (7) mainly occurred
on some entities that were less common or had fewer training
samples.
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Table 8. Different types of errors on 2 data sets.

ExampleTypes of errors

Illustrations

(1) Annotation error

For instance, some Laboratory entities, like “PLTa,” “NEUTb,” and “CAEc,” on the Yidu-S4K data
set contained commas, which were correctly recognized as “PLT,” “NEUT,” and “CAE” in our
model.

1. Some manually annotated entities con-
tained punctuation marks unrelated to the
entities.

For example, “PET-CTd” was manually annotated as a Laboratory entity on the Yidu-S4K data set,
but our model correctly predicted as an Image entity.

2. A few entity categories were confused.

(2) Inconsistent annotation

On the Yidu-S4K data set, the character “下 (below)” expressing orientation of “剑突下 (below
xiphoid)” was not annotated, and the character “部 (part)” expressing the part of “咽喉部 (hypophar-
ynx)” was also not annotated. Most of the characters expressing specific locations were annotated.

The inconsistent annotation will affect the
accuracy of machine learning.

(3) Missing annotation

The Disease entity “窦性心律 (sinus rhythm)” was missed annotated on the Yidu-S4K data set, and
the Medicine entity “生理盐水 (normal saline)” was missed annotated on the self-annotated data
set.

The missing annotated entity will also affect
the overall effect of the model.

(4) Entity with a non-Chinese character symbol

The failure to recognize the non-Chinese character entities, like the Laboratory entity “AFPe” on

the Yidu-S4K data set and the Examination entity “HCGf” on the self-annotated data set, so did

such situations as the Medicine entity “VPg-16” was recognized as “VP-,” and “50%葡萄糖 (50%
glucose)” as “葡萄糖 (glucose)” on the Yidu-S4K data set.

Figures, letters, and other symbols cannot
be extracted with more semantic features
than Chinese characters. Hence, it may be
difficult to recognize entities with symbols
other than Chinese characters in the Chinese
corpus.

(5) Presence of nested entities

For example, the Disease entity “二尖瓣后叶钙化 (posterior mitral valve leaflet calcification)” was
recognized as the Anatomy entity “二尖瓣 (bicuspid),” and the Image entity “腹部彩超 (abdominal
color doppler ultrasound)” was recognized as the Anatomy entity “腹部 (abdominal).”

On the Yidu-S4K data set, the Disease enti-
ty and Image entity might contain the
Anatomy entity.

For example, the Disease entity “内踝骨折 (ankle fracture)” was recognized as the Anatomy entity
“内踝 (medial malleolus),” the Examination entity “骨髓组织病理 (bone marrow histopathology)”
was recognized as the Anatomy entity “骨髓 (bone marrow),” the Instrument entity “胸部支具
(chest brace)” was recognized as the Anatomy entity “胸(chest),” and the Instrument entity “左胸
引流管 (left thoracic drainage tube)” was recognized as the Operation entity “左胸引流 (left thoracic
drainage).”

On the self-annotated data set, entity nesting
is more severe, the Disease entity, Examina-
tion entity, and Instrument entity might
contain the Anatomy entity, and the Instru-
ment entity might contain the Operation
entity.

(6) More entities with mixed representation

The Medicine entity “奥沙利铂 (乐沙定) (Oxaliplatin [Eloxatin])” on the Yidu-S4K data set was
recognized as “奥沙利铂 (Oxaliplatin)” and “乐沙定 (Eloxatin),” respectively, the Disease entity

“CD5h+弥漫大B细胞淋巴瘤 (白血病期)” on the self-annotated data set was recognized as “CD”
and “弥漫大B细胞淋巴瘤 (白血病期) (diffuse large B-cell lymphoma [Leukemia stage]),” and
the Examination entity “肥达、外斐反应 (Widal, well-felix reaction)” on the self-annotated data
set was recognized as “肥达 (Widal)” and “外斐反应 (well-felix reaction),” respectively.

Entity composition is more complex, mixed
representations occur more often.

(7) Insufficient entity training data

On the self-annotated data set, the number of Instrument entities was less than that of other categories
(Table 2), accounting for only 1.52% of the total, those entities might never appear in the training
data set, such as “针筒 (syringe),” “微导管 (microtubule),” “550px碳钢钻头 (550px carbon steel
drill bit),” etc.

In the case of insufficient training samples,
the machine may provide inadequate train-
ing for entities, so that the machine cannot
fully learn the features of such entities,
failing to recognize many entities.

aPLT: platelet count.
bNEUT: neutrophil count.
cCAE: carcinoembryonic antigen.
dPET-CT: positron emission tomography-computed tomography.
eAFP: alpha fetoprotein.
fHCG: human chorionic gonadotropin.
gVP: etoposide.
hCD5: a differentiation antigen, cluster of differentiation 5.
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Discussion

Principal Findings
In this study, we developed a Chinese CNER method based on
multisemantic features. The method extracted the semantic
features of text using the RoBERTa-wwm model after dynamic
fusion, extracted the fine-grained semantic features of Chinese
characters by 1D CNN, and converted Chinese characters into
square images to extract the image features of the simplified
Chinese characters from another modality by 2D CNN. We
conducted a series of experiments to evaluate the model’s
performance on the Yidu-S4K data set and self-annotated data
set; the results showed that the F1-scores of the proposed model
in this study were 89.28% and 84.61% on the 2 data sets,
respectively. The model showed a higher and more stable
performance in all experiments and could help recognize entities
in most categories. Furthermore, its migrative property and
adaptability to different data were acceptable. We also
demonstrated that multisemantic features were effective through
2 ablation experiences and analyzed the error cases of NER,
which might provide a basis for subsequent studies and
standardization of the corpus.

Compared with ensemble models, for the BiLSTM-CRF model,
the representation information of characters was obtained with
the help of a vector look-up table. However, the information
obtained by this method was too simple to excavate the text’s
semantic meaning or solve problems such as the polysemy of
words. Hence, the model did not perform well. Kong et al [69]
constructed a multilayer CNN to obtain short-term and long-term
contextual information, and the attention mechanism was used
to calculate the weight distribution in each hidden layer so that
the features of each coding layer could be fully extracted and
used to improve the entity recognition performance. However,
this model required numerous radical and dictionary features
to complete the semantic supplement of the context. Li et al
[70] proposed an ELMo-Lattice-LSTM-CRF model. The ELMo
word dynamic representation model could learn complicated
word features and the context-based changes of these features,
while the lattice structure provided extra entity boundaries and
other semantic information for CNER of EMRs through the
Word2Vec model and dictionaries. Li et al [41] proposed an
ELMo-BiLSTM-CRF model that improved the semantic
recognition ability of the machine for text. It reduced problems,
such as word polysemy, when compared with the BiLSTM-CRF
model and reduced the computational complexity of the lattice
structure compared with the ELMo-Lattice-LSTM-CRF model.
Moreover, this model could fully use contextual information
by replacing LSTM with BiLSTM. Wan et al [71] fine-tuned
the ELMo model based on EMRs to achieve embedding for
domain-specific text and then used a transformer as an encoder
to alleviate the long context–dependent problems and finally
achieved CNER through CRF decoding. Wang et al [72]
proposed a model for NER based on the LSTM-CRF model by
storing and merging characters, words, and other features.
However, as the text embedding process of this method is more
complicated, it is necessary to create dictionaries of characters
and words to obtain multigranularity text features at first and
then store and merge the obtained features using a tree structure

to achieve text embedding. These methods have achieved a few
good results, but our proposed method is still competitive and
has the best performance among all the models, as shown in
Table 4.

Compared with PLMs related to BERT, both the
BERT-BiLSTM-CRF and BiLSTM-CRF models could obtain
word-level vector representations. However, the word-level
vector obtained by BERT contained rich contextual
characteristics, including morphology, syntax, semantics,
location, and other important semantic information, which can
directly improve the task performance by replacing the lattice
structure and complicated text representation methods in Table
4, such as dictionaries of characters and words. Compared with
BERT, RoBERTa-wwm used more data for pretraining, and
the dynamic wwm allows itself to flexibly learn word-level
representation information, which compensates for the
shortcomings that BERT can only obtain character-level
representation. Thus, richer word-based text representation
information could be obtained. Combined with the experimental
results in Table 4, the RoBERTa-wwm-BiLSTM-CRF model,
without introducing features, outperformed the other ensemble
models. Therefore, using the PLM RoBERTa-wwm with a
whole word mask can effectively improve the Chinese CNER
performance, thus avoiding the use of complex text embedding
and feature embedding methods.

In addition, 2 ablation experiments showed that different features
and means lead to different degrees of improvement in the
semantic comprehension ability of the model. Multisemantic
features could help the machine to obtain richer semantic
information, whereas dynamic fusion could fully recognize and
used the representation information so that the model
performance could be comprehensively improved. Considering
the heterogeneity among data, using 1 method alone or both
methods may affect the generalization ability of the model. In
this study, the model combining the fine-grained semantic
features and image features of Chinese characters and dynamic
fusion might not show the best performance. However, it was
more universal and could maintain the performance at a
relatively high level compared with other experimental models.
Furthermore, introducing more feature engineering was
conducive to fully mining the semantic information of text
connotation with the help of fine-grained semantic information
contained in Chinese characters and improving the performance
of the model on different data sets through the
cross-complementarity of different features in a relatively stable
manner.

To reduce the error rate of entity recognition, specifically for
human-caused errors, we could try to avoid these problems by
further improving the annotation quality. For the data special
characteristics or data defects, the errors might be reduced by
medical knowledge, medical dictionaries, and some rules,
regardless of the lack of training data.

Limitations and Future Work
The limitation of this study was that the ratio of the 6 entity
types on the Yidu-S4K data set did not exactly follow 7:3, such
that the ratio of the training set to test set for disease entities is
approximately 0.7610:0.2390; the ratio of the training set to test
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set for medicine entities is approximately 0.7898:0.2102; and
the ratio of the training set to test set for all entities is
approximately 0.7463:0.2537. The unbalanced data of different
entity types in the training and test sets caused a performance
bias. Although the ratio of the training set to the test set of the
EMRs was 7:3, we could not ensure that the number of entities
of each type in each EMR in the training set and test set
remained at a similar ratio.

In the future, we may focus on the recognition of a specific
entity type in EMRs to improve the CNER performance. In
addition, we will incorporate other prior medical knowledge or
assign different weights to the Chinese character semantic
features and image features, such as using the attention

mechanism to capture important features, to improve the
performance of the model.

Conclusions
This study proposes a Chinese CNER method to learn a
semantics-enriched representation of Chinese character features
in EMRs to enhance the specificity and diversity of feature
representations. The results showed that the model had
state-of-the-art performance on 2 Chinese CNER data sets
compared with existing models. We demonstrated that
multisemantic features could provide richer and more
fine-grained semantic information for Chinese CNER through
the cross-complementarity of different semantic features. This
enabled the model to learn a better feature representation and
improve its generalization ability.
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RoBERTa: Robustly Optimized Bidirectional Encoder Representation from Transformers Pretraining Approach
TP: true positive
Word2Vec: Word to Vector
wwm: Whole Word Masking
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