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Abstract

Background: Digitization offers a multitude of opportunities to gain insights into current diagnostics and therapies from
retrospective data. In this context, real-world data and their accessibility are of increasing importance to support unbiased and
reliable research on big data. However, routinely collected data are not readily usable for research owing to the unstructured
nature of health care systems and a lack of interoperability between these systems. This challenge is evident in drug data.

Objective: This study aimed to present an approach that identifies and increases the structuredness of drug data while ensuring
standardization according to Anatomical Therapeutic Chemical (ATC) classification.

Methods: Our approach was based on available drug prescriptions and a drug catalog and consisted of 4 steps. First, we performed
an initial analysis of the structuredness of local drug data to define a point of comparison for the effectiveness of the overall
approach. Second, we applied 3 algorithms to unstructured data that translated text into ATC codes based on string comparisons
in terms of ingredients and product names and performed similarity comparisons based on Levenshtein distance. Third, we
validated the results of the 3 algorithms with expert knowledge based on the 1000 most frequently used prescription texts. Fourth,
we performed a final validation to determine the increased degree of structuredness.

Results: Initially, 47.73% (n=843,980) of 1,768,153 drug prescriptions were classified as structured. With the application of
the 3 algorithms, we were able to increase the degree of structuredness to 85.18% (n=1,506,059) based on the 1000 most frequent
medication prescriptions. In this regard, the combination of algorithms 1, 2, and 3 resulted in a correctness level of 100% (with
57,264 ATC codes identified), algorithms 1 and 3 resulted in 99.6% (with 152,404 codes identified), and algorithms 1 and 2
resulted in 95.9% (with 39,472 codes identified).

Conclusions: As shown in the first analysis steps of our approach, the availability of a product catalog to select during the
documentation process is not sufficient to generate structured data. Our 4-step approach reduces the problems and reliably increases
the structuredness automatically. Similarity matching shows promising results, particularly for entries with no connection to a
product catalog. However, further enhancement of the correctness of such a similarity matching algorithm needs to be investigated
in future work.

(JMIR Med Inform 2023;11:e40312) doi: 10.2196/40312
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Introduction

Background
Over the last decade, the amount of electronically available data
in the health care domain has increased enormously worldwide.
Much of the data is generated during the processing of
administrative claims, through documentation processes in
electronic health records (EHRs) performed during patient
treatments, or via data feeds from mobile devices providing
patient-reported outcomes. Therefore, it is not surprising that
real-world data (RWD) are becoming more important for health
care research. RWD studies can be considered complementary
to randomized controlled trials (RCTs), as they allow the results
of RCTs to be confirmed in much larger cohorts and over a
longer period. Compared with RCTs, RWD studies allow for
better external validity and better generalizability, and they not
only offer opportunities for long-term surveillance of drug
products but also are cost-effective and time-saving [1].

Drug surveillance systems, such as the US Food and Drug
Administration’s Sentinel initiative, are critical for promoting
postmarket drug safety [2-8]. The European Medicines Agency
has also started to establish research infrastructure based on
RWD to support pharmacovigilance [9]. In addition, the
European Health Data and Evidence Network [10] emerged to
establish transnational research networks based on a common
data model that enables standardized RWD and methods for
observational studies to generate real-world evidence. Recently,
the European Health Data and Evidence Network has begun to
collaborate with the European Medicines Agency to address
COVID-19 [11].

However, the original purpose of RWD generation during patient
treatment is not primarily aimed at its use in research. Therefore,
notable problems have been identified regarding the replication
and validity of observational research results based on RWD.
To ensure the reliability and robustness of the results from RWD
research, these issues have to be addressed, as they become
even more important when observational studies are conducted
across countries at large scale.

Data harmonization, the use of international standards and
terminologies, a common data model, methods, and tools for
data analyses that increase the reproducibility of results are
needed [12]. These gaps are being addressed by the International
Observational Health Data Sciences and Informatics community,
which provides the common data model called the Observational
Medical Outcomes Partnership (OMOP) and standardized
analysis tools based on OMOP. It also includes standardized
vocabularies that contain translations between national
terminologies and internationally acknowledged terminologies,
for example, Systematized Nomenclature of Medicine-Clinical
Terms, Logical Observation Identifiers Names and Codes,
Anatomical Therapeutic Chemical (ATC) classification, and
RxNorm [13]. OMOP allows RWD to be stored in the same
way, regardless of data origin, thus ensuring the use of RWD
in international, large-scale observational studies. Compared
with similar projects such as Informatics for Integration Biology
and the Bedside or the National Patient-Centered Clinical
Research Network, Observational Health Data Sciences and

Informatics-OMOP meets the needs of observational RWD
studies well [14]. Many RWD studies on OMOP have shown
that drug data at the ingredient level are sufficient to answer
their research questions [15]. Although drug data with details
on dosage and units for drug exposure can be important for
observational research on drug effectiveness and drug safety
with the same drug at different doses, the availability of the
drug ingredient is the least common denominator and the basic
requirement for drug-related RWD studies on OMOP. Therefore,
drug prescription data must be available in a structured format
that does not necessarily include the name of the drug product
but at least the ingredient information. For drug utilization
research, the World Health Organization recommends the use
of ATC classification, which divides drugs into different groups
based on the organ or system on which they act [16]. ATC
classification includes a hierarchy based on 5 different levels,
with ATC level 5 being the chemical substance that represents
the active ingredient of a drug product [17]. Each approved drug
product on the market is assigned a specific ATC level 5 code.
The National Institutes of Health Collaboratory recommends
assessing and reporting the quality of EHR data for clinical
reuse in terms of data completeness, accuracy, and consistency
[18]. Weiskopf et al [19] also determined that the completeness
and correctness of data are of special importance for data quality
improvement.

Objective
To the best of our knowledge, there is no existing approach to
systematically analyze and improve the structuredness of drug
prescription data for observational research. Thus, in this study,
we systematically analyzed the structuredness of EHR drug
prescriptions to determine the ratio between structured drug
prescription data containing ATC code level 5 and free-text
drug prescriptions without an available standard concept based
on the 14 ATC groups of level 1. In addition, we presented an
approach to improve the structuredness of drug prescription
data by introducing an automatic detection method for ATC
code determination. To ensure the robustness and accuracy of
the results of automatic detection, we introduced a validation
step based on existing text-mining algorithms.

Methods

Study Details
This retrospective, noninterventional study systematically
reviewed drug prescriptions based on real-world observational
data at the University Hospital Carl Gustav Carus Dresden
(UKD), Germany. This study was based on fully anonymized
data and did not include any correlations with individual
patients. All inpatient drug prescriptions, including acute
medications, from 2016 to 2020 were included in the study,
without restriction to specific conditions or treatments. The
original data were recorded in the ORBIS hospital information
system from Dedalus, using the ORBIS module, “KURV,” that
represents the patient curve including medication data. A total
of 1,768,153 drug prescriptions were reviewed from the hospital
information system records. Drug prescription data from other
systems (eg, intensive care units and chemotherapy) were
excluded because data in those systems were completely

JMIR Med Inform 2023 | vol. 11 | e40312 | p. 2https://medinform.jmir.org/2023/1/e40312
(page number not for citation purposes)

Reinecke et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


structured and stored in separate backend systems. The data
used for this study were provided by the Data Integration Centre
at the UKD, which was established with funding from the
German Federal Ministry of Education and Research as part of
the Medical Informatics Initiative in Germany.

Ethics Approval
The study was approved by the Ethics Committee of the
Technical University of Dresden as a retrospective,
observational, noninterventional, nonhuman subject study
(SR-EK-521112021).

Data Set Details
The following 2 data sets were used: drug prescription data
(data set 1) and drug product catalog data (data set 2). The drug
product catalog was exported from the UKD
Enterprise-Resource-Planning system on November 16, 2021,
and contained the drug product name, drug ingredient name,
ATC level 5 code, drug dose and unit information, and legacy
products. In addition, 2 other data sets were derived from data

set 1. First, an aggregated data set (data set 3) was generated
based on the grouped data set 1 for all the unstructured drug
prescription entries. The grouping activity to create data set 3
was performed on the MEDICATION column of data set 1 by
grouping all entries in the data element MEDICATION using
the Python library Pandas and its groupby function. Frequency
information for each unique MEDICATION record was added
to data set 3. The data set (data set 4) contained a subset of the
first 1000 most frequent entries from data set 3 and additional
results from the manual evaluation step.

All the metadata elements of the data sets presented above that
are relevant to this study are illustrated and described in detail
in Table 1. Drug prescriptions selected from the drug catalog
data are labeled as structured data (eg, “IBUPROFEN STADA
600 mg Zäpfchen | [Ibuprofen natrium, Ibuprofen]”) based on
the contents of the STRUCTURE column of data set 1. Drug
prescriptions that were not selected from the drug product
catalog are designated as unstructured data (eg, “Ibuprofen
600” and “Ibuprofen”).

JMIR Med Inform 2023 | vol. 11 | e40312 | p. 3https://medinform.jmir.org/2023/1/e40312
(page number not for citation purposes)

Reinecke et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Description of relevant data set with its metadata elements.

DescriptionData typeData set and data element

DSa1 initial data set with all drug prescriptions

Free text or predefined value, chosen from an available fixed drop-down menu that contains
product names, derived from the drug product catalog, when creating a new drug prescription

StringMEDICATION

Extracted from the prescription start date information for further statistical analysesNumberYEAR

TRUE if MEDICATION was chosen from the drug catalog or FALSE if the free text was enteredBooleanSTRUCTURE

ATC code level 5 available in case STRUCTURE is true otherwise emptyStringATCb_L5

DS2 drug catalog data

Product name as listed in the ERPc systemStringProduct_name

Ingredient name as listed for the productStringIngredient_name

ATC code level 5StringAtc_code

DS3 grouped DS1 by MEDICATION data element

Grouped unstructured free-text entriesStringMEDICATION

Summed up the occurrence of the MEDICATION text field to determine the most relevant free-
text drug prescriptions

NumberFREQUENCY

Algorithm 1 result as an ATC code or empty if no matchStringStep1

Algorithm 2 result as an ATC code or empty if no matchStringStep2

Algorithm 3 result as an ATC code or empty if no matchStringStep3

DS4 most frequent 1000 entries of DS3 (sorted by frequency)

Grouped unstructured free-text entriesStringMEDICATION

Summed up the occurrence of the medication text fieldNumberFREQUENCY

Algorithm 1 result as an ATC code or empty if no matchStringStep1

Algorithm 2 result as an ATC code or empty if no matchStringStep2

Algorithm 3 result as an ATC codeStringStep3

Algorithm 1 evaluation resultBooleanEval1

Algorithm 2 evaluation resultBooleanEval2

Algorithm 3 evaluation resultBooleanEval3

TRUE if the same result for algorithm 1+2BooleanTrue12

TRUE if the same result for algorithm 1+3BooleanTrue13

TRUE if the same result for algorithm 2+3BooleanTrue23

TRUE if the same result for algorithm 1+2+3BooleanTrue123

Corrected ATC code. in case no algorithm determined the correct result, entered manually in the
evaluation step

StringCORRECT

Any comments or additional information if neededStringCOMMENTS

Finally determined ATC code for all entries or labels in case no ATC code could be determined
(labels are introduced in the methods validation section in detail)

StringFINAL

aDS: data set.
bATC: Anatomical Therapeutic Chemical.
cERP: Enterprise-Resource-Planning.

Data Analysis

Overview
Data analysis consisted of a 4-step process, as shown in Figure
1. The first step of the process was an initial data quality analysis

to determine the overall ratio of structured to unstructured drug
prescriptions.

To improve the structure of the drug prescriptions, 3 existing
algorithms were applied to automatically identify correct ATC
codes for the unstructured drug prescriptions. The identified
ATC codes were then manually reviewed by experts
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(pharmacists and medical information scientists) and checked
for correctness. This step also included the identification of
existing patterns that can help conclude the reliability of the
automatically identified ATC codes for unstructured data.
Finally, the results of the previous 3 steps were consolidated to

assess the degree of improvement achieved in unstructured drug
prescriptions. To ensure expert coverage of the entire process,
an interdisciplinary team of pharmacists, computer scientists,
and medical informatics researchers was formed.

Figure 1. Data analysis 4-step approach. ATC: Anatomical Therapeutic Chemical; NLP: natural language processing.

Initial Data Assessment
Initially, the ratio of structured to unstructured drug prescriptions
was determined for data set 1. For this purpose, the
STRUCTURE data element of data set 1 was used to subdivide
the data into 2 groups. If the value of STRUCTURE was TRUE,
the record was considered to be structured; otherwise, it was
unstructured. Subsequently, the unstructured subset of drug
prescriptions was grouped by the data element MEDICATION
as data set 3, and the frequency was calculated and added as the
data element FREQUENCY.

The first manual review of the grouped drug prescriptions (data
set 3) was done by the interdisciplinary team of experts to
identify records that are not drug prescriptions but other
instructions, such as orders for blood counts or other laboratory
and measurement orders (eg, “BGA”—laboratory request for
blood gas analysis, “BE”—request to nurses for taking a blood

sample, and “BB”—laboratory request for blood count). This
task resulted in a set of rules (Multimedia Appendix 1) to allow
the automated search and identification of medication entries
that needed to be excluded for further steps.

Improvement
Unstructured drug prescriptions (usually provided as free text)
were used as inputs for the improvement step. Preprocessing
of the drug prescription was not performed previously. In this
step, 3 different algorithms were implemented to automatically
identify ATC level 5 codes based on the MEDICATION text.

The algorithms were based on a different mechanism for
matching the MEDICATION text of data set 1 with the product
catalog data elements INGREDIENT_NAME and
PRODUCT_NAME of data set 2, as described in detail in Table
2.

Table 2. An overview of algorithms for Anatomical Therapeutic Chemical (ATC) code identification for unstructured drug prescriptions.

Result dataData input for comparisonMechanismAlgorithm

Data set 2Data set 1

ATC codeIngredient_nameMEDICATIONString comparison1

ATC codeProduct_nameMEDICATIONString comparison2

ATC code+similarity scoreINGREDIENT_NAME and PRODUCT_NAMEMEDICATIONSimilarity matching3
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Algorithms 1 and 2 rely on simple string comparisons to
recognize either the ingredient name or product name within
the drug prescription. Algorithm 3 performs natural language
processing (NLP) based on similarity matching between the
data element MEDICATION in data set 1 and the 2 data
elements PRODUCT_NAME and INGREDIENT in data set 2
with the Python library FuzzyWuzzy [20] using Levenshtein
distance because it has shown promising results in other health
care research areas [21,22]. The best similarity score result was
100, which meant that the components of the string
MEDICATION were entirely contained in
INGREDIENT_NAME or PRODUCT_NAME. The lower the
similarity score, the less similar the MEDICATION string is
compared with the drug catalog entries. This algorithm provided
up to 3 possible ATC codes, sorted in descending order based
on their similarity scores. To determine the most promising
method of the FuzzyWuzzy library for our implementation, we
defined that the word order in the data element MEDICATION

is irrelevant and can be different from the compared strings in
INGREDIENT_NAME and PRODUCT_NAME. All words
from the entry of the data element MEDICATION must be
included in the entry of INGREDIENT_NAME or
PRODUCT_NAME, but not vice versa. This led to the
implementation of the method token_set_ratio. This method
tokenizes both strings to be compared, changes the upper case
to the lower case, and removes punctuation. It then sorts the
tokens alphabetically and split them into 2 groups: the
intersection group (tokens that are the same in both strings) and
the remainder group (tokens that differ in compared strings).
The token_set_ratio method compares the intersection group
with the intersection and remainder of the first string and then
the same with the remainder of the other string and finally takes
the highest results of this comparison as the final result. As
shown in the following example (Textbox 1), the token_set_ratio
method provides the best results concerning the given
requirements.

Textbox 1. An example of the token_set_ratio method.

d1 = “Stada paracetamol”

d2 = “paracetamol Stada 400 mg”

Print(“Ratio: ”, fuzz.ratio(d1.lower(),d2.lower()))

Print(“Partial Ratio: ”, fuzz.partial_ratio(d1.lower(),d2.lower()))

Print(“Token Sort Ratio: ”, fuzz.token_sort_ratio(d1.lower(),d2.lower()))

Print(“Token Set Ratio: ”, fuzz.token_set_ratio(d1.lower(),d2.lower()))

Ratio: 54

Partial Ratio: 65

Token Sort Ratio: 83

Token Set Ratio: 100

The algorithms were applied to data sets 1 and 3. The results
of the algorithms in data set 3 were also used in data set 4. The
concordance between the results for each permutation
(algorithms 1+2, 1+3, 2+3, and 1+2+3) was also calculated.
The complete source can be accessed on Zenodo [23].

Validation
The validation step consisted of manual checks of the
automatically generated ATC codes by the same
interdisciplinary team as in the previous steps. It was performed
on a subset of the most common free-text prescriptions. To
maintain the validation effort proportionate to the benefit, a
minimum target was defined for the manual validation process
of unstructured drug prescriptions to cover at least 80% of
structured and manually validated unstructured entries
combined. During the validation step, information was added
to each algorithm to determine whether the correct ATC code,
wrong ATC code, or no ATC code was identified. If no
algorithm identified the correct ATC code, it was determined
by manual validation when possible. If an entry was found to
generally have no drug prescription, it was marked as an
additional entry without drug prescription with the keyword
“nomed.” For drug prescriptions that require further
specification to determine the exact ATC level 5 code, the
manual review checks whether the ATC level 4 or 3 code can

be determined based on the free text of the drug prescription,
otherwise the entry was flagged as unspecific with the keyword
“unspec.” All unstructured drug prescription entries for which
no validation of the automatically generated ATC codes was
performed were marked with the keyword “no_eval.”

The results of the manual validation were summarized to identify
any patterns that can help improve the robustness of the results
of automatically detected ATC codes based on the total findings
and correctness of each algorithm, the concordance level
between the results of algorithms 1, 2, and 3, and the
Levenshtein similarity score for algorithm 3. For algorithm 3,
we used a 2-tailed t test implemented in Python to determine
whether there was a significant difference between the means
of the Levenshtein similarity score for the correct and incorrect
results.

In addition, the incorrect results were examined in more detail
by the interdisciplinary team to identify patterns that would
reveal important reasons and similarities related to the
ingredients of concern (ATC) to the greatest extent possible.

Final Data Assessment
For the final data assessment, the results of the step improvement
and validation documented in data set 4, including correctly
identified ATC level 5 codes or “nomed,” “unspec,” or
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“no_eval” labels, were merged with the original drug
prescription data from data set 1. Thus, the final data assessment
was executed based on the algorithm results and manual
validation. The total number of drug prescription records was
determined for each of the 14 ATC groups, including the
proportion of structured versus unstructured data per ATC group.
In addition, the total number of unique ATC level 5 codes,
including their structuredness, as well as the most frequent ATC
level 5 codes used in drug prescription of the data set 1 are
presented. This allows a ranking of the structuredness based on
the ATC groups and ATC codes.

Results

Initial Data Assessment
The initial assessment revealed 843,980 (n=1,768,153, 47.73%
drug prescriptions in the data set 1) structured drug prescriptions.
The proportion of unstructured drug prescriptions that required
further investigation was 52.27% (924,173 drug prescription
entries). A small set of rules, for example, all drug prescription
entries starting with laboratory or measurement orders
(Multimedia Appendix 1), identified a total of 160,896 (9.1%
of all drug prescriptions) entries as no drug prescription data
and reduced the unstructured drug prescriptions requiring review
for the next steps to 763,277 (43.17% of all drug prescriptions).

Grouping the unstructured drug prescriptions based on the
MEDICATION data element of data set 1 resulted in a total of
100,004 (n=924,173, 10.82%) unique free-text entries that were
entered as medication prescription information and stored as
data set 3 after adding the frequency for each free text.

Improvement
The quantitative performance of the algorithms was very
different, as each algorithm returned a different number of
results. Algorithm 3 provides an ATC code for all unstructured
drug prescriptions, owing to its implementation and nature.

Algorithm 1 (based on ingredient matching) identified ATC
codes for 8048 unique free texts. Multiplied by the frequency
of each text entry, this yielded a total of 244,718 (32.06%) drug
prescriptions of the total 763,277 unstructured drug
prescriptions. The quantitative outcome performance of
algorithm 2 (based on the drug product) is lower than that of
algorithm 1, as it identified ATC codes for 6744 unique free
texts. This represents a total of 126,100 (16.52%) drug
prescriptions of the total 763,277 unstructured drug
prescriptions. At this point, no statement can be made about the
correctness of the algorithm results, but the analysis of the match
rate between all algorithms shows matching rates for the total
number of unstructured drug prescriptions and the most frequent
1000 free-text entries as illustrated in Figure 2.

Figure 2. Match rates of algorithm results calculated for all data sets under inspection.

Validation
The manual validation step was performed on the most frequent
1000 free-text entries, which already covered 66.56%

(615,129/924,173) of all unstructured drug prescriptions, as
shown in Figure 3. Together with the proportion of structured
drug prescriptions (843,980/1,768,153, 47.73%) and entries
without medication (166,307/1,768,153, 9.4%) that were
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identified during the initial data analysis, the structuredness
could potentially be increased to 85.18% (1,506,059/1,768,153)
of all medication prescriptions.

For the most frequent 1000 free-text entries (data set 4),
algorithm 1 returned 286 (28.6%) correct results, 1 (0.1%)
incorrect result, and no results for 713 (71.3%) entries.
Algorithm 2 returned 142 (14.2%) correct results, 6 (0.6%)

incorrect results, and no results for 852 (85.2%) unique entries.
Algorithm 3 returned 765 (76.5%) correct results and 235
(23.5%) incorrect results. We also determined the correctness
in terms of the result match rates between the algorithms, as
shown in Figure 2, for data set 4. After the manual validation
of data set 4, the returned ATC codes were always correct if all
algorithms or algorithms 1 and 2 returned the same results.

Figure 3. Percentage of the most frequent 1000 of all unstructured drug prescriptions.

For the matching results of algorithms 1 and 3, we noted a minor
discrepancy and identified 5 incorrect results out of 286, which
were related to sodium chloride drug prescriptions in 4 out of
5 cases, and another incorrect result was returned for the
ingredient aciclovir. The manual review revealed that an ATC
code could not be provided because of missing details that was
due to the ATC code at ATC level 1 varying by route of
administration (eg, oral, parenteral, and conjunctival). For the
matching results of algorithms 2 and 3, we identified only 1
incorrect result related to the ingredient telmisartan because the
drug prescription was for a combination drug (telmisartan and

diuretics), whereas the algorithms identified only the ATC code
of the single ingredient telmisartan.

For the data set 4, a significant difference in the means of the
Levenshtein similarity score was found between the correct and
incorrect results (see Table 3 for descriptive statistics) with a P

value of 2.4 × 10–47, which is well below the significance level
α (.05). This means that the higher the Levenshtein similarity
score, the higher the probability of result correctness. Speaking
in terms of absolute numbers, for entries with a Levenshtein
similarity score >84.28, the results can be assumed to be correct
with a low error rate.

Table 3. Descriptive statistics for Levenshtein similarity score for correct and wrong results.

Algorithm 3Descriptive statistics

WrongCorrect

234766Count

84,598416,585Frequency, n (%)

67.18 (15.52)84.28
(14.86)

Values, mean (SD)

29-10021-100Range (%)

Percentile

557625th percentile

638750th percentile

759675th percentile
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The 234 incorrect results returned only by algorithm 3, with
4.78% (84,598/1,768,153) of drug prescriptions, can be
categorized into four groups: (1) manually identified additional
entries without drug prescriptions for which the applied rules
did not work; (2) specification generally not possible owing to
missing information; (3) restriction to ATC level 3 or 4 because
of nonspecific drug prescription information; and (4) other
reasons. We found 16 entries (multiplied by frequency=5411)
with no additional drug prescription entries. For an additional
11 (multiplied by frequency=2187) entries, no ATC code could
be provided because the dosage form or dose was missing. For
2 drug prescriptions (multiplied by frequency=2610) of insulin
therapies, there was a restriction to ATC level 3. Another 2
(multiplied by frequency=887) entries were restricted to ATC
level 4 sodium chloride prescriptions.

For the other 203 misidentified entries, we examined the subset
of 26 entries where algorithm 3 returned results with a
Levenshtein similarity value of ≥80 because it is an indication
of correctness but unfortunately did not apply to all results. A
small group of 26 results with a Levenshtein similarity value
of ≥80 was still incorrect. The main reason for the errors in
these results was that the ATC codes for the ingredients differed
by dosage form and when combined in a drug product, as shown
in Table 4. Most incorrect results (15 out of 26) were caused
by the absence of the ingredient dosage form in the free text,
especially for sodium chloride, prednisolone, dimetindene,
aciclovir, and hydrocortisone. The full data set 4 with all the
algorithm outcome quality data elements listed in Table 1 is
available in Multimedia Appendix 2.

Table 4. Wrong results of algorithm 3 with Levenshtein similarity score ≥80.

ReasonCorrect resultLevenshtein similarity scoreWrong resultMedication free text

Similarity of wordsB01AC0689N02BA01ASS RATIOPHARM 100 mg TAH Tabletten|(Acetylsali-
cylsäure)

Dosage formH02AB06100S01CA53Prednisolon

Similarity of wordsV06XX02100A12CC05MAGNESIUM VERLA 300 Orange Granulat|(Magnesium-
Ion)

Similarity of wordsP01AB01100G01AF01ARILIN 500 Filmtabletten | (Metronidazol)

Combination productC09DA2689C09CA06CANDESARTAN HEXAL comp 16 mg/12.5 mg Tabletten
| (Candesartan)

Dosage formB01AB01100C05BA03Heparin

Dosage formH02AB06100S01CA53PREDNISOLON

Dosage formR06AB03100D04AA13FENISTIL Injektionslösung | (Dimetinden)

Dosage formJ05AB01100D06BB03ACIC 250 PI Via Pulver z.Herst.e.Infusionslösg. | (Aci-
clovir)

Dosage formB05BB11100B05CB01NaCl 0.9%

Combination productC09DA23C09CA03VALSARTAN HEXAL comp.160mg/12,5mg Filmtabletten
| (valsartan)

Dosage formH02AB0688S01CA53Prednisolon mg

Dosage formB05BB11100B05CB01NaCL 0.9%

Dosage formJ05AB01100D06BB03ACIC 200 Tabletten | (Aciclovir)

Dosage formJ05AB01100D06BB03ACIC 500 PI Via Pulver z.Herst.e.Infusionslösg. | (Aci-
clovir)

No combination productC10AA01100C10BA02Simvastatin

Combination productC09DA2689C09CA06CANDESARTAN HEXAL comp 8 mg/12.5 mg Tabletten
| (Candesartan)

Dosage formB05BB11100B05CB01NaCL 0.9% | (Natrium-Ion, Chlorid)

Dosage formR06AB03100D04AA13C) FENISTIL 1 Ampulle als Bolus | (Dimetinden)

Shortness of textC03AA03100C09DX01HCT

Combination productM04AA01100M04AA51Allopurinol

Dosage formH02AB0681S01CA53Prednisolon 5 mg

Dosage formH02AB0981S01BA02HYDROCORTISON 10 mg Jenapharm Tabletten | (Hydro-
cortison)

No combinationC10AA01100C10BA02Simvastatin 20 mg

Dosage formB05BB11100B05CB01NaCl 0.9%
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Final Data Assessment
Compared with the initial data assessment in which we could
only distinguish between structured and unstructured drug
prescriptions, we were able to perform a percentage distribution
between structured and unstructured drug prescriptions for each
of the 14 ATC level 1 groups after applying the algorithm. The
final results are presented in Table 5, which shows the number
of structured drug prescriptions versus the number of
unstructured drug prescriptions per ATC level 1 group. The
total number of drug prescriptions per ATC level 1 group,
including percentages, provides an overview of the most and
least frequently prescribed drugs sorted by the 14 ATC level 1
groups. For completeness, we added 3 additional rows to Table
5 containing the number of unstructured entries identified as
other orders (no_med), the number of unstructured entries
identified as unspecified entries (unspec), and the remaining
unstructured data for which no validation was performed; thus,
no statement on the correct ATC code was possible. ATC level
1 group “N – Nervous system” was the most common group
with 24.1% (322,286/1,337,565) of the initial data set 1,
followed by “B – Blood and blood forming organs,” “A –
Alimentary tract and metabolism,” and “C – Cardiovascular
system” with approximately 19% each.

Figure 4 illustrates the structuredness of the data for each of the
14 ATC level 1 groups. The ATC level 1 group with the most

structured data was “S – Sensory organs” with 98.03%
(5077/5179) structured data, followed by the group “H –
Systemic hormonal drugs, excluding sex hormones and insulins”
with 79.9% (51,296/64,199) structured data. ATC level 1 groups
“R – Respiratory system,” “C – Cardiovascular system,” “J –
Anti-infective for systemic use,” “V – Various,” ”B – Blood
and blood forming organs,” and “N – Nervous system,” ranged
from 61% to 70% structured data. ATC group “P – Antiparasitic
products, insecticides, and repellents” had the lowest percentage
of structured drug prescriptions at only 23.4% (342/1461).

In total, 742 ATC level 5 codes (ingredients) were identified in
the drug prescription data.

The structuredness of the ingredients varied widely, showing a
wide range of structuredness among ingredients, as shown in
Figure 5, where each of the 742 ATC level 5 codes (ingredients)
is represented by a single dot. The y-axis represents the degree
of the structuredness between 0% and 100%. The x-axis
represents the frequency of each ATC level 5 code in data set
1, with a limitation of 85.18% (1,506,059/1,768,153) structured
and evaluated unstructured data. There were only 4 ATC level
5 codes that were each used more than 45,000 times in drug
prescriptions, namely N02BB02 (metamizole), B05BB01
(sodium chloride), A02BC02 (pantoprazole), and N02AA05
(oxycodone).

Table 5. Number of Anatomical Therapeutic Chemical (ATC) codes by ATC level 1 for structured, unstructured, and combined data.

Total number
(n=1,768,153), n/N (%)

Unstructured drug prescriptions for
evaluated subset (n=924,173), n/N (%)

Structured drug prescriptions
(n=843,980), n/N (%)

ATC 1st level

322,286/1,337,565 (24.1)124,455/322,286 (38.62)197,831/322,286 (61.38)N – Nervous system

251,120/1,337,565 (18.77)87,088/251,120 (34.68)164,032/251,120 (65.32)B – Blood and blood forming organs

250,543/1,337,565 (18.73)112,555/250,543 (44.92)137,988/250,543 (55.08)A – Alimentary tract and metabolism

247,629/1,337,565 (18.51)76,926/247,629 (31.07)170,703/247,629 (68.93)C – Cardiovascular system

88,659/1,337,565 (6.63)27,815/88,659 (31.37)60,844/88,659 (68.63)J – Anti-infective for systemic use

64,199/1,337,565 (4.8)12,903/64,199 (20.1)51,296/64,199 (79.9)H – Systemic hormonal drugs, excluding sex
hormones and insulins

36,819/1,337,565 (2.75)24,736/36,819 (67.18)12,083/36,819 (32.82)M – Musculo-skeletal system

28,148/1,337,565 (2.1)8462/28,148 (30.06)19,686/28,148 (69.94)R – Respiratory system

14,672/1,337,565 (1.1)5033/14,672 (34.3)9639/14,672 (65.7)V – Various

14,538/1,337,565 (1.09)5868/14,538 (40.36)8670/14,538 (59.64)L – Antineoplastic and immunomodulating
agents

8778/1,337,565 (0.66)5116/8778 (58.28)3662/8778 (41.71)G – Genito urinary system and sex hormones

5179/1,337,565 (0.39)102/5179 (1.97)5077/5179 (98.03)S – Sensory organs

3534/1,337,565 (0.26)1407/3534 (39.81)2127/3534 (60.19)D – Dermatologicals

1461/1,337,565 (0.11)1119/1461 (76.59)342/1461 (23.41)P – Antiparasitic products, insecticides, and
repellents

166,307/1,768,153 (9.41)166,307/1,768,153 (9.41)0/1,768,153 (0)no med

2187/1,768,153 (0.12)2187/1,768,153 (0.12)0/1,768,153 (0)unspec

1,506,059/1,768,153 (85.18)662,079/1,768,153 (37.44)843,980/1,768,153 (47.73)Total validated

262,094/1,768,153 (14.82)262,094/1,768,153 (14.82)0/1,768,153 (0)Not validated

JMIR Med Inform 2023 | vol. 11 | e40312 | p. 10https://medinform.jmir.org/2023/1/e40312
(page number not for citation purposes)

Reinecke et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Structuredness of drug prescriptions by ATC groups for 85.18% of initial data set DS1. ATC: Anatomical Therapeutic Chemical.
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Figure 5. Structuredness of drug prescription by ATC L5 (a) total unstructured data and (b) by each ATC L1 group. A: Alimentary tract and metabolism;
ATC: Anatomical Therapeutic Chemical; B: Blood and blood forming organs; C: Cardiovascular system; D: Dermatologicals; G: Genito urinary system
and sex hormones; H: Systemic hormonal drugs, excluding sex hormones and insulins; J: Anti-infective for systemic use; L: Antineoplastic and
immunomodulating agents; L1: level 1; L5: level 5; M: Musculo-skeletal system; N: Nervous system; P: Antiparasitic products, insecticides, and
repellents; R: Respiratory system; S: Sensory organs; V: Various.

Together, these 4 ATC level 5 codes accounted for 14.79%
(261,460/1,768,153) of the total data in the data set 1.
Pantoprazole had the lowest level of structured data for these 4
ingredients (10,490/65,861, 15.93%), whereas oxycodone had
the highest level of structured data (44,952/46,434, 96.81 %).
Multimedia Appendix 3 contains the complete list of all
ingredients with their ATC level 5 codes, number of structured,
unstructured, and total drug prescriptions. In addition, it includes
the percentage strength of each ingredient, ordered by the total
number of drug prescriptions, starting with the largest number.

Discussion

Principal Findings
Our 4-step approach ensures data quality assessment as
recommended by Zozus et al [18]. We provide transparency by

reporting the structuredness of drug prescriptions. In addition,
our approach improved the structuredness and thus the
completeness of drug prescription data. This leads to better
usability for secondary use on research infrastructure, such as
the OMOP based ATC codes accompanied by manual review.

The initial analysis of the drug data showed a ratio of 52.3%
unstructured to 47.7% structured drug prescriptions. With the
algorithms presented, the structuredness could be increased to
85.1% with 1 level of evaluation. For the evaluation of the initial
data set 1, manual examination of the most frequent 1000
free-text entries was sufficient, and we were able to achieve the
targeted minimum coverage of 80%. Algorithm 3, which was
based on similarity matching, was found to quantitatively
outperform the other 2 algorithms, providing results for all
unstructured drug prescriptions. In terms of the reliability of
the results, algorithm 3 had a correctness rate of only 76.5%.
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Therefore, the evaluation phase was critical to manually correct
all incorrectly derived ATC codes. In addition, the manual
evaluation process was critical in identifying patterns that can
be used to determine the reliability of the algorithms based on
additional factors, such as algorithm-to-algorithm matches and
the Levenshtein similarity score of algorithm 3. When all 3
methods or algorithms 1 and 2 yielded the same ATC code, the
algorithm results were considered correct in each case. The
scoring process yielded a minuscule percentage of incorrect
results (approximately 1.5%) when algorithms 2 and 3 or 1 and
3 yielded the same results.

The patterns identified are a good indication that can help
increase the reliability of the results without further manual
evaluation, compared with the overall correctness of 76.5%
(765/1000) found for algorithm 3 results. The Levenshtein
similarity score revealed another trend for algorithm 3: incorrect
results had a significantly lower mean similarity score than
correct results. The exceptions have been isolated to a small
number of ingredients, reasons such as missing dosage form
and dosage information, and cases where the same ingredients
were used for single and combination drug products, resulting
in separate ATC codes. The quality of the RWD has a major
impact on the results of observational studies that rely on it. It
is important to ensure that RWD data are suitable for use in
observational studies [24] and that any limitations or quality
concerns are explicitly stated [25].

Limitations
Currently, the analyzed data set is limited to inpatient drug
prescriptions from the University Hospital Carl Gustav Carus
Dresden. No drug prescription data from intensive care medicine
were included, and no other institution has used our technique
yet. Outliers or rare patterns may have gone undetected because
the study was limited to the first 1000 free-text prescriptions.
Although this covers most of the data, the results of the
algorithm for the remaining free-text entries are yet to be
evaluated. This study does not include an outcome evaluation
of additional drug prescription entries based on identified
patterns. Currently, the method is limited to determining ATC
codes for unstructured drug prescriptions and does not consider
other terminologies such as RxNorm.

Comparison With Prior Work
Most studies evaluating the quality of RWD data refer to the
dimensions of completeness and accuracy compared with
predefined gold standard data that vary by publication, as
identified by Weiskopf et al [19]. We did not define our gold
standard based on RWD sources but used the internationally
recognized and widely used terminology ATC as standardized
terminology and provided a method to automatically determine
the appropriate ATC for drug prescription data that are
unstructured and available only as free text. Wang et al [26]
developed a rule-based data quality system with >6000 criteria
for plausibility testing (eg, pregnancy is not plausible in male
patients) but did not address data harmonization by mapping

unstructured free-text data to defined terminologies for research.
Unlike Schmidt et al [27] and Kahn et al [25], our study not
only focus on data quality assessment but also defines the
absence of structure in the data as free text without a
corresponding ATC code and builds on previous research by
proposing a method to improve unstructured data by
automatically annotating the appropriate ATC code.

The high proportion of free-text or unstructured drug
prescriptions was due to the hospital’s prescription system and
local conditions. According to previous studies on the data
structure in RWD [28], this is a widespread challenge in
Germany. However, the issues of dealing with unstructured data
in EHR records that prevent interoperability are widespread as
stated by Kruse et al [29,30] in their systematic reviews of
existing literature on the use of EHR data that need to be
addressed to ensure “fitness for use” in general. Compared with
the well-established Unified Medical Language System
MetaMap [31,32], which has been used by industry and
academia for many years, our NLP approach focuses on a
lightweight implementation. On the one hand, this limits the
configuration possibilities, but on the other hand, it reduces the
computational efforts and promotes the performance of the ATC
code recognition. Because MetaMap focuses only on English
and does not support German drug catalogs, our approach closes
this gap and can be adapted to other languages as well.

Future Work
The presented 4-step approach can be applied to any RWD with
unstructured data such as conditions, procedures, or test results.
This approach will be tested in the future on other sites that
provide drug data and product lists with ATC codes. In the next
phases, further research will be conducted on pattern recognition
to enable reliable prediction of the accuracy of results for
specific ATC codes rather than manually checking them. In
addition, new NLP-based algorithms will be implemented to
improve the overall reliability of the results. Furthermore, our
approach can be applied to other hospital sites that participate
in the German Medical Informatics Initiative [33,34] in the
following steps. Our approach is not limited to the German
language. Because the only requirement is to provide a common
list of ingredients or drug products for comparison with
unstructured free text, this can work for any other language if
compared texts are available in the same language.

Conclusions
RWD observational research requires a high level of data
structuredness. Even more critical is the awareness of limitations
as well as transparency of the level of structure of the data on
which the research is based. Using drug prescriptions as a first
use case, we were able to investigate and improve the structure
of RWD, which can be applied to other RWDs in the future.
Although the presented methods require manual verification to
ensure that the results are correct, the methodology is promising
and can be used to improve structuredness of data.
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