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Abstract

Background: Increasing digitalization in the medical domain gives rise to large amounts of health care data, which has the
potential to expand clinical knowledge and transform patient care if leveraged through artificial intelligence (AI). Yet, big data
and AI oftentimes cannot unlock their full potential at scale, owing to nonstandardized data formats, lack of technical and semantic
data interoperability, and limited cooperation between stakeholders in the health care system. Despite the existence of standardized
data formats for the medical domain, such as Fast Healthcare Interoperability Resources (FHIR), their prevalence and usability
for AI remain limited.

Objective: In this paper, we developed a data harmonization pipeline (DHP) for clinical data sets relying on the common FHIR
data standard.

Methods: We validated the performance and usability of our FHIR-DHP with data from the Medical Information Mart for
Intensive Care IV database.

Results: We present the FHIR-DHP workflow in respect of the transformation of “raw” hospital records into a harmonized,
AI-friendly data representation. The pipeline consists of the following 5 key preprocessing steps: querying of data from hospital
database, FHIR mapping, syntactic validation, transfer of harmonized data into the patient-model database, and export of data in
an AI-friendly format for further medical applications. A detailed example of FHIR-DHP execution was presented for clinical
diagnoses records.

Conclusions: Our approach enables the scalable and needs-driven data modeling of large and heterogenous clinical data sets.
The FHIR-DHP is a pivotal step toward increasing cooperation, interoperability, and quality of patient care in the clinical routine
and for medical research.
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Introduction

The increasing digitalization of health care creates vast amounts
of clinical data that are collected and stored in an Electronic
Health Record (EHR). Patient information from all medical
domains is captured in diverse sets of data recorded in
stand-alone systems. With the prevalent use of EHRs in health
care organizations, there is abundant opportunity for the
additional application of EHR data in clinical and translational
research. For instance, such data can be used to develop artificial
intelligence (AI) algorithms, which have the potential to
transform patient care and medical research. Resource-intensive
and inefficient clinical workflows could be optimized by the
analysis of historical data with AI applications [1,2]. In
particular, the time-consuming and financially costly process
of identifying and enrolling the right patients into a clinical trial
manually can be reduced significantly by automation [3,4].
However, the exchange of medical data remains limited due to
the lack of data interoperability between health care providers,
owing to outdated IT infrastructure, inconsistencies in data
formats, poor data quality, inadequate data exchange solutions,
and data silos [5,6]. To achieve data interoperability, the
following steps must be incorporated: (1) integration of isolated
data silos, (2) safe exchange of data, and (3) effective use of
the available data [7]. Each of these operations includes database
schema matching [8] and schema mapping [9], which allow
translation of the relationships between the source database and
the target data standard.

Employing a harmonized data format will facilitate the exchange
of medical data, enabling wide-ranging data-driven
collaborations within the private and public health care sectors.
Data interoperability requires EHR data to be structured in a
common format and in standardized terminologies.
Standardization is often performed by adopting the Health Level
7 Fast Healthcare Interoperability Resources (FHIR) model
[10], which is supported by numerous health care institutions
and vendors of clinical information systems [11]. FHIR is an
international industry standard that integrates diverse sets of
data in well-defined exchangeable segments of information,
which are known as FHIR resources. Therefore, FHIR facilitates
interoperability between health care organizations and allows
third-party developers to provide medical applications that can
be easily integrated into the existing systems. FHIR enables the
harmonization of data and thus allows standardized data
processing as well as the rollout of AI applications across
different clinics and hospitals regardless of which information
system they use. Consequently, FHIR forms an important
component for the scalable development and deployment of AI
in clinics and hospitals.

However, to apply AI, the input data need to be adapted to the
AI algorithms. The conventional AI frameworks such as
Tensorflow [12] and Pytorch [13] require data to take a tensor
form, which is a vector or matrix of n-dimensions that represents

various types of data (eg, tabular, time series, image, and text).
Since the FHIR format has a multilayered nested structure, a
use case–specific data preprocessing is needed. For instance,
depending on the AI application and the chosen data source, a
custom data preprocessing pipeline should be designed leading
to diminished AI scalability. Prior research addressed this
problem in different forms but focused on individual
applications, thereby constraining the purpose of FHIR to be
applicable regardless of the use case [11]. There have been a
few attempts to flatten the hierarchical FHIR structure and
transform it into NDJSON-based data format [14] or tabular
format saved in CSV files [15]. Such formats are more
AI-friendly as they represent the data in a more accessible and
standardized form for an application of common AI frameworks.
Nonetheless, the NDJSON-based FHIR data transformation
approach [14] does not provide data selection criteria and
filtering capabilities [16]. The approach presented in [15]
requires expert knowledge of FHIRPath query language.
Moreover, FHIR-based data preprocessing pipelines have been
implemented in different contexts, for instance, as electronic
data capture [17], as a natural language processing tool [12],
and as a standardization protocol based on the Resource
Description Framework [6]. Despite the immense benefit they
offer regarding processing EHR data, existing approaches are
limited to specific use cases or require considerable data
preparation to perform standardization. Furthermore, their final
output is not easily accessible by common data preprocessing
tools and thus hinders the application of AI.

In this paper, we address the challenge of data interoperability
in the health care sector by proposing an FHIR data
harmonization pipeline (DHP) that provides EHR data in an
AI-friendly format. The newly developed FHIR-DHP represents
a data workflow solution that includes the aforementioned
operations, such as data exchange, mapping, and export. Data
privacy is a delicate topic in health care and is of great ethical
concern [18]. Given the degree of automation, FHIR-DHP
should allow the preprocessing of unseen data in an isolated
hospital environment, which makes harmonization privacy
preserving.

Methods

Ethical Considerations
The authors did not seek an ethics review board assessment due
to the methodology of the study, which included open datasets
and data preprocessing pipelines only.

FHIR-DHP Architecture Development
In our work, we propose a generic solution to harmonize hospital
EHR data. The FHIR-DHP was designed based on the
extract-transform-load framework [19], in which the data are
pulled out (ie, queried) from diverse sources, processed into the
desired format, and loaded into a data warehouse, namely the
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”patient-model” database (DB). As the hospital database
contains highly sensitive patient data, it is located behind the
hospital’s security infrastructure and is completely isolated from
outside access. Therefore, an edge-computation solution was
designed, bringing the FHIR-DHP into the hospital’s own
infrastructure. The edge-computation solution represents a set
of frameworks that perform data querying, preprocessing,
storage, and export. In this setting, direct access to the sensitive
data is not required to run the standardization pipeline. The
queries to the data are defined beforehand based on the database
documentation.

To bring the data into a harmonized form, we used an FHIR
data model, which is applied by mapping the relationships
between the source database and the desired data standard. The
FHIR standard is straightforward to implement because it
provides a choice of JSON, XML, or resource description format
for data representation. The mapping pipeline was developed
in the Python programming language to translate queried
hospital data into matching FHIR concepts and save the resulting
resources in JSON format. The semantics of features from the
source database and FHIR concepts are examined using
available database and FHIR documentation. The conversion
to FHIR was designed to only support a core release 4 standard
of the FHIR format to allow generic data preprocessing.

To prevent errors in the remote data standardization scenario,
the syntactic validation of FHIR resources is necessary. For
instance, the conversion of data types can sometimes lead to
erroneous values, especially with date features. Automatic
syntactic validation allows the logging of occurred errors and

the improvement of harmonization pipeline when working with
unseen data. When syntactic validation is completed, FHIR
resources should be transferred to the data warehouse to allow
the fast and easy retrieval of standardized data for AI
applications.

In the final stage of data export, we designed the output that
provides the benefits of the original FHIR format with a high
level of clinical detail that is also easily accessible for
computational tools. We wanted to restructure the data
representation in a way that supports effortless data selection
and filtering capabilities and would not require a knowledge of
FHIRPath query language. Consequently, this output format
would enable the smooth conversion of data into a “tensor”
format required by conventional AI frameworks.

FHIR-DHP Validation
To demonstrate and evaluate how the FHIR-DHP works, we
used the openly available Medical Information Mart for
Intensive Care IV (MIMIC IV) database [20]. MIMIC IV
includes patient data from the intensive care units at a tertiary
academic medical center in Boston, MA, United States. We
selected a wide range of tables from MIMIC IV, which cover
most of the events occurring during the hospital stay as well as
core patient details, information about admissions, and hospital
transfers (further referred to as core tables). The event tables
include laboratory results, diagnoses, prescriptions, and other
details, as shown in Table 1. In addition, MIMIC IV includes
the so-called reference tables containing matching dictionaries
with medical terms that are used in the hospital records.

Table 1. Selected core and event Medical Information Mart for Intensive Care IV (MIMIC IV) tables as well as the reference dictionary tables that
were merged together with core and event tables for Fast Healthcare Interoperability Resources mapping.

Selected MIMIC IV reference tablesSelected core and event MIMIC IV tables

—aPatient

—Admissions

—Transfers

d_itemsChartevents

d_labitemsLabevents

d_itemsProcedureevents

—Prescriptions

d_itemsInputevents

—Microbiologyevents

d_itemsOutputevents

d_icd_proceduresProcedures_icd

d_icd_diagnosesDiagnoses_icd

aNot available.

The selected tables were mapped to FHIR standard. Automatic
semantic validation is unfeasible, so 2 of the authors manually
validated the mapping semantics independently of each other.
There are many tools that perform automatic syntactic
validation, such as the Python-based package “fhir.resources”

used herein [21]. To evaluate the exporting of data from the
patient-model DB, we retrieved the diagnosis records.
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Results

FHIR-DHP Architecture
The approach presented here represents a scalable protocol for
harmonizing hospital EHR data sets based on 5 stages from data
query to data export in a standardized format.

Querying Data From the Hospital Database
To connect the FHIR-DHP pipeline to the hospital DB, a
communication server is employed. This server runs all
necessary queries to retrieve the patient data. The query
execution can be run at regular intervals as well as in batches
of patients, so as not to overload the data pipeline. Furthermore,
the queries prestructure the data according to their semantic
relations before proceeding to data mapping.

Mapping Data to FHIR
FHIR allows describing data formats and elements that are
recorded as “resources” and an application programming
interface for exchanging EHRs. To perform the mappings,
semantics of features from the source database and FHIR
concepts are explored as well as the relationships between the
data tables. Consequently, the mappings between the database
tables and FHIR resources are defined. Features where a
matching FHIR concept is not found are excluded. The resulting
FHIR resources are then saved in JSON format.

Syntactic Validation of FHIR Mappings
During validation, mapped data are ensured to have the correct
data types as well as the syntactic format where the hierarchy
is maintained, and entries follow FHIR standard specifications.
All mappings are validated first during the development stage
to identify structural errors and data type inconsistencies. A
validation algorithm is incorporated into the pipeline to confirm
the correctness of the transformed data in the remote data
standardization scenario.

Transferring FHIR Resources to Patient-Model DB
The DB of choice for the patient model is Postgres [22], which
is an open-source relational DB management system featuring
SQL compliance and storage of JSON documents. The database
for the FHIR resources is used to harmonize the locally available
data only once to allow the further application of various

medical AI-based solutions. The data are stored according to
FHIR resource type where each resource is saved in a separate
JSON structure.

Exporting Data Into Custom JSON format
To export the data from the patient-model DB, the selection is
performed by outlining the tables and features of interest in a
configuration file, which is then used to determine which
harmonized data should be queried. FHIRPath queries were
written to retrieve all elements from FHIR resources adhering
to specific formatting rules in respect of the predefined
key-value structure and to place the extracted elements into the
custom JSON file. Such transformation flattens the hierarchical
structure of FHIR resources and makes the data more accessible
for common data preprocessing tools. The final flattened output
does not require expert knowledge of FHIRPath query language
and supports effortless data selection and filtering. The resulting
file also allows the uncomplicated conversion of data into a
“tensor” format required by conventional AI frameworks and
fast data selection based on the following 4 keys: feature_name,
table_name, value, and metadata.

In Figure 1, we demonstrate how the FHIR-DHP recodes nested
FHIR syntax to more accessible features in an AI-friendly
format. Example FHIR concepts from an observation resource
are given in Figure 1a, where the code’s entity “text” defines
the record or measurement label. The entity “text” is often
duplicated in the item “display.” However, depending on the
coding system, this “display” item can change, whereas “text”
always stays the same and is therefore used as a feature name.
The information from the FHIR resource is grouped into the 4
concept keys of feature name (eg, “Blood pressure”), value (eg,
“114”), table name (eg, “observation”), and metadata (Figure
1b). For a given FHIR resource type, the metadata may include
concepts such as dates, references, coding system details, and
resource ID, among other things. As an output, feature names
together with a corresponding value and available metadata are
provided in a custom JSON structure (Figure 1c). The defined
format allows uncomplicated data selection and aggregation
based on resource type (eg, “table_name”), feature name, and
value. Additional information in a standardized format can be
easily accessed from the metadata key and allows further data
manipulation.
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Figure 1. Conceptual overview for an exemplary Fast Healthcare Interoperability Resources (FHIR) structure and hospital record, which are transformed
from FHIR standard to an artificial intelligence (AI)–friendly format.

FHIR-DHP Validation
The MIMIC IV data were queried accordingly to the defined
FHIR mappings. The core and event MIMIC IV tables were
merged with reference tables to contain a complete description
of the hospital records. As a result, the data were grouped and
restructured into the information blocks required in FHIR
standard. Manual independent validation of the mapping

semantics resulted in slight discrepancies, which were
subsequently resolved to adhere closely to the FHIR standard.
The automatic syntactic validation allowed the prompt
verification of standardization operations.

Table 2 shows to which FHIR resources the MIMIC IV tables
were mapped. The largest proportion of tables (4 out of 12
tables) were mapped to the Observation FHIR resource type,
which included lab, microbiology, output, and charted events

JMIR Med Inform 2023 | vol. 11 | e43847 | p. 5https://medinform.jmir.org/2023/1/e43847
(page number not for citation purposes)

Williams et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


collected throughout the patient’s stay. The information on
admissions and transfers was translated into the Encounter FHIR
resource (2 out of 12 tables). Procedure events and International
Classification of Diseases codes (2 out of 12 tables) were stored
in the Procedure FHIR resource. Given that the prescriptions
table contains medication requests (1 out of 12 tables) and the
input events table holds records of medication administration
(1 out of 12 tables), these tables were mapped to the
corresponding FHIR resource types. Finally, the Condition
FHIR resource was used to map the table with the patients’
diagnosis details (1 out of 12 tables).

In Table 3, we demonstrate how the mapping of the MIMIC IV
“diagnoses_icd” table to Condition FHIR resource was
conducted. Multiple columns of the “diagnoses_icd” table such
as “icd_code”, “icd_version,” and “long_title” were mapped to
the FHIR “condition.code” concept, which has a nested structure
and provides keys to store the exact International Classification
of Diseases code, the version of the coding system, and the code
title. The full diagnosis title was mapped both to the “display”
and “text” entities.

Figure 2 shows an example of how queried diagnoses records
are harmonized to an AI-friendly format. The standardization
follows the FHIR-DHP stages described above. At first, the raw
data from tables “diagnoses_icd” and “d_icd_diagnoses” are
queried (Figure 2a) and merged accordingly to the defined FHIR
mappings. Then, the features are renamed as defined in Table
3 for the FHIR condition resource, and the required entities such
as “resourceType” and “id” are created (Figure 2b). Finally, the
values are placed into a nested FHIR structure (Figure 2c), and
subsequently, the data are transformed into a JSON format
(Figure 2d), which can be automatically validated (Figure 2e)
and saved in the patient-model DB. When the resource is not
approved in terms of its syntactic quality (eg, data type, nested
structure, or cardinality), an error is raised, which prevents the
further saving of this resource in the patient-model DB (Figure
2e). Otherwise, the resource is transferred into a storage (Figure
2f), and the requested data are exported in a custom AI-friendly
JSON format (Figure 2g).

We provide an example of a further 2-step transformation of
harmonized diagnosis data to a “tensor” format in Multimedia
Appendix 1 [12,23].

Table 2. Overview of the mappings performed on the selected Medical Information Mart for Intensive Care (MIMIC) database (DB) tables to Fast
Healthcare Interoperability Resources (FHIR) types.

FHIR resource typeMIMIC IV DB

PatientPatients

EncounterAdmissions

EncounterTransfers

ObservationChartevents

ObservationLabevents

ProcedureProcedureevents

MedicationRequestPrescriptions

MedicationAdministrationInputevents

ObservationMicrobiologyevents

ObservationOutputevents

ProcedureProcedure_icd

ConditionDiagnoses_icd

Table 3. Mapping of “diagnoses_icd” table to Condition Fast Healthcare Interoperability Resources (FHIR) resource.

FHIR resource formatMIMICa format

fhir.condition.subjectmimic.diagnoses_icd.subject_id

fhir.condition.encountermimic.diagnoses_icd.hadm_id

fhir.condition.code_codemimic.diagnoses_icd.icd_code

fhir.condition.code_versionmimic.diagnoses_icd.icd_version

fhir.condition.code_displaymimic.diagnoses_icd.long_title

fhir.condition.code_textmimic.diagnoses_icd.long_title

aMIMIC: Medical Information Mart for Intensive Care.
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Figure 2. Flowchart showing an example diagnosis data being processed through the 5 stages in Fast Healthcare Interoperability Resources (FHIR)
data harmonization pipeline (DHP). The first stage (a) includes querying of the diagnoses records, at the second stage (b-c) the data are mapped to FHIR
standard, and the third stage carries out the syntactic resource validation. (f) If the FHIR resource is successfully validated, it is being transferred into
the patient-model database (DB), and then (g) exported in a custom artificial intelligence (AI)–friendly JSON format.

Discussion

Principal Findings
The Harmonization of EHR data is a crucial step toward
increasing cooperation, interoperability, and quality of patient
care in the clinical routine and medical research. To drive the

harmonization of medical data forward, we developed the
FHIR-DHP and evaluated it on key MIMIC IV tables. A detailed
example of data standardization was presented for clinical
diagnosis records from the MIMIC IV database. The FHIR-DHP
allows the querying of health data in an isolated environment
by employing an edge-computation solution and a
communication server, which retrieve patient data and

JMIR Med Inform 2023 | vol. 11 | e43847 | p. 7https://medinform.jmir.org/2023/1/e43847
(page number not for citation purposes)

Williams et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


prestructure it for further mapping to the FHIR standard. A
validation step ensures syntactic compliance and initiates the
transfer of formatted data to the patient-model DB. The data
export provides FHIR resources in a custom JSON file format.

Owing to the FHIR format’s multilayered nested structure, its
accessibility for AI algorithms is low as it requires
transformation into a format compatible with common data
preprocessing tools. Thus far, a number of studies have
attempted to solve this problem. However, the final output of
these studies has not supported data selection criteria and
filtering capabilities [14] and requires expert knowledge of
FHIRPath query language [15]. In this study, we introduce a
custom JSON format that represents a higher level of abstraction
to support easier data selection based on the following 4 keys:
feature_name, table_name, value, and metadata. Moreover, the
newly developed JSON structure fits the expected data format
of common data preprocessing frameworks, which are designed
to work efficiently with tabular data. As a result, the output
presented facilitates the generic and fast deployment of AI and
patient cohort identification algorithms.

In comparison to [17,24], the details of FHIR-DHP execution
inside the hospital environment in respect of protecting data
privacy are discussed. This step, though crucial, is often omitted
and left out of the published standardization protocols. The
edge-computation solution sets up the FHIR-DHP in a
privacy-preserving way where the preprocessing of the
patient-related data is performed inside the hospital and is
completely isolated from outside access. The so-called federated
learning (FL) framework [25] can be integrated into the
FHIR-DHP workflow to run algorithms locally, using data from
the on-premises database in the respective hospitals and to merge
model parameters centrally in the cloud without any patient
data leaving the hospital. The FL framework requires data to
be in a consistent format across various hospital systems. The
developed pipeline achieves such a format and enables the
scaling of AI applications.

Thus far, there are only 2 studies attempting to perform the
mapping of an MIMIC IV database [26,27]. In [26], the mapping
was performed on fewer tables than our approach (8 versus 12
tables). The FHIR mappings from [27] have been recently
released and were not yet widely validated. Similar to the
approach taken in [17,24,26], FHIR-DHP includes the
verification of the performed FHIR mapping, which is essential
to ensure the validity of data transformation and to adhere to
FHIR version updates. Moreover, in comparison to [17,24,26],
FHIR-DHP represents a generic approach to standardize EHR
data and can be applied to various hospital database systems.

With the introduction of the FHIR-DHP into the hospital
environment, a number of patient-stay parameters can be
potentially optimized using AI-based algorithms. For example,
the length of stay as well as mortality could be reduced [28],
and patients suitable for trial treatment could be automatically
and efficiently identified [29]. In consequence, the financial
impact on medical providers in respect of personnel time and
resources would decrease considerably. The FHIR-DHP aims

to bring health care closer to digital transformation and thus
toward “Healthcare 4.0” [30] by making EHR data usable “from
bedside-to-bench.” By inverting the idea of translational
research, in contrast to “from bench-to-bedside,” accessing the
full potential of medical big data with AI will further inform
and advance basic research.

Limitations
There are several limitations that we would like to emphasize.
FHIR-DHP only works with a core standard of the FHIR format.
Those core FHIR resource types have a bounded set of concepts
that present a constraint to mapping accuracy. Although the
standard resources can be expanded using a profiling technique
or FHIR extensions, the use of those would make the FHIR-DHP
less generic. Hence, we implemented the mapping using only
the standard FHIR resources and omitted some of the MIMIC
IV data features that did not have a matching concept in FHIR.
Additionally, the FHIR mapping step is subject to the extent of
the detail of the database documentation used to infer the
semantic and syntactic properties of the data. A solution for an
automatic concept recognition can potentially solve this
problem. The existing approach in [6] is limited to a small
number of FHIR resources and requires an extensive data
preparation. Further experiments in this direction could alleviate
the concept-matching problem and the requirement for a detailed
database description. Moreover, the validation and robustness
of FHIR-DHP needs to be tested on other EHR data sets to
evaluate its generic setup. In addition, to validate the FHIR-DHP
compatibility with machine learning pipelines, further
experiments are needed.

Future Prospects
The proposed FHIR-DHP pipeline highlights the therein featured
essential data standardization stages and holds the potential to
becoming an interoperable harmonization system with an
AI-friendly data format. FHIR-DHP enables interoperability
and cooperation between clinical institutions and a rapid patient
cohort identification for clinical trials; it also unlocks the
potential of big medical data.

Conclusions
We provide a comprehensive approach to transforming
unstandardized EHR data into a harmonized multilayered nested
FHIR format and then to a more readable and more efficient
AI-friendly JSON structure. We developed a 5-stage data
harmonization pipeline, which includes validation checks. The
AI-friendly format of hospital data allows the generic and fast
integration of both AI and patient cohort identification
algorithms. Harmonized and standardized health care data are
of great value to advancing efficiency in big data processing,
cooperation, and multicenter data exchange in the clinical sector,
boosting medical research, patient care, and clinical trial cohort
identification. The next steps would include validating our
approach in a hospital environment and applying a
privacy-preserving FL framework to make use of advanced AI
deployment.
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