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Abstract

Background: Management of abdominal aortic aneurysms (AAAs) requires serial imaging surveillance to evaluate the aneurysm
dimension. Natural language processing (NLP) has been previously developed to retrospectively identify patients with AAA from
electronic health records (EHRs). However, there are no reported studies that use NLP to identify patients with AAA in near
real-time from radiology reports.

Objective: This study aims to develop and validate a rule-based NLP algorithm for near real-time automatic extraction of AAA
diagnosis from radiology reports for case identification.

Methods: The AAA-NLP algorithm was developed and deployed to an EHR big data infrastructure for near real-time processing
of radiology reports from May 1, 2019, to September 2020. NLP extracted named entities for AAA case identification and
classified subjects as cases and controls. The reference standard to assess algorithm performance was a manual review of processed
radiology reports by trained physicians following standardized criteria. Reviewers were blinded to the diagnosis of each subject.
The AAA-NLP algorithm was refined in 3 successive iterations. For each iteration, the AAA-NLP algorithm was modified based
on performance compared to the reference standard.

Results: A total of 360 reports were reviewed, of which 120 radiology reports were randomly selected for each iteration. At
each iteration, the AAA-NLP algorithm performance improved. The algorithm identified AAA cases in near real-time with high
positive predictive value (0.98), sensitivity (0.95), specificity (0.98), F1 score (0.97), and accuracy (0.97).

Conclusions: Implementation of NLP for accurate identification of AAA cases from radiology reports with high performance
in near real time is feasible. This NLP technique will support automated input for patient care and clinical decision support tools
for the management of patients with AAA.
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Introduction

Worldwide prevalence rates of abdominal aortic aneurysms
(AAAs) range from 1.6% to 3.3% for men older than 60 years
[1]. Assessment of AAA may be performed by a variety of
imaging tests, including ultrasound (US), computerized
tomography (CT), and magnetic resonance imaging (MRI). In
the United States, the prevalence of AAA has been reported as
2.8% among 9457 individuals screened by US [2]. Moreover,
screening for early identification decreases the risk of
aneurysm-related death and morbidity [1,3]. A prior study has
shown that 4.5 ruptured AAA per 10,000 person-years were
likely to have been prevented by screening, with an estimated
54 life-years gained per year of screening in a population of
23,000 men at risk [4].

The interpretation of imaging examinations is routinely reported
in radiology reports as narrative text in electronic health records
(EHRs) [5]. The automated extraction of information from
narrative text can be accomplished by natural language
processing (NLP) [6-8]. Prior studies have demonstrated high
accuracy, sensitivity, specificity, and positive predictive value
(PPV) of NLP for extraction of clinical concepts from narrative
text in radiology reports [9-12]. Moreover, NLP is useful in
cohort ascertainment for epidemiologic studies, query-based
case retrieval, clinical decision support (CDS), quality
assessment of radiologic practices, and diagnostic surveillance
[5].

A previous retrospective cohort study from our institution
developed a rule-based NLP algorithm for retrospective retrieval
of AAA cases from radiology reports, which performed with
high accuracy [12]. However, to the best of our knowledge, no
prior study has demonstrated the use of NLP to identify AAA
cases from radiology reports processed in near real-time. Hence,
we tested the hypothesis that a rule-based NLP algorithm will
extract AAA diagnosis from radiology reports in near real-time
with high accuracy.

Methods

Study Settings
This study used Mayo Clinic radiology reports from May 1,
2019, to September 30, 2020.

Study Design
A rule-based AAA-NLP algorithm was developed for
information extraction of AAA diagnosis automatically from
radiology reports, including CT abdomen pelvis without
intravenous (IV) contrast, CT chest abdomen pelvis angiogram

with IV contrast, US abdomen complete, US aorta iliac arteries
bilateral with doppler, MRI abdomen with and without IV
contrast, and MRI pelvis with and without IV contrast. The
rule-based NLP algorithm was developed using MedTagger
and deployed in the institutional near real-time big data
infrastructure to process relevant radiology reports. MedTagger
is an open-source NLP tool that has been previously used in
various clinical NLP applications [13]. MedTagger enables
section identification, extraction of concepts, sentences, and
word tokenization [14,15]. The AAA-NLP algorithm had 2
main components composed of text processing and report
classification. AAA-relevant concepts were used to classify all
reports (Figure 1).

A custom lexicon for AAA was identified by the study team
through a manual review of radiology reports. Subsequently,
this lexicon was mapped to corresponding concepts and their
synonyms in the Unified Medical Language System
Metathesaurus. The lexicon used for AAA identification
included aorta abdominal aneurysm, aortic aneurysm abdominal,
AAA, aneurysm abdominal aorta, and infrarenal aortic
aneurysm. Each radiology report was then processed in near
real-time by NLP. The AAA-NLP algorithm extracted both the
lexicon and the contextual information of assertions, including
negations or confirmations, from each radiology report. Textbox
1 displays the rules used by the NLP algorithm. The AAA-NLP
algorithm classified subjects as AAA cases and controls without
AAA.

To enable validation, the NLP output generated by near real-time
processing of radiology reports was retrieved from the digital
infrastructure by the information technology team and converted
to a human-readable format for annotation. This annotation was
performed by 2 trained physicians following written guidelines
for standardization. The annotators were blinded to the diagnosis
of each subject and to the results of the other annotator. In the
written guidelines, AAA was defined as an aortic aneurysm
diameter ≥3 cm by imaging as recommended by clinical practice
guidelines [16].

The annotators reviewed the output from 120 processed
radiology reports in 3 different training sets for iterative
validation cycles to refine the algorithm. A total of 360 reports
were reviewed. After abstracting and classifying the radiology
reports, the information was entered and stored in a digital data
set. Reports with a diagnosis of AAA were categorized as
“case”; if there was no evidence of AAA or if an alternate
diagnosis other than AAA was reported, the report was
categorized as “control.” A board-certified cardiologist verified
the information and resolved discrepancies in patient
classification.
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Figure 1. Study design. AAA: abdominal aortic aneurysm; EHR: electronic health record; NLP: natural language processing.

Textbox 1. Abdominal aortic aneurysm (AAA)–natural language processing rule and examples of text span.

Rule (any token + keyword for AAA + any token)

Examples of confirmatory assertions

• Suprarenal aortic abdominal aneurysm which measures up to 5.2 cm

• Fusiform infrarenal abdominal aortic aneurysm terminating proximal to the aortobiiliac bifurcation, 56 mm, previously 56 mm

• There is a 5.7×5.1 cm infrarenal aortic aneurysm measured on image 175 of series 4

Examples of negated assertions

• Negative for abdominal aortic aneurysm or dissection

• Abdominal aortic aneurysm is absent

• Negative for thoracic or abdominal aortic aneurysm, dissection, penetrating atherosclerotic ulcer or intramural hematoma

Statistical Analysis
The information extracted by the AAA-NLP algorithm from
radiology reports in near real-time was compared to the
reference standard manual review of radiology reports following
written guidelines for standardization to calculate PPV,
sensitivity, specificity, and F1 score. The formula to calculate
F1 score was given as follows: 2 × ((PPV×sensitivity) /
(PPV+sensitivity)) [5].

Ethics Approval
This project was approved by the Mayo Clinic Institutional
Review Board (approval number 21-006950).

Results

Reports of 295 patients were validated in 3 different iterations.
The data set for each iteration contained 120 reports, but 46
(16%) patients had more than one report. The reasons for more
than one report for the same patient were imaging tests

performed before and after repair procedures or surveillance
for serial assessment of AAA (Table 1). There were no
discrepancies regarding AAA diagnosis between 2 or more
imaging reports from the same patient. Table 1 shows the
distribution of demographic characteristics across AAA cases
and controls. Cases and controls had similar ages in each of the
iterative validation cycles, and most patients were Caucasian.
AAA cases were more likely to have a history of smoking.

For evaluation of the AAA-NLP algorithm performance, 120
processed reports from each iteration were randomly selected.
A total of 360 processed reports were reviewed by 2 physicians
blinded to AAA diagnosis. There was 100% agreement for
interactions 1 and 3. For interaction 2, the annotators disagreed
on 1 report yielding a kappa coefficient of 92%. The
disagreement was resolved by a board-certified cardiologist,
creating the reference standard for comparison. The number of
reports classified by the reference standard as true positives,
false positives, true negatives, and false negatives in each
iteration is shown in Table 2.
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Table 1. Clinical characteristics and radiology report information.

Iteration 3Iteration 2Iteration 1Characteristic

Control (n=50)Case (n=59)Control (n=59)Case (n=44)Control (n=52)Case (n=31)

72.8 (10.4)81.2 (8.5)69.5 (14.1)70.3 (8.4)74.4 (12.4)78.6 (11.1)Age (years), mean (SD)

25 (50)46 (78)33 (56)34 (77)21 (40)26 (84)Male sex, n (%)

48 (96)58 (98)54 (92)42 (95)52 (100)31 (100)Caucasian, n (%)

Comorbidities, n (%)

37 (74)46 (78)27 (46)31 (70)39 (75)24 (77)Hypertension

27 (54)42 (71)29 (49)29 (66)22 (42)21 (68)Hyperlipidemia

25 (50)50 (85)23 (39)35 (80)24 (46)29 (94)Smoking history

13 (26)19 (32)12 (20)10 (23)7 (13)9 (29)DMa

4 (8)9 (15)4 (7)5 (11)4 (8)4 (13)PADb

15 (30)32 (54)10 (17)18 (41)7 (13)16 (52)CADc

Radiology reports

43113718Patients with ≥2 reports, n

N/A4.9 (1.2)N/A4.8 (1.3)N/Ae4.6 (1.08)AAAd diameter (cm), mean (SD)

N/A8N/A9N/A2Reports after AAA repair, n

aDM: diabetes mellitus.
bPAD: peripheral artery disease.
cCAD: coronary artery disease.
dAAA: abdominal aortic aneurysm.
eN/A: not applicable.

Table 2. Classification of abdominal aortic aneurysm from radiology reports during iterative validation.

Iteration 3Iteration 2Iteration 1

TotalPredicted

control

Predicted caseTotalPredicted

control

Predicted caseTotalPredicted

control

Predicted case

62FN 3TP 5958FN 2TP 5665FNb 6TPa 59Actual case

58TN 57FP 162TN 58FP 455TNd 54FPc 1Actual control

120606012060601206060Total

aTP: true positive.
bFN: false negative.
cFP: false positive.
dTN: true negative.

Radiology reports are composed of multiple sections. Figure 2
shows an example of a deidentified radiology report with all
sections.

During the first iteration implementation, section ID number
was used and section detection was challenging. For the second
iteration, the algorithm was revised to include section header
names for the filter criteria and solve sentence boundary issues.
For the third iteration, section detection was implemented based
on section names from our complete corpus using the frequency
of normalized text with the tool lexical variant generation of
the National Library of Medicine [17]. In a separate experiment,
203 additional radiology reports were reviewed by the annotators

for evaluation of report section extraction, which resulted in
accuracy of 0.96.

During this iterative refinement process, the report sections
termed “reason for exam,” “referral diagnosis,” “exam type,”
and “signed by” (Figure 2) were excluded, resulting in enhanced
NLP algorithm performance. The report sections selected for
processing were findings and impressions. During each iteration,
the algorithm performance further improved. The performance
metrics of the iterations are summarized in Table 3.

During the last iteration, 3 false negatives and 1 false positive
contributed to the error analysis. False negatives were due to
the complex nature of narrative text in these reports (ie, no
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significant interval changes in appearances of a partially
thrombosed infrarenal AAA measuring 42×40 mm, extending
to the level of aortic bifurcation and proximal common iliac
arteries; no signs of rupture or impending rupture of the known
infrarenal AAA; and no slightly increased size of fusiform

infrarenal AAA). Additionally, the false positive was due to a
typographical error, which was the report of a patient with an
aorta diameter of 2.7 cm labeled as AAA, which does not meet
the criteria for AAA (≥3.0 cm).

Figure 2. Example of deidentified radiology report with all sections. In this figure, section names are displayed in blue font. AAA: abdominal aortic
aneurysm.

Table 3. Algorithm performance of each iteration.

Iteration 3 (n=120)Iteration 2 (n=120)Iteration 1 (n=120)Performance metric

0.950.970.91Sensitivity

0.980.930.98PPVa

0.980.940.98Specificity

0.970.950.94F1 score

0.970.950.94Accuracy

aPPV: positive predictive value.

Discussion

Overview
In this study, a novel rule-based NLP algorithm was developed
for the extraction of AAA diagnosis from radiology reports and
prospectively deployed in the institutional big data infrastructure
for near real-time processing. Compared to the reference
standard of manual review of radiology reports, the AAA-NLP
algorithm extracted AAA diagnosis in near real time with high
sensitivity, PPV, F1 score, specificity, and accuracy.

To the best of our knowledge, this study is the first to describe
the use of NLP algorithms prospectively to extract AAA
diagnosis in near real time from radiology reports. Clinicians,
information technologists, and informaticians collaborated to
refine the algorithm to improve performance. In previous
studies, billing codes were used to find AAA cases [18,19].
However, in those studies, the cohorts were limited to patients

with AAA who underwent procedures for aneurysm repair or
had a history of ruptured AAA [18,19]. No prior studies using
billing codes algorithms retrieved a broader spectrum of AAA
diagnosis while also including patients presenting with
uncomplicated AAA (ie, patients who did not undergo prior
repair or who had not previously presented with ruptured AAA).
In contrast, in this study, NLP automatically extracted AAA
diagnosis from radiology reports prospectively and regardless
of prior repair or rupture, thereby expanding the scope of
computational approaches to include the detection of AAA cases
prior to rupture or repair.

A radiology report consists of free text, organized into standard
sections [5]. The American College of Radiology has published
guidelines with recommendations for the use of sections for
narrative (free text) entry in radiology reports [20]. NLP
techniques enable the automatic extraction of information from
narrative text [6-8]. Moreover, information extracted by NLP
can be used to populate CDS systems automatically without the
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need for manual data entry and be better aligned with existing
workflows such that radiologists can spend time interpreting
images rather than filling out forms.

NLP is a computational methodology used for electronic
phenotyping to extract meaningful clinical information from
text fields [6,7,21]. In this study, we used NLP to process
radiology text reports. The previous NLP algorithm used to find
cases of AAA from radiology reports [12] was designed for
retrospective cohort identification, whereas this report describes
the prospective implementation of an NLP algorithm for input
to a patient-specific CDS system for near real-time processing
of radiology reports. Near real-time processing requires <3
milliseconds to process a document after a radiologist releases
a report to the EHR [22]. The AAA-NLP implementation
described in this study was developed within the existing digital
infrastructure and can be used in clinical practice immediately
without the need to retrain the algorithm. Additionally, the
previously described algorithm [12] did not identify document
sections in the radiology reports. By selecting specific sections
for NLP information extraction, improvement in NLP
performance was observed, as shown in the Results section. In
the future, transformer-based NLP models [23,24] may be
trained to interpret nuanced language, and ablation experiments
[25] could be used to further evaluate these models.

The use of NLP algorithms has advantages compared to other
methods. In comparison, the use of check box forms in radiology
reports may require the development of new workflows [26,27].
The use of check box forms also requires the radiologist to direct
attention away from the imaging interpretation process [26,27].
Manual entry of summaries of radiology findings in a check
box can increase reporting time with decreased radiologist
productivity [26,27]. Check box use could also result in the loss
of important and clinically relevant descriptive information
available only in the radiology narrative reports.

The rule-based AAA-NLP algorithm described in this study
shows accurate detection of a broad spectrum of AAA cases
prospectively in near real time from radiology reports, regardless
of the presence of prior rupture or repair. This methodology
will also potentially generate input for CDS to assist providers
in managing patients with AAA by displaying the relevant
information automatically at the point of care and in near real
time for CDS tools. It will also support the automatic
identification of cohorts for research purposes (eg, cohorts for
clinical trials) and quality projects, and will support a learning
health care system. NLP has been previously used for the
identification of peripheral arterial disease and critical limb
ischemia from narrative clinical notes of EHRs [21,28].
Therefore, it will also be possible to develop NLP algorithms
for the identification of AAA cases from clinical notes in near
real time.

In efforts to develop a learning health care system, Mayo Clinic
has developed a robust big data–empowered clinical NLP
infrastructure that enables near real-time NLP processing for

the delivery of relevant information to the point of care via CDS
[22]. Accordingly, we have deployed the AAA-NLP algorithm
described herein to this digital infrastructure for translation to
clinical practice. Importantly, the near real-time identification
of patients with AAA by NLP responds to the American Heart
Association scientific statement, which recommends the
implementation of technologies to extract clinical information
in real time that will promptly provide synopses of the
information extracted [29].

Limitations
This NLP algorithm was developed, tested, and implemented
in a single tertiary medical center. Future studies should evaluate
this algorithm at other institutions to demonstrate portability.
A robust institutional digital infrastructure is required for the
execution of near real-time processing of radiology reports [22].
Hence, the absence of adequate digital infrastructure may limit
porting of this algorithm. For implementation, the analysis of
radiology report architecture to enable the selection of document
types and document sections may also be necessary for
portability. Another potential challenge for porting this
algorithm to other EHRs is differences in lexicons used for the
extraction of the AAA concept across institutions. In mitigation,
for this NLP algorithm, each lexicon was mapped to
corresponding concepts and synonyms in the publicly available
Unified Medical Language System Metathesaurus for
standardization.

The algorithm was developed for the extraction of AAA
diagnosis but not for the extraction of iliac artery or thoracic
aortic aneurysms. Future studies should create and validate NLP
algorithms for the extraction of thoracic and iliac artery
aneurysms. The clinical criteria for AAA diagnosis involve a
minimum diameter, but this NLP algorithm did not interpret
the reported diameter. This is an area for future improvement
in the algorithm, as clinical criteria for AAA may change over
time. In this study, most patients were Caucasian. This was
likely related to the ethnic distribution of communities in the
Midwest, where this study was conducted [30,31]. Additionally,
prior studies have reported a higher prevalence of AAA among
Caucasians compared to other races [31,32]. There were
differences in comorbidities of patients included in the 3
iterations. However, the NLP was developed for the extraction
of the diagnosis of AAA and not developed for the extraction
of associated patient comorbidities. The differences in patient
comorbidities did not influence NLP performance for the
extraction of AAA from radiology reports.

Conclusions
Implementation of NLP for prospective identification of AAA
cases from radiology reports in near real time with high
performance is feasible. This near real-time NLP technique
described will potentially be helpful for the generation of
automated input for CDS tools to assist clinicians in the
management of patients with AAA, quality improvement
projects, and research (automated identification of cohorts).
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