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Abstract
Background: Large language models have had a huge impact on natural language processing (NLP) in recent years.
However, their application in epidemiological research is still limited to the analysis of electronic health records and social
media data.
Objectives: To demonstrate the potential of NLP beyond these domains, we aimed to develop prediction models based on
texts collected from an epidemiological cohort and compare their performance to classical regression methods.
Methods: We used data from the British National Child Development Study, where 10,567 children aged 11 years wrote
essays about how they imagined themselves as 25-year-olds. Overall, 15% of the data set was set aside as a test set for
performance evaluation. Pretrained language models were fine-tuned using AutoTrain (Hugging Face) to predict current
reading comprehension score (range: 0-35) and future BMI and physical activity (active vs inactive) at the age of 33 years. We
then compared their predictive performance (accuracy or discrimination) with linear and logistic regression models, including
demographic and lifestyle factors of the parents and children from birth to the age of 11 years as predictors.
Results: NLP clearly outperformed linear regression when predicting reading comprehension scores (root mean square error:
3.89, 95% CI 3.74-4.05 for NLP vs 4.14, 95% CI 3.98-4.30 and 5.41, 95% CI 5.23-5.58 for regression models with and without
general ability score as a predictor, respectively). Predictive performance for physical activity was similarly poor for the 2
methods (area under the receiver operating characteristic curve: 0.55, 95% CI 0.52-0.60 for both) but was slightly better than
random assignment, whereas linear regression clearly outperformed the NLP approach when predicting BMI (root mean square
error: 4.38, 95% CI 4.02-4.74 for NLP vs 3.85, 95% CI 3.54-4.16 for regression). The NLP approach did not perform better
than simply assigning the mean BMI from the training set as a predictor.
Conclusions: Our study demonstrated the potential of using large language models on text collected from epidemiological
studies. The performance of the approach appeared to depend on how directly the topic of the text was related to the outcome.
Open-ended questions specifically designed to capture certain health concepts and lived experiences in combination with NLP
methods should receive more attention in future epidemiological studies.
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Introduction
Understanding human language is not a trivial task for
machines. Natural language processing (NLP), that is, the
analysis of free text with computational methods, has existed
as a scientific field for more than half a century [1]. The
introduction of large language models was a major leap
for the field around the millennium [2]. The essentials of
NLP have been reviewed recently with a clinical target
audience in mind [3]. Text can be considered as a sequence
of characters or words. These linguistic building blocks are
referred to as tokens. Once a text is parsed into tokens, a
mathematical representation is generated. The most common
approach is to use word embeddings—mapping tokens to
numerical vectors. These embeddings are trained (assessed
in a data-driven manner) on large data sets, and their key
feature is that they preserve the relationships between related
words. Transformers, introduced in 2017 [4], are currently
the most popular underlying model architecture as they excel
at contextualizing words in sentences. The vast amount of
easily accessible textual data on the internet represents a
massive resource for training language models. As compared
to supervised machine learning (ML) approaches where the
outcome (target) is available in the training data set, the
situation is more complicated with language modeling, where
the assignment of labels is not always straightforward. One
popular approach, also applied in one of the most influ-
ential language models—Bidirectional Encoder Representa-
tions from Transformers (BERT) [5], is masked language
modeling, that is, masking a certain proportion of words and
considering them as outcomes to be predicted based on the
preceding sequences of words. Another approach used in the
development of BERT is the prediction of the next sentence
in a text out of several options. This is a semisupervised
training strategy that makes it possible to turn vast amounts
of texts, for example, the English-language Wikipedia corpus,
into a training set for a language model [5]. Technological
advancements in computational tools (eg, graphical process-
ing units and parallelization) have allowed language models
to increase massively in size to hundreds of billions of
parameters in recent years and have pushed performance
closer and closer to human level in various NLP tasks [5-7].
These language models, developed by tech giants or their
subsidiaries, are used in search engines, language transla-
tors, and auto-correct functions, among others, affecting our
everyday lives.

Large language models have a broad scientific potential
as well, and with the advent of transfer learning, they are
more and more available for those who do not necessarily
have the computational resources of tech giants. Transfer
learning is the reuse of a pretrained model for a new data
set or even a new prediction task that is different from
the one it was originally trained for [8]. This approach
unlocks the potential of ML for smaller studies by using
knowledge representations (in a form of pretrained param-
eters) learned in large data sets. The significance of the
method for NLP was first demonstrated by Howard and
Ruder [9], who improved the predictive performance on

several NLP benchmarks by ~30% by training a universal
language model and reused it for specialized tasks via transfer
learning. Even though transfer learning broadens the group of
potential users of large language models and deep learning
in general, it still requires specialized skills to apply these
models. Web services to automate the training and deploy-
ment of ML models (automated ML [AutoML]) have been
developed to overcome this barrier and unlock the potential in
deep learning for researchers without specialized ML skills;
however, their use is not common in the clinical research
community [10,11].

In addition to knowledge identification (named-entity
recognition), synthetization, or discovery in the scientific
literature [12], NLP has had an impact on clinical research
with applications mostly focusing on the analysis of
electronic health records or social media data [13,14], most
likely due to the large size of these data sources. However,
the potential in free-text data and NLP are to date not fully
exploited in classical epidemiological studies. It is likely
that NLP performs better than classical regression prediction
models in certain settings, but not all, depending on the
content of the input text and the outcome to be predicted.

We designed a case study to evaluate the performance
of large language models, trained via AutoML, in predicting
current reading comprehension and future BMI and physi-
cal activity based on essays written by 11-year-old children
about how they imagine themselves as 25-year-olds. We then
compared this with a classical regression approach, including
demographic and lifestyle factors that were selected based
on prior domain knowledge as predictors. We explicitly
aimed to study and compare the predictive ability of the
models (accuracy or discrimination), without the considera-
tion of etiology as it is only on this benchmark that ML and
traditional models can currently be compared.

Methods
Data Source
The National  Child Development  Study (NCDS) originally
included 17,415 individuals  born in  the same week of
1958 in  England,  Wales,  or  Scotland [15].  In  a  total
of  12 sweeps,  cohort  members  have been followed since
then via  interviews,  surveys,  and biomedical  measure-
ments,  mostly  focusing on health  and sociodemographic
information not  only of  the participants  but  also to  some
extent  their  parents.  In  this  study,  we used information
from baseline (at  birth  in  1958),  sweep 1 (age 7 years  in
1965),  sweep 2 (age 11 years  in  1969),  and sweep 5 (age
33 years  in  1991)  [16-18].

The three outcomes are  (1)  reading comprehension
score (continuous)  at  age 11 years;  (2)  BMI (continu-
ous)  at  age 33 years;  and (3)  physical  activity  (binary)
at  age 33 years.  Reading comprehension (score range:
0-35)  was assessed using a  test  filled out  at  school.  The
original  test  is  available  on the web on the UK Data
Service portal  [17].  BMI was calculated as  weight  (kg)
divided by height  (m) squared based on anthropometric
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measurements  taken at  the time of  the interview.  Physical
activity  was assessed with 2 questions,  asking whether
participants  do any sport  or  exercise,  and if  so,  how
often.  Participants  were considered as  physically  active if
they reported exercising at  least  once a  week.

At the age of 11 years, the children were asked to write
an essay about how they imagined themselves as 25-year-olds
[16]. The instructions were the following: “Imagine that you
are 25 years old now. Write about the life you are leading,
your interests, your home life and your work at the age of
25. (You have 30 min to do this.).” Out of the 13,669 essays,
10,567 (77.31%) were transcribed [19], which served as the
input for the deep learning analyses.

We had access to the following variables that were
available at the birth of the participants: sex, ethnicity, birth
weight, gestational age at birth, parity, age and BMI of
the mother and father, whether the mother spoke English
at home, mother’s smoking habit prior to pregnancy, and
social class of the head of the household. Moreover, there was
information available on the children’s eating habits at age 7
years (appetite and overeating) and BMI, lifestyle (how often
they read books, used parks, and did sports activities), and
general ability score (similar to an IQ test) at age 11 years.
These variables, selected based on prior knowledge in relation
to the outcomes, are only a minor subset of those available in
the cohort. Extensive descriptions of the different sweeps of
the study are available on the web on the UK Data Service
portal [16-18].
Predictive Modeling and Performance
Evaluation Strategy
An analytical sample was defined for each of the 3 outcomes.
A random sample of approximately 15% of the participants
was reserved as a test set in each of the 3 analytical sam-
ples before developing the models, and the remaining 85%
constituted the development set. In the AutoML approach, the
development set was further split into a training set (80%) and
a validation set (20%). All reported performance metrics were
evaluated on the test sets.

The root mean square error (RMSE) was used as a
performance metric for the continuous outcomes, that is,
reading comprehension and BMI. Additionally, 95% CIs for
RMSE were calculated using the basic bootstrap method with
the boot package (version 1.3-28) in R (The R Foundation for
Statistical Computing). To provide a benchmark RMSE score
for comparison, we applied and evaluated a naive approach,
that is, assigned the mean value of the outcome from the
development data set as predictions in the test set.

Discrimination, measured by the area under the receiver
operating characteristics curve (AUC ROC), was used as a
performance metric for the binary outcome: physical activity.
The naive benchmark was random assignment, and thus, an
AUC ROC of 0.5 was defined.
Classical Approach: Regression Models
Regression models included predefined sets of variables
that could vary for the 3 outcomes based on prior
epidemiological knowledge. Models were fitted using the
entire development set after applying multiple imputation
(within the development set for each particular outcome)
by chained equations to impute missing predictors (mice
R package; version 3.14.0). We generated 10 imputed
samples with the maximum number of iterations set to 30.
Estimates were then pooled from the 10 resulting models.
The mice models derived in the development sets were
subsequently applied to the test sets to avoid information
leakage.

Reading comprehension score and BMI were modeled
using linear regression. For the reading comprehension
outcome, we fitted 2 models, with and without including
the general ability score among the predictors. The binary
outcome physical activity at age 33 years was modeled
with logistic regression. The complete list of variables
included in each model are shown in Tables 1 and 2.

Table 1. Linear regression coefficients from prediction models for reading comprehension score and BMI.
Predictor Reading comprehension score at age 11 years (n=8890) BMI at age 33 years (n=6010)

Imputed, n (%)
Model 1 coefficients
(95% CI)

Model 2 coefficients
(95% CI) Imputed, n (%)

Model coefficients
(95% CI)

Sex (reference: male) 0 –0.07 (–0.31 to 0.18) –0.63 (–0.81 to –0.45) 0 –1.1 (–1.3 to –0.9)
Ethnicity (reference: European) 1358 (15.28) 794 (13.21)
  African –3.20 (–4.41 to –2.00) –0.60 (–1.41 to 0.22) 1.62 (0.27 to 2.97)
  Asian –2.90 (–4.43 to –1.37) –1.40 (–2.41 to –0.38) 1.11 (–0.26 to 2.49)
Mother’s age (10 years) 423 (4.76) 1.59 (1.23 to 1.95) 0.92 (0.66 to 1.18) 234 (3.89) –0.22 (–0.56 to 0.12)
Father’s age (10 years) 732 (8.23) 0.53 (0.22 to 0.84) 0.37 (0.16 to 0.59) 415 (6.91) –0.19 (–0.48 to 0.10)
Mother’s BMI N/Aa N/A N/A 615 (10.23) 0.12 (0.09 to 0.14)
Father’s BMI N/A N/A N/A 752 (12.51) 0.10 (0.06 to 0.14)
Mother does not speak English at
home

1015 (11.42) –0.06 (–0.46 to 0.34) –0.14 (–0.42 to 0.14) N/A N/A

Birth weight (100 g) 694 (7.81) 0.11 (0.08 to 0.13) 0.03 (0.01 to 0.05) 414 (6.89) 0.00 (–0.03 to 0.02)
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Predictor Reading comprehension score at age 11 years (n=8890) BMI at age 33 years (n=6010)

Imputed, n (%)
Model 1 coefficients
(95% CI)

Model 2 coefficients
(95% CI) Imputed, n (%)

Model coefficients
(95% CI)

Gestational age 1267 (14.25) 0.00 (–0.02 to 0.01) 0.00 (–0.01 to 0.01) 764 (12.71) 0.00 (–0.01 to 0.01)
Parity (reference: nulliparous) 421 (4.74) 232 (3.86)
  Primiparous –1.33 (–1.64 to –1.03) –0.72 (–0.94 to –0.49) –0.12 (–0.38 to 0.14)
  Multiparous –3.45 (–2.81 to –1.48) –1.53 (–1.78 to –1.27) 0.19 (–0.11 to 0.50)
Maternal smoking 450 (5.06) –0.41 (–0.66 to –0.17) 0.02 (–0.15 to 0.20) 250 (4.16) 0.38 (0.17 to 0.58)
Socioeconomic status (reference: I) 945 (10.63) 562 (9.35)
  II –1.24 (–1.85 to –0.63) –0.27 (–0.72 to 0.18) –0.30 (–0.80 to 0.20)
  III (nonmanual) –2.14 (–2.81 to –1.48) –0.56 (–1.05 to –0.08) 0.03 (–0.56 to 0.62)
  III (manual) –4.17 (–4.73 to –3.60) –1.34 (–1.7 to –0.92) 0.32 (–0.16 to 0.79)
  IV –5.11 (–5.72 to –4.49) –1.68 (–2.15 to –1.22) 0.26 (–0.27 to 0.79)
  V –6.39 (–7.14 to –5.65) –1.89 (–2.45 to –1.33) 0.54 (–0.12 to 1.20)
  No male head of household –4.64 (–5.45 to –3.83) –1.46 (–2.04 to 0.88) 0.27 (–0.39 to 0.93)
Poor appetite N/A N/A N/A 607 (10.1) –0.15 (–0.43 to 0.13)
Overeating N/A N/A N/A 612 (10.18) 0.06 (–0.39 to 0.52)
Reading books (reference: often) 276 (3.1) N/A
  Sometimes –0.61 (–0.86 to –0.36) –0.20 (–0.39 to –0.02) N/A
  Hardly ever –2.27 (–2.71 to –1.83) –0.72 (–1.04 to –0.41) N/A
Sport (reference: often) 238 (2.68) 146 (2.43)
  Sometimes 0.09 (–0.17 to 0.34) –0.07 (–0.25 to 0.12) –0.15 (–0.38 to 0.08)
  Hardly ever –0.06 (–0.47 to 0.35) 0.10 (–0.19 to 0.39) –0.07 (–0.41 to 0.27)
Park use (reference: often) 847 (9.53) 488 (8.12)
  Sometimes 0.38 (0.12 to 0.65) 0.10 (–0.10 to 0.30) –0.30 (–0.54 to –0.06)
  Never 0.36 (–0.15 to 0.87) 0.32 (–0.04 to 0.69) 0.05 (–0.44 to 0.54)
  Not available 0.06 (–0.34 to 0.46) –0.04 (–0.33 to 0.25) –0.11 (–0.45 to 0.24)
General ability score 1 (0.01) N/A 0.26 (0.26 to 0.27) N/A N/A
BMI at age 11 years N/A N/A N/A 886 (14.74) 0.67 (0.62 to 0.72)

aN/A: not applicable.

Table 2. Odds ratios (OR) from the prediction model for physical activity.
Predictor Outcome: physical activity at age 33 years (n=6204)

Imputed, n (%) OR (95% CI)
Sex (reference: male) 0 (0) 1.13 (1.01-1.27)
Ethnicity (reference: European) 846 (14.04)

African 0.68 (0.34-1.35)
Asian 0.76 (0.40-1.45)

Mother’s age (10 years) 234 (3.88) 0.98 (0.83-1.15)
Father’s age (10 years) 431 (7.15) 1.05 (0.91-1.21)
Mother’s BMI 652 (10.82) 0.98 (0.97-1.00)
Father’s BMI 809 (13.43) 0.99 (0.98-1.01)
Birth weight (100 g) 411 (6.82) 1.00 (0.99-1.01)
Gestational age 796 (13.21) 1.00 (0.99-1.01)
Parity (reference: nulliparous) 232 (3.85)

Primiparous 0.99 (0.86-1.13)
Multiparous 0.94 (0.80-1.11)

Maternal smoking 253 (4.2) 0.92 (0.81-1.04)
Socioeconomic status (reference: I) 579 (9.61)

II 0.91 (0.69-1.19)
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Predictor Outcome: physical activity at age 33 years (n=6204)
Imputed, n (%) OR (95% CI)

III (nonmanual) 0.83 (0.61-1.12)
III (manual) 0.82 (0.63-1.06)
IV 0.77 (0.59-1.02)
V 0.64 (0.45-0.92)
No male head of household 0.72 (0.51-1.02)

Poor appetite 631 (10.47) 0.87 (0.71-1.05)
Overeating 630 (10.46) 0.92 (0.74-1.15)
Sport (reference: often) 148 (2.46)

Sometimes 0.90 (0.79-1.02)
Hardly ever 0.70 (0.59-0.84)

Park use (reference: often) 510 (8.47)
Sometimes 0.97 (0.85-1.10)
Never 0.77 (0.61-0.97)
Not available 0.73 (0.59-0.90)

BMI at age 11 years 934 (15.50) 1.01 (0.97-1.04)

Deep Learning Approach: NLP Using
Large Language Models
We used an AutoML tool, AutoTrain by Hugging Face
[20], to develop our NLP prediction model. AutoTrain is a
web-based service to train and deploy state-of-the-art ML
models (text or tabular as of June 2022). The data sets
were uploaded as comma-separated values files including 2
columns: the essays (as text) and the outcome. AutoTrain then
split this data set into a training set (80%) and a validation set
(20%) and started training (fine-tuning) a variety of pretrained
large language models. The number of models can be defined
by the user. We chose n=15 for this study. After the train-
ing process for all 15 models was complete, we accessed
the best-performing model through Hugging Face’s applica-
tion programming interface from Python (Python Software
Foundation) and evaluated predictive performance on the
reserved 15% in the test set. We did this for all 3 outcomes.
Ethical Considerations
We analyzed a publicly available, anonymized data set;
therefore, our study did not require ethical approval.

Results
Reading Comprehension Score (Age 11
Years)
Out of 10,567 participants with transcribed essays, 10,490
(99.27%) completed the reading comprehension test,

forming the analytical sample for this outcome. From the
10,490 participants, a random sample of 1600 (15.25%)
participants were set aside for testing (test set), leaving
data from 8890 (84.75%) participants for model develop-
ment (development set). Reading comprehension scores
ranged from 0 to 34, with a median value of 16 (IQR
12-20). The distribution was similar in the test set and
only differed slightly in the maximum (35) and the
upper-quartile (21) values.

The main results are shown in Figure 1. The naive
benchmark had an RMSE of 6.07 (95% CI 5.89-6.26),
which was outperformed by both the classical regression
and the deep learning approach. The linear regression
model without the general ability score had an 11% better
performance than the naive benchmark with an RMSE of
5.41 (95% CI 5.23-5.58). This was further improved when
including the general ability score in the model (4.14,
95% CI 3.98-4.30). The best performance and thus lowest
RMSE was achieved by the deep learning approach (3.89,
95% CI 3.74-4.05), corresponding to a 36% lower RMSE
than the naive benchmark.
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Figure 1. Performance of the prediction models versus the benchmark approach (naive prediction: assignment of the mean value from the training
set) for (A) reading comprehension score and (B) BMI. Root mean square errors (RMSEs) are presented with 95% CIs. Percentages represent
differences compared to the benchmark approach. NLP: natural language processing.

The linear regression models revealed that several predic-
tors were associated with the reading comprehension score.
Male sex, European ethnicity, having older parents, being
the first child in the family, higher birth weight, higher
socioeconomic status, reading books often, and having a
higher general ability score were all positively associated with
reading comprehension. Regression coefficients are presented
in Table 1.
BMI (Age 33 Years)
The analytical sample for the BMI analysis consisted of 7060
participants who later had their weight and height measured at
age 33 years. From the 7060 participants, a random sample
of 1050 (14.87%) participants were set aside for testing
model performance, leaving 6010 (85.13%) participants in the
development set. BMI values ranged from 12.3 to 50.6 kg/m2

in the development set and from 15.0 to 50.8 kg/m2 in the test
set. Median values were similar: 24.3 (IQR 22.3-27.1) and
24.4 (IQR 22.2-26.8) kg/m2, respectively.

Performance metrics are shown in Figure 1. The naive
benchmark had an RMSE of 4.45 (95% CI 4.09-4.78),
which was similar to the performance of the deep learning
approach (4.38, 95% CI 4.02-4.74). The regression model
performed ~13% better, achieving an RMSE of 3.85 (95% CI
3.54-4.16).

Several variables were associated with BMI at age 33
years according to the regression model, including sex,
ethnicity, parental BMI, parity, maternal smoking before
pregnancy, use and access to parks, and BMI at age 11 years.
Regression coefficients are presented in Table 1.
Physical Activity (Age 33 Years)
We had information on physical activity at age 33 years
from 7304 participants. We selected 1100 (15.06%) of them
randomly for the test set, leaving 6204 (84.94%) participants
for model development. Overall, 68.75% (4265/6204) and
69.55% (765/1100) were physically active in the development
and test sets, respectively. The logistic regression and NLP

approaches had the same performance (AUC ROC=0.55,
95% CI 0.52-0.60), representing poor discriminatory power.
There were a few variables associated with the outcome
in the logistic regression model: sex, socioeconomic status,
mother’s BMI, sport activities, and use or access to parks at
age 11 years. Odds ratios are presented in Table 2.

Discussion
Our study demonstrated the potential of using deep learn-
ing–based large language models for text prediction in
epidemiological studies and compared it to classical statistical
methods. We observed different rankings of predictive
performance between the deep learning and classical
approaches across the 3 outcomes. The performance of the
deep learning approach appeared to depend on how closely
the actual task, that is, writing an essay about the future,
was related to the outcome. Writing and reading skills among
children are expected to be associated with each other, so the
language model could have picked up on linguistic features
such as grammatical correctness, vocabulary, complexity
of sentences, etc, which led to the NLP method clearly
outperforming linear regression when predicting the reading
comprehension score. This was still true when the general
ability score was added to the regression model as a pre-
dictor, despite its high correlation with reading comprehen-
sion. However, this performance came with a computational
price. Large language models include hundreds of millions or
even billions of parameters, whereas our regression model
included 26. In addition to simplicity, interpretability is
another positive feature of linear regression. The model
revealed several strong predictors and quantified associations
via interpretable regression coefficients, for example, a social
gradient with about a 5-point estimated difference between
the highest and lowest socioeconomic classes. Although the
coefficients are expressed in easily understandable units, they
should not be interpreted in the etiological sense, unless a
causal framework is applied. With the increasing interest in
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ML and causal inference, the development of ML methods
integrating causal structures is warranted [21].

Epidemiologists and clinicians are comfortable with
interpreting the usual measures of association: linear
regression coefficients, odds ratios, or hazard ratios. Although
we are far from understanding the overall nature of large
language models, there are emerging methods in explainable
artificial intelligence (AI) that can help to understand the
driving factors of at least individual predictions (eg, which
features or specific expression in a text led to a prediction).
However, they are yet to be integrated into AutoML tools.
Access to explainable AI tools (eg, LIME [22]) as part of
AutoML solutions is likely to contribute to a more wide-
spread use of deep learning in epidemiological research,
where we often ask etiological questions and predictive
performance is not necessarily the main focus.

Children were directly asked about their interests as
25-year-olds as part of the essay task, which could poten-
tially include information on physical activity. We therefore
expected a similar performance for the NLP and regression
approaches. Both approaches picked up some signals in the
data, demonstrated by discrimination nominally exceeding
random assignment (AUC ROC=0.5), but their performance
was still poor and statistically not different from each other.
A previous study from the NCDS reported that 42% of boys
and 34% of girls mentioned physical activity in their essays
[19]. The authors then used this information to predict their
physical activity patterns during adulthood, and they found a
positive association among boys, but not girls. Pongiglione et
al [19] used a 2-step approach: first, they applied a supervised
ML method (support vector machines) to extract information
on physical activity identity from the essays and, second, used
that variable to predict the physical activity in adulthood with
a separate logistic regression model. The drawback of this
approach is that it needs a subset of the data set to have
labels for the intermediate outcome (whether physical activity
was mentioned in the text or not), which can be time-con-
suming and labor-intensive for large data sets. Once some
labels are available and the prediction model has reasonable
performance, the approach can handle large amounts of data
to classify the rest of the essays. We have demonstrated that
large language models can be directly applied on the data
without first generating new intermediate labels.

The major difference between the study by Pongiglione
et al [19] and ours, and in general between many epidemio-
logical and data science approaches, is whether the focus
is on the causal understanding of associations (etiology) or
on prediction. Although the 2 approaches require different
study designs and interpretation, the conflation of etiology
and prediction is still common in clinical research (eg,
causal interpretation of strong predictors) [23]. Our study
showed that despite identifying variables strongly associated
with the outcome, overall predictive performance might be
poor. Therefore, we should be careful when interpreting
and drawing causal conclusions from the results of models
developed with a predictive aim and avoid mistakenly stating
that altering the level of a component of a predictive model
would change the risk of the outcome.

Similar evidence also exists regarding the prevention
of obesity. In a meta-analysis of 15 prospective studies,
Simmonds et al [24] reported that children or adolescents
with obesity were about 5 times more likely to be obese in
adulthood than those without obesity. In our study, we also
found a strong association between BMI in childhood and
adulthood; however, the linear regression model performed
only slightly better than the naive benchmark, whereas the
NLP approach did not outperform the benchmark at all. We
were not surprised that NLP performed worse than regression,
considering that these approaches had matching performance
in predicting physical activity, and obesity was not expected
to be directly mentioned in the essays, in contrast to physical
activity. In general, the results for this outcome strengthen
our previous argument that prediction can be difficult even
if well-established associations are present at the population
level.

The development of prediction models, regardless of
the use of ML or classical methods, is not a trivial task
(handling of missing data, variable selection, reporting,
etc) [25-28]. This is often reflected in the quality of
prediction studies and the fact that only a small propor-
tion of published prediction models are actually used in
clinical practice [29]. AutoML does not offer a solution
for this, as careful study design is still crucial. However,
it makes the use of deep learning techniques (includ-
ing pretrained models) more feasible for epidemiologists,
who can use their resources on study design instead
of programming tasks. Faes et al [10] recently repor-
ted a study where physicians (non-AI experts) achieved
similar performance to expert-tuned algorithms in several
medical image classification tasks [10]. We only needed
to use programming in the NLP analysis to preprocess the
essays and for the evaluation of the results, whereas the
rest of the process was completed in a browser environ-
ment (model evaluation became available in AutoTrain
by Hugging Face soon after we finished our analyses).
AutoML solutions are often claimed to democratize ML;
however, the financial costs are still not negligible. It
is indeed a positive development that technical skills
and computational resources no longer pose as strong a
barrier as before. We should be vigilant that this increased
accessibility is accompanied by an increased focus on
good study design and research quality. An aspect that
AutoML might have a positive influence on is knowl-
edge translation. With the AutoML approach we used, the
deep learning model became available right after training
and could be used to make predictions for new samples
either in the browser or via an application programming
interface. The developer can choose to keep the model
private or make it public so that the research community
can reuse it as a pretrained model, either directly or after
fine-tuning, thus potentially leading to multistep, incremen-
tal transfer learning.

A major strength of our work is the use of deep
learning methods that are currently state of the art in NLP
to exploit an innovative data source—in this case, text
written by participants in a cohort study. We compared
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these models with standard methods in epidemiology and
discussed similarities and differences between the classical
and data science approaches. A strength of deep learn-
ing methods in general is the potential reuse of extant
trained models. Although the interest in transfer learning
is rapidly increasing in clinical research, it is still an
almost unknown concept in the epidemiology commun-
ity, despite some studies demonstrating major benefits,
even for tabular data [30,31]. To increase the impact of
prediction studies, especially those using ML and deep
learning methods, authors should be encouraged to deposit
their models on the web and make them openly available.
This is a common practice in the data science commun-
ity, as most developers depend heavily on pretrained deep
learning models due to computational requirements. The
Hugging Face Model Hub has >50,000 pretrained models,
which fits well with the FAIR (findability, accessibil-
ity, interoperability, and reusability) principles on reusing
digital assets in an open and inclusive manner [32]. In a
clinical research setting, even if data accompany publica-
tions, which is still rarely the case, sharing resources is
almost exclusively restricted to data sets and analysis code.

The children’s essays used in our NLP models were
not designed to be used for specific prediction tasks. Our
main aim was to demonstrate the use of deep learn-
ing–based large language models and to compare them
to the classical statistical methods used in epidemiologi-
cal research. In showing that NLP methods can extract
features from these texts that are associated with certain
traits, our study points toward the potential for extracting
meaningful additional data from other extant free-text data
sources. Each text data source will have its own historical
peculiarities and specific characteristics. In our case, the
essays were written half a century ago by children. The
practical utility of the presented models outside the context
of the UK 1958 birth cohort is consequently likely limited
without transfer learning via fine-tuning for adaptation to a
new context. It should be noted that language models are
usually trained on texts from the internet (eg, Wikipedia)

and, as such, mostly represent texts written in the past
few decades. Where older texts are included—for example,
from older, digitized books—sources will represent texts
selected for publication at the time. In all cases, texts
written by children are likely to be severely underrepresen-
ted in training sets.

A previous review of the clinical literature found no
evidence for ML having better predictive performance
than traditional statistical methods [33]. Considering the
trade-off in the loss of easy interpretability, in most
studies, the use of ML does not offer any benefits
as long as clinical researchers mostly work with tabu-
lar data. However, the integration of new data sources
in epidemiological studies (text, medical images, and
time series) is only possible by applying deep learning
and often transfer learning, which also gives us the
opportunity to reuse knowledge between studies. With
regard to NLP, large language models have almost
achieved human-level performance for various specific
tasks; therefore, it may become possible for open-ended
questions or essays to replace or at least complement
long questionnaires (eg, on diet) in large epidemiologi-
cal studies. Moreover, NLP offers computational methods,
for example, for the analysis of interview transcripts in
qualitative studies, which might contribute to closing the
gap between qualitative and quantitative research. Byrsell
et al [34] analyzed transcribed emergency calls to detect
out-of-hospital cardiac arrests using deep learning, and
Fagherazzi et al [35] recently gave an overview of the
potential of vocal biomarkers (containing both linguistic
and acoustic features) in clinical research and practice.
With the large-scale collection of such and other novel
data types, potentially in combination with tabular data,
the role of deep learning in epidemiological research is
likely to increase as well. However, we can only exploit
its potential and develop high-quality prediction models for
clinical or public health use in close collaboration between
the data science and clinical research communities.
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