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Abstract

Background: Dermoscopy is commonly used for the evaluation of pigmented lesions, but agreement between experts for
identification of dermoscopic structures is known to be relatively poor. Expert labeling of medical data is a bottleneck in the
development of machine learning (ML) tools, and crowdsourcing has been demonstrated as a cost- and time-efficient method for
the annotation of medical images.

Objective: The aim of this study is to demonstrate that crowdsourcing can be used to label basic dermoscopic structures from
images of pigmented lesions with similar reliability to a group of experts.

Methods: First, we obtained labels of 248 images of melanocytic lesions with 31 dermoscopic “subfeatures” labeled by 20
dermoscopy experts. These were then collapsed into 6 dermoscopic “superfeatures” based on structural similarity, due to low
interrater reliability (IRR): dots, globules, lines, network structures, regression structures, and vessels. These images were then
used as the gold standard for the crowd study. The commercial platform DiagnosUs was used to obtain annotations from a
nonexpert crowd for the presence or absence of the 6 superfeatures in each of the 248 images. We replicated this methodology
with a group of 7 dermatologists to allow direct comparison with the nonexpert crowd. The Cohen κ value was used to measure
agreement across raters.

Results: In total, we obtained 139,731 ratings of the 6 dermoscopic superfeatures from the crowd. There was relatively lower
agreement for the identification of dots and globules (the median κ values were 0.526 and 0.395, respectively), whereas network
structures and vessels showed the highest agreement (the median κ values were 0.581 and 0.798, respectively). This pattern was
also seen among the expert raters, who had median κ values of 0.483 and 0.517 for dots and globules, respectively, and 0.758
and 0.790 for network structures and vessels. The median κ values between nonexperts and thresholded average–expert readers
were 0.709 for dots, 0.719 for globules, 0.714 for lines, 0.838 for network structures, 0.818 for regression structures, and 0.728
for vessels.

Conclusions: This study confirmed that IRR for different dermoscopic features varied among a group of experts; a similar
pattern was observed in a nonexpert crowd. There was good or excellent agreement for each of the 6 superfeatures between the
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crowd and the experts, highlighting the similar reliability of the crowd for labeling dermoscopic images. This confirms the
feasibility and dependability of using crowdsourcing as a scalable solution to annotate large sets of dermoscopic images, with
several potential clinical and educational applications, including the development of novel, explainable ML tools.

(JMIR Med Inform 2023;11:e38412) doi: 10.2196/38412
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Introduction

The use of dermoscopy, a low-cost, noninvasive diagnostic
technique based on a hand-held device with a light source and
magnifying lens, is routine practice for the evaluation of
pigmented skin lesions and has been shown to increase
sensitivity for early melanoma detection [1,2]. Dermoscopy
allows examination of morphological features below the stratum
corneum that would not be visible by visual inspection alone
[3]. Diagnosis of melanoma using dermoscopy relies on
assessment of lesion morphology and identification of
dermoscopic features. A number of diagnostic criteria and
algorithms have been developed for this purpose, including
pattern analysis [4], the ABCD (asymmetry, border, color,
diameter) rule [5], the Menzies method [6], the 7-point checklist
[7], and the CASH (color, architecture, symmetry, homogeneity)
score [8].

As use of dermoscopy has expanded, so too has dermoscopic
vocabulary, resulting in a vast number of published feature
definitions and 2 competing terminologies: metaphoric and
descriptive. In recent years, efforts have been made to harmonize
nomenclature, and the 2016 International Dermoscopy Society
terminology consensus proposed 31 specific “subfeatures” of
melanocytic lesions, falling into 9 “superfeatures” based on
structural similarities (Textbox 1) [9].

However, interrater reliability (IRR) for identifying
melanoma-specific dermoscopic structures has been shown to
be poor [10]. Our research group recently performed the EASY
(Expert Agreement on the Presence and Spatial Location of
Melanocytic Features in Dermoscopy) study, which found that
agreement was highly variable when 20 dermoscopy experts
were asked to identify the 31 dermoscopic subfeatures in an
image set specifically curated for this purpose. IRR across 248
images was poor to moderate for all but 7 features. We
demonstrated that when individual subfeatures were collapsed
into 9 superfeatures, increased agreement was observed, ranging
from a pairwise Fleiss κ of 0.14 for the detection of dots to 1.0
for the detection of a pigment network structure.

Machine learning (ML) methods have recently been investigated
in the field of dermatology, and the majority of developed
algorithms are diagnostic binary classifiers [11,12]. A number
of studies have evaluated the performance of algorithms
developed to detect specific dermoscopic features, including
pigment network structures, vessels, and blue-white veil;
however, many algorithms were trained and tested on relatively

small data sets and have achieved only moderate accuracy
[13-21].

Due to the vast dimensionality of medical images, classifier
algorithms are typically of an uninterpretable “black box” nature,
a term that describes the phenomenon whereby functions that
connect input pixel data to output labels cannot be understood
by the human brain. There has been a push by medical regulators
and the artificial intelligence community to develop explainable
algorithms; however, it has been acknowledged that this may
come at the cost of decreased accuracy [22]. Incorporating
detection of dermoscopic features into melanoma classifier
algorithms may allow for better explainability and therefore
greater acceptance into clinical practice by clinicians and
regulatory bodies [23,24].

The International Skin Imaging Collaboration (ISIC) archive
provides an open-access data set comprising almost 70,000
publicly available dermoscopic images at the time of writing,
including 5598 melanomas and 27,878 nevi. As well as hosting
the regular ISIC Grand Challenge to promote the development
of ML for melanoma detection, the archive has been extensively
utilized to train independent ML algorithms and acts as a
comprehensive educational resource for dermatologists via the
Dermoscopedia platform [25,26]. Most public images in the
archive have labels serving as a diagnostic ground truth for
supervised learning. However, accurate feature annotations are
thus far lacking. As part of the 2018 ISIC Challenge, 2595
images were annotated for 5 dermoscopic patterns (pigment
network structures, negative network structures, streaks,
milia-like cysts, and dots/globules) [27]. However, the ground
truth labels were provided by only 1 clinician and the
performance of the 23 submitted algorithms was acknowledged
to be exceptionally low, likely as a result of this [27].

As medical data sets continue to rapidly expand and computing
power increases, it is widely recognized that one of the major
limiting factors for the development of robust and generalizable
ML in dermatology is the need for large, comprehensively
labeled data sets [28,29]. Obtaining annotations of medical
images by medical experts is both time-consuming and
expensive, creating a bottleneck in the development pipeline
and making it challenging to obtain annotations at scale [30].

Crowdsourcing provides a potential solution to these problems.
Crowdsourcing involves the recruitment of groups of individuals
of varying levels of knowledge, heterogeneity, and number who
voluntarily complete an online task, often with financial
incentives [31,32]. Monetary compensation is typically less
than US $0.10 per annotation, and tasks can be distributed to a
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large number of workers in parallel, aggregating the crowd’s
knowledge to complete the task in a cost- and time-effective
manner [33,34]. One study reported that it took 6 months to
obtain expert labels comprising 340 sentences from radiology
reports written by 2 radiologists, whereas the authors obtained
crowdsourced annotations of 717 sentences in under 2 days at
a cost of less than $600. A classification algorithm trained using
these crowdsourced annotations outperformed an algorithm
trained using the expert-labeled data as a result of the increased
volume of available training examples [32].

Given the heterogeneity of biomedical data, the utility of
crowdsourcing may decrease with the complexity of the task.
For example, the 14 million images contained in the ImageNet
archive were easily annotated by the untrained public, whereas
the ability to classify and segment radiological images may
require many years of specialist training [28,30,35].
Nevertheless, crowdsourcing has proven effective in a wide
range of applications for biomedical imaging, most commonly
histopathology or retinal imaging [34].

Feng et al [36] reported that a crowd of South Korean students
were able to reach similar diagnostic accuracy as experts for
diagnosing malaria-infected red blood cells after only 3 hours
of training, allowing the authors to build a gold standard library
of malaria-infection labels for erythrocytes. The authors used
a game-based tool that made the task easy to complete by

including points and a leaderboard on the platform. This method
of so-called gamification is frequently used by crowdsourcing
platforms and has been shown to increase the engagement of
the crowd and improve the quality of the crowdsourced work
[37]. Bittel et al [38] used a hybrid crowd-ML approach to create
the largest publicly available data set of annotated endoscopic
images. Heim et al [28] found that a crowd was able to segment
abdominal organs in computed tomography (CT) images with
comparable quality to a radiologist, but at a rate up to 350 times
faster.

There are few studies published to date evaluating
crowdsourcing in the field of dermatology, and to the best of
the authors’ knowledge, there are no published studies on the
utility of crowdsourcing for the annotation of features present
in dermoscopic images [39,40].

The aim of this study is to demonstrate that crowdsourcing can
be employed to label dermoscopic subfeatures of melanocytic
lesions with equivalent reliability to a small group of
dermatologists. This will allow for efficient annotation of a
large repository of dermoscopic images to aid the development
of novel ML algorithms [32]. Incorporating detection of
dermoscopic features into diagnostic algorithms will result in
explainable outputs and may therefore improve the acceptability
of these outputs to the medical community.

Textbox 1. List of superfeatures (in bold) and corresponding subfeatures seen in melanocytic lesions [9].

Dots

Irregular, regular

Globules

Cobblestone pattern, irregular, regular, rim of brown globules

Lines

Branched streaks, pseudopods, radial streaming, starburst

Network structures

Atypical pigment network, broadened pigment network, delicate pigment network, negative pigment network, typical pigment network

Regression structures

Peppering/granularity, scarlike depigmentation

Shiny white structures

Patterns

Angulated lines, polygons, zigzags

Structureless areas

Irregular blotches, regular blotches, blue-whitish veil, milky red areas, structureless brown areas, and homogenous (not otherwise specified)

Vessels

Comma, corkscrew, dotted vessel, linear irregular vessel, polymorphous vessel, milky red globules

Methods

Ethics Approval
This study was conducted as part of the umbrella ISIC research
protocol and was approved by the Memorial Sloan Kettering
Cancer Center Institutional Review Board (16-974). All images
were deidentified and do not contain any protected health

information as per the terms of use agreement for the ISIC
archive.

Materials
This study was performed in 3 separate experiments, each using
the same set of 248 lesion images used in the EASY study.
Briefly summarized, clinical experts contributed 964 lesion
images showing 1 of 31 preselected subfeatures, as described
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by Kittler et al [9]. Clinicians were asked to submit images of
“excellent quality showing the exemplar feature in focus.” Three
experts chose 248 of these images, roughly balancing benign
and malignant lesions and ensuring image quality. Each of the
31 features was the exemplar in 8 of the lesion images
submitted. However, each image could, and typically did, show
multiple features.

Subfeatures and Superfeatures
As described earlier, low to moderate IRR was observed for the
majority of subfeatures. Hence, we used only the superfeature
terms for our scalability investigation. While each of the
subfeatures had 8 exemplar images, collapsing the labels into
superfeatures created some imbalance. The full list of
subfeatures is shown in Textbox 1. The 9 superfeatures (dots,
globules, lines, network structures, patterns, regression
structures, shiny white structures, structureless areas, and
vessels; shown in Multimedia Appendix 1, Table S1) were
presented to participants during the tutorial on the DiagnosUs
smartphone app, adapted from Marghoob and Braun [41].

Agreement Measure
To measure agreement across raters, we employed the Cohen
κ [42], which has a value of 0 for completely random choices,
increasing toward a maximum value of 1.0 with improved IRR.
Measures of agreement are interpreted as poor (0-0.4), fair to
good (≥0.4-0.75), and excellent (≥0.75-1.0) [43]. This measure
was primarily chosen to accommodate the nature of the 3
separate studies (see below), allowing for partial data between
pairs of raters using the binary choice of “feature present” or
“feature absent.” Throughout this paper, we use the term
“median κ” to refer to the median of κ values across the set of
pairwise comparisons as a measure of central tendency, given
the nonnormal distribution of κ values.

Initial Expert Annotations (Study 1)
For the first study, we used a custom programmed annotation
platform built for the ISIC archive. We asked a total of 20
dermoscopy experts to each annotate 62 images (2 per exemplar
feature) in 4 substudies of nonoverlapping image sets. Experts
for study 1 were clinicians with ≥10 years of dermoscopy
experience who had made significant contributions to
dermoscopy research or teaching dermoscopy of pigmented
lesions. For each image, 5 experts were asked to provide
benign/malignant status and then to self-select which of the 31
available subfeatures they perceived as present in the image.
Full data and results of the EASY study will be published
separately.

Gold Standard for the Crowd Study
After collapsing the subfeatures into the 9 abovementioned
superfeatures, we found that 3 had very poor agreement and too
few exemplars to allow reliable evaluation by the crowd:
patterns, shiny white structures, and structureless areas. For the
remaining 6 superfeatures (dots, globules, lines, network
structures, regression structures, and vessels), images in which
at least 3 of 5 experts in study 1 had selected ≥1 of the

subfeatures within the same superfeature as present were used
as the gold standard for “superfeature present.” Images in which
none of the 5 experts had identified any of the subfeatures within
the same superfeature as present were used as the gold standard
for “superfeature absent.”

Nonexpert Crowd Annotations (Study 2)
To collect nonexpert image annotations, we used the
commercially available platform DiagnosUs (Centaur Labs)
[44] through a collaboration agreement. Users can sign up to
the app and participate in competitions, which increases
engagement and improves accuracy [37]. Users are recruited
via a referral system or advertisements on social media. To
ensure that only users somewhat skilled at a task computed
average detection values, gold standard images were used for
both training and validation. This left the remaining images, for
which either 1 or 2 expert raters annotated a subfeature within
the same superfeature as being present, as true test images. If a
user did not reach at least 83% correctness for the validation
items, that user’s choices were not used in the subsequent
analysis. Each of the 6 superfeatures was presented as a separate
task. In addition to the binary choice of presence or absence of
a superfeature, we also collected reaction times to assess
decision difficulty [45].

Expert Crowd Annotations (Study 3)
As study 1 allowed experts to select from the 31 subfeatures,
we replicated the methodology of study 2 to allow direct
comparison with the nonexpert crowd. Experts in study 2 were
dermatologists with ≥5 years of experience. We recruited 7
experts to use the DiagnosUs platform and annotate the same
248 images from studies 1 and 2 for the presence of the 6
superfeatures. For each of the features, we selected the first 5
dermatologists who completed annotation of the image set.

Reaction Times
For each of the tasks in studies 2 and 3, we computed the
per-item averaged logged reaction times as the log of (1 +
reaction time) to approximate a normal distribution of
measurement errors. These averaged logged reaction times were
then regressed against the average responses and a quadratic
term, allowing for an inverted-U–shaped response function,
which peaked roughly at the (across-readers) point of indecision.

Results

Initial Expert Annotations (Study 1)
In study 1, we found that dots showed poor agreement (median
κ=0.298), whereas vessels showed excellent agreement (median
κ=0.768). All other superfeatures showed fair to good agreement
(Table 1). The resulting distributions of pairwise Cohen κ values
are shown in Figure 1A. The number of resulting gold-standard
images for each of the 6 superfeatures was as follows (0
readers/at least 3 readers, respectively): dots (93/61), globules
(57/92), lines (129/60), network structures (63/140), regression
structures (113/59), and vessels (152/66).
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Table 1. Median Cohen κ values for pairwise readers. For study 2, pairs of readers were considered only if both readers saw at least 62 of the same
images.

Study 3 (expert crowd), median κStudy 2 (nonexpert crowd), median κStudy 1 (experts), median κFeature

0.48290.52640.2977Dots

0.51660.39450.4075Globules

0.44330.39830.5205Lines

0.75750.58100.6175Network structures

0.47300.50660.4643Regression structures

0.79030.79770.7683Vessels

Figure 1. Pair-wise Cohen κ values for study 1 (A), study 2 (B), and study 3 (C).

Nonexpert Crowd Annotations (Study 2)
Providing demographic data pertaining to the users’ jobs and
their reasons for using the DiagnosUs platform was optional;
these data were collected from 190 users. Of these, 23 (12.1%)
were physicians (2 dermatologists, 21 other specialties), 72
(37.9%) were medical students, 11 (5.8%) were nurse
practitioners, 8 (4.2%) were physician assistants, and 76 (40%)
were “other” or “other healthcare student.” The most common
reason for using DiagnosUs was “improve my skills” (134/190,
70.5%), followed by “earn money” (37/190, 19.5%) and
“compete with others” (19/190, 10%).

The number of users that engaged with each of the features
varied for dots (92 users), globules (111 users), lines (82 users),
network structures (97 users), regression structures (79 users),
and vessels (95 users). Equally, the median number of ratings
made per user per task varied for dots (160 images rated per
user), globules (131 images), lines (177 images), network
structures (91 images), regression structures (124 images), and
vessels (104 images). The total number of crowd base ratings
obtained in this study was 139,731, including 25,466 total
ratings for dots, 40,853 for globules, 21,074 for lines, 17,114
for network structures, 17,020 for regression structures, and
18,204 for vessels.

The pattern we found in study 1 was largely replicated by the
nonexperts. To ensure that there was sufficient and comparable
overlap for images between pairs of readers, only pairs in which
both readers saw at least 62 of the same images were evaluated.
Dots and globules showed relatively lower agreement (with
median κ values of 0.526 and 0.395, respectively), whereas
network structures and vessels showed the highest agreement
(with median κ values of 0.581 and 0.798, respectively). To
allow a direct comparison between studies 1 and 2, we have
compiled the 6 superfeatures into a panel figure (Figure 1A and
1B).

Expert Crowd Annotations (Study 3)
Again, the patterns found in studies 1 and 2 were replicated,
such that dots and globules showed relatively lower agreement
(median κ values were 0.483 and 0.517, respectively), whereas
network structures and vessels showed the highest agreement
(median κ values were 0.758 and 0.790, respectively; Figure
1C).

We computed κ values for each nonexpert reader from study 2
compared to a single simulated expert by thresholding the
responses in study 3 from 3 of 5 experts into a binary variable.
The median κ values between nonexperts and the thresholded
average expert reader were as follows: for dots, 0.709; for
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globules, 0.719; for lines, 0.714; for network structures, 0.838;
for regression structures, 0.818; and for vessels, 0.728.

Reaction Times
Irrespective of task, the reaction time varied by user (the median
IQR for reaction time across users was 2.5 seconds to 4.3
seconds) and across images (the median IQR for the difference
in reaction time per user was –0.93 seconds to +1.5 seconds),
suggesting that the variability within users was somewhat greater
than the variability across users.

For both the nonexperts and experts, the quadratic term
accounting for the inverted-U–shaped response in averaged

logged reaction times reached statistical significance across all
tasks. Among the nonexperts, the t values (calculated with a
2-tailed t test) ranged from t244=–14.3 (for dots) to t244=–20.09
(for vessels). Among the experts, probably due to higher noise,
the t values ranged from t244=–7.63 (for regression structures)
to t244=–10.62 (for vessels). All t values were highly significant
(P<.001). In all tasks and for both sets of readers, the linear
term had a negative sign and was also significant (at lower
levels), meaning that in all cases readers were faster to respond
when a feature was present compared to when it was absent
(Figure 2).

Figure 2. Log reaction times for gold standard images (shown by the red dots) and non–gold standard images (shown by the blue dots) of nonexperts
regressed against their average responses and showing the estimated quadratic term for each superfeature. RT: reaction time; GS: gold standard.

Discussion

Principal Findings
The main findings of this study confirmed the variable, and
sometimes low, IRR between experts for identifying
dermoscopic superfeatures on images of melanocytic lesions.
The patterns of repeatability were mirrored in all 3 studies,
highlighting that some features are more challenging to identify
regardless of experience level. We found that the IRR between
the untrained crowd and expert crowd was good to excellent
for all superfeatures, suggesting that crowdsourced labels can
be reliably used for future research. Reaction times were slower
for lesions that would be considered more challenging in both
cohorts, and therefore may be used as a proxy for decision
difficulty.

Initial Expert Annotations (Study 1)
In Study 1, the lowest level of agreement was observed for dots
and globules, and the highest agreement was observed for

network structures and vessels. This is in keeping with the
findings of previous studies evaluating IRR for the identification
of dermoscopic patterns among a group of experienced
dermoscopists [10,46]. It has been suggested that poor
agreement on criteria such as structureless areas, streaks, and
dots or globules may be the result of lack of standardization in
dermoscopy education [46,47].

Furthermore, the definition of dermoscopic structures may
evolve over time. Whereas vascular structures and pigment
network structures are easily recognizable, and their definitions
have been consistent in the literature to date, dots and globules
may be less easy to categorize. Tiny, numerous gray dots may
be categorized as regression structures, and red dots may be
defined as vascular structures [48-50]. Globules are defined as
measuring >0.1 mm, which may be challenging to identify in
dermoscopic images without a unit of measurement as a
reference point. Going forward, it may be more feasible to
consider dots and globules as a single criterion to eliminate the
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challenges encountered when attempting to differentiate them
based on size.

Nonexpert Crowd Annotations (Study 2)
A similar pattern of results was seen in study 2, suggesting that
the gridlike pattern of a pigment network structure and the
distinctive red color of vascular structures may be more
repeatably identified by an untrained crowd. In keeping with
the results of study 1, dots and globules were identified with
poor repeatability. Again, this may be as a result of the
ambiguity in distinguishing between the two on the basis of
their diameter.

Prior studies have shown that dermoscopy by novice clinicians
is no more accurate than visual inspection alone, and so an
untrained crowd would not be expected to identify complex
dermoscopic patterns, particularly when agreement between a
group of world experts is known to be low, such as in our EASY
study. To obtain reliable crowdsourced labels for complex
medical images, an easier set of images may be used or
participants may receive extended training; the study must also
be designed to accommodate a large number of redundant labels
[28]. In a study evaluating crowdsourcing as a method of
identifying colonic polyps in CT colonoscopy images, McKenna
et al [51] found that the crowd performance deteriorated with
increasing difficulty, as well as with increasing reaction time.
By collapsing the 31 subfeatures into 6 superfeatures, we created
a more achievable task for a crowd with no prior experience of
dermoscopy.

Expert Crowd Annotations (Study 3)
The results from study 3 showed that agreement between experts
was higher for dots, globules, and network structures when
compared to study 1, in which annotations for subfeatures were
aggregated into superfeature categories. It is known that there
is a greater potential for disagreement with an increased number
of categories and that the Cohen κ is typically observed to be
lower in this circumstance [52]. Thus, if experts has been asked
to choose from 6 superfeatures rather than 31 subfeatures, there
would have been less potential for disagreement.

When comparing the median κ across all 3 studies, we found
that repeatability for identifying all 6 superfeatures was similar
across the experts and nonexperts. When comparing the median
nonexpert annotations in study 2 to the thresholded expert
annotations in study 3 for the same task, we saw that agreement
was excellent for network structures and regression structures
and good for the 4 remaining superfeatures. This suggests that
the crowd was able to both repeatably and reliably identify
dermoscopic superfeatures. Interestingly, agreement for vessels
was higher within groups than between groups; thus, crowd
annotations, although repeatable, were less accurate than expert
annotations, suggesting that the crowd may be less reliable when
annotating vessels. Vessels had the highest number of
subfeatures (6) with distinct morphologies, several of which
were not presented to the crowd during training on the
DiagnosUs platform. Redesigning the tutorial may result in
better accuracy for crowd annotations of vessels.

Reaction Times
For both experts and nonexperts, there were 2 common patterns
of response time (ie, the time it took a participant to feel
confident enough to log a response varied as a function of
estimated difficulty). For images for which the crowd showed
low agreement (the average response was approximately 0.5
seconds), the response times were significantly slower than for
images for which the crowd showed high agreement. For gold
standard images (those for which ≥3 of 5 experts in study 1
agreed on the presence or absence of a feature) reaction times
were faster than those for images of lesions upon which only 1
or 2 experts agreed, highlighting the challenging nature of these
images. Furthermore, images where the feature was present had
faster reaction times than those where the feature was absent,
regardless of level of agreement. Overall, experts took longer
to respond to images than nonexperts, suggesting that they
exerted more effort to ensure a correct response. In addition,
there was no financial reward for experts in this study; thus,
they were less motivated to annotate as many lesions as possible
within a designated timeframe.

Limitations
One of the fundamental limitations of this study and future
implications that can be drawn from it is the potentially low
dependability of crowdsourced annotations. Although we found
high repeatability and reliability of labels in study 3, this was
for a relatively small set of images that had been carefully
curated to have high-quality examples of a limited number of
superfeatures.

There are a number of proposed methods to improve the quality
of crowdsourced data. Crowd performance has been shown to
improve with increased time spent training for the task, and
participants that complete more readings have been observed
to perform better [36,53]. Therefore, we may be able to improve
performance of the crowd by providing additional training, as
well as by increasing participant engagement, such as with
greater financial rewards. This may, however, come at the cost
of increased time and a smaller number of participants. Although
crowdsourced annotations may be marginally less accurate than
those provided by experts, the increased number of available
labels for training ML algorithms has been shown to make them
more robust to noisy data [54].

In this study, we validated the participants’performance against
gold standard images to ensure the quality of labels, and poorly
performing participants were not included. In the absence of an
expert-labeled image, DiagnosUs allows a ground truth to
emerge with an unlabeled competition design in which images
that show internal consistency across raters become the initial
gold standard. Filtering of individuals may also be achieved by
evaluating participants based on previously performed tasks or
providing a pretask test [34]. Aggregating results via majority
voting is another commonly used method of preprocessing to
improve annotation quality. Annotations may also be evaluated
by using them to train a ML model and using the model’s
performance as a proxy for crowd performance [34].

It is essential that some level of quality assurance take place for
crowdsourced annotations in the absence of expert labeling for
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comparison, as would be the case in future studies. Although
agreement is traditionally considered an indicator of data
reliability, it has been suggested that participants’ competence
and confidence should be taken into account [55]. This can be
achieved by filtering participants with poor accuracy on gold
standard images, aggregating annotations, and using reaction
time as a proxy for decision confidence. Images that give rise
to long reaction times and a low level of agreement may then
be transferred to an expert for annotation.

Many of the lesions in the archive are complex and have
multiple dermoscopic patterns, which we observed created
challenges for the experts to reliably identify, let alone the
untrained crowd. Obtaining annotations for only 6 superfeatures
may limit the diagnostic value of an ML tool. Crowdsourced
labeling of the ISIC archive may be limited by its size; at the
time this study was conducted, approximately 10,000
superfeature annotations were collected per day. However,
engagement with the DiagnosUs platform continues to grow
exponentially, and it currently receives in excess of 1 million
crowd opinions daily across multiple tasks. Therefore, it may
be entirely achievable to annotate the ISIC archive with
crowdsourced labels within a timeframe of weeks to months.

Although the images in this study were subject to a manual
quality assurance process, they were not standardized. For
example, some images contained a unit of measure, which may
have introduced bias when differentiating between dots and
globules, as mentioned earlier in the discussion.

Insufficient demographic data were collected by the DiagnosUs
platform to allow meaningful subanalyses; however, disparities
in experience level between users were highlighted. Importantly,
2 physicians specializing in dermatology participated in the
crowd, and it therefore cannot be truly considered untrained.
Due to the nature of the platform, it appeals to medical
professionals as a learning tool with the aim of driving
innovation in medical artificial intelligence, and the platform
provides meaningful labels at scale regardless of the background
of its users.

Future Work
Given the sheer size of the ISIC archive, it would be infeasible
to obtain annotations by expert dermoscopists for all images.
We have shown the feasibility of obtaining crowdsourced
annotations; this method can be used in several ways. First, it
will allow hierarchical organization of the archive, allowing
users to filter lesions based on dermoscopic patterns. Second,
it may act as a teaching tool, allowing novice dermoscopists to
learn patterns and corresponding diagnoses. And third, these
annotated data may be used to develop novel ML tools. Even
if only a small proportion of images are labeled by the crowd,
a pattern classification or segmentation algorithm could be used
to annotate additional images in the archive though a weakly
supervised technique [56]. A hybrid crowd-algorithm approach
has been successfully developed by several groups for the
purpose of segmenting large databases of medical images
[28,38,54,57].

The issues regarding “black box” algorithms have been raised
as a barrier to implementation of these tools in clinical practice.
Given the complexity of medical imaging data, a fully
explainable algorithm would be unlikely to have adequate
performance; however, use of interpretable outputs may go
some way to assuage hesitancy in uptake. A classification tool
that is also able to detect dermoscopic patterns that have
influenced its decision would allow dermatologists to make
more informed decisions when evaluating the output of the
algorithm [22]. Furthermore, a multidimensional algorithm that
is trained on both diagnoses and dermoscopic features may have
increased accuracy when compared to those trained on diagnoses
alone.

The next steps in exploring the applications of crowdsourced
data are to expand labeling to a larger sample of images with a
robust quality assurance process and incorporate the labels into
a pattern-detection algorithm to be evaluated in a study of
readers. Should this algorithm display acceptable performance
measures, it may be deployed to label further images and be
incorporated into a classification algorithm to improve its
explainability.
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