
Original Paper

An End-to-End Natural Language Processing Application for
Prediction of Medical Case Coding Complexity: Algorithm
Development and Validation

He Ayu Xu1*, PhD; Bernard Maccari2*, MSc; Hervé Guillain3, MD, DrPH; Julien Herzen2, PhD; Fabio Agri4,5*, MBA,

MD; Jean Louis Raisaro1*, PhD
1Biomedical Data Science Center, Lausanne University Hospital, Lausanne, Switzerland
2Unit8 SA, Lausanne, Switzerland
3Public Health Solutions Ltd, Promasens, Switzerland
4Department of Administration and Finance, Lausanne University Hospital, Lausanne, Switzerland
5Department of Visceral Surgery, Lausanne University Hospital, Lausanne, Switzerland
*these authors contributed equally

Corresponding Author:
He Ayu Xu, PhD
Biomedical Data Science Center
Lausanne University Hospital
CHUV, Centre hospitalier universitaire vaudois Rue du Bugnon 21
Lausanne, 1011
Switzerland
Phone: 41 0795566886
Email: he.xu@chuv.ch

Abstract

Background: Medical coding is the process that converts clinical documentation into standard medical codes. Codes are used
for several key purposes in a hospital (eg, insurance reimbursement and performance analysis); therefore, their optimization is
crucial. With the rapid growth of natural language processing technologies, several solutions based on artificial intelligence have
been proposed to aid in medical coding by automatically suggesting relevant codes for clinical documents. However, their
effectiveness is still limited to simple cases, and it is not yet clear how much value they can bring in improving coding efficiency
and accuracy.

Objective: This study aimed to bring more efficiency to the coding process to improve the selection of codes by medical coders.
To achieve this, we developed an innovative multimodal machine learning–based solution that, instead of predicting codes, detects
the degree of coding complexity before coding is performed. The notion of coding complexity was used to better dispatch work
among medical coders to eventually minimize errors and improve throughput.

Methods: To train and evaluate our approach, we collected 2060 cases rated by coders in terms of coding complexity from 1
(simplest) to 4 (most complex). We asked 2 expert coders to rate 3.01% (62/2060) of the cases as the gold standard. The agreements
between experts were used as benchmarks for model evaluation. A case contains both clinical text and patient metadata from the
hospital electronic health record. We extracted both text features and metadata features, then concatenated and fed them into
several machine learning models. Finally, we selected 2 models. The first used cross-validated training on 1751 cases and testing
on 309 cases aiming to assess the predictive power of the proposed approach and its generalizability. The second model was
trained on 1998 cases and tested on the gold standard to validate the best model performance against human benchmarks.

Results: Our first model achieved a macro–F1-score of 0.51 and an accuracy of 0.59 on classifying the 4-scale complexity. The
model distinguished well between the simple (combined complexity 1-2) and complex (combined complexity 3-4) cases with a
macro–F1-score of 0.65 and an accuracy of 0.71. Our second model achieved 61% agreement with experts’ ratings and a
macro–F1-score of 0.62 on the gold standard, whereas the 2 experts had a 66% (41/62) agreement ratio with a macro–F1-score
of 0.67.

Conclusions: We propose a multimodal machine learning approach that leverages information from both clinical text and patient
metadata to predict the complexity of coding a case in the precoding phase. By integrating this model into the hospital coding
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system, distribution of cases among coders can be done automatically with performance comparable with that of human expert
coders, thus improving coding efficiency and accuracy at scale.

(JMIR Med Inform 2023;11:e38150) doi: 10.2196/38150
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Introduction

Background
Medical coding [1] is the translation of health care diagnoses
and procedures into standard diagnosis and procedure codes
using medical classifications and controlled terminologies. It
is a strategic activity for funding hospitals and, therefore, its
optimization is a priority in health care systems under financial
pressure. In many countries worldwide, including Switzerland,
hospital funding is based on the so-called Prospective Payment
System [2,3] mechanism. In the Swiss Prospective Payment
System, for example, inpatient stays are assigned to
diagnosis-related groups [4] according to diagnosis and
procedure codes derived from medical documentation, and each
hospital stay is paid according to the diagnosis-related group
to which it is assigned. Therefore, medical coding is closely
linked, on the one hand, to medical documentation, and on the
other hand, to hospital revenues. In addition to establishing
reimbursement claims, medical codes are used for several other
goals, such as setting budgets for planned hospitalizations or
evaluating the quality of care by means of indicators such as
complication rates after surgery.

The diagnosis and procedure codes of a specific case (ie,
inpatient stay) are derived from clinical documentation such as
discharge letters, surgical reports, physicians’and nurses’notes,
and laboratory and radiologic results. The International
Statistical Classification of Diseases and Related Health
Problems, 10th Revision (ICD-10) [5], is usually used for coding
diagnoses, whereas the classification system used to code
procedures can vary from country to country [6].

Codes are manually entered into a hospital information system.
In Switzerland, there are >200 coding rules that govern code
entry and must be applied by medical coders. The latter are
health care professionals who have undergone specific training
for this purpose. However, despite training, medical coding
remains a complex, quickly evolving, time-consuming, and
error-prone task. In our tertiary academic medical center,
medical coding staff have been divided into specialty teams
since 2018. In a batch of cases, 50% are distributed to a
“common pot,” and the other 50% are distributed to the
corresponding specialty teams of medical coders. The cases in
the “common pot” are distributed randomly to each team. A
higher percentage of cases for the specialty teams is not
envisaged for 3 reasons. First, it could lead to a loss of
knowledge in general coding. Second, it could cause boredom
for medical coders. Third, it will not always be possible to
guarantee a sufficient number of cases for certain teams. Thus,
a way to increase the efficiency of the current distribution of

work without going toward a counterproductive
overspecialization [7] is to force cases requiring high expertise
to be assigned to experienced and specialist coders. This
approach is only possible by detecting the complexity of the
cases in advance before they are distributed and coded.

In recent years, artificial intelligence (AI) methods have been
increasingly proposed to improve the efficiency and accuracy
of medical coding. Their main goal has been to support medical
coders in finding the most appropriate diagnosis and procedure
codes for a given medical documentation. Conventional models,
deep learning models such as convolutional neural networks
and long short-term memory, and transformers have been trained
and tested on automatic coding tasks using publicly available
data sets in English [8-13]. Recently, this work has also been
expanded to non-English corpora such as the French corpus
[14,15]. In addition to the academic approach, commercial
software for automatic coding has also been developed and
introduced to the market. For example, commercial software
such as ID SUISSE [16] applies rule-based algorithms to
perform automatic coding. Their principle is to use a prebuilt
dictionary of ICD-10 codes and their text labels, try to find
clinical text that matches the labels, and then convert the text
to ICD-10 codes. More recent tools such as Collective Thinking
[17] and 360 Encompass (3M) [18] have improved the
rule-based algorithms with machine learning (ML) techniques.
Finally, solutions such as Sumex [19] rely on statistical methods
to analyze the distributions and combinations of ICD-10 codes
to identify possible inconsistencies in the coding patterns.

Despite the increasing number of available solutions, the
effectiveness of automatic coding is still limited. Among the
best-performing ML models, although precision can reach
approximately 75%, the macro–F1-score could only achieve
10% to 12% [12,20,21]. The results indicate that even the best
models can only capture a small portion of medical codes from
free text. Therefore, the improvement of medical coding using
AI-assisted strategies remains an open challenge (Kaur R,
unpublished data, July 2021).

Objectives
The purpose of our study was not to find a way to predict
ICD-10 codes from medical records. Instead, it was to improve
coding quality and efficiency by predicting coding complexity
before the coding process. Our primary objective was to bring
more efficiency to the coding process to improve the quality of
coding by medical coders, and the means to achieve this is an
innovative solution using ML. The innovation is to use ML to
detect complexity, which is then used to better dispatch the
work among medical coders. To the best of our knowledge, this
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approach has never been used before. It allows for a more
efficient distribution of cases according to coders’ abilities and
experience. As such, we will be able to minimize potential
human errors because of random assignment and uneven
distributions of coding expertise within hospitals’ coding
divisions or units. Eventually, by knowing the coding
complexity up front, simple cases can be assigned to beginners
or nonspecialist coders or AI-assisted systems to maximize their
utility while complex cases for which AI-assisted tools are still
inefficient are assigned to coding specialists or at least to
experienced medical coders.

Depending on the amount of clinical documentation to be
examined and other factors such as the length of stay or the
diversity of medical specialists involved in the treatment of a
patient, coding a case may be a simple or a really complex task.
Once a case has been coded, it is typically easy for the person
who has done so to classify the case into a complexity level,
which represents the complexity of the coding activity.
However, predicting the complexity level of a case up front is
very time-consuming for a human coder as it requires a deep
analysis of the entire documentation, which eventually is
equivalent to conducting the coding process directly.

To predict the complexity of a coding task in the precoding
phase in an automatic way, we used advanced natural language
processing (NLP) techniques to analyze clinical texts and extract
features that are predictive of the complexity of cases. We
proposed an end-to-end approach that integrates the NLP and
ML model into the hospital clinical data warehouse and end-user
coding system. Our NLP and ML model predicts case
complexity with an accuracy comparable with that achieved by
expert human coders. Its beta version is currently under
deployment at Lausanne University Hospital. To the best of our
knowledge, we are the first to propose and develop this
innovative approach.

The remainder of the paper is organized as follows. The
application details are presented in the Methods section, and
the performance and analysis are presented in the Results
section. In the Discussion section, we discuss the values and
importance of our application as well as the use of NLP in health
care.

Methods

Ethics Approval
The Cantonal Ethics Commission for research on human beings
of Canton Vaud granted a full waiver for this study given the
its retrospective and quality assurance nature under
Req-2022-00677.

Overview
We describe a typical medical coding workflow in Figure 1.
After an inpatient (patient who is hospitalized overnight) is
treated in the hospital, a discharge letter is produced. Medical
coders analyze the diagnosis in the discharge letter and translate
the diagnosis into International Statistical Classification of
Diseases and Related Health Problems, 10th Revision (ICD-10)
codes. Sometimes the coders need to refer to other clinical
documents (eg, intervention protocol and laboratory reports) to
translate the information accurately. The diagnosis-related group
codes are computed based on the ICD-10 codes and are sent to
the insurance companies for billing. The insurance companies
reimburse the bills to the hospital based on the received
diagnosis-related group codes. If the insurance companies find
mistakes in the codes, they ask for revisions from the coding
service. We provide an overview of our decision support system
in Figure 2 and describe its integration into the hospital
information system in Figure 3.

Figure 1. The general coding procedure in hospitals. DRG: diagnosis-related group; ICD-10: International Statistical Classification of Diseases and
Related Health Problems, 10th Revision.
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Figure 2. Workflow of this study. (A) We extracted 2060 cases from the clinical data warehouse at Lausanne University Hospital (CHUV). The cases
are rated by coders (B) with complexity ranging from 1 (simplest) to 4 (most complex). (C) We performed feature engineering and trained models on
the labeled cases. (D) The final model can produce both predictions of the complexity and its confidence in the predictions.

Figure 3. Integration of our model into the coding service. (A) When an inpatient visits the hospital and their medical case has been produced, the
clinical text and patient metadata are stored in our clinical data warehouse. (B) A workflow manager will extract new medical cases regularly and send
the data to our model. (C) Our model is containerized and deployed to an execution environment, where it performs the prediction for received cases.
(D) Model predictions, together with the confidence of the predictions, are presented to the end users through a user interface to support task distribution
in the coding service.

Definition of Complexity
We use the term “coding complexity” to characterize the time
and expertise required of medical coders to assign diagnostic
codes to medical cases.

Expertise can be defined as the level of experience, medical
knowledge, and mastery of coding rules. Therefore, a medical
case can be complex by applying many coding rules without
being difficult but increasing the possibility of attention errors.
Other cases may be complex and difficult because of the medical
knowledge they require for proper coding. Therefore, complexity
was the measure chosen to categorize the cases.

If coding a medical case does not require much time and deep
expertise, the coding complexity is low (level 1; Figure 4).
Conversely, if coding a medical case requires a lot of time and
deep expertise, the coding complexity is high (level 4; Figure
4).

Coding complexity, similar to pain or satisfaction, is a subjective
quantity. A potential objective way of defining coding
complexity can be provided by the automatic coding models.
By passing the medical cases through automatic coding models
and manually examining the confidence score and the
completion and accuracy of ICD-10 code predictions, we could
divide the cases into simple and complex groups. However,
owing to the limited performance (ie, the very low recall score)
of current automatic coding models regardless of language
[12,20,21], this approach will not bring much value to our
situation. Furthermore, if coding complexity could be measured
using simple objective data (eg, similar to blood pressure), our
multimodal modeling approach would be useless. Thus, in this
study, our definition of coding complexity will focus on the
subjective ratings provided by medical coders, aiming to
minimize subjectivity by using ML approaches and to predict
the subjective scores of complexity.
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Figure 4. Intuitive representation of coding complexity regarding the time and expertise required of a coder.

To train our ML model, we extracted 2060 medical cases from
hospitalized patients (inpatients) in 2021. We organized 2
annotation phases, each lasting 1 week, for 28 coders to rate the
cases’ complexity. During each annotation phase, the coders
rated the complexity of the given cases based on an evaluation
grid (Figure 4).

Data Collection and Preprocessing

Data Source and Data Annotation
A medical case contains 2 types of data: a patient’s medical
dossier and patient metadata (Textbox 1). We collected 2060
cases in total from the annotation phases. We note that the
coding team at our hospital consisted of coders specialized in
different medical domains. Hence, during annotation, we also
kept track of whether a case was coded by a specialist. For
example, if the responsible unit for a case was the internal
medicine unit and the coder who coded this case was specialized
in cardiology cases, the case was considered as not coded by
its specialist coder.

Of the 2060 collected cases, 1998 (96.99%) were annotated by
28 medical coders, with each case coded by only 1 coder to
maximize the size of the annotation set. As different medical
coders may have different perceptions of the complexity of the
same case, we evaluated the interrater reliability by asking 2
expert coders to code another 3.01% (62/2060) of cases. These
62 cases also represented our gold standard to create benchmarks
for the models’performance. For case selection, we first trained
several models using the 1998 cases; then used the best model’s
prediction to predict the complexity of several cases from our
data warehouse; and, finally, randomly selected 62 out of the
predicted cases while making sure that the complexity
distribution of these 62 cases followed the same complexity
distribution as the annotated data set. Each of the 62 cases was
rated by each of the expert coders, and they were considered
specialists for all cases. These 62 cases are referred to as the
gold-standard set.

Textbox 1. Data collected for training and testing the model.

• Patient metadata: responsible medical service, number of movements between medical services, age, gender, civil status, whether the patient was
deceased, length of stay, and whether the case was coded by a specialist

• Medical dossier: discharge letter of each service, operating procedure, intervention reports, and death letter

Metadata Preprocessing
The missing patients’ metadata were imputed based on the
nature of the data. For numerical values such as age and length

of stay, the missing values were imputed with the median of
the existing values because of their skewed distributions (Figure
5). For categorical values such as gender and civil status, the
missing values were imputed with the mode of existing values.
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Figure 5. An overview of the distribution of patient metadata per stay. Document length and sentence length are counted in terms of tokens (words
and punctuation marks). The distributions on A, B, D, and E are heavily skewed. Note that the distributions on A, B, D, E, and F are log-scaled. The
rightmost column of G is deduced from the coder’s team specializations. The age=0 cases in C represent newborn cases.

Text Data Preprocessing
We tested both classic term frequency-inverse document
frequency (TF-IDF)–based text encoding and ML-based text
encoding, and different text preprocessing steps were applied
accordingly. For TF-IDF text encoding, we first tokenized the
text; then removed the stop words; and, finally, replaced the

entities with their entity type. The second and third steps were
used to reduce the noise and increase the frequency of important
words to provide a better signal for the model. An example of
processed text is presented in Textbox 2.

For ML-based text encoding such as fastText (Facebook AI
Research lab) and transformers, no preprocessing was applied.

Textbox 2. An example of text preprocessing results.

• Original text: Le patient susnommé a séjourné dans notre service du 01.02 au 03.02, date de son retour à domicile.

• Processed text: [“patient,” “susnommé,” “séjourné,” “service,” “<date>,” “<date>,” “date,” “domicile,” “.”]
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Model Design

Overview
The overall approach of the model design was as follows. First,
we extracted features from the preprocessed metadata and text
data. Second, we tested 2 modeling approaches: framing the
problem as a classification problem or as a regression problem.
On the basis of the modeling approach, we used different metrics
to evaluate the model performance.

Feature Engineering
As the values for the patients’ metadata have different scales,
we applied standardization (z score) to the numerical data and
one-hot encoding to the categorical data.

To extract features from free text, we used 2 methods: TF-IDF
and word embeddings.

TF-IDF provides a numerical weight of how important a word
is to a collection of documents (Multimedia Appendix 1). We
tested 2 configurations of the TF-IDF method: using the top
10,000 frequent terms or using the top 1000 frequent terms. We
found that, using the top 10,000 frequent terms, the models

performed better than using only the top 1000 frequent terms.
Thus, in the following sections, we only report the results from
the TF-IDF vector using the top 10,000 frequent terms.

Word embeddings provide the vectorized representation of a
word based on the context in which it appears. We tested three
types of word embeddings: (1) word2vec [22,23] embeddings
trained on 2.5 million clinical texts (12 GB) collected from the
hospital’s clinical data warehouse; (2) the pooled output (CLS
tokens) of the state-of-the-art French-language transformer
model French-Language Understanding via Bidirectional
Encoder Representations from Transformers (FlauBERT) [24],
which was pretrained on 71 GB of French text collected from
the internet; (3) the fastText supervised approach [25] with
embeddings initialized with the pretrained word2vec
embeddings of (1)—we tested fastText as it provided the
subword approach that could reduce the impact of the
out-of-vocabulary (OOV) issue. A detailed analysis of OOV
for this study is provided in Multimedia Appendix 1.

Textbox 3 shows the sizes of the vectors extracted using the
different methods. The detailed conversion methods are
presented in Multimedia Appendix 1.

Textbox 3. Vector sizes of text feature engineering.

• Term frequency-inverse document frequency (vectors were extracted using scikit-learn [version 1.0.1]): 10,000

• fastText (initialized with customized embedding; fastText embeddings were extracted using fastText [version 0.9.2; Facebook Artificial Intelligence
Research lab]): 100

• word2vec (customized; word2vec embeddings were trained using Gensim [version 4.0.0; RARE Technologies, Ltd]): 100

• French-Language Understanding via Bidirectional Encoder Representations from Transformers (FlauBERT; the FlauBERT embeddings and
fine-tuned model were implemented using Hugging Face [version 4.17.0; Hugging Face, Inc]): 768

Model Architecture
The complexity of cases ranges from 1 to 4 with discrete values;
thus, we can treat it as either a multi-class classification problem
or as a regression problem. The tested models are presented in
Figure 6.

For both classification and regression, we used different feature
combinations as inputs to train the models. The combinations
were as follows: (1) metadata only, (2) word embeddings only,
(3) TF-IDF vectors only, and (4) TF-IDF concatenated with
metadata.

The overall process of model implementation is summarized in
Figure 7. During training, we applied 5-fold cross-validation to
reduce overfitting. As the labels were unbalanced, we used
stratified sampling for cross-validation in the classification
models. We performed hyperparameter tuning of the most
promising features and models. For TF-IDF, we optimized the
number of words considered in the vocabulary (topmost frequent
words) and text preprocessing (lower case, lemmatization,
removal of stop words, and removal of nonalphanumeric

tokens). For the gradient-boosted trees model, we tuned the
number of estimators, learning rate, and maximum depth.
Hyperparameters were tuned based on the average performance
over all folds in the cross-validation sets using Bayesian
optimization.

In addition, we tested the fine-tuning of the FlauBERT sequence
classification model using the Hugging Face transformer library
[26]. The FlaubertForSequenceClassification application
programming interface provides a pretrained FlauBERT model
with a classification layer of size 1024 on top. It takes raw text
as input and outputs the predicted classes (in our case, which
is the complexity level). Among all our experiments, our best
results were obtained using the fine-tuned FlauBERT-base
uncased model. Notably, we froze the first 11 encoder layers
and trained the last encoder layer and the classification layer to
limit overfitting. We also weighted each class differently in the
cross-entropy loss to account for imbalance. We used the
maximum sequence length of 512 tokens and a batch size of
32. In this manuscript, we only report the fine-tuned FlauBERT
results obtained using this configuration.
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Figure 6. Comparison of performance using different models and input features on the 5-fold–cross-validated training data set (1751 cases) and the
best model performance on the test set (309 cases). Dashed vertical lines represent the baseline model results. Models are ranked based on the classification
macro–F1-score in the figure. *Average per service: for a given case in a given service, it always predicts the average complexity of cases in this service.
A total of 29 services have an average complexity of 2, a total of 5 services have an average complexity of 3, and a total of 1 service has an average
complexity of 1. **Majority vote: always predicts the majority class (in our case, complexity 2) and serves as a baseline for model prediction performance.
FlauBERT: French-Language Understanding via Bidirectional Encoder Representations from Transformers; TF-IDF: term frequency-inverse document
frequency.
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Figure 7. Feature engineering and modeling approach using word embeddings and patient metadata as model inputs. The fine-tuned French-Language
Understanding via Bidirectional Encoder Representations from Transformers text classification model is not included in this flow.

Data Imbalance
Our data labels were strongly imbalanced, and we tried to
overcome this issue by using oversampling and undersampling
techniques. Our best model was trained using Synthetic Minority
Oversampling Technique [27] for oversampling
underrepresented classes followed by random undersampling
for overrepresented classes. We also chose metrics to penalize
models that did not predict underrepresented classes, such as
the macro–F1-score. Ordinal classification can also be an
interesting “hybrid” approach. However, we leave trying more
sophisticated classification approaches for future work.

Technological Stack
The ML pipeline leverages spaCy (version 3.1; Explosion AI)
for preprocessing texts (using the French-language model
“fr_core_news_md”), scikit-learn (version 1.0.1) to build
complex pipelines that can work with cross-validation, and
Optuna (version 2.10.0; Preferred Networks, Inc) to conduct
hyperparameter searches. It also eases the deployment of the
selected model as preprocessing is part of a single serialized
pipeline. The other tools used to try other approaches were
fastText for document classification, Gensim (RARE
Technologies, Ltd) to manipulate pretrained word embeddings,
and Hugging Face Transformers (Hugging Face, Inc) to use
pretrained transformer models. Training was performed on a
virtual machine with 64 central processing unit cores, allowing
us to parallelize training, and an Nvidia RTX 3090 graphics
processing unit for larger deep learning models.

The first version of the selected model is being deployed with
Machine Learning Model Operationalization Management
infrastructure in our medical coding service. The deployment
details are presented in Multimedia Appendix 1.

Results

Metadata Analysis
Each team of coders had a set of medical specialties. We
considered that a case was annotated by a specialist if the
annotator was part of a team from one of the specialties involved
in the case. Following this logic, 63.98% (1318/2060) of the
cases were annotated by a specialist. We used this as a feature
during training. At inference time, we could choose to request
a prediction for whether the case would be coded by a specialist.

The distribution of the numerical metadata and categorical
metadata is presented in Figure 5. To check if any of the
metadata had significant predictive power on coding complexity,
we performed Pearson correlations between the numerical
metadata features and the complexity ratings; we also performed
statistical tests on categorical features such as patient gender
and marital status (Table 1). The results show that, in the
precoding phase, features such as sentence length and number
of medical services visited during a stay did not have strong
effects on coding complexity. In the postcoding phase, the
number of ICD-10 codes and Swiss Classification of Surgical
Procedures codes showed correlations with coding complexity.
With these results, we propose that a future direction of NLP-
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or AI-assisted coding could use the metadata and clinical text
to predict the number of codes that a case may produce and then

compare it with the actual codes obtained after the coding
process to perform quality checks in the postcoding phase.

Table 1. Pearson correlations between the numerical metadata features and the complexity ratings in both the pre- and postcoding phases and statistical
tests of the categorical features and complexity ratings in the precoding phase.

P valueCorrelation or statistical test

Numerical features

<.0010.44Number of tokens from all documents in a stay

<.0010.33Number of documents produced in a stay

.350.02Number of medical services visited during a stay

<.0010.41Duration of the stay

<.0010.25Age

.830.003Sentence length

Categorical features

<.001F5, 2054=14.05Marital status

<.001t2058=−3.70Gender

Other metadata available after coding

<.0010.55Number of ICD-10a codes

<.0010.46Number of CHOPb codes

<.0010.34DRGc cost

aICD-10: International Statistical Classification of Diseases and Related Health Problems, 10th Revision.
bCHOP: Swiss Classification of Surgical Procedures.
cDRG: diagnosis-related group.

Coder Rating Analysis
The complexity ratings of the cases are shown in Figure 8A.
The most common rating was complexity 2 (1127/2060, 54.71%
of cases), and the least common rating was complexity 4
(58/2060, 2.82% of cases). We used stratified sampling to select
the training and test sets; hence, their distributions were nearly
identical to the true distribution shown in Figure 8A.

The original medical service of a case may also affect its
complexity. Figure 8B shows that the cases from the Department
of Palliative Care have the highest average complexity, whereas
cases from the Department of Thoracic Surgery have the lowest
average complexity.

By analyzing the gold-standard set, where all cases were rated
by 2 experts, we found that even the expert coders did not
always agree with each other. Of the 62 cases, the 2 experts
agreed on 41 (66%). However, they disagreed by more than one
complexity level in only 3% (2/62) of cases (Table 2). The
interrater reliability (Cohen κ score) was 0.49 between the 2
expert coders. If we consider one expert as the ground truth and
the other expert as a predictive model, the macro–F1-score of
this “predictive model” can only achieve 0.67 (Figure 9), a
moderately good score showing that the task can be learned but
models will not achieve a very high performance.

The reason why coders rate the same case with different
complexity levels is mainly subjectivity. This is also a reminder
that subjective-rated labels are often noisy, and no model can
achieve a perfect performance. The ratio of agreement between
2 expert coders gives us an idea of the performance we could
expect from a model. If we consider one expert as the model
that predicts complexities and the other expert gives true
complexity labels, then the highest accuracy that this model
(the former expert) can achieve is 66%. In this sense, when later
analyzing our model’s performance, the 66% accuracy can be
considered as one of the benchmarks. However, given the strong
imbalance in the complexity labels, we should rely as well on
the confusion matrix to compare the annotator-annotator
agreement with the model-annotator agreement.

However, as mentioned in the Model Design section, our
samples were highly imbalanced, and the accuracy metric lacked
the ability to measure the model’s performance comprehensively
according to the sample distribution. As there were 54.71%
(1127/2060) of cases rated with a complexity of 2, a naive model
that predicts 2 all the time could reach an accuracy of 54.71%,
but it provides no value for solving our problem. To consider
the imbalanced sample distribution, we used the macro–F1-score
together with accuracy to measure the model performance. The
macro–F1-score between the 2 coders was 0.67, which was
considered as the other benchmark that we used to evaluate the
model’s performance.
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Figure 8. (A) The distribution of complexity ratings over all 2060 cases. (B) Average complexity rating by service. The green bars show the top 5
services, and the red bars show the bottom 5 services. CHT: thoracic surgery; ION: immuno-oncology; MIN: infectious diseases; OBS: obstetrics; PED:
pediatrics; RHU: rheumatology; SIA: adult intensive care; SIP: pediatric intensive care; SPL: palliative care; URG: emergency department.
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Figure 9. (A) The complexity rating comparison between 2 expert coders on the gold-standard set. (B) The comparison between the validation model’s
predictions and average expert ratings on the gold-standard set. (C) The comparison between 2 expert coders’ ratings on the gold-standard set when
grouping into simple (complexity 1 and 2) and complex (complexity 3 and 4) cases. (D) The comparison between average expert ratings and the validation
model’s predictions on the gold-standard set when grouping into simple and complex cases. The average expert ratings are rounded up to the next largest
integer.

Table 2. Absolute difference between expert 1 and expert 2 complexity ratings. The accuracy reached by expert coders was approximately 66% (41/62;
N=62).

Cases, n (%)Absolute difference in complexity ratings between expert coders 1 and 2 (number of complexity levels)

41 (66)0

19 (31)1

2 (3)2

0 (0)3
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Model Analysis

Overview
First, we wanted to study whether our approach worked on
predicting coding complexity for medical cases. We made use
of all the 2060 annotated cases (n=1998, 96.99% 1-coder–rated
and n=62, 3.01% gold-standard cases). We split the 2060 cases
into a training set (n=1751, 85% of cases) and a test set (n=309,
15% of cases) and tested our model architecture. Then, to
validate the model’s performance with expert coders’
benchmarks, we left the 3.01% (62/2060) of gold-standard cases
out as the test set and trained a model with the same architecture
but with more training data (1998/2060, 96.99% of cases).

The Main Model
To train the models, we started by using either patient metadata
only or word embeddings or TF-IDF vectors only as input
features. The best-performing model using patient metadata
was gradient-boosted trees (macro−F1-score=0.46;

accuracy=0.61 for classification; R2=0.15 for regression). The
best-performing model using word embeddings was the fastText
classification model (macro−F1-score=0.47; accuracy=0.57;
initialized with customized embeddings), and the
best-performing model using TF-IDF vectors was
gradient-boosted trees (macro−F1-score=0.45; accuracy=0.62

for classification; R2=0.26 for regression).

The model using word embeddings did not outperform the model
using TF-IDF vectors. Thus, we combined the TF-IDF vectors
with metadata as input features to integrate information from
both patient metadata and medical dossiers. The best-performing
model used gradient-boosted trees and achieved a
macro−F1-score of 0.51 and accuracy of 0.59 on the
cross-validated training set and a macro−F1-score of 0.46 and
accuracy of 0.58 on the test set. Figure 6 shows the performance

comparison between different models on the
5-fold–cross-validated training data set and the test set. The
detailed numbers can be found in Multimedia Appendix 1.

As performing well on underrepresented classes is important
in our case, we report the macro–F1-score as the first metric.
Macro–F1-score is the average of the F1-score per class and is
not weighted by the number of instances in the class. Unlike
accuracy, this metric penalizes each class equally. On the basis
of the macro–F1-score, we selected our best model as the
gradient-boosted trees trained with the combined TF-IDF and
metadata features (referred to as the main model).

The confusion matrix (Figures 10A and 10B) shows that our
main model confused complexity-2 and complexity-3 cases
during training and testing. Figure 9A shows that, even for
expert coders, there was no clear distinction when rating
complexity 2 and 3 for a case. The difficulty to distinguish
between complexity 2 and 3 could be due to the similarity
between the 2 classes of cases. We noticed that our main model
also had difficulties distinguishing between complexity 3 and
4 during training and testing. This performance could be due
to the lack of examples. Although we performed oversampling
using Synthetic Minority Oversampling Technique on cases
with a complexity of 3 and 4, it still lacked variability in
complexity-4 cases.

We then tried to merge complexity-1 and complexity-2 cases
as “simple” cases and complexity-3 and complexity-4 cases as
“complex” cases and tested the model as a binary classifier. The
results (Figures 10C and 10D) show that the model performed
well on distinguishing between simple and complex cases. On
the training set, the model achieved a macro–F1-score of 0.62
with an accuracy of 0.71. On the test set, the model achieved a
macro–F1-score of 0.65 with an accuracy of 0.71.
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Figure 10. (A) and (B) The main model’s performance on the training set (1751 cases) and the test set (309 cases). (C) and (D) The main model’s
performance on the grouped training set (1457 cases as simple and 294 cases as complex) and the test set (261 cases as simple and 48 cases as complex).

The Validation Model
To validate our model approach and compare it with experts’
benchmarks, we trained a validation model using the 96.99%
(1998/2060) of 1-coder–rated cases and tested it on the 3.01%
(62/2060) of gold-standard cases. The architecture of the
validation model was the same as that of the main model.

The comparison between the 2 expert coders’ ratings (Figure
9A) shows that most of the expert coders’ disagreements were

on complexity-2 and complexity-3 cases, and the overall
agreement ratio between the 2 coders was 66% (41/62), with a
macro–F1-score of 0.67. Table 3 and Figure 9B show the
comparison between our validation model and the 2 experts’
ratings on the gold-standard set. The model agreed on 53%
(33/62) of the cases with expert coder 1 and in 63% (39/62) of
the cases with expert coder 2. The validation model achieved a
61% agreement ratio with the average ratings of both experts,
with a macro–F1-score of 0.62.
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Table 3. Comparison between our validation model’s predictions and 2 expert coders’ ratings on the gold-standard set.

Pearson correlationPercentage of agreement

0.70a66Expert coder 1 vs expert coder 2

N/Ab53Model vs expert coder 1

N/A63Model vs expert coder 2

0.70a61Model vs ceiled mean of 2 expert coders

aP<.001.
bN/A: not applicable.

When merging the 4 complexity levels into 2 (simple vs
complex; Figures 10C and 10D), the agreement ratio between
the 2 coders became 84% (52/62) with a macro–F1-score of
0.76, and the agreement ratio between model predictions and
average expert ratings became 0.89 with a macro–F1-score of
0.82. The results indicate that the model is comparable with
human experts’ performance and predicts in a very similar
manner to that of human experts (Figures 9A and 9B).

Interestingly, for the gold-standard cases, our validation model
managed to predict complexity-4 cases 100% correctly, which
was different from the main model’s performance during
training and testing (Figures 10A and 10B). As there were only

4 selected cases with a complexity of 4 owing to the sampling
for expert cases, these cases could be extremely complex and,
thus, easy for the model to identify.

Compared with other models that can provide higher accuracy
but lower F1-score, both the main model and the validation
model were more practical in our concrete use case as it is
important to predict diverse complexity levels rather than keep
predicting a complexity of 2 for all cases (Multimedia Appendix
1).

Classification Versus Regression
We summarize the pros and cons of both approaches given our
use case in Textbox 4.

Textbox 4. Pros and cons of the classification and regression approaches.

• Prediction confidence: many classification models output the confidence in the predicted class as a probability, whereas regression models
typically do not provide such information out of the box (although CIs are sometimes possible). Confidence is useful for end users, meaning that
they can disregard predictions with low confidence. It can also be used in the active learning module (Figure 11) to select new cases (with low
prediction confidence and strong disagreement between prediction and coder perception) to retrain the model.

• Interpretability of results: using a classification approach enables the computation of F1-scores, accuracy, and confusion matrices. These are
more intuitive for end users. Note that, for regression, it is still possible to round prediction to apply these metrics.

• Order of labels: complexity scores are naturally ordered. Therefore, given a case annotated with a complexity of 4, a model should be penalized
more for predicting a complexity of 1 than for predicting a complexity of 3. Regression methods consider order, whereas classification methods
do not.
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Figure 11. Use of active learning module to collect coders’ feedback and improve model performance. The workflow manager in (B) can be any
software or platform that provides automatic scheduling for designated work (eg, a script for data extraction).

Discussion

Principal Findings
We presented different ML models that can predict the
complexity of coding medical cases with 4 complexity levels.
We first trained the models on all 2060 annotated cases. When
only using patient metadata, the best model (gradient-boosted
trees) could achieve a macro−F1-score of 0.46, an accuracy of

0.61 for classification, and an R2 of 0.15 for regression. By
applying NLP methods to extract information from clinical text,
the best model (fastText initialized with customized
embeddings) could achieve a macro−F1-score of 0.47 and an
accuracy of 0.57 for classification. When combining patient
metadata and NLP-extracted information, the best model (the
main model in the Model Analysis section) achieved a
macro−F1-score of 0.51 and an accuracy of 0.59 on the
cross-validated training set and a macro−F1-score of 0.46 and
an accuracy of 0.58 on the test set.

To evaluate our model approach with experts’ benchmarks, we
trained our validation model using the same architecture as the
main model on all except the gold-standard cases. Our validation
model achieved an accuracy of 0.61 with a macro−F1-score of
0.62 on the gold-standard cases. When merging the 4 complexity
levels into “simple” (complexity 1-2) and “complex”
(complexity 3-4) cases, our validation model could achieve an
accuracy of 0.89 and a macro−F1-score of 0.82. The results
indicate that the model performance is highly comparable with
that of human experts.

To the best of our knowledge, this is the first study to apply
NLP and ML models to help differentiate the complexity of
coding medical cases.

Clinical Importance
Lausanne University Hospital in Switzerland has 2 missions:
guaranteeing medical services in an area and serving as a referral
hospital. The dominance of cases with a complexity level of 2
(referred to as case 2) in the labeled sample cases can be
explained by this double activity as the hospital not only
concentrates on university or referred complex cases but also
receives normal cases similar to other hospitals.

In our current medical coding service, the cases to be coded are
distributed 50% to the team of the specialty and 50% to a
“common pot.” This team versus common pot distribution is
done randomly without considering the complexity of the cases,
leaving complex cases in the common pot and, conversely,
depriving the common pot of “simple” cases of specialized
resources. Note that, in our case, coders can still choose complex
cases from the common pot even if the case is not in their
specialty. Many coders care about diversity or learning other
types of cases. The integration of this model enables them to
choose the complexity consciously.

The dominance of cases 2 will have the effect of pushing a lot
of cases into the common pot, reducing the number of cases
arriving to teams of different specialties and, hence, reducing
the ratio of common pot to specialists. The quality of coding of
complexity-3 and complexity-4 cases will be improved as they
will be redirected to the specialty teams or senior coders.
However, this will also be at the risk of lowering the quality of
coding of cases 2, which will end up in the common pot.
Therefore, it will be necessary to maintain a 50/50 ratio between
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the common pot and the teams or senior coders and force cases
2 to be coded by teams or seniors as well. This adjustment will
enhance the quality of coding of cases 3 and 4 and a maximum
of cases 2. After our system is deployed, the new distribution
considering the complexity predicted by our NLP and ML model
will be monitored in terms of satisfaction of the coding teams
and accuracy of coding. Furthermore, we will analyze the
accuracy of coding in relation to the predicted case complexity
to adjust the model design and more efficiently allocate the case
distribution to coders.

In our current model, the complexity of the cases is defined by
the coders from our medical service and is rated subjectively.
By analyzing the model predictions for a variety of cases, it is
possible to summarize the common features shared by the
high-complexity cases and those shared by the low-complexity
cases. The summarized features can be used to build a set of
objective rules that can be shared with other clinical services
or the medical coding services of other hospitals. For small
hospitals or clinical services, which do not always have
sufficient resources to train and build their own ML models,
this set of rules can help them distribute the cases more
efficiently. In contrast, if the summarized features could not
distinguish well between the simple and complex cases, it may
reflect that the case complexity is a subjective rather than
objective measure. In this situation, the best way to generalize
this subjective measure is to build a model, such as in our
approach, to learn the highly nonlinear subjective measures.

The complexity of coding a medical case can approximately
reflect the complexity of the corresponding clinical case. Our
application can not only improve resource allocation in medical
coding services but also be generalized to other clinical services.
Indeed, coding complexity levels can also be used in
decision-making processes to help arbitrate resource allocation
among professionals in the same department but affiliated with
different clinical services within the department. For example,
in the surgery department, a similar approach can be applied to
help study the need for resources for different subspecialties
based on the volume of treated cases but also on their relative
complexity. The generalized application can be integrated into
different digital health care systems for automatic task
assignment to avoid conflicts in an unfair workload distribution.

Technical Importance
OOV is an issue that can impair model performance. Although
the word2vec embeddings used in this study were trained on
our own clinical data, OOV was still present as the corpus we
used to train the embeddings might not have been sufficient to
cover all the clinical terms used in the medical discharge
documentation. To mitigate the impact of OOV, we tested the
fastText subword approach. However, as shown in the Model
Analysis section, the model performance was not much
improved because of the low OOV ratio of our data set, which
was only approximately 8% in the 2060 selected cases for this
study. We provide a detailed analysis of OOV in our corpus in
Multimedia Appendix 1.

As new clinical documents are produced every day, our
deployed model could also face the impaired performance
caused by the OOV issue. The solution we propose in this paper

to reduce the impact is to monitor the evolution of new OOV
with respect to the training data set and retrain the word
embeddings when needed. During the retraining phase, we will
not only retrain the word embeddings but also retrain the models
with coder feedback to further improve the model performance
from the perspective of both feature engineering and model
engineering.

In our study, we used FlauBERT, which is a pretrained
French-language transformer, in 2 different ways. The first way
to use it is to generate word embeddings as text features for
model inputs. We then also tested a Hugging Face [26]
implementation of the sequence classification model using
FlauBERT. A detailed description of this approach is presented
in Multimedia Appendix 1. The best performance using the
transformer model directly achieved a macro–F1-score of 0.47,
which is similar to other models that only receive text as
features. The model performance did not improve as much as
expected. The reason could be that our data set was too small
(only 2060 cases) compared with the size of the transformer
model. Regarding this, we will continue collecting coder
feedback on the predicted cases and use them to train the model
continuously. With these approaches, we hope to improve the
transformer model performance in the future.

We found that using TF-IDF vectors as text features provided
better prediction performance than using word embeddings as
text features. The fastText and FlauBERT embeddings were
pretrained on a nonclinical corpus; thus, the represented context
of the word could deviate from the context used in the clinical
text. As shown in the Metadata Analysis section, the median
document length per stay was 909 tokens. Common pretrained
transformer-based models handle up to 512 tokens, and it is not
obvious which subset of the document should be selected to
pass to the model. Although it is possible to overcome this
limitation by embedding each chunk of 512 tokens and
averaging their embeddings, we believe that a substantial
improvement over other methods is needed to justify the
computation cost. Furthermore, fastText and word embeddings
both perform averaging over all vectors of each document,
which may dilute the signal too much given the number of
tokens. In contrast, TF-IDF can preserve some of this
information, which could be the reason why TF-IDF vectors
outperformed word embeddings in our task. A future direction
to improve the model performance could be to combine TF-IDF
vectors with word embeddings as text features. TF-IDF vectors
can be used as a weight of importance for the words, whereas
word embeddings can represent the contexts of the words. By
combining the two, we could obtain vectors that represent both
the importance and context of the words comprehensively.
Another possible approach to improve the model performance
is to build a rule-based model from coders’ experiences and
then combine the rule-based model with the ML model, which
can increase both the interpretability and flexibility of the
prediction. As the complex cases are more likely to have
multiple laboratory tests and clinical examinations, we could
also include this structured clinical information for future feature
engineering.
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By comparing our model’s predictions with the expert coders’
ratings, we found that the model could achieve an expert
performance level (Figure 9). As rating case complexity is
relatively subjective, even expert coders do not always agree
with each other. This introduced another level of complexity to
our study. However, by learning 1998 cases from the training
set, our model’s performance became comparable with that of
the experts.

One of the advantages of our model is that we used a multimodal
approach. Structured data such as patient metadata can provide
quantitative information about patients’ status. Clinical text can
provide rich information on diagnostic and other assessments
of patients, which are not usually presented in the structured
data. By combining the two, we are able to maximize the
information needed to evaluate the complexity of a clinical case.
Our study used 1 model to process data of different modalities
and make predictions. In future work, we propose using
dedicated models for each data modality and combining the
predictions of multiple models using another ML model to make
the final prediction. The benefits of using multiple models are
that (1) it is easy to plug in new data and new models into the
architecture, which makes the model flexible to extend, and (2)
it is easier to perform feature engineering and interpret the
model’s prediction.

The advantage of classification models over regression models
in our study was that classification models allowed us to produce
the confidence of the predictions. By showing both the predicted
complexity level and the confidence of the prediction, we are
able to provide comprehensive information to end users.
However, there are also limitations to our model. Of the 2060
cases we collected for this project, 54.71% (1127/2060) were
labeled as complexity-2, and only 2.82% (58/2060) were labeled
as complexity-4. The unbalanced data set affects the
performance of the classification models, meaning that the
models have a higher tendency to predict complexity 2 for a
given case. This problem was tackled by oversampling the
underrepresented cases and undersampling the overrepresented
cases. The results showed that the model performed better with
oversampling and undersampling techniques (Multimedia
Appendix 1).

Our model will be integrated into our current coding system
with an active learning module. Figure 11 shows the integration
architecture. The model reads patient metadata and medical
dossiers regularly from our clinical data warehouse through a
workflow manager. The predictions are presented in the user
interface of the coding software. When coders find that the
prediction deviates from the perceived complexity, they can put
their corrections in a feedback field. Coders’ feedback is stored
and sent to the model for retraining. This integration architecture
allows us to track and continuously improve the performance
of the model.

Future Work
Future work can be carried out on different aspects. To improve
the model prediction performance, we can continue working on
feature and model engineering. In addition to the data we used
in this study, there could be other patient data that can be useful
to predict the complexity of cases. Regarding the text features,
we could try different combinations of NLP tools to maximize
the information extraction from clinical text. We will also
continue working on reducing the OOV impact by retraining
the word embeddings (both word2vec and fastText) and TF-IDF
vectors every 6 months and use coder feedback as new training
samples to retrain the models. To make full use of the advanced
transformer models, we will not only keep training using the
new samples but also explore ways to incorporate patient
metadata into the model design. We will also work together
with coders to establish a sound and interpretable rule-based
model and then combine it with the ML model. The hybrid
model can provide both flexibility and good reasoning in
distinguishing cases.

Currently, most NLP applications focus on AI-assisted coding
using rule-based or ML models. As stated before, the rules
framing medical coding complexity are dynamic and change
over time, preventing the rapid learning of the tool. Instead of
using AI-assisted tools only for coding, it is possible to extend
the AI-assisted scope from case preselection to postcoding
quality checks. Our approach provides a possibility to preselect
cases that are suitable for automatic coding and other cases for
manual coding. After a case is coded, AI-assisted tools can
provide a post hoc analysis of the code categories and
combinations, aiming to find possible mistakes in the codes.
This can be done by studying previous coded cases using
statistical and NLP analysis.

We also aim to continuously evaluate the application’s impact
on our medical coding service. After the integration, we will
monitor the average time a coder spends coding a case and the
average number of mistakes a coder makes for each case. By
comparing the time and accuracy before and after the
integration, we can obtain a quantitative measure of how much
improvement the model can bring to the coders’ daily work.

In addition to monitoring the quality of coding, we will keep
tracking the coders’ user experience. With the help of the active
learning module, we are able to collect coders’ feedback on the
model’s predictions. The model will be retrained based on
coders’ feedback through iterations to improve the prediction
performance. As discussed in the Clinical Importance section,
our application can not only help with task distribution to current
coders but also be used to select cases for training junior coders.
Junior coders will receive simple cases at the beginning and
gradually receive more complex cases. This approach can give
junior coders enough exposure to a variety of cases with respect
to their capabilities as well as evoke their interests in medical
coding.
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