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Abstract

Background: In emergency departments (EDs), early diagnosis and timely rescue, which are supported by prediction modes
using ED data, can increase patients’ chances of survival. Unfortunately, ED data usually contain missing, imbalanced, and sparse
features, which makes it challenging to build early identification models for diseases.

Objective: This study aims to propose a systematic approach to deal with the problems of missing, imbalanced, and sparse
features for developing sudden-death prediction models using emergency medicine (or ED) data.

Methods: We proposed a 3-step approach to deal with data quality issues: a random forest (RF) for missing values, k-means
for imbalanced data, and principal component analysis (PCA) for sparse features. For continuous and discrete variables, the

decision coefficient R2 and the κ coefficient were used to evaluate performance, respectively. The area under the receiver operating
characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) were used to estimate the model’s
performance. To further evaluate the proposed approach, we carried out a case study using an ED data set obtained from the
Hainan Hospital of Chinese PLA General Hospital. A logistic regression (LR) prediction model for patient condition worsening
was built.

Results: A total of 1085 patients with rescue records and 17,959 patients without rescue records were selected and significantly
imbalanced. We extracted 275, 402, and 891 variables from laboratory tests, medications, and diagnosis, respectively. After data

preprocessing, the median R2 of the RF continuous variable interpolation was 0.623 (IQR 0.647), and the median of the κ
coefficient for discrete variable interpolation was 0.444 (IQR 0.285). The LR model constructed using the initial diagnostic data
showed poor performance and variable separation, which was reflected in the abnormally high odds ratio (OR) values of the 2
variables of cardiac arrest and respiratory arrest (201568034532 and 1211118945, respectively) and an abnormal 95% CI. Using
processed data, the recall of the model reached 0.746, the F1-score was 0.73, and the AUROC was 0.708.

Conclusions: The proposed systematic approach is valid for building a prediction model for emergency patients.

(JMIR Med Inform 2023;11:e38590) doi: 10.2196/38590
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Introduction

In the emergency department (ED), early identification of
high-risk patients can improve clinical decisions, avoid waste
of resources, and lead to better patient prognosis [1,2]. A
prospective study showed that the incidence of adverse events
due to improper emergency care is about 5%-10%, of which
half can be prevented through early detection [3]. However,
early identification is difficult as these patients often show little
obvious signs before rapid deterioration [4].

Prediction models for high-risk patients in EDs can greatly
support caregivers [5]. Electronic medical record (EMR) data,
which fully capture patients’ status, are an important source for
developing disease risk prediction models [6]. As a typical
high-risk disease in EDs, sudden death is a major public health
problem worldwide, accounting for 15%-20% of all deaths [7,8].
A previous study showed that cardiogenic diseases, potassium,
mean platelet volume, creatinine, chloride, and sodium are
important variables to predict the risk of death in patients [5].
A survey showed that age, male, hypertension, diabetes,
hypercholesterolemia, and a family history of coronary heart
disease are all associated with increased risk of sudden death
[9]. A study evaluating the relationship between the variables
of laboratory tests and the occurrence of acute death in patients
found that serum sodium, glucose, and the leukocyte count show
a U-shaped relationship with mortality [10]. In addition, total
bilirubin, creatine kinase, the international normalized ratio,
aspartate aminotransferase, and lactate dehydrogenase are all
risk factors associated with acute death in patients [11-13].
However, the data quality of EMRs limits their effective use
for developing prediction models [6,14]. Prediction of sudden
death needs a variety of clinical data, which are frequently
missing, imbalanced, and having sparse features.

Missing values, imbalanced data, and sparse features are 3
common problems of EMR data. Missing values indicate not
enough data collected due to improper use of the hospital
information system or other reasons [14]. Imbalanced data refer
to the imbalanced distribution of negative and positive samples.
This leads to more features of negative samples in the learning
model, which is not suitable for the prediction of arbitrary
patients [15,16]. Sparse features are zero features that are much
larger than nonzero features and increase computing memory
and reduce generalization ability [17,18]. Especially in small
samples, a large amount of noise in sparse features makes model
training impossible to converge. Therefore, tackling these quality
issues of EMR data is an essential step to improve the predictive
performance of machine learning (ML) models.

To solve the aforementioned 3 problems, we propose a series
of ML approaches to increase fitting ability and generalization
ability. Using the approach, we developed a sudden-death
predication model. The risk factors related to sudden death
obtained through logistic regression (LR) model were consistent
with the results reported in the earlier literature on the analysis
of risk factors of in-hospital death. These results show that our
data-preprocessing approach can effectively maintain the rich
information contained in emergency data and provide a reliable
data source for the development of a sudden-death prediction
model.

Methods

Study Design
Our methods of data preprocessing consisted of 5 steps, as
shown in Figure 1. The last 3 steps tackle 3 low-quality issues:
missing values, imbalanced data, and sparse features. Finally,
postprocessing data quality is evaluated by a sudden-death
prediction model case study.
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Figure 1. Workflow of ED data preprocessing and evaluation. ED: emergency department; EMR: electronic medical record.

Data Collection and Cleaning
Data for ED patient prediction model development are
summarized in Table 1.

Close investigation of each data table is required so as to know
the location of our content of interest. For instance, data
regarding a patient’s basic information are stored in the

emg_visit table. Lab test items and results are stored in the
lab_result and lab_master tables. The clinical record field in the
emg_order table can be used to determine whether a
sudden-death event occurred. One lab test (eg, blood test) can
be performed multiple times to observe the patient status closely.
Based on clinical experts’ opinions, only the last one is
meaningful.

Table 1. Description of the data table involved in the query process.

Data descriptionTable name

The patient's medication record, including the prescription number, drug name, dosage, drug specification,
administration time, and administration route during the treatment period

emg_drug detail

Master record form of patient medication recording patient ID and prescription numberemg_drug_master

Doctor’s order record form used to record the medication, inspection, diagnosis, treatment, and other doctor’s
orders of the patient during treatment

emg_order

Patient visit information table, including the patient's basic personal information, diagnosis of the current
visit, triage, and other information

emg_visit

Patient’s laboratory test master record form recording the patient’s age and gender information, laboratory
test items made during the visit, and the corresponding doctor’s order ID

lab_test_master

Laboratory test results of patients, including test results of patientslab_result

Variable Screening
The number of variables obtained from the data collection was
large, so screening of important variables facilitated final
analysis. Two approaches can be adopted. One is based on
statistical significance. The other is based on the specific
research objective, opinions of medical experts, or authoritative
literature [5,12,13]. In our study, the first approach was taken.
Variables with many missing values were filtered out using the
threshold. For example, Alvarez et al [19] set the threshold to
2%, while Seki et al [20] set it to 25%. In this study, we set the
threshold to 80%. This means that when 80% of the values of
1 variable are missing, that variable should be filtered out.

Data Interpolation for Missing Values
Missing values affect the effectiveness of ML models. Data
missing show 3 different patterns: missing completely at random
(MCAR), missing at random deletion (MAR), and not missing
at random (MNAR). MCAR means that the missing of data is
completely random and does not depend on observed or
unobserved values [21]. In this case, any interpolation method
will not cause deviation. However, the assumption of MCAR
in actual data is difficult to satisfy [22,23]. MNAR and MAR
mean that the missing of data depends on the unobserved value
and does not depend on the unobserved value, respectively [24].
However, it is impossible to infer whether the missing pattern
belongs to MNAR or MAR through the existing data containing
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the missing pattern, and the assumption based on MAR is more
consistent with the actual data situation [22,25]. MAR allows
us to estimate missing values using existing observation data
in the data set [24].

The goal of all kinds of interpolation methods is to reasonably
estimate missing values and improve the quality of data.
Interpolation methods are mainly divided into single
interpolation and multiple interpolation. Multiple interpolation
is a commonly used and better performance interpolation
method. It generates multiple possible estimates for missing
data and uses statistical inference to interpolate the final value.
This method can reflect the randomness of missing data, and
the interpolation error is smaller [21]. In a single interpolation,
interpolation methods, such as constants (ie, specific
identifications), mean, median, and data distribution, can be
used. However, such methods usually cause greater deviation
[26,27]. The single interpolation method based on ML has
attracted increasingly more attention [23], such as interpolation
based on a clustering algorithm [28], an ensemble model [29],
and Bayesian theory [30]. Although multiple imputation can
bring smaller deviation, when the frequency of missing data is
high and the sample size is small, multiple imputation should
be considered [31]. However, its implementation is relatively
complex, and it needs to involve the selection of an interpolation
model and the number of interpolation data created [32]. When
the data are sufficient and the variability of the estimated value
does not need to be considered, it is feasible to choose multiple
imputation or single imputation [31]. Considering that our
sample size was relatively sufficient, to build a simpler
interpolation method, we used a random forest (RF) [33,34] as
the interpolation algorithm to realize the interpolation of missing
data in the form of a single interpolation.

Altogether, the followed steps are proposed.

• For variable “i,” 1 set of patient samples without missing
values work as training samples and the other set of patient
samples with missing values work as test samples.

• If other variables in the 2 samples are missing, the mean
(continuous variable) or mode (discrete variable) is
temporarily interpolated to form a complete sample.

• Use training samples to train RF models, the model is
applied to test samples to predict missing values.

• For the next variable, steps 1, 2, and 3 are repeated until all
variables of the whole sample are interpolated.

Processing Imbalanced Data
Imbalanced data refer to the imbalanced distribution of negative
and positive samples. For example, in the classification of rare
diseases and credit predictions, there could be more negative
samples than positive ones. Because most ML algorithms
assume that categories (eg, positive or negative) of samples are
evenly distributed, classifying models trained with imbalanced
data are more likely to classify a new sample into the majority
category [15].

Basic solutions for imbalanced data are to use under- or
oversampling to make the data balanced, such as random
oversampling [35], random undersampling, the synthetic
minority oversampling technique (SMOTE) [36], and the

adaptive synthetic sampling method (ADASYN) [15]. Although
both undersampling and oversampling approaches can achieve
data balance, the oversampling approach adds many sample
copies to overfit the model. Wang and Japkowicz [16] and
Chawla et al [36] also argued that undersampling is more
favorable than oversampling in extreme imbalance situations.
However, randomly discarding undersampling may also lose
some representative samples. Segura-Bedmar et al [37] and Lin
et al [38] proposed a clustering method to tackle this problem.
The k-means considers the similarity between samples and uses
the sample closest to the centroid of the cluster to approximate
all the sample characteristics within the cluster, and the obtained
samples are representative. The advantage of the clustering
method over random undersampling is that all samples are used
in the clustering process. This ensures that the information about
all samples can be used to determine the sampling results and
some important samples are not randomly discarded. In addition,
we can adjust the number of clusters in k-means according to
the actual data imbalance so as to achieve different
undersampling ratios without other complex adjustments.

To avoid the loss of important samples, we adopted k-means
based on the Euclidean distance to cluster samples. New samples
were generated though clustering, which had similar
characteristics in the same cluster and were distinguished in the
different clusters. The centroid of a cluster represents the overall
characteristics of the whole cluster. In this way, important
features are not discarded. Since the centroid of the cluster is
calculated based on the average of the samples in the cluster,
the centroid is not necessarily a real sample. So, we took the
real samples with the smallest distance from the centroid.

Processing Sparse Features
Sparse features means that the feature index is much larger than
the actual number of nonzero features. In total, there were 891
different types of diagnosis in our data set. However, for a single
patient, the number of diagnoses was quite few. This formed
sparse-feature phenomena.

When sparse features occur, the sample is prone to having the
problem of variable separation and multicollinearity. That is, a
single variable or a linear combination of multiple variables can
perfectly predict outcome events. However, this only works for
small-size samples. It also leads to the situation in which the
model gives an abnormally large weight to the variables and
the results are unreliable [17,18,39]. Although there are many
methods to optimize weights, such as gradient descent, a large
number of zeros in features make the gradient tend to 0, and the
parameters cannot be fully trained.

The processing of sparse features can be considered from both
the model and the data themselves. From the point of view of
the model, the parameter estimation bias of high-dimensional
sparse data can be reduced through the optimization of the
algorithm. For example, Firth regression [40] is used. The basic
idea is to add a penalty term to the score function so as to reduce
the deviation of the maximum-likelihood estimate of the
parameter. This can solve the problem of variable separation
and multicollinearity caused by sparse features to a large extent.
From the point of view of the data themselves, it is necessary
to transform the data to be processed into nonsparse data, and
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this transformation should retain the amount of information
contained in the original data as much as possible. Considering
the theme of our paper, our goal is to improve the quality of
data rather than optimize the model algorithm. Therefore, we
solved the problem of sparse features from the perspective of
data. At present, there are many dimensionality reduction
methods for high-dimensional sparse features, such as principal
component analysis (PCA) [39], singular value decomposition
(SVD) [41], and linear discriminant analysis (LDA) [42]. The
essence of these methods is to map the original data to a
low-dimensional space through a specific transformation form
to solve the problem of data sparsity. Among these methods,
LDA needs to reduce dimensionality based on sample labels.
Considering that the actual data may not be able to carry labels,
and the difference in label definitions will greatly affect the
dimensionality reduction results, this supervised dimensionality
reduction method is not conducive to being extended to other
data scenarios [43]. Therefore, we considered using
unsupervised dimensionality reduction methods, such as PCA,
to transform our data.

PCA has been widely used in analysis with high-dimensional
sparse features [44-46]. PCA essentially transforms the feature
space of the original sample so that the new feature is a linear
combination of the original features. The basic principle of
principal component (PC) selection is to keep the maximum
variance, and all PCs are orthogonal to one another. Thus, the
phenomenon of multicollinearity is avoided. Therefore, new
samples no longer have sparse features, which makes the ML
model better fit the parameters.

In detail, new data can replace the original data as the input
source for regression or classification models. Suppose

where each column
represents a feature and each row is a sample. Assuming that

the sample has been decentralized, represents
the covariance of matrix X. Let the transformed matrix Y = XV
be D, which is derived as:

As C is a real symmetric matrix, according to the properties of
the real symmetric matrix, its order m must have m unit

orthogonal eigenvectors. That is, is a matrix
that can make the original covariance matrix similar to
diagonalization. Therefore, by solving m eigenvalues and

eigenvectors of . By sorting the eigenvalues from large
to small, we got λ = (λ1, λ2, …, λm). There are the following
relationships:

Take the first k columns of V as the basis for transforming
m-dimensional features into k-dimensional features and record

it as the transformed sample matrix is Y = XP.

First, we manually merged similar diagnostic nouns according
to prior knowledge, from 891 to 405. However, the data were
obviously separated and sparse. For instance, none of the
negative samples had a sudden cardiac arrest or sudden
respiratory arrest diagnosis. Next, we only kept the diagnosis
that appeared in more than 5% population. Finally, PCA was
proposed for the remaining variables. The first 17 PCs that could
explain 98.2% variance of the original sample were selected.
Regression analysis was carried out on the samples after
dimensionality reduction. The explanation of variables was
achieved by counting the weight of the original variables on
each PC.

Ethical Considerations
After preliminary review, the project was found to be in line
with relevant medical ethics requirements. If it is funded by the
Hainan Major Science and Technology Program in 2020, the
Hainan Medical Ethics Committee will perform its duties and
strictly abide by relevant regulations and requirements for
medical ethics and informed consent of patients to ensure ethical
supervision and review during the implementation of the project
(reference number: 00824482406).

Results

Data Preprocessing and Model Building
A comprehensive evaluation was carried out on the ED data set
of the Hainan Hospital of Chinese PLA General Hospital. We
developed a set of Python programs to implement our methods.
Specifically, the program was developed in Microsoft Windows
10 (Intel (R) core (TM) i5-9500 CPU, 3GHz). All data
preprocessing and model building were completed in Python
(Python 3.8 Anaconda) using multiple Python data science
libraries, mainly including Numpy, Pandas, Matplotlib, and
Scikit-learn. In addition, codes on data interpolation, imbalance
correction, and PC regression are currently available on GitHub
[47].

Data Collection and Cleaning
We collected the data of patients who went to the ED of the
Hainan Hospital of Chinese PLA General Hospital from July
27, 2017, to May 6, 2021. In the sudden-death group, the data
of 1085 patients were collected. In the non-sudden-death group,
the data of 17,959 patients were collected. For the analysis of
laboratory test data, we excluded patients who did not have any
laboratory test records before sudden death. A total of 108 (10%)
patients were excluded, and 977 (90%) patients with sudden
death were used for the analysis of laboratory test data. For
diagnostic data, we excluded patients who were missing
diagnostic data from the visit. Finally, there were 1083 patients
with sudden death and 615 patients with nonsudden death. We
developed statistics on the baseline data of all patients, as shown
in Supplementary Table S1 in Multimedia Appendix 1.
Distributions of age and gender are visualized in Figures 2-5.

In the first group, there were 741 males (68.4%) and 342 females
(31.6%), and 2 (0.2%) patients lacked gender information
(Figure 2). The age varied between 45 and 80 years. The mean
age was 56.4 years (SD 11.2). The quartile, median, and mode
were 44, 59, and 68, respectively. In the second group, there
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were 9403 (52.4%) males and 8556 (47.6%) females. The age
distribution is shown in Figures 4 and 5. The mean age was 41.6
years (SD 13.6). The quartile, median, and mode were 29, 42,

and 48, respectively. For both groups, their distributions of age
were akin to the normal distribution, which is consistent with
a real-life situation.

Figure 2. Distribution of the gender of patients with sudden death.

Figure 3. Distribution of the gender of patients without sudden death.

Figure 4. Distribution of age of patients with sudden death.
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Figure 5. Distribution of patients of age with nonsudden death.

Variable Screening
To perform variable screening, that is, filtering out insignificant
variables, we counted the total number of appearance and
missing times. The second row of Table 2 shows the number
of patients who had no corresponding data in the individual
category. Moreover, we investigated the reasons missing data
exist in all the 3 categories. For instance, there were 108 (10%)
patients having no laboratory test. Among them, we could not
find lab test data for 33 (30.6%) patients. For the remaining 75
(69.4%) patients, their lab tests appeared after the sudden-death
event. There were 287 (26.4%) patients having no medication
data. Sudden death had occurred before the medication was
given, and the medication was in the doctor’s order record, such
as an epinephrine injection, but was not recorded in the patient’s
medication table.

There were 275 variables in the lab test category. For a given
variable, not every patient (sample) had the value, namely a
missing value. The missing ratio of a variable could be obtained
by the number of cases having a missing value of that variable
being divided by the total number of patients. The average ratio

was 79.8%, as shown in the third row of Table 2. So, we set an
80% threshold to screen nonstatistically significant variables.
Finally, 72 variables were kept in this category. These were
patient age, gender, glucose, creatine kinase, inorganic
phosphorus, total cholesterol, triglycerides, potassium, sodium,
and calcium.

For diagnosis, 891 different types of diagnosis were obtained
after the initial data collection. Because the diagnosis is recorded
in the form of free text, 1 diagnosis item could have several
different synonyms. By merging these texts into a unified name
via manual review, we obtained 405 variables. The number of
confirmed patients of each diagnostic variable was counted.
Instead of an 80% threshold, 5% was considered. Considering
both positive and negative samples, 18 diagnostic variables
were kept. Among them, 11 (61.1%) variables were shared by
both. These were myocardial infarction, chest distress, sudden
cardiac arrest, fever, rib fracture, renal dysfunction, chest pain,
diabetes, abdominal pain, pulmonary infection, respiratory
arrest, trauma, atrial fibrillation, disturbance of consciousness,
cerebral hemorrhage, cerebral infarction, coronary heart disease,
and hypertension.

Table 2. Missing value ratios of variables of patients with sudden death.

Diagnosis (891 variables)Medications (402 variables)Laboratory tests (275 variables)

2 (0.18%)287 (26.4%)108 (10%)Patients without data, n (%)

99% (1080/1085)72.4% (786/1085)79.8% (866/1085)Average ratio of missing values

100% (1085/1085)73.5% (797/1085)90% (977/1085)Maximum ratio of missing values

58.4% (634/1085)48.5% (526/1085)25.8% (280/1085)Minimum ratio of missing values

Data Interpolation, Processing Imbalanced Data, and
Sparse Features
In addition to age and gender, we used an RF to interpolate the
missing values for each of the remaining variables. Nonmissing
patient data were used as a training set to train the model to
interpolate missing values. The training set was further split
into training data (80%) and validation data (20%). The

coefficient of determination R2 and the κ coefficient were used

to test the consistency of the imputation results of continuous
variables and categorical variables. In the interpolation process,

the median of R2 was 0.623 (IQR 0.647) and the median of the
κ coefficient was 0.444 (IQR 0.285).

Due to the extreme imbalance of our original data, the number
of patients with sudden death only accounted for 5%
(977/18,936) of the total sample size. We generated 4 different
data ratios (1:10, 1:5, 1:2, and 1:1) through k-means to achieve
undersampling. These data were used with the original ratio to
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evaluate models of different data ratios and then to verify the
rationality of our sampling method.

Validation by a Sudden-Death Case Study

Analyzing Risk Factors of Sudden Death
We constructed an LR model to analyze the patients’ laboratory
test variables using a data set with a data ratio of 1:1 as the data
source to filter variables. To reflect the degree of correlation
between variables, continuous variables were treated as ordinal
categorical variables. Taking the normal index range of the
variables as a reference point, the test results of the patients
were mapped into 3 categories: L (index is lower than the normal
value), N (index is normal), and H (index is higher than the
normal value). To determine the significant factors affecting
the sudden death of patients and avoid a negative effect on the
final analysis results, we first performed the chi-square test to
filter out the variables and then excluded variables when P>.10.
Next, LR univariate analysis was performed to filter out
variables with P>.05. Tables 3 and 4, respectively, show the
variables excluded by the chi-square test and the LR univariate
analysis, and their P values. We reintroduced some of the
excluded variables into the final candidate variable set according
to the literature review and the advice of consulting medical
experts, including urine specific gravity, chloride, hematocrit,
sodium, magnesium, lactate dehydrogenase, urine ketone body
test, red blood cell count, and serum albumin. These variables
have no significant statistical significance but are clinically
related to sudden death. Finally, we selected 4 subgroups from
the set of variables with significant statistical significance. In
addition, variables not statistically significant but related to
outcome events were also grouped separately. The final 5 groups
were subjected to LR multivariate analysis, and the groups were
as follows:

• Group 1: qualitative test of creatinine, serum uric acid, urine
protein

• Group 2: γ-glutamyl transferase, alanine aminotransferase,
total bilirubin

• Group 3: international normalized ratio, platelet count,
plasma prothrombin time

• Group 4: potassium, creatine kinase
• Group 5: urine specific gravity, chloride, hematocrit,

sodium, magnesium, lactate dehydrogenase, urine ketone
body test, red blood cell count, serum albumin

For each group, 500-fold bootstrapping was used for model
training and evaluation [48]. Each bootstrap randomly split 70%
of the data into the training set and 30% of the data into the test
set. Finally, the mean values of AUROC, recall, and F1-score
for 500 training sessions in each group were reported, and the
AUROC also reported the 95% CI. Table 5 illustrates the model
evaluation results of the 5 groups of variables. The performance
parameters of group 2 were the best among the 5 groups of
variables. In the recognition of patients with sudden death, a
recall rate of 0.801 was obtained, the F1-score was 0.835, and
the model’s AUROC was 0.843 (95% CI 0.842-0.844). The

results showed that this set of variables can better identify
patients with sudden death. Therefore, other group variables
based on the group 2 variables were added successively, and
AUROC was taken as the evaluation index. The added variables
would be included in the final model if AUROC could be
improved. In the end, 13 laboratory test risk variables related
to sudden death events were determined, and the patient’s gender
variable was retained as a demographic feature. In general, the
final variables used included γ-glutamyl transferase, alanine
aminotransferase, total bilirubin, creatinine, serum uric acid,
the international standardized ratio, creatine kinase, the platelet
count, potassium, sex, sodium, magnesium, chloride, and serum
albumin. These variables were used to build the final LR model.
Table 6 shows the results of LR multivariate analysis.

After determining the patient features for analysis, we split the
original scale data into a training set (70%) and a test set (30%).
For the training set, 4 different categories of data sets (1:1, 1:2,
1:5, 1:10) were formed by undersampling to train the model.
Finally, the performance of the model was evaluated on the test
set. The mean and 95% CI (500-fold bootstrapping) of the final
AUROC, AUPRC, F1-score, and recall are shown in
Supplementary Table S2 in Multimedia Appendix 1. In addition,
we further used Brier scores to evaluate the calibration ability
of models trained with different data ratios.

In general, as the data ratio tended to balance, the performance
of the model gradually improved. Figures 6 and 7 show the
model receiver operating characteristic (ROC) curve (Figure 6)
and the precision-recall (PR) curve (Figure 7) of the 4 data
ratios. In recognizing patients with sudden death, the best model
obtained a recall rate of 0.863 (95% CI 0.862-0.865), the
F1-score was 0.84 (95% CI 0.839-0.842), the AUROC of the
model was 0.895 (95% CI 0.894-0.896), and the AUPRC was
0.897 (95% CI 0.896-0.899). The original scale data model
performed the worst, with an AUROC of 0.812 (95% CI
0.811-0.813) and an AUPRC of 0.407 (95% CI 0.404-0.409).
We plotted the reliability curves of 5 training sets with different
data ratios on the same test set and calculated Brier scores
(Supplementary Figure S1 in Multimedia Appendix 1).
Consistent with the viewpoint mentioned by Geeven et al [49],
imbalance correction actually weakened the clinical application
value of the model, which was mainly manifested in the poor
calibration ability of the model. With the increase in sampling,
the calibration of the model was worse and the Brier score was
0.16 and 0.108 in the data ratio of 1:1 and the original data ratio,
respectively. Imbalance correction can balance the sensitivity
and specificity of the model to a greater extent and avoid biased
errors in the model. Undersampling optimizes the AUROC,
F1-score, and AUPRC of the model trained by the proportion
of the original data. Although the Brier score in calibration
improved, the gap was not large. To observe the risk factors of
sudden death in patients more intuitively, we visualized the
regression coefficients of the best model after performing
LR(Figure 8) to observe the relationship between variables and
sudden-death events.
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Table 3. Statistics of variables filtered by the chi-square test.

P valueχ2 (df)Variable

.495.433 (6)Monocytes

.950.705 (4)Basophil

.910.977 (4)Eosinophils

.990 (2)Urine specific gravity determination

.871.25 (4)Urine tube type

.986.863 (8)Urine tube type (microscopic examination)

.2113.185 (4)Qualitative test of urinary bilirubin

.257.828 (6)Mean erythrocyte hemoglobin concentration

.594.649 (6)Chloride

.891.148 (4)Erythrocyte volume distribution width measurement coefficient of variation (CV)

.554.982 (6)Hematocrit assay

.247.915 (6)Sodium

.1210.22 (6)Magnesium

Table 4. Statistics of variables screened by LRa univariate analysis.

P valueORb (95% CI)Reference rangeVariable

.531.029 (0.94-1.127)50.0-150.0 U/LLactate dehydrogenase

.290.912 (0.769-1.081)N/AcUrine ketone body test

.140.827 (0.642-1.065)3.5-5.9 1012/LRed blood cell count

.390.893 (0.689-1.157)35.0-50.0 g/LSerum albumin

.750.961 (0.749-1.232)1.0-1.6 mmol/LHigh-density lipoprotein cholesterol

aLR: logistic regression.
bOR: odds ratio.
cN/A: not applicable.

Table 5. Comparing the performance of 5 groups of variables.

AUROCa (95% CI)F1-scoreRecallGroup

0.683 (0.681-0.684)0.60.4781

0.843 (0.842-0.844)0.8350.8012

0.725 (0.724-0.727)0.6870.6063

0.686 (0.685-0.687)0.6050.4844

0.562 (0.561-0.564)0.6510.8525

aAUROC: area under the receiver operating characteristic curve.
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Table 6. LRa multivariate analysis.

ORb (95% CI)Reference rangeVariable

0.225 (0.222-0.228)0.0-50.0 U/Lγ-Glutamyl transferase

1.828 (1.804-1.852)5.0-40.0 U/LAlanine aminotransferase

19.954 (19.7-20.2)0.0-21.0 μmol/LTotal bilirubin

1.352 (1.331-1.372)30.0-110.0 μmol/LCreatinine

1.346 (1.334-1.359)104.0-444.0 μmol/LSerum uric acid

2.23 (2.188-2.272)0.8-1.2International normalized ratio

2.457 (2.431-2.483)24.0-320.0 U/LCreatine kinase

0.623 (0.617-0.629)100.0-300.0 ×109/LPlatelet count

1.057 (1.043-1.07)3.5-5.1 mmol/LPotassium

0.183 (0.182-0.184)FemaleGender

2.182 (2.102-2.262)135-145 mmol/LSodium

4.807 (4.587-5.027)0.8-1.0 mmol/LMagnesium

0.615 (0.603-0.627)96.00-106.00 mmol/LChloride

1.284 (1.268-1.3)35-51g/LSerum albumin

aLR: logistic regression.
bOR: odds ratio.

Figure 6. ROC curves of different data ratio. AUC: area under the curve; ROC: receiver operating characteristic.
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Figure 7. PR curves of different data ratio. AUPRC: area under the precision-recall curve; PR: precision-recall.

Figure 8. Visualization of logistic regression coefficients.

Development of Other ML Models
We use interpolated and undersampled data (data ratio 1:1) to
train several other ML models and evaluate their performance.
The training models included an RF [50], a gradient boosting
machine (GBM) [51], a support vector machine (SVM) [52],
and least absolute shrinkage and selection operator (LASSO)
[53], which are also often used to develop medical prediction
models [49,54]. We use 500-fold bootstrapping for internal
validation. Each bootstrap used 70% data for training and the
remaining 30% data for performance evaluation. The area under
the curve (AUC), AUPRC, recall, and F1-score and their 95%
CI values were reported. Before model training, a grid search
was conducted to tune the best hyperparameter of each model
through 5-fold cross-validation. The hyperparameter settings

of each model are shown in Supplementary Table S7 in
Multimedia Appendix 1. The ROC curve and PR curve of the
models are shown in Supplementary Figures S2 and S3 in
Multimedia Appendix 1, respectively, and the performance
evaluation results are shown in Supplementary Table S8 in
Multimedia Appendix 1. In general, the performance of the RF
and GBM with an integrated scheme was the best, with an AUC
of 0.936 (95% CI 0.934-0.937) and 0.931 (95% CI
0.93-0.932),respectively, and an F1-score of 0.857 (95% CI
0.856-0.858) and 0.821 (95% CI 0.82-0.823), respectively. This
can benefit from the generalization and the ability to deal with
complex feature relationships of the integrated model. The
comprehensive decision results of multiple base learners are
more stable than the single-model prediction results, and the
performance is better. The SVM also performed better than the
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LR and LASSO, which are linear models, with an AUC of 0.913
(95% CI 0.912-0.914). This shows that there are some nonlinear
features we used that made the linear model insufficient to
recognize the relationship between these features.

Diagnostic Data Analysis Results
The final sample included 1083 patients with sudden death and
615 patients with nonsudden death. Table 7 shows the number
of confirmed patients with 18 variables. The final diagnostic
variables used included hypertension, myocardial infarction,
cerebral hemorrhage, cardiac arrest, absolute pain, atmospheric
fabric, fever, trauma, respiratory arrest, diabetes, corporate heart
disease, and cerebral infarction.

We used 500-fold bootstrapping for internal validation of the
model. For each bootstrap, 70% of the samples were randomly
selected as the training set and 30% as the test set to evaluate
the model. The final reported model performance was the mean
and 95% CI of 500 results [48].

The first 17 PCs that could explain 98.2% of the variance of
the original sample were selected as new variables for analysis.
To observe the role of PCA, we compared the 2 schemes: the
LR model using the original data and the LR model after
dimensionality reduction using PCA. The LR model trained
with the original data obtained a recall rate of 0.445 (95% CI
0.443-0.448), an F1-score of 0.562 95% CI 0.56-0.564), and an
AUROC of 0.602 (95% CI 0.6-0.603). After PCA
dimensionality reduction of the original data, the PC variable
was used as the data source to train the LR model, and a recall
rate of 0.746 (95% CI 0.731-0.76) was obtained, the F1-score
was 0.73 (95% CI 0.721-0.738), and the AUROC of the model
was 0.708 (95% CI 0.707-0.71). Figure 9 shows the ROC curves

of the 2 models. The LR model using the original data had the
phenomenon of variable separation, which is reflected in the
abnormally high OR values of cardiac arrest and respiratory
arrest (201568034532 and 1211118945) and an abnormal 95%
CI, which makes the results unreliable. In addition, the
performance of the model was poor, and only a recall rate of
0.445 was obtained in the identification of patients with sudden
death, which means that the identification ability of the model
for patients with sudden death is not strong. After PCA
dimensionality reduction, the data were no longer sparse, the
model parameters were better fitted, and the model performance
improved to a certain extent. In addition, data conversion also
eliminated the problems of variable separation and
multicollinearity.

To determine the impact of various diagnostic variables on the
sudden death of emergency patients, we statistically analyzed
the results of multivariate analysis on 17 PCs input into the LR
model. The OR of PC4, PC5, and PC6 was 3.044, 2.859, and
3.931, respectively, showing a significant correlation with
sudden-death events (Table 8). In each PC, the magnitude of
the loading, the elements in the PC, reflected the importance of
the original variable in the PC (Supplementary Table S3 in
Multimedia Appendix 1). The loadings of all components
showed that cerebral infarction, hypertension, and pulmonary
infection were the top 3 variables in PC4. In PC5 and PC6, the
top 3 variables were consciousness disorder, diabetes, and fever.
Based on the results of the 3 PCs, we believe that the 6
diagnoses of cerebral infarction, hypertension, pulmonary
infection, consciousness disorder, diabetes, and fever are
significantly associated with sudden death in emergency
patients.
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Table 7. Statistics of people diagnosed.

People with sudden death diagnosed, n (%)/people with nonsudden death diagnosed, n (%)Variable

57 (5.26)/23 (3.74)Myocardial infarction

8 (0.74)/35 (5.69)Chest tightness

120 (11.08)/0Cardiac arrest

50 (4.62)/43 (6.99)Fever

58 (5.36)/3 (0.49)Rib fracture

42 (3.88)/35 (5.69)Abnormal renal function

18 (1.66)/38 (6.18)Chest pain

65 (6.00)/66 (10.73)Diabetes

30 (2.77)/45 (7.32)Abdominal pain

85 (7.85)/64 (10.41)Pulmonary infection

106 (9.79)/0Respiratory arrest

58 (5.36)/16 (2.60)Trauma

39 (3.60)/33 (5.37)Atrial fibrillation

82 (7.57)/17 (2.76)Disturbance of consciousness

77 (7.11)/26 (4.23)Cerebral hemorrhage

75 (6.93)/71 (11.54)Cerebral infarction

29 (2.68)/39 (6.34)Coronary heart disease

65 (6.00)/106 (17.24)Hypertension

Figure 9. ROC curves of 2 models. AUC: area under the curve; LR: logistic regression; PCA: principal component analysis; ROC: receiver operating
characteristic.
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Table 8. PCa regression results

ORb (95% CI)PC

0.239 (0.235-0.2421

2.429 (2.383-2.476)2

1.19 (1.126-1.253)3

3.044 (2.948-3.141)4

2.859 (2.687-3.031)5

3.931 (3.714-4.148)6

1.49 (1.405-1.575)7

1.699 (1.562-1.836)8

2.104 (1.949-2.259)9

2.153 (2.016-2.289)10

2.451 (2.191-2.711)11

2.031 (1.855-2.206)12

1.457 (1.339-1.575)13

0.949 (0.863-1.034)14

1.423 (1.231-1.614)15

2.546 (2.221-2.871)16

0.182 (0.164-0.201)17

aPC: principal component.
bOR: odds ratio.

Discussion

Principal Findings
In this paper, 3 ML schemes were proposed to deal with missing,
imbalanced, and sparse features in the process of developing
sudden-death prediction models using emergency medicine
data, which improves the performance of the developed model.
To solve the problem of missing data, we propose an RF method
to use real data to interpolate missing data. In the interpolation
process, the consistency of the interpolation results is checked

by determining the coefficient R2 and the κ coefficient. From
the interpolation results, the method shows the ability to
correctly interpolate missing data. Imbalanced data are not
conducive to obtaining accurate analysis results, and the model
will be more inclined to predict new samples as patients with
nonsudden death [15]. In view of this phenomenon, we used
the k-means algorithm to generate multiple data sets with
different proportions of different categories by undersampling
to evaluate the model. The method based on k-means can better
preserve the patient's characteristic information. This method
will not lose some representative patient samples due to random
discarding, thus reducing the bias caused by sampling. The
results show that the comprehensive performance of the model
gradually improves as the data tend to balance (Figures 3-5).
However, imbalance correction will weaken the calibration
ability of the model and increase the calibration error. Data
sparsity is also not conducive to modeling and analysis. When
the samples are too sparse, the results of the classifier based on
maximum-likelihood estimation will become unreliable, because

there may be variable separation and multicollinearity [18,55].
PC regression analysis is a method that uses PCA to extract the
PC information about the original samples and uses PCs to
replace the original variables for regression modeling [39]. In
our diagnostic data, the LR model using the original data showed
the phenomenon of variable separation, which led to unreliable
results and poor performance. The performance of the PC
regression model has been improved. In addition, we can analyze
the diagnosis significantly related to the sudden death of
emergency patients from the results of PC regression. These
diagnoses are consistent with previous findings [9].

At present, there are many studies on the prediction of sudden
death. Yu et al [54] constructed an ML model to predict sudden
cardiac death (SCD) in 15,661 patients with atherosclerosis.
The results showed that the ML model performs better than the
standard Poisson regression model and the AUROC of the ML
model was 0.89. Karen et al [56] trained an ML-based early
warning model for identifying sudden infant death syndrome
using the public data set “Lipidomic in sudden infant death
syndrome.” The RF algorithm achieved an AUROC of 0.9 and
a recall of 0.8. Ye et al [5] selected a variety of ML algorithms
to build an early real-time early warning system (EWS) to
predict the death risk of emergency patients and carried out
prospective validation. The results showed that the EWS could
give an early warning within 40 hours before sudden death, and
the AUROC reached 0.884. Bhattacharya et al [57] used the
electronic health records of 711 patients with hypertrophic
myocardial cake and established an LR and naive Bayesian
model with 22 variables, including statins, a family history of
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SCD, and left ventricular ejection fraction, to predict the risk
of sudden death (ventricular fibrillation) in these patients. The
sensitivity and specificity of the optimal model were 0.73 and
0.76, respectively, and the AUROC was 0.83. For our model,
in the LR model constructed by using laboratory test data, the
AUROC reached 0.895. After imbalance correction, the recall
rate and AUPRC improved, reaching 0.863 and 0.897,
respectively. Compared to the existing sudden-death prediction
model based on ML, the performance of our model can achieve
a similar effect, further indicating that our data-preprocessing
methods can preserve the patient's characteristic information
and improve the availability of emergency care.

Limitations
This work also has some limitations. On the one hand, we only
considered a single ML algorithm for data interpolation and did
not discuss and compare the application of other possible ML
algorithms in interpolation. It is possible that we overlooked
the better performance of other methods. For example, for our
data, due to the large proportion of missing and seriously
imbalanced categorical variables, although we tried to adjust
the relatively balanced data set to train the model, the κ
coefficient improved to a certain extent but the effect was still
poor. Therefore, a further discussion of ML methods that can
handle a large number of missing and unbalanced categories or
more reasonable feature processing may achieve better
imputation results. Although imbalance correction can improve
the sensitivity and specificity of the model, it can avoid biased
errors of the model. However, this correction will also weaken
the clinical application value of the model, lowering the
calibration ability of the model and making it unable to
accurately estimate the risk probability of patients. For the
prediction model, the calibration ability of the model was not
high, even on the original scale data set. Model calibration is
another important characteristic of evaluating the clinical
significance of prediction models. A well-calibrated model can
provide more useful information for clinical decisions [58,59].
We can further consider using isotonic regression [60] to
calibrate the model to improve its clinical application value. In
addition, although the solution to deal with missing, imbalanced,
and sparse features proposed by us is not the latest method, it

is sufficient to solve the main data quality problems encountered
in the development of prediction models for sudden death, which
is reflected in the improvement of model performance and the
consistency of the risk factors of sudden death obtained with
the earlier literature results. In the future, we need to further
explore the latest methods to solve these 3 data quality problems
so as to extend the data-processing process to other data sets
and provide a more reliable data source for prediction models.
With regard to the construction of risk factor prediction models
for patients with sudden death, we have a broad definition of
sudden death, including patients who have undergone rescue
or death events. These patients may include some nonemergency
death cases, which may have a confusing effect on the final
model. In addition, our feature selection was completely based
on data, and only the remaining variables were trained in groups
during the model training stage. This form can reduce the
complexity of manually selecting features and also explore some
potential risk variables. However, some clinically significant
variables will also be discarded. Therefore, whether the model
has clinical guiding significance remains to be further
investigated. As a case study, we used LR as the main prediction
model, which facilitated us to develop and analyze the risk
factors of sudden death. However, the processing capacity of
the LR model for nonlinear predictors is insufficient, resulting
in insufficient performance of the developed model [17]. This
can be seen from the results of other ML models we additionally
developed (the RF and GBM had the best performance, with
an AUC of 0.936 and 0.931, respectively, which are better than
LR models). Therefore, in the future, we will further optimize
the data-preprocessing process and try to develop ML models
with better performance to improve the clinical usability.

Conclusion
Our work proposes to use ML methods to deal with data quality
issues, such as missing data, data imbalance, and sparse features
in emergency data, so as to improve data availability. In
addition, the risk factors of sudden death in emergency patients
are obtained from our model analysis. As a preliminary analysis
result, this result is also the basis for the later use of ML
algorithms to build the feature selection and data analysis of
the prediction model of sudden death in emergency patients.
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