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Abstract

Background: Clinical decision support (CDS) tools in electronic health records (EHRs) are often used as core strategies to
support quality improvement programs in the clinical setting. Monitoring the impact (intended and unintended) of these tools is
crucial for program evaluation and adaptation. Existing approaches for monitoring typically rely on health care providers’
self-reports or direct observation of clinical workflows, which require substantial data collection efforts and are prone to reporting
bias.

Objective: This study aims to develop a novel monitoring method leveraging EHR activity data and demonstrate its use in
monitoring the CDS tools implemented by a tobacco cessation program sponsored by the National Cancer Institute’s Cancer
Center Cessation Initiative (C3I).

Methods: We developed EHR-based metrics to monitor the implementation of two CDS tools: (1) a screening alert reminding
clinic staff to complete the smoking assessment and (2) a support alert prompting health care providers to discuss support and
treatment options, including referral to a cessation clinic. Using EHR activity data, we measured the completion (encounter-level
alert completion rate) and burden (the number of times an alert was fired before completion and time spent handling the alert) of
the CDS tools. We report metrics tracked for 12 months post implementation, comparing 7 cancer clinics (2 clinics implemented
the screening alert and 5 implemented both alerts) within a C3I center, and identify areas to improve alert design and adoption.

Results: The screening alert fired in 5121 encounters during the 12 months post implementation. The encounter-level alert
completion rate (clinic staff acknowledged completion of screening in EHR: 0.55; clinic staff completed EHR documentation of
screening results: 0.32) remained stable over time but varied considerably across clinics. The support alert fired in 1074 encounters
during the 12 months. Providers acted upon (ie, not postponed) the support alert in 87.3% (n=938) of encounters, identified a
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patient ready to quit in 12% (n=129) of encounters, and ordered a referral to the cessation clinic in 2% (n=22) of encounters.
With respect to alert burden, on average, both alerts fired over 2 times (screening alert: 2.7; support alert: 2.1) before completion;
time spent postponing the screening alert was similar to completing (52 vs 53 seconds) the alert, and time spent postponing the
support alert was more than completing (67 vs 50 seconds) the alert per encounter. These findings inform four areas where the
alert design and use can be improved: (1) improving alert adoption and completion through local adaptation, (2) improving support
alert efficacy by additional strategies including training in provider-patient communication, (3) improving the accuracy of tracking
for alert completion, and (4) balancing alert efficacy with the burden.

Conclusions: EHR activity metrics were able to monitor the success and burden of tobacco cessation alerts, allowing for a more
nuanced understanding of potential trade-offs associated with alert implementation. These metrics can be used to guide
implementation adaptation and are scalable across diverse settings.

(JMIR Med Inform 2023;11:e43097) doi: 10.2196/43097
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Introduction

Background
Provider-facing computerized clinical decision support (CDS)
tools in electronic health records (EHRs) are common digital
health interventions supporting health care quality improvement
programs [1-6]. Monitoring (ie, continual evaluation) of the
impact of these tools is important for program evaluation and
may ultimately contribute to implementation success [7,8].
Approaches for evaluating CDS tools largely rely on surveys,
qualitative interviews, and data collected through direct
observation or audio/video recording [9-12]. These approaches
require substantial human effort (from implementation staff and
clinical teams) for data collection. Automated methods
leveraging EHR activity data offer a promising solution to
reduce the data collection burden, but research on these methods
is still in the earliest stage.

This study aimed to develop automatic metrics to monitor the
implementation of EHR-embedded CDS tools and demonstrate
their use within the context of a smoking cessation program
sponsored by a National Cancer Institute (NCI)–designated
cancer center.

Tobacco Control Programs in NCI Cancer Centers
Tobacco use increases the risk of cancer and leads to poor
prognosis after cancer diagnosis [13-16]. Clinical practice
guidelines recommend routine screening for tobacco use and
referral to evidence-based cessation interventions in patients
with cancer [17,18], but this practice is underused [19]. To
address this practice gap, the NCI’s Beau Biden Cancer
Moonshot program launched the Cancer Center Cessation

Initiative (C3I) in 2017 to provide funding to NCI-designated
cancer centers to implement or enhance their tobacco treatment
services [20].

Electronic alerts (e-alerts) are common CDS tools in EHRs,
promoting adherence to practice guidelines [2-5,21,22],
including tobacco screening and treatment at the point of care
[23-25]. This strategy has been adopted by some C3I-funded
cancer centers [26,27]. However, effective implementation of
alerts into the clinical workflow is nontrivial [28-32]. Monitoring
of provider responses to newly implemented alerts can identify
barriers to adoption and the burden imposed by the alerts.

Study Objectives
We developed and applied EHR activity metrics to answer three
questions. (1) Did the alert completion rate change over time
or vary across clinics? (2) What was the burden introduced by
the alerts? (3) What factors were associated with variation in
alert completion? Our research questions were motivated by
three factors. First, sustainability (eg, sustained use and
completion of the alerts) is a key construct of implementation
outcomes [8] and should be monitored over time. Second,
monitoring variations in alert completion across clinics can
support the adaptation of alert implementation to the local
context. Third, alerts could add a “burden” on providers [30-33],
which should be evaluated.

Methods

Study Design
We developed and applied new EHR activity metrics to monitor
the tobacco cessation tools (two Best Practice Advisory [BPA]
alerts) implemented in cancer clinics for 12 months (Figure 1).

JMIR Med Inform 2023 | vol. 11 | e43097 | p. 2https://medinform.jmir.org/2023/1/e43097
(page number not for citation purposes)

Chen et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.2196/43097
http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Study overview. The support alert would fire only if the screening result was positive (ie, patient being a current smoker) and answers to
both Smoking Screener questions (Q1: “When did you last smoke (even 1 or 2 puffs)?”; Q2: “Quitting smoking could help improve your health. Are
you interested in quitting?”) were documented (see Multimedia Appendix 1, step B1). EHR: electronic health record.

Ethics Approval
The study was approved by the Wake Forest School of Medicine
Institutional Review Board (IRB00066841). Deidentified EHR
data were used, with informed consent for data access waved
by the institutional review board.

Digital Health Intervention
The CDS tools were two conditional sequential alerts integrated
into the Epic EHR, a commercial cloud-based EHR system
(Figure 1; detailed in Multimedia Appendix 1): (1) a screening
alert to remind clinic staff to complete tobacco screening,
triggered if “current smoker” or “unknown smoking status” was
previously documented in the EHR, and (2) a support alert to
prompt the clinical provider to discuss support and referral to
a tobacco cessation clinic, triggered if the screening result was
positive and answers to both Smoking Screener questions were
answered (see note for Figure 1). Each alert had two modalities:
(1) interruptive (triggered when the patient chart was opened;
if postponed, presenting again after 10 minutes or when the
patient chart was reopened) and (2) noninterruptive (in the
general BPA section of the EHR).

Implementation Context
The Tobacco Control Center of Excellence (TCCOE) at the
Wake Forest Baptist Comprehensive Cancer Center
implemented the alerts in the Epic EHR system used by 7 cancer
clinics (medical oncology: n=3; radiation oncology: n=3; cancer
survivorship: n=1) in the Atrium Health Wake Forest Baptist
Comprehensive Cancer Center in 2019 and 2020. The alerts

were integrated into the Epic EHR as BPAs, a form of CDS in
the EHR that reminds providers to attend to important tasks [4].
The implementation team from the TCCOE worked with the
hospital information technology team on implementing the
alerts. The alerts were customized by using rule-based logic
(eg, rules on who will receive the alerts and when to fire the
alerts; detailed in Multimedia Appendix 1). All 7 clinics
implemented the screening alert; 5 implemented the support
alert. Training was provided to clinic staff and providers
(1-month weekly before or in the first month of implementation
and monthly check-in after alert implementation). Some clinics
used extensive support from patient navigators and tobacco
treatment specialists to complete screening documentation and
referral to the cessation clinic.

Evaluation

Metrics Development and Automation
Metrics development took three steps: (1) identifying relevant
EHR variables, (2) developing SQL queries to extract variables
from the EHR database, and (3) developing computer code to
calculate the metrics. We used EHR data associated with 2
clinics to develop and test the metrics. A team of experts in
health informatics and implementation science, EHR specialists,
and physicians participated in the metrics development.

Using the computer code we developed, EHR data extraction
takes about 10 minutes, and the calculation of each metric takes
tens of seconds. This speed is adequate for monitoring CDS
tools used by implementation programs. Full automation of
these metrics is possible after their integration into the EHR.
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EHR Variables Used to Derive the Metrics
We extracted alert activity data from event log files of the Epic
EHR system. The variables used to develop the metrics included
alert id, alert instance id, alert name (eg, a tobacco screening
alert), timestamps corresponding to alert firing and provider
responding (called alert firing time point and alert response
time point for convenience), alert triggering condition (eg,
triggered by opening the patient chart), subsequent actions taken
(eg, acknowledge/override warning), alert override reason, and
alert-associated signed orders.

Each alert id is associated with a unique encounter id and a
patient id. An alert id corresponds to multiple alert instance
ids if the alert is fired again after being postponed. Alert
triggering condition was used to distinguish interruptive alerts
from noninterruptive ones.

We used subsequent actions taken, alert override reason, and
alert-associated signed orders to identify providers’ actions on
the alerts. When the clinic staff completed or postponed the
screening alert, subsequent actions taken recorded a value
“acknowledge/override warning,” and alert overridereason
recorded whether the staff acknowledged screening completion
(ie, hit the button “Documented in Flowsheet,” step A in Figure
A1-1, Multimedia Appendix 1), postponed the alert (hit
“Defer”), or determined that the patient was inappropriate for
screening (hit “Not appropriate”). For the support alert,
subsequent actions taken recorded a value
“acknowledge/override warning” when the provider hit the
buttons under “acknowledge reason,” and alert override reason
recorded the provider’s actions (eg, discussed or not discussed
with patients) and patient’s readiness to quit (Figure A1-2,
Multimedia Appendix 1). Alert-associated signed orders
recorded whether the provider placed an order for a referral to
the cessation clinic.

In addition, we used two encounter-level variables, flowsheet
name and flowsheet value, to determine whether the clinic staff
documented screening results (ie, answers to Q1-Q3 in step B1
in Figure A1-1, Multimedia Appendix 1) in the EHR.

Metrics
We defined three metrics to measure alert completion and
burden (Multimedia Appendix 2).

The alert completion rate was defined as the number of
encounters where a provider completed alert-prompted actions
divided by the number of encounters where the alert fired. We
defined screening alert completion by either staff’s
acknowledging completion of screening or completion of EHR
documentation of screening results. We defined support alert
completion at two levels: (1) discussing with patients and
assessing patient readiness to quit (“discussion”) or (2) referring
patients to the on-site tobacco cessation clinic (“referral”).

We measured the burden of interruptive alerts by two metrics:
alert firing rate and alert handling time. We focused on
interruptive alerts because they were more likely to add a
“burden” on providers [30-33]. We defined alert firing rate as
the number of times the alert fired during a specific period
divided by the number of times the alert was completed during
that period. We calculated the average time providers spent
completing an alert per encounter, using encounters in which
the alert was completed; similarly, we calculated the average
time spent postponing alerts per encounter using encounters in
which the alert was postponed at least once.

Data Collection
For each clinic, we collected EHR data about clinic
characteristics, patient characteristics, and EHR activities related
to tobacco cessation alerts. We collected EHR alert activity data
as described previously. Each instance of an alert was linked to
a specific patient encounter and the patient’s demographic
information (sex and race), using encounter and patient IDs.

Data Analysis
We summarized clinic and patient characteristics for each clinic.
We then used EHR activity metrics to address the research
questions related to alert completion and burden. Statistical
analyses were conducted using STATA/MP 15.1 (StataCorp
LLC) [34].

We measured the overall and per-clinic alert completion rates
for the screening alert during every 3-month period across 12
months post alert implementation. The 12-month
postimplementation period was specified for each clinic. We
measured the support alert completion rate at two levels:
“discussion” and “referral.”

We measured the alert firing rate and handling time of
interruptive screening alerts and support alerts to assess the
burden of interruptive alerts.

Factors Associated With Alert Completion
As a secondary analysis, we examined the distribution of alert
completion over patients’ demographics (sex and race) and
encounter types.

Three physicians reviewed all encounter types and selected
“relevant encounter” types as those in which screening for
smoking status was an appropriate part of routine care
(Multimedia Appendix 3).

Results

Clinic Characteristics
The clinics varied in the number of encounters (from n=1464
to n=110,553) and patients (from n=328 to n=9410) during 12
months post alert implementation (Table 1). The typical structure
of these clinics was for nurses to support multiple providers
across multiple days.
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Table 1. Clinic and patient characteristics during the 12 months after implementing tobacco cessation alerts.

Cancer survivorship (Sc)Radiation oncologybMedical oncologya

R3R2R1dM3M2M1d

Clinic characteristics

UrbanUrbanRuralUrbanUrbanRuralUrbanService area

10-2020-305-1010-20100-11010-205-10Staffing, ne

146421,36227694670110,553910230,727Encounters, n

62331963281059941011934688Patients, n

Patient characteristics

59 (19)64 (14)67 (11)66 (11)61 (15)65 (13)64 (14)Age (years), mean (SD)

Sex, n (%)f

327 (52.5)1479 (46.3)156 (47.6)603 (56.9)4956 (52.7)766 (64.2)3122 (66.6)Female

296 (47.5)1716 (53.7)172 (52.4)456 (43.1)4454 (47.3)427 (35.8)1566 (33.4)Male

Race, n (%)f

98 (15.7)512 (16.0)50 (15.2)223 (21.1)1731 (18.4)160 (13.4)1070 (22.8)African American

500 (80.3)2546 (79.7)263 (80.2)780 (73.7)7227 (76.8)988 (82.8)3350 (71.5)White

24 (3.9)136 (4.3)14 (4.3)53 (5.0)436 (4.6)45 (3.8)259 (5.5)Otherg

Hispanic or Latino, n (%)f

20 (3.2)85 (2.7)8 (2.4)19 (1.8)349 (3.7)23 (1.9)114 (2.4)Yes

603 (96.8)3104 (97.1)320 (97.6)1034 (97.6)9042 (96.1)1170 (98.1)4545 (96.9)No

Insurance, n (%)

334 (53.6)1699 (53.2)205 (62.5)646 (61.0)4961 (52.7)775 (65.0)2721 (58.0)Medicare

27 (4.3)190 (5.9)19 (5.8)60 (5.7)598 (6.4)81 (6.8)243 (5.2)Medicaid

253 (40.6)1226 (38.4)99 (30.2)334 (31.5)3537 (37.6)305 (25.6)1659 (35.4)Other insurance

9 (1.4)77 (2.4)5 (1.5)19 (1.8)266 (2.8)32 (2.7)65 (1.4)No insurance

45/506 (8.9)435/3155
(13.8)

58/325
(17.8)

174/1051
(16.6)

1006/9230
(10.9)

198/1150
(17.2)

590/4606
(12.8)

Smoking rate, n/N (%)h

aM1-M3: medical oncology clinics 1-3.
bR1-R3: radiation oncology clinics 1-3.
cS: cancer survivorship clinic.
dM1 and R1 implemented only the screening alert.
eThe approximate number of clinic team members (physicians, advanced practice practitioners, nurses, and other clinical staff) in a clinic. The number
is not precise due to staff turnover and the hiring of temporary staff.
fSome clinics have a small percentage of patients missing information on sex (0.03% missing for R3; complete for other clinics), race (complete for
M2; less than 0.3% missing for other clinics), and ethnicity (1% missing for M1, 0.6% missing for R1, 0.2% missing for M3 and R3; complete for other
clinics).
gOther: American Indian or Alaska Native, Asian, Native Hawaiian or Other Pacific Islander, Latin American or Hispanic, and other.
hThe percent of patients who were active smokers during 12 months post alert implementation. The denominator is the number of patients who had
their smoking status documented in the electronic health record.

Patient Characteristics
The patients seen by the cancer survivorship clinic were 5-8
years older than patients seen by other clinics (mean age for
each clinic 59-67; Table 1). Most patients were non-Hispanic
White and were beneficiaries of Medicare. The smoking rate
ranged between 8.9% (n=45 among 506 patients who had
smoking status documented in the EHR; cancer survivorship
clinic) and 17.8% (58/325; radiology oncology clinic 2).

Alert Completion Rate
The screening alert fired in 5121 (2.8% of 180,647) encounters
12 months post implementation. The alert completion rate was
0.55 (2817/5121) based on the staff’s acknowledgment of
screening completion in EHRs and 0.32 (1647/5121) based on
the completion of EHR documentation of screening results.
Both alert completion rates remained stable over time (Figure
2A) but varied considerably across clinics (Figure 2B-D).
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Among the 2817 encounters where the staff acknowledged
completion of screening, 84.7% completed interruptive alerts
and 15.4% completed noninterruptive ones.

The support alert was implemented for 5 clinics (medical
oncology clinic 2 and 3, radiation oncology clinic 2 and 3, and

cancer survivorship clinic) and fired in 1074 encounters.
Providers responded without postponing (n=938, 87.3%),
discussed tobacco use treatment options (n=640, 59.6%),
identified patients who were ready to quit (n=129, 12%), and
placed referrals to the cessation clinic (n=22, 2%).

Figure 2. Completion rate of tobacco screening alert for (A) all clinics and (B-D) individual clinics. Clinics in (C) and (D) were categorized into three
levels based on the number of encounters in which a screening alert was fired during 12 months post alert implementation. Level 1: >1000; level 2:
>100 and ≤1000; level 3: ≤100. Line thickness was used to represent these three levels. EHR: electronic health record. M1-M3: medical oncology clinics
1-3. R1-R3: radiation oncology clinics 1-3. S: cancer survivorship clinic.

The Burden of Interruptive Alerts
On average, the number of times a screening alert was fired
before completion was 2.7 (range 1.0-12.7 for individual clinics;

Table 2); the average number of times a support alert was fired
before completion was 2.1 (range 1.8-3.3 for individual clinics;
Table 2).

Table 2. Alert firing rate of the screening alert and the support alert by clinics.

Cancer survivorship (Sc)Radiation oncologybMedical oncologya

R3R2R1dM3M2M1d

12.74.01.02.12.21.34.9eScreening alert

3.03.02.3N/A3.31.8N/AfSupport alert

aM1-M3: medical oncology clinics 1-3.
bR1-R3: radiation oncology clinics 1-3.
cS: cancer survivorship clinic.
dM1 and R1 implemented only the screening alert.
eWe defined the alert firing rate as the number of times the alert fired during 12 months post alert implementation divided by the number of times the
alert was completed during the same period. We did not calculate the alert firing rate at the encounter level because it was undefined (ie, division by 0)
for encounters that did not complete the alert.
fN/A: not applicable.
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On average, time spent completing the screening alert per
encounter was 53 seconds (50 seconds for support alert); time
spent postponing screening alerts per encounter was 52 seconds
(67 seconds for support alerts).

Factors Associated With Alert Completion
Completion rates of the screening alert and the support alert
were balanced across patient subgroups (sex, race, and their
interaction).

Among 5121 encounters for which the screening alert was fired,
4425 (86.4%) were “relevant” and 696 (13.6%) were “less
relevant” to routine tobacco screening. The alert completion
rate for “relevant” encounters was higher than that for “less
relevant” ones (2793/4425, 63.1% vs 24/696, 3.5%; P<.001).

Discussion

Principal Results
We developed and applied EHR activity metrics to monitor two
tobacco cessation CDS alerts implemented in 7 cancer clinics.
Our metrics were able to capture variation in alert completion
across clinics, monitor alert efficacy, identify discrepancies
between staff-acknowledged screening completion and screening
documentation, and provide insights into the balance between
alert efficacy and imposed burden. These findings inform four
areas where CDS tool design or use can be improved (Table 3),
which we discuss below.

Table 3. Key findings from the application of the electronic health record (EHR) activity metrics and implications for clinical decision support (CDS)
tool design and use.

Implications for CDS toolsKey findings from the application of EHR activity metrics

Potential for improving alert adoption/completion through local adapta-
tion

Variation in alert completion

Strategies to support use:• The screening alert completion rates varied substantially across
the clinics. • Use clinic-specific strategies to support CDS tool adoption

Strategies to support use:• The screening alert completion rate was higher for encounters
perceived as relevant to routine tobacco screening by physicians. • Consider this factor when promoting the use of tobacco cessation

CDS tools among health providers

Potential for improving support alert efficacyLimited alert efficacy

Strategies to support use:• Providers responded to most support alerts, but few patients were
ready to quit, and referral to the tobacco cessation clinic was rare. • Use additional strategies (eg, patient education, provider training

in patient-provider communication) to increase the impact of the
CDS tools

Potential for improving the accuracy of tracking for alert completionInconsistencies between the acknowledgment of alert completion and
documented screening

Design:• EHR documentation of screening results was rare for some clinics,
even though their clinic staff acknowledged completion of
screening for most encounters.

• Improve CDS tool design to allow accurate tracking of screening
completion at the alert level

Strategies to support use:

• Use metrics that can accurately track screening completion, such
as metrics calculated based on the completion of EHR documenta-
tion of screening results

Importance of balancing alert efficacy with the burdenInterruptive alerts received more responses but also added burden to
providers

Design:• Providers were more responsive to interruptive alerts than nonin-
terruptive ones. • Increase the time interval between postponing and refiring an inter-

ruptive alert• Postponing the interruptive alert did not save providers time
compared with completing the alert. • Set a threshold to limit the total number of firing of tobacco cessa-

tion alerts during a single encounter

Improving Alert Adoption and Completion Through
Local Adaptation
Clinics varied substantially in completing the alert, calling for
clinic-specific strategies to improve alert adoption. We also
identified a modifiable factor (ie, the alert encounter relevance)
that affects alert completion. Our physician coauthors considered

certain encounter types (eg, initial consultation and office visit)
to be relevant for routine tobacco use screening, while others
(eg, lab visit and radiation oncology treatment visit) were
deemed less relevant. While existing guidelines recommend
repeating the smoking assessment at every encounter [17,18],
we found that the completion rate of the screening alert was
much lower for “less relevant” encounters, which may appear
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to be guideline noncompliance. This finding could be
informative for committees that develop tobacco screening and
treatment guidelines. Implementation teams that want to enforce
the “screening at every encounter” rule may need additional
strategies. These could include using provider orientation and
local champions to influence the culture surrounding tobacco
screening [35].

Improving Support Alert Efficacy
Although providers responded to support alerts frequently,
referral to the tobacco cessation clinic was rare. One reason was
that few patients were ready to quit at the point of care. Future
programs may incorporate additional strategies, such as patient
education, provider training in patient-provider communication,
and addressing patient-level barriers (eg, barriers associated
with health beliefs and socioeconomic factors) [36,37]. Note
that the 2% referral rate may underestimate the effect of the
support alert because it was calculated based on referrals directly
linked to the alert. If tobacco treatment specialists contacted the
patients interested in quitting after the patient visits, these
follow-up activities would be documented elsewhere without
a link to the alert, or if a patient chose other treatment methods
(eg, quitline or medications), the alert-driven referral would not
happen.

Improving Accuracy of Tracking for Alert Completion
The completion rates of the EHR documentation of screening
results were lower for some clinics, even though their clinic
staff acknowledged screening completion for most encounters.
Through discussion with the team coordinating the tobacco
cessation program, we identified one major reason for this gap.
In clinics using support from patient navigators to complete
screening documentation, the clinic staff were likely to bypass
the screening but still acknowledged completion. Therefore,
measuring EHR documentation is important for the accurate
tracking of alert success. We used encounter-level data for this
measurement. Alert-level tracking may be necessary for the
future development of targeted strategies (eg, provider-specific
training) to improve alert adoption. The alert design can be
improved to allow this, for example, by disabling the button for
acknowledging the completion of screening until the EHR
documentation is completed.

Balancing Alert Efficacy With Burden
Although commonly used, effective integration of e-alerts into
the clinical workflow has proven difficult [29-33,38,39].
Medication alerts were frequently overridden by health care
providers [29,30,33,40], and providers experienced alert-related
burden and fatigue [9,29,31,41]. Our study found that
postponing the interruptive alert did not save providers time
compared with completing the alert. This was partly due to the
refiring of postponed alerts. An overabundance of interruptive
alerts in EHRs may lead to frequent “postpone” or “override”
actions and user dissatisfaction [31-33]. However, our findings
do not support disabling the interruptive alerts, as we found that
providers were much more responsive to interruptive alerts than
noninterruptive ones. One way to alleviate the alert burden is
increasing the time interval between postponing and refiring or

setting the maximum number of times (eg, 2 or 3) to fire a
tobacco cessation alert during each encounter.

Contribution to Implementation Science Methods
New methods are needed for monitoring implementation,
including automated approaches that reduce the data collection
burden [7,42]. We contributed to this literature by developing
automatic EHR activity metrics for monitoring the
implementation of CDS tools. Our approach has three merits.
First, automatic metrics are suitable for rapid periodic evaluation
of implementation programs. These metrics can identify
deviations and variations of CDS use at clinic and provider
levels, which may inform the selection of key informants for
interviews to identify causes of deviation and variation, and the
development of strategies to improve CDS design and use.
Second, EHR activity data work “behind the scenes” to capture
EHR use behavior without interruptions [43-45]. Metrics built
on this data can reduce reporting bias and may minimize
Hawthorne effects (ie, participants’ engagement with an
intervention changes when they are aware of attention from
observers) [46]. Third, EHRs have been adopted by most US
hospitals [47], and EHR-embedded CDS tools are frequently
used to support health care quality improvement [1-6]. The
ubiquity of EHRs contributes to the generalizability of our
approach.

Our work relates to studies using EHR audit logs (one type of
EHR activity data) but is different in methodology. The metrics
described in these studies measure EHR use and associated
burden (eg, total time on EHR, time spent using the EHR after
hours, time spent on chart review per patient per day) [48-52]
nonspecific to CDS tools. Using EHR audit logs to measure
providers’ response to a specific EHR tool is challenging,
typically involving manual mapping of low-level actions
recorded in the log files to EHR use activities [39,50,53]. We
used alert activity data generated by Epic’s built-in functions
to eliminate manual mapping.

Prior studies on alert burden focused on medication alerts and
used alert override rate and alert volume as markers for burden
in the context of de-implementation [30-33,40]. To our
knowledge, this study is the first to systematically measure the
burden of preventive care alerts. Our findings did not support
a simple de-implementation approach but call for better local
adaptation to balance alert efficacy and burden.

Limitations
This study has several limitations. First, the EHR data we
analyzed only contained alert-linked referrals to the tobacco
cessation clinic. Our analysis may underestimate the actual
effect of the support alert. Second, EHR activity data only
capture provider interaction with the EHR and lack information
about other clinical activities (eg, discussion with patients, pager
ringing) during an encounter. In-depth investigations on clinical
workflows and their impact on alert response are needed to
better understand the variation of alert completion across clinics.

Conclusions
This study developed EHR activity metrics and demonstrated
their use in monitoring the impact of CDS tools implemented
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by a C3I-funded implementation program that promotes tobacco
cessation in patients with cancer. These metrics can be used to
guide implementation adaptation and are scalable and adaptable

to other settings that use e-alerts to promote adherence to health
practice guidelines.
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