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Abstract

Background: Machinelearning—enabled clinical information systems (ML-CISs) have the potential to drive health care delivery
and research. The Fast Healthcare Interoperability Resources (FHIR) data standard has been increasingly applied in developing
these systems. However, methods for applying FHIR to ML-CISs are variable.

Objective: This study evaluates and compares the functionalities, strengths, and weaknesses of existing systems and proposes
guidelines for optimizing future work with ML-CISs.

Methods: Embase, PubMed, and Web of Science were searched for articles describing machine learning systems that were
used for clinical data analytics or decision support in compliance with FHIR standards. Information regarding each system’s
functionality, data sources, formats, security, performance, resource requirements, scalability, strengths, and limitations was
compared across systems.

Results: A total of 39 articles describing FHIR-based ML-CISs were divided into the following three categories according to
their primary focus: clinical decision support systems (n=18), data management and anaytic platforms (n=10), or auxiliary
modules and application programming interfaces (n=11). Model strengthsincluded novel use of cloud systems, Bayesian networks,
visualization strategies, and techniquesfor trand ating unstructured or free-text datato FHIR frameworks. Many intelligent systems
lacked electronic health record interoperability and externally validated evidence of clinical efficacy.

Conclusions: Shortcomingsin current M L-CISs can be addressed by incorporating modular and interoperabl e data management,
analytic platforms, secure interinstitutional data exchange, and application programming interfaces with adequate scalability to
support both real-time and prospective clinical applicationsthat use el ectronic health record platformswith diverseimplementations.

(IMIR Med Inform 2023;11:e48297) doi:10.2196/48297

KEYWORDS

ontologies; clinical decision support system; Fast Healthcare Interoperability Resources, FHIR; machine learning; ontology;
interoperability; interoperable; decision support; information systems; review methodology; review methods; scoping review;
clinical informatics

EHR data, however, remain nonstandardized acrossinstitutions
and, within an institution, may not be readily available for

Data analytic tools provide essential contributions to scientific  "€al-time analysis, thus impairing multi-institutional research
investigation and clinical decision-making [1]. These tools are effortsand care for mdmdual patients acrossmstltutlon_s[5_-8].
in turn fueled by the volumes of data that have been generated 1 he Standards herein refer to the structure, organization,
since the passage of the Health Information Technology for ~FePresentation, and transmission of data. Health information
Economic and Clinical Health Act in 2009, which incentivized ~©XChange systems can mitigate these issues by using the Fast

the adoption of electronic health record (EHR) systems[2-4].  Hedlthcarelnteroperability Resources (FHIR; pronounced *fire’)
data standard [9]. The Health Level 7 (HL7) International

standard developing organization sought to reduce the
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complexity of theHL7 version 3 Reference Information Model
while maintaining semantic interoperability and thus adopted
the FHIR standard in 2011 [10]. It supports multiple
development platforms and has been embraced by major
industry and government organizations. Since 2016, developers
have engaged with Substitutable Medical Applications and
Reusable Technologies (SMART) on FHIR to build EHR and
commercial applications [11,12]. Despite the growth of
technologies using FHIR standards, there is limited literature
summarizing differences among machine learning—enabled
clinical information systems (ML-CISs), and the best methods
for applying FHIR remain unclear.

This review describes the functionalities, strengths, and
weaknesses of clinical applications that use the FHIR standard
and have been described in the medica literature, and we
propose guidelines for improved multi-institutional research
initiatives and clinical applicability.

Methods

Given the rapidly evolving nature of this field, we performed
a scoping review to provide a critical appraisal of the current
literature, with the goal of informing future studies. Wefollowed
the PRISMA-SCR (Preferred Reporting Items for Systematic
Reviews and Meta-Anayses extension for Scoping Reviews)
guidelines; the PRISMA-ScR checklist is avalable in
Multimedia Appendix 1.

Research Protocol

We sought articles describing clinical decision support (CDS)
systems (CDSSs) or risk prediction systems using FHIR
standards. FHIR standards define resource types (ie, patients,
medications, and clinical observations), data elements (ie,
medication hame and dosage), dataformats (ie, JSON and XML
files), and the use of standard ontologies (ie, Systematized
Nomenclature of Medicine-Clinical Terms[SNOMED CT] and
Logical Observation Identifiers Names and Codes [LOINC]),
among others. Our initial search was performed on April 23,
2020, and given the progress of the field, it was updated again
on October 11, 2022. Inclusion criteria involved all full-text
articles published in English. We excluded abstracts, poster
presentations, and meeting summaries. Embase, PubMed, and
Web of Science were searched for cohort studies, case-control
studies, and reviews. Our search terms for each database are
found in Multimedia Appendix 2. Despite their increasing use
by commercia entities, we did not search for commercial
applications of FHIR, as their lack of peer review and limited
reportability prevented a formal evaluation of their methods.
Following the removal of duplicates, 153 articles were

https://medinform.jmir.org/2023/1/e48297
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identified. Titles and abstracts were reviewed by 2 authors
independently, with disagreementsresolved by athird. Full-text
articles that did not adequately describe system functionality,
data sources, formats, security, performance, resource
requirements, scalability, strengths, and limitations were
excluded. We also excluded articles that described a model
architecture using FHIR but did not incorporateit intoaCDSS.
A total of 39 full-text articles were included for full analysis.

Article Evaluation

Strengths and limitations of the applications were evaluated in
terms of functionality, data sources, formats, security,
performance, resource requirements, and scalability.
Functionality was defined as the intended purpose of the
algorithm and its capabilities, ranging from the integration of
genomic data into the EHR [13,14] to CDSSs [15-17] and
predictive models [18,19]. Data sources included information
within electronic health care records and external sources, such
as wearable devices [20]. Formats were evaluated based on
system architecture and the technologies underlying the
algorithms (eg, use of Bayesian networks [16], transformers
[21], or rule-based methods[22]). Security was eval uated based
on how the application handled sensitive health information,
including encryption [23], use-and-access control mechanisms
[24], or authorization platforms [25,26]. Performance and
resource requirements refer to the processing time, memory,
and computing needs of the applications. Finally, scalability
refersto thelikelihood of adoption by other health care systems
or platforms (eg, use of open-source components [27] or
cloud-based repositories [28]). Knowledge from the included
articles was used to propose avenues of future development for
optimizing machine |learning—enabled systems.

Results

A total of 39 clinica tools that used FHIR standards were
divided into the following three categories according to their
primary focus: CDSSs (n=18), interoperabl e data management
and analytic platforms (n=10), or auxiliary modules and
application programming interfaces (APIs, n=11) that enhance
ML-CISs.

The CDSSs

CDSSs are algorithms that use health information to provide
assistance for clinical decision-making tasks. Table 1 shows
articles that focused on these support systems. Although many
CDSSs lacked interoperability and external validity, several
characteristics of CDSSs harbored potential for improving both
efficacy and efficiency.
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Table. Summary of intelligent clinical decision support systems.

Balchet d

Source, year

Functionalities

Strengths

Limitations

Curran et a [15], 2020

Dolin et a [13], 2018

El-Sappagh et al [28], 2019

Gaebel et al [16], 2016

Gruender et a [14], 2019

Gordon et al [29], 2017

Henry et al [18], 2018

Hong et a [27], 2019

Kawamoto et a [30], 2021

Park et al [31], 2022

Schleyer et al [32], 2021

Semenov and Kopanitsa[20], 2018

Semenov et a [33], 2018

Séroussi et a [34], 2018

Tarumi et a [35], 2021

Thayer et al [36], 2021

Wang et a [37], 2019

Summarizes chronic obstructive
pulmonary disease information,
provides decision support, and sug-
gests orders

Uses drug-gene interaction data for
clinical decision support triggered
by EHR medication orders

Uses mobile health technologies to
monitor and managetype 1 diabetes

Generatesdigital patient modelsfor
clinical decision support for laryn-
geal cancer

Combines next-generation sequenc-
ing genomics datawith FHIR clini-
cal data

Displays patients' thrombocytopenia
trends along with computer-generat-
ed calculated panel reactive anti-
body levels

Predicts sepsisamong intensive care
unit patientsin real time

Phenotypes diabetes based on free-
text notes and other structured data

Takes datafrom multiple EHRs and
incorporates them into existing risk
calculators

Personal health record application
for employees, with links to health
care resources

Integrates selected data from
statewide data systems into local
EHR

Recommendsclinical decisionsand
actions based on EHR data

Recommendsclinical decisionsand
actions based on EHR data

Producesclinical practiceguideline
services for patients with breast
cancer

Modeling of treatment outcomesfor
type 2 diabetes

Automated graphical display of
asthma history

Comparison of machine learning
algorithmsfor prediction of end-
stagerenal diseasein type 2 diabetes

Dynamic embedding within EHR?
and compatible with SM ART-on-
FHIR® submodules

Accesses arules engine containing
level A recommendationsfrom a
pharmacogenetics consortium

Most system processes are executed
inthe cloud; once configured, it runs
on any EHR system

Bayesian networks are well-suited
for representing complex diseases

Open-source system that combines
data formats and is portable

Provides real-time services and ef-
fective visual cues

Cloud-based system that provides
dertsto clinicians

Converts unstructured, semistruc-
tured, and structured data to appro-
priate FHIR components

Performance measured with end us-
er satisfaction studies and used exist-
ing application programming inter-
face

FHIR-based cloud application that
is applicable to multiple EHRs and
provides secure access through
Azure

Trand ates datafrom diverse sources
into a common database

Free-text output for both physicians
and patients

Free-text output for both physicians
and patients and improved analytic
workflow relative to prior versions

Uses both data models and know!-
edge models and provides effective
data analytic visualizations

Effective use of SMART on FHIR
for integration in local EHR, and
design incorporated clinician feed-
back

Smoothly integrated into EHR

Extraction of EHR datausing FHIR

Limited generalizability dueto sin-
gle center and single disease

Difficult to query the rules engine
for level A recommendations when
triggered by EHR medication orders

Thediabetestreatment ontology did
not address emergency conditions
and was not embedded within an
EHR system

System architecture was described,
but the system was not implemented
clinically

Manual data extraction and web-
based filtering tool

Data sources are limited

Public cloud-based solutions present
safety issues

Performance is not stable across
different data sets

Tested at asingleinstitution and had
data security concerns

Limited integration of hospital data

Experience limited to asingle EHR

No standard performance evaluation

No standard performance evaluation

Implemented on asmall scale, pro-
posed guidelineswere not validated,
and interguideline conflicts need to
be resolved manually

No external validation, limited ac-
cessto cost data, and not yet compat-
ible with all EHRs

Not based on SMART, limiting in-
teroperability

Single institution, no imputation of
missing data, and no external valida
tion
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Balchet d

Source, year Functionalities

Strengths Limitations

Whitaker et a [38], 2022 Machine learning a gorithm to
identify blood transfusion adverse

events

Synthesized structured and unstruc-
tured data from EHR to achieve
reasonable accuracy compared to
clinicians

Retrospective study more aligned
toward research than clinical care

8EHR: electronic health record.
PSMART: Substitutable Medical Applications and Reusable Technologies.
®FHIR: Fast Healthcare Interoperability Resources.

CDSS ontologies are acentral tenant of CDSSinteroperability.
Generally, ontologies areahierarchy of conceptsthat are defined
by both a set of attributes and their relationships to other
concepts, and they must meet several internal consistency and
version control objectives [10]. Common ontologies include
the SNOMED CT, LOINC, and National Cancer Institute
Thesaurus (NCIT). Separate ontologies may conflict, such as
in cases where model s use different organizing principles, have
varying degrees of granularity, or even exhibit contextual
differences between clinical applications and biomedical
research. Séroussi et a [34] faced this problem when creating
a guideline for the optimal management of breast cancer by
integrating a collection of pre-existing ontologies (NCIT and
LOINC). They were able to resolve this conflict by using data
visualization techniques and rules-based inference engines,
though often their methods required the manual resolution of
conflicts. Common ontol ogies can a so omit essential elements.
Dolin et a [13] were able to transform a library of drug-gene
interactions into an FHIR standard to aert physicians when
prescriptions arelikely to cause adverse drug reactions. Specific
disease classes may lack an interoperable ontology. For cancer,
there are active efforts in the CodeX HL7 FHIR Accelerator
community to capture oncologic data from the EHR by using
the mCODE (minimal Common Oncology Data Elements)
ontology [39,40].

Advanced CDSSs have been integrated with machine learning
algorithms to process data, especially unstructured data, such
as clinician notes. Gaebel et a [16] created a physician-facing
CDSS that used Bayesian networks and medical language
modules to identify the optimal management strategy for
laryngeal cancer. Bayesian networks and other modeling
approaches can estimate and infer unobserved but relevant
variables, which is advantageous in representing complex
diseases. Natura language processing is becoming an
increasingly common tool. Hong et a [27], Semenov et a
[20,33], and Whitaker et al [38] used semantic tags, rules-based
extraction, and the scispaCy-based natural language processing
pipelineto extract their concepts, though these methods require
arduous labeling—the process of manually highlighting terms
and classifying them—and lack validation on external data sets.
Vocabulary and expressions often differ outside of the training
context, requiring developers to further refine their language
models after release by using test data and real-life examples.

Cloud-based solutions have made it possible to process
large-scal e and heterogeneous data and push the boundaries of
CDSSs to encompass broader scenarios. El-Sappagh et al [28]

https://medinform.jmir.org/2023/1/e48297

developed a mobile app that integrates data from wearable
monitors (eg, vital signs, physical activity, and blood glucose
levels) with the EHR to provide recommendations for managing
type 1 diabetes mellitus. The system delivers spoken education
and lifestyle recommendationsto patients’ mobile devices, using
an ontology generated from clinical practice guidelines, expert
opinions, and other published sources. Meanwhile, in countries
with nationally integrated health systems, citizens may be able
to assemble their data across different institutions by using a
secure server, such as Azure [31]. Henry et a [18] crested a
real-time prediction system for critically ill patients that alerts
staff to elevated sepsis risk and tracks trends in vitals by using
cloud-based technology. In the outpatient setting, Kawamoto
et a [30] incorporated data from several EHRs into an existing
risk prediction model.

A total of 3 studies described visualization tools. Gordon et a
[29] generated visual aids to show patients' thrombocytopenia
trends, along with computer-generated cal cul ated panel reactive
antibody levels, to facilitate the judicious use of platelet
transfusions by physicians and blood banks, and Thayer et a
[36] used translated FHIR concepts to graphically display a
patient’s asthma history within achart. Xiao et al [41] were able
to use knowledge graph ontologies to map FHIR and
Observational Medical Outcomes Partnership (OMOP) data
standards.

Despite the considerabl e benefits of cloud-based systems, they
can present additional security challenges. These range from
traditional cybersecurity problems (including problemsrelated
to data security, access control, and the transmission of data
over a network) to more CDSS-specific concerns (such as
privacy leakage, whereby models can be queried by outside
parties). HL7 FHIR has put forward specific security protocols
in response to safety concerns, including the use of secure http
communication channels, open authorization, and provenance
(documentation of the origin, possession, and history of apiece
of data) techniques, among others [42].

Data Management and Analytic Platforms

Therisein computing power and distributed system technologies
facilitates general-purpose platforms that provide data
standardization, dataanalysis, and model integration. Of the 39
included articles, 10 described FHIR-compliant data
management and analytic platforms, as listed in Table 2.
Although CDSSsrequireinteroperability and multicenter clinical
implementation, many clinical platforms did not support the
real-time dataintegration that is necessary for clinical adoption.
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Table. Summary of interoperable data management and analytic platforms.

Balchet d

Source, year Functionalities

Strengths

Limitations

Gruendner et al [14], 2019 Data analysis and model deploy-

ment in clinical environments

Haarbrandt et al [24], 2018 Integrating and transforming health
data for oncology, cardiology, and

infection control

Helm et al [43], 2022 Builds interoperability between

FHIR and BPMNP

Khaliliaet a [25], 2015 Clinical predictive modeling using
web services viaHL 7° FHIR stan-

dards

Kopanitsa[44], 2019 Connects multiple health data sys-

tems

Marteau et a [45], 2022 Increases availability of clinica pe-

diatric datausing OMOP® on FHIR

Metke-Jimenez et al [46], 2018 Datasearching, upgrading, and ana-
lyzing within multiple concept and

category maps.

Clinica predictive analytics with
text outputs to physicians and pa-
tients

Semenov et a [47], 2019

Thiess et al [17], 2022 Application for support of shared
decision-making in context of drug-

drug interactions

Xiao et a [41], 2022 Enables FHIR and OM OP interoper-
ability with generated clinical

knowledge graphs

Applied Docker virtualization that
facilitates deployment across differ-
ent environments

Open-source platform that allows
for patient-level data sharing

Supports BPMN clinical process
modelsand improves explainability

Maintains good performance across
many different algorithms

Has clear, effective workflows

Implementation across multiple lo-
cal environments

Syndication models automatically
update the data

Producesfree-text outputs and graph
visualizations pertaining to model
recommendations

Embedded interoperability functions
within modular CDSS® architectures

Semantic foundation for devel op-
ment of explainable tools

Poor performance on Extract,
Transform, Load processing; rela-
tively inefficient (bottleneck) FHIR?
transformation; and does not support
real-time data processing

Does not support real-time data
processing

Lacks some functionalities of the
systems when used independently

Does not support real-time data
processing

Does not support real-time data
processing

Not yet tested on real-word applica-
tions

Does not support real-time data
processing

Limited support for real-time data
processing.

Performancetesting limited to elec-
tronic health record training module

Futureiterationswill require expan-
sion of mapping systems

8 HIR: Fast Healthcare Interoperability Resources.
PBPMN: Business Process Model and Notation 2.0.
°HL7: Health Level 7.

dOMOP: Observational Medical Outcomes Partnership.
€CDSS: clinical decision support system.

Several papers addressed the challenge of integrating datafrom
heterogeneous sources. Haarbrandt et a [24] proposed a
platform that addresses this problem by devel oping techniques
for converting disparate sources to FHIR standards prior to
integration. The system is protected via fine-grained
use-and-access control mechanisms that ensure secure data
transmission among participating data sources. Metke-Jimenez
et al [46] proposed an aternative approach to integrating several
ontologies into a single web ontology language, allowing for
updates to the ontology without changing the underlying data.
For example, one could update the definition of sepsis and
readily find all patients meeting the new definition. Distributed
processing systems can be further enhanced via
compartmentalization. Kopanitsa [44] and Semenov et a [47]
developed a microservice platform that connects multiple
systemsviaFHIR APIs. This platform was used to successfully
deploy 400 CDSS models and 128 Bayesian diagnostic models
in real time. Important to precision medicine, genomics data
can now belinked to FHIR clinical data; 2 groups have created

https://medinform.jmir.org/2023/1/e48297

interoperability between the Variant

Cdl Format for

next-generation sequencing and FHIR [13,14].

Clinical information systems can aid in medical research, if
properly designed. Although a prototype system proposed by
Khalilia et al [25] ran 9 different machine learning models to
generate data-driven, patient-level predictions, it lacked a
researcher interface for the development and training of new
models. In contrast, the KETOS platform proposed by
Gruendner et a [14] alows researchers to request data sets,
define cohorts, develop models, and deploy them as a web
service. Both systems use Extract, Transform, Load pipelines
to convert EHR data from their native format to the OMOP
common data model format before storage. The KETOS
platform’s comprehensive approach to data management and
model deployment can aid researcherswith limited backgrounds
in data science.
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Auxiliary Modulesand APIs

Artificial intelligence clinical information systems depend on
robust and secure APIsto interact with the clinical environment.

Balchet d

APIs define quality and security standards for each type of
interaction with external systems (eg, EHR systems, web
browsers, and medical devices). Article summaries are shown
in Table 3.

Table. Summary of auxiliary modules and application programming interfaces (APIs).

Source, year Functionalities

Strengths Limitations

Altamimi [23], 2016 Provide security for FHIR? func-

tions to ensure patients’ privacy

Alterovitz et al [48], 2015 Link clinical and genomic datawith
an FHIR-compliant API for clinical

decision support

Dolin et al [49], 2021 Variant Call Format—to-FHIR ge-

nomic standard converter

Kasparick et a [50], 2019 Model an FHIR-compliant protocol
for artificial intelligence-based sys-

tems

Kopanitsaand Ivanov [51], 2018 FHIR-compliant APIsfor data

modeling

Gebettaet d [52], 2021 FHIR-on-OMOP® platform to sup-

port data storage and retrieval

Guinez-Molinos et al [53], 2021 Reports COVID-19 test results to

central authority

Mandel et al [26], 2016 Updating an API platform with

FHIR standards

Rafee et a [54], 2022 LOINC-mapped core data set for

ligibility screening
Wood et a [55], 2021 Allows sharing of patient data
among care provision sites for
hematologic disorders

Yoo et a [56], 2022 Method for integrating CDSS appli-

cations with EHR

Poalicies can be adjusted for circum-
stances (eg, emergency medical
conditions can override privacy
constructs)

There is no description of a user-
side module, which would be neces-
sary for clinical application

Ensures consistent semanticsin
clinical data and handles multiple
types of genomic data

Effects of clinical decision support
apps on decision-making and out-
comes were not reported.

Limited independent data analysis
and does not support real-time data
processing

Readily deployable to CDSS?

Supports multiple devices and mul-
tiple domains of data

No clinical testing

High data exchanging efficiency No clinical testing

Useof standard OMOP vocabularies  No clinical testing

Interoperable and portable; function-
aly verified with a pilot study

Developed using a predecessor sys-
tem

Improves API interoperability Establishes feasibility, but effects
on clinical decision-making and

outcomes are unknown.

Relied on expert labeling, which

Rapid EHRE screening for patient
& grore limits scalability

recruitment

Compatible across EHRs Framework alone; awaiting evi-

dence of implementation

Transformation of EHR datainto
FHIR format for input into areason-
ing engine

No validation of performancein-
dices and usahility of tested models

3FHIR: Fast Healthcare Interoperability Resources.

bCDSS: clinical decision support system.

COMOP; Observational Medical Outcomes Partnership.
dLOINC: Logical Observation Identifiers Names and Codes.
®EHR: electronic health record.

Of the included articles, 5 described auxiliary modules and
APIs. Mandel et al [26] applied FHIR standardsto the SMART
platform, improving its interoperability by providing standard
authentication, authorization, and profiling. The prototype
genomics standard developed by Alterovitz et a [49],
meanwhile, is currently in trial use to facilitate the consistent
integration of clinical and genomic information through
SMART-on-FHIR application. The application devel opersfound
the FHIR v4.0.1 specification easy to leverage, even without
prior experience with FHIR.

Although FHIR has predefined resources and mechanisms for
transmitting orders and values, methods for creating and
validating orders are not predefined. To address this issue,
Kopanitsaand Ivanov [51] proposed an FHIR-based mechanism

https://medinform.jmir.org/2023/1/e48297

for integrating laboratory and hospital information systems. The
system generated laboratory orders, using the available testsin
the laboratory information system, and prompted the user for
relevant information (such as how many laboratory samples
should be collected and when they should be collected). It is
challenging to make clinical information systems both highly
interoperable and secure without compromising dataworkflows.
SecFHIR isan XML -based security approach to FHIR resources.
Using schemapermissionsbuilt into XML documents, Altamimi
[23] generated robust security profiles that were context-aware
(eg, privacy constraints can be overridden in emergency care
situations).

Timely data availability is another barrier to implementing
CDSSs in high-acuity environments. Kasparick et al [50]
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proposed a reference model to address the timeliness challenge
by connecting medical devicesto FHIR servers. This approach
allows the APIs to function as data sources for predictive
analytic and decision support systems. By using these methods,
clinical information systems can maintain high interoperability
and security without compromising data workflow. This has
allowed for the devel opment of di sease-specific data hubs, which
facilitate research on rare conditions or for reporting the results
of COVID-19 polymerase chain reaction tests from disparate
testing sites to a central authority [53,55]. CDS hooks are
another technology that permit theintegration of EHR datainto
external health care applications [57]. Used in collaboration
with SMART on FHIR, CDS hooks are triggered by a specific
action within the EHR (ie, ordering a medication). The CDS
hooks then link the corresponding EHR datato an environment
of decision support applications [58]. These CDS applications
can then push recommendationsin the form of “CDS cards’ to

https://medinform.jmir.org/2023/1/e48297
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the clinician. These technologies are currently being tested in
real-word settings [59,60] .

Discussion

Key Findings

Although significant progress has been made in the field of
FHIR data standards, this scoping review demonstrates that
most CDSSs lack interoperability and actionable content.
Several modulesand APIsdemonstrate the potential to enhance
these systems, but they were not comprehensively integrated
into the existing clinical workflows or were not validated on
external patient populations. These limitations collectively
reveal several opportunitiesto improve on existing methods to
produce ideal clinical information systems, as illustrated in
Figure 1.
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Figure 1. Sample model of a proposed machine learning—enabled clinical information system using FHIR data standards. Al: artificial intelligence;
API: application programming interface; FHIR: Fast Healthcare Interoperability Resources; HL7: Health Level 7; IoT: Internet of Things; OMOP:

Observational Medical Outcomes Partnership.

Foundational Infrastructures Tailored to Individual
Needs

Ideally, clinica information systems would function as
innovation hubs for patient care and health care research. Due
to the proprietary nature of hardware and software systemsin
institutions, infrastructure components (eg, data transformation,
model development, authentication, and monitoring) are often
painstakingly created de novo. Platforms, such as KETOS,
however, can enable the sharing of core infrastructure, greatly
accelerating the development and deployment of applications
that are tailored to the needs of individual researchers, groups,
and projects [14]. This “health care application development

https://medinform.jmir.org/2023/1/e48297
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hub” would be shared for different applicationsto reuse models
and for data processing and analyzing services.

Facilitating Interoperability Among Data Systems

Interoperability represents the goal of successful,
cross-institutional sharing of data without additional, special
effort. This remains in contrast to the current environment of
fragmented data systems. Several elements of the current system
impede progress toward integration and should be addressed.
Sources of patient health information are numerous. At the point
of data collection, clinicians may opt to store information in
separate departments, erroneously duplicate patient descriptors,
preferentially format or describe data, or use older data standards
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(HL7 v2 and v3). Further complexity may arise from the use
of siloed systems, as exemplified by legacy systems built with
local, stand-alone data conventions and incompatible ontologies
[61]. The road to full interoperability is therefore paved with
standards built to define, represent, transfer, and protect dataas
they travel between actors. Common communications standards,
such as FHIR, have provided a useful framework for
standardizing data transmission while maintaining semantic
integrity at the patient level [15,56]. Importantly, these standards
are built to mobilize data from legacy systems, making closely
held data more publicly available [17]. By using
OMOP-on-FHIR algorithms, pediatric data from Shriners
Hospitals for Children can now be shared more widely by
researchers [45]. More recently, 2 studies have examined the
use of deep learning and transformer techniquesto convert data
elements in the EHR to interoperable FHIR standards, with
subsequent applicationin prediction models[21,62]. Automation
in data capture has the potential to reduce the costs and time
associated with manual extraction.

Overcoming Organizational Resistanceto
Interoperability Standards

Despite the benefits of an interoperable health data ecosystem,
stakeholdersarerarely incentivized to implement data standards.
Organizational resistance to interoperability may stem from
cultural differences, unfamiliarity with new technologies, or
thefear that anewly adopted informati on-sharing standard may
quickly become obsolete [63,64]. Among organizations,
concerns regarding the loss of autonomy, a lack of trust, and
thefailureto realize financial gainsimpedeinteroperability and
lead to so-called “information blocking.” The policies contained
within the 21st Century Cures Act aim to improve information
flow among actors in the system [65,66]. Apple, Google, and
Samsung now have patient-facing health records that were
developed along with FHIR standards to comply with these
policies. In addition, whileimplementation models exist to help
streamline the adoption of CDSSs, they contain important
methodical flaws[67].

Hiring Specialiststo M anage Standar ds Adoption

Unfamiliarity with interoperability standards may represent a
substantial hurdle to adoption and subsequent interoperability.
This challenge creates demand for subject matter experts who
arefamiliar with the architecture, function, and implementation
of data standards. Such experts must be able to anticipate the
specific challenges of adapting their particular legacy systems
to the interoperable standard but also recognize the benefit of
successful adoption to guide organizational buy-in [68].

Timely Data Acquisition

The need for timeliness in data sharing is driven both by data
availability and by opportunitiesfor real-time treatment support.
An obvious example of this can be seen with continuous glucose
monitoring units for patients with diabetes, which provide a
regular source of datathat can be implemented immediately to
adjust insulin therapy [69,70].

System scalability is also essential to this task. Many of the
systems evaluated in this review cannot scale in real time, as
data volume or velocity increases dynamically (eg, processing
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1000 patientsin real time vs processing 100 patientsin astatic,
retrospective training cohort). When scalability is impaired,
predictions may not be delivered in time to augment clinical
decison-making. Health Insurance Portability and
Accountability Act (HIPAA)—compliant cloud platforms can
scale all ocated resources on demand. Therefore, optimal clinical
information systems must offer scalability that iscommensurate
with the expected volume and vel ocity of data.

Minimizing Discover able Patient Data

Each ingtitution has policies that comply with municipal and
federal security and privacy laws, making it challenging to share
and aggregate data across multipleingtitutions. These challenges
have been met with creative methods for aggregating multicenter
data while maintaining patient privacy. One such method isto
request only the minimum necessary information. Thisapproach
is emphasized heavily in the HIPAA and exemplified by
El-Sappagh et a [28], who described a system that requests
only therequired EHR dataelementsfor aspecific patient. Other
such mechanisms include authorization programs (enables
specialized control over access to patient data), https, and
WebSockets (Internet Engineering Task Force; provides secure
communication over networks).

Alternatively, models can benefit from the knowledge derived
from other data sets—usually in the form of model gradients
or coefficients—without sharing the underlying data. This is
known as federated learning—a system that trains on many
local modelswith the same architecture and then aggregatesthe
knowledge derived from each center into aglobal model (Figure
1). Although such an approach greatly reduces security and
privacy risks by keeping the source records under the control
of each local ingtitution, even the gradients themselves pose a
minor risk dueto privacy leakage[28,71-75]. Thisrisk, however,
can be further reduced via the automated obfuscation of
high-risk records or by adding noise to the gradients and
coefficients before transmitting them to the central model. Given
these advantages, federated learning is poised to supplant other
methods for ensuring the data security and privacy of clinical
information systems.

Finally, the recent explosion of large language model s hasraised
further concerns regarding data privacy, as they are trained on
clinical notes. This is an active field of study with multiple
avenues for further research [76,77].

Conclusions

Machinelearning—enabled clinical anaytic and decision support
systems have the potential to improve health care by automating
standardized  workflows and  augmenting  clinical
decison-making.  Nevertheless, most CDSSs lack
interoperability and evidence of clinical utility. Common data
models and interoperable data management platforms can
addressthese limitations, but most intelligent clinical platforms
are also compromised by the inadequate scalability for
supporting real-time data processing. Existing clinical
information systems could be improved by using foundational
code infrastructures, common data models, and secure data
processing and analytics on real-time platforms. Further progress
in implementing these elements can generate information
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systems that improve care by helping patients, caregivers, and  clinicians make effective, well-informed clinical decisions.
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Abstract

Background: Clinical decision support systems (CDSSs) are important for the quality and safety of health care delivery.
Although CDSS rules guide CDSS behavior, they are not routinely shared and reused.

Objective: Ontologies havethe potential to promotethe reuse of CDSSrules. Therefore, we systematically screened theliterature
to elaborate on the current status of ontologies applied in CDSS rules, such as rule management, which uses captured CDSSrule
usage data and user feedback data to tailor CDSS services to be more accurate, and maintenance, which updates CDSS rules.
Through this systematic literature review, we aim to identify the frontiers of ontologies used in CDSSrules.

Methods: The literature search was focused on the intersection of ontologies; clinical decision support; and rulesin PubMed,
the Association for Computing Machinery (ACM) Digital Library, and the Nursing & Allied Health Database. Grounded theory
and PRISMA (Preferred Reporting Itemsfor Systematic Reviewsand Meta-Analyses) 2020 guidelineswerefollowed. One author
initiated the screening and literature review, while 2 authors validated the processes and results independently. The inclusion and
exclusion criteria were developed and refined iteratively.

Results:. CDSSs were primarily used to manage chronic conditions, alerts for medication prescriptions, reminders for
immunizations and preventive services, diagnoses, and treatment recommendations among 81 included publications. The CDSS
rules were presented in Semantic Web Rule Language, Jess, or Jena formats. Despite the fact that ontologies have been used to
provide medical knowledge, CDSS rules, and terminologies, they have not been used in CDSS rule management or to facilitate
the reuse of CDSS rules.

Conclusions: Ontologies have been used to organize and represent medical knowledge, controlled vocabularies, and the content
of CDSSrules. Sofar, there hasbeen little reuse of CDSS rules. Morework is needed to improve the reusability and interoperability
of CDSSrules. Thisreview identified and described the ontol ogiesthat, despite their limitations, enable Semantic Web technol ogies
and their applicationsin CDSS rules.
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Introduction

For more than half a century, clinical decision support systems
(CDSSs) have been developed and used in clinical care delivery
[1-5]. Some early CDSS examples include Dialog [6],
INTERNIST-1 [7-9], Quick Medical Reference [8], and Iliad
[10-12]. The effectiveness of CDSSs in clinical care has been
established [13-15], with some pioneering researchers’ work
on CDSS effectiveness particul arly noteworthy [16]. Researchers
have examined CDSS users and developers experiences,
discussed their CDSS vision for the future [17], and
recommended best practice guidelines in CDSSs [18-22].
Meanwhile, the challenges of CDSSs have been well
documented [23]. Meeting clinician information needs is one
way a CDSS can help health care providers improve clinical
care quality. Many studies, such as Infobutton [13,24], have
demonstrated the effectiveness of CDSSsin thisaspect. CDSSs
are currently routinely used in clinical care, with rates ranging
from 68.5% to 100% in primary care settings based in offices
[25] in the United States as part of electronic health record
(EHR) systems. CDSSs can take many forms, including but not
limited to remindersfor preventive services (eg, immunizations
and screening tests) [26-28], alerts for drug-drug interactions
[22,29,30], diagnostic or treatment plan recommendations
[31-33], clinician content assistance [34-38], and
recommendations for adhering to current clinical practice
guidelines [39-41]. CDSSs have played an important role and
are widely used in practice to provide safer and better clinical
care services.

CDSS rules, which function similarly to the human central
nervous system, direct the behaviors of a CDSS during
operations by incorporating patient data, contextual information,
and medical domain knowledge. The central role of CDSSrules
is a decisive factor in the relevance and usefulness of a CDSS
inthe overall clinical workflow, whichimpactswhether aCDSS
is adopted and routinely used. CDSS rules can be written in
Arden syntax [42], Semantic Web Rule Language (SWRL),
Jess, Jena, and other programming languages, and the processes
arelabor intensive. Only specially trained personnel are qualified
to write such rules. Moreover, regular updating of CDSS rules
is required to keep CDSSs relevant and useful in clinical care
delivery. However, the process of developing, updating, and
maintaining CDSS rules is time-consuming and resource
intensive [4,43], making it difficult for both large institutions
and resource-constrained small-scale practices. CDSSrule usage
data, such as rule fire rates, overwrite rates, successful rates,
and user feedback data, can be collected to improve and
customize CDSSs and manage CDSS rules. Typically, CDSS
rule maintenance entails adding, deleting, and updating CDSS
rules.

Ontologies have been successfully applied to generate and
supply domain knowledge in the use, reuse, sharing, and
interoperability of information. Ontol ogies are seen aspromising

https://medinform.jmir.org/2023/1/e43053

solutionsto the challenges of managing and maintaining CDSS
rules across institutional boundaries. The Semantic Web is a
technology enabled by ontology [44] that is critical in
information sharing and reuse [45,46], medicine [47], and
CDSSs [48,49]. Although there are numerous definitions of
ontology, we used Gruber’s definition in this manuscript: “an
ontology is a specification of conceptuaization” [45].
Interoperability has been identified as a major challenge for
health care information technol ogies, particularly when it comes
to sharing health information across institutional or national
boundaries. Ontologies have the potential to shorten the
interoperability gap.

Reusing and sharing CDSS rules areimportant, but they are not
yet routine operations; thus, we conducted this systematic
literature review. This study aimsto expand on the current state
of using ontologiesin CDSS rules by conducting a systematic
review of the literature on the intersection of CDSS rules,
Semantic Web technologies (particularly ontologies), and use
of ontologies in CDSSs. The review is expected to provide a
comprehensive view of using ontologies in CDSS rules, with
granular details. The results could serve as a basis to form a
knowledge framework of the topic that may inspire future
research. The research question we intend to answer with this
systematic literature review is as follows: What is the current
state of using semantic technologies, particularly ontologies, to
leverage CDSSruleinteroperability? Furthermore, the manually
annotated results of selected publications could serve as gold
standards for automatically identifying relevant entities in the
literature.

Methods

Databases and Search Strategies

Figure 1 illustrates the general workflow we used to conduct
this literature review. An initial set of literature searches was
conducted on June 2, 2020, which was followed by a review
and discussions. The reviewers (XJ, HM, and Y G) refined and
agreed with the search strategies and searched PubMed, the
Association for Computing Machinery (ACM) Digital Library,
and the Nursing & Allied Hedlth Database (NAHD) for
literature, using the search strategies mentioned below. A final
search was conducted on January 5, 2022, in the 3 literature
databases as an update.

For PubMed, the following search was conducted: (clinical
decison  support  systemgMeSH Terms])  AND
(ontolog*[Title/abstract] OR rule*[Title/abstract]). For ACM
Digital Library, the following search was conducted within the
scope of the ACM Guideto Computing Literature: [[Publication
Title: “clinical decision support*”] OR [Publication Title: cds*]]
AND [[Publication Title: ontolog*] OR [Abstract: ontolog*]
OR [Publication Title: rule*] OR [Abstract: rule*]]. For the
NAHD, the following search was limited to peer-reviewed
publications: mesh(clinical decision support) AND (ti(ontology)
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OR ti(ontologies) OR ab(ontology) OR ab(ontologies) OR

Figure 1. General workflow of the systematic literature review.

Literature screening

Literature search

Inclusion and Exclusion Criteria

The inclusion criteria were as follows: text was written in
English; full-text publication was available; ontologies were
designed to be implemented or were already implemented in
CDSSs, particularly related to CDSS rules; content included
the granularity of CDSS rules; ontologies were designed to be
integrated or were already integrated with health information
systems (eg, EHRS), either in a production system or aprototype,
with at least one architecture diagram, applied in clinical
domainsor designed for clinical domainsto support health care
providers; the publication was peer-reviewed; and details on
theintegration of CDSSsand EHRswere present for evaluation
studies.

The exclusion criteria were as follows: only CDSS rules were
included, regardless of the stage of the CDSS rulelifecycle (ie,
development, identification, refinement, validation, evaluation,
or implementation) or there was no mention of integration or
ontologies; only ontologies were developed, evaluated, and
validated, or there was no mention of integration or a CDSS;
the system was designed without mentioning the granularity of
CDSS rules or ontologies; and nonclinical decisions, such as
administrative or management decisions (eg, supply chain
management), were described.

General Workflow for Screening Papers

The first 100 papers were screened by all 3 authors (XJ, HM,
and YG) independently. The first 100 retrieved papers were
initially screened by 1 author (XJ) to draft initial inclusion and
exclusion criteria. The inclusion and exclusion criteria were
refined and adjusted by 2 authors (HM and YG) during the
iterative screening, review, analysis, and discussions. Further,
2 authors (HM and YG) replicated the screening, and al 3
authors discussed and validated the results. Therest of the papers
werethen screened by at least 2 authors (XJand HM, or XJand
Y G) independently to determineinclusion. Disagreementswere
discussed and resolved viaiterative rounds of group meetings.

The screening and manual review processes were conducted
independently and approved by at least 2 authors. Theliterature
was first screened based on titles, abstracts, and full-text
publications when needed. The papers that were included were
then manually coded to provide more content analysis and
synthesized evidence. The final results were shared among all
the authors. All disagreements were settled through group
discussions.
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ti(rule) OR ti(rules) OR ab(rule) OR ab(rules)).

L

Review & coding Broader consensus

Reviewing, Coding, Analyzing, and Synthesizing
Processes

Wefollowed grounded theory during the reviewing and manual
coding of the included publications. One author (XJ) randomly
selected 10 papers from the included 81 papers to start the
coding (annotating) based on the focus of thisliterature review.
ATLASL 9 (desktop and web versions; ATLAS.ti Scientific
Software Devel opment GmbH), aqualitative dataanalytic tool,
was used for coding. The coding results were discussed by 3
authors (XJ, HM, and Y G). The discussion results formed the
first draft of codes and code groups (Multimedia Appendix 1),
that is, data items. Three coders (XJ, HM, and YG) then
reviewed and coded the first 40 of the included papers using
theinitial principlesand code groups, and added new codesand
code groups when needed. Then, a second set of meetings was
used to obtain consensus on updated principles and code groups.
Refined codes and code groups were used to code the remaining
papers. Every paper was coded by at least 2 coders
independently. The coding results were then compared, and any
discrepancies were resolved by group discussions. The code
groups and codeswere revised, consolidated, and updated during
each discussion. Multimedia Appendix 2 presents the refined
code groups and examples. Data items emerged during the
review and wererefined viadiscussionsinstead of predefinition
before reviewing. Multimedia Appendix 3 lists all included

papers.

After coding, the literature was analyzed and synthesized with
afocus on severd aspects, including CDSS application domains,
CDSS mechanismsused in clinical settings, CDSSruleformats,
authoring, management, and the roles of ontologies. The 3
authors worked together in an iterative process of analysis and
synthetization. After obtaining consensus among all 3 authors,
the results were then shared and discussed among al authors.
Any concerns, confusions, or disagreements among the authors
were resolved through iterative discussions. We followed the
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) 2020 checklist [50] for reporting the
systematic review with all relevant items (Multimedia A ppendix
4 and Multimedia Appendix 5).

Results

Overview

By January 5, 2022, literature searches retrieved 1235
publications from 3 sources. After removing duplicates and
examining according to theinclusion and exclusion criteria, 81
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publications (Multimedia Appendix 3) were included in the the literature review and the summary findings, and serves as
final review and analysis [26,27,29,31-33,51-125]. Figure 2 an initial knowledge framework on CDSSs, CDSS rules, and
depicts the literature search, screening, selection flow, and ontology applicationsin CDSSs.

results. Figure 3 summarizes the main components covered by

Figure 2. Flowchart of the literature search, screening, and selection. ACM: Association for Computing Machinery.
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Figure 3. Initial knowledge framework on clinical decision support systems (CDSSs), CDSS rules, and ontology applications in CDSSs. |CD-10:
International Statistical Classification of Diseases and Related Health Problems, 10th Revision; LOINC: Logical Observation Identifiers Names and
Codes, MLM: medical logic module; OWL: Web Ontology Language; SNOMED CT: Systematized Nomenclature of Medicine-Clinical Terms, SWRL:
Semantic Web Rule Language; UMLS: Unified Medical Language System; XML: Extensive Markup Language.
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) \ Decision rules
practice Jess
guidelines « SNOMED CT, ICD-10,

UMLS, LOINC, RxNorm
¢ Evaluation?
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(44%) T
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The magjority of the publications (73/81, 90%) included in the duplicates, the ACM Library added 8 new publications. After
review were from PubMed, adominant source. After removing  cleaning, discussion, and consolidation, 30 code groups and
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221 final codeswere used in ATLAS.ti (Multimedia Appendix
2). These codes and code groups guided our analysis and
synthesis of the results. Multimedia Appendix 6 shows aword
cloud image generated by ATLASLi that reflects the codes
coded in the publications included.

PRISMA 2020 is designed to guide the reporting of
outcome-oriented studies. Our systematic literature review
focused on the design, development, and implementation of
CDSSs, particularly related to CDSS rules and ontologies.
Therefore, effect measures or certainty assessments were
irrelevant items. We reported 19 categorical items (out of 27
categorical items, 26 items out of 42 items, Multimedia
Appendix 4) for the full-text papersand 10 for the abstracts (out
of 12 items; Multimedia Appendix 5).

Results Related to CDSS Char acteristics

Over one-third (29/81, 36%) of CDSSswere designed and used
for chronic condition management, prediction, or risk
assessment, including but not limited to type 1 and 2 diabetes,
hypertension, and asthma. Medication prescriptions (13/81,
16%), such as medication ordering, detection of adverse drug
events, drug-drug interactions, and cancer care (8/81, 10%),
wereal so significant application domains. Multimedia A ppendix
7 illustrates the clinical domains of CDSSs within the included
publications. Most CDSSs were designed for health care
providers, but only 11% (9/81) were intended for patients. Most
CDSSs provided recommendations, suggestions, aerts, or
reminders. Among all theitemsin our comparison (Multimedia
Appendix 8), EHR evaluation studies within the operational
systemsor prototypes exhibited the least completeinformation.
Evaluations of CDSSs have been listed in multiple columnsin
Multimedia Appendix 8. Some CDSSs were implemented in
production systems (31/81, 38%), whereas others were
implemented in prototypes (30/81, 37%), which included
experimental systems. Multimedia Appendix 8 summarizesthe
key features of CDSSs identified in the publications. In all
tables, we adopted the original terms used in the corresponding
papers. Some papers, for example, referred to “physicians’ as
CDSS users, whereas others referred to “clinicians’ as CDSS
users.

Results Related to CDSS Rules

Most CDSS rules were written in Web Ontology Language
(OWL; 11/81, 14%), Extensive Markup Language (XML ; 10/81,
12%), SWRL (9/81, 11%), Jenarules (5/81, 6%), and medical
logic module (MLM; 3/81, 4%). Moreover, 2 publications
[117,119] used N3 Language and 2 [90,117] used Natural Rule
Language (NRL). Multimedia Appendix 9 presents 54
publications with more details on the CDSS rules, that is,
publicationsthat can fill out 3 or more cells (except for authors
and publication year).

The most significant CDSSrule sourceisfrom clinical practice
guidelines (36/81, 44%). Other sources of CDSSrulesincluded
domain expert input, publications (eg, textbooks and papers),
multimedia sources, and internet resources. Datamining results
were involved in CDSS rule sources [67,73]. CDSS rule
authoring and editing tools were not routinely specified in the
publications. Protégé [115] was the most prevalent tool to edit
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and author CDSS rules. Several publications also described
developing authoring and editing tools [57,65,91].

There was a lack of technical details regarding rule engines,
among which Jena (6/81, 7%), inference engine (6/81, 7%),
Jess (4/81, 5%), JBoss (3/81, 4%), guideline engine (3/81, 4%),
Drools (2/81, 3%), and Bayes (2/81, 3%) were frequently
mentioned. Multimedia Appendix 9 summarizeshow the CDSS
rule (operation) works in a simplified manner. Many
publications did not specify the working mechanism of CDSS
rules within the EHR, electronic medical record (EMR), or
hospital information system (HIS) context.

The majority of the publications did not appear to be focused
on interoperability. Few papers that discussed interoperability
(Multimedia Appendix 9) used HL7 CDA (Health Level 7,
Clinical Document Architecture) or HL7 FHIR (Health Level
7, Fast Hedlthcare Interoperability Resources) standards.
However, it is worth noting that such HL7 measures were not
specifically designed for CDSS rules but rather for CDSSinput
and output.

Furthermore, some publications lacked necessary information
for explaining the mechanisms of the systems, which can be
critical barriers to reproducibility. Some publications lacked
critical information, such as CDSS architecture diagrams, CDSS
rule engines, CDSS rule languages, backend management
methods for CDSS rules; and integration mechanisms among
CDSSrules, ontologies, and EHR, EMR, or HIS systems.

Results Related to Ontologies

In theincluded publications, ontologies were primarily used as
knowledge sources for CDSSs (32/81, 40%) to facilitate
classification (7/81, 9%), reasoning, and inference (6/81, 7%;
g, identification recommendations or relationships). Moreover,
ontologies were used to specify CDSS rules (12/81, 15%) or to
provide general knowledgefor theEMR or EHR systems. These
2 applications overlapped in some cases (19/81, 24%; ie, the
ontologies were used to provide specified CDSS rules and
general knowledge).

In the included publications, the terms “reasoner” and “rule
engines’ were used interchangeably. Reasoner, in our opinion,
refersto the inference for a consistency check or classification
for an ontology. A reasoner can be part of an ontology tool or
can be external. For CDSSs, a rule engine is the mechanism
that generates or provides recommendations by incorporating
apatient’s data, contextual information, and medical knowledge
(typicaly from an ontology or knowledge base). However, we
kept the authors' choice of termsin tables without modification.
Among the included publications, the most common reasoners
were Pellet (11/81, 14%), Jena (4/81, 5%), OWL reasoner (3/81,
4%), Jess (2/81, 3%), and the Euler/EY E inference engine (2/81,
3%).

The content and code systems used to represent the content
should beincluded as ontology sources. The content could come
from a popular textbook or a clinical practice guideline. The
content can be coded in a specific code system, such as
SNOMED CT (Systematized Nomenclature  of
Medicine-Clinical Terms). Multimedia Appendix 10 includes
code systems that served as ontology sources. The most often
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used coding systems among the included publications were
SNOMED CT (9/81, 11%), the International Statistical
Classification of Diseases and Related Health Problems, 10th
Revision (ICD-10; 4/81, 5%), Unified Medical Language System
(UMLS; 4/81, 5%), Logical Observation Identifiers Namesand
Codes (LOINC; 3/81, 4%), and RxNorm (2/81, 3%).

Incomplete information for ontology validation is a common
issue shown in the literature. Approximately 20 publications
mentioned some validation, including validation or evaluation
by domain experts (20/81, 25%). Some ontol ogieswere authored
by domain experts [55,63]. Multimedia Appendix 10 provides
more information on the roles of ontologies in publications,
including publications with 3 or more cells (except for authors
and publication year; n=36).

Discussion

Summary of the Results

Although ontologies contribute to the content of CDSS rules
and have the potentia to facilitate interoperable CDSS rules,
our systematic review showed that reusing and sharing of CDSS
rules have not been achieved. CDSSs have a wide range of
clinical application domains, primarily for health care providers,
such as chronic condition management, medication ordering,
and cancer care. CDSS rules are primarily based on clinical
practice guidelines.

Although reusing and sharing CDSS atifacts are
well-recognized challenges[1,109], reusability, customization,
and shareability of CDSS rules are not yet a common focus,
even in publications focusing on CDSS rule editing
[43,126,127]. These areimportant topicsto cover in aliterature
review. Marco-Ruiz et al [109] demonstrated how to use CDSS
artifacts in the Linked Data framework [128] by leveraging
Semantic Web technologies, particularly ontology. However,
that work was at a higher level, describing concepts without
tangible toolsimplemented in clinical practice. Tofill this gap,
one approach is to build an upper-level CDSS ontology [129]
to encourage the reuse of CDSS rules and demonstrate the
potential of ontologies. Our effort is in alignment with their
vision, as well as other efforts in reusing and sharing CDSS
artifacts[1,109].

Ontologies were not at the center of any early examples of
CDSSs [6-12]. An early demonstration of using medical
terminology in CDSSs was the adoption of Current Medical
Information and Terminology (CMIT) in a diagnostic engine
[130,131]. Even under our “loose use of ontology” during our
systematic literature search, there was no casein which ontology
played acentral rolein sharing CDSSrules, particularly for rule
management and maintenance.

Over theyears, CDSSs have been successfully appliedin clinical
care. Unfortunately, CDSS rules are not yet portable. Making
CDSS rules more portable is therefore significant work that
could be leveraged by ontologies, and our systematic literature
review brings us one step closer to that goal. Marco-Ruiz et al
also conducted a very relevant systematic literature review.
However, their focus was on the interoperability mechanisms
used in CDSSs [132,133]. According to the results of their
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systematic literature review, 32% of the included papers used
ontologies and 46% used standard terminologies. The findings
related to ontologies are similar [132,133] to those of our paper.
However, we presented a more detailed and thorough analysis
of these technologies used in CDSS rules. Nevertheless, both
papers concluded that complete CDSS interoperability is not a
reality. Thus, additional efforts are required to achieve
interoperable and reusable CDSS artifacts, such asCDSSrules.

Interpretation of the Results

Rule engines, which execute rules, patient data, and context
information to produce a result, such as an dert or a
recommendation, are critical components of CDSSs [1]. Jess,
arule engine and development environment in Java[134], was
frequently mentioned in the included publications as atool for
developing rule-based CDSSs. SWRL rules can be converted
to Jess rules in the popular tool Protégé, using a plug-in
application programming interface (API) SWRL JessTab. Jess
rules can be used by the Jess rule engine, which iswidely used
in rule-based expert systems[134]. In addition to Jess, Jenaand
Drools were used frequently in the publications included. Jena
isaJava APl that supports rule-based inference and makes use
of resource description framework (RDF) graphs [135].
Jenajava APl isapopular framework for managing RDF/OWL
descriptions and can handle OWL models [96]. Drools is a
business rule management system that includes a rule engine
[136]. Drools also hasthe SWRL API that supports SWRL and
Semantic Query-Enhanced Web Rule Language (SQWRL).
SWRL can be queried by SQWRL.

Reasoning via a reasoner is a critical characteristic of many
ontologies, even though the current reasoning is still in
first-degree logic. Reasoning can be used for the following 3
main functions: consistency check, classification, and realization
[137]. Several publications specified the classification roles of
the ontologies and reasoners (Multimedia Appendix 10). The
Manchester University OWL group has curated an updated list
of OWL reasoners [137]. Parsia et a [137] compiled and
compared the current OWL reasoners and their performances
via the competition report. Both Pellet and Jena are popular
reasoners (Multimedia Appendix 10), and other reasoners
include FaCT++ [98], Z3 Solver reasoner [105], Euler/EYE
inference engine [117,119], OWL Horst [109], and OWL
Cerebra [63] among the included publications. Among these
reasoners, Pellet [138] is Javabased, and it can work on SWRL
rules and ontologies written in OWL2. SWRL was initially
designed as a rule language for Semantic Web technologies
[139]. A user needsthe rule language and an editor (eg, Protégé
SWRL tab) to write, revise, and query the rules. SWRL can be
queried by SQWRL (a query language for OWL) or SPARQL
(SPARQL Protocol and RDF query language). Reasoners can
then be used to conduct reasoning based on the rules and facts
defined in the ontology or knowledge base. Protégé-OWL [140]
provides an editor for SWRL rules. Protégé SWRL editor is
another example.

Thisreview has demonstrated uniqueinsights about CDSSrules,
ontologies, and ontology applications, particularly in CDSS
rule management and maintenance, and has presented several
distinct characteristics that complement the existing literature.
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An earlier review [40] focused on clinical decision-making in
forming ontol ogiesto support complex cognitive processes and
reasoning processes comparing evaluation metrics but did not
cover the implementation of EHR, EMR, or HIS systems and
the mechanisms of these characteristics.

Significance of the Work

Our systematic review demonstrated the state-of-the-art
applications of ontologies in CDSS rules. These applications
have alot of potentia for reusing and sharing CDSS artifacts.
However, none of the existing papers el aborated or demonstrated
how ontologies enable portable CDSS rules. Although some
authors recognized this benefit [ 1,43,109], none have conducted
asystematic review. Our literature review thoroughly examined
the topic, outlined the current frontlines on CDSS rules and
ontology usesin CDSSs, established the knowledge framework,
and compiled a comprehensive collection of relevant
publicationsthat can inform future efforts to design or improve
CDSSs. This systematic review focused on the mechanisms of
CDSSs in clinical practices or prototypes, CDSS rules, and
ontology rolesin CDSSs. The detailed information provided in
each included publication (Multimedia Appendix 8, Multimedia
Appendix 9, and MultimediaAppendix 10) about the reasoners,
rule engines, ontologies, and CDSS rule formats used provided
valuable references for designing or improving systems. The
side-by-side comparison of publications (Multimedia A ppendix
8, Multimedia Appendix 9, and Multimedia Appendix 10) also
provided structured guidance for preparing future designs and
publications or teaching references on the topics in tangible

ways.

Missing I nformation in the Publications and Our
Recommendations

Inconsistent or missing information about CDSS rule languages,
CDSSruleengines, and CDSS eval uation detailswasidentified.
In CDSS eval uation, there was commonly no information about
how the evaluation was conducted or who performed the
evaluation. There were also inconsistencies in technical details
related to ontology purposes, reasoners, connection mechanisms,
or communications between CDSSs and EHR, EMR, or HIS
systems. Inconsistent or missing information hampered
reproducibility and further improvement of published work.
We are obviously not the only group that hasidentified missing
critical information as a problem in technical paperson similar
topics[141].

Another missing piece is the evaluation and validation of
ontologies or knowledge bases. Only 25% of publications
mentioned that domain experts conducted evaluation or
vaidation. A formal assessment or validationiscritical to ensure
the validity of the results from automated processes for some
ontologies (or knowledge bases) derived from other automatic
methods (eg, machine learning algorithms). Testing has not
been conducted consistently across the publications. Some
ontologies were authored by domain experts, which provides
greater validity than those involving nondomain experts while
constructing ontologies.

Thus, it isrecommended that authorsinclude essential technical
details in publications. These technical details include CDSS
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application domains, intended CDSS users, CDSS notification
types, CDSS evaluations (what, how, and by whom), CDSS
rule sources, CDSS rule languages, CDSS rule engines, CDSS
operation mechanisms, ontol ogy use purposes, ontology sources
(both content and code systems), ontology validation, reasoners,
and connection or communi cation mechanisms between CDSSs
and EMR, EHR, or HIS systems. Authorsare highly encouraged
to include such detailsto help readers reference, compare, and
increase the reproducibility of the reported work.

Limitations

Our review haslimitations. Non-English publications or full-text
unavailable publications were not included. Publications that
focused only on CDSS rules [43,126,127] were aso excluded.
Moreover, publications without specifying an ontology
component were excluded, athough such publications had a
similar focus to one aspect of our systematic review. We aso
noticed that most of the publications on CDSS rule authoring
and managing tools were from Partners HeathCare/Harvard
Medical School. The strengths of Partners HealthCare/Harvard
Medical School were shown. On the other hand, alack of broad
adoption, implementation, or publication of such topics was
shown.

When “CDSS’ is not specified as akeyword, the search results
may exclude publications. For example, our 2 previous papers
[142,143] were not found via the search strategy because
“CDSS’ was not used as a keyword, athough the content was
undoubtedly within the scope of this review. This challengeis
common to how our current literature databases are organized
and how we conduct a literature search. Even with MeSH
(Medical Subject Headings; the controlled vocabulary for
PubMed), publications can still be missed without using
commonly recognized keywords. This challenge could be
minimized and mitigated by carefully devel oping an exhaustive
list of keywords to maximize the possibilities found during a
literature search in the future.

Conclusions

The reuse, management, and maintenance of CDSS rules are
critical yet challenging for their clinical application. Although
ontol ogies have been used to contribute to the content of CDSS
rules, they have not been used to facilitate CDSS rule reuse and
sharing. Building a CDSS ontology, which could be the first
tangible step, requires bridging high-level visions and
operational efforts. Semantic interoperability remains a major
challenge that must be overcome to achieve reuse of CDSS
artifacts, including CDSS rules. The realization of semantic
interoperability will not only allow for the reuse of CDSS
artifacts, which are resource intensive to devel op and maintain,
but also provide practical insights to achieve interoperable
patient records. Thishasbeen along-lost aspect, and health care
providers will be able to access patients' complete records to
provide safer and higher quality care every timeto every patient.
We believe that making CDSS rules interoperable can provide
insightful guidance for interoperable patient records.

Incomplete technical details on CDSS rules and ontologies
presented in publications should be addressed in future
publications by including more detailed information about
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architectural diagrams; the mechanisms of connection among
ontologies, CDSSrules, and EHR, EMR, or HIS systems, CDSS
rule languages; reasoners; rule engines; the validation or
authorization of ontologies and CDSS rules; the purposes of
ontologies; ontology sources, and the management and
maintenance of CDSS rules. Such information can help
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researchers to optimize design and development while also
increasing reproducibility. Finally, the knowledge framework
and the summarization of included publications are expected
to guide future CDSS improvements and innovations, CDSS
rules, and the integration and communication of CDSSs with
EHR, EMR, or HIS systems.
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Abstract

Background: Real-world data, such as claims, electronic medical records (EMRS), and electronic health records (EHRS), are
increasingly being used in clinical epidemiology. Understanding the current status of existing approaches can help in designing
high-quality epidemiological studies.

Objective: We conducted a comprehensive narrative literature review to clarify the secondary use of claims, EMRSs, and EHRs
in clinical epidemiology in Japan.

Methods: We searched peer-reviewed publications in PubMed from January 1, 2006, to June 30, 2021 (the date of search),
which met the following 3 inclusion criteria: involvement of claims, EMRs, EHRs, or medical receipt data; mention of Japan;
and published from January 1, 2006, to June 30, 2021. Eligible articles that met any of the following 6 exclusion criteria were
filtered: review articles; non—disease-related articles; articlesin which the Japanese population is not the sample; articles without
claims, EMRs, or EHRs; full text not available; and articles without statistical analysis. Investigations of the titles, abstracts, and
full texts of eligible articleswere conducted automatically or manually, from which 7 categories of key information were collected.
Theinformation included organization, study design, real-world data type, database, disease, outcome, and statistical method.

Results: A total of 620 eligible articleswereidentified for this narrative literature review. Theresults of the 7 categories suggested
that most of the studies were conducted by academic institutes (n=429); the cohort study wasthe primary design that longitudinally
measured outcomes of proper patients (n=533); 594 studies used claims data; the use of databases was concentrated in well-known
commercia and public databases; infections (n=105), cardiovascular diseases (n=100), neoplasms (n=78), and nutritional and
metabolic diseases (n=75) were the most studied diseases; most studies have focused on measuring treatment patterns (n=218),
physiological or clinical characteristics (n=184), and mortality (n=137); and multivariate models were commonly used (n=414).
Most (375/414, 90.6%) of these multivariate modeling studies were performed for confounder adjustment. Logistic regression
was the first choice for assessing many of the outcomes, with the exception of hospitalization or hospital stay and resource use
or costs, for both of which linear regression was commonly used.

Conclusions: Thisliterature review provides a good understanding of the current status and trends in the use of claims, EMRS,
and EHRs data in clinical epidemiology in Japan. The results demonstrated appropriate statistical methods regarding different
outcomes, Japan-specific trends of disease areas, and the lack of use of artificial intelligence techniques in existing studies. In
the future, a more precise comparison of relevant domestic research with worldwide research will be conducted to clarify the
Japan-specific status and challenges.

(JMIR Med Inform 2023;11:e39876) doi:10.2196/39876
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claims; electronic medical records, EMRS; electronic health records, EHRS; epidemiology; narrative literature review
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Introduction

Background

Medical claims data, electronic medical records (EMRs), and
electronic hedlth records (EHRS) are familiar sources of
real-world data (RWD). They are often used secondarily to
complement limitationsin clinical trials. For example, they can
characterize patient subgroups that are excluded from clinical
trials by following eligibility criteria such as comorbidities or
age. Findings obtained through long-term, naturaistic
observations of a large and diverse patient population can be
easily generalized to other populations. Other advantages are
that these data have high external validity, a single data source
can be used for different study purposes, and prospective data
collection is not required.

Claims data are electronic records of transactions between
patients and health care providers. They include information
on hills (claims) submitted by providers (hospitals, clinics, and
pharmeacies) to third-party payers (health insurance associations).
There are aready some large-scale commercia and nonprofit
clams databases available in Japan [1-6] that aggregate
information from multiple health care providers for secondary
use. Recently, the EMR and EHR data have become widely
available. The EMR data are the details of the encounters with
patients recorded by physicians through EMR systems. They
contain rich clinical information such as laboratory test results,
diagnostic images, pathology findings, and patient symptoms.
Asdifferent facilitiesmay use different EMR systems, domestic
EMR data are currently available from =1 medical institution.
The EHR data are electronic records of al health-related
information of individual patients created and managed by
clinical professionals, which can be shared and used among
various medical facilities. Current EHR databases in Japan
include both patient claims data and medical records.

In recent years, claims data, EMRs, and EHRs have been
increasingly used in clinical epidemiology studies. Such studies
include cost-effectiveness analysis of drugs (including disease
burden and assessment of medical technology), risk factor
analysis, investigation of the actual status of drugs (including
preclinical feasibility valuation, marketability study, and
detection of prescription patterns), and evaluation of drug
efficacy in actual clinical practice. Because these data are not
designed for research purposes, the secondary use requires an
understanding of their limitations and the ability to generate
clinical questions, epidemiological skills to construct a study
design, and datistical skills to analyze retrospective
observational data. Previous approaches have addressed the
limitations and challenges of using these data [7-12].
Understanding their application status based on these advanced
guidelines is essential. However, investigations of existing
epidemiological studies based on these data are lacking.

Objective

We conducted a comprehensive narrative literature review to
clarify the secondary use of claims, EMRSs, and EHRsin clinical
epidemiology in Japan. We focused on 7 categories of key
information, including organization, study design, RWD type,
database, disease, outcome, and statistical method. We expect

https://medinform.jmir.org/2023/1/€39876
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that this review would help in the design of high-quality
epidemiological studies.

Methods

Overview

This is a comprehensive narrative literature review that
investigated the secondary use of claimsdata, EMRs, and EHRs
in epidemiology in Japan. Referring to PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines[13] and procedures used in previous review studies
[14-18], we conducted this review by searching for biomedical
articlesin PubMed.

Information Source

We searched peer-reviewed publications that satisfied the
eligibility criteriafor thisnarrative literature review in PubMed
from January 1, 2006, to June 30, 2021 (the date of search).

Search Strategy

Keywords used to search PubMed consisted of “real world,”
“database,” “claim,” “receipt,” “administrative,” “emr,” “ehr,”
“japan,” “electronic medical record,” “ electronic health record,”
and Medica Subject Headings (MeSH) terms including,
“Electronic Health Record,” “Administrative Claims,
Healthcare,” “Insurance Claim Review/statistics and numerical
data,” and “ Japan/epidemiology.” Weinitially identified related
articles by using various combinations of these keywords. The
details of the search string are availablein Multimedia A ppendix
1.

Eligibility Criteria

On the basis of the search strategy, we identified articles whose
titlesand abstracts satisfied the following threeinclusion criteria:
(1) involvement of claims, EMRs, EHRs, or medical receipt
data; (2) mention of Japan; and (3) published from January 1,
2006, to June 30, 2021. Eligible articles were then filtered out
by satisfying any of the following six exclusion criteria: (1)
review articles; (2) non—disease-related articles; (3) articlesin
which the Japanese population is not the sample; (4) articles
without claims, EMRS, or EHRs; (5) unavailability of full-text
articles; and (6) articles without statistical analysis.

Selection Process

The second author (TT) conducted the article search based on
the search strategy. Both authors jointly reviewed all searched
publications and performed 2 rounds of screening to identify
target digiblearticles. Inthefirst round, we removed duplicates
and articlesthat met any of the 6 exclusion criteriaby screening
the titles and abstracts. Review articles were automatically
identified by a section classification model [19] trained on the
PubMed 200k data set [20], which classified sentences in the
abstractsinto 5 sections (introduction, objective, method, result,
and conclusion). On the basis of the hypothesis that review
articles do not have sentences describing the results, we
considered those without result sentencesasreview articlesand
removed them from the target articles. Artificialy, we filtered
out articlesthat met the exclusion criteria (2)-(5). In the second
round of screening, the first author (Y Z) reviewed the full text
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of theremaining articlesand removed those that did not include
statistical analysis. The 2 authors double checked the resultsto
ensure accuracy and finalized the eligible articles.

Data Collection

Overview

Investigations of the titles, abstracts, and full texts were
conducted for eligible articles, from which 7 categories of key
information were collected. The information included
organization, study design, RWD type, database, disease,
outcome, and dstatistical methods. Details regarding the
classifications for each category are provided in Multimedia
Appendix 2.

Automated Data Extraction

Four of these categories, including organization, study design,
RWD type, and disease, were automatically extracted by
keywords matching on the titles and abstracts. Two authors
coded the data collection together.

On the basis of authors' address information, organization was
classified into 3 groups: “academic,” “nonacademic,” and
“collaboration,” which denote that a study was conducted by
academia, enterprises (including pharmaceutical companies,
biotechnology companies, medical device companies, voluntary
associations, and other health care—related companies), or
collaboration of academia and nonacademic enterprises,
respectively. Study design information was extracted by
matching sentences in the abstracts to the categories listed in
Multimedia Appendix 2, which consists of cohort studies,
case-control studies, case-crossover studies, and cross-sectional
studies. Similarly, RWD-type information was extracted by

Zhao & Tsubota

matching sentences in the abstract with 3 keywords, including
claims, EMRs, and EHRs. Disease information was classified
according to tree codes C01-C26 of MeSH terms [21]. For
articles without the corresponding MeSH terms, disease
information was collected from their titlesusing MetaM ap [22]
and pyMeSHSIm [23].

Manual Data Extraction

Subsequently, the first author (YZ) conducted a full-text
investigation to collect information on the database, outcome,
and statistical method used in the target articles. The second
author (TT) cross-checked the results of this data collection.

Database information was collected directly from the full texts.
For those articles that did not use a specific database, we
categorized them uniformly according to their data source as
“other database” or “municipal claims database,” where “ other
database” indicates data from 1 or more medical facilities and
“municipal claimsdatabase” indicates claims data provided by
regional administrative agencies. Because there is no familiar
way of categorizing outcomes for RWD studies, we defined 8
classifications of outcomes by referring to the article by Abaho
et al [24]. The explanationsfor these classifications are detailed
in Multimedia Appendix 2. We defined a hierarchical approach
to collect information on statistical methods in the text. As
shown in Figure 1, the method used in these articles was first
categorized as multivariate modeling, simple statistical analysis,
or descriptive analysis. Then, multivariate modeling was
subdivided according to the purposes of confounding
adjustment, clustered data modeling, factor exploration, or
cost-effectiveness analysis, where confounding adjustment was
further classified according to whether propensity score (PS)
analysis was conducted.

Figure 1. A hierarchica approach for collecting information on the statistical method.

Statistical method
’ ,-1. Statistical analysis type

If multivariate? —Yes—— (U Multivariate modeling

|

No

If significance test?

—Yes—— (2) Simple statistical analysis

1
I |
No :
| P

@

Descriptive analysis

It should be noted that an article that focuses on multiple
diseases, RWD types, study designs, databases, outcomes, or
modeling purposes would be double counted for each
classification to which it belongs.
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. II. Modeling purpose

Propensity score matching analysis
Confounding adjustment

Covariate adjustment

: Clustered data modeling

m Factor exploration
1

m Cost-effectiveness analysis

Analysis

We performed a descriptive statistical analysis of the collected
data by describing their counts and percentages. In addition, we
calculated the percentages of outcomes and databases for each
disease. The percentages of statistical methods used to assess
different outcomes were also analyzed. All codes used for data
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collection and descriptive analyseswere performed using Python  process and the results of each screening step. We asoillustrate

(version 3.8.8, 2021).

Results

the publication years of these articlesin Multimedia Appendix
3. Thedistribution indicated that 68.7% (426/620) of the articles
were published after 2018, suggesting that the secondary use

Study Selection

of the 3 RWD types in epidemiological research in Japan was
prevalent in approximately the last 5 years.

A total of 620 eligible articleswereidentified for this narrative
literature review. Figure 2 [13-18] illustrates the selection

Figure 2. Search and screening process [13-18]. EHR: electronic health record; EMR: electronic medical record.

Identification of studies via databases and registers ]
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(n=1)

Y
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Title and abstract screened
(n=919)

(n=291)

Article removed before screening
» Duplicate removed (n=1)

y

Full text screened for eligibility
(n=628)

(n=8)

4

Articles excluded

» Review articles removed (n=55)

* Non-disease-related articles removed (n=188)

* Non-Japanese population involved articles removed (n=11)
* Articles without claims, EMRs, EHRs removed (n=13)

= Full text not available articles removed (n=24)

v

Studies included in the review
(n=620)

[ Included J ‘ Eligibility ’ L Screening ‘ [Identiﬁcation

Summary of Findings

Overview

We summarize the counts and percentages of information in
the 7 categories and illustrate the top-ranked items for each
category in Tables1 and 2. All resultsaredetailed in Multimedia
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4

Articles excluded
= Articles without statistical analysis removed (n=8)

Appendix 4. It should be noted that for an article with multiple
diseases, data types, study designs, databases, outcomes, or
modeling purposes, it was double counted in each classification
to which it belongs. Therefore, the total percentage of these
categories may not be 100%. The following subsections present
the results for each category.
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Table 1. Results of counts and percentages of the 7 categories (n=620).

Category Count, n (%)
Organization
Academic 429 (69.2)
Nonacademic 153 (24.7)
Collaboration 35(5.6)
Study design
Cohort study 533 (86)
Case-control study 30 (4.8)
Case-crossover study 23(3.7)
Cross-sectional study 6(2)
RWD?type
Claim 594 (95.8)
EMR® 30 (4.8)
EHRS 4(0.6)
Database
MDA 181(29.2)
DPC® database (MHLW') 141 (22.7)
MDVY 103 (16.6)
NDB" 65 (10.5)
Other databases 26 (4.2)
JROAD-DPC' 17 (2.7)
Municipal claims database 12 (1.9)
oL, 10 (1.6)
Disease
Infections 105 (16.9)
Cardiovascular diseases 100 (16.1)
Neoplasms 78 (12.6)
Nutritional and metabolic diseases 75 (12.1)
Digestive system diseases 68 (11)
Pathological conditions, signs and symptoms 63(10.2)
Nervous system diseases 62 (10)
Musculoskeletal diseases 42 (6.8)
Mental disorders 38(6.1)
Wounds and injuries 33(5.3)
Male urogenital diseases 30 (4.8)
Respiratory tract diseases 27 (4.9)
Hemic and lymphatic diseases 16 (2.6)
Eye diseases 14 (2.3)
Skin and connective tissue diseases 10(1.6)
Outcome
Treatment patterns 218 (35.2)
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Category Count, n (%)
Physiological or clinical 184 (29.7)
Mortality 137 (22.1)
Resource use or costs 118 (19)
Hospitalization or hospital stay 107 (17.3)
Adverse events 97 (15.6)
Guideline adherence 32(5.2)
Quiality indicators 5(0.8)

Statistical method
Multivariate modeling 414 (66.8)
Simple statistical analysis 121 (19.5)
Descriptive analysis 85(13.7)

3RWD: real-world data.

PEMR: electronic medical record.

®EHR: electronic health record.

dmpc: Japan Medical Data Center Claims.
®DPC: diagnosis procedure combination.

'MHLW: Ministry of Health, Labour and Welfare.

9MDV: medical data vision.

PNDB: National Database of Health Insurance Claims and Specific Health Checkups of Japan.

I JROAD-DPC: Japanese Registry of All Cardiac and Vascular Disease-diagnosis procedure combination.

jQI P: Quality Indicator/Improvement Project.

Table 2. Results of modeling purposes as defined in Figure 1 and specific models used in the 414 multivariate modeling studies.

Category of multivariate modeling studies

Count (n=414), n (%)

M odeling purpose

Confounding adjustment 375 (90.6)
Propensity score matching analysis 96 (23.2)
Covariate adjustment 279 (67.4)

Clustered data modeling 69 (16.7)

Factor exploration 68 (16.4)

Cost-€effectiveness analysis 8(1.9)

Specifical method

Logistic regression 249 (60.1)

Cox proportional hazards regression 87 (21)

Linear regression 57 (13.8)

Poisson regression 23(5.6)

GLM? 18 (4.3)

8GLM: generalized linear model.

Study Design

The results of study design show 86% (533/620) of the articles
that performed cohort studies, whereas only a few (30/620,
4.8%) studieswere case-control studies, cross-sectional studies
(23/620, 3.7%), and case-crossover studies (6/620, 1%).

Organization
In Table 1, the results of organization show that most (429/620,
69.2%) target articles were conducted by academics, whereas

nonacademic firms preferred to collaborate with academic
institutions (153/620, 24.7%).
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RWD Type

Most (594/620, 95.8%) studies used claims data. Only a small
number (30/620, 4.8%) of studies used EMRs and (4/620, 0.6%)
EHRs. According to the articles that used EMRs or EHRs, we
found that these studies commonly collected EMRs or EHRs
from private databases (1 or some specific hospitals), which
did not have large patient populations.

Database

Table 1 showsthe top-ranked databases (n>10) used in the target
articles. The Japan Medical Data Center Claims (JMDC)
database, awell-known, large-scale commercial insurance-based
claimsdatabase operated by IMDC Inc [3,4], wasthe most used
database. IMDC was used in 29.2% (181/620) of the total
articles. The second most used database is composed of claims
data from diagnosis procedure combination (DPC) hospitals
provided by the Ministry of Health, Labour and Welfare
(MHLW) [25,26], which we called the DPC database (MHLW).
A total of 22.7% (141/620) of articles used the DPC database
(MHLW). Medical datavision (MDV) [5], another commercial
hospital claims-based database, was used for 16.6% (103/620)
of the total articles. Fourth in the ranking is the National
Database of Health Insurance Claims and Specific Health
Checkups of Japan (NDB) data, which was established by the
MHLW in 2009, covering almost the whol e popul ation in Japan
[1,2]. NDB was used in 10.5% (65/620) of the total articles.

Disease

According to the information on diseasesin Table 1, we found
that most studies have focused on infections (105/620, 16.9%),
cardiovascular diseases (100/620, 16.1%), neoplasms (78/620,
12.6%), and nutritional and metabolic diseases (75/620, 12.1%).
In addition, there were a number of studies on psychiatric

disorders, indicated here as nervous system diseases (62/620,
10%) and mental disorders (38/620, 6.1%).

Outcome

The results of outcome show that treatment patterns (218/620,
35.2%), physiological or clinical outcomes (184/620, 29.7%),
and mortality (137/620, 22.1%) were the most assessed
outcomes. Comparatively, few (32/620, 5.2%) articles assessed
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guideline adherence. Only few studies measured quality
indicators (5/620, 0.8%).

Statistical Method

Table 1 also suggests that most (414/620, 66.8%) studies were
performed using multivariate modeling. In addition, we
investigated the counts and percentages of modeling purposes
(Figure 1) and specific models used in the 414 multivariate
modeling studies in Table 2. The results show that most
(375/414, 90.6%) of the multivariate modeling studies were
performed for confounder adjustment. Some were conducted
for clustered data modeling (69/414, 16.7%) and factor
exploration (68/414, 16.4%). Two types of models were used
for clustered datamodeling: the generalized estimating equations
(GEE) method and multilevel models. The GEE methods adjust
for the clustering nature of the data and correctly estimate the
SE of the estimated parameters. Multilevel models are often
used with random effects to estimate the predictor effects for
patients in specific clusters. Our results indicate a greater
tendency to use multilevel regression (43/414, 10.4%) than GEE
(26/414, 6.3%) in clustered data modeling studies. Only afew
(8/414, 1.9%) studies analyzed cost-effectiveness. Regarding
the specific models used in the multivariate modeling studies,
logistic regression (249/414, 60.1%), Cox proportional hazards
regression (87/414, 21%), and linear regression (57/414, 13.8%)
were the most used.

Diseases and Outcomes

We investigated the percentage of each outcome measured for
different diseases. As shown in Figure 3, most (10/14, 71%)
studies on eye diseases have focused on ng their treatment
patterns. Similarly, a number of studies on mental disorders
(21/38, 55%), musculoskeletal diseases (21/42, 50%), and
respiratory tract diseases (11/27, 40%) have also focused on
assessing treatment patterns. Among the studies on hemic and
lymphatic diseases, mortality accounted for the highest
percentage (10/16, 63%), whereasfew studies assessed adverse
events. Furthermore, mortality has not been assessed in studies
of mental disorders, eye diseases, and skin and connectivetissue
diseases. In addition, no study has assessed hospitalization or
hospital stay in musculoskeletal, eye, and skin and connective
tissue diseases.

JMIR Med Inform 2023 | vol. 11 | e39876 | p.43
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

Figure 3. Percentages of outcomes in each disease.
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Statistical Methods and Outcomes

We also calculated the percentages of statistical methods used
to assess different outcomes. Figure 4A shows the percentages
of the 3 types of dtatistical analyses used for each outcome;
Figure 4B shows the percentages of multivariate modeling
studiesfor different purposesfor assessing these outcomes, and
Figure 4C shows the percentage of each detailed multivariate
model used for these outcomes. M ultivariate modeling was used
most frequently to assess mortality (116/137, 84.7%). Although
the treatment patterns were the most assessed by the target
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XSL-FO

RenderX

studies (n=218), not many of them used multivariate modeling
(97/218, 44.5%). Figure 4B indicates that almost all outcomes
were measured with confounding adjustments. As shown in
Figure 4C, logistic regression was the first choice for assessing
mortality (96/116, 82.8%), physiological or clinical outcomes
(60/110, 54.5%), treatment patterns (56/97, 58%), and guideline
adherence (17/19, 90%). Theresults al so suggest the use of Cox
proportional hazards regression to assess these outcomes. In
contrast, linear regression was the most commonly used model
for assessing hospitalization or hospital stay (31/74, 42%) and
resource use or costs (28/66, 42%).
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Figure 4. (A) Percentages of statistical analysis types for each outcome, (B) modeling purposes for each outcome, and (C) specific models for each

outcome. GLM: generalized linear model.
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Discussion

Principal Findings

A comprehensive narrative literature review was conducted to
understand the secondary use of nationwide claimsdata, EMRs
data, and EHRs data in clinical epidemiology in Japan. On the
basis of the search strategy and eligibility criteria, atotal of 620
eligible articleswere identified from PubM ed between January
1, 2006, and June 30, 2021 (the date of search).

We quantified 7 categories of key information from these 620
eligible articles. The main findings were that (1) most of the
research has been done by academic institutions, whereas
nonacademic institutions tend to collaborate with academic
ingtitutions; (2) the cohort study was the major design that
longitudinally measured outcomes of proper patients; (3) most
studies used claims data; (4) the IMDC, DPC database
(MHLW), MDV, and NDB were mostly used, whereas only a
few studies used EMRs or EHRs from a single hospital or
multiple hospitals, which do not have alarge patient popul ation;
(5) the top rank of diseases studied in the current research were
infections, cardiovascular diseases, neoplasms, and nutritional
and metabolic diseases; (6) treatment patterns, physiological or
clinical outcomes, and mortality werethe most assessed in these
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articles;, and (7) multivariate models were commonly used,
during which logistic regression and linear regression were
shown to be the first choice for analyzing categorical variables
and continuous variables, respectively.

The findings on the percentage of outcomes for different
diseases hint at the tendency of existing studies to examine
different diseases. For some common, chronic, and psychiatric
diseases, current studiestended to assesstheir treatment patterns,
whereasfor some sudden onset severe diseases, patient mortality
and hospitalization or hospital stay were assessed more often.
Existing studies have focused more on assessing treatment
modalities, physiological or clinical outcomes, and mortality
when targeting diseases such as infections, cardiovascular
diseases, and neoplasms. Furthermore, although strong trends
were detected between eye diseases and treatment patterns,
hemic and lymphatic diseases versus mortality, and mental
disorders versus mortality (Figure 3), it was difficult to draw
any conclusions that reflect clinical importance because of the
small sample size. However, these results indicated different
distributions of outcomes measured in different diseases, from
which we can learn the focus and shortcomings of the existing
studies. In addition, the total number of studies measuring
guideline adherence was relatively small (n=32). During this
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period, 63% (20/32) of the studies were conducted on
“cardiovascular diseases’ and “nutritional and metabolic
diseases” These results also revealed arelative lack of studies
measuring guideline adherence in infections. We expect that
RWD research on guideline adherence would receive more
attention in future.

The percentage of databases used for different diseasesimplied
the selection of databases for observing different diseases. The
IMDC databases and DPC database (MHLW) showed opposite
use trends in diseases, especially nutritional and metabolic
diseases, muscul oskel etal diseases, mental disorders, hemic and
lymphatic diseases, eye diseases, and skin diseases.

According to the investigation of statistical methods used to
assess different outcomes, multivariate models were the most
commonly used in assessing mortality. Regardless of the
outcome, multivariate modeling was accompanied by
adjustments for various confounders (Figure 4B). Mortality,
hospitalization or hospital stay, and resource use or costs have
been analyzed using multilevel models or marginal models (eg,
GEE) more than others. This implies that hospital-related
outcomes tended to be assessed by models that took clustering
into account. Logistic regression was the first choice for
measuring many of the outcomes, with the exception of
hospitalization or hospital stay and resource use or costs, for
which linear regression was commonly used. Cox proportional
hazards regression was suggested as the second choice when
assessing mortality, physiological or clinical outcomes, and
treatment patterns. Although the PS technique has been proven
effective in balancing confounders between groups, it has not
been widely used in existing studies. There is a relative
preference for this technique in studies assessing mortality.

Comparison With Prior Work

In this subsection, we compare thisreview with 2 similar studies
[27,28]. Hirose et a [27] conducted a narrative review of 68
studies on the secondary use of claims data in a specific
database, NDB, from October 2016 to June 2019. They
summarized 5 key piecesof information, including study design,
research area, setting or sample, outcomes, and strengths and
limitations. Subsequently, Fujinagaand Fukuoka[28] conducted
asimilar narrative review of 643 studies on the secondary use
of claims datain 4 large-scale domestic databases. NDB, DPC
database (MHLW), JIMDC, and MDYV, from January 2015 to
October 2020, from which 3 categories of research type, design,
and area were analyzed descriptively. Both studies used a
classification of the journals in which the target articles were
published to extract information about the research area [29].
These classifications mixed disciplinary categories, such as
clinical medicine, pharmacology and pharmacy, pharmacol ogy
and toxicology, and immunology; disease categories, such as
infectious diseases; and genera categories, such as social
sciences and public environmental health. In addition, only the
primary outcomeswere analyzed in these 2 studies. Asaresult,
the distribution of articlesin each category was summarized in
these studies.

Because of the partial overlap in search periods, aswell asthe
fact that PubMed was used for the search, there were some
articles that were reviewed in both this study and these 2 prior
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studies. In contrast to these 2 studies, which used 1 or more
specific claim databases without specifying aresearch area, our
review investigated domestic epidemiological studies based on
the secondary use of 3typesof RWD: claims, EMRSs, and EHRs.
A further difference is that we defined 7 categories for data
collection to assess the status and trends of the existing studies.
One of the novelties is that we classified the outcomes with
reference to the paper by Abaho et a [24] paper and collected
information on all the outcomes measured in the target articles.
The advantage of this classification is that these outcomes are
also applicableto clinical trial studiesand can be automatically
identified from biomedical articles [24]. Another innovative
point isthat we proposed ahierarchical approachto classify the
statistical methods that appear in the target articles. For the
results of the data collection, we summarized the distribution
of the target articles in each category. Additional comparative
analyses were performed for diseases versus outcomes (Figure
3), outcomes versus statistical methods (Figure 4), and diseases
versus databases (Multimedia Appendix 5), which revealed
trends in the assessment of outcomes across different diseases,
trends of statistical methods used for different outcomes, and
trends in database selection when analyzing different diseases.
Moreover, our findings shed light on the focus and shortcomings
of previous studies.

In addition, we identified several other review studies on the
secondary use of RWD data[30-32]. The paper by Ferver et al
[30] provided a narrative review of 1956 claims-based studies
in 5 health care journals from 2000 to 2005 by summarizing
the research types and areas. The paper by Hutchings et a [31]
provided a systematic literature review of 18 studies to
investigate the attitudes of relevant practitioners toward the
secondary use and sharing of health administrative and clinical
trial data. Schlegel et a [32] conducted a literature review of
941 studies on the secondary use of health care datain 2016 to
select the best performing articles. We summarized these
additional studies to understand other investigations on the
secondary use of RWD data. Comparisons were not made
because of the survey years or different research purposes.

Limitations

The first limitation of this review is that we only searched the
literature in PubMed, which may have led to significant
publication bias. Second, we only investigated studies conducted
in Japan. In the future, a comparison of studies from other
countries, such as the United States, will be necessary to
understand the Japan-specific trends of such studies. In addition,
searches of multiple electronic databases should be considered
to reduce potential publication bias.

Future Directions

In this subsection, we discuss the future perspectives for the
useof claims, EMRs, and EHRsin epidemiology in the Japanese
context, in terms of the findings of thislarge narrative literature
review.

Organization

Regarding collaborative aspects, with strong national promotion
for RWD use and high level of interest from health care firms,
collaborative research, involving multiple stakeholders and
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academic researchers, is seen to be necessary to leverage
academic results and accelerate clinical applications.

RWD Type

Notably, only a few studies have used EHRs. EHRs have not
been widespread in Japan because of the high cost of
implementation and the difficulties in bridging different EHR
service vendors. With the promotion of “cloud-based EHR”
development by the Japanese Ministry of Internal Affairs and
Communications, EHRs are expected to become widely used
in the future.

Disease

With regard to the disease trend detected in this review, we
made a rough comparison with worldwide trends. As we did
not find a quantitative survey of RWD research on different
diseases, the worldwide trend was roughly estimated by counting
the number of related publications for different diseases. We
focused on the top-ranked disease areasidentified in thisreview,
including infections, cardiovascular diseases, and neoplasms.
The number of publications for these diseases was obtained by
searching for electronic databases, such as PubMed or PubMed
Central with search keywords: combinations of “claims,”
“EHR,” “EMR,” to “infection,” “cardiovascular disease,” and
“cancer” We retrieved 18,847 publications on cancer, 7517
publications on infections, and 6624 publications on
cardiovascular diseases from PubMed. The same trend was
detected in PubMed Central. According to these counts, we
estimated that the worldwide trend of the disease examined in
existing studies was cancer. In contrast, our results revealed a
Japan-specific trend in the studies on infections.

It isimportant to note that the above counts may be subject to
bias because we have not designed any eligibility criteria for
the precise search of related publications worldwide. In the

Zhao & Tsubota

future, it will be necessary to compare relevant studies with
those of other countriesto clarify the Japan-specific status and
challenges.

Statistical Method

On the basis of the statistical skills used in the eligible articles,
we summarized the appropriate stati stical methods for use under
different conditions. First, to design simple statistical analyses,
our findings suggest using Fisher’'sexact tests or chi-square test
to compare categorical variables, and 2-tailed t test, ANOVA,
and Mann-Whitney U test were used to compare continuous
variables [33-36]. To evaluate variable change trends, the
Cochran-Armitage test was used for categorical variables,
whereas the Jonckheere-Terpstra test was used for continuous
variables [37].

Suggestions for statistical methods to measure different
outcomes are summarized in Table 3. For confounding
adjustment, there are 2 methods: covariate adjustment and PS
analysis. PS analysisis known to be an effective technique for
balancing the patient backgrounds between the 2 groups across
al putative risk factors or confounders [38-40]. However,
referring to the study by Elze et a [41] that PS analysisis not
necessarily superior to conventional covariate adjustment, we
suggest selecting PS analysis with caution for confounder
adjustment. Our findings also demonstrated that most existing
studies used covariate adjustment (n=279) rather than PS
analysis (n=96; Multimedia Appendix 4). In addition,
hospital-based medical data are frequently clustered within
medical centers or physicians. For instance, patients treated in
a particular hospital may be more alike than those treated in
another hospital because of differences in treatment policies.
To model such clustered data, multilevel models with random
effects have been suggested for use in estimating predictor
effects for patientsin specific clusters[42,43].

Table 3. Suggestions of statistical methods for measuring different outcomes.

Outcome Method recommendation
Treatment patterns Logistic regression, Cox proportional hazards regression

Physiological or clinical
Mortality

Hospitalization or hospital stay Linear regression, GLM?

Adverse events
Resource use or costs Linear regression, GLM
Guideline adherence Logistic regression

Quality indicators Logistic regression

Logistic regression, Cox proportional hazards regression

Kaplan-Meier analysis, log-rank test, logistic regression, Cox proportional hazards regression

Logistic regression, Cox proportional hazards regression

8GLM: generalized linear model.

In contrast, there were few studies on predictive machine
learning modelsin this review (n=3; Multimedia Appendix 4).
However, we roughly retrieved 2223 publications worldwide
on PubMed by searching for the keywords of “claims,” “EHR,”
“EMR,;” and “machine learning.” Notably, we did not design
any eligibility criteriafor this study. The large differencein the
number of articlesindicatesthat epidemiological research based
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on claims, EMRs, and EHRsin Japan is backward in the use of
artificial intelligence techniques.

Conclusions

This literature review provides a good understanding of the
current status and trendsin the use of claims, EMRs, and EHRs
in clinical epidemiology in Japan. The results demonstrated
appropriate statistical methods regarding different outcomes,
Japan-specific trend of disease areas, and lack of use of artificial
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intelligence techniques in existing studies. We hope that the precise comparison of relevant domestic research with
results of this narrative review will provide useful information  worldwide research will be conducted to clarify the
for researchersto design relevant studies. In the future, amore  Japan-specific status and challenges.
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Abstract

Background: Over the past 2 decades, various desktop and mobile telemedicine systems have been developed to support
communication and care coordination among distributed medical teams. However, in the hands-busy care environment, such
technologies could become cumbersome because they require medical professionals to manually operate them. Smart glasses
have been gaining momentum because of their advantages in enabling hands-free operation and see-what-I-see video-based
consultation. Previous research has tested this novel technology in different health care settings.

Objective: The aim of this study was to review how smart glasses were designed, used, and evaluated as a telemedicine tool to
support distributed care coordination and communication, as well as highlight the potential benefits and limitations regarding
medical professionals’ use of smart glassesin practice.

Methods: We conducted a literature search in 6 databases that cover research within both health care and computer science
domains. We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodol ogy to review
articles. A total of 5865 articles were retrieved and screened by 3 researchers, with 21 (0.36%) articles included for in-depth
analysis.

Results: All of thereviewed articles (21/21, 100%) used off-the-shelf smart glass device and videoconferencing software, which
had a high level of technology readiness for real-world use and deployment in care settings. The common system features used
and evaluated in these studies included video and audio streaming, annotation, augmented reality, and hands-free interactions.
These studies focused on evaluating the technical feasibility, effectiveness, and user experience of smart glasses. Although the
smart glass technology has demonstrated numerous benefits and high levels of user acceptance, the reviewed studies noted a
variety of barriers to successful adoption of this novel technology in actual care settings, including technical limitations, human
factors and ergonomics, privacy and security issues, and organizational challenges.

Conclusions: User-centered system design, improved hardware performance, and software reliability are needed to realize the
potential of smart glasses. More research is needed to examine and evaluate medical professionals needs, preferences, and
perceptions, as well as elucidate how smart glasses affect the clinical workflow in complex care environments. Our findings
inform the design, implementation, and evaluation of smart glasses that will improve organizational and patient outcomes.

(JMIR Med Inform 2023;11:e44161) doi:10.2196/44161
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smart glass; care coordination; telemedicine; distributed teamwork; mobile phone

https://medinform.jmir.org/2023/1/e44161 JMIR Med Inform 2023 | vol. 11 | e44161 | p.52
(page number not for citation purposes)


mailto:zzhang@pace.edu
http://dx.doi.org/10.2196/44161
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

Introduction

Background

Effective and timely care coordination and communication are
critical components of efficient and safe patient care [1,2].
Failurein providing coordinated care and communicating patient
datais seen as one of the root causes of adverse events such as
delays in patient care and deviations from standard medical
procedures [3]. The challenges in maintaining effective care
coordination and communication are exacerbated when care
providers are distributed (eg, located in different places) [4,5].
Over the past 2 decades, many telemedicine systems have been
developed to augment remote clinical consults [6-8]. During
the COVID-19 pandemic, the need for such systems became
more obvious. Most telemedicine systems are implemented on
desktops or tablet devices [6,7]. However, these devices have
practical limitations: (1) desktop systems have limited portability
because they are installed in a fixed location; and (2) tablet
device-based systems rely on manual input and control, which

Zhang et a

can hinder usability [9,10]. Theseissues could result in limited
use of technology in real time, especially during complex care
environments and time-critical patient scenarios because they
demand the full cognitive attention and physical involvement
of care providers[11].

In recent years, the use of smart glasses—a computing device
worn as a conventional pair of glasses (Figure 1)—has been
gaining momentum in health care because they alow for
real-timevisual communication in ahands-free manner [12,13].
In particular, smart glasses can present both imagery and textual
information within the wearer’s field of view (FOV) through a
prism and enable videoconferencing for consults or second
opinions via a front-facing camera. Since the introduction of
smart glasses to the market, researchers have explored their
applicability and usefulness in various medical settings and
clinical scenarios[9], such asbroadcasting surgeriesto facilitate
resident teaching [14], recording encounters with patients in
wound care[15,16], ng patientsin mass casualty incidents
[17], and supporting communication between prehospital and
hospital providers[18,19].

Figurel. Examples of smart glasses with various hardware components labeled. (A) Google Glass. (B) Vuzix M400.
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Asthereisagrowing interest in using smart glasses to support
care coordination and communication across distributed care
providers[9,11,20], the aim of this study was to synthesize the
knowledge and experiencesin thisarea, understand the benefits
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and limitations regarding adopting smart glasses as a
telemedicine tool, and inform the design of future smart glass
applications to better support remote care coordination. We
focused on the use of smart glasses in care coordination in
variousclinical settings (eg, surgical operation, emergency care,
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and intensive care unit). Our specific research questions were
asfollows:

1 What are the general characteristics of prior research on
using smart glasses for care coordination?

2. How was the system designed, used, integrated, and
evaluated in supporting communication and care
coordination across distributed care providers?

3. What types of chalenges were identified by medical
providers while they were using or testing the smart glass
technology in practice?

These research questions were answered through a systematic
literature review covering research within both health care and
computer science fields.

Our work contributes the following to the medical informatics
community: (1) an in-depth analysis and synthesis of prior
research on the use of smart glasses for care coordination and
communication; and (2) methodol ogical and designimplications
for future research on smart glasses to improve distributed care
coordination and communication.

Textbox 1. Keywords for literature search.

Zhang et a

Methods

Data Search

Our search started with discussing the search time frame and
the most appropriate databases to use as well as search terms
with experienced librarians. Using technology keywords such
as “smart glasses’ and “heads-up display,” along with health
care keywords such as “distributed care” and “telemedicine,”
a hedlth librarian performed database searches for articles
published between January 1, 2000, and March 1, 2022. We
chose this time frame to capture the evolvement of this
technology (ie, from early concepts such as head-worn displays
[21] to smart glasses, which became awell-known concept after
theintroduction of Google Glassin 2013 [22]). The full list of
search termsis presented in Textbox 1. We chose the following
databasesto cover research within both health care and computer
science: ACM Digital Library, CochraneLibrary, IEEE Xplore,
Ovid MEDLINE, Embase, and Web of Science. A sample search
strategy for Ovid MEDLINE is illustrated in Textbox 2. The
database searches were set to include only studies published in
peer-reviewed journals and conference proceedingsin English.
Literature reviews, dissertations, posters, and extended abstracts
were excluded from the literature search. Theretrieved citations
were stored and managed using EndNote bibliographic
management software (version X9; Clarivate).

Sear ch concepts and specific keywords

« Smart glass: smart glass, augmented reality glasses, heads-up display, head-mounted, head-worn, virtual reality, augmented reality, mixed

reality, wearable technology, Google Glass, Vuzix, Epson Moverio

« Clinicd: distributed care, remote care, telehealth, telemedicine, telecare, emergency care, pre-hospital

Textbox 2. A sample search strategy for MEDLINE.

Search steps

1. (“distributed healthcare” or “distributed care” or “remote care’ or tele* or nursing or “long term care” or “home health” or “home care” or
prehospital or pre-hospital or “emergency medical” or “emergency care” or paramedic* or ((clinical or surg*) adj3 (application* or use* or
implementation*))).ti,ab,kf. or exp Telemedicine/ or exp Home Care Services/ or exp Emergency Medical Services/

2. ((smart adj1 glass*) or smartglass* or Hololens or picolinker or (google adj1 glass*) or vuzix or “epson moverio” or “augmented reality” or (AR
and augmented) or “mixed redlity” or “virtua reality” or (VR and virtual) or “wearabletechnology” or wearablesor “headsup” or “head mounted”

or “head worn”).ti,ab,kf. or wearable electronic devices/ or smart glasses/ or augmented reality/ or virtual reality/

Steps 1 and 2
Limit step 3 to (english language and yr="2000-Current”)

o oo~ W

Step 4 not step 5

(training* or education* or smulation* or telephon* or teleconferenc* or television*).ti. or exp *education/ or *telephone/ or *television/

Article Screening and Selection

Weused the PRISMA (Preferred Reporting Itemsfor Systematic
Reviews and Meta-Analyses) methodol ogy to search and screen
articles[23]. Figure 2 outlines the number of records that were
identified, included, and excluded through different phases.
More specifically, 5865 articleswere identified through database
searches, of which 5862 (99.95%) were included for screening

https://medinform.jmir.org/2023/1/e44161

after removing duplicates. Article titles were screened first,
followed by abstract screening, to identify relevant articles. Of
the 5862 articles, after screening of article titles, we excluded
5341 (91.11%); of theremaining 521 studies, 446 (85.6%), were
excluded, leaving 75 (14.4%) for full-text review. After
reviewing thefull text of these 75 articles, we deemed 21 (28%)
to be eligible for this systematic review.
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Figure 2. Information source and search strategy.
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Three authors (EB, KJ, and PG) independently screened all
papers through the paper stack and selected relevant papers for
inclusion. Two senior researchers (ZZ and MO) oversaw the
whole article review and selection process. Any conflicts in
sel ection decisionswere resol ved through discussion among all
the authors during weekly group research meetings. The
inclusion criteria were peer-reviewed articles that reported the
use or testing of any smart glass technology and accompanying
software in the context of communication and collaboration
across distributed care providers. Articleswere excluded if they
only reported the use of smart glasses by an individua or in a
collocated clinical setting or if they did not provide adequate
supporting information, such aswhat clinical setting the smart
glasses were used in and who used the technol ogy.

Data Extraction, Analysis, and Synthesis

Guided by the research questions of this study, 2 authors (KJ
and EB) used a Microsoft Excel spreadsheet to extract, collate,
and summarize data from the included studies, such as the
country where the study was conducted, study objectives and
scope, clinical scenarios, system eval uation methods, technology
specifics, barriers and challenges, and a summary of study
findings. Textbox 3 summarizes these datafields and their brief
definitions. In addition to extracting the aforementioned

https://medinform.jmir.org/2023/1/e44161
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metadata, we also assessed the technology readiness levels
(TRLSs) [24] of the systemstested in the reviewed studies. There
are9different TRLs, ranging from level 1 (scientific knowledge
generated underpinning hardware and software technology) to
level 9 (actua system “flight proven” through successful mission
operations). Two authors (KJ and EB) followed the metrics
proposed in the study by Engel et a [25] and independently
assessed TRLs for each system. They then compared and
discussed their TRL evaluations until they reached agreement.

Two senior researchers (ZZ and MO) reviewed all the articles
and analyses as a verification step. The research team met
regularly to discussthe results. We performed the dataanalysis
iteratively (ie, we went back and forth as more knowledge was
obtained), as suggested by prior work [11,26]. A meta-analysis
of the study results was not considered in this work owing to
the heterogeneity of the study designs and results.

In the following section, we report information that was
synthesized from the reviewed articles, including characteristics
of the selected studies, system architecture and features, TRLs
of the reviewed systems, system evaluation methods, and care
providers perceived benefits and challenges of using and
adopting smart glasses for distributed care coordination.
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Textbox 3. Assessed article information and metadata.

Zhang et a

Assessed information and brief definition

«  Study objectives and scope: the objective of the research and the purpose and scope of the use and test of smart glasses in each study (eg, patient

care vs medical training)

«  Clinica scenarios: the clinical domain and context in which the study was conducted

« Publication details: the type (eg, journal article vs conference paper), region, and year of the publication

. Systeminfrastructure: the hardware, software, and network setup on both local and remote sites for establishing teleconsultation

«  System features: the system features used, developed, or evaluated in each study

«  System evaluation: the aspects of the smart glass system that were evaluated in the study and the methods used for system evaluation

« Benefitsand challenges: the reported benefits and challenges of using smart glasses in improving communication and care coordination among

distributed medical teams

o Mgjor study findings: asummary of the major findings of a study

Results

General Characteristics of the Reviewed Studies

Of the 21 reviewed articles, 10 (48%) were conducted in the
United States [18,19,27-34], and 2 (10%) were conducted for
surgical teleproctoring between high-income countries and low-
and middle-income countries (LMICs), such as between
surgeonsin the United States and M ozambique[35] and between
experienced surgeons recruited from the United States and
Germany and novice surgeonsin Brazil and Paraguay [36]. The
remaining studies (9/21, 43%) were conducted in different
countries, such as Spain [37], China[38], Germany [39], France
[40Q], Italy [41], Switzerland [42], Maaysia [43], South Korea
[44], and Republic of the Congo [45]. The reviewed studies
were conducted to assessthe feasibility, effectiveness, and user
experience of smart glasses in supporting remote patient
evaluation and care procedure operation in a particular medical
domain. The study objectives, along with major findings for
each reviewed article, are presented in Multimedia Appendix
1[18,19,27-45].

The clinical foci in these 21 papers vary: 9 (43%) focused on
surgical settings[29,30,33-38,44], whereas 6 (29%) focused on
the prehospital or emergency medical services domain
[18,19,28,31,39,42]. Theremaining studies (6/21, 29%) focused
onintensive care[40,43], toxicology [27], ophthalmology [32],
pediatric cardiology [41], and general medicine [45].

The scope and purpose of the use of smart glasses among these
studies vary. As shown in Figure 3A, the magjority of the
reviewed studies (16/21, 76%) used smart glasses to enable
remote patient care and evaluation [18,19,27,28,30-32,37-45].
Of these 16 studies, 8 (50%) [27,28,30,32,37,38,43,45] tested
smart glasses with real patients, 6 (38%) [18,19,31,39,40,44]
conducted system testing in a simulated environment, and 2
(13%) [41,42] did not specify how the device was tested. The
remaining studies (5/21, 24%) [29,33-36] leveraged smart
glasses for training and teleproctoring purposes; of these 5
studies, 4 (80%) [29,34-36] tested the device with real patients,
whereas 1 (20%) [33] tested the device in a simulated
environment.

The reviewed articles were published between 2014 and 2021
(Figure 3B). It is noticeable that ailmost half of the reviewed
articles (9/21, 43%) were published within the first 3 years of
the release of Google Glass [22]. Subsequently, the number of
studies on the use of smart glasses for supporting distributed
care decreased until 2021. One possible explanation for this
finding is that the use of smart glasses regained momentum
right after the outbreak of the COVID-19 pandemic as
researchers started exploring smart glass use to enable medical
personnel to participate in remote assessment and consultation,
with the aim of safeguarding patients and health care providers
during the pandemic.

Figure 3. (A) The scope and testing environment of smart glassesin the reviewed articles. (B) The distribution of reviewed articles over the years.
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System Architecture

Although the system architecture implemented in each study
varied, therewere some similarities acrossthe reviewed studies.
Typicaly, there are two types of technology setups on the local
site: (1) smart glasses are connected to a Wi-Fi network, aWi-Fi
hotspot, or a mobile router to directly stream the first-person
point-of-view to a remote consultant (Figure 4A); or (2) smart
glasses are connected to asmartphone or alaptop viaBluetooth
or Wi-Fi for video streaming and audio transmission (Figure
4B). The first approach was adopted by 52% (11/21) of the
studies [19,27,28,31,32,36,38,39,41,43,44], and the second
approach was wused in 33% (7/21) of the studies

Zhang et a

[18,29,35,37,40,42,45]; for example, in the study by Diaka et
al [45], the smart glasses were designed as an extension of a
smartphone, which meant that the local wearer needed toinitiate
the call on the smartphone. Regardless of the system
implementation method on the local site, the remote experts
wereusually equipped with either acomputer or amobile device
(eg, atablet device) to review and access the video stream and
other multimedia data shared by the local medical practitioner
(Figure 4). However, it is worth mentioning that in the study
by Brewer et al [33], where smart glasseswere used for surgical
training, the remote expert (trainer) also wore a pair of smart
glasses to view the video streamed from the learner.

Figure 4. Common system architecture setups in the reviewed studies. (A) Smart glasses connected to a Wi-Fi network, a Wi-Fi hotspot, or a mobile

router. (B) Smart glasses connected to a smartphone via Bluetooth or Wi-Fi.
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Asshown in Figure 5A, the reported brands of smart glassesin
these studies included Google Glass
[18,19,27-30,33-36,40,42,44], Vuzix [38,43], Iristick [37,45],
Pivothead Original Series[32], Intel Recon Jet [31], and Epson
Moverio BT-200 [41]. Google Glass was the most frequently
used smart glass device (13/20, 65%). Another interesting
observation is that all of the studies (21/21, 100%) used
off-the-shelf, commercialized videoconferencing software
(Figure 5B) such as Pristine Eyesight [19,27], AMA XpertEye

Mobile Device
Network

—-
—

[28,35], Livestream [18,36], WebRTC (enabled by Google)
[42,44], Livecast Media [38], Skype [29], CrowdOptic [33],
Google Hangout [34], and Polycom Real Presence Group 500
[32]. Most of the videoconferencing software used was
compliant with the Heath Insurance Portability and
Accountability Act (HIPAA) rules, except in the case of the
study by Cicero et a [18], wherethe researchers only tested the
use of smart glasses in a simulated environment (real patient
care was hot involved).

Figure5. (A) Smart glass brands used in the reviewed articles. (B) Videoconferencing tools used in the reviewed articles.
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System Features

Although there was variation in the application scopes and
domains, there were some common software features acrossthe
reviewed studies (Textbox 4). Real-time synchronous video and
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audio streaming from thelocal smart glasswearer to theremote
consultant isthe most common feature among the studies (19/21,
90%). In the case of the exceptions (2/21, 10%), because of
technical limitations (eg, limited internet connection), the study
by Gupta et a [30] first recorded patient care and evaluation

JMIR Med Inform 2023 | vol. 11 | e44161 | p.57
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

using smart glasses and then transmitted the recordingsto remote
experts at a later time to simulate real-time telemedicine
consults, whereas in the study by Hashimoto et a [34],
researchers used Google Glass and an Apple iPhone to capture
videos of a surgical operation and compared the video quality
and its adequacy for safe use in telementoring.

Another noteworthy featureis enabling imagery and text-based
remote guidance and annotation; for example, the remote
consultant can annotate images captured from the live stream
and project them back onto the local glasswearer’svisual field
[35,37]. 1n 19% (4/21) of the studies[19,27,36,44], the remote
consultant could use the texting feature to type messages that
could be projected onto the smart glass display. These annotation
features provide the remote consultant with more channels (in
addition to audio and video) to direct and guide local medical
practitionersto perform critical procedures.

Augmented reality (AR)—a technique that can enhance an
individual’s visual experience of the real world through the

Zhang et a

integration of digital visual el ements—was also tested in several
studies. In Ponce et a [29], for example, AR enabled aremote
surgeon to insert their hands or instruments virtually into the
visual field of the local surgeon who wore smart glasses for
real-time guidance, training, and assistance as needed. |n another
study [41], aremote specialist used AR-based markersto guide
the execution of an echocardiographic examination performed
by alocal operator. The markerswere overlaid on the ultrasound
device and could be seen through the screen of the local
operator's smart glasses.

Other features of smart glasses reported in the studiesincluded
zooming in and out of the live stream video [35]; using voice
commands [27,28,30,31] or head movements [27] to control,
and interact with, the smart glass device; taking photographs
[19,30,31,35]; automatically detecting the geographic location
of on-site medical teams with the built-in GPS [31]; and
presenting prehospital triage algorithm on the glass screen for
decision support during mass casualty incidents [39].

Textbox 4. Summary of smart glass features as described in the reviewed studies.

System features

« Record and forward video recordings [30]

o  Augmented reality [29,41]
«  Zooming in and out of the live stream video [35]
o  Hands-freeinteraction with smart glasses[27,28,30,31]

«  Taking photographs[19,30,31,35]

«  Real-time synchronous video and audio streaming [18,19,27-29,32-38,40-45]

« Imagery and text-based remote guidance and annotation [19,27,35-37,44]

«  GPS-based tracking of the geographic location of on-site medical teams [31]
«  Presenting prehospital triage algorithm on the glass screen for decision support [39]

TRLs of the Systems Tested in the Reviewed Studies

On the basis of our analysis, we found that the TRLs of all the
systems used or tested in the reviewed studies ranged between

7 and 9. Our TRL assessment for each system is visualized in
Figure 6 [18,19,27-45]. The reasoning for our assessment is
summarized in Multimedia Appendix 2 [18,19,27-45].

Figure 6. Diagram of technology readiness levels (TRLS) for the systems reported in the reviewed studies [18,19,27-45].

[18,34,40-42]

TRL 7

TRL 8

(45]

TRL 9

[19,27-33,35-39,43,44]

https://medinform.jmir.org/2023/1/e44161

RenderX

JMIR Med Inform 2023 | vol. 11 | e44161 | p.58
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

The systemsin 24% (5/21) of the studies [18,34,40-42] have a
TRL of 7, which indicates that the technology isin the form of
ahigh-fidelity prototype and has all key functionality available
for demonstration and test; for example, in the study by Widmer
and Miller [42], the Google Glass device on the local site was
set up to connect with acomputer application ontheremote site
for teleconsultation. This integrated system was only
preliminarily tested by the research team but not in asimulated
or real environment (acriterion for TRL 8); thus, its TRL was
set to 7. It isworth mentioning that of these 5 studies, 3 (60%)
[18,40,41] tested smart glassesin simulated scenarios; however,
there were several reasons for their failure to meet the criteria
for  TRL 8, such as wusing non-HIPAA-compliant
videoconferencing software, testing the technology with only
1 volunteer, or not fully integrating smart glasses with the
network and remote devices.

Themajority of the studies (15/21, 71%) [19,27-33,35-39,43,44]
tested or used systemsthat met the criteriafor TRL 8, indicating
that they are actual systemsin their final configuration and have
been fully developed and tested in either simulated or real
operational scenarios. However, these studies provided limited
information regarding some criteriafor TRL 9, such aswhether
the system had been fully integrated with other operational

Table 1. Summary of system evaluation details.
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hardware and software systems (eg, database and hospital 1T
infrastructure), whether all system documentation had been
completed, whether training on system use was available, and
whether engineering support team was in place. Without such
information, it isdifficult to assessthe readiness of these systems
for large-scale depl oyment.

In comparison, only the system in the study by Diaka et a [45]
was assessed to have a TRL of 9 because the system had been
successfully operated on actual missions and tasks in the
operationa environment for a relatively long time (ie, more
than ayear). Furthermore, the system wasfully integrated with
other operational software, hardware, and network devices, as
well ascare delivery services (eg, moto-ambulancesto facilitate
patient referrals after tel econsultation).

System Evaluations

Overview

The reviewed studies evaluated different dimensions of the
smart glass system, including technical feasibility, effectiveness,
and user experience. The details regarding the aspects of the
smart glass system that were evaluated aswell asthe evaluation
methods used in the reviewed studies are summarized in Table
1 and then elaborated on in the following sections.

Evaluated dimensions Specific evaluated aspects Evaluation methods
Technical feasibility o Successrate of established video teleconsultations  «  Researchers’ observations of the successfulness of
[27,34-36,44] between local and remote medical practitioners[27,36] teleconsultations [27,36]
«  Whether thequality of video and audio streamingwas «  Questionnaire [27,34-36,44]
good enough for enabling video streaming [34-36,44]
Effectiveness «  Compared with in-person patient evaluation, whether «  Comparison study between control (without smart
[18,19,27,28,30-33,36,39,40,43] the use of smart glasses could achieve similar perfor- glass support) and treatment (with smart glass sup-
mance and accuracy regarding patient evaluation and port) groups [18,19,28,32,39,40,43]
diagnosis[19,28,32,43] o Questionnaire [33]
«  Compared with either mobile phone-based or nore- «  Exit interview [36]
mote patient consultation, whether the use of smart
glasses could lead to changesin clinical management
and remote consultant’s confidence regarding diagno-
sis[18,27,30,39,40]
«  Whether the use of smart glasses could improve
medical training (eg, surgical operation) [33,36]
User experience «  Usability of smart glasses[19] «  Survey[18,19,27,29-31,35,38-40,43,44]

[18,19,27,29-31,35,37-41,43-45] »

Opinions regarding using and adopting smart glasses

Interviews and observations [18,31,35,45]

in practice [18,27,30,31,35,37-41,43-45]

Technical Feasibility

Several studies assessed whether the smart glass technology
was a practical means to support care coordination and
communication in different contexts, such as teletoxicology
consults [27] and remote surgical teleproctoring [34-36,44].
The main measurementsincluded the successrate of established
video teleconsultations between local and remote medical
practitioners and whether the quality of video streaming was
acceptable and good enough to allow for real-time, seamless
guidance and assistance. Thetechnical feasibility wasprimarily
determined by the researchers’ observations and the users
ratings viaquestionnaire; for example, in astudy evaluating the
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feasibility and acceptability of Google Glass for teletoxicology
consults [27], questionnaires were administered immediately
after the study to elicit remote consultants’ opinions regarding
whether consults through smart glasses were considered
successful and the technical feasibility of using smart glasses
for teleconsultation.

Effectiveness

Of the 21 reviewed studies, 10 (48%) eval uated the effectiveness
of smart glasses, that is, whether this novel technology could
improve patient care and decision-making compared with current
approaches (eg, no remote consultation, in-person patient
evaluation, or consultation via  telephone)
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[18,19,27,28,30,32,33,39,40,43]; for example, in some settings
where remote consultations were usually accomplished via
telephone or radio, which typically do not support visua
communications [27,30], researchers compared using such
traditional communication mechanismswith using smart glasses
to determine whether the use of smart glasses could lead to
changes in clinical management and the remote consultant’s
confidence regarding diagnosis.

Of these 10 studies, 7 (70%) [18,19,28,32,39,40,43] conducted
an experiment with a control group (no smart glasses and either
in-person consultation or no remote consultation at al) and an
intervention group (with smart glasses) to measure whether
using smart glasses could increase the quality and accuracy of
patient diagnosis while reducing the time needed to perform
patient care; for example, in the scenario of patient triage during
mass casualty incidents [19], researchers asked 2 emergency
medicine (EM) physicians (control group) to make triage
decisions after examining the simulated patients in person as 2
other EM physicians (intervention group) simultaneously
evaluated the same group of patients viareal -time point-of-view
video stream from a paramedic wearing Google Glass. They
then used the agreement within and among the groups of EM
physicians on the need for immediate trauma evaluation to
determine the effectiveness of smart glasses for supporting
patient triage.

User Experience

Of the 21 studies, 15 (71%) examined end users experience
and perceptions to some extent with regard to using smart
glasses in their work [18,19,27,29-31,35,37-41,43-45]. The
primary methodology used for eliciting user experience was a
survey, which was adopted by 80% (12/15) of these studies
[18,19,27,29-31,35,38-40,43,44]; for example, in arecent study
[43], asurvey was sent to the participants on completion of the
study to assess acceptance, satisfaction, overall impact, efficacy,
and potential of adopting smart glasses as an aternative method
of teleconsultation in neurosurgery. Among these 12 studies
that administered a survey, 9 (75%) specifically reported the
number of participants, which ranged between 2 and 276. Other
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methods such as interviews and observations were also used to
gather more qualitative, in-depth insights from end users
[18,31,35,45]. In particular, of these 4 studies, 2 (50%) [31,35]
conducted interviews in conjunction with a survey.

It is also worth mentioning that of the 15 studies, 2 (13%)
[19,31] specifically focused on eval uating the usability of smart
glasses, that is, whether smart glass technology is perceived as
easily usable by, and acceptable to, medical professionals.
Another study [30] also examined patient perceptions of medical
providers wearing smart glasses with recording capability.
Finally, of the 15 studies, 5 (33%) [29,37,38,41,42] mentioned
that they collected end users’ opinions and experiences but did
not specify the methods they used.

Benefitsand Challenges of Using and Adopting Smart
Glasses for Teleconsultation

Benefits

Our reviewed work highlights the advantages of smart glasses
in improving communication and care coordination among
distributed medical teams because thistechnology enables|ocal
medical providers to share visua information and perform
teleconsultation in a hands-free manner. Regarding the effects
on clinical care and patient outcome, the studies reported that
smart glasses could shape clinical management and boost remote
consultants confidence in clinica care [27,30], achieve
diagnostic accuracy comparablewith that achieved in in-person
patient examination [19,28,32,43], improve proficiency and
performance of the clinical tasks [31,33,35,38-40], and lower
the medical service cost and improve quality of life for people
inrural areasor LMICs[36,38]. Finally, many studies reported
positive user perceptions, acceptance, and satisfaction with the
use of smart glasses[19,27,29-31,35,38,39,41,43,45].

Notwithstanding these reported benefits, the reviewed studies
also highlight a set of challenges and user concerns regarding
the adoption of smart glassesin practice. We grouped them into
4 main categories: technical challenges, human factors and
ergonomics, privacy and security concerns, and organizational
challenges (Textbox 5).
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Textbox 5. Challenges to using and adopting smart glasses in practice.

Zhang et a

Technical challenges

«  Battery drain becomes higher during video streaming [18,29,39]

«  Themicrophoneis unable to filter out background noise[18,29]

« Image distortion owing to overexposure to room light [18,29,35]
o  Smart glass see-through screen istoo small for easy interaction [41]

« Difficulty controlling video streaming software [18,35,38]

(18]

Human factorsand ergonomics

«  Voice control function could be problematic [18,30]

o Added distractions for medical professionals [31]

Privacy and security concerns

Organizational challenges
« Added workload for medical professionals[39]
«  Costly device and software [35]

«  Unstable or low-bandwidth internet connections [18,19,29,33,35,36,39,44]

«  Screen contrast and readability issuesin bright or dark environments[18]

« Lack of alock function to prevent the possibility of inadvertently halting the video streaming and ability to opt out of frequent software updates

«  Compatibility issues with wearer’s glasses or personal protective equipment [27,29,35,37,39-41]

«  Misalignment between the direction of gaze and range of smart glass camera [29,35,37,40,41,43]

«  Concernsregarding violations of patient privacy and data breach [28-30,43]

«  End users have limited experience with, and prior knowledge of, smart glasses; need extensive equipment and software training [27,37,41,43]

Technical Challenges

The reviewed studies reported avariety of technical challenges
that may impede the effective use of smart glasses in
teleconsultation. These challengesare mainly related to internet
connections, hardware limitations, and software reliability. More
specifically, because smart glasses require a high-speed network
to transmit visual media (eg, video streaming, audio, and
pictures), unstable or low-bandwidth internet connectionswere
seen as a major technical barrier because this issue would
compromise video and audio quality, leading to breakdownsin
communication and loss of patient information
[18,19,29,33,35,36,39,44]. Thisismore evident in low-resource
or out-of-hospital settings where medical practitioners have
limited accessto theinternet; for example, because Wi-Fi isnot
steadily available in the prehospital environment, the problem
with internet connectionswas commonly reported in thisdomain
[18,19,39]. One practical and successful solution used by a
study in prehospital communication [31] was using a mobile
router to provide afault-tolerant network that ran independent
of Wi-Fi and other external networks, allowing for deployment
at any location.

Regarding hardware limitations, medical professionals were
concerned about battery life (eg, the battery could get drained
quickly during video streaming) [18,29,39], microphone
sensibility (eg, not being able to filter out background noise)
[18,29], screen contrast and readability (eg, hard to read the
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screen in extremely bright or dark environment) [18], image
quality (eg, the image could be distorted because of
overexposure to room light) [18,29,35], and small screen for
interaction [33,41,44].

I ssues regarding software were primarily related to controlling
and interacting with the video streaming software; for example,
14% (3/21) of the studies [18,35,38] mentioned difficulties
regarding zooming in or out during video streaming; as such,
the smart glass wearer needs to bring their face close to the
patient. Other software issues included the lack of a lock
function to prevent the possibility of inadvertently halting the
video streaming and the inability to opt out of frequent software
updates [18].

Human Factors and Ergonomics

Many issues related to the interactions between users and the
smart glass system were also reported. First, 38% (8/21) of the
studies [27,29,33,35,37,39-41] highlighted the compatibility
issue with users' spectacles or personal protective equipment.
In particular, fitting the smart glass headset onto surgical loupes
was problematic, interfering with the surgeon’s ability to wear
such devices [35]. Some users had to remove their spectacles
to wear the smart glass headset or tie up their hair to prevent
the glass camerafrom being hidden [40]. Second, the difference
in line of sight—misalignment between what the glass wearer
sees (eg, the direction of gaze) and what the camera captures
(eg, range and angle of the camera)—was al so cited as amajor
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barrier [29,35,37,40,41,43]. This issue was often attributed to
the limited FOV of smart glasses [33,44]. This misalignment
problem could be worsened owing to sudden head movements
and frequent rel ocation of the smart glasswearer or the patient’s
unpredictable movements because these could cause motion
blur for remote experts or consultants and make it difficult for
them to identify the clinical situation [44]. Third, although the
reviewed studies reported that their participants perceived that
the smart glass was easy to use overall, usability issues till
exist; for example, the voice control function did not work
perfectly and thus required the user to remove their gloves to
use the built-in touchpad or buttons to operate the device, such
as starting or stopping the video call [18,30]. In another study,
smart glasses were reported to be a distraction for medical
practitioners [31].

Privacy and Security Concerns

Patient privacy and data security issues were perceived as
important to address because smart glasses can transfer or even
store sensitive patient data[28-30,43]. These studies stated that
any implementation of smart glasses must not only comply with
HIPAA requirements but also aleviate patient concerns about
any potential privacy violation or misuse of their data[30,43].

Organizational Challenges

Asmedical professionalshave limited prior knowledge of using
the novel smart glass technology (compared with their
experience of using smartphones or tablet devices), afew studies
mentioned that user training is necessary to increase efficiency
and reduce human errorsin system operation [27,33,37,41,43].
In addition, the smart glass technology is costly; for example,
as McCullough et a [35] reported, the cost of ayearly contract
for a piece of wearable hardware and the videoconferencing
platform is approximately US $7000. Such high costs could
become a critical barrier to adopting this technology at scale,
especialy for those health care providers who have limited
resources. Finaly, integrating smart glasses into the current
workflow is a prominent challenge; for example, Follmann et
al [39] reported that adopting smart glassesin prehospital triage
and communication added more workload to emergency care
providersin the field and took markedly more time compared
with not using smart glasses.

Discussion

M ethodological | mplications

In this work, we conducted a systematic review of studies
focused on the use and application of smart glassesin supporting
care coordination and communication among distributed medical
teams. Of the 5862 papers included for screening, only 21
(0.36%) met our criteria, highlighting the paucity of studies
examining the feasibility, effectiveness, and user experience of
using smart glasses as a telemedicine tool. Furthermore, the
studies were mostly conducted in the United States and a few
other high-income countries (eg, Italy, Germany, and France).
One possible explanation isthat smart glasstechnology is costly,
hindering its adoption in LMICs and low-resource settings.
However, 14% (3/21) of the reviewed studies [35,36,45]
revealed the substantial benefits that smart glasses could bring
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to LMICs and rural areas, such as providing remote training
and mentoring and more accurate instructions to the field
medical practitioners in low-resource settings who otherwise
have limited access to remote experts. Given such benefits,
more future work is needed to expand the research of smart
glassesto LMICs.

Another interesting observation is that all the reviewed studies
(21/21, 100%) only used off-the-shelf hardware and software
without involving usersin the system design process. Prior work
has suggested that it is critical to involve users and understand
user requirementsin the early phase of system development to
identify and address potential usability and technical issues
[6,46,47]. In addition, regarding the methodology for eliciting
user opinions, out of 15 studies conducted user evaluation, 33%
(5/15) of them did not specify what questions they asked, how
the questionnaire was developed, and what procedure was
followed. Despite the user-friendliness of health care
information technology being a determinant factor for user
adoption and acceptance [48,49], the usability of smart glasses
was neglected by most of the studies (19/21, 90%), with only
the studies by Broach et a [19] and Demir et al [31] specifically
examining this aspect. These facts highlight the need to adopt
a user-centered design approach in the development of smart
glass technology by placing users at the center of the system
design process from inception to implementation and
deployment.

A similar concern is that a few of the reviewed studies (4/21,
19%) only recruited a small number of study participants (eg,
2 health care professionals) to participate in their user studies
(eg, survey or interview). In addition, some of the studies (5/21,
24%) did not report the details of their user research, including
the number of participants. These findings may suggest that the
important role of user research was not recognized in some of
the reviewed studies (9/21, 43%), and their results might not
be generalizable because of the limited number of study
participants. Given these study limitations, we argue that
involving human-computer interaction researchersin such type
of research and establishing close collaborations between these
researchersand health care domain expertsare critical and much
needed, as demonstrated in the study by Schlosser et a [50].

Finally, aimost all of the reviewed studies (20/21, 95%) focused
on evaluating the smart glass technol ogy either from atechnical
perspective or a clinical perspective, while neglecting other
important factors that could substantially affect the use and
adoption of this technology, such as workflow, teamwork,
policies, and organizational cultures. As prior work has argued
[51], an ongoing challenge to the successful implementation
and deployment of health IT (HIT) interventions is to
operationalize their use within the workflow of acomplex health
care system; for example, a new technology could disrupt
current clinical work, causing not only frustrations for medical
providers but also patient safety issues [52-54]. When this
problem occurs, not surprisingly, medical practitioners are left
with no choice but to bypass the technology or adopt informal,
low-tech, potentially unsafe workarounds that deviate from the
formal protocol [55,56]. As such, researchers have highlighted
the importance of examining the design, use, and application
of HIT interventions through the lens of a sociotechnical
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perspective [55-57]. This approach allows researchers and
practitioners to understand the complex interrel ations between
various social and technical elementsof systemsthat are equally
important in determining the success of HIT adoptionin ahealth
care organization. In line with this argument, we believe that
more research adopting a sociotechnical model [51,58] isneeded
to investigate the factors (eg, human-computer interaction,
workflow and communication, internal organizational features,
and external rules) that contributeto the uptake of smart glasses
in routine use.

Design Implications

The reviewed studies revealed a set of challenges and barriers
to adopting and using smart glasses in practice; for example, a
commonly cited technical challenge is internet connection
quality—smart glasses rely on a high-bandwidth internet
network for streaming videos and transmitting other visual
media data (eg, high-resolution pictures, texts, and augmented
objects). However, this technica requirement could be
challenging to fulfill, especially in low-resource or
out-of-hospital settings[59]. With the rapid devel opment of 5G
technology, thistechnical barrier might be overcomein the near
future; for example, a study [60] showed that 5G technology
could not only enable safe and efficient complex surgical
procedures during telementored surgery but also lead to avery
high degree of surgical team satisfaction. In addition to internet
connections, other technical improvements suggested by the
reviewed studiesinclude increasing the memory space of smart
glasses to store more information, adding autofocus and
stabilization features to the smart glass camera, and improving
the cameraresolution [35].

Human factors and usability issues make up another set of
important considerations for smart glass designers and
developers; for example, the differencein line of sight between
the local medical practitioner and remote consultant impeded
the remote consultant from seeing exactly what the smart glass
wearer’seyeswere fixed on. In addition, thelimited FOV further
complicated the video transmission to the remote experts. One
reviewed study [44] experimented by attaching a mirror to the
smart glass to increase the FOV of the loca practitioner by
transmitting both the wearer's front view and their hand
operations below the camera to the remote experts. However,
the video received on the other end by the experts was deemed
confusing. Another viable solution suggested by prior work
[59] is using more advanced mounting techniques to make sure
that the smart glass can sit steadily on thewearer'shead to align
their visua field with the camera range. Another interesting
issue brought out by a few of the studies (5/21, 24%) was the
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necessity of enhancing user interactions with the smart glass,
such as offering more hands-free interaction mechanisms (eg,
using head movementsto control the device) [35] and enabling
the user to zoom in and out during video streaming as well as
pan the image [38].

Current smart glass applications are stand-alone and limit their
potential. The data collected and transferred through smart
glasses can best benefit patient care tasks if they can be
incorporated into, and fully integrated with, other HITs such as
electronic health records or clinical decision support systems.
Interoperability issues (eg, standardized terminology) should
be considered when deploying and integrating smart glasses
into complex health care systems.

Other important design considerations that need full attention
for devel oping and deploying the smart glass technol ogy include
(1) ensuring that the software is compliant with HIPAA
requirements to protect patient privacy and data security, (2)
integrating smart glasses into the workflow to minimize the
disruption to medical practitioners’ work, and (3) providing
sufficient training to end users.

Study Limitations

Defining the search keywords was difficult. To generate a
comprehensive and relevant list of keywords, we iteratively
discussed and selected the keywords for the search based on
suggestions from the health librarian and areview of systematic
review articles regarding smart glasses. Another limitation is
that we did not assess the quality or impact of the results from
theincluded articles. A meta-analysis was not feasible because
of the heterogeneity of the study designs and results.

Conclusions

Smart glasses were found to be an acceptable and feasible tool
in enabling visual communication and information sharing
among distributed medical teams. Despite the high potential of
this novel technology, the reviewed articles pointed out a set of
challengesthat need to be addressed before the wide deployment
of thistechnology in complex health care systems. Thoughtful
system design involving end users from the beginning and
improved hardware and software reliability are needed to
improvethe usefulness and usability of smart glassesfor medical
practitioners[11,59]. We suggest that more user-centered design
and evaluation research is needed to examine and evaluate
medical professionals needs and perceptions and determine
how to design smart glass technology to meet their needs. In
addition, more research is required to elucidate how smart
glasses affect the workflow of medical professionalsin complex
care environments.
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Abstract

Background: Sensors are increasingly used in health interventions to unobtrusively and continuously capture participants
physical activity in free-living conditions. The rich granularity of sensor data offers great potential for analyzing patterns and
changes in physical activity behaviors. The use of specialized machine learning and data mining techniques to detect, extract,
and analyze these patterns has increased, helping to better understand how participants’ physical activity evolves.

Objective: Theaim of this systematic review wasto identify and present the various data mining techni ques employed to analyze
changes in physical activity behaviors from sensors-derived data in health education and health promotion intervention studies.
We addressed two main research questions. (1) What are the current techniques used for mining physical activity sensor data to
detect behavior changesin health education or health promotion contexts? (2) What are the challenges and opportunitiesin mining
physical activity sensor data for detecting physical activity behavior changes?

Methods: The systematic review was performed in May 2021 using the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines. We queried the Association for Computing Machinery (ACM), |EEE Xplore, ProQuest,
Scopus, Web of Science, Education Resources Information Center (ERIC), and Springer literature databases for peer-reviewed
references rel ated to wearable machine learning to detect physical activity changesin health education. A total of 4388 references
were initially retrieved from the databases. After removing duplicates and screening titles and abstracts, 285 references were
subjected to full-text review, resulting in 19 articlesincluded for analysis.

Results: All studies used accelerometers, sometimes in combination with another sensor (37%). Data were collected over a
period ranging from 4 days to 1 year (median 10 weeks) from a cohort size ranging between 10 and 11615 (median 74). Data
preprocessing was mainly carried out using proprietary software, generally resulting in step counts and time spent in physical
activity aggregated predominantly at the daily or minute level. The main features used as input for the data mining models were
descriptive statistics of the preprocessed data. The most common data mining methodswere classifiers, clusters, and decision-making
algorithms, and these focused on personalization (58%) and analysis of physical activity behaviors (42%).

Conclusions: Mining sensor data offers great opportunitiesto analyze physical activity behavior changes, build modelsto better
detect and interpret behavior changes, and allow for personalized feedback and support for participants, especially where larger
sample sizes and longer recording times are available. Exploring different data aggregation levels can help detect subtle and
sustained behavior changes. However, the literature suggests that there is still work remaining to improve the transparency,
explicitness, and standardization of the data preprocessing and mining processesto establish best practices and make the detection
methods easier to understand, scrutinize, and reproduce.

(JMIR Med Inform 2023;11:e41153) doi:10.2196/41153
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Introduction

Wearable sensors are increasingly employed in health
interventions because of their ability to track participants
physical activity (PA) in an unobtrusive, continuous, and precise
manner under free-living conditions[1]. Inthe context of health
promotion, sensor data are commonly used to objectively assess
interventions by monitoring PA changes and progress toward
compliance with public health PA guidelines[2].

The rich data captured by activity sensors contain information
about the participants PA, potentially unlocking valuable
insightsinto PA behaviors and patterns [3]. These insights can
help to advance the understanding of how interventions affect
PA behaviors and how behaviors change, thereby scaffolding
thedesign of futureinterventions, and enhancing their outcomes,
efficacy, and adherence.

In the last decade, a growing number of artificial intelligence
and data mining models and techniques have been devel oped
to detect and extract these latent PA patterns beyond the typical
summariesof pre- and postintervention daily steps or time spent
in various PA levels. In this systematic review, we aimed to
describe the data mining models and techniques currently used

to detect PA with afocus on behavior changes. We discusstheir
value, identify gaps or challenges, and highlight opportunities.
The following research questions (RQs) guided this review:

RQ1: What arethe current techniques used for mining PA sensor
data to detect behavior changes in health education or health
promotion contexts?

RQ1.1 What are the types of sensors used and what data are
collected?

RQ1.2 How are data preprocessed?
RQ1.3 What features are used to detect behavior changes?

RQ1.4 What are the data mining models and techniques used
to detect behavior changes?

RQ1.5 What are the interpretation of data mining models used
for?

RQ2: What are the challenges and opportunitiesin mining PA
sensor data for detecting PA behavior changes?

The RQ1 subquestionswere established following the reasoning
and order of the process of knowledge discovery in databases
[4]. Figure 1 summarizes this process and maps each step with
the relevant RQ1 subquestion.

Figure 1. Knowledge discovery in database steps (in grey) and research question 1 (RQ1) subquestions (in blue).

Data Pre-
processing

RQ1.2

Data
Capture
RQ1.1

Methods

Design

For this systematic review, wefollowed the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines [5] and used the Rayyan QCRI web application [6]
to manage the review process. We identified studies by
searching the Association for Computing Machinery (ACM),
IEEE Xplore, ProQuest, Scopus, Web of Science, Education
Resources Information Center (ERIC), and Springer digital
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Data Trans-
formation

RQ1.3

Data Mining

Interpretation

RQ1.4 RQ1.5

libraries. We also searched Google Scholar to identify grey
literature and extracted the first 100 results. For this scholarly
reference search, we used the following query: (education OR
promotion OR “behaviour change”) AND (*data mining” OR
“machine learning” OR “artificial intelligence”) AND (sensor
OR accelerometer OR tracker OR wearable) AND “physical
activity” AND health. All extracted scholarly references had
been added to the database at the |atest on the search day (May
28, 2021). Theinclusion and exclusion criteriaare presented in
Textbox 1.
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Textbox 1. Inclusion and exclusion criteriafor article selection in the review.

Inclusion criteria
«  Full-length articles

o  Peer-reviewed articlesin journals or conference papers

« Articlesthat included PA data

as specific algorithms to model PA data

Exclusion criteria
«  Useof analytics without data mining

o Studieson animals (eg, accelerometers on dogs)

«  Dissertations and theses, due to lack of a peer review process

.  Systematic reviews, reviews, and meta-analyses

«  Specific movement detection (abnormal gait, falls)

« Articlesthat used data mining techniques for data from physical activity (PA) wearable sensors

« Articles on applied health education/promotion or on behavior change scenarios

« Articlesthat used well-known data mining techniques such as classification, regression, clustering, association, and sequence algorithms, aswell

«  Sef-quantification without a health education or health motivation component

«  Health care applications without a health education or motivation for behavior change component

« Aidfor sport training (eg, maintaining heart rate, postures, specific movements)

Search Outcome

The number of references extracted from each €electronic
database is summarized in Table 1.

Following the PRISMA methodology, we retrieved 4388
references from the sourceslisted in Table 1. We then removed
415 duplicates, leaving 3973 unique references that were
screened by reading their titles and abstracts. Using the

Table 1. Number of references extracted from each database.

inclusion/exclusion criteria (Textbox 1), we excluded 3688
references and selected 285 publications. After full-text reading,
we excluded 266 references: 33 on activity recognition, 5 on
data mining, 24 on systems, 31 on rehabilitation, 39 not on
behavior changes, 54 without data mining, 51 not on health
education/promotion, 13 not on PA, and 16 reviews. At theend
of the selection process (summarized in Figure 2), we retained
19 references for this systematic review.

Database Query result, n
ACM? 584

IEEE Xplore 12

ProQuest 1678

Scopus 44

Web of Science 16

ERICP 2

Springer 1952

Google Scholar 100

3ACM: Association for Computing Machinery.
PERIC: Education Resources Information Center.
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Figure 2. Study inclusion flowchart according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodol ogy.

References identified through Additional references identified
s database searching through other sources
B n=4288 n=100
=
= v \
a
=) Total

n=4388

Duplicates removed
n=415

4

References screened after duplicate removal
n=3973

Exclusion on title and abstract
n=3688

Screening

v

Full-text articles for eligibility
n=285

Eligibility

Exclusion on full text
n=266

I

References included in the review
n=19

Results The selected articleswere published in conferences and journals
focused on five different themes (Table 2): medical and public
Overview health, medical and health informatics, human-computer
i _ ) interactions, physica human behavior, and engineering and
The19included articleswere publlshed between 2013 and 2021. science. Thethree most popula. themeswere medical and health
Their number per year increased from 1in 201310 2in 2017 jn¢ormatics, human-computer interactions, and engineering and
and up to 5in 2018. Subsequently, the number of publicalions  grience (15/19, 79%). Among the included articles, four were
decreased to amean of 3 per year. published in JMIR publications: three in JIMIR mHealth and
uHealth and one in IMIR Public Health and Surveillance.
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Table 2. Conference proceedings and journals in which the included articles were published (N=19).

Conference or journal Reference
Medical and public health
BMJ Open Aguileraet d [7]
Public Health Nutrition Leeetal [8]

Medical and health infor matics
JMIR mHealth and uHealth
JMIR Public Health and Surveillance
Journal of Biomedical Informatics
Human-computer interactions
Proceedings of the ACM on Human-Computer Interaction
User Modeling and User-Adapted I nteraction
Journal of Ambient Intelligence and Humanized Computing

Multimedia Tools and Applications

Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization

Physical human behavior

Journal of Behavioral Medicine

Journal of Electromyography and Kinesiology
Engineering and science

Applied Sciences

Sensors

Springer Proceedings in Complexity

|EEE Access

International Conference on Industrial, Engineering and Other Applications of Applied Intelligent

Systems

Zhou et al [9], Rabbi et al [10], Galy et al [11]
Fukuokaet a [12]
Sprint et al [13]

Zhu et d [14]
Gasparetti et a [15]
Batool et al [16]
Angelides et al [17]
Schafer et al [18]

Forman et a [19]
Hermens et al [20]

Chenetal [21]
Dijkhuis et al [22]
Mollee et a [23]
Diaz et al [24]

Mollee and Klein [25]

Sensor Typesand Data Capture

The characteristics of the sensors (eg, number and type) used
to capture PA behaviors and of the collected raw data are
summarized in Table 3.

Thelength of datarecordings varied between 4 daysand 1 year,
with a median of 70 days. Recording lasted <7 days in two
studies, between 3 and 5 weeks in six studies, between 10 and
16 weeksin eight studies, and =6 months in three studies.

The number of participants varied between 10 and 11,615, with
<30in five studies, between 30 and 299 in 10 studies, and 2300
participants in four studies.

All included studies used accelerometer sensors. We could
categorize these devices into three groups: (1) commercial
wrist-worn wearable accelerometers that are consumer-grade
devices with a sample rate between 30 Hz and 60 Hz, such as
Fitbits [13,14,19,22,25], Samsung Gear [17], and Nokia [15];

https://medinform.jmir.org/2023/1/e41153

(2) smartphone accelerometers with a sample rate usually set
to 50 Hz and up to 100 Hz, in which data were collected viaan
app installed in the smartphone [7,9,10,16,18]; and (3)
scientifically validated wearable accelerometers with a sample
rate up to 100 Hz, such as ActiGraph [8], GENEActiv [11,24],
and other devices developed for health care [12,20].

In 7 out of the 19 (37%) selected studies, accelerometers were
used with other sensors such as GPS tracking [10,16,17],
compass position tracking [17,20], heart rate trackers [17,21],
and smart scales[15,19].

The recorded raw data varied in function of the sensor
characteristics, including sampling frequency, accuracy, and
axis number. Moreover, other sensor features such as battery
duration and storage capacity affected the recording length. For
instance, a long battery life and high storage capacity enable
longer recording without interruptions. Table 4 summarizesthe
number of participants and data recording duration for the
included studies.
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Table 3. Number of sensors, device type and model used, and raw data generated.

Sensor type Device and model Raw data Reference
Accelerometer ActiGraph GT1M uniaxia Uniaxial accelerometry Leeeta [§]
Accelerometer GENEACtiv triaxial accelerometer  Gravity-subtracted signal vector magni-  Galy et a [11], Diaz et al [24]
tudes (SVMgs) per second
Accelerometer Generic device from the mobile  Acceleration (sampleratenot specified) Aguileraet a [7], Zhou et a [9]
phone
Accelerometer Triaxial accelerometer (HJA- Triaxial acceleration (6 Hz) Fukuokaet al [12]

350IT, Active Style Pro, Omron
Healthcare Co, Ltd)

Accelerometer Fitbit Triaxial acceleration (sampleratenot  Zhu et a [14]
specified)

Accelerometer Fitbit Flex Triaxial acceleration (sampleratenot  Dijkhuiset a [22]
specified)

Accelerometer Fitbit Charge HR and Fitbit Flex  Triaxial acceleration (sampleratenot ~ Sprint et al [13]
specified)

Accelerometer Fitbit One Triaxial acceleration (sampleratenot  Mollee and Klein [25]
specified)

Accelerometer Not specified Not specified Mollee et a [23]

Accelerometer Smartphoneand Actigraph (GT3X  Triaxial acceleration (sampleratenot ~ Schéfer et al [18]

model) specified)
Accelerometer and heart rate Mix of devices and models Accelerometry, heart rate monitor, PA2  Chenetal [21]
monitor information, and user information

(sample rate not specified)

Accelerometer, GPS, self-log PA, Smartphone Smartphone accelerometry, GPS data, Rabbi et a [10]
and food PA and food logs with sample rate
specified

Activity tracker, smart scale, and  Fithit Flex 2 activity tracker, Yun-  Accelerometry, weight and food logs  Forman et al [19]
smartphone (what they ate and mai smart scale, smartphone (sample rate not specified)
drank in the Fitbit app)

Accelerometer, gyroscope, and ProMove-3D (developed by Inertia  Accelerometry (sample rate not speci- Hermenset al [20]

magnetic compass Technology) fied)

Accelerometer and GPS Smartphone Accelerometry and GPS (samplerate  Batool et a [16]
not specified)

Triaxial accelerometer, heart rate Samsung Gear Fit and Fitbit Surge  Accelerometry, heart rate data, GPS,  Angelideset a [17]

monitor, GPS, 3-axis gyroscope, 3-axisgyroscopes, digital compass, al-

digital compass, atimeter, light timeter, light sensor (sample rate not

sensor specified)

Accelerometer, heart rate, and Nokia; models not specified Accelerometer, heart rate data, and Gasparetti et a [15]

smart scale smart scale (sample rate not specified)

3PA: physical activity.
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Table4. Length of datarecording and number of participants among the included studies.

Diaz et a

Length of recording Participants, n Reference
1to 7 days
4 days 1714 Leeetal [8]
7 days 215 (women) Fukuokaet a [12]
1to5weeks
3 weeks 17 Rabbi et al [10]
3 weeks 48 Zhu et d [14]
1 month 14 Angelides et al [17]
4 weeks 24 (adolescents) Galy et al [11]
4 weeks 74 (children) Schifer et al [18]
5 weeks 87 (children) Diaz et al [24]
6 to 20 weeks
10 weeks 11 Schéfer et al [18]
10 weeks 64 Zhou et al [9]
3 months 10 Hermens et a [20]
12 weeks 48 Dijkhuis et al [22]
12 weeks 108 Mollee and Klein [25]
3 months 269 Chenetal [21]
12 weeks 2472 Molleeet al [23]
16 weeks 52 Forman et a [19]
21 weeksto 1 year
6 months 276 Aguileraet d [7]
6 months 500 Batool et a [16]
1year 11,615 Gasparetti et a [15]

Data Preprocessing

Raw data extracted from sensors need to be transformed into
variables that will contribute to generating the input features
for data mining models to detect PA behavior changes. Table
5 provides a summary of the initial transformation and the
resulting preprocessed data.

The preprocessing of the raw data from sensors was carried out
intwo ways. Thefirst approach wasto use proprietary programs
to transform the sensors’ data directly into the resulting
preprocessed data, without specifying whether there was an
initial preprocessing stage such as that used to generate steps,
metabolic equivalents (METS), calories, heart rate, or exercise
characteristics (type, duration, distance, or frequency). The
second approach was to produce intermediate data that were
then transformed in the resulting preprocessed data using a

https://medinform.jmir.org/2023/1/e41153

custom preprocessing tool. For instance, to generate PA levels
(PALs), raw data were first transformed into MET, activity
classes, or signal vector magnitudes.

The resulting preprocessed data were mainly activity
characteristics (step count, PAL, integrals of the moduli of
acceleration, activity types, duration, distance travelled, and
frequency) and energy expenditure (MET and calories). Step
count from smartphones and commercial wrist-worn devices
was the most frequent, followed by PAL from research-grade
devices.

The resulting preprocessed data were aggregated at different
time levels (Table 6). Day and minutes were the most frequent
time levels of aggregation. Generally, PAL and MET were
aggregated per minute. Calories and step countswere calculated

per day.
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Resulting/initial preprocessing Reference
Steps: unknown (proprietary program) [7,9,13-15,17,19,22,25]
Metabolic equivalents: unknown (proprietary program) [21]
Calories: unknown (proprietary program) [10,17,19]
Exercise characteristics: unknown (proprietary program)? (10,17,21]
Sleeping time: unknown (proprietary program) [15,17]
Weight: unknown (proprietary program) [15,19]
Heart rate: unknown (proprietary program) [17,21]
Physical activity (PA) levels
Signal vector magnitudes [11,24]
PA counts [8]
Metabolic equivalents [12]
Activity classes [18]
Not specified [23]
Integrals of the moduli of acceleration signals [20]
Actual activity level; not specifiedb (16]
8Type, duration, distance, frequency.
bDefinition of activity level was not specified.
Table 6. Aggregation level of the resulting preprocessed data.
Reference Month Week Day Hour Minute Seconds Not specified
Angelideset a [17] O O O O
Zhou et a [9] ad
Aguileraet a [7] O
Zhu et a [14] |
Mollee and Klein [25] a
Forman et al [19] ad
Gasparetti et al [15] O
Chenetd [21] 0 O
Dijkhuis et al [22] 0
Leeetd [8] 0
Fukuokaet a [12] ad
Sprint et al [13] ad
Schéfer et a [18] 0
Diaz et al [24]
Galy et al [11]
Molleeet a [23] O
Hermens et a [20] O
Rabbi et al [10] ]
Batool et al [16] O
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FeaturesUsed to Detect and Extract Behavior Changes

The features of the data mining models were mostly generated
from the sensors' preprocessed data and, in some cases, from
other sources (nonsensor data). Table 7 provides the features
categorized with respect to the function of their source:
accelerometers, other sensors, and nonsensor devices.

Most of theincluded articles used descriptive satisticsto present
the preprocessed data as features, for instance total number of
steps per day [9,11,14,17,25], mean number of steps per day
[17], or PA count per hour [8]. Other studies created windows
or segments of time to calculate PA characteristics, including

https://medinform.jmir.org/2023/1/e41153
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segments of steps or sleep [15] and PA bouts [13,24]. Other
articles used the preprocessed datato cal cul ate the parti cipants
step achievements such as whether they reached their step goal
[9,11,19,23]. Zhu et & [13] used more complex features such
as the ratio between the most active and least active period or
the circadian rhythm strength.

In addition to the features derived from sensors, others were
created from measurements carried out during the intervention
by scientists, such as the number of days that a person
participated in the intervention [19] and anthropometric [7,21]
or psychological [14,16,25] characteristics. Datawere collected
through surveys/questionnaires or interviews with participants.
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Table 7. Features used for data mining to detect behavior changes.

Reference Features derived from accelerometers ~ Features derived from other sensors ~ Features derived from nonsensor devices
Aguileraet a [7] Number of minutes of activity inthelast Number of days since each feedback  Age, gender, language, 8-item Patient
day, cumulative number of minutesof ~ message was sent Hesalth Questionnaire (depression) score

activity this week, fraction of activity
goal, fraction versus expected activity
goal at this point in the week

Hermens et a [20] Not specified Not specified Not specified
Chenetal [21] Monthly mean metabolic equivalent of ~ Monthly mean exercise and resting Gender, height, weight, age
task, effective exercisetime, type, fre-  heart rate
quency
Forman et al [19] Dayswhere PA2 goal is met Sum of days with self-monitored Number of daysin theintervention peri-

weight, days with self-monitored eat- od
ing, days where calorie goal is met,
weight loss in pounds

Gasparetti et a [15] Consecutive daily segments of steps, _b —
consecutive daily segments of sleep

Batool et a [16] Actud activity level — Desired activity level, intention (attitude,
subjective norms, perceived behavioral
contral), habit, and 16 demographic fea-
tures (eg, age, gender, marital status)

Dijkhuiset a [22] Hour of the workday, number of steps  — —
for that hour, number of stepsin the past
hour, total number of steps up to that
hour, mean number of steps of workdays

Rabbi et al [10] PA frequency and calories — —
Zhou et a [9] Daily steps and goa — —
Angelideset a [17] Total and mean hourly, daily, weekly, — — Height (cm), weight (kg), age, gender

and monthly sleep duration; sleep calo-
ries; exercise duration; exercisedistance;
exercise calories; step count; step dis-
tance; step calories; BMI; and basal
metabolic rate

Diaz et al [24] Hourly and daily frequency, and mean — —
time spent in moderate to vigorous PA
bouts of at least 3, 10, and 30 seconds,
and in sedentary bouts of at least 60, 120,
and 300 seconds

Galy et d [11] Total daily time spent in light/moder- — —
ate/vigorous PA, total daily number of
steps, and a binary goal achievement
feature

Fukuokaet a [12] Mean metabolic equivalent of tasksper — —
minute, mean moderate-to-vigorous PA
per minute

Leceta [8] 24-hour mean PA count on weekdays — — —
and 24-hour mean PA count on week-
ends

Sprint et al [13] Steps, PAL® and bouts count, mean, — —
percentages, ratios and SD. Circadian
rhythm time-series statistics and texture
featuresfrom an image-processing tech-

nique
Molleeet a [23] Impact of onlinecommunity (sharingmy — —
PAL with peers), target PAL and goal
achievement
Schéfer [18] PAL per minute — —
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Features derived from other sensors

Features derived from nonsensor devices

Reference Features derived from accelerometers
Molleeand Klein[25] Daily steps —
Zhu et a [14] Daily steps

Motivation to exercise (Likert scale)

Psychological questionnaire scores for
self-efficacy, barriers, social norm, long-
term goals, intentions, satisfaction, out-
come expectations

|lowa-Netherlands Comparison Orienta-
tion Measure-23 (INCOM-23) for social
comparison (psychometrics)

3PA: physical activity.
BNot applicable.
®PAL: physical activity level.

Data Mining

Algorithm Overview
Table 8 summarizes the data mining methods and specific
algorithms used in the selected articles.

Clustering was the most used method, particularly the K-means
algorithm. Indeed, in health interventions, the PA performed
by each participant varies in duration, form, and intensity.
Therefore, an algorithm that clusters PA behaviorsis required

Table 8. Data mining methods and algorithms.

to analyze them. The unsupervised K-means algorithm is
suitable for this task. Indeed, due to its smplicity and ease of
use, thisisone of the most popular optionsfor datamining [26].
Decision-making algorithms and classifiers were the second
most used methods. Both rely on supervised algorithmsthat use
PA characteristics asamethod for predicting when and/or what
information must be delivered to individual participants for
increasing their PA. Other algorithmswere al so tested to extract
PA behaviors, such as socia cognitive and contagion models,
PA windows permutations, and recommendation algorithms.

Data mining method and al gorithm Reference
Classifiers

K-nearest neighbor and support vector machine [20]

Random forest [22]

Random forest and weighted score [18]

Shallow neural networks [16]
Clustering techniques

K-means [8,11,12,24]

Agglomerative [21]

Partitioning around medoids and reinforcement learning [15]
Decision-making algorithms

Multiarmed bandit [20]

Multiarmed bandit upper confidence bound [19]

Reinforcement learning multiarmed bandit [7.9]

Behavioral analytics algorithm

MAB? [14]
Social cognitive model for predicting exercise behavior change [25]
Social contagion model combined with alinear model [23]
Physical activity change detection: small window permutation-based change detection in activity routine [13]
Recommendation: genetic agorithms and Pareto optimality [17]

3MAB: multiarmed bandit.

Classifiers
Hermens et a [20] used a k-nearest neighbor model and a

support vector machine to determine whether a specific time of
the day was suitable for sending a motivational message to
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optimize adherence to the intervention. Dijkhuis et al [22] used
atree and tree-based ensemble algorithm classifiers to predict
whether users will achieve their daily PA goal. On the basis of
this prediction, a personalized PA coaching program was
proposed. Forman et al [18] developed gamified personalized
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feedback using a score model depending on the PA change
detected from accelerometer data. Batool et a [16] predicted
the likelihood that the PA level of a given patient was too low.
They also predicted which patients were at higher risk of not
adhering to the prescribed therapy to optimize their PA.

Clustering Techniques

Lee et a [8] grouped participants in two clusters on the basis
of their step counts (one more active than the other), and
analyzed them to better understand these PA patterns. Diaz et
al [24] used a clustering-based approach for a more insightful
analysis of the participants' PA behavior and of the nature of
the PA behavior changes, if present. Galy et a [11] clustered
PA levels and dailly step goa achievement to assess the
adherence to a health program. Fukuoka et a [12] identified
PA clustersto analyze and compare sociodemographic features
and cardiometabolic risks among participants bel onging to these
clusters. Chen et al [21] clustered the participants' PA, and then
established a system to adapt the exercise program for the next
week as a function of the individual PA behavior change.
Gasparetti et a [15] clustered the participants' PA to generate
groups of habits recommended by a system to the participants
with the objective of changing their PA to obtain weight loss
effects.

Decision-Making Algorithms

Rabbi et a [10] generated personalized suggestions in which
users were asked to continue, avoid, or make small changesto
their existing PA behaviors in order to help them reach their
PA goals. Forman et a [19] developed an algorithm that could
personalize and optimize the PAL during the intervention as a
function of the amount of PA performed. Aguilera et a [7]
generated personalized messages for participants in the

Table 9. Main uses of the resulting data mining models.

Diaz et a

intervention to increase their PA and consequently the
intervention effectiveness. Zhou et a [9] adapted the step goal
settings of the intervention depending on the PA behavior
change. Zhu et al [14] personalized social comparison among
participants to motivate them toward improving their PA
behavior.

Social Cognitive Model

Molleeand Klein [25] developed amodel that simulates changes
in PALs over 2 to 12 weeks to optimize the participants’ health
outcome.

Social Contagion Model

Mollee et al [23] used a social contagion model to explain the
PAL dynamicsin acommunity.

PA Windows Permutations

Sprint et al [13] proposed a window-based algorithm to detect
changesin segments of users' PA behavior to motivate progress
toward their goals.

Recommendation Algorithms

Angelides et a [17] used genetic algorithms and Pareto
optimality to compare the participants and peer community’s
data to help participants interpret the PA data and to generate
personal lifestyle improvement recommendations.

Interpretation of the Data Mining Models

Overview of Models

Theresulting datamining model s detecting PA behavior changes
were used for several purposes, as summarized in Table 9 and
below.

Main use Reference
Personalized feedback [7,10,15,16,18,20]
Personalized program [9,19,21,22]
Support for self-reflection [17]

Cohort analysis of the intervention impact on PA? (8,11-13,24]
Analysis of the social component effects on PA [14,23,25]

3PA: physical activity.

Personalized Feedback

The PA behavior changes extracted from participants’ datawere
used to promote PA by creating and sending personalized
messages that reported the behaviors and gave suggestions for
achieving the previoudly established PA goals. For instance,
Aguilera et al [7] built a system that detects the participants
PA behavior changes and generates personalized daily text
messages with custom timing, frequency, and feedback about
their step count/goal and motivational content. Hermens et a
[20] built a system that chooses the best suitable time to send
a message with personalized intention, content, and
representation. Schifer et al [18] created an app with gamified
feedback where different avatars are awarded based on the
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participant’s daily PA behavior. Gasparetti et al [15] suggested
personalized PA patterns based on the participants' PA patterns.
Batool et al [16] detected the participants’ PA behavior while
commuting and suggested how to increase it. Rabbi et a [10]
generated personalized simple PA suggestions (continue, avoid,
or make small changes).

Personalized Programs

The PA intervention program and objectives are adapted to each
participant’s needs. For instance, Chen et al [21] created a
guided exercise prescription system that adapts as the
participants’ PA behavior changes. Similarly, Forman et al [19]
changed the participant’s exercise intensity suggestion
depending on their PA behavior achievements. On the basis of
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each participant’'s step count progress, Dijkhuis et a [22]
suggested new daily step objectives. Zhou et al [9] used push
notifications to deliver daily step goals.

Support for Self-Reflection

Algorithms can help participants to interpret their PA behavior
changes. For example, Angelides et al [17] used an algorithm
to assist in the interpretation of the participant’s PA data by
comparing them with those of the peer community and to
generate personalized recommendations to achieve their daily
goals.

Cohort Analysis of the I ntervention I mpact on PA

These agorithms detect PA behavior changes in participants
that allow analyzing the intervention impact. For example,
Fukuokaet a [12] determined PA patternsin women throughout
the day that could help to develop more personalized
interventions and guidelines. Diaz et a [24] analyzed the
changes in PA behavior (bouts and frequency) during an
intervention. Galy et a [11] tracked the participants’ adherence
to the international recommendations during an intervention.
Lee et al [8] identified PA patterns associated with specific
subgroups of peoplewho participated in an intervention. Sprint
et a [13] analyzed the participants PA changes during an
intervention by comparing multiple time windows.

Analysis of the Social Component Effect on PA

These algorithms analyze the psychosocial influences on the
participants’ PA. For example, Mollee et a [23] analyzed the
PA dynamicsin a community using a social contagion model.
Mollee and Klein [25] analyzed the PA dynamicsin anetworked
community using social cognitive theories, and Zhu et a [14]
personalized social comparison during an intervention to
increase the participants’ PA.

The main uses can be classified in two groups. Thefirst group,
composed of 11 out of the 19 (58%) selected studies, aimed to
generate personalized feedback/PA programs to scaffold and
support PA behavior changes among participants. Indeed,
researchers seem inclined to generate greater personalization
because it increases the intervention efficiency, effectiveness,
enjoyment, and reliability [27]. The second group, composed
of 8 out of the 19 (42%) selected studies, sought to analyze the
impact of interventions on the participants' PA. Specifically,
these studies analyzed the intervention impact on PA at the
cohort level to assess hedth education interventions, and
analyzed participants PA to show them their behaviors and
help to understand them. The main objective of both groups
was to explore how PA behavior patterns relate to the
intervention effectiveness, which can add new evidence on how
to create more effective interventions [28].

Discussion

Principal Findings

Summary

We found 19 articles about data mining models and techniques
to detect PA behavior changesin health education or promotion
studies, and their number has progressively increased over time.

https://medinform.jmir.org/2023/1/e41153
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We here discuss the principa findings, identify opportunities
and challenges for future research directions, and present the
limitations of this systematic review. The Discussion is
structured according to the RQs as a guide.

Opportunities and Challenges

Sensor Typesand Data Capture

All selected studies used accelerometer sensors to capture PA
behaviors. While 7 out of the 19 (37%) studies utilized
accelerometers exclusively, the rest employed them with other
sensors.  Nonaccelerometer sensors  capture  additional
information that may be relevant to PA (such as work/school
schedule, itineraries, and sleep patterns [29]) and could yield
auxiliary featuresfor the datamining models. For instance, GPS
sensors provide the number of kilometers and location of PA
performed.

The median number of participants in the selected studies was
74, and participants were mainly young or middle-aged adults.
This low number of participants and the skew toward adults
may have generated biased data mining models that can detect
and find behavior changes only in a specific population.
Different population groups behave differently and should be
studied independently. For instance, PA behaviors are different
in children and adults[2]. Some of the studies focused on groups
with specific PA behaviors, such as children [18,24], adol escents
[11], and women [12]. However, some population groups with
distinctive PA patterns, such as pregnant women [30] and people
with health conditions or disabilities [31], may need custom
detection models.

In 15 out of the 19 (79%) included studies, data were recorded
for less than 3 months. Therefore, the current methods for
detecting PA behavior changes have been developed mostly for
capturing short-term patterns, making the conclusions valid
only for short periods. To detect medium- and long-term PA
behavior changes, studieswith more extended recording periods
are needed, such as the study by Gasparetti et a [15] based on
data collected during 1 year. Moreover, new methods to detect
extended (eg, annual or seasonal) PA patterns are required to
study how the participants' behavior and habits change over
time. An increase in the participants’ number and recording
length will lead to new challenges related to big data analysis,
such as efficient data management and data mining processing
speeds.

Data Preprocessing

Many of the selected studies used commercial accelerometers
that allow only the retrieval of aggregated preprocessed data
using proprietary software (ie, number of steps per minute),
without being transparent on how data were preprocessed (ie,
how steps were calculated from the accelerometry data). This
data preprocessing black box makes it impossible to determine
the quality of the captured PA data and makes the data mining
results scientifically irreproducible. Conversely, in studies that
used medical -grade accelerometers, the accel erometry datawere
explainedin detail and the preprocessing stepswere documented
and referenced.
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We found alack of standard procedures for data preprocessing
that made it challenging to compare the study results and
conclusions. Indeed, if data are not preprocessed correctly, this
could causethe transfer of incorrect information to the features
and then to the data mining models. This could lead to the
creation of inaccurate models, thus limiting the study validity.
Data cleaning is a good example of thisissue. Indeed, the best
procedure to eliminate the nonwearing time remains unclear
along with the impact on the accuracy of the resulting models.
If nonwearing time is poorly removed, features can generate a
PA underestimation by recognizing nonwearing time as
sedentary behavior when it is not. Moreover, if sensor data
concerning changes in accelerations while commuting by car
or bus are not completely removed, they will be erroneously
classified as steps, thereby overestimating PA in the model and
in the conclusions. Similarly, sedentary activities could be
overestimated if deep timeis not correctly removed.

Most of the selected studies aggregated information by day or
minute. Although data aggregation is useful when comparing
general features of PA behaviors, such as daily steps, this
procedure may overlook subtle behavioral changes that can be
crucial for detecting major PA behavior changes. For instance,
if a person who walks every morning decides to change their
behavior and starts to walk at night, the sum of daily stepswill
be the same, but this new behavior will not be detected.
Conversely, it could be detected if the aggregation level is
changed to the hour. To detect these and other subtle behavior
changes, PA should be analyzed simultaneously at different
aggregation levels, and new time frames should be created to
match daily habits and behaviors, such as periods of the day
(eg, morning, afternoon) or participants’ office hours.

Features Used to Detect and Extract Behavior Changes

Most of the preprocessed data were transformed into features
that are simple descriptive statistics, such asthetotal time spent
at a specific PAL or the mean number of steps. These features
arevaluableto detect behavior changes, but they mainly capture
the PA intensity and the PA presence or absence. Yet, PA has
more valuable characteristics that vary during PA behavior
changes and that can help to detect such behavior changes, such
as the length of PAL bouts or the amount of time spent doing
PA. These PA characteristics can be extracted from current
sensor data. For instance, Galy et a [11] explored different
moderate-to-vigorous PA bout lengths and Sprint et al [13]
assessed the circadian rhythm. International PA guidelines can
serve as inspiration to identify new PA features. For instance,
according to World Health Organization recommendations,
adults should perform muscle-strengthening activities (involving
all major muscle groups) at moderate or higher intensity at least
twice per week [2]. This calls for the creation of features that
capture the muscle activity type, intensity, and frequency.
Moreover, most of the included studies used only PA-derived
features to detect behavior changes, and did not consider
relevant non-PA data associated with PA changes, such as the
participants weight and quality of sleep. Some studies captured
non-PA data, but they did not use them to detect PA changes.
For instance, Rabbi et a [10] used only PA-derived data (PA
frequency and calories burned) to detect behavior changes,
although they also recorded the participants’ food intake, thus

https://medinform.jmir.org/2023/1/e41153

Diaz et a

excluding their caloric intake that is closely related to weight
and the amount of PA participants are likely perform.

The use of simple descriptive statistics as features and the
exclusion of non-PA data associated with behavior changes
indicate that sensor data were underexploited and that the
features used to detect PA behavior changes are dfill
underdeveloped. Including new PA characteristics and new
non-PA features could help to better understand the nature of
PA changes and how these features influence PA behavior
changes, ultimately increasing the model detection accuracy.

Data Mining Methods and Techniques

Most studies used off-the-shelf classifiers, clusters, and
decision-making algorithmsto detect PA behavior changes. We
expected to find tailor-made agorithms because in hedlth
education settings, it is important to find specific PA patterns
in participants of different classeswho follow learning modules
with different contents and with different PA goals. Moreover,
we noticed that most authors did not explain how they chose
the algorithms and did not specify the efficiency and accuracy
of the models used for detecting PA behavior changes, raising
uncertainty about how good they are at thistask. This suggests
that more efficient and accurate algorithms could be created
and callsfor moretransparency in the algorithm choice process.
Therefore, authors should explicitly describe the steps and
methodology of new algorithms, and share their source codes
to be scrutinized and to compare their detection accuracy. The
creation of open accelerometry databases is also needed to
enable benchmarking.

I nterpretation of the Resulting Data Mining M odels

The main uses of the data mining models focused on
personalization, support for self-reflection, and analysis of PA
behaviors. Model interpretation focused on generating
personalization and support for promoting behavior changes.
Personalized feedback and intervention programs were based
mostly on the participants’ PA data. Theinclusion of additional
information that may influence behavior changes (eg, contexts,
schedules, socia constraints, motivation, and weather) would
allow for better interpretation and use of the detected behavior
changes. Systems could expl oit these additional datato improve
the feedback delivery time and content, with positive effectson
the effectiveness of health education programsand interventions.
For instance, with the current model s, a participant could receive
an automatized personalized behavior change message that
suggests taking a short walk, athough it is snowing outside.
Thiswould decrease thelikelihood of foll owing the suggestion.
However, if the system could be aware of the wesather, the
participant would receive this suggestion only after the weather
conditions haveimproved, or adifferent suggestion that ismore
likely to trigger a behavior change at that point in time.
Moreover, asthe modelsrelied mainly on PA featuresto model
and interpret the behavior changes, only the physical dimension
of the learning processin health education was incorporated in
the modelsand their interpretation, leaving aside the knowledge
dimension of the learning process. Learning management
systems and intelligent tutoring systems already capture the
knowledge dimension. Their integration would help to
understand, in a comprehensive way, how participants learn,
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and would enabl e the real-time monitoring of how PA behavior
changes align with the intervention purpose. Thiswould allow
adapting each participant’s content and learning objectives in
real time, thereby improving instructionsand learning, ultimately
increasing the program or intervention effectiveness.

Most of theincluded studies generated complex output models
that require detailed knowledge of how they were created to
interpret the resulting patterns, making them difficult to
understand for health scientists and any other scientist not
familiar with machine learning. Thisis a common problem in
interdisciplinary teams; however, an effort can be madeto create
more readable, intuitive, and easy-to-understand algorithms and
methods, a goal that exists in related machine learning areas
such as explainable artificial intelligence [32].

Limitations

Studi es on wearable machine learning devicesto detect changes
in PA in health education have only started to be published in
thelast decade. Asresearch isadvancing, keywordsare changing
and new terms are created. Although we used a wide range of
keywords in our query to include sensors, PA, and health
education, we may have left some keywords out, and thus we
may have missed some references. This may have also affected
theinitial reference screening process by title and abstract. We
minimized this issue by testing several queries before starting
our systematic review until we found the one we ultimately
used. Another possiblelimitation in our search isthat we might
have omitted references listed only in other peer-reviewed
databases (we searched only the most popular databases in
engineering and computer science), such as medical databases
(ie, PubMed). We mitigated thisrisk by including grey literature
in our systematic review (see the Methods section).
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Regarding the research subquestions and the review structure,
we created research subquestions in line with the usua data
mining process steps, but we certainly left some topics
unaddressed. For instance, we did not address ethics, privacy,
and security issues, or how dataarefiltered during preprocessing
(eg, deeping time or sensor nonuse). Although these are
common substeps during the datamining processand including
them would have made this systematic review more
comprehensive, we preferred to limit this review only to the
critical steps.

Conclusions

In the last 10 years, different methods have been developed to
detect behavior changesin health education or health promotion
contexts. These methods have been tested in small populations,
are based on short data-recording periods, and rely mainly on
accelerometry data. Incorporating information that is
complementary to the participants’ PA data would allow for
creating more precise detection models, better interpreting these
models, and understanding how participants learn and what
triggers new behaviors. Exploring other data aggregation levels,
in addition to days and minutes, could hel p to detect more subtle
and long-term behavior changes. Fully describing the data
preprocessing methods and the efficiency and accuracy of the
behavior change detection models would help to better
understand, scrutinize, and compare studies. Detection models
were mainly used to generate personalized feedback and to
provide support for promoting or maintai ning behavior changes,
but did not integrate the knowledge dimension of the learning
process. Adding the knowledge dimension and creating
easier-to-understand models could facilitate the interpretation
of participants behavior changesin amore comprehensive way,
opening the way toward better and deeper analyses and
personalization.
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Abstract

Background: Common datamodels (CDMs) are essentia toolsfor data harmonization, which can lead to significant improvements
in the health domain. CDMs unite data from disparate sources and ease collaborations acrossinstitutions, resulting in the generation
of large standardized data repositories across different entities. An overview of existing CDMs and methods used to develop
these data setsmay assist in the devel opment process of future modelsfor the health domain, such asfor decision support systems.

Objective: This scoping review investigates methods used in the development of CDMs for health data. We aim to provide a
broad overview of approaches and guidelines that are used in the development of CDMss (ie, common data elements or common
data sets) for different health domains on an international level.

Methods. Thisscoping review followed the PRISMA-SCR (Preferred Reporting Itemsfor Systematic Reviewsand Meta-Analyses
extension for Scoping Reviews) checklist. We conducted the literature search in prominent databases, namely, PubMed, Web of
Science, Science Direct, and Scopus, starting from January 2000 until March 2022. We identified and screened 1309 articles.
The included articles were evaluated based on the type of adopted method, which was used in the conception, users' needs
collection, implementation, and evaluation phases of CDMs, and whether stakeholders (such as medical experts, patients
representatives, and I T staff) were involved during the process. Moreover, the models were grouped into iterative or linear types
based on the imperativeness of the stages during development.

Results: We finaly identified 59 articles that fit our eligibility criteria. Of these articles, 45 specifically focused on common
medical conditions, 10 focused on rare medical conditions, and the remaining 4 focused on both conditions. The development
process usually involved stakeholders but in different ways (eg, working group meetings, Delphi approaches, interviews, and
guestionnaires). Twenty-two models followed an iterative process.

Conclusions: Theincluded articles showed the diversity of methods used to develop a CDM in different domains of health. We

highlight the need for more specialized CDM devel opment methods in the health domain and propose a suggestive devel opment
process that might ease the development of CDMs in the health domain in the future.

(IMIR Med Inform 2023;11:e45116) doi:10.2196/45116

KEYWORDS

common datamodel; common data el ements; health data; electronic health record; Observational Medical Outcomes Partnership;
stakehol der involvement; Data harmonisation; Interoperability; Standardized Data Repositories, Suggestive Devel opment Process;
Healthcare; Medical Informatics;
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Introduction

Rationale

Integration of heterogeneous datais a ubiquitoustopic in modern
medicine. The arising large variety of data has the potential to
providein-depth insights about different aspectsof clinical care
and can lead to improvements in health care [1,2]. Yet,
challenges, such as the identification and access of relevant
data, the association between different data sources, and the
assurance of data quality given the structural variations among
data sources, till pose mgjor barriers [3,4]. Common data
models (CDMs) provide the possibility of harmonizing data
from disparate sources, storing information in a standard
structure by defining the syntax and semantics of data, and
enabling operations on data using standard anaysis methods
[5]. In particular, a CDM contains a unified set of metadata,
allowing data and its information content to be shared across
applications and ingtitutional borders, and thus enabling
harmonized data integration and analysis on an international
scale[6].

In the health domain, there are different types of CDMs (eg,
CDMs for harmonization and storage of electronic health
record—based patient data). An example is the Observational
Medical Outcomes Partnership Common Data Model (OMOP
CDM) developed by the Observational Health Data Science
and Informatics (OHDSI) community, which ensures
homogeneous storage of observational health care data across
different databases with similar formats and terminologies[7].
There are also further CDMs for clinical data, like Sentinel
CDM, Clinicd Datalnterchange Standards Consortium (CDISC)
Study Data Tabulation Modd (SDTM), and National
Patient-Centered Clinical Research Network (PCORnet) [8],
and data warehouse models, like Informatics for Integrating
Biology and the Bedside (i2b2) [9]. Moreover, some CDMs
define the data from patient cohorts and describe a medical
speciaty or agroup of diseases. For example, there are specific
CDMsfor the domain of rarediseases[10,11] or radiology [12].
Overdl, there is a large variety of CDMs in the literature for
common, rare, and context-specific medical examinations, and
each of them follows amore sel f-defined devel opment process.

Asdescribed by Méelles et al [13], apractical design meetsthe
users’ needs. While designing a CDM in the health domain, in
additionto thedevelopers (ie, I T staff and computer scientists),
the primary stakeholders (ie, patients and clinicians) are
particularly interested in the outcome. It is therefore
recommended to include them in the design process as early as
possible [13,14]. In addition to the stakeholders, the medical
context is also quite complex and requires extensive medical
and technical expertise to ensure the usefulness of the model
after its development. This is why the development process of
a CDM s critical and a comprehensive development method
or guideline is necessary.

Studies, such as those by Gericke and Blessing [15] and Bobbe
et a [16], have already tried to determine the commonalities
and differences in development processes across disciplines.
Bobbeet a [16] performed acomparison of design modelsfrom
academic theory and professiona practice, and discussed 8 types

https://medinform.jmir.org/2023/1/e45116
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of design processes. In particular, the basic design cycle, V
design process, human-centered design, hypercyclic design,
Munich procedural model, double diamond model, frog model,
and IDEO model were presented. Additionally, Melles et al
[13] introduced categoriesfor models, namely, whether amodel
is activity-based or stage-based, solution-oriented or
problem-oriented, and design-focused or project-focused.

However, given the complexity of the health domain and the
importance of many stakeholders taking part in the process, it
might be difficult to transfer modelsfrom other disciplines. This
iswhy we aim to derive such aprocess and review the available
CDM instances in the domain. Exemplarily, the results of this
scoping review will be integrated into the design and
development of a CDM for the SATURN (“ Smartes Arztportal
fur Betroffene mit unklarer Erkrankung” [“Smart physicians
platform for patients with unclear diseases’]) Project in the
future [17]. This project aims to develop an artificia
intelligence-based diagnosis support tool for primary care
physicians. With the help of user-centered design, the
requirements of a decision support tool, especialy for
noncharacteristic symptoms, will be studied. The medical focus
ison the diagnosis of unclear and rare medical conditions. This
iswhy, in this review, we focus on the similarities between the
CDM development methods in rare medical conditions and
common medical conditionsin order to determine whether the
methods for common medical conditions can be adopted for
rare medical conditionsaswell. On atechnical level, rule-based
systems, machine learning, and case-based reasoning will be
implemented. Aspart of thisproject, CDMsfor 3 groupsof rare
diseases, namely, endocrinology, gastroenterology, and
pneumology, will be devel oped.

Our review contributes to the analysis of CDM devel opment
methodsin the health domain on an international scaleand aims
to explore the actual involvement of stakeholders, especially
medical experts, in the development process. To the best of our
knowledge, this is the first scoping review focusing on CDM
development methods in the health domain.

Objectives and Research Questions

This scoping review has been conducted to provide an overview
of the methods used for the initial and further devel opment of
CDMs in the health domain. We divided the overall
development process into conception, users needs collection
(eg, collection of evidence, review of the literature, and
guidelines), and implementation, as well as individual
evaluations within the phases. We consider the conception phase
asaninitia step, wherethe CDM istheoretically designed along
with stakeholders. Subsequently, the essential elements
previously identified are gathered in the “users needs
collection” phase. The finalized process, in which the
conceptualized model is implemented and ready-to-use, is
termed the implementation phase.

According to the rationale and objective explained above, this
scoping review examines the following questions:

1. How are CDMs methodically developed in the health
domain? What requirement analysis methods, design
processes, and validation methods were used?
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2. How or when do stakeholders, especially medical experts,
get involved in the development process?

3. How can the CDM development methods be classified
based on their requirement anaysis methods, design
processes, validation methods, and model type?

Methods

Protocol and Registration

To ensure methodological quality, this scoping review has
followed the Preferred Reporting Itemsfor Systematic Reviews
and MetaAnalyses extension for Scoping Reviews
(PRISMA-ScR) checklist [18]. According to this checklist, we
published and registered the review protocol [19]. Out of the
22 items of the PRISMA checklist, 20 have been considered in
thisreview (Multimedia Appendix 1).

Sear ch Strategy

To achieve a comprehensive query, an initial search was
performed in PubMed with the term “ common datamodel.” Six
randomly chosen articles matching the topic were analyzed
[10-12,20-22]. The keywords associated with the articles listed
in Table 1 were considered and subsequently tested in the query.

Ahmadi et al

The combination of termsthat delivered the highest number of
matching articles wasincluded in our final search string.

Some studies used the term data set [11], and others defined
alternative data elements that can be part of a data set or data
model [10]; thus, to avoid the exclusion of certain studies, we
jointly used the following terms in our search string: common
data model, common data element, and common data sets. We
also added the short forms of these terms in our search string
and analyzed the relevance of theresultsby simply looking into
the resulting literature. Additionally, we added the following
terms in our search string to ensure that the included CDMs
were developed within the health domain: medical, medicine,
health, healthcare, health care, electronic health, clinical, and
disease. The search string used in PubMed is presented in Table
2. It was developed as a combination of the mentioned terms,
their possible variations, and where applicable, Medical Subject
Headings (MeSH) [23]. The search strings used in the other 3
databases have been provided in Multimedia Appendix 2.

The query was designed and tested by the author NA and was
approved by all coauthors. The resulting articles were added to
Rayyan (Rayyan Systems Inc) [24] for further screening and
annotation.

Table 1. Six randomly chosen articles for the construction of the search string and their keywords.

Articletitle

Keywords

The EPIRARE proposal of aset of indicators and common data el ements
for the European platform for rare disease registration [10]

A methodology for aminimum data set for rare diseasesto support national
centers of excellence for healthcare and research [11]

Development and validation of the Radiology Common Data Model (R-
CDM) for the international standardization of medical imaging data[12]

Common datamodel for natural language processing based on two existing
standard information models: CDA+GrAF [20]

Genomic common datamodel for biomedical datain clinical practice[21]

Towards a newborn screening common data model: The Utah Newborn
Screening Data Model [22]

Registries, common data el ements, European platform, rare diseases, pa-
tient registration, and EPIRARE

Common data elements, interoperability, metadata, minimum data set,
national health program, and rare diseases

Metadata, standardization, and radiology information system

Natural language processing, medical informatics, datamodel, information
model, HL7 clinical document architecture, and | SO graph annotation
format

High-throughput nucleotide sequencing, data analysis, and observational
study

Newborn screening, newborn screening laboratory information manage-
ment system, common data model, interoperability, electronic data ex-
change, NBS, LIMS, and standards

Table 2. Search strings used to identify articles from PubMed.

Search aspects ~ Variations

Search string?

Common data
model

Common data model (CDM), common data
element (CDE), and common data sets (CDS)
set*”

Health care Medical, medicine, health, healthcare, health

care, electronic health, and disease

(“common data model” AND CDM) OR (“common data element*” AND CDE)
OR * Common Data Elements’[Mesh] OR “common dataset*” OR “common data

medical OR medicine OR “Medicine’[Mesh] OR health OR “Heath’[Mesh] OR
healthcare OR “health care” OR “électronic health” OR clinical OR disease OR

“Disease’ [Mesh]

#The common data model and health care search terms were combined with “AND.”

In particular, literature from 2000 to 2022 was considered, which
isan extension of the previously published study protocol [19].
It is also noteworthy that the MeSH terms were only available
in PubMed. Thelanguage of the articleswaslimited to English.
Using the Boolean operators “AND” and “OR,” the systematic
search was carried out in the following electronic databases:

https://medinform.jmir.org/2023/1/e45116

PubMed, Web of Science, Science Direct, and Scopus. The
search was performed in March 2022. The publication date tag
in PubMed and Web of Science was set to January 1, 2000, to
March 15, 2022, and that in Science Direct and Scopus was set
to 2000 to 2022 (it is not possible to specify the month and day
in Science Direct and Scopus).
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Inclusion and Exclusion Criteria
The inclusion and exclusion criteria are summarized in

Ahmadi et al

Multimedia Appendix 3 and are visualized along with the
number of outcome articlesin Figure 1.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart showing the paper selection process and the

inclusion and exclusion criteria. CDM: common data model.
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Selection and Review of Articles

Duplicates were removed using the built-in function in Rayyan
[24]. The process of deletion was monitored by the author NA.
After eliminating duplicates, the selection of studies was
performedin 2 steps. Thetitle and abstract screening stepswere
performed by the authors in groups of two. The articles were
tagged as “include,” “exclude,” or “maybe.” Tagged articles
were decided upon based on the tags described in Table 3.

Disagreements were resolved by a third author. This process
was initially carried out on 10% of the articles to confirm the
accuracy of our inclusion and exclusion criteria, and clarify
ambiguities. After the title and abstract screening, the full text
of the included articles was screened by the authors, again in
groups of two. The selected articles were included in the data
extraction step.

Table 3. Description of tags used by the authors in the article screening process.

Author 1 Author 2 Decision

Include Include Included

Include Exclude Discuss and decide together
Include Maybe Include

Exclude Maybe Exclude

Maybe Maybe Discuss and decide together

Data Charting and Extraction Process

A datacharting table was devel oped and refined throughout the
study, with several iterations. Thistable contained alist of items
that were extracted from all included publications. All authors
examined 10% of the articles for the defined data items and
refined the data charting table, if necessary. The data charting
table, including the extracted information from articles, is
included in Multimedia Appendix 4.

For each article, we focused on 4 major aspects. (1) the meta
information, such as DOI, authors, year, country, and project
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name, if applicable; (2) the medical condition for which the
CDM was built, whether the condition is rare or common, the
organ affected by the condition, and whether the condition is
long term (longer than ayear) or short term; (3) methodol ogi cal
information, such asrequirement analysis, design, and validation
process; whether the design process waslinear or iterative; and
advantages and disadvantages of the method, as stated in the
respective article; and (4) information about stakeholder
involvement. The extracted data elements, their categories, and
their definitions are shown in Table 4.
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Table 4. Data extraction sheet with specified elements, categories, and subcategories, including their definitions.

Category and subcategory

Definition

M eta information
DOI
Author
Publication year
Country of study

Project name

Medical background
Medical condition
Organ function
Short-term/long-term condition

Is the condition rare or common?

Requirement analysis method

Literature analysis

I nterview/questionnaire

Delphi

Review of existing CDEs

Design

Creation of new CDEs

Modification of existing CDESs

Reuse of existing CDEs (without modification)

Validation

External experts

Others
Model type

Iterative

Linear

Stakeholder information

Were stakeholders involved in the design process?

Which stakeholders were involved?

When did they get involved in the process?

A link to the article
First author’'s name
Year of the publication date of the article
Country of the leading author’s affiliation

If applicable; when the CDM? study was part of a project/consortium

Name of the medical condition for which the CDM was built
Organ affected by the medical condition
Short term: less than a year; long term: longer than ayear

Isthe medical condition considered rare or common based on its occurrence? Available an-
swers: common medical condition, rare medical condition, and conditions that can be rare
and common.

It includes searching in avariety of literature, such as extraction of frequent CDES from
real-world data, data harmonization across studies, multicenter longitudina and observational
studies, consensus documents and guidelines, primary outcome data of trials, review of in-
struments, and forms like report forms, users' needs collection forms, etc.

It includes expert interviews, focus group meetings, working group meetings, consensus
meetings, workshops and discussions, and online surveys.

Delphi or modified Delphi was used. Delphi techniquesinvolve experts eval uating complex
issuesiteratively, where knowledge isincomplete or uncertain. Typically, the response from
the previous questionnaire is appended to the next questionnaire [25].

When an existing CDE was validated/reviewed.

If therewere no CDEsin the domain and the expertstried to come up with some CDEs using
literature in the field.

If existing CDEs in a disease domain were modified.

If existing CDEs in the domain were used without any modification.

It includes only external validation of any sort, such as public reviews on awebsite from
experts or nonexpertsin the field. Excluded are experts that were part of the conception
process of the model.

Any other type of validation, such asinterna reviews, working group consensus, etc.

When at |east one iterative process was performed during development of the CDM.

When there was no iteration in the process.

Yes/no

Patients’ representatives, clinicians, domain experts, computer scientists, IT personnel, and
registry staff

Inusers' needs collection (when expertswere involved in the preanalysis step, eg, collection
of evidence, review of literature, guidelines, etc), in conception (when expertswereinvolved
in conception of the CDES), in evaluation (when the model was evaluated via experts), and
in implementation (when experts were involved in the implementation of the model).

What was the nature of stakeholder involvement?  Through expert workshops, semistructured interviews, questionnaires, etc

Pros and cons of methods as mentioned in the article
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Category and subcategory Definition
Pros Advantages of the method as stated in the article
Cons Disadvantages of the method as stated in the article

3CDM: common data mode.
bCDE: common data element.

Visualization and Summarization of Results

At the end of the data extraction, the data items collected in
Table 4 were summarized and visualized. A flowchart according
to the PRISMA-ScR guidelines was designed to show the article
processing approach (Figure 1). Tables, timeline plots, histogram
charts, pie plots, and scatter histograms were used to display
the extracted dataitems. The graphicsand the required analysis
were performed using Python version 3.9.12 (Python Software
Foundation), with matplotlib, pandas, and NumPy packages.
The script used for the plotsis publicly available [19,26].

First, we aimed for a broad overview of available CDMs and
whether original CDMswere devel oped or existing CDMswere
modified, as well as whether they focused on common or rare
diseases and addressed a specific organ function. Second, to
answer our first research question, we documented the medical
domain of each article, whether the medical condition was
considered as long term (more than a year) or short term (less
than ayear), and the affected organ as stated in the respective
origina article. To classify the development process of the
CDMs, we documented 4 categories of data information for
each article: requirement analysis, design, validation, and model
type (Table 4). We categorized the methodol ogy that was used
for the requirement analysis (ie, why a CDM was needed), as
well as the context to design a set of common data elements
(CDEs). For validation, we distinguished between external
evaluation and any other type of evaluation. The “other”
category included the evaluations performed by the sameclinical
experts who were involved in the conception process, such as
working group consensus, user evaluations, reviews performed
viathe members of the project, statistical tests, and pilot tests
conducted within the project. Additionally, we investigated

https://medinform.jmir.org/2023/1/e45116

stakeholder involvement in the development stages in those
studies and whether the studies followed an iterative or linear
method of development. We used the advantages and
disadvantages of the methods as stated in the articles (Table 4)
and formulated them into alist of constraintsin the areaof CDM
development to further highlight the need for streamlined
methods. Finally, after analyzing the included CDMs, we
summarized the most frequent methods used in the included
literature in a suggestive development process that could be a
reasonable basis to start with when developing anovel model.

Results

Sdlection of Articles

In total, we identified 1309 articles from PubMed, Web of
Science, Science Direct, and Scopus search engines. From the
identified articles, after duplicate removal, 695 articles were
included in thetitle and abstract screening. Finally, 465 articles
underwent full-text screening, and of these, 59 matched the
full-text screening criteria of this review and were finally
included. We excluded articles that did not describe the
development or evaluation of a CDM in the health domain.
Additionally, articlesthat were not publicly available and those
in a language other than English were excluded. The article
identification process along with the inclusion and exclusion
criteriaare shown in Figure 1.

The selected articlesdefined CDM s, common datasets, or CDEs
for common or rare medical conditions. All included articles
were published between 2000 and 2022. As shown in Figure 2,
the number of articles that focused on CDM devel opment
increased after 2011 and continued to increase in the last years.
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Figure 2. The number of publications focusing on common data model (CDM) development per year from 2000 to 2022. The line chart compares the
number of articles developing original CDMs (original models) with the number of articles developing CDMs via modification of existing models
(modified models), and compares the number of articles developing CDMs for rare medical conditions (RMCs), the number of articles developing
CDMsfor common medical condition (CMCs), and the number of articles developing CDMsfor both kinds of conditions (CMCsand RMCs). In addition
to the increase in the number of articles from 2011 in general, we can see that CDMs for rare diseases were only developed starting from 2014.
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Country of Publication

We categorized the articlesinto countries based on the affiliation
of the first author. Among the 59 articles, 26 (44%) were
published in the United States, 8 (14%) were published in
Canada, and 6 (10%) were published in Germany. The number
of articles according to country is as follows: Belgium, 2
[27,28]; Canada, 8 [29-36]; China, 1[37]; Denmark, 2[38,39];
France, 2 [11,40]; Germany, 6 [41-46]; Italy, 1 [10]; Spain, 1
[47]; Republic of Korea, 1[48]; Norway, 3[49-51]; Switzerland,
1[52]; Taiwan, 1[53]; the Netherlands, 1 [54]; United Kingdom,
3 [55-57]; and United States, 26 [58-83].

Medical Conditionsand Their Domains

According to our research, CDMs were devel oped for avariety
of medical domains in the past 22 years; however, we divided
them into 3 categories, namely, rare, common, and rare and
common (both). An aggregated list of the medical conditions
and their domainsisshownin Figure 3. A full list of the medical
conditions extracted during this scoping review is shown in
Multimedia Appendix 4. An organ function overview and the
long- and short-term conditions are shown in Multimedia

https://medinform.jmir.org/2023/1/e45116
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Appendix 5. Among these, 10 (17%) CDMs were designed for
raremedical conditions, such asmyeloid leukemiaand rarelung
diseases, and mitochondrial diseases[41,44-46,59]. Moreover,
1 CDM, namely, the CDM in the study by Berger et a [44],
was designed for undiagnosed diseases in general.

Among the 59 articles, 45 involved the devel opment of a CDM
for common medical conditions. Theseincluded traumatic brain
injury [27,28,30], spina cord injury in children and youth [67],
dental caries[68], sport-related concussion [65], cerebral palsy
[29], degenerative cervical myelopathy [55], unruptured
intracranial  aneurysms and subarachnoid hemorrhage
[32,42,55,60], Chiari malformation type | [63], breast implant
[43], stroke [37], venous thromboembolism [33], pediatric
epilepsy [61], pediatric critical illness [62], pregnancy drugs
and treatments [49], sepsis [31], medication use in pregnancy
and breastfeeding [40], degenerative cervical myelopathy [55],
Gulf War illness[58], neuroinflammatory demyelinating disease
[43], traumatic brain injury [27], and neurologic disorder and
stroke [69]. Wandner et a [66] focused on clinical pain
management, and Jaboyedoff et a [52] focused on pediatric
diseasesin general.
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Figure 3. Characteristics of the included studies. A Venn diagram showing the proportions of identified common data models (CDMs) for common
medical conditions (76.3%; blue), rare medical conditions (16.9%; golden yellow), and medical conditions that could fit into both categories (6.8%).
Additionally, an aggregated list of medical conditions that CDMs were developed for in the studies is shown in 3 different colors according to their

categories.
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Stroke
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Epilepsy

Concussion

Drug safety

Maternity care

Celebral palsy

Kidney diseases

Gulf war illness

Spinal cord injury

Pediatric diseases

Traumatic brain injury

Venous thromboembolism (VTE)
Chiari malformation type [ (CMI)
Degenrative cervical myelopathy
Neuroinflammatory demyelinating diseases (NIDs)

Unruptured intercarcinial aneurysms (UIA) and subarachnoid hemorrhage (SAH)

Stakeholder | nvolvement

Toinvestigate the involvement of stakeholders, we summarized
at which particular stage they were involved in the CDM
development process. Out of the 59 included articles, 54 (92%)
mentioned at least one stakeholder in the design process.
Additionally, we were interested in the different types of
stakeholders that were involved, how they were involved, and
at what stage of the process they typically got involved. As
shown in Figure S1 in Multimedia Appendix 6, stakeholders
weremostly involved intheinitial stage, namely, the conception
phase. Domain experts and clinicians were the most common
stakeholders involved in the studies (Figure S2 in Multimedia
Appendix 6). Additionally, while many different methods were
used to involve the stakehol ders, such as expert groups, surveys,
consensus meetings, interviews, teleconferences, questionnaires,
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and workshops, “working group” was the most frequent method
used (Figure S3in Multimedia Appendix 6).

Design Process

The methods used in the articles for designing a CDM were
literature analysis, interview, Delphi, and review of existing
CDEs. From our extraction table (Multimedia Appendix 4), we
noted that 39 articles involved the definition of an original
model/set of CDEs, 13 involved the modification of an existing
set of CDEs, and 29 involved the use of an existing set of CDEs
without any modifications. The external evaluation included
web-based feedback, public review and comments, and feedback
in aconference, among others. Finally, wefound that 26 articles
involved a rather linear design method and 22 others involved
an iterative process. Thelist of articles that involved the use of
each of these categories is shown in Figure 4. Detailed
information is presented in Multimedia Appendix 4.
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Figure 4. Methodological information on the articles [10,11,27-83]. The y-axis shows the list of articles by publication year. The x-axis shows the
methodological categories. The scatter plot includes a cross mark when the Boolean is true for a specific article, for example, if the authors have used
literature analysis as a preanalysis method, a cross (x) is added. The sum of cross marks in each column contributes to the bar size of the bar plot
positioned on the x-axis. To improve visibility, each subcategory is shown with a different color. The subcategories of the same category are grouped

viathe same family of colors. CDE: common data element.
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Methodological Constraints Highlighted in Previous
Studies

The included articles presented a range of constraints in the
development process from the methods used in the different
stages of the process to the applicability of the outcome
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elements. For example, Thurin et a [40] performed interviews
with asingle data access provider per data source and mentioned
that other data access providers might conceptualize the data
source differently. Additionally, they tested the applicability of
the developed model only on the included data sources in the
project. The model might require modification to use it with
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other data sources. The limited sample size used to test the
developed model is a common problem in rare conditions [44]
giventherarity of the disease. One of the limitations mentioned
by Broglio et a [65] is that some of their developed CDEs
require special expertise that might not be implementable in
certain settings. Grinspan et a [61] mentioned that some
subcategories of epilepsy syndrome were merged at a level
higher into a single category, which might have led to reduced
dataresolution, although uphill mapping isoften used, especialy
inthe OMOP context [5]. Additionally, the el ements considered
do not cover every possibleinfluencing element, and the source
was limited to only US-based patients, which means the
elements can differ once an internationa data level is
considered. They also included CDEs that were documented as
freetext, and processing of such elements might require natural
language processing applications. The authors also highlighted
the possible bias caused by the methodol ogy used for consensus
and discussion, and the Delphi approach, focus groups, and
interviews might have also influenced the outcome of the study.

Figure5. Summary of abasic common data model development process.

& &
N . &
<" 1 ) Conception <
Early stages

Stakeholder involvement
eg, Domain experts, Clinicians, IT
personal, Registry staff, Patients’
representatives

Discussion

Overview

One of the mgjor challenges faced by CDM developersin the
health domain is the lack of a comprehensive methodology or
workflow to follow, which is aso reflected in this review. The
general models from industrial design and even academia (eg,
the model introduced by Bobbe et al [16]) do not generally
trand ate one-to-one to the health domain. The medical context
isusualy complex, and the involvement of stakeholders, such
asclinicians, patients' representatives, and I T staff, is of utmost
importance to ensure the applicability of a to-be-developed
CDM. In addition, user-friendly, adaptable, and straightforward
models are preferred in health care as one can start working
with them without requiring a substantial amount of time [84].

This scoping review provides a summary of the devel opment
methods for CDMs and categorizes them based on the
requirement anaysis method, design process, validation
approach, and model type. A variety of methods were used in
the requirement analysis step in the articles, starting from
searching in different types of literature and medical guidelines
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Intermediate stages
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Essence of the CDM Development Process

Our outcomes showed that a heterogeneous variety of methods
or processes were used in CDM development in the included
articles, which highlights the need for a more streamlined
field-specific development method. Therefore, we summarized
our analysis outcomes into a suggestive development process
(Figure 5), considering the 3 development steps that have been
identified from the included models in this study, namely,
conception, users' needs collection, and implementation. We
suggest that evaluation and validation should be integrated into
every stage of development, which gives the stages an iterative
nature, and feedback should be integrated into the process as
much as possible. We also emphasize the involvement of
stakeholders in the process as early as possible and propose
continuousinvolvement until the end of the devel opment process
because in every phase, questions might arise that need to be
answered from different perspectives.

Late stages

Involvement methods

eg, Expert/working groups and Consensus
meetings, Survey, Interviews, Teleconferences,
Questionnaires

[43,44] to interviews [29], the Delphi approach [31], and a
review of existing CDEs. A full list of these articles is shown
in Figure 4 and Multimedia Appendix 4.

The majority of the developed CDMs have been designed for
common medical conditions, and only 10 articlesinvolved the
design of a particular CDM for rare diseases. However, we did
not find a significant difference in the devel opment process of
a CDM for rare and common conditions. Interestingly, based
on our analysis, we can conclude that common medical
conditions were the focus of CDM studies from early 2000,
whereas the first CDM for rare conditions was developed in
2014. Despite methodol ogical similarities, every article usually
mentioned following a more individualistic method of
development. This may arise because rare conditions occur
rarely and the number of patientsincluded in studiesis limited
[44]. Moreover, finding an expert for each rare or unclear disease
is a challenging task. Additionally, most of the information
crucia in the diagnosis of such diseases (like symptoms or
phenotypes and genotypes) is currently stored in unstructured
forms (eg, clinica notes). Extraction of such information
requires a lot of time and effort from technical and clinica
stakeholders [41].
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Thus, giventhe variety of studies, the methods used for common
conditions might be adaptable for rare conditions. Considering
that a CDM is an essential part of data harmonization (a
necessity in the health domain), we see highly emphasized
development models as essential. Therefore, after analyzing the
included CDMs, we summarized a suggestive development
process that is shown in Figure 5, which could be the starting
point for conceptualizing and implementing novel CDMs.

Limitations

Thefindings of our study are subject to certain limitations. First,
our analysis is restricted to the selected databases, namely,
PubMed, Web of Science, Science Direct, and Scopus.
Additionally, the scope of our investigation is confined to
articles published within a specific time frame and written in
English. Moreover, we did not conduct any assessment of the
quality of theincluded articles. In addition, it may also be worth
noting that the authors of this review have varying
interdisciplinary backgrounds, expertise levels, and experiences
in the CDM field. However, to optimize the screening and
analyzing processes, we performed them in pairsand first tested
the method on a subset of 10% of the articles, resulting in a
minimal number of conflicts.
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Conclusion

We considered 4 steps in the development of a CDM:
conception, users needs collection, implementation, and
evaluation. We could identify 4 groups of methods that were
most often used in the articles as part of the requirement analysis
of the CDM development process. These were literature
analysis, interviews, Delphi approaches, and review of existing
CDEs. The articles considered in this review either devel oped
a new CDE or made use of an existing set of CDESs with or
without modification.

Most of the articles involved at least one stakeholder from
among domain experts, clinicians, IT staff, registry staff, and
patients’ representatives, and mostly fromtheinitial step, which
was conception. The methods used to involve the stakeholders
were expert groups, surveys, consensus meetings, interviews,
working groups, teleconferences, questionnaires, and workshops,
and among these, working groups were most often used.

We concludethat the methods used in the devel opment of CDMs
in the health domain are heterogeneous and thisfield islacking
solid guidelines that may ease up this process, especialy in
terms of the reusability and adaptability of aCDM. Thisiswhy
the proposed outline (Figure 5) could be a reasonable basis to
start with. In our future work, we plan to test and improve the
proposed outline for developing a CDM.
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Abstract

Background: With the advent of the digital economy and the aging population, the demand for diversified health care services
and innovative care delivery models has been overwhelming. This trend has accelerated the urgency to implement effective and
efficient dataexchange and serviceinteroperability, which underpins coordinated care services among tiered health careinstitutions,
improves the quality of oversight of regulators, and provides vast and comprehensive data collection to support clinical medicine
and health economics research, thus improving the overall service quality and patient satisfaction. To meet this demand and
facilitate the interoperability of IT systems of stakeholders, after years of preparation, Health Level 7 formally introduced, in
2014, the Fast Healthcare Interoperability Resources (FHIR) standard. It has since continued to evolve. FHIR depends on the
Implementation Guide (IG) to ensure feasibility and consistency while devel oping an interoperable health care service. The |G
defines rules with associated documentation on how FHIR resources are used to tackle a particular problem. However, a gap
remains between 1Gs and the process of building actual services because 1Gs are rules without specifying concrete methods,
procedures, or tools. Thus, stakeholders may feel it nontrivial to participate in the ecosystem, giving rise to the need for amore
actionable practice guideline (PG) for promoting FHIR's fast adoption.

Objective: Thisstudy aimed to propose ageneral FHIR PG to facilitate stakeholders in the health care ecosystem to understand
FHIR and quickly develop interoperable health care services.

Methods: We selected a collection of FHIR-related papers about the latest studies or use cases on designing and building
FHIR-based interoperable health care services and tagged each use case as belonging to 1 of the 3 dominant innovation feature
groups that are also associated with practice stages, that is, data standardization, data management, and data integration. Next,
we reviewed each group’s detailed process and key techniques to build respective care services and collate acomplete FHIR PG.
Finally, as an example, we arbitrarily selected a use case outside the scope of the reviewed papers and mapped it back to the
FHIR PG to demonstrate the effectiveness and generalizability of the PG.

Results: The FHIR PG includes 2 core elements: one is a practice design that defines the responsibilities of stakeholders and
outlines the complete procedure from datato services, and the other is a development architecture for practice design, which lists
the available tools for each practice step and provides direct and actionable recommendations.

Conclusions: The FHIR PG can bridge the gap between | Gs and the process of building actual services by proposing actionable
methods, procedures, and tools. It assists stakeholders in identifying participants' roles, managing the scope of responsibilities,
and developing relevant modules, thus helping promote FHIR-based interoperable health care services.

(JMIR Med Inform 2023;11:e44842) doi:10.2196/44842

KEYWORDS

Health level 7 Fast Healthcare Interoperability Resources;, HL7 FHIR; interoperability; literature review; practice guideling;
mobile phone
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Introduction

Background

The development and innovation of health care service models
have accelerated the demand for data exchange and service
interoperability. In the United States, the Health Information
Technology for Economic and Clinical Health Act took effect
in 2009, specifying health 1T-based systems as an integrated
part of the country’s health care reform. It has spurred the
electronic health record (EHR) adoption rate through reward
and punishment measures [1]. In addition, the US Department
of Health and Human Services established a specific agency,
the Office of the National Coordinator for Health Information
Technology, to accelerate the implementation of advanced
medical I T standards, promote the exchange of el ectronic health
careinformation, and improve the quality of health care services
throughout the country. In Canada, the federal government
funded an independent, not-for-profit organization called Canada
Health Infoway, tasked with accel erating the adoption of digital
health solutions, such as EHR, across the country. The
government has set a 10-year implementation strategy for EHR
in cooperation with the Canadian Ingtitute for Health
Information [2]. Japan has made great effortsto develop remote
health care technology and has established a communication
system among regional institutions by implementing el ectronic
medical records (EMRs) in the form of an app or software asa
service[3]. In China's state health system, major public hospitals
administered by national, provincial, and local health authorities
arethe pioneersin reforms. Over the years, the government has
issued a series of policies promoting coordinated care among
health care institutions at different levels of the health system
[4,5], together with many qualitative or quantitative assessment
criteria that guide the establishment of high-standard EMR
system, regional information interoperability, and intelligent
service and management in hospitals. In summary, the demand
for tiered and coordinated care delivery among health care
institutionsworldwideisincreasing rapidly, and the requirement
for health care data exchange continues unabated.

The enhancement of interoperability isrequired by transforming
hedlth care service model s and tackling the challenges of societal
problems. According to a United Nations report [6], the share
of the population aged =65 years is expected to increase from
9.3% in 2020 to approximately 16% in 2050. The rapid aging
of the population unavoidably increases the burden of chronic
disease care, bringing about the requirements for
people-centered and continuous care delivery built on the
foundation of arobust primary health care system. Therefore,
it is necessary to enhance health IT system interoperability to
bridge the gap between uneven health care resource distribution,
removethebarrier of isolated dataislands, and comprehensively
improve the quality of health care services.
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Health Level 7 Fast Healthcare I nteroper ability
Resour ces

Health Level 7 (HL7), founded in 1987, is a not-for-profit,
standards-developing organization dedicated to providing a
comprehensive framework and related standards for the
exchange, integration, sharing, and retrieval of electronic health
information that supportsclinical practice and the management,
delivery, and evaluation of health services. It has successively
released many standards, including HL7 version 2, HL7 version
3, and Clinical Document Architecture (CDA). However, with
the constant evolution of the internet and the thriving of the
application programming interface (API) economy, digital
services or assets of health organizations tend to be exposed
even more widely in the form of APIs. In this context, HL7
formally introduced Fast Healthcare I nteroperability Resources
(FHIR) in 2014, highlighting the core concept of resources, and
thus, creating anew erafor health care service interoperability.
A resource is the smallest exchangeable logical unit in FHIR.
Resources are independent of each other but can be linked or
assembled through specific rules to meet diverse service
requirements. FHIR combinesweb standardsto support resource
operations through RESTful APl in XML or JavaScript Object
Notation format. Compared with other aternative standards,
FHIR has more advantages and potential, such ascomprehensive
coverage of data definitions, substantial flexibility of data
exchange, explicit semantics, and many available open-source
tools, among others. Therefore, it has attracted constant and
favorable attention from health care stakeholders since its first
release, as shown in Figure 1.

We investigated the literature from the Web of Science and
plotted 2 statistical charts in Figure 1. Figure 1A shows the
promotion trends of different health data standards. By using
thesearchterm“HL7v2,” “HL7v3,” “HL7 CDA,” and“FHIR,
we identified the corresponding papers in the Web of Science
database from 2010 to 2022. The results show that the attention
paid to FHIR has increased rapidly within a short time, far
exceeding the HL7 version 2, HL7 version 3, and CDA
standards. Figure 1B compares FHIR-relevant literature among
different countries. We used the search term “FHIR” to find the
corresponding papersin the Web of Science database from 2014
t0 2022. By reading each paper’s abstract and the corresponding
author’'s information, we identified the country to which the
work belongs. Countries that record <5 papers fall into the
“others’ category. The chart shows that the United States,
Germany, and Canada were the top 3 countries that published
the most studies on FHIR, accounting for 28.39% (197/694),
11.67% (81/694), and 4.18% (29/694), respectively.

In addition to the dissemination activities of enthusiastic
researchersand pioneering health IT ecosystem players, national
health policy makers also play apivota rolein FHIR adoption,
as evidenced by the actions in the United Kingdom, United
States, and Canada [7]. Overal, FHIR has gradually gained
worldwide recognition and acceptance, and it has the most
potential for future large-scale promotion in the health care
ecosystem.
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Figure 1. Works of literature that focus on health data standards. (A) The attention to Fast Healthcare Interoperability Resources (FHIR) has risen

rapidly within a short time of itsfirst release, far exceeding HL7 version 2,

HL7 version 3, and Clinical Document Architecture (CDA) standards. (B)

The United States, Germany, and Canada are the top 3 countries that published the most literature on FHIR. HL: Health Level.
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Owing to the growing popularity of FHIR, some academic
researchers have authored review papersfrom their perspectives
in the last few years. Ayaz et a [8] searched for FHIR-related
papers published between 2012 and 2019 in 6 databases (ACM,
| EEE, Springer, Google Scholar, PubMed, and ScienceDirect)
and selected 80 papers for review. They found that FHIR is
identical in supporting intelligent technologies, such as
smartphones, tablets, mobile health apps, smartwatches, and
fitness trackers, which could solve numerous hedth care
problemsthat wereimpossiblefor the previous standards. Lehne
et a [9] searched for FHIR-related papers in 2 databases (Web
of Science and PubMed) up to 2019 and selected 131 papers
for review. The datistical results revedled that data
model—related topics mainly focusing on constructing profiles
toimplement FHIR in specific scenarios were the most attractive
direction. At the sametime, analytics-related topics concerning
data analysis, modeling, machine learning, and more were less
attractive because most FHIR projects were still in the initial
development phase, dealing with implementation and data
definitions rather than large-scale data analysis. Barker and
Johnson[10] surveyed 734 apps released up to December 2020
in 5 digital health care application libraries (hosted by Cerner,
Epic, Allscripts, Athenahealth, and Substitutable Medical
Applications Reusable Technologies [SMART]) and measured
their support for FHIR. They found that the number of appsthat
support the FHIR standard had increased from 19% in 2019 to
22% in 2020.
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However, to our knowledge, thereisalack of systematic reviews
that focus on the FHIR practice. A gap remains between the
FHIR Implementation Guide (1G) and building actual services
because IGs are rules specifying no methods, procedures, or
tools. Thus, stakeholders may feel it nontrivial to participatein
the ecosystem, giving rise to the need for a more actionable
practice guideline (PG) for promoting FHIR’s fast adoption.
Therefore, this study proposed a general FHIR PG to facilitate
stakeholders in the health care ecosystem to understand FHIR
and quickly develop interoperable health care services.

Methods

Article Selection

Figure 2 presents the paper selection flowchart used in this
review. Initialy, we identified a total of 487 papersin the Web
of Science and | EEE databases by using the search term “FHIR”
or “Fast Healthcare Interoperability Resources” Thetimerange
of publications was set from January 1, 2020, to July 1, 2022,
and wefinalized 205 articles. After excluding those that merely
mentioned the term FHIR but did not elaborate on it, 65 articles
wereretained. A check of duplicationsfrom thisbatch removed
afurther 3 articles. Finally, from the references of the remaining
62 articles, we found an additional 23 relevant articles, ending
up with a total of 85 articles as the research materials of this
study.
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Figure 2. Flowchart of paper selection.
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Analysis Process

By carefully analyzing and collating the recent studies on the
design of FHIR-based interoperable health care services, we
derived the details of the FHIR PG.

We selected 85 FHIR-related articles and found that building
FHIR-based health care services contains typicaly 3 stages,
that is, data standardization, data management, and data
integration. Each stage may use different practice methods,
depending on the targeted scenarios and types of services.

The way to categorize these 85 articles is as follows: if an
article’s main innovation feature focused on 1 of the 3 stages,
we assigned it to the corresponding group. Specifically, we
assigned those arti cles emphasi zing the design process of FHIR
profiles or proposing methods for migrating data from specific
clinical datamodels (CDMs) to FHIR to the data standardization
group, articles discussing the management of RESTful APIsto
the data management group, and articles presenting approaches
for integrating data with specific apps or platforms to the data
integration group.

After categorizing the articles, we reviewed the key techniques
used by each group to build their respective health care services.
We compiled a general FHIR PG through this review. The
workflow of the FHIR PG was derived by linking the stages,
each consisting of multiple steps. It is important to note that
alternative solutions might be identified for certain stepsin the
workflow based on different conditions. In addition, we

https://medinform.jmir.org/2023/1/e44842
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leveraged the collective experience of our team working on
health care IT projectsto further refine and optimize the FHIR
PG.

Finally, asan example, we arbitrarily selected ause case outside
the scope of the reviewed articles and mapped it back to the
FHIR PG to demonstrate the effectiveness and generalizability
of the PG.

Results

Article Classification

Data Standardization

Data standardization typicaly involves two main steps. (1)
defining profiles based on the data exchange requirements of
interoperable services and (2) filling these profiles with the
corresponding exchange data.

The base FHIR specification provides foundational resources
applicableto various health care contexts. However, health care
services often exhibit significant variability across different
jurisdictions. Therefore, the base FHIR specification typically
requires further adaptation, known as profile definition, to suit
specific application contexts. Profile definition mainly
encompasses three aspects: (1) rules about which resource
elementsto use and what additional elementsto add to the base
specification, (2) rules about which terminologies to use in
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particular elements, and (3) the restricted value range and
cardinality of the elements.

Table 1 liststhetypical profile definitions and the corresponding
FHIR foundational resources discussed in thereviewed articles.
As shown, these articles cover a wide range of categories,
including genomics [10-14], imaging [15-17], cancer [18-20],
diabetes [21,22], COVID-19 [23,24], infections [25],
electrocardiography [26], screening [27], and allergy [28].

There are typically 2 approaches to filling the profiles with
exchange data. One is redesigning the database to align with
the FHIR resource structure, and the other is mapping datafrom
an existing CDM-based legacy system to the FHIR-based
system. Table 2 lists relevant articles discussing the latter
approach. These articles could roughly fall into 7 groups based
on the types of source CDMs. The groups include informatics
for integrating biology and the bedside [29,30], Observational
Medica Outcomes Partnership (OMOP) [31,32], OpenEHR
[33,34], HL7 version 2 [35], variant call format [36], free text
or arbitrary proprietary data[37,38], and multisource [39-42].
Multisource refersto caseswhere multiple CDMsareinvol ved.
For example, the study by Lenert et a [40] focused on
transforming data from the OMOP and Patient-Centered
Outcomes Research Network to FHIR. The study by Pfaff et al
[39] aimed to transform data from informatics for integrating
biology and the bedside, OMOP, and Peti ent-Centered Outcomes
Research Network to FHIR. The study by Prud’ hommeaux et
al [41] compared 3 methods for transforming datafrom various

https://medinform.jmir.org/2023/1/e44842
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source CDMs into FHIR. The study by Kiourtis et al [42]
proposed a resource description framework transformation
toolkit to combine FHIR and non-FHIR data.

The studies in Table 2 indicate that the transformation from a
specific CDM typeto FHIR typically involves a2-step mapping
process: model mapping and element mapping. Model mapping
establishes a relationship between the original data model and
the FHIR resource. Element mapping comprises 2 parts, key
mapping and val ue mapping, which define how to map the data
fields from the source CDM to the corresponding fields in the
FHIR resources. The mapping rules observe the
consensus-mapping rel ationships established by domain experts.
These experts analyzed the semantic and structural differences
between the source CDMs and FHIR and determined the
appropriate mappings to ensure accurate and meaningful data
transformation. Although current datatransformation approaches
intend to support specific source data and target FHIR resource
types, it isworth noting that ongoing research and advancements
in domain-based applied artificia intelligence, including natural
language processing and deep learning, hold great potential for
developing more generalized data transformation algorithms.

Ashighlighted in previous studies, the granularity of data plays
acrucia role in data standardization. When the granularity of
the source data is finer than that of the target data, there is
potential for information loss during the transformation process:
the severity of information loss increases with the extent of the

granularity gap.
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Table 1. Profile definitions from the reviewed articles.

Theme and study, year

Involved Fast Healthcare Interoperability Resources

Genomics
Murugan et al [10], 2021
Seong et a [11], 2021
Alterovitz et a [12], 2020
Klopfenstein et a [13], 2021
Khalifaet a [14], 2021

Imaging
Kohli et al [15], 2018

Madrigal and Le[16], 2021

Boufahjaet al [17], 2021
Cancer

Zong et a [18], 2021

Gonzaez-Castro et a [19], 2021

Zong et a [20], 2020
Diabetes

Ludmann et a [21], 2020

Glachs et a [22], 2020

COVID-19
Bauer et al [23], 2021
Sass et al [24], 2020

Infections
Shiverset a [25], 2021

Electrocar diogram
Benhamidaet a [26], 2020
Neonatal screening
Bathelt et a [27], 2020
Allergy

Lenivtceva and Kopanitsa[28],
2021

DiagnosticReport, Specimen, ServiceRequest, Observation, and Task
Mol ecularSequence

DiagnosticReport, ServiceRequest, and Observation

Questionnaire and Document

Patient, PractitionerRole, Organization, Specimen, ServiceRequest, Media, RiskAssessment, Task, Medi-
cationRequest, CarePlan, DeviceRequest, NutritionOrder, SupplyRequest, and RequestGroup

Patient, DiagnosticReport, ImagingStudy, Allergylntolerance, Condition, MedicationOrder, Specimen,
Organization, Practitioner, and Medication

Media

Observation

Observation and DiagnosticReport

Observation, Device, FamilyMemberHistory, Allergylntolerance, Condition, Patient, M edicationStatement,
Encounter, Questionnaire, QuestionnaireResponse, and Procedure

QuestionnaireResponse

Observation

Procedure, ProcedureRequest, Communication, Appointment, Observation, Condition, CommunicationRe-
quest, Device, Encounter, Composition, Goal, Order, OrderResponse, M edicationAdministration, Medica-
tionOrder, Organization, Patient, Practitioner, RiskAssessment, QuestionnaireResponse, Basic, and Param-
eters

Questionnaire

Procedure, Observation, Condition, DiagnosticReport, Procedure, Consent, Immunization, MedicationState-
ment

Consent, Coverage, DeviceUseStatement, Encounter, Heal thcareService, Medication, MedicationAdminis-
tration, Medi cationStatement, Observation, Patient, Practitioner, Procedure, ServiceRequest, and Specimen

Observation

Patient, ServiceRequest, DiagnosticReport, Contract, Organization, and Practitioner

AllergyIntolerance
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Table 2. Datamigration from the existing clinical data model to Fast Healthcare I nteroperability Resources.

Study, year

Clinical datamodel of the source

Boussadi and Zapleta [29], 2017; Wagholikar et a [30], 2017
Jiang et a [31], 2017; Fischer et al [32], 2020

Ladas et al [33], 2022; Fette et al [34], 2020

Xiao et a [35], 2021

Dolin et al [36], 2021
Peterson et al [37], 2020; Wang et a [38], 2020

Lenert et al [40], 2021; Pfaff et al [39], 2019; Prud’ hommeaux et al [41],

2021; Kiourtis et al [42], 2020

Informatics for integrating biology and the bedside
Observational Medical Outcomes Partnership
OpenEHR

HL7?version 2
Variant call format
Free text or arbitrary proprietary

Multisource

3HL7: Hedlth Level 7.

Data Management

Data management includes data storage and data exposure.
Although FHIR defines 5 approaches for data exposure,
including RESTful API, messaging, documents, services, and
persistent store, recent articles predominantly chose to expose
datain theform of APIsbecause of the rapid growth of the APIs
economy. There are typically 2 methods for data management:
developing a customized FHIR warehouse to store and manage
FHIR dataor selecting amaturethird-party warehouseto handle
the task.

Table 3 shows various data management choices and their
corresponding targets. It reveals that developing a customized
FHIR warehouse to maintain FHIR data often requires meeting
some special service requirements. For instance, the customized
FHIR warehouse developed by Demurjian et al [43] aimed to
enable senditivity and multilevel security controls. The one
developed by Chatterjeeet a [44] and Saripalleet a [45] served
to integrate with specific terminology. The one developed by
Ruminski et al [46], Saripalle [47], and Yu et al [48] intended
to support multiple Internet of Things protocols. Finaly, the
one discussed in the studies by Khvastova et a [49], Dridi et al
[50], Lee et a [51], Tanaka and Yamamoto [52], Cheng et al
[53], Semenov et a [54], and Gruendner et al [55] was used to
support data preprocess plug-ins.

https://medinform.jmir.org/2023/1/e44842

On the other hand, several mature third-party platforms are
available for managing FHIR data. In 2018, a total of 6
technology giants, including Amazon, Microsoft, Google, IBM,
Oracle, and Salesforce, jointly announced that they would be
committed to removing the barriers to adopting health care
interoperability technologies, particularly those enabled through
the cloud [56]. All these companies have launched FHIR data
management platforms, providing FHIR data APIsfor resource
operations. Users of these platforms can storetheir dataas FHIR
resources and use the data APIs offered by the cloud platform
for service development. For instance, the studies by Shi et a
[57], Zampognaro et a [58], Ploner and Prokosch [59], and
Kamel and Nagy [60] chose cloud warehouses, and the study
by Mandl et al [61] chose an on-premises warehouse to rapidly
deploy an FHIR development environment.

The abovementioned analysis highlightsthat choosing between
proprietary and third-party warehouses involves trade-off
considerations. Maintaining FHIR data through a proprietary
warehouse offers 2 advantages. better privacy and greater
flexibility for functional expansion. However, developing a
proprietary warehouse requires extensive knowledge of FHIR
standards and software development skills, resulting in higher
costs. On the other hand, relying on third-party platforms offers
the advantages of lower cost and higher implementation
efficiency. However, storing sensitive data in a third-party
warehouse, with the service provider not being the data owner,
raises security and privacy concerns.
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Table 3. Fast Healthcare Interoperability Resources (FHIR) data management methods and their corresponding targets.

Method and study, year

Target

Develop FHIR warehouse
Demurjian et a [43], 2020
Chatterjee et al [44], 2022; Saripalle et al [45], 2020
Ruminski et al [46], 2016; Saripalle [47], 2019; Yu et al [48], 2021

Khvastova et a [49], 2020; Dridi et al [50], 2020; Lee et al [51], 2020; Tanaka

Support lattice-based access control

Integrate with specific terminologies
Support multiple 10T? protocols
Support data preprocess plug-ins

and Yamamoto [52], 2020; Cheng et a [53], 2021; Semenov et a [54], 2019;

Gruendner et a [55], 2021
Use third-party FHIR warehouse

Shi et a [57], 2021; Zampognaro et a [58], 2021
Ploner and Prokosch [59], 2020; Kamel and Nagy [60], 2018

Mandl et al [61], 2020

Rapidly deploy a development environment through a cloud
FHIR warehouse

Rapidly deploy a development environment through an on-
premises FHIR warehouse

4 0T: Internet of Things.

Data I ntegration

Dataintegration plays avita role in health care across various
domains, including service delivery, public health management,
and clinicdl medicine or hedlth care economics research,
enabling better decision-making and improving overall health
care outcomes. In service delivery, data integration is crucial
for coordinating multiple IT systems, including the hospital
information system (HIS), laboratory information system,
picture archiving and communication system, EMR, and EHR.
In public health, local governments need to collect hedlth-rel ated
data within their jurisdictions to monitor regional health status
and effectively address public health issues. In clinical medicine
or health care economics research, it is essential to obtain data
from diverse domains to conduct comprehensive studies and
analyses.

There are 2 typical modes of FHIR dataintegration, aslisted in
Table 4.

Thefirst mode of dataintegration isusing an integrated service
platform (1SPf). The ISPf is an orchestrating platform offering

aseries of APl management functions such as API registration,
APl caling authorization, and APl routing forward.
Organizations wishing to exchange data through the | SPf must
register their APIs on the platform. Other organizations can
search for the appropriate APIson the | SPf and make API calls.
The | SPf performs API calling authorization to verify the calling
rightsand then routesthe API callsto the respective organization
towhichthe API belongs. This process facilitates dataexchange
among multiple organizations [62-75]. An example of thismode
isthe efficient transfer of medical recordswhen apatient referral
OCCUrs.

The second mode of dataintegration isby way of interoperable
apps. Different architectures can be selected for different
application scenarios. In the case of appswith specific functions,
such as statistics and analysis, SMART on FHIR would be a
more efficient option [76-85]. In the case of apps with
customized functions, such as supporting microservice
architecture or blockchain architecture, customized architecture
apps would be a more suitable option [86-94].

Table 4. Fast Healthcare Interoperability Resources data integration modes and their corresponding application scenarios.

Interoperable modes and study, year

Applied scenarios

Integrated service platform

Nan et al [62], 2021; Taechoyotin et a [63], 2021; Maxi and Morocho [64], 2022; Rosenau
et al [65], 2022; Corici et a [66], 2020; Papaioannou et a [67], 2021; Hidayat and Hermanto

Control exchange data through APIs? for service
coordination among multiple organizations.

[68], 2020; Sloane et a [69], 2021; Mukhiya and Lamo [70], 2021; Gruendner et al [71],
2022; Gruendner et a [72], 2020; Park et a [73], 2022; Ziminski et a [74], 2021; De et a

[75], 2021
App

Surgj et a [76], 2022; Michaels et a [77], 2021; Curran et a [78], 2020; Thayer et a [79],
2021; Karhade et a [80], 2021; Wedley et al [81], 2021; Burkhardt et al [82], 2021; Hoffman
et a [83], 2017; Stoldt and Weber [84], 2020; Stoldt and Weber [85], 2021

Alamri et a [86], 2021; George and Chacko [87], 2022; Gulden et a [88], 2021; Chaves et
al [89], 2021; Bae and Yi [90], 2022; Bettoni et a [91], 2021; Weber et al [92], 2020; Sfat et

a [93], 2021; Mohammed et al [94], 2021

Substitutable Medical Applicationsand Reusable
Technologies app: apps with specific functions,
such as statistics and analysis.

Other architecture app: apps with customized
functions, such as supporting microservice and
blockchain architecture.

3API: application programming interface.
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We present an FHIR practice design in Figure 3, which defines
the responsibilities of stakeholders and outlines the complete
practice process from data to services.

Figure3. The general Fast Healthcare Interoperability Resources (FHIR) practice guideline—practice design. API: application programming interface;

1G: Implementation Guide; | SPf: integrated service platform.
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| Gs Editing Group

The first stakeholder involved in the processis the | Gs editing
group, usualy coordinated by a government agency or an
institution with significant influence in the ecosystem. The
primary responsibility of this group is to define the data and
service models and release the 1Gs. The detailed processes are
asfollows. First, select necessary FHIR resources based on the
service requirements. Second, for specific requirements beyond
the scope of the original FHIR resources, the group needs to
customize resource structure by FHIR profile. Profile generally
involves 3 aspects: extending the datafield by FHIR extension,
linking the local CodeSystem to the CodeableConcept field of
FHIR resources, and restricting the cardinality and ValueSet of
FHIR foundational resource. The customized resources created
by the profile enable better alignment with the datarequirements
invarious scenarios. After completing the data unification task,
the IGs editing group moves on to the unification of services
workflow, which involves specifying the implementation steps
in the workflow and standardizing the corresponding APIs.
Ultimately, the abovementioned data and workflow
specifications are integrated to form the comprehensive FHIR
IGsthat health care IT system vendors can adopt.

Health CareIT System Vendor

The second type of stakeholder is the health care IT system
vendor, responsible for developing and maintaining systems,
such as the HIS, laboratory information system, and picture
archiving and communication system. First, the vendor must
implement the IGs published by the |Gs editing group, which
involves standardizing data by redesigning the database
according to the FHIR resource structure or mapping datafrom
existing CDM-based legacy systems to FHIR-based systems.
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Second, with RESTful APIs, the vendor has 2 options for data
exposure: either maintaining the FHIR dataand APIsthemselves
or selecting amature third-party platform. FHIR APIs must be
exposed to support resource-level operations regardless of the
chosen option.

It is worth pointing out that in terms of data exposure, FHIR
defines 5 different approaches, and each data exposure approach
has a different data integration method; it would be a lengthy
discussion if all approaches are considered. To make FHIR PG
more compatible with current technology stacks, we chose to
focus on RESTful API rather than on other approachesin this
study.

Health Care Application Developer

The third stakehol der involved in this processisthe health care
application devel oper, responsible for developing interoperable
services using open FHIR APIs. As described in the Data
Integration section, there are 2 typica modes. The first is to
develop an ISP, that is, an orchestrating platform, for service
interoperability. The ISPf manages open APIs registered by
each organization and enforces access specifications such as
IGs, profiles, and workflows. Any IT systems accessing the
| SPf and exchanging datamust comply with these specifications.
When an IT system needs to access multiple ISPfs, it must
support multiple specifications. In such cases, the IT system
can deploy an adapter above its native database to comply with
various specifications. When the I T system acts as a producer,
it reads the corresponding specifications from the adapter to
expose the data. When it acts as a consumer, it reads the
corresponding specificationsfrom the adapter to parse data. The
second mode is to develop specific apps that cater to specific
requirements. For example, an app built with SMART on FHIR
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architecture supports a flexible and switchable application
ecosystem.

Beneficiary

Beneficiaries such as hospitals, patients, public heath
institutions, and research institutions can benefit from
high-quality FHIR-based health care services. For instance, if
there is a need to exchange data through APIs to facilitate

service coordination among multiple organizations, they can
easily access the ISPf to fulfill this objective. Alternatively,

Nan & Xu

they can choose a suitable app from the application gallery that
caters to their needs and functions.

The Development Architecture for the Practice Design

Overview

We presented a 3-stage devel opment architecture for the practice
design, as shown in Figure 4. In addition, we compiled alist of
commonly used tools in Table 5 to support the devel opment
process.

Figure4. The general Fast Healthcare Interoperability Resources (FHIR) practice guideline—the development architecture for the practice design. I1G:
Implementation Guide; | SPf: integrated service platform; SMART: Substitutable Medical Applications Reusable Technologies.
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Tableb5. A list of commonly used tools.
Tool and description Availability
Data standar dization
HAPI2FHIRP Thistool provides Java APIC for HL79 FHIR clients and servers [99]
IGE Auto-Builder AN 1G publishing tool that makes your 1Gs to be visible on the internet [96] [97]
Firely Forge The official FHIR tool for managing FHIR profiles [98]
Firely Terminal A cross-platform command line tool with arange of commands for working with FHIR resourcesand  [99]
installing and publishing FHIR packages
Data management
Firely Facade A specia type of plug-in that registers services to access the existing data repository. It speaks FHIR in  [100]
the front-end and talks directly to native data in the back-end
FHIR Works on A framework used to deploy an FHIR server on AWS [1071]
AWS'
FHIR server for An open-source implementation of FHIR specification designed for the Microsoft cloud [102]
Azure
GCPY Healthcare A cloud application that accelerates health care solution development with fully managed, enterprise-  [103]
API scaleHL7 FHIR, HL7 version 2, and DICOM" APIs
IBM FHIR server  An open-source Java solution that supports the processing, validation, and storage of health caredata  [104]
according to the HL7 FHIR specification
Oracle Healthcare  The foundation of a health care information exchange platform that makes health care data more useful  [105]
Data Repository by supporting the integration and operation of afull spectrum of health care applications
Health Cloud A tool that combines clinical and nonclinical customer data to drive efficienciesin health [206]
Data integration
Spring Cloud Thistool provides an APl Gateway built on top of the Spring Ecosystem [207]
Gateway
Redis Thistool provides access to mutable data structures via a set of commands sent using a server-client [208]
model with TCP sockets and a simple protocol
Validator The HAPI FHIR Validator API isasimple REST! API to validate the structure and content of an FHIR  [109]
object
Elasticsearch A distributed, RESTful search and analytics engineis at the heart of the Elastic Stack [110]
OpenlD An open standard and decentralized authenti cation protocol promoted by the nonprofit Openl D Foundation  [111]
OAuth An open protocol to alow secure authorization in asimple and standard method from web, mobile, and [112]
desktop applications
SMARTX Define aworkflow that an application can use to securely request accessto data and thenreceiveand  [113]

use that data

3HAPI: Health Level 7 application programming interface.
BEHIR: Fast Healthcare Interoperability Resources.

CAPI: application programming interface.

9HL7: Health Level 7.

€1G: Implementation Guide.

fAWS: Amazon Web Services.

9GCP: Google Cloud Platform.

hpicom: Digital Imaging and Communicationsin Medicine.
'TCP: transmission control protocol.

IREST: representational state transfer.

KSMART: Substitutable Medical Applications Reusable Technologies.

Data Standardization

In the data standardization development stage, severa
components are defined to ensure the consistent use of codes
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within a specific context. The terminology system comprises
essential resources such as CodeSystem, ValueSet, and
ConceptMaps. These resources establish a framework for
determining which codes can be used. Furthermore, the

IMIR Med Inform 2023 | vol. 11 | e44842 | p.112
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

conformance system includes resources such as
StructureDefinition, OperationDefinition, Capability Statement,
and ImplementationGuide. These resources are crucial in
creating profiles and IGs that adhere to a specific exchange
framework. As mentioned in the Data Standardization section,
the granularity of the data plays a crucial role in information
loss. Pfaff et al [39] pointed out that information loss can be
avoided by defining custom values or extensions during the
data standardization stage. By incorporating custom values or
extensions defined in this stage, it is possible to capture and
preserve the finer-grained information that is likely to be lost
during the transformation process.

During this process, devel opers can use varioustoolsto facilitate
efficient datastandardization. The HL7 API (HAPI) FHIR offers
aJavaAPI for developing HL 7 FHIR clients and servers. Forge
serves as a management tool for FHIR profiles. The Firely
Terminal, across-platform command linetool, providesawide
array of commands for working with FHIR resources and
installing and publishing FHIR packages. 1G Auto-Builder is
another helpful tool that simplifiesthe creation and publication
of IGs, available on the internet [96].

Ultimately, the data standardization stage would generate a set
of 1Gs to ensure consistency and conformity in implementing
higher-level services.

Data M anagement

Various situations can arise in the data management
development stage, each bringing different challenges. These
situations can fall into 3 options.

Thefirst isto develop an FHIR-native warehouse that the health
care IT system vendor manages. In this scenario, the vendor
assumes responsibility for designing, implementing, and
maintaining the warehouse.

The second isto select awell-established third-party warehouse,
such as FHIR Works on Amazon Web Services, IBM FHIR
Server, Google Cloud Platform Healthcare API, FHIR Server
for Azure, Hedth Cloud, and Oracle Hedathcare Data
Repository, to store and explore the FHIR APIs. This approach
allowsvendorsto leverage the capabilities of mature third-party
warehouses for FHIR API functionality.

The third is to provide FHIR data using plug-ins. In this
scenario, vendors retain their existing data infrastructure and
use plug-ins to facilitate data transformation from its native
format to the FHIR format. A tool called Facade is available to
facilitate this mapping process.

As discussed in the Data Sandardization section, the
discrepancy in granularity between different systems can lead
to potential information loss. To mitigate thisissue, devel opers
can incorporate a mapping log within the transformer
component. When encountering a granularity gap during the
mapping process, the mapping log captures and recordsthe lost
information, associating it with the corresponding target resource
ID. This mapping log serves as a reference for any subsequent
services or systems requiring detailed information about the
mapping process. If the overlying services need to retrieve the
lost information, they can make arequest based on the resource

https://medinform.jmir.org/2023/1/e44842
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ID recorded in the mapping log. This measure allows them to
access the details lost during the initial mapping, ensuring that
the required information is preserved and available for further
analysis or processing.

Ultimately, the data management stage generates a series of
FHIR APIs. These APIs serve as a foundation for data
exploration and form the backbone of theinfrastructure required
for high-level services.

Data Integration

Two types of interoperable services are commonly used in the
dataintegration development stage.

Thefirst typeisthe | SPf, which enablesinteroperability among
multiple organizations. The | SPf comprises 4 key components:
gateway, validator, flow control, and log system. The gateway,
built by the Spring Cloud Gateway, is responsible for API
authorization and forwarding APl requests between
organizations. The validator ensures that the structure and
content of the API data comply with the FHIR object defined
in 1Gs. The HAPI FHIR Validator can build this functionality.
The flow control component is designed to limit the number of
simultaneous API calls to ensure a stable operation. Redis can
effectively fulfill the flow control requirements. As ISPf
manages multiple organizations and facilitates data exchange,
maintaining a comprehensive log system is crucial for history
tracking and auditing. Elasticsearch, a powerful search and
analytics engine, can be used to develop the log system within
the ISPf, enabling efficient storage and retrieval of API call
records.

The second type of interoperable service isrepresented by apps
built by the SMART on FHIR architecture [114]. This
architecture consists of 3 key components: the resource server,
authorization server, and the SMART on FHIR apps. The
resource server isan access layer between the data management
layer and the SMART on FHIR apps. The authorization server
(an Openl D Connect—compliant web server) authenticates users
and issues access tokens. SMART on FHIR apps is designed
with specific functionalities and can be substituted based on
user preferences.

Use Case

We arbitrarily selected a use case that was in addition to the
reviewed articles. Portugal et al [115] designed a smart bed
infrastructure with an HIS using FHIR. We mapped it back to
the FHIR PG to demonstrate PG's effectiveness and
generalizability.

In this case, the roles and responsibilities can be mapped to the
FHIR PG—practice design. The authors and their research
partners formed an 1Gs editing group to define I|Gs consisting
of profiles and workflows. The profiles were derived from
foundational FHIR resources such as Observation, Device, and
ServiceRequest. The workflows defined the frequency at which
the smart bed would collect vital signs from the smart bed.
Subsequently, the authors team, acting as a health care IT
system vendor, devel oped a gateway that gathersraw datafrom
sensors and converts it into FHIR for transmission. Although
they did not discuss the final applications in detail, it can be
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inferred that health care application devel opers can build a better
smart bed monitor based on their infrastructure.

The development architecture described in this paper can also
be mapped back to the FHIR PG—development architecture. In
the data standardization stage, the authors used the HAPI FHIR
for HTTP processing, parsing and serialization, and FHIR REST
semantics. It provided a bare-bones structure to build the API.
In the data management stage, the authors devel oped afog server
as a gateway between the smart bed and HIS. This fog server
isresponsiblefor collecting raw datafromthe HIS, transforming
it into the FHIR format, and facilitating its integration into the
FHIR ecosystem. Findly, in the data integration stage, the
authors enabled the HI S software to monitor patient procedures
and flows, accompanied by the OA uth2 protocol for secure API
communication.

Discussion

Principal Findings

FHIR has shown significant advantages in facilitating
interoperability among health IT systems compared with
established international standards. However, there are
challenges in large-scale implementation and promotion,
particularly in different countries. First, countries without
incentive policies to encourage FHIR research and
implementation may exhibit less enthusiasm for adopting FHIR
standards. Second, the lack of asuitableinfrastructure to support
the implementation process can result in high costs associated
with FHIR adoption. Third, thefoundational resources provided
by FHIR may not directly align with the specific service
requirements in different regions, necessitating additional
customization processes.

The following steps must be taken to address these challenges.
First, it is crucia to have government policies that encourage
the evolution and adoption of health care data standards. These
policies can stimulate the enthusiasm and investment of
stakeholders in the health care ecosystem to promote FHIR
implementation on a larger scale. Second, strengthening the
infrastructure helps reduce the cost and complexity associated
with FHIR adoption, which includes devel oping services such
asFHIR datastorage, data standard quality control, and managed
servicesfor dataoperations. Third, FHIR profiles and workflows
should be defined to address the specific requirements and
characteristics of local health systems. By tailoring FHIR IGs
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to match the needs of different regions, the gap between FHIR
foundational resources and specific service requirements can
be bridged.

FHIR holds significant potential in standardizing health care
data and promoting service interoperability among health care
ingtitutions. Its adoption can drive the transformation of the
health care service model and enhance the overall quality of
health care services. With the growing recognition of the
benefits of FHIR and its demonstrated impact on health care
interoperability, more stakeholders are expected to actively
participate in enriching itsimplementation. This collective effort
would lead to the emergence of extensive health care service
innovations, further enhancing the delivery of high-quality
health care services.

Limitations

There are a few current limitations when applying the FHIR
PG: (1) PG is derived from the waterfall model that follows a
sequential and linear approach. Each step must be completed
before proceeding to the next step. Therefore, it is
time-consuming and costly to return and modify the previous
stepsif changes are necessary during the devel opment process.
(2) Although PG emphasi zes the achievement of interoperability,
it leaves out the security discussion. Developers must
incorporate  additional  security = mechanisms  into
PG—development architecture to ensure secure interoperation
among multiple organizations.

Conclusions

Owing to the unique characteristics of FHIR, including
comprehensive coverage of data definitions, substantial
flexibility of data exchange, explicit semantics, and many
available open-sourcetools, FHIR-based services have attracted
strong interest from stakeholders in the health care ecosystem.
Current studies reveal that many institutions, such as hospitals,
regulators, and researchers, have already begun collaborations
in actively building FHIR foundational frameworks or
application use cases. After conducting the latest literature
review, we proposed a general FHIR PG to bridge the gap
between FHIR 1Gs and the practice of building usable services.
This PG helps stakeholders identify their participant roles,
manage the scope of responsibilities, and develop relevant
modules, which we believe would effectively facilitate the
application and promotion of HL7 FHIR standards across the
health care ecosystem.
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Abstract

Background: Recent advancesin natural language processing (NLP) have heightened the interest of the medical community
in its application to health care in general, in particular to stroke, a medical emergency of great impact. In this rapidly evolving
context, it is necessary to learn and understand the experience aready accumulated by the medical and scientific community.

Objective: The aim of this scoping review was to explore the studies conducted in the last 10 years using NLP to assist the
management of stroke emergencies so as to gain insight on the state of the art, its main contexts of application, and the software
tools that are used.

Methods: Datawere extracted from Scopus and Medline through PubMed, using the keywords “ natural language processing”
and “stroke.” Primary research questions were related to the phases, contexts, and types of textual data used in the studies.
Secondary research questions were related to the numerical and statistical methods and the software used to processthe data. The
extracted data were structured in tables and their relative frequencies were calculated. The relationships between categories were
analyzed through multiple correspondence analysis.

Results: Twenty-nine papers were included in the review, with the majority being cohort studies of ischemic stroke published
in the last 2 years. The majority of papers focused on the use of NLP to assist in the diagnostic phase, followed by the outcome
prognosis, using text data from diagnostic reports and in many cases annotations on medical images. The most frequent approach
was based on general machine learning techniques applied to the results of relatively simple NLP methods with the support of
ontologies and standard vocabularies. Although smaller in number, there has been an increasing body of studies using deep
learning techniques on numerical and vectorized representations of the texts obtained with more sophisticated NLP tools.

Conclusions: Studiesfocused on NLP applied to stroke show specific trends that can be compared to the more general application
of artificial intelligence to stroke. The purpose of using NLP is often to improve processes in a clinical context rather than to
assist in the rehabilitation process. The state of the art in NLP is represented by deep learning architectures, anong which
Bidirectional Encoder Representations from Transformers has been found to be especially widely used in the medical field in
general, and for stroke in particular, with an increasing focus on the processing of annotations on medical images.

(JMIR Med Inform 2023;11:e48693) doi:10.2196/48693

KEYWORDS

stroke; natural language processing; artificial intelligence; scoping review; scoping; review methods; review methodology; NLP;
cardiovascular; machine learning; deep learning
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Introduction

Stroke, also called “brain attack,” is a medical emergency that
occurswhen blood flow to apart of the brain is disrupted caused
by aclot blocking an artery or by acerebral hemorrhage dueto
aruptured artery. Stroke can result in arange of symptoms and
complications depending on the area of the brain that is affected,
having impacts on perception, motor control (typically weakness
or paralysison one side of the body, dizziness or difficulty with
balance), or behavior (difficulty in speaking or understanding
speech), which is a life-threatening emergency that requires
immediate medical attention. Although mortality from stroke
is decreasing in developed, high-income countries, it remains
one of theleading causes of mortality and disability along with
ischemic heart disease, and the prevalence of peopleliving with
the effects of stroke isincreasing due to the growing and aging
population [1].

Therefore, the economic and social costs related to the
hospitalization, treatment, and recovery of stroke patients are
increasing, and there is a growing demand for advanced
technologies that can assist in clinical diagnosis, treatment,
predictions of clinical events, intervention recommendations,
rehabilitation programs, and related factors[2]. For instance, a
quick diagnosis and treatment of strokeis crucial asit leadsto
improved outcomes and prognosis among patientstreated within
the so-called “golden hour” [3].

In this context, novel approaches that complement and go
beyond evidence-based medicine are required. Tools based on
artificial intelligence (Al), with their ability to process large
amounts of data, have been widely discussed in recent years as
one of the proposed approaches to improve the care of stroke,
assisting in diagnosis, prognosis, treatment, and prevention
[3,4].

Al is an interdisciplinary science with multiple approaches,
which in recent years has experienced a significant growth in
the fields of machine learning (ML) and deep learning (DL).
ML and DL algorithms can learn from data and improve their
performance over time without being explicitly programmed,
and these methods can deal with very large and complex data
sets. DL isconsidered arecent specialization of ML, which uses
artificial neural networks to extract complex representations
and featuresfrom data. Throughout the manuscript, adistinction
is made between DL, used for algorithms based on multilayered
neural networks, and traditional ML based on other techniques.

The application of Al to the management of stroke is a topic
that has gained a lot of traction in the general field of health
informatics[5], partly owing to the remarkable impact of stroke
in public health and the subsequent high demand for effective
and efficient tools to diagnose and treat stroke. Moreover, the
complexity and variety of stroke casuistry makeit agood target
for Al solutions, which are especially suited to process large
amounts of datafrom awide range of sources, identify patterns
and trends in large data sets, and learn and adapt to new data.

A domain where those advances have produced particularly
good results is natural language processing (NLP), which isa
promising tool for medicine to unlock the full potential of

https://medinform.jmir.org/2023/1/e48693
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electronic health records (EHRS), since it might be used to
automatically transform clinical text into structured clinical data
that can guide clinical decisions[6,7]. The potentia of NLPin
the analysis of EHR data is particularly appealing given the
great quantity of data contained in these records.
Notwithstanding their importance, such dataareintractable with
conventional mathematical methods, since they arerecorded in
clinical reports, prescriptions, annotations on medical images,
and generally unstructured texts [8].

NLP can assist in the identification of patterns and trends in
large data sets, which can improve the understanding of factors
that contribute to the development of diseases and can in turn
hel p to define more effective prevention and treatment strategies.
NL P can also be used in the analysisof particular casesto guide
decisions and potentially delay or prevent the onset of the
disease. NL P can also be used to develop intelligent systemsto
find relevant information in the medical literature [9].

Nevertheless, NLP poses particular challenges, including the
protection of privacy in the extraction of data, since personal
information is often mixed with other data; the variety of the
quality and format of EHR data, which depend on the source
and software used to collect them; and the difficulty of
annotating data samples for training [10]. Therefore, to unlock
the potential of NLP in the exploitation of EHRS, researchers
and developers need to combine different advanced ML
techniques, apply careful data management, and gain a deep
understanding of the clinical domain. There is, however, a
paucity of guidance on selecting appropriate methods tailored
to the health care industry [11].

This scoping review aimed to gather the knowledge that might
help in that guidance by investigating how NLP is used to
deliver a smarter health care in different phases of stroke
disorders (prevention, diagnosis, treatment, and prognosis). The
primary questions that served as a guide for the review are: (1)
In which phases or contexts of stroke management isNL P used
(prevention, diagnosis, treatment, and/or prognosis)? (2) Which
are the main benefits of applying NLP to stroke management,
related to clinical, social, and economic factors? and (3) What
types of clinical data are collected and used by NLP in stroke
management (ie, demographic data, medical notes, physical and
functional examination, reports of laboratory or medical
devices)?

Thisreview al so focused on the following secondary questions:
(1) What NLP methods, Al agorithms, and tools are used in
stroke studies? (2) Which Al techniques or frameworks are used
to process and analyze the data? (3) Are there algorithms and
NL P software specifically tuned for stroke?and (4) Which tools
have the best performance and how do they compare to others?

Methods

Design

Theunregistered protocol for thisreview was created following
the PRISMA-SCR (Preferred Reporting Items for Systematic
reviews and Meta-Analyses extension for Scoping Reviews)
guidelines [12] and the JBI Manual for Scoping Reviews[13].
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Inclusion Criteria

The target patient population of this scoping review included
adults that had suffered stroke and people at risk of stroke due
to a history of predisposing vascular background or other
conditionsthat increase therisk of developing stroke, including
mental illness or heart diseases such as a reduced gjection
fraction.

The main concept of interest was the use of NLP in stroke
management in public or private health care systems, including
use cases and the data and technologies involved in those
applications. We considered both the application of NLP for
monitoring and decision-making of individual patients as well
asfor the planification of care resources in the management of
stroke cases.

Wewereinterested in any context where prevention, treatment,
or rehabilitation of stroke might take place, ranging from early
detection outside or inside clinical settings, diagnosis and
evaluation of cases, clinical decision-making, administration
and monitoring of rehabilitation, and postrehabilitation
management.

The types of evidence sources taken into account included
articles from peer-reviewed journals, books, and conference
papers, considering both primary research studies and systematic
or scoping reviews, aswell as reports from scientific, medical,
or government institutions.

Search Strategy

The search was performed in the el ectronic databases of Scopus
and Medline through PubMed, using the keywords “natural
language processing” and “stroke” restricted to articles
published in the last 10 years, between 2013 and 2022.

Selection Process

The results of the search were imported into the Zotero
Reference  Manager software (Corporation for Digital
Scholarship, Virginia), which was used to filter out duplicate
records. Titles and abstracts of the filtered list were screened
independently by two reviewers to ascertain their eligibility
according totheinclusion criteria. Disagreementswereresolved
in a discussion session between the reviewers to obtain a
consensus.

The full text of the papers was read by two independent
reviewers to extract the relevant data as described below. An
internal cross-validation by three other experts on the topic was
also considered. Works whose content did not meet the
eigibility criteria or did not contain sufficient information to
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answer the primary questions were excluded and those that
reported the same results from the same study were treated as
duplicates. The record of rejected works was shared by the
reviewers to confirm the decisions of either part.

Data Extraction and Presentation of Results

The reviewers filled out a table with the following data from
each work included in thefinal selection: type of study, primary
diagnosis, related diseases that were used either as inclusion
criteria or as predictors in the data analysis, sample size (if
suitable), and qualitative responsesto the primary and secondary
guestions.

Works were classified depending on whether or not they
reported experimental studies, and those that did were further
subclassified asclinical trials or different types of observational
studies: cross-sectional, retrospective or prospective, and cohort
or case-control studies.

A dictionary of terms was defined for the tabulated records of
the primary and secondary questions and their relative
frequencies were calculated. In addition, the relationships
between answers were analyzed in two different multiple
correspondence analyses (MCASs), which can be employed to
detect and represent underlying structures in categorical data
sets (ie, frequent co-occurrence of specific categoriesin two or
more variables) [14]. One of the MCAs focused on the primary
questions, seeking relationships between the context of
application (eg, classification of diagnostics, prognosis of
outcomes) and the types of data that were processed. The other
M CA focused on the secondary questions, seeking relationships
between NL P methods and softwaretools. In both analyses, the
type of Al models (general ML, DL, or rule-based algorithms)
was also included as avariable. The analysiswas performed in
R [15], using the packages factoMineR [16] and factoextra [17]
for MCA and its graphical representation.

Results

General Description of the Studies

A total of 115 unique papers were identified out of 223 records
obtained in the search; 29 studies were eventually included for
data extraction and analysis after screening by title and abstract
and reading of the full text (see the flow diagram in Figure 1).

The general characteristics of the 29 reviewed studies (year,
type of study, target diseases, and sample size), together with
the items extracted from the primary and secondary questions
are respectively presented in Tables 1, 2, and 3.
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Figure 1. Flow diagram of the review process. NLP: natural language processing.
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Table 1. Summary of the included studies: study type, sample size, type of stroke, and other diseases or conditions taken into account.

Reference Year Type of study Sample size® Type of stroke Other conditions
Zhao et a [18] 2021 Cohort study 4914 Transient ischemic attack, hemor- o b
rhagic stroke
Zanottoetal [19] 2021 Retrospective cross-sectional 188 Ischemic stroke AF, CADS, DMY, dydlipidemia,
cohort study . . e
hypertension, smoking, other
Sungeta [20] 2022 Retrospective cohort study 3847 Acute ischemic stroke AF, CHF', DM, cancer, hyperlipi-
demia, hypertension
Sung et al [21] 2021 Retrospective cohort study 3847 Acute ischemic stroke AF, CHF, DM, cancer, hyperlipi-
demia, hypertension
Miller etal [22] 2022 Retrospective cohort study 918 Ischemic stroke Other
Mayampurathet 2021 Cohort study 965 Acute ischemic stroke, hemor-  Other
al [23] rhagic stroke
Lineback et a 2021 Retrospective cohort study 2855 Ischemic stroke, hemorrhagic AF, CAD, CHF, DM, cancer,
[24] stroke hyperlipidemia, hypertension,
other
Koganetal [25] 2020 Retrospective cohort study 7149 Ischemic stroke, hemorrhagic None
stroke, transient ischemic attack
Heo et a [26] 2020 Retrospective cohort study 1810 Acute ischemic stroke DM, dydlipidemia, hyper-
glycemia, hypertension, smok-
ing, other
Deng et a [27] 2022 Feasibility study 1000 (simulated) Hemorrhagic stroke DM, hypertension
Bacchi et al [28] 2019 Cohort study 2201 Transient ischemic attack None
Yu et a [29] 2021 Cohort study 1320 Ischemic stroke, hemorrhagic None
stroke
Wheater et al 2019 Cohort study 2160 Ischemic stroke, hemorrhagic None
[30] stroke
Sung et a [31] 2020 Cohort study 4640 Acute ischemic stroke None
Sung et a [32] 2018 Feasibility study 90 Acute ischemic stroke Hyperglycemia, other
Shek et al [33] 2021 Cohort study 2327 Stroke comorbidities AF, CHF, DM, hypertension
Rannikméeetal 2021 Cohort study 207 Intracerebral hemorrhage, sub-  None
[34] arachnoid hemorrhage, and is-
chemic stroke
Ong et a [35] 2020 Cohort study 721 Acute ischemic stroke None
Mowery et a 2016 Cohort study 498 Ischemic stroke CAD, CHF, DM, hypertension
[36]
Lietal [37] 2021 Cohort study 3971 Acute or subacute ischemic None
stroke
Leungeta [38] 2021 Cohort study 182 Not applicable Other
Kimet a [39] 2019 Cohort study 3204 Acute ischemic stroke None
Kent et al [40] 2021 Retrospective cohort study 261,960 Ischemic stroke AF, CAD, CHF, DM, hyperlipi-
demia, hypertension, other
Linet a [41] 2021 Retrospective cohort study 1700 Acute ischemic stroke Other
Guan et a [42] 2021 Cohort study 1598 Ischemic stroke CHF, other
Garg et d [43] 2019 Cohort study 1091 Ischemic stroke AF, CAD, DM, hyperlipidemia,
hypertension
Farraneta [44] 2022 Retrospective cohort study 16,916 Not applicable AF
Elkin et a [45] 2021 Cohort study 96,681 Not applicable AF
Bacchi et al [46] 2022 Cohort study 438 Ischemic stroke, hemorrhagic None

stroke
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3N umber of patientsinvolved.

bAF: atrial fibrillation.

CCAD: coronary artery disease.

9DM: diabetes mellitus.

€Other refers to conditions that are not already listed in the table.
fCHF: coronary heart failure.

The vast majority were cohort studies that analyzed clinical
aspects, along with societal or economic aspects of the disease
in some cases, at the moment of data gathering. Approximately
one third of the papers (n=10) also included a retrospective
analysis and 2 of them were limited to feasibility studies.
Although the search included atime span of 10 years, only one
of the studiesincluded in the review was ol der than 5 years[36]
and most studies (n=19) had been published in the last 2 years
(2021 or 2022).

Most studies (n=24) focused on ischemic stroke (either acute,
subacute, or transient); the second most frequent type of stroke
was hemorrhagic stroke (n=9), which in the majority of cases
was in addition to and not excluding ischemic stroke (only 2
papers dealt exclusively with hemorrhagic stroke). Many studies
considered other clinical conditionsthat were used to select the
patients or were included as information taken into account by
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themodels. The most common conditionswereatria fibrillation,
diabetes mellitus, and hypertension; each of them was
considered in one third of the reviewed papers (n=10). Other
diseases that were considered with smaller frequency were
hyper- or dydlipidemia, hyperglycemia, hypercholesterolemia,
coronary heart failure, smoking, or cancer.

The sample size of the cohort studieswas highly varied, ranging
between 182 patients [38] and more than 260,000 patients[40],
with amedian sample size of 2160 patients. The two feasibility
studieswere conducted either with simulated cases[27] or with
asmaller sample of 90 patients [32].

Table 4 shows the frequency of each category used to classify
the answersto the primary and secondary questions, except for
the question about the specificity of algorithms and NLP tools
for stroke, since there was little variability in those answers.
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Table 2. Summary of the answersto the primary questions.
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Reference

Context for NLP? use

Expected benefits

Types of clinica data?

Zheo et al [18]

Zanotto et a [19]

Sung et a [20]

Sung et a [21]

Miller et a [22]
Mayampurath et al
[23]

Lineback et a [24]

Kogan et a [25]

Heo et al [26]

Deng et a [27]

Bacchi et al [28]

Yueta [29]

Wheater et al [30]

Sung et a [31]

Sung et a [32]

Shek et al [33]
Rannikmaeet al [34]

Ong et a [35]

Mowery et a [36]

Li et [37]

Leung et al [38]

Kim et al [39]

Prevention and diagnosis(clas-
sification)

Prognosis (outcomes)

Prognosis (outcomes)

Prognosis (outcomes)

Prognosis (outcomes)

Diagnosis (classification)

Prognosis (recurrence)

Prognosis (outcomes)

Prognosis (outcomes)

Diagnosis (details); treatment

Diagnosis (classification)

Diagnosis (details)

Diagnosis (classification)

Prevention and diagnosis (clas-
sification)

Diagnosis (details); treatment

Diagnosis (comorbidities)

Diagnosis (classification)

Diagnosis (details)

Prevention

Diagnosis (classification)

Diagnosis (details)

Diagnosis (classification)

CLINICAL: improved triage

CLINICAL: careinformation management, charac-
terize patients, prediction of outcomes, risk assess-
ment; SOCIETAL: supporting research studies,
ECONOMIC: public health management

CLINICAL: prediction of outcomes

CLINICAL: prediction of outcomes, risk assess-
ment

CLINICAL: prediction of outcomes, risk assess-
ment

CLINICAL: improved triage

CLINICAL: care information management

CLINICAL: administration of treatments, care in-
formation management, improved triage, prediction
of outcomes

CLINICAL: prediction of outcomes

CLINICAL: administration of treatments

CLINICAL: stroke cause prediction

CLINICAL: improved triage; ECONOMIC: public
health management

CLINICAL: disease surveillance, improved triage;
ECONOMIC: public health management

CLINICAL: administration of treatments, care in-
formation management, disease surveillance;
ECONOMIC: public health management

CLINICAL: administration of treatments

CLINICAL: care information management

CLINICAL: improved triage

CLINICAL.: administration of trestments, prediction
of outcomes; SOCIETAL : supporting research
studies

CLINICAL: risk assessment
CLINICAL: improved triage

CLINICAL: careinformation management, charac-
terize patients

CLINICAL: careinformation management, charac-
terize patients

Demographic data, |aboratory test re-
sults, medical history, medication

Diagnostic reports

Annotated medical images, clinical
scales, demographic data, diagnostic re-
ports, medical history, patient treatments

Annotated medical images, clinical
scales, demographic data, diagnostic re-
ports, functional outcomes data

Annotated medical images, diagnostic
reports

Diagnostic reports

Demographic data, diagnostic reports,
medical history, medication, patient
treatments

Demographic data, clinical scales, medi-
cal history, patient treatments, medica-
tion

Annotated medical images, diagnostic
reports

Annotated medical images, clinical
scales, diagnostic reports, medical histo-
ry

Annotated medical images, diagnostic
reports, medical history, medication

Annotated medical images, diagnostic
reports

Annotated medical images, diagnostic
reports

Diagnostic reports

Diagnostic reports, |aboratory test re-
sults, medical history

Demographic data, medical history

Annotated medical images, diagnostic
reports

Annotated medical images, diagnostic
reports

Diagnostic reports

Annotated medical images, diagnostic
reports

Annotated medical images, diagnostic
reports

Annotated medical images, laboratory
results, demographic data, diagnostic
reports, functional outcomes data
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Reference Context for NLP* use Expected benefits Types of clinica date?
Kent et a [40] Prognosis (outcomes) CLINICAL: careinformation management, charac- Annotated medical images, diagnostic
terize patients, stroke cause prediction reports
Lineta [41] Diagnosis (details); prognosis  SOCIETAL : supporting research studies Diagnostic reports
(recurrence)
Guan et a [42] Diagnosis (classification) CLINICAL: improved triage Clinical scales, diagnostic reports
Garg et d [43] Diagnosis (classification) CLINICAL: improved triage, risk assessment Annotated medical images, diagnostic
reports, medical history
Farran et a [44] Diagnosis (classification); CLINICAL: stroke cause prediction, disease Clinical scales, demographic data, medi-
prognosis (outcomes) surveillance; ECONOMIC: public health manage- cal history, patient treatments
ment
Elkin et a [45] Diagnosis (classification) Not applicable Clinical scales, demographic data
Bacchi et al [46] Diagnosis (classification) Not applicable diagnostic reports, patient treatment

3NLP; natural language processing.
bSee M ultimedia Appendix 1 for the definitions of clinical data types, following Jiang et al [6].
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Table 3. Summary of the answers to the secondary questions.

De Rosario et al

Reference  Aj2tech-  NLPP methods® Other statistical methods®  Software packages™®  Performance metrics®  Best performing
nique methods
Zhao et a MLE Regular expressions LRf, RFY MedTagger, Weka PF’Vh, NF’\/i, F1,sen- RF
(18] sitivity
Zanottoetal ML OntoIogies(O\NLj), BERTk, CNN", K-NN°, RF, spaCy PPV, F1, sensitivity SVM ontologi-
(191 BOW!, TF-IDF™ SVMP, naive Bayes cal rules
Sung et al ML Negation extraction ontolo-  Gradient boosting Jazzy spell checker, AUCS, IDI', NRIY Not applicable
[20] gies (UMLSY) MetaMap, X GBoost’
Sung et a DL BOW, BERT (Clinical- Not applicable Jazzy spell checker AUC, IDI, NRI Not applicable
[21] BERT)
Milleretal DL rule-  BOW, negation extraction, | AssoV, K-NN, RF, scikit-learn AUC, PPV, sensitivi-  BioClinical-
[22] based TF-IDF, BERT (BioClinical- MLPY ty, specificity BERT (except
BERT) for rare and
continuous out-
comes)
Mayampu- ML N-grams (1- or 2-) SVM Not applicable AUC, PPV, NPV, Not applicable
rath et a sensitivity, specificity
[23]
Lingback et ML N-grams(1-or 2-), TF-IDF, | AssO, LR, PCAX, RF, XGBoost AUC ML methodsin
a [24] Word-embedding SVM, gradient boosting, genera
(Word2Vec) naive Bayes
Koganeta ML rule- Not applicable RF, gradient boosting, Not applicable Correlations, RMSEY  Not applicable
[25] based MLP
Heo et a DL BOW, Word-embedding Decision trees, CNN, Quanteda, NLTK® ~ AUC Document-level
[26] (sent2vec, BioWordVec) LASSO, LSTM Z, MLP.  Tensorflow, Keras methods, CNN
RF, SVM
Deng et a DL rulee BERT Not applicable Not applicable AUC, PPV, NPV, Not applicable
[27] based sensitivity, specificity
Bacchietal DL BOW, negation extraction ~ Decision trees, CNN, Not applicable AUC, PPV, NPV, CNN
[28] LSTM, RF sensitivity, specificity
Yueta [29] Rule- Regular expressions Not applicable CHARTextract PPV, NPV, accuracy, Not applicable
based sensitivity, specificity
Wheater et Rule- Regular expressions, gram-  Not applicable BRAT rapid annota PPV, sensitivity, Not applicable
a [30] based matical analysis, ontologies tion tool specificity
(custom), negation extrac-
tion
Sung et al ML rule- Grammatical analysis(part- pecigon trees(CARTbb), Google spell checker, Accuracy, K Mixed results
[31] based of-speech), negationextrac- K _NN, LR, RF, SVM MetaMap, Weka
tion, ontologies (UMLS)
Sung et a Notappli- Grammatical analysis(part- Not applicable Google spell checker, NPV, F1, sensitivity, = Document-level
[32] cable of-speech), negation extrac- MetaMap, Stata specificity methods
tion, ontologies (UMLYS)
Shek et al DL Grammatical analysis, Not applicable MedCAT NPV, F1, sensitivity,  Not applicable
[33] Negation extraction, Ontolo- specificity
gies (SNOMED®)
Rannikmde ML rule- Ontologies (UMLS) Not applicable SemEHR PPV, sensitivity Mixed results
eta [34] based
Ong et d DL BOW, TF-IDF, Word-em- Decision trees (CART),  scikit-learn, Tensor- ~ AUC, F1, accuracy, GloVE+LSTM
[39] bedding (GlovE™) K-NN, LR, LSTM,RF  flow sensitivity, specificity
Mowery et Rule- Regular expressions Not applicable pyConTexT PPV, NPV, sensitivi-  Not applicable
al [36] based ty, specificity
Lieta [37] ML BOW, N-gram (2- and 3-), RF scikit-learn, NLTK F1, accuracy Not applicable

negation extraction
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Reference  Aj2tech-  NLPP methods® Other statistical methods®  Software packages®®  Performance metrics  Best performing
nique methods
Leungetal DL rulee Not applicable Not applicable MedTagger PPV, NPV, accuracy, Not applicable
[38] based sensitivity, specificity
Kimeta ML N-gram (1- and 2-), TF-IDF Decisiontrees, LR, naive Quanteda AUC, F1 Single decision
[39] Bayes, RF, SVM trees
Kent et al DL rule-  Ontologies (named entity Not applicable MedTagger PPV, NPV, accuracy, Not applicable
[40Q] based recognition) sensitivity, specificity
Linetal [41] DL BERT (ClinicalBERT, Not applicable spaCy AUC, F1 StrokeBERT
StrokeBERT)
Guan et a ML Regular expressions, nega-  Decision trees (CART),  Quanteda AUC, PPV, NPV, F1, RF
[42] tion extraction K-NN, LR, RF, SYM accuracy, specificity
Garg et d ML BOW, N-grams (1- to 3-) Decision trees, K-NN, CTAKES, spaCy, XG- AUC, sensitivity, K Stacking, LR,
[43] stacking LR, PCA, RF,  Boost gradient boost
SVM, gradient boosting
Faraneta ML Ontologies (SNOMED), Not applicable MedCAT Accuracy Not applicable
[44] negation extraction
Elkineta ML Ontologies (SNOMED) Not applicable HD-NLP® PPV, NPV, sensitivi-  Not applicable
[45] ty, specificity
Bacchietal ML BOW, N-grams (1-to 3-),  Decisiontrees, LR, RF  scikit-learn, NLTK AUC, PPN, NPP, sen- RF
[46] negation extraction sitivity, specificity

Al artificial intelligence.

NLP: natural language processing.

CSee brief descriptions of the NLP tools, statistical methods, software packages, and performance metrics in Multimedia Appendix 2 [47-51].
dExcludi ng general programming frameworks like Python or R.
EML: machine learning.

LR logistic regression.

9RF: random forest.

Pppy: positive predictive value.

INPV: negative predictive value.

JowL: Web Ontol ogy Language.

KBERT: Bidirectional Encoder Representations from Transformers.
'Bow: bag-of-words.

™TE-IDF: term frequency-inverse document frequency.
"CNN: convolutional neural network.

OK-NN: K-nearest neighbor.

PSVM: support vector machine.

9UMLS: Unified Medical Language System.

X GBoost: extreme gradient boosting.

SAUC: area under the curve.

YD1 integrated discrimination index.

UNRI: Net Reclassification Index.

VLASSO: |east absolute shrinkage and selection operator.
YWMLP: multilayer perceptron.

XPCA: principal component analysis.

YRMSE: root mean squared error.

Z|_STM: long short-term memory.

#|NLTK: Natural Language Processing toolkit for Python.
BOCART: classification and regression tree.

CCSNOMED: Systematized Nomenclature of Medicine.
ddGLoVE: Global Vectors for Word Representation.
€HD-NLP: high-definition natural language processing.
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Table 4. Frequencies of distinctive items found in primary and secondary questions among the included studies (N=29).2

Variable and categoryb Studies, n (%)
Context
Diagnostic (classification) 13 (45)
Diagnostic (details) 6 (21)
Prognostic (outcomes) 8(28)
Prognostic (recurrence) 2(7)
Prevention 3(10)
Treatment 2(7)
Clinical benefits
Improved triage 9(3D)
Care information management 8(28)
Prediction of outcomes 7 (24)
Administration of treatments 5(17)
Risk assessment 5(17)
Patient characterization 4(14)
Disease surveillance 3(10)
Stroke causes 3(10)
Data sources
Diagnostic reports 24 (83)
Annotated images 15 (52)
Medica history 10(34)
Demographic data 9 (31
Clinical scaes 7(29)
Treatments 5(17)
Medication 4(14)
Laboratory results 3(10)
Functional outcomes data 2(7)

Artificial intelligence technique

MLC 15 (52)

pLY 10(34)

Rule-based 10(34)
Natural language processing tools

Negation extraction (NEGEX) 11(38)

Ontologies 10 (34)

Bag-of-words (BOW)

n-grams 6 (21)
Bidirectional Encoder Representations from Transformers (BERT) 5(17)
Regular expressions (REG-EXPR) 5(17)
TF-IDF® 5(17)
Grammatical analysis 4(14)
Word-embedding 3(10)

Other statistical tools
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Variable and categoryb

Studies, n (%)

Random forest (RF)

Decision trees

Support vector machine (SVM)

Logistic regression (LR)

K-nearest neighbor (K-NN)

Gradient boosting

Naive Bayes

Multilayer perceptron (MLP)

Long short-term memory (LSTM)

Principal component analysis (PCA)
Softwar e packages

scikit-learn

NLTK'

spaCy

Quanteda

MedTagger

MetaMap

XGBoost9
MedCAT
Weka
Tensorflow
Performance metrics
Based on ratios (PPVh, NF’Vi, F1, accuracy, sensitivity, or specificity)
Based on ROC! curves (AUCk, C-dtatistic)

Differential measures (NRI', IDI™)

14 (48)
8(29)
7 (24)
7 (24)
6(21)
4 (14)
3(10)
3(10)
3(10)
2(7)

4 (14)
3(10)
3(10)
3(10)
3(10)
3(10)
3(10)
2(7)

2(7)

2(7)

23 (79)
14 (48)

2(7)

@0nly the items that occurred more than once are reported in this table; however, since different items often overlapped in each study, the frequencies

of each variable normally sum to more than 100%.

bSee brief descriptions of the NLP tools, statistical methods, software packages, and performance metricsin Multimedia Appendix 2 [47-51].

®ML: machine learning.

dpL: deep learning.

®TF-1DF: term frequency-inverse document frequency.
'NLTK: Natural Language Processing toolkit for Python.
9X GBoost: extreme gradient boosting.

fppy: positive predictive value.

INPV: negative predictive value.

IROC: receiver operating characteristic.

KAUC: area under the curve.

INRI: Net Reclassification Index.

MDI: integrated discrimination index.

The most frequent context of stroke in which the studies were
applied was the diagnostic phase, followed by the prognosis of
outcomes. The potential benefit of the results on clinical
processes (eg, improving the triage of patients depending on
the type or severity of stroke, more efficient management of
careinformation) wasthe main focusof all studiesbut one[41],
which chiefly focused on the societal aspect of supporting
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RenderX

research studies, similar to two other studiesthat also evaluated
that aspect along with clinical applications. Five of the 29 studies
(17%) also considered the potential economic benefit of NLP,
in terms of reducing the costs of stroke for the public health
sector.
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Themost frequent source of datafor NL P model swas diagnostic
reports (n=24), followed in many cases by annotations on
medical images such as radiographs and scans (n=15). General
ML models were used more frequently than DL or rule-based
algorithmsto processthe data (n=15 for ML vsn=10 papersfor
either DL or rule-based techniques). NLPtools, other statistical
methods, and the software packages that were used to implement
them highly varied across papers, although there were some
associations with the Al technique and other variables (see the
next subsection).

In nearly all studies, the Al architectures and algorithms had
been adapted to deal with stroke-related data, except for one
study that used an ML model for patients with severe mental
illness at risk of stroke [44]. One of the studies actually used a
software tool that was specifically designed for stroke [41],
StrokeBERT, which is a language representation model based
on Google's Bidirectiona Encoder Representations from
Transformers (BERT) [47]. Other studies used modelsthat were
adapted to broader medical terminology, including
ClinicalBERT [52], BioClinica BERT [53], and BioWordVec
[54], or models tuned with standard medical vocabularies such
as Systematized Nomenclature of Medicine (SNOMED) [55]
or Unified Medical Language System (UMLYS) [56].

The methods used to compare the performance of the models
were also highly varied, although in the greatest majority of
cases (n=23) they were metrics based on the ratios of
true/false-positive or -negative values (positive predictive value,
negative predictive value, sensitivity, specificity, F1 score, or
accuracy), and many were based on the receiver operating
characteristic curve (n=14); a few studies (n=2) also used
measures of classification improvements such as the net
reclassification index and the integrated discrimination index

De Rosario et al

[48], and only one study used other statistics such as correlation
coefficients or the root mean squared error [25].

Owing to the variety of methods and tools used in the studies,
there were few coincidences in the selection of the best ones.
The only methods that were chosen as the best performing in
more than one study were random forest (n=3), convolutional
neural network (n=2), and BERT (n=2).

Multiple Correspondence Analysis

Figures 2 and 3 show the proximity of the categories that
exhibited the closest relationships in the two first dimensions
obtained in the MCA.

The common variable used in the analysis (Al technique) was
clearly distinguished in the first two dimensions of the MCA
plot, which on the one hand separated rule-based techniques
from ML and DL and on the other hand separated general ML
from DL.

Inthefirst MCA (Figure 2), it could be observed that the studies
focusing on the classification of diagnostics (often used for the
triage of patients) and prospects of recurrent stroke were often
those that also used ML techniques with demographic dataand
information on treatments. Although the other categories were
less tightly related, the text associated with clinical tests and
the annotations on images were related more closely to
prognostics of outcomes than to other contexts of application,
with annotated images also being used to ascertain details of
the stroke episode. Both types of studies were frequently
approached by DL and sometimes by rule-based techniques.

In the other MCA (Figure 3), Al techniques were separated
between ML, DL, and rule-based methods in the two main
dimensions of the projected space, although only general ML
and DL were closely related to other items.

Figure 2. Projection of the scores of the categories in the first two dimensions of the multiple correspondence analysis plot involving context of
application, data sources, and artificial intelligence technique. DL: deep learning; ML: machine learning.
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Figure 3. Projection of the scores of the categoriesin the first two dimensions of the multiple correspondence analysis plot involving natural language
processing methods, software, and artificial intelligence techniques. See brief descriptions of the methods and software in Multimedia Appendix 2.
BERT: Bidirectional Encoder Representations from Transformers, BOW: Bag-of-words; BRAT: Browser-based Rapid Annotation Tool; DL: deep
learning; ML: machinelearning; NEGEX: Negation extraction; NLTK: Natural Language Processing toolkit for Python; REG-EXPR; regular expressions;
TF-IDF; term frequency-inverse document frequency; X GBoost: extreme gradient boosting.
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ML was related to NL P methods that are used in the first steps
of the processing pipeline, such asthe extraction of text tokens
in the form of n-grams, detection of negated terms, and use of
standard vocabularies. Thiswas mostly performed with software
tools such as MetaMap, MedCAT, Quanteda, and extreme
gradient boosting.

Conversely, DL was more associated with the usage of BERT,
a language representation model based on transformers [47],
and NLP methods applied to numerical and vectorized
representations of the language tokens, such as the
“bag-of-words,” term frequency-inverse document frequency
word embeddings, and other word embeddings. Thiswas chiefly
performed with software packages such as Tensorflow through
Keras and scikit-learn. Other software packages that are often
used for NLP, such as Natural Language Processing toolkit for
Python, were observed in the middle of the primary axis of the
MCA plot, halfway between the general ML and DL
architectures.

Discussion

The research on Al for stroke management has gained greater
interest and impact in the last few years [5], and the growing
rate of publications found in this scoping review reveals that
the same trend is occurring in research on NLP, which is a
particular field of Al, applied to the same clinical condition.
However, in other aspects, the studies focused on NLP show
their own specific trends.

https://medinform.jmir.org/2023/1/e48693

RenderX

Although the search for this scoping review was very broad,
and did not limit the type and phase of stroke to be studied, the
vast majority of studies were focused on ischemic strokein its
acute, subacute, or transient stage, and the purpose of using
NLP wasto improve processesin aclinical context. Thisfocus
on clinical contextsis related to the relevance that is attributed
to the unstructured information contained in EHRS, (ig, in notes,
reports, and annotated images) as predictors of outcomes and
complications, which are crucial for proper decision-making,
together with the difficulty of processing that information
automatically with traditional tools. The deployment of NLP
models integrated in the pipelines of an EHR, programmed to
automatically ingest and processincoming records[57], or even
the patients' commentaries in emergency through voice-to-text
[58], may be used to identify patients at high risk and requiring
prompt access to specific treatments; find signs to anticipate
impending stroke; or evaluate its severity, type, and risks of
complications.

Efficient triage of patientsin emergency and early consultations,
more accurate diagnostics, or prognostics of outcomes and
recurrence were the main intended applications of NLP models
in the reviewed studies. Accordingly, the main sources of
information exploited by NLP algorithms were clinical data of
the patients obtained from their history, especially the diagnostic
reports of the current stroke episode. Administration and
monitoring of rehabilitation, or postrehabilitation management,
were not dealt with in the final selection of studies that were
the object of the review.
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NLP isitself a broad concept, which involves many types of
computational techniques. In its more general sense, NLP
comprises all methods and tools that can be used to anayze
texts in order to represent human languages, based either on
theory of language constructs, semantic mappings, or emulation
of linguistic processes occurring in the human brain [59]. The
relationships between these tools, types of statistical and ML
models, data sources, and applications found by the MCA help
to understand how each subset of techniques can be used to
solve different problems, and can also help to interpret some
trendsin the evolution of thistechnology applied to the clinical
management of stroke.

Some of these methods rely on text-processing algorithms that
use predefined rules and vocabularies, such as the tokenization
of long texts into smaller items, categorization of those items
in parts of speech, and construction of syntactic structures, and
they have been widely used since long before the recent
revolution of big data and DL fields. What this revolution has
provided to the field of NLP is the maturity of more complex
representations of language data, such as the word embeddings
into large-dimensional numeric vectors and their effective
processing through deep neural networks, as well as the
exploitation of huge databases of texts, such as the Common
Crawl data set that includes petabytes of text data, crawled
monthly from dozens of billions of web pages[60].

In this context, the state of the art in NLP is represented by DL
architectures such as GPT, XL Net, or BERT [61]. Among these,
BERT has been found to be particularly widely used in the
medical field in general, and for strokein particular, along with
specialized versions fitted to these applications that improve
their performance[22,41]. More basic ML algorithmsand hybrid
approaches with rule-based techniques are still more present
than advanced DL networks in the recent research on NLP for
stroke, and in some cases, tailored rule-based systems
outperformed BERT and its derivatives[19,22]. Support vector
machine methods were al so found to perform better than BERT
in one study [19], although random forest was reported to have
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thebest performance more frequently than any other ML method
in the set of reviewed studies [18,42,46]. Some of these results
may seem unexpected, given the remarkable performance of
DL in general, and particularly large language models (LLMs),
in other areas. However, the computational complexity and
large data sets needed to train LLMs can limit their current
scalability, not outperforming other ML methods that work
better on limited training data such as the data sets of the
mentioned studies.

The prevalence of studies based on traditional ML methods
over those that use DL neura networks may be partly due to
the recency of the more complex DL architectures, as well as
to the need of larger sets of data to train those models, which
raises the bar to conduct studies with that approach. However,
it is also interesting to observe that the choice of the Al
technique also relatesto the type of datathat are processed and
the context of application of NLP, such that DL ismore closely
related to studiesthat involve medical imaging with annotations
to prognosticate the outcomes of stroke.

Taking into account these pieces of evidence, and considering
the future of NLP in stroke, further development of LLMs in
the biomedical field may be expected. LLMs emerged in 2018
as a class of language models that use neural networks with
billions of parameters trained on huge amounts of unlabeled
text data through self-supervised learning. LLMsare often based
on transformers, a self-attention mechanism to compute
contextual rel ationships between theinput tokens[62]. However,
innovation in the NLP field will come from the development
of these models for medical specialties such as stroke. These
biomedical LLMs can be trained not only with data sources
from EHRs but also from scientific and clinical publications
and socia network posts from speciaized fields. The
particularity is that these models need to be trained on much
larger databases than those used by classical ML agorithmsto
achieve adequate performance metrics. Thisinvolves combining
computational resources and very large data sources, an option
that isnot always available for the existing resourcesin research.
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Abstract

Background: Transformer-based models are gaining popularity in medical imaging and cancer imaging applications. Many
recent studies have demonstrated the use of transformer-based models for brain cancer imaging applications such as diagnosis
and tumor segmentation.

Objective: Thisstudy aimsto review how different vision transformers (ViTs) contributed to advancing brain cancer diagnosis
and tumor segmentation using brain image data. This study examines the different architectures developed for enhancing the task
of brain tumor segmentation. Furthermore, it explores how the ViT-based models augmented the performance of convolutional
neural networks for brain cancer imaging.

Methods: Thisreview performed the study search and study selection following the PRISMA-ScR (Preferred Reporting Items
for Systematic Reviews and Meta-Anal yses extension for Scoping Reviews) guidelines. The search comprised 4 popular scientific
databases: PubMed, Scopus, |EEE Xplore, and Google Scholar. The search terms were formulated to cover theinterventions (ie,
ViTs) and thetarget application (ie, brain cancer imaging). Thetitle and abstract for study selection were performed by 2 reviewers
independently and validated by athird reviewer. Data extraction was performed by 2 reviewers and validated by athird reviewer.
Finally, the data were synthesized using a narrative approach.

Results: Of the 736 retrieved studies, 22 (3%) were included in this review. These studies were published in 2021 and 2022.
The most commonly addressed task in these studies was tumor segmentation using ViTs. No study reported early detection of
brain cancer. Among the different ViT architectures, Shifted Window transformer—based architectures have recently become the
most popular choice of the research community. Among the included architectures, UNet transformer and TransUNet had the
highest number of parameters and thus needed a cluster of as many as 8 graphics processing units for model training. The brain
tumor segmentation challenge data set was the most popular data set used in the included studies. ViT was used in different
combinations with convolutional neural networks to capture both the global and local context of the input brain imaging data.

Conclusions: It can be argued that the computational complexity of transformer architectures is a bottleneck in advancing the
field and enabling clinical transformations. This review provides the current state of knowledge on the topic, and the findings of
thisreview will be helpful for researchersin the field of medical artificia intelligence and its applicationsin brain cancer.

(JMIR Med Inform 2023;11:e47445) doi:10.2196/47445
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Introduction

Background

Brain cancer istypically characterized by abraintumor. A brain
tumor is a mass or development of aberrant brain cells. The
signs and symptoms of a brain tumor vary widely and are
determined by the size, location, and rate of growth of thebrain
tumor. Brain tumors can originate in the brain (primary brain
tumors) or move from other body regionsto the brain (secondary
or metastatic brain tumors). In general, studying brain cancer
is challenging given the highly complex anatomy of the human
brain, where several sectionsare responsiblefor various nervous
system processes [1].

Medical imaging technologiesfor studying the brain arerapidly
advancing. Therefore, it is critical to provide tools to extract
information from brain image data such that they may aid in
automatic or semiautomatic computer-aided diagnosis of brain
cancer. Artificial intelligence (Al) techniques based on modern
machine learning and deep learning models enable computers
to make data-driven predictions using massive amounts of data.
These techniques have a wide range of applications, many of
which can be customized to extract useful information from
medical images [2-6].

Among Al techniques developed for brain cancer applications,
architectures based on convolutional neural networks (CNNSs)
have dominated the research on brain cancer diagnosis and
classification. For example, UNet (an encoder-decoder CNN
architecture) and its variants [7,8] are popular for brain tumor
segmentation tasks. However, CNNs are known to be effective
in extracting only local dependencies in the input image data,
which is mainly attributed to the localized receptive field.
Compared with CNNs, attention-based transformer models
(transformers) [9] are good at capturing long-range
dependencies. Given their ability to learn long-range
dependencies, transformers form the backbone of most
state-of-the-art models in the natural language processing
domain [10].

For image classification tasks, Dosovitskiy et a [11] proposed
the computer vision variants of the transformer architecture,
typically known as vision transformer (ViT). The concept of
attention was applied to images by representing them as a
sequential combination of 16x16-pixel patches. The image
patches were processed in a way similar to tokens (words) in
natural language processing [11]. The sections (with positional
embeddings) are ordered. The embeddings are vectors that can
be learned. Each piece is organized in a straight line and
multiplied by the embedding matrix. The position embedding
result is passed to the transformer encoder.

Given the potential demonstrated by transformer-based
approachesfor computer vision tasks, transformers have quickly
penetrated the field of medical imaging. For example, some
studies[12-15] have used them on computed tomography scans
and x-ray images of the lungs to classify COVID-19 and
pneumonia. Similarly, Zhang and Zhang [16] and Xieet a [17]
used ViT for medical image segmentation, and He et a [18]
used ViT for brain age estimation. With the recent devel opments

https://medinform.jmir.org/2023/1/e47445

Alietd

of ViTs in computer vision applications, there has been a
growing interest in developing ViT-based architectures for
cancer imaging applications. ViT can also aid in the diagnosis
and prognosis of other types of cancers. For example, Chen et
al [19] showed the scaling of ViTsto largewhole-slideimaging
for 33 different cancer types. The benchmarking results
demonstrate that the transformer-based architecture with
hierarchical pretraining outperforms the existing cancer
subtyping and survival prediction methods, indicating its
effectivenessin capturing the hierarchical phenotypic structure
in tumor microenvironments.

Accordingly, many recent efforts have been reported on the
developments of ViT architectures to make progress in brain
cancer applications. With the growing interest in developing
ViT-based methods for brain cancer imaging, there is a dire
need to review the recent developments and identify the key
challenges. To the best of our knowledge, no study (review)
has reported the different ViT architectures for brain cancer
imaging and analyzed how ViT complements CNNs in brain
cancer diagnosis, classification, grading, and brain tumor
segmentation.

A few review and survey articles that are relevant to our work
are by Parvaiz et a [20], Magadza and Viriri [21], Akinyelu et
a [22], He et a [23], and Biratu et al [24]. Among these,
Magadzaand Viriri [21] and Biratu et al [24] have surveyed the
articles that used deep learning and machine learning methods
for brain tumor segmentation. In addition, they covered papers
until mid-2021 only and did not cover studieson ViT. Similarly,
the survey by Akinyelu et a [22] hasabroad scope, asit covered
different methods including CNNSs, capsule networks, and ViT
used for brain tumor segmentation. In addition, it included only
5 studies on ViT, of which 4 were from 2022. Reviews by
Parvaiz et al [20], He et a [23], and Shamshad et a [25] covered
the applications of ViT in medical imaging; however, the scope
of al thesereviewsis broad, asthey included different medical
imaging applications. In addition, they conducted a descriptive
study of ViT for various medical imaging modalities. Similarly,
many relevant recent studies on ViT-based architectures have
been left out, as both the reviews [20,25] werereleased in early
2022. Nevertheless, the aforementioned reviews could be of
interest to the readers. Table 1 compares our review with the
previously published review articles.

Compared with other existing reviews on ViTs and medical
imaging, our study is specific to brain cancer applications and
covers the most recent developments. This review provides
guantitative insightsinto the computational complexity and the
required computational resourcestoimplement ViT architectures
for brain cancer imaging. Such insights will be helpful for the
researchers to choose hardware resources and graphics
processing units (GPUs). This review identifies the research
challenges that are specific to ViT-based approaches in brain
cancer imaging applications. These discussions will raise
awareness for the related research directions. This review
identifies the available public data sets and highlights the need
for additional datato motivate the community to develop more
publicly available data sets for brain cancer research.
Furthermore, thisreview followsanarrative synthesis approach
that would help the readers follow the text quickly.
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Table 1. Comparison with similar review articles.
Review title Month and year Scope and coverage Comparison with our review
Vision transformersin Medical ~ March 2022 *  Thetitleisspecificto ViT2 however, *  Our review isalso specificto ViT.
Computer Vision—A Contempla- the full text has avery broad scopewith *  Our review is specific to brain cancer
tive Retrospection [20] applications.

Transformersin medical imag-  January 2022

ing: A survey [25]

Transformersin Medical Image  August 2022

Analysis: A Review [23]

Brain Tumor DiagnosisUsing  July 2022

Machine Learning, Convolution-
a Neural Networks, Capsule
Neural Networks and Vision

Transformers, Applied to MRI®:
A Survey [22]

A survey of braintumor segmen-  September 2021

tation and classification algo-
rithms [24]

Deep learning for brain tumor
segmentation: a survey of state-
of-the-art [21]

January 2021

discussions on deep learning, CNNsb,
and ViT.

It covers different applicationsin medi-
cal computer vision, including the clas-
sification of disease, segmentation of
tissues, registration tasks in medical
images, and image-to-text applications.
It does not provide much text on brain
cancer applications of ViT.

Many recent studies of 2022 are left out
as the preprint was released in March
2022.

It does not provide a comparative study
on the computational complexity of
ViT-based models.

Itisspecificto ViT.

It hasabroad scope asdifferent medical
imaging applications are included.

It does not include many recent studies
on ViT for brain cancer imaging (as the
preprint was released in January 2022).

Itisspecificto ViT.

It has broad scope as different medical
imaging applications are included.

It provides adescriptive review of ViT
techniquesfor different medica imaging
modalities.

It does not provide a quantitative analy-
sis of the computational complexity of
ViT-based methods.

It covers applications specific to brain
tumor segmentation.

It has abroad scope, asit includes stud-
ies on CNNs, capsule networks, and
VIiT.

Itincludesonly 5 studieson ViT.
Many recent studies are left out asit
covers only 4 studies from 2022.

It provides no quantitative analysis of
computational complexity.

It has avery broad scope asit covers
traditional machine learning and deep
|earning methods.

It covers studies until early 2021 only.

It has abroad scope asit coversdifferent
deep learning methods.
Many recent studies are left out.

o Our review includes morerecent studies
onViT.

o  Our review provides a comparative
study of the computational complexity
of the ViT-based models.

o Ourreview isalso specificto ViT.

o  Our review is specific to brain cancer
applications.

o Our review includes morerecent studies
onViT.

o Ourreview isalso specificto ViT.

o  Our review is specific to brain cancer
applications.

o  Our review provides a comparative
study of the computational complexity
of the ViT-based models.

e Ourreview isalso specific to brain can-
cer and brain tumor.

«  Our review covers more recent studies.

e Our review includes 22 studieson ViT
for brain cancer application.

o Our review provides a comparative
study of the computational complexity
of the ViT-based models.

o Ourreview is specificto ViT.
«  Our review covers more recent studies.

o Ourreview is specificto ViT.
«  Our review covers more recent studies.

/i T: vision transformer.
BCNIN: convolutional neural network.
°MRI: magnetic resonance imaging.

Research Problem

The popularity of transformer-based approaches for medical
imaging has been increasing. Many recent studies have
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developed new transformer-based methods for brain cancer
application. Hence, there is aneed to review the recent studies

on how transformer-based approaches have contributed to brain
cancer diagnosis, grading, and tumor segmentation. In this study,

JMIR Med Inform 2023 | vol. 11 | e47445 | p.142
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

we present a review of the advancements in ViTs for brain
cancer imaging applications. We present the recent ViT
architectures for brain cancer diagnosis and classification,
identify the key pipelines for combining ViT with CNNs, and
highlight the key challenges and issuesin devel oping ViT-based
Al techniques for brain cancer imaging. More specifically, this
review aims to identify the common techniques that were
developed to use ViT for brain tumor segmentation and whether
ViTswereeffectivein enhancing the segmentation performance.
This review aso identifies the common modality of brain
imaging dataused for training Vi T for brain tumor segmentation.
Moreover, this review identifies the commonly used data sets
for the brain tumor that contributed to developing ViT-based
models. Finally, this review presents the key challenges that
the researchers faced in developing ViT-based approaches for
brain tumor segmentation. We believe that thisreview will help
researchers in deep learning and medicad imaging
interdisciplinary fields to understand the recent developments
on thetopic. Furthermore, it will appeal studentsand researchers
interested to know about the advancements in brain cancer

imaging.
Methods

Overview

We performed aliterature search in famous scientific databases
and conducted a scoping review following the PRISMA-ScR
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) guidelines[26].
Multimedia Appendix 1 provides the PRISMA-ScR checklist.
The literature search and the study selection were performed
using the steps described in the following subsections.

Search Strategy

Search Sources

We searched for relevant literature in 4 databases: PubMed,
Scopus, IEEE Xplore, and Google Scholar. The search was
performed between July 31 and August 1, 2022. For Google
Scholar, we retained the first 300 results, as the results beyond
300 lacked relevance to the topic of this review. We also
screened the reference lists of the included studies to retrieve
any additional studies that fulfilled the inclusion criteria.

Search Terms

We defined the key terms for the search by referring to the
available literature and by a discussion with domain experts.
The search terms comprised the terms corresponding to the
intervention (ie, transformers) and the target application (ie,
cancer and tumor). The search strings are provided in
Multimedia Appendix 2.

Sear ch Eligibility Criteria

Our search focused on studies that reported developing
ViT-based architectures for brain tumor segmentation, brain
cancer diagnosis, or prognosis. We considered studies conducted
between January 2017 and July 2022. We included studies that
used VIiT with or without combining other deep learning
architectures, such as CNN, and excluded studiesthat used only
CNN. We excluded studies that reported the diagnosis of other
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cancer types, such as lung cancer or colorectal cancer, and did
not report the use of the model for any form of brain cancer.
We included studies that used any type of brain cancer data,
including brain magnetic resonance imaging (MRI) and
histopathology image data. We included studies published as
peer-reviewed articles or conference proceedings and excluded
nonpeer-reviewed articles (preprints), short notes, editorial
reviews, abstracts, and | ettersto the editor. We excluded survey
and review articles. We did not impose any additional
restrictions on the country of publication and the performance
or accuracy of the ViT used in the studies. Finally, for practical
reasons, we included studies published only in English.

Study Selection

Two reviewers, HA and RQ, independently screened the titles
and abstracts of the studies retrieved in the search process. In
abstract screening, the reviewers excluded the studies that did
not fulfill the inclusion criteria. The studies retained after the
title and abstract were included for full-text reading. At this
stage, disagreements between the 2 reviewers (HA and RQ)
were analyzed and resolved through mutual discussion. Finally,
the study selection was verified by athird reviewer.

Data Extraction

We designed a custom-built data extraction sheet. Multimedia
Appendix 3 presents the different fields of information in the
data extraction sheet. Initially, we pilot-tested the fields in the
extraction sheet by extracting datafrom 7 relevant studies. Two
reviewers (HA and RQ) extracted the data from the included
studies. The critical information extracted was the application
of VIiT, the architectures of ViT, the complexity of the
architectures used, the pipeline for combining ViT and CNNs,
the data sets and their relevant features, and the open research
questions identified in the studies. The 2 reviewers resolved
disagreements through mutual discussions and revisiting the
full text of the relevant study where needed.

Data Synthesis

We followed a narrative approach to synthesize the data after
data extraction. We categorized the included studies based on
applications, such astumor segmentation, grading, or prognosis.
We al so organized the studies based on datatype, such aspublic
versus private data and 2D versus 3D data. We also identified
the modality of the data used in the included studies, such as
MRI or pathology images. Next, we identified the most
frequently used architectures of ViT and the key pipelines for
incorporating ViT in cascade or parallel connectionswith CNN
models. We aso classified the included studies based on the
metrics used to evaluate the performances. Finally, if available,
we identified the public code repositories for the model
implementation as reported in the included studies.

Results

Search Results

A total of 736 studieswereretrieved. Of these, we removed 224
duplicates. After thetitle, abstract, and metadata screening, we
removed 488 studies that did not fulfill the inclusion criteria
and retained 24 studies. In the full-text screening, we removed
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2 studies. Overall, 22 studies were included in this review. We  selection process. Multimedia Appendix 4 shows a list of all
did not find any additional studies by forward and backward theincluded studies.
reference checking. Figure 1 shows the flowchart for the study

Figure 1. The PRISMA-SCR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) flowchart for
the selection of the included studies. ViT: vision transformer.
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> 2 excludgd after reading full text.
- Not brain related=1
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A 4
22 studies
3 No studies included
° through reference list
E checking
22 studies included in the
narrative synthesis

. . (86%) were published in 2022, whereas only 3 (14%) were
Demographics of the Included Studies published in 2021. No studies published before 2021 were found.
Among the 22 included studies, 9 (41%) were published in Among the studies published in 2022, one-third (6/22, 27%)
peer-reviewed journals, whereas 13 (59%) were published as  were published in July. Theincluded studies were published by
conference or workshop proceedings. Of the 22 studies, 19  authors from 6 different countries (based on first-author
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affiliation). Among the 22 studies, almost half (n=10, 45%)
were published by authors from China and 5 (23%) were
published by authors from the United States. Authors from the
United Kingdom and India published 3 and 2 studies,
respectively, whereas both South Koreaand Vietnam published
1 study each. Multimedia Appendix 5 shows a summary of the

Table 2. Demographics of the included studies (N=22).

Alietd

year-wise and month-wise studies. Multimedia Appendix 6
shows a summary of the country-wise demographics of the
included studies. Table 2 summarizes the demographics of the
included studies. Figure 2 shows avisualization for the mapping
of the included studies with year, month, and country of
publication.

Studies, n (%)

Year and month
2022
January
February
March
April
May
June
July
2021
August
September
November
Countries
China
United States
United Kingdom
India
South Korea
Vietnam
Type of publication
Conference

Journal

2(9)
2(9)
1(4.5)
5(23)
1(4.5)
2(9)
6(27)

1(45)
1(4.5)
1(45)

10 (45)
5(23)
3(14)
2(9)
1(4.5)
1(45)

13 (59)
9 (41)
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Figure 2. Mapping of the included studies with year, month, and country. S1 through S22 are the included studies.

. . . tumor. In addition, 1 study [43] performed the diagnosis of
Main Tasks Addressed in the Studies multiple sclerosis, and 1 study [45] performed reconstruction
Among the included studies, 19 (86%) of the 22 studies of fast MRI. One study [44] also performed isocitrate
addressed the task of segmentation [27-45], and 1 study [46]  dehydrogenase (IDH) genotyping in addition to segmentation.

reported survival prediction. One study [47] reported the Table 3 shows a summary of the key characteristics and tasks
detection of lesions. One study [48] performed grading of the  addressed in the included studies.
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Table 3. Summary of key characteristics of the included studies.
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Reference  Year 3Dmodel 2D model  Image modality Purpose Transformer name Data source
[27] 2022 Yes Yes MRI2 Segmentation SWINP transformer Public
[28] 2022 Yes No MRI Segmentation SWIN transformer Public
[29] 2022 Yes No MRI Segmentation SWIN transformer Public
[30] 2022 Yes No MRI Segmentation Not available Public
[31] 2022 Yes No MRI Segmentation Segtransvae Public
[32] 2021 Yes No MRI Segmentation TransBTS Public
[33] 2021 Yes Yes MRI Segmentation SegTran Public
[34] 2022 Yes No MRI Segmentation SWIN transformer Public
[35] 2022 Yes No MRI Segmentation TransUNet Public
[36] 2022 Yes No MRI Segmentation Not available Public
[37] 2022 Yes No MRI Segmentation TransBTS Public
[38] 2022 Yes No MRI Segmentation UNETRS Public
[39] 2022 Yes No MRI Segmentation SWIN transformer Public
[40Q] 2021 Yes No MRI Segmentation Not available Public
[41] 2022 No Yes MRI Segmentation Not available Public
[42] 2022 No Yes MRI Segmentation Not available Publict+private
[43] 2022 Yes Yes MRI Segmentationand diagno-  Autoregressive trans- Public
sis former
[44] 2022 Yes No MRI Segmentation and grad-  Not available Public
ing
[45] 2022 No Yes MRI Segmentationand recon- SWIN transformer Public
struction
[46] 2022 No Yes MRI gpd Not available Public
[47] 2022 No Yes MRI Detection Not available Private
[48] 2022 No Yes Pathol ogy Grading Not available Private

M RI: magnetic resonance imaging.
BSWIN: Shifted Window.

CUNETR: UNet Transformer.

dsp: survival prediction.

Key Architecturesof the ViT for Brain Tumor
Segmentation

In the included studies, ViTs were combined with different
variants of a CNN to improve the overall performance of brain
tumor segmentation. Shifted Window (SWIN) transformer [49]
has recently become a popular choice for image-based
classification tasks. Therefore, the most recent studies
[27-29,34,39,45] reported using SWIN transformers in their
models. Some of the studies [28,29,36,38,40,41] incorporated
the transformers modul e within the encoder or decoder or both
modules of the UNet-like architectures. Some studies
[30-33,35,37,44] used the transformer module as a bottleneck
between the encoder and decoder modules of UNet-like
architectures. One study [41] explored both cascade and parallel
combinations of thetransformer module with CNNs. One study
[48] used the transformer modulein parallel combination with
aresidual network (a CNN). One study [42] implemented the

https://medinform.jmir.org/2023/1/e47445

training of transformers using federated learning over distributed
datafor 22 institutions.

Complexity of the Models Used in the Studies

Theincluded studies presented transformer-based models with
different computational complexity. Of these, Fidon et al [35]
used the TransUNet model, which has 116.7 million parameters,
whereasthe UNETR model proposed by Hatamizadeh et a [38]
has 92.58 million parameters. The SegTran model proposed by
Li et a [33] has 93.1 million parameters. Compared with the
UNETR [38], the recent variant, that is, SWIN UNETR [34],
has 61.98 million parameters. The Segtransvae [31] has 44.7
million parameters. The BTSWIN-UNet model [28] has 35.6
million parameters that are higher than other SWIN
transformer—based models but much smaller than the UNETR.
For example, the SWIN transformer—based models Trans-BTS
and SWIN-UNet have 30.6 million and 27.1 million parameters,
respectively, on the same data, but UNETR has 102.8 million
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parameters on the same data. The TransConver proposed by
Liang et a [27] has 9 million parameters. The SWINMR [45]
has 11.40 million parameters for reconstruction. Other studies
[28,30,32,36,37,39-44,46-48] did not provide details regarding
the computational complexity of the models. Some studies have
reported adifferent number of parametersfor other modelsused
on their data. We believe that these minor differences occur
because of the resolution of the input images, which may not
be the same in different studies.

Hardware Use

Wang et al [32] used 8 NVIDIA Titan RTX GPUs for training
their model. Similarly, Hatamizadeh et al [34] and Hatamizadeh
et a [38] trained their models on a DGX-1 cluster with 8
NVIDIA V100 GPUs. Jiaand Shu [37] used 4 NVIDIA RTX
8000 GPUsfor training the model, whereas Zhou et al [48] used
4 GeForce RTX 2080 Ti GPUs. Liang et a [27] and Liang et
al [29] trained their models on 2 parallel NVIDIA GeForce

Ali eta

2080Ti GPUs. Similarly, Huang et al [45] trained the model on
2 NVIDIA RTX 3090 GPUs with 24 GB GPU memory, and
Cheng et a [44] used 2 NVIDIA V100 GPUs. Zhang et a [30]
and Li et al [47] trained their modelson asingle NVIDIA Tesla
V100 GPU, Li et al [33] trained the model on a single 24 GB
Titan RTX GPU, Luu and Park [36] used asingleNVIDIA RTX
3090 GPU for training the model, Liu et a [39] trained the
model using NVIDIA GTX 3080, and Dhamijaet a [41] used
TeslaP-100 GPU.

Types of Data Used in the Studies

All theincluded studies (except 1[48]) used MRI datafor brain
tumor segmentation. Zhou et al [48] used histopathol ogy images.
In 16 studies, volumetric MRI data were used, whereas in 9
studies, the models were developed for 2D image data. Three
studies[27,33,43] reported experiments on both volumetric data
and image data. Figure 3 shows the Venn diagram for the
number of studies using 3D versus 2D data.

Figure 3. Venn diagrams showing the number of studies that used 3D versus 2D data.

3D

Data Sets Used in the Studies

Three studies [42,47,48] reported using privately developed
data setsor did not provide public accessto the data. One study
[42] used both publicly available and privately developed data.
The Brain Tumor Segmentation (BraTS) challenge data set of
brain MRI has been the most popular dataused in 17 (77%) of
the 22 studies. More specificaly, 6 studies used BraT S 2021
data [28,31,34-37], 5 used BraTS 2020 data [28,32,42,44,46],
7 used BralS 2019 data [27-29,32,33,39,40], 3 used BralS
2018 data [27,29,43], and 1 used BraT S 2017 data [45]. Some
of these studies also used >1 data set, either independently or
by combining them. Other data used in the included studies
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were MRI data from the Medical Decathlon used by
Hatamizadeh et al [38], the Cancer Imaging Archive data used
by Dhamija at [41], the UK Biobank data used by Pinaya et al
[43], data from the University Hospital of Ljubljana used by
Pinaya et al [43], the Calgary-Campinas Magnetic Resonance
reconstruction data used by Huang et al [45], data from the
University Hospital of Patras Greece used by Zhou et a [48],
and data from the Cancer Hospital and Shenzhen Hospital used
by Li et al [47]. One study [30] did not specify the data. Table
4 summarizes the data sets used in the included studies and
providesthe public accesslinksfor each data set. Figure 4 shows
the Venn diagram for the number of studies using public versus
private data.
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Table 4. Datasets used in theincluded studies.
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Data set name Modality Available URL U%d by the following stud-
ies

BraTS? 2021 MRIP Public (50] [28,31,34-37]

BraTS 2020 MRI Public [51] [28,32,42,44,46]

BraTS 2019 MRI Public [52] [27-29,32,33,39,40]

BraTS 2018 MRI Public [53] [27,29,43]

BraTS 2017 MRI Public [50] [45]

Decathlon MRI Public [54] [38]

TCIAC MRI Public [55] [41]

UK Biobank MRI Public [56] [43]

University Hospital of Ljubljana MRI Public [57] [43]

Calgary-CampinasMR% reconstruc- MRI Public (58] [45]

tion data set

University Hospital of PatrasGreece  Pathology images Private _e [48]

Cancer Hospital and Shenzhen — Private — [47]

Hospita data

Not specified N/AS N/A N/A [30,47]

8BraT'S: brain tumor segmentation.
BMRI: magnetic resonance imaging.
®TCIA: The Cancer Imaging Archive.
IMR: magnetic resonance.

®Not available.

N/A: not applicable.

Figure 4. Venn diagrams showing the number of studies that used public versus private data sets.

Public

Evaluation Metrics

The Dice score and the Hausdorff distance measurements are
popular metrics commonly used to evaluate segmentation
performance onthe BraTSMRI datasets. Hence, in theincluded
studies, the Dice score and Hausdorff distance were the most
common metrics used to assess the results of brain tumor
segmentation. In summary, 19 studies [27-45] reported the use
of the Dice score, whereas 15 studies [27-32,34-40,42,44] used
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both the Dice score and Hausdorff distance. Two studies[41,45]
reported intersection-over-union. One study [42] reported the
focal score and Tversky score for the federated learning
framework evaluation in addition to the Dice score and
Hausdorff distance for the segmentation evaluation. One study
[45] reported peak signal:noiseratio, structural similarity index,
and Fréchet Inception Distance in the assessment of the
reconstructed MRI in addition to Intersection over Union and
Dice scores for segmentation evaluation. One study [46] used
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the concordance index and hazard ratio to evaluate the
performance of survival analysis. One study [47] reported
sensitivity and precision, and 1 study [48] reported precision
and recall.

Discussion

Principal Findings

In this study, we reviewed the studies that used ViT to aid in
brain cancer imaging applications. We found that most studies
(19/22, 86%) were published in 2022, and almost one-third of
these studies (6/19, 32%) were published in the second quarter
of 2022. AsViT wasfirst proposed in 2020 for natural images,
it has only recently been explored in brain MRI and cancer
imaging. Almost half of the studies (10/22, 45%) were published
by authors from China. Furthermore, the authors from China
published twice the number of studies published by authors
from the United States. Other countries published approximately
one-third of the studies (7/22, 32%).

Motivation of Using Transformersfor Segmentation

The transformer module works on the self-attention concept,
that is, cal culating pairwise interactions between all input units.
Thus, transformers are good at |earning contextualized features.
Although thislearning of the contextualization by atransformer
can berelated to the upsampling path in a UNet encoder-decoder
architecture, the transformer overcomes the limitation of the
receptivefield, and hence, it works better to capture long-range
correlations [34]. In a UNet architecture, one may enlarge the
receptive fields by adding more downsampling layers or by
introducing larger stride sizes in the convolution operations of
the downsampling path. However, the former increases the
number of parameters and may lead to overfitting, whereas the
latter sacrifices the spatial precision of the feature maps [34].
Nevertheless, the initial attempts to introduce transformers for
brain tumor segmentation used the transformer block in the
encoder or decoder or the bottleneck stage of the UNet-like
architectures. These approaches were mainly driven by the
success of UNet-based architectures for segmentation, such as
nnUNet’s success on the BraT S2020 challenge[59]. In addition,
until 2020, CNN-based models were the best performers for
brain tumor segmentation. Therefore, nnUNet [59] was the
winning entry for the BraT S2020 challenge. With improved
strategies and architectures, attention-based models performed
competitively in recent years. Wang et al [32] presented the
TransBTS model, which was the first attempt to incorporate
transformers into a 3D CNN for brain tumor segmentation.
Although Hatamizadeh et al [34] reported SWIN UNETR for
brain tumor segmentation, and it wasthefirst transformer-based
model that performed competitively for the BralS 2021
segmentation task. The TransBTS model wastrained and tested
onthe BraTl S2018 and BraT S2019 data sets, whereasthe SWIN
UNETR has been evaluated on the BralS 2021 data set.
However, for the BraT S 2021 data set, the winning entry was
an extension of the nnUNet model [59] presented by Luu and
Park [36] who proposed introducing attention in the decoder of
the nnUNet to perform the tumor segmentation. As identified
by Jiaand Shu [37], the UNETR removed convolutional blocks
in the encoder, which may result in insufficient extraction of
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local context information when applied to volumetric MRI data.
Overall, these approaches of combining transformersand CNNs
are driven by the motivation to use the best of both worlds.
These studies suggested that the best-of-both-worlds approach
can be effective in improving brain tumor segmentation by
combining CNNs with transformers. In theory, there are many
possibilities for how we approach combining the advantages
offered by the 2 different architectures.

Applications Covered in the Studies

Most of the studies included are those that either designed an
attention-based architecture or used existing ViT architectures
to achieve the task of tumor segmentation. In the brain
segmentation tasks, the key focusisthe segmentation of gliomas,
which isthe most common brain tumor. Asmost of these studies
used 1 of thevariants of the BraT S data set wherethe MRI data
areannotated for 4 regions, these studi es reported segmentation
of the whole tumor, tumor core, enhancing tumor, and
background. Some studies also reported using attention-based
models for other applications related to brain cancer, such as
survival prediction, MRI reconstruction, grading of brain cancer,
and IDH genotyping.

Discussion Related to the Architectures

Among the studies that used the ViT module after a 3D CNN
features extraction, the TransBTS[32] wasthefirst architecture
(released in September 2021) and served asinspiration for many
other architectures. The TransBTS architecture was motivated
by the idea of incorporating global context into the volumetric
gpatial features of brain tumors. Furthermore, the work
highlighted the need to use an attention module on image
patches instead of flattened images, unlike previous efforts.
Essentially, the flattening of high-resolution images makes the
implementation impractical, as transformers have a quadratic
computational complexity with respect to the number of tokens
(ie, the dimension of the flattened image). The TranBTS
architecture has downsampling and upsampling layers linked
through skip connections; however, in the bottom part of the
architecture, there are transformer layers that help with the
global context capturing. These transformer layers are in
addition to alinear projection layer and a patch embedding layer
to transfer the image to sequence representation. So, in away,
the VIT serves as the bottleneck layer to capture long-range
dependencies. Later, Jiaand Shu [37] presented a modification
in the TransBTS architecture [32] using 2 ViT blocks after the
encoder part instead of 1 transformer block in the TransBTS.
Specifically, the outputs of the fourth and fifth downsampling
layers pass through a feature embedding of a feature
representation layer, transformer layers, and afeature mapping
layer and then pass through the corresponding upsampling 3D
CNN layers. Compared with the TransBTS architecture, where
the transformer was used at the end of the encoder and features
representation was obtained after the fourth layer, Jia and Shu
[37], increased the depth to 5 layers and used the transformer
in both the fourth and fifth layers. Therefore, after the fourth
layer, the transformer effectively builds a skip connection with
the corresponding layer of the decoder block.

Similarly, Zhang et al [30] used amultihead self-attenti on—based
transcoder module embedded after the encoder of a 3D UNEet.
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However, they replaced theresidual blocks of the 3D UNet with
aself-attention layer that operated on a3D feature map, followed
by progressive upsampling via a 3D CNN decoder module.
Pham et al [31] also used transformer layers after a 3D CNN
module and used a variational encoder to reconstruct the
volumetric images. Li et a [33] presented the SegTran
architecture, which is again based on using the transformer
modul es after the features extraction with CNN, thus capturing
the global context. Here, the authors suggested combining the
CNN featureswith positional encodings of the pixel coordinates
and flattening them into a sequence of local feature vectors.

Fidon et a [35] used the TransUNet architecture [60] as the
backbone of their model and used the test time augmentation
strategy to improveinference. Finaly, Cheng et al [44] presented
the MTTUNet architecture, which is a UNet-like
encoder-decoder architecture for multitasking. They used the
CNN layers to extract spatia features, which were then
processed by the bottleneck transformer block. Subsequently,
the decoder network performed the segmentation task. In
addition, the authors al so used the transformer output to perform
IDH genotyping, thus making it a multitask architecture.

Hatamizadeh et al [38] presented the UNETR architecture that
redefined the task of 3D segmentation as a 1D
sequence-to-segquence classification that can be used with a
transformer to learn contextual information. Therefore, the
transformer block in the UNETR operates on the embedded
representation of the 3D MRI input data. In effect, the
transformer is incorporated within the encoder part of a UNet
architecture. Compared with other architectures such as
BTSWIN-UNet [30], TransBTS [32], SegTran [33,35], and
BiTr-UNet [37], which usethe transformer as abottleneck layer
of the encoder-decoder architectures, the UNETR directly
connects the encoded representation from the encoder with the
decoder part. Compared with other methods where the encoder
part uses 3D CNN blocks, such as TransBTS [32] and
BiTr-UNet [37], the UNETR does not use aconvolutional block
inthe encoder. Instead, the UNETR obtainsa2D representation
for the 3D volumes and then usesthe 2D ViT architecture that
works on the 2D patches of the images. Each patch is treated
as 1 token for the attention operation. UNETR does not rely on
abackbone CNN for generating the input sequencesand directly
uses the tokenized patches.

Luu and Park [36] introduced an attention mechanism in the
decoder of the nnUNet [59] to perform the tumor segmentation.
They extended the nnUNet and modified it by using axia
attention in the decoder of the 3D UNet. Furthermore, they
doubled the number of filtersin the encoder while retaining the
same number in the decoder. Sagar [40] presented the Vision
Transformer for Biomedical Image Segmentation architecture,
which used transformer blocksin the encoder and decoder of a
UNet architecture. The architecture introduced multiscale
convolutions for feature extraction that were used as input to
the transformer block.

Dhamija et a [41] explored the sequential and parallel stacks
of transformer-based blocks using a UNet block. In principle,
they used a transformer-based encoder and a CNN-based
decoder connected in parallel with a UNet-based encoder and
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then in cascade with a UNet-based encoder. Apparently, the
parallel combination (USegTransformer-P) outperformed the
cascade combination by some margin. Zhou et a [48] designed
a pardlel dual-branch network of a CNN (the ResNet
architecture) and ViT and used it to grade brain cancer from
pathology images. The dual-branch network established aduplex
communication between the ResNet and ViT blocks that sends
global information fromthe ViT to ResNet and local information
from ResNet to the ViT.

Many similar architectureswere probably released concurrently
by different research groups or released very close in time to
each other. For example, Li et al [33] found that segmentation
transformer [61] and TransUNet [60] were released concurrently
with their own model. Therefore, it is not surprising that there
are afew similarities between the approaches adopted by these
studies.

Discussion Related to SWIN Transformers
In general, transformers are notoriously popular for the

computational complexity of the order O (n?). For example, as
identified by Jiaand Shu[37], UNETR stackstransformer layers
and keeps the sequence data dimension unchanged during the
entire process, which results in expensive computation for
high-resolution 3D images. SWIN transformers hel ped overcome
the computational complexity. Hence, it became a popular
backbone architecture for many recent studies[27-29,32,39,45]
to overcomethe computational complexity of transformer-based
models. For example, Liang et al [27] reported the use of a2D
SWIN transformer [49] and a 3D SWIN transformer [62] to
replace the traditional architecture of VIiT to overcome the
computational complexity. Jiang et a [28] used a SWIN
transformer as the encoder and decoder rather than as the
attention layer. Furthermore, they extended the 2D SWIN
transformer to a 3D variant that provided a base module.
Similarly, Liang et a [29] used a 3D SWIN transformer block
in the encoder and decoder of a3D UNet-like architecture. The
architecture was inspired by the SWIN transformer and the
SWIN-UNet model; however, they replaced the patchify stem
with a convolutional stem to stabilize the model training.
Furthermore, they used overlapping patch embedding and
downsampling, which helped to enhance the locality of the
segmentation network.

Hatamizadeh et al [34] extended the UNETR architectureto the
SWIN-UNet transformer (SWIN UNETR), whichincorporated
a SWIN transformer in the encoder part of the 3D UNet. The
decoder part still used a CNN architecture to upsample the
featuresto the segmentation masks. Asreported previously, the
SWIN UNETR was the first transformer architecture that
performed competitively on the BralTS 2021 segmentation
challenge. Liu et a [39] presented atransition net architecture
that combined a 2D SWIN transformer with a 3D transition
decoder. Thetransition block transformsthe 3D volumetric data
into a 2D representation, which is then provided as an input to
the SWIN transformer. Subsequently, in the decoder part, the
transition block transforms the multiscale feature maps into a
3D representation to obtain the segmentation results. Huang et
al [45] used a cascade of residual SWIN transformers to build
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a feature extraction module, followed by a 2D CNN network.
This architecture was designed for MRI reconstruction.

Discussion Related to Model Complexity

In general, transformer architectures have ahigh computational
complexity. The number of parametersfor the architecturesfor
the models, such as UNETR and TransUNet, are as large as 92
million and 116 million, respectively. The SWIN
transformer-based architecture has arelatively smaller number
of parameters (of the order of 30-45 million). For models with
a higher number of parameters, the researchers had to rely on
high-end GPU resources. Therefore, the computational setup
reported in some of the included studieswas built with as many
as 8 GPUs. However, few studies aso reported training the
models on a single GPU with memory sizes ranging from 12
GB to 24 GB.

Discussion Related to 3D Data

Our categorization of amodel designed for 3D or 2D datawas
either based on direct extraction of the information from the
studies or the description of the model architecture in the
included studies. Therefore, if a study did not specify whether
it used the volumetric data directly or transformed the datainto
2D imagesbut provided a2D model architecture, we placed the
study in the 2D data category. Many modern deep learning
methods for medical imaging, including transformers, rely on
pretrained models as their backbones. These backbones can
generalize well, making them good candidates for use in other
related tasks, asthey provide generalization, better convergence,
and improved segmentation performance [39]. However, Liu
et a [39] argued that such backbone architectures are, in general,
difficult to be migrated to 3D brain tumor segmentation. First,
thereis ageneral lack of 3D data, and most publicly available
datasetsprovide 2D data. Second, medical imagessuch asMRI
vary in their distribution and style compared with natural
images. These variations hinder the direct transformation of the
2D pretrained models for 3D volumetric data. Hence, they
recommended transforming the 3D datainto a2D representation
to enable its use with 2D transformers. However, numerous
other studies have developed and used 3D models directly on
volumetric data.

The most commonly used datain the included studies were the
brain MRI of the BraTS data set. The BraT S data set has been
phenomenal in facilitating the research on brain glioma
segmentation. The BraT S challenge has served as a dedicated
venue for the last 11 years and has established itself as a
foundation data set in helping the community push the
state-of-the-art in brain tumor segmentation. The BraT S data
set has 4 MRI modalities, namely, T1-weighted, postcontrast
T1-weighted, T2-weighted, and T2 fluid-attenuated inversion
recovery. Furthermore, the data set provides baseline
segmentation annotation from physicians.

Discussion Related to Evaluation Metrics

The Dice score and Hausdorff distance measurements have been
more commonly reported, as these metrics are widely used to
evaluate segmentation performance on the BralTS MRI data
sets. In the included studies, the Dice score and Hausdorff
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distance were the most common metrics used to assess the
results of brain tumor segmentation.

Strengthsand Limitations

Strengths

Although there has been a surge in studies on the use of ViTs
in medical imaging, only afew reviews have been reported on
ViTsin medical imaging [20,23,25]; however, their scopes are
too broad. In comparison, to the best of our knowledge, thisis
the first review of the applications and potential of ViTs to
enhance the performance of brain tumor segmentation. This
review covers all the studies that used ViTs for brain cancer
imaging; thus, this is the most comprehensive review. This
review is helpful for the community interested in knowing the
different architectures of ViTs that can help in brain tumor
segmentation. Unlike other reviews[20,23,25] that cover many
different medical imaging applications, this review focuses on
studies that have only developed ViTs for brain tumor
segmentation. In this review, we followed the PRISMA-ScR
guidelines [26]. We retrieved articles from the popular
web-based libraries of medical science and computing to include
as many relevant studies as possible. We avoided bias in study
selection through an independent selection of studies by 2
reviewers and through validation of the selected studies and
data extraction by the third reviewer. This review provides a
comprehensive discussion on the different pipelinesto combine
ViTswith CNNs. Hence, thisreview will be very useful for the
community to learn about the different pipelines and their
working for brain tumor segmentation. In addition, weidentify
the computational complexity of the various pipelines to help
the readers understand the associated computational cost of
ViTsfor brain tumor segmentation. We provide acomprehensive
list of available data sets for brain MRI and hope that it will
provide a good reference point for researchers to identify
suitable data setsfor devel oping modelsfor BraT S. Wemaintain
an active web-based repository that will be populated with
relevant studiesin the future.

Limitations

In this review, we included studies from 4 major databases.
Despite our best efforts to retrieve as many studies as possible,
the possibility that some relevant studies may be missed cannot
be ruled out. Moreover, the number of publications on the
applications of ViTs in medical imaging is increasing at an
unprecedented rate; hence, recent studies may be published
whilewedraft thiswork. For practical reasons, we only included
studies in English. Therefore, non-English text might be
excluded even if it were relevant. Not all studies reported on
the computational complexity and the required training time.
Hence, we provide the computational complexity only for the
studies in which this information was available; thus, the
comparison might not be exhaustive. Thisreview did not analyze
the claims on the performance of the different architectures, as
such an assessment is beyond the scope of this work. We did
not attempt to reproduce the results reported in the studies, as
such an execution of the computer code is beyond the scope of
the review. Weincluded studiesthat reported working with any
imaging modality for brain cancer and did not evaluate the use
of physiological signals, although understanding physiological
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signals can also play a significant role in brain cancer studies.
We did not evaluate the bias in the training data used in the
included studies; therefore, the performance reported for ViTs
in brain cancer imaging could be occasionally overestimated.

Open Questions and Challenges

Research efforts on devel oping transformer-based methods for
brain cancer applications are progressing rapidly. Some of the
challenges are highlighted in the following text.

Intheincluded studies, wedid not find any study that addresses
the challenge of early detection of brain cancer. Similarly, the
number of studiesrelated to prognosis and tumor growth in the
brain is also minimal. Early detection and prognosis are
applications of great interest where the potentia of ViTs can
be explored. One approach isto combine ViT with the sequential
representation of time-based datafor tumor growth in the brain.

ViTs lack scale invariance, rotation invariance, and inductive
bias capabilities. Consequently, they do not perform well at
capturing local information and cannot be trained well with a
small amount of data[48]. Oneway to overcomethislimitation
is to provide a larger training data set. Therefore, the
development of large public data sets is encouraged. Another
widely used method in the included studiesis combining ViTs
with CNNs.

In general, models pretrained on a large-scale data set
(ImageNet) are known to perform well on many other data sets.
However, using the pretrained transformer-based models and
fine-tuning them for brain cancer imaging did not improve the
performance, as reported by Hatamizadeh et al [38]. Similarly,
Pinaya et a [43] reported that the model trained on 3D data
from the UK Biobank could perform well on the test set.
However, the performance degraded when the model was
evauated on subsets of other data sets. Therefore, the
generalization of the modelsis still a challenge.

Combining CNN with ViTs can be achieved through serial
(cascade), parallel connections, or a combination of both. In
serial combination of CNNs and ViTs, the arrangement may
cause training ambiguities in terms of fusing local and global
features. If the learning eventualy loses local and global
dependenciesin theimage data[48,63,64], optimal performance
may not be achieved. In contrast, for parallel combinations,
there will be undesired redundant information captured by the
2 models[33].

The BraTS challenge completed its 10 years in 2021 and has
been a dedicated venue for facilitating the state-of-the-art
developments of methodsfor glioma segmentation [37]. Asthe
data set is publicly available, aimost al the included studies
have used it. However, there seems to be a very limited effort
in devel oping other data setsthat are publicly available. It would
be interesting to have additional data sets for brain cancer
imaging that can facilitate advancing the research on Al models
for brain cancer diagnosis and prognosis.
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The included studies reported advancements in
transformer-based architectures for brain cancer imaging.
However, these studies commonly lack the explanability and
interpretability of the model behavior. Future research should
focus on new methods to address thisissue.

ViT-based architectures, as of now, may not always be the best
for brain tumor segmentation. For example, the TransBTS model
(a ViT-based model) had suboptimal performance owing to its
inherently inefficient architecture, where the ViT is only used
in the bottleneck as a stand-alone attention module and does
not have a connection to the decoder at different scales (as
identified by Hatamizadeh et al [34]). In contrast, architectures
based on UNet (eg, nnUNet and SegResNet) have achieved
competitive benchmarks on the BraTS challenge.

Asidentified by Huang et a [45], one can argue that the heavy
computations in transformers are the main bottleneck in
development, and the performance improvements of
transformers for brain cancer imaging come at the cost of
computational complexity. Therefore, lightweight
implementations of transformer architectures for brain cancer
imaging are a topic of great interest for future research.
Furthermore, the transformer architecturesthat transform image
data into sequential representation (such as in UNETR) may
not be the best choice. First, theremoval of convolutional blocks
in the encoder does not guarantee the capture of context
information in volumetric MRI data. Second, keeping a fixed
sequence during the entire processing of dataleadsto expensive
computation when the input data are a batch of high-resolution
3D images [37]. Models such as UNETR and TransBTS for
brain tumor segmentation lack cross-plane contextual
information; hence, the 3D spatial context isnot fully captured
by these models [29].

Conclusions

In this work, we performed a scoping review of 22 studies that
reported ViT-based Al models for brain cancer imaging. We
identified the key applicationsof ViTsindeveloping Al models
for tumor segmentation and grading. ViTs have enabled
researchers to push the sate-of-the-art in brain tumor
segmentation, although such an improvement hasresulted in a
trade-off between model complexity and performance. We also
summarized the different vision architectures and the pipelines
with ViTs as the backbone architecture. We a so identified the
commonly used data sets brain tumor segmentation tasks.
Finaly, we provided insights into the key challenges in
advancing brain cancer diagnosisor prognosis using ViT-based
architectures. Although ViT-based architectures have great
potential in advancing Al methods for brain cancer, clinical
transformations can be challenging, as these models are
computationally complex and havelimited or no explainability.
We believe that the findings of this review will be beneficial to
the researchers studying Al and cancer.
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Abstract

Background: Machinelearning (ML) models provide more choices to patients with diabetes mellitus (DM) to more properly
manage blood glucose (BG) levels. However, because of numerous types of ML algorithms, choosing an appropriate model is
vitally important.

Objective: In asystematic review and network meta-analysis, this study aimed to comprehensively assess the performance of
ML modelsin predicting BG levels. In addition, we assessed ML models used to detect and predict adverse BG (hypoglycemia)
events by calculating pooled estimates of sensitivity and specificity.

Methods: PubMed, Embase, Web of Science, and Ingtitute of Electrical and Electronics Engineers Explore databases were
systematically searched for studies on predicting BG levels and predicting or detecting adverse BG events using ML models,
from inception to November 2022. Studies that assessed the performance of different ML models in predicting or detecting BG
levels or adverse BG events of patientswith DM wereincluded. Studieswith no derivation or performance metrics of ML models
were excluded. The Quality Assessment of Diagnostic Accuracy Studiestool was applied to assessthe quality of included studies.
Primary outcomes were the relative ranking of ML models for predicting BG levels in different prediction horizons (PHs) and
pooled estimates of the sensitivity and specificity of ML modelsin detecting or predicting adverse BG events.

Results: Intotal, 46 eligible studies were included for meta-analysis. Regarding ML modelsfor predicting BG levels, the means
of the absolute root mean square error (RMSE) in aPH of 15, 30, 45, and 60 minutes were 18.88 (SD 19.71), 21.40 (SD 12.56),
21.27 (SD 5.17), and 30.01 (SD 7.23) mg/dL, respectively. The neural network model (NNM) showed the highest relative
performance in different PHs. Furthermore, the pooled estimates of the positive likelihood ratio and the negative likelihood ratio
of ML modelswere 8.3 (95% CI 5.7-12.0) and 0.31 (95% CI 0.22-0.44), respectively, for predicting hypoglycemiaand 2.4 (95%
Cl 1.6-3.7) and 0.37 (95% CI 0.29-0.46), respectively, for detecting hypoglycemia.

Conclusions: Statistically significant high heterogeneity was detected in all subgroups, with different sources of heterogeneity.
For predicting precise BG levels, the RM SE increases with arisein the PH, and the NNM shows the highest rel ative performance
among al the ML models. Meanwhile, current ML models have sufficient ability to predict adverse BG events, while their ability
to detect adverse BG events needs to be enhanced.

Trial Registration: PROSPERO CRD42022375250; https://mww.crd.york.ac.uk/prospero/display_record.php?Recordl D=375250

(JMIR Med Inform 2023;11:e47833) doi:10.2196/47833
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Introduction

Diabetes mellitus (DM) has become one of the most serious
health problems worldwide [1], with more than 463 million
(9.3%) patients in 2019; this number is predicted to reach 700
million (10.9%) in 2045 [2], which has resulted in growing
concerns about the negative impacts on patients' lives and the
increasing burden on the health care system [3]. Furthermore,
previous studies have shown that without appropriate medical
care, DM can lead to multiple long-term complicationsin blood
vessels, eyes, kidneys, feet (ulcers), and nerves [4-7]. Adverse
blood glucose (BG) events are one of the most common
short-term complications, including hypoglycemiawith BG<70
mg/dL and hyperglycemiawith BG>180 mg/dL. Hyperglycemia
in patients with DM may lead to lower limb occlusions and
extremity nerve damage, further leading to decay, necrosis, and
local or whole-foot gangrene, even requiring amputation [8,9].
Hypoglycemia can cause serious symptoms, including anxiety,
palpitation, and confusion in amild scenario and seizures, coma,
and even death in a severe scenario [10,11]. Thus, there is an
imminent need for preventing adverse BG events.

Machine learning (ML) models use statistical techniques to
provide computers with the ability to complete assignments by
training themsel ves without being explicitly programmed [12].
However, ML modelsfor managing BG requires huge amounts
of BG data, which cannot be satisfied by the multiple data points
generated by the traditional finger-stick glucose meter [13].
With the introduction of the continuous glucose monitoring
(CGM) device, which typically produces a BG reading every 5
minutes all day long, the size of the data set of BG readingsis
sufficient to be used in ML models[14].

Recently, there has been an immense surge in using ML
technologies for predicting DM complications. Regarding BG
management, previous studies have developed different types
of ML models, including random forest (RF) models, support
vector machines (SVMs), neural network models (NNMs), and
autoregression models (ARMSs), using CGM data, electronic
health records (EHRs), eectrocardiograph (ECG),
electroencephalograph (EEG), and other information (ie,
biochemical indicators, insulin intake, exercise, and meals)
[10,15-20]. However, the performance of different models in
these studies was not quite consistent. For instance, in terms of
BG level prediction, Prendin et al [21] showed that the SVM
achieved alower root mean square error (RM SE) thanthe ARM,
while Zhu et al [22] showed a different result.

Therefore, this meta-analysis aimed to comprehensively assess
the performance of ML modelsin BG management in patients
with DM.

Methods

Search Strategy and Study Selection

The study protocol has been registered in the international
prospective register of systematic reviews (PROSPERO;

https://medinform.jmir.org/2023/1/e47833

registration 1D: CRD42022375250). Studies on BG levels or
adverse BG event prediction or detection using ML models
were eligible, with no restrictions on language, investigation
design, or publication status. PubMed, Embase, Web of Science,
and Institute of Electrical and Electronics Engineers (IEEE)
Explore databases were systematically searched from inception
to November 2022. Keywords used for study repository searches
were (“machine learning” OR “artificial intelligence” OR
“logistic model” OR “support vector maching” OR “decision
tree’” OR “cluster analysis’ OR “deep learning” OR “random
forest”) AND (“hypoglycemia’ OR *“hyperglycemia’ OR
“adverseglycemic events’) AND (“prediction” OR “detection”).
Details regarding the search strategies are summarized in
Multimedia Appendix 1. Manual searcheswere added to review
reference listsin relevant studies.

Selection Criteria

Inclusion criteriawere asfollows: (1) participantsin the studies
were diagnosed with DM; (2) study endpoints were
hypoglycemia, hyperglycemia, or BG levels; (3) the studies
established at least 2 or moretypesof ML modelsfor prediction
of BG levels and 1 or more types of ML models for prediction
or detection of adverse BG events; (4) the studies reported the
performance of ML models with statistical or clinical metrics;
(5) the studies contained the devel opment and validation of ML
models, and (6) study outcomes were means (SDs) of
performance metricsof test datafor prediction of BG levelsand
sensitivity and specificity of test datafor prediction or detection
of adverse BG events.

Exclusion criteriawere asfollows: (1) studies did not report on
the derivation of ML models, (2) studies were based only on
physiological or control-oriented ML modéls, (3) studies could
not reproduce true positives, true positives, fal se negatives, and
false positivesfor prediction or detection of adverse BG events,
(4) studies were reviews, systematic reviews, animal studies,
or irretrievable and repetitive papers, and (5) studies had
unavailable full text or outcome metrics.

Authors KL and LYL screened and selected studies
independently based on the criteria mentioned before. Authors
KL and YM extracted and recorded the data from the selected
studies. Conflicts were resolved by reaching a consensus. The
study strictly followed the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analysis) statement
(Multimedia Appendix 2) [23-25].

Data Extraction and Management

Two reviewers independently carried out data extraction and
quality assessment. If a single study included more than 1
extractable test results for the same ML model, the best result
was extracted. If asingle study included 2 or more models, the
performance metrics of each model were extracted. For studies
predicting BG levels, RMSEs based on different prediction
horizons (PHS) were extracted. For studies predicting or
detecting adverse BG events, the sensitivity, specificity, and
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precision of reproducing the 2x2 contingency table were
extracted.

Specifically, the following information was extracted:

« General characteristics: first author, publication year,
country, data source, and study purpose (ie, predicting or
detecting hypoglycemia)

- Experimental information: participants (type of DM, type
1 or 2), sample size (patients, data points, and
hypoglycemia), demographic information, models, study
place and time, model parameters (ie, input and PHs), model
performance metrics, threshold of BG levels for
hypoglycemia, and reference (ie, finger-stick)

M ethodological Quality Assessment of Included
Reviews

The Quality Assessment of Diagnostic Accuracy Studies
(QUADAS-2) tool was applied to assessthe quality of included
studies based on patient selection (5 items), index test (3 items),
reference standard (4 items), and flow and timing (4 items). All
4 domainswere used for ng therisk of bias, and the first
3 domains were used to assess the consensus of applicability.
Each domain has 1 query in relation to the risk of bias or
applicability consisting of 7 questions [26].

Data Synthesis and Statistical Analysis

The performance metrics of ML models used to predict BG
levels, predict adverse BG events, and detect adverse BG events
were assessed independently. The performance metrics were
the RMSE of ML models in predicting BG levels and the
sensitivity and specificity of ML models in predicting or
detecting adverse BG events. A network meta-analysis was
conducted for BG level-based studies to assess the global and
local inconsistency between studies and plotted the surface
under the cumulative ranking (SUCRA) curve of every model
to calculate relative ranks. For event-based studies, pooled
sensitivity, specificity, the positive likelihood ratio (PLR), and

https://medinform.jmir.org/2023/1/e47833
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the negative likelihood ratio (NLR) with 95% Cls were
calculated. Study heterogeneity was assessed by calculating 12
values based on multivariate random-effects meta-regression
that considered within- and between-study correlation and
classifying them into quartiles (0% to <25% for low, 25% to
<50% for low-to-moderate, 50% to <75% for moderate-to-high,
and >75% for high heterogeneity) [27,28]. Furthermore,
meta-regression was used to eval uate the source of heterogeneity
for both BG level-based and adverse event—based studies. The
summary receiver operating characteristic (SROC) curve of
every model was also used to evaluate the overall sensitivity
and specificity. Publication bias was assessed using the Deek
funnel plot asymmetry test.

Furthermore, BG level-based studies were divided into 4
subgroups based on different PHs (15, 30, 45, 60 minutes), and
adverse event—based studieswere analyzed using different types
of models (ie, NNM, RF, and SVM). A 2-sided P value of <.05
was considered statistically significant. All statistical analyses
were performed using Stata 17 (Stata Corp) and Review
Manager (RevMan; Cochrane) version 5.3.

Results

Search Results

A total of 20,837 studieswereidentified through systematically
searching the predefined electronic databases; these also
included 21 studies found using reference tracking [10,29-48].
Of the 20,837 studies, 9807 (47.06%) were retained after
removing duplicates. After screening titles and abstracts, 9400
(95.85%) studies were excluded owing to reporting irrelevant
topics or no predefined outcomes. The remaining 407 (4.15%)
studies were retrieved for full-text evaluation. Of these, 361
(88.7%) studieswere excluded for variousreasons, and therefore
46 (11.3%) studies were included in the final meta-analysis
(Figure 1).
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Figure 1. Flow diagram of identifying and including studies. |EEE: Institute of Electrical and Electronics Engineers.

Citations of per database were as follows:
-Embase (n=6698)

-PubMed (n=6367)

-Web of Science (n=7694)

-IEEE Explorer (n=78)

-Records included by reference tracking (n=21).

Duplicates were removed.
(n=9807)

Records were excluded.

(n=9400)

Full-text articles were excluded, with reasons:
-Improper outcomes (n=141)

-Insufficient data (n=93)

» -Full papers not available (n=54)

-Screening of risk factors for hypoglycemia
(n=45)
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E -Predict blood glucose (n=10),
E -Predict hypoglycemia (n=19),

-Detect hypoglycemia (n=17).
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Description of Included Studies

As studies on hyperglycemiawere insufficient for analysis, we
selected studies on hypoglycemia to assess the ability of ML
models to predict adverse BG events. In total, the 46 studies
included 28,775 participants: n=428 (1.49%) for predicting

https://medinform.jmir.org/2023/1/e47833
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RenderX

BG levels, n=28,138 (97.79%) for predicting adverse BG events,
and n=209 (0.72%) for detecting adverse BG events. Of the 46
studies, 10 (21.7%) [20-22,49-55] predicted BG levels (Table
1), 19 (41.3%) [15,29-39,47,48,56-60] predicted adverse BG
events (Table 2), and the remaning 17 (37%)
[10,16,40-46,61-68] detected adverse BG events (Table 3).
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Table 1. Baseline characteristics of BG? level-based studies (N=10).
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First author Data Sample size Demographic  Object; Mode!: PHP (minutes); input Performance metrics
(year), country  source . . information setting
Patients,n  Data points, n
Perez-Gandia  coMCoe 15 728 —d TIDM® Models: NNM', ARM9IPH: 15,30  RMSE", delay
(2010), Spain  yjice out Input: CGM data
[20]
Prendin (2021) CGM de- Rea 350,000 Age T1DM; ARM, autoregressvemovingaverage RMSE, coefficient
United States ~ vice (n=141) out (ARMA), autoregressive integrated  of determination
[21] moving average (ARIMA), SVM', gglOD) sen_'s_blllt'):/,
RF feed-forward neural network &, preasion £
(fNN), long short-term memory score, timegain
(LSTM) PH: 30 Input: CGM data
Zhu (2020) Ohio Red (n=6), 1,036,800 — TlDM; DRNNk, NNM, SVM, ARM PH:30 RM SE, mean abso-
England[22] ~ T1DM, simulated out Input: BG level, meals, exercise, meal  |Ute relative differ-
UVA/Pado- (n=10) times ence (MARD) time
vaTlD gain
D'Antoni Ohio 6 — Age sexratio TIDM; AR JNN', RF, SVM, autoregression RMSE
(2020), Italy T1DM out (AR), one symbolic model (SAX),
[49] recurrent neural network (RNN), one
neural network model (NARX), jump
neural network (JNN), delayed feed-
forward neural network model
(DFFNN) PH: 15, 30 Input: CGM
data
Amar (2020), CGM de- 141 1,592,506 Age, sexratio, T1DM; ARM, gradually connected neural RMSE, Clarke error
Israel [50] vice, in- weight, BMI, in network (GCN), fully connected (FC grid (CEG)
sulin pump duration of [neural network]), light gradient
DM boosting machine (LCBM), RF PH:
30, 60 Input: CGM data
Li (2020), Eng- UVA/Pado- Simulated 51,840 — T1DM; GluNet, NNM, SVM, latent variable RMSE, MARD,
land [51] vaTlD (n=10) out with exogenousinput (LVX), ARM  timelag
PH: 30, 60 Input: BG level, meals,
exercise
Zecchin(2012), UVA/Pado- Simulated — — T1DM; Neura network—linear predictiona- RMSE, energy of
Italy [52] vaTlD, (n=20), re- out gorithm (NN-LPA), NN, ARM PH:  second-order differ-
CGM de- a (n=15) 30 Input: meals, insulin ences (ESOD), time
vice gain, Jindex
Mohebbi Corner- Real (n=50 — — T1DM; LSTM, ARIMA PH: 15, 30, 45,60, RMSE, MAE
(2020), Den- sonesACare in 90
mark [53] platform
Daniels (2022), CGM de- Red — Sex ratio T1DM; Convolutiona recurrent neural net-  RMSE, MAE, CEG,
England [54] vice (n=12) out work (CRNN), SVM PH: 30, 45, 60, timegain
90, 120 Input: BG level, insulin,
meals, exercise
Alfian (2020), CGM de- Red 26,723 — — SVM, k-nearest neighbor k-nearest  RMSE, glucose-spe-
Korea[55] vice (n=12) neighbor (kNN), DT™, RF, AdaBoos, cific root mean

XGBoost", NNM PH: 15, 30 Input:
CGM data

square error
(gRMSE), R2 score,
mean absolute per-
centage error
(MAPE)

3BG: blood glucose.
bpH: prediction horizon.

SCGM: continuous glucose monitoring.

dNot applicable.

®T1DM: type 1 diabetes mellitus.

'NNM: neural network model.
9ARM: autoregression model.
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PRMSE: root mean square error.

iSVM: support vector machine.

IRF: random forest.

KDRNN: dilated recurrent neural network.
'ARINN: ARTiDe jump neura network.
"DT: decision tree.

™ GBoost: Extreme Gradient Boosting.
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Table 2. Baseline characteristics of studies predicting adverse BG® events (N=19).

First author Data Sample size Object; Model Time Age (years), Thresh-
ear), country  source . . ) settin mean (SD)/range old

(year), country Y Patients,n  Datapoints,n Hypoglycemia, n 9 (SD)lrang
Pils (2014), CGMb 2 2518 152 TlDMC; SVMd All _ e 3.9
United States  gavice out
[39]
Seo (2019), CGM 104 7052 412 pm': RFY, SVM, k- Postprandial 52 39
Korea[15] device out nearest neigh-

bor (kNN), lo-

gistic regres-

sion (LR)
Parcerisas CGM 10 67 22 T1DM; SVM Nocturnal 31.8(SD 16.8) 39
(2022), Spain  device out
[29]
Stuart (2017), gHRrd' 9584 — 1327 DM;in Multivariable All — 4
Greece [30] logistic regres-

sion (MLR)
Bertachi CGM 10 124 39 T1DM; SVM Nocturnal 31.8(SD 16.8) 39
(2020), Spain  device out
[31]
Elhadd — 13 3918 172 T2DM;  xGBoog! All 35-63 —
(2020), Qatar out
[32
Mosquera- CGM 10 117 17 T1DM; SVM Nocturnal 33.7(SD 5.8) 39
Lopez (2020), device out
United States
[33]
Mosquera- CGM 20 2706 258 T1DM; SVM Nocturnal — 39
Lopez (2020), device out
United States
[33]
Ruan (2020), EHRs 17,658 3276 703 T1DM; XGBoog, LR, All 66 (SD 18) 4
England [34] in stochastic gra-

dient descent

(SGD), kNN,

DT, SVM,

quadratic dis-

criminant

analysis

(QDA), RF,

extratree

(ET), linear

discriminant

analysis

(LDA), Ad-

aBoost, bag-

ging
Gliemes CGM 6 55 6 T1DM; SVM Nocturnal 40-60 39
(2020), United  device out
States [35]
Jensen (2020), CGM 463 921 79 T1DM; LDA Nocturnal 43 (SD 15) 3
Denmark [36] device out
Oviedo CGM 10 1447 420 T1DM; SVM Postprandial 41 (SD 10) 39
(2019), Spain  device out
[37]
Toffanin CGM 20 7096 36 T1DM; Individua All 46 3.9
(2019), Italy ~ device out model-based
[38]
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First author Data Sample size Object; Model Time Age (years), Thresh-
, ] . . . Setti SD)/i Id

(yean), country - source Patients,n  Datapoints,n Hypoglycemia, n 'ng mean (SD)/range o

Bertachi CGM 6 51 6 TIDM;  NNMK Nocturnal 40-60 39

(2018), United  device out

States [47]

Eljil (2014), CGM 10 667 100 T1DM; Bagging All 25 33

United Arab  device out

Emirates [48]

Dave (2021), CGM 112 546,640 12,572 T1DM; RF All 12.67(SD 4.84) 3.9

United States  device out

[56]

Marcus CGM 11 43,533 5264 T1DM; Kerne ridge  All 18-39 3.9

(2020), Israel  device out regression

[57] (KRR)

Reddy (2019), — 55 90 29 T1DM; RF — 33(SD 6) 39

United States out

(58]

Sampath — 34 150 40 T1DM; Rankingaggre- Nocturanl — —

(2016), Aus- out gation (RA)

tralia[59]

Sudharsan — — 839 428 T2DM; RF All — 39

(2015), United out

States [60]

8BG: blood glucose.

PCGM: continuous glucose monitoring.
°T1DM: type 1 diabetes mellitus.
dsvm: support vector machine.

eNot applicable.

"DM: diabetes mellitus.

9RF: random forest.

PEHR: electronic health record.

iX GBoost: Extreme Gradient Boosti ng.
IDT: decision tree.

KNNM: neural network model.
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Table 3. Baseline characteristics of studies detecting adverse BG? events (N=17).

First author Data Sample size Object; Model Time Age (years), mean  Threshold
ear), countr source ) settin SD)/range
(yean) country  SOUICe o ientsn Data  Hypo- g (SD)frang
points,n  glycemia, n
Jin (2019), Unit- EHRSb _C 4104 132 TlDMd; Linear discrimi- All — —_
ed States [10] in nant analysis
(LDA)
Nguyen (2013), ggce 5 144 76 T1DM;in Levenberg- All 12-18 33
Australia[16] Marquardt
(LM), genetic
algorithm (GA)
Chan (2011), cemf 16 100 52 T1DM; Feed-forward ~ Nocturna 14.6 (SD 1.5) 33
Augtralia[40] device experi-  neural network
mental (FNN)
Nguyen (2010), EEG 6 79 27 TIDM;  Block-based  Nocturna 12-18 33
Australia[41] expei- neural network
mental (BRNN)
Rubega (2020), EEG 34 2516 1258 T1DM; NNMY All 55 (SD 3) 39
Italy [42] experi-
mental
Chen (2019), EEG — 300 11 DMM in Logisticregres- All — —
United States sion (LR)
[43]
Jensen (2013), CGM 10 1267 160 T1DM; svM! All 44 (SD 15) 39
Denmark [44] device experi-
mental
Skladnev (2010), CGM 52 52 11 T1DM;in fNN Nocturnal  16.1 (SD 2.1) 3.9
Australia[45] device
laione (2005), EEG 8 1990 995 T1DM; NNM Morning 35 (SD 13.5) 33
Brazil [46] expei-
mental
Nuryani (2012), ECG 5 575 133 DM; in SVM, linear All 16 (SD 0.7) 30
Australia[61] multipleregres-
sion (LMR)
San (2013), Aus- ECG 15 440 39 T1DM;in Block-based All 14.6 (SD 1.5) 33
tralia[62] neural network
(BBNN),
wavelet neural
network
(WNN), fNN,
SVM
Ling (2012), ECG 16 269 54 T1DM;in Fuzzy reason-  Nocturna 14.6 (SD 1.5) 33
Australia[63] ing model
(FRM), fNN,
multipleregres-
son-fuzzy infer-
ence system
(MR-FIS)
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First author Data Samplesize Object; Model Time Age (years), mean  Threshold
(year), country source Petients, n  Deta Hypo- setting (SD)/range

points,n  glycemia, n

Ling (2016), ECG 16 269 54 T1DM;in Extremelearn- Nocturna 14.6 (SD 1.5) 33
Australia[64] ing ma-

chine—based

neural network

(ELM-NN),

particle swarm

optimiza-

tion—based neu-

ral network

(PSO-NN),

MR-FIS, LMR,

fuzzy inference

system (FIS)
Nguyen (2012), EEG 5 44 20 TIDM;in NNM — 12-18 33
Australia[65]
Ngo (2020), Aus- EEG 8 135 53 T1DM;in BRNN Nocturnal  12-18 3.9
tralia[66]
Ngo (2018), Auss EEG 8 54 26 T1DM;in BRNN Nocturnal  12-18 3.9
tralia[67]
Nuryani (2010, ECG 5 27 8 TIDM;  Fuzzy support  Nocturna 16 (SD 0.7) 33
Australia[68] expei- vector machine

mental (FSVM), SVM

8BG: blood glucose.

PEHR: electronic health record.

®Not applicable.

4T1DM: type 1 diabetes mellitus.

®EEG: electroencephalograph.

fcaM: continuous glucose monitoring.

9INNM: neural network model.

"DM: diabetes mellitus.

'SVM: support vector machine.

As shown in Tables 1-3, 40 (87%) studies experimental setting, andtheremaining 1 (2.2%) study [55] did

[10,16,20-22,29,31,33-42,44-59,62-68] included participants
with type 1 diabetes mellitus (T1DM), 2 (4.3%) studies[32,60]
included participants with type 2 diabetes mellitus (T2DM),
and the remaining 4 (8.7%) studies[15,30,43,61] did not specify
thetype of DM. Regarding the data source of ML models, CGM
devices were involved in 22 (47.8%) studies
[15,20,21,29,31,33,35-40,44,45,47,48,50,52,54-57], EEG signals
were used in 8 (17.4%) studies [16,41-43,46,65-67], ECG
signals were involved in 5 (10.9%) studies [61-64,68], EHRs
were used in 3 (6.5%) studies[10,30,34], data generated by the
UVA/Padova T1D simulator were used in 3 (6.5%) studies
[22,51,52], the Ohio T1DM dataset wasused in 2 (4.3%) studies
[22,49], and 4 (8.7%) studies [32,58-60] did not report the
source of data. Regarding the setting of data collection, 24
(52.2%) studies[15,20-22,29,31-33,35-39,47-49,51,52,54,56-60]
were conducted in an out-of-hospital setting, 13 (28.3%) studies
[10,16,34,43,50,53,61-67] were conducted in an in-hospital
setting, 6 (13%) studies [40-42,44,46,68] were conducted in an

https://medinform.jmir.org/2023/1/e47833

RenderX

not specify the environment. Regarding when adverse BG events
occurred in the 36 (78.3%) adverse event—based studies, 15
(41.7%) [29,31,33,35,36,40,41,45,47,59,63,64,66-68] reported
nocturnal hypoglycemia, 16 (44.4%)
[10,16,30,32,34,38,39,42-44,48,56,57,60-62] were not specific
about the time of day, 2 (5.6%) [15,37] reported postprandial
hypoglycemia, 1 (2.8%) [46] reported morning hypoglycemia,
and the remaining 2 (5.6%) [58,65] did not report the time
setting. To carry out the network meta-analysis of BG
level-based studies, we chose the RM SE as the outcome to be
compared.

Quality Assessment of Included Studies

The quality assessment results using the QUADAS-2 tool
showed that morethan half of all included studiesdid not report
the patient selection criteriain detail, which led to low-quality
patient selection (Figure 2). Furthermore, the diagnosis of
hypoglycemia using blood or the CGM device was considered
high quality in the reference test in our study.

JMIR Med Inform 2023 | vol. 11 | e47833 | p.168
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

Liuetd

Figure2. Quality assessment of included studies. Risk of biasand applicability concernsgraph (A) and risk of bias and applicability concerns summary

(B).
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Statistical Analysis

MachineLearning Modelsfor Predicting Blood Glucose
Levels

Network meta-analysis was conducted to evaluate the
performance of different ML models. For PH=30 minutes, 10
(21.7%) studies [20-22,49-55] with 32 different ML models
were included, and the network map is shown in Figure 3A.

https://medinform.jmir.org/2023/1/e47833
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The mean RMSE was 21.40 (SD 12.56) mg/dL. Statistically
significant inconsistency was detected using the inconsistency

test(>=87.11, P<.001), as shown in theforest plot in Multimedia
Appendix 1. Meta-regression indicated that 12 for the RMSE
was 60.75%, and the source of heterogeneity analysis showed
that place and validation type were statistically significant
(P<.001). The maximum SUCRA valuewas 99.1 for the dilated
recurrent neural network (DRNN) model with a mean RMSE
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of 7.80 (SD 0.60) mg/dL [22], whereas the minimum SUCRA
valuewas 0.4 for 1 symbolic model withamean RMSE of 71.4
(SD 21.9) mg/dL [49]. Therelative ranks of the ML modelsare
shown in Table 4, and the SUCRA curves are shown in Figure
4A. Publication bias was tested using the Egger test (P=.503),
indicating no significant publication bias.

For PH=60 minutes, 4 (8.7%) studies [50,51,55] with 17
different ML models were included, and the network map is
shown in Figure 3B. The mean RMSE was 30.01 (SD 7.23)
mg/dL . Statistically significant inconsi stency was detected using
the inconsistency test (°=8.82, P=.012), as shown in the forest
plot in Multimedia Appendix 3. Meta-regression indicated that
none of the sample size, reference, place, vaidation type, and
model type was a source of heterogeneity. The maximum
SUCRA value was 97.8 for the GluNet model with a mean
RMSE of 19.90 (SD 3.17) mg/dL [51], while the minimum
SUCRA value was 4.5 for the decision tree (DT) model with a
mean RM SE of 32.86 (SD 8.81) mg/dL [55]. Therelative ranks
of the ML modelsare shownin Table 5, and the SUCRA curves
are shown in Figure 4B. No significant publication bias was
detected using the Egger test (P=.626).

For PH=15 minutes, 3 (6.5%) studies [20,49,55] with 14
different ML models were included, and the network map is
shown in Figure 3C. The mean RMSE was 18.88 (SD 19.71)
mg/dL . Statistically significant inconsistency was detected using

https://medinform.jmir.org/2023/1/e47833

Liuetd

theinconsistency test (3=28.29, P<.001), as shown in the forest
plot in Multimedia Appendix 4. Meta-regression showed that
12 was 41.28%, and the model type and sample size both were
the source of heterogeneity, with P=.002 and .037, respectively.
The maximum SUCRA vaue was 99.1 for the ARTiDe jump
neural network (ARINN) model with a mean RMSE of 9.50
(SD 1.90) mg/dL [49], while the minimum SUCRA value was
0.3for the SVM with amean RM SE of 13.13 (SD 17.30) mg/dL
[55]. The relative ranks of the ML models are shown in Table
6, and SUCRA curves are shown in Figure 4C. Statistically
significant publication bias was detected using the Egger test
(P=.003).

For PH=45 minutes, only 2 (4.3%) studies [54,55] with 11
different ML models were included, and the network map is
shown in Figure 3D. The mean RMSE was 21.27 (SD 5.17)
mg/dL. Statistically significant inconsistency was detected using
the inconsistency test (3=6.92, P=.009), as shown in the forest
plot in Multimedia Appendix 5. Meta-regression indicated
significant heterogeneity from the model type (P=.006). The
maximum SUCRA value was 99.4 for the NNM with a mean
RMSE of 10.65 (SD 3.87) mg/dL [55], while the minimum
SUCRA vaue was 26.3 for the DT model with amean RMSE
of 23.35(6.36) mg/dL [55]. Therelative ranks of the ML models
are shown in Table 7, and SUCRA curves are shown in Figure
4D. Statistically significant publication biaswas detected using
the Egger test (P<.001).
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Figure3. Network map of ML modelsfor predicting BG levelsin different PHs. PH=30 (A), 60 (B), 15 (C), and 45 minutes (D). ARIMA: autoregressive
integrated moving average; ARM: autoregression model; ARMA: autoregressive moving average; ARINN: ARTiDe jump neural network; BG: blood
glucose; CRNN-MTL: convolutional recurrent neural network multitask learning; CRNN-MTL-GV: convolutional recurrent neural network multitask
learning glycemic variability; CRNN-STL: convolutional recurrent neural network single-task learning; CRNN-TL: convolutional recurrent neural
network transfer learning; DFFNN: delayed feed-forward neural network; DRNN: dilated recurrent neural network; DT: decision tree; FC: fully connected
(neural network); fNN: feed-forward neural network; GCN: gradually connected neural network; JNN: jump neural network; KNN: k-nearest neighbor;
LGBM: light gradient boosting machine; LSTM: long short-term memory; LV X: latent variable with exogenousinput; ML: machine learning; NARX:
one neural network model; NN-LPA: neural network—linear prediction algorithm; NNM: neural network model; PH: prediction horizon; RF: random
forest; RNN: recurrent neural network; SAX: one symbolic model; SVR: support vector regression.
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Table 4. Relative ranks of ML?models for predicting BGP levelsin PH°=30 minutes.

ML model sucrad Relative rank
NNMm® 52.0 14.4
ARM' 39.6 17.9
ARINNY 79.5 6.8
REN 6.9 271
SVM! 73.3 85
One symbolic model (SAX) 0.4 28.9
Recurrent neural network (RNN) 19.0 23.7
One neural network model (NARX) 3.9 279
Jump neural network (JNN) 36.0 18.9
Delayed feed-forward neural network model (DFFNN) 15.8 24.6
Gradually connected neural network (GCN) 411 175
Fully connected (FC [neural network]) 58.1 12.7
Light gradient boosting machine (LGBM) 69.3 9.6
DRNN 99.1 12
Autoregressive moving average (ARMA) 54.3 13.8
Autoregressive integrated moving average (ARIMA) 46.6 16.0
Feed-forward neural network (FNN) 86.3 4.8
Long short-term memory (LSTM) 69.1 9.7
GluNet 96.4 20
Latent variable with exogenous input (LV X) 75.2 79
Neural network—linear prediction algorithm (NN-LPA) 60.0 12.2
Convolutional recurrent neural network multitask learning (CRNN-MTL) 715 7.3
Convolutional recurrent neural network multitask learning glycemic variability (CRNN-MTL-GV) 77.2 7.4
Convolutional recurrent neural network transfer learning (CRNN-TL) 71.8 8.9
Convolutional recurrent neural network single-task learning (CRNN-STL) 52.0 14.4
k-Nearest neighbor (kNN) 26.0 217
DTX 16.2 245
AdaBoost 18.0 24.0
XGBoos! 292 20.8

aWIL: machine learning.

bBG: blood glucose.

®PH: prediction horizon.

dSUCRA.: surface under the cumulative ranki ng.
ENNM: neural network model.

'ARM: autoregression model.

9ARINN: ARTiDe jump neural network.
PRF: random forest.

iSVM: support vector machine.

IDRNIN: dilated recurrent neural network.
KDT: decision tree.

X GBoost: Extreme Gradient Boosti ng.
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Figure4. SUCRA curvesof ML modelsfor predicting BG levelsin different PHs. PH=30 (A), 60 (B), 15 (C), and 45 minutes (D). ARIMA: autoregressive
integrated moving-average; ARM: autoregression model; ARMA: autoregressive moving average; ARINN: ARTiDe jump neura network; BG: blood
glucose; CRNN-MTL: convolutional recurrent neural networks multitask learning; CRNN-MTL-GV: convolutional recurrent neural networks multitask
learning glycemic variability; CRNN-STL: convolutional recurrent neural networks single-task learning; CRNN-TL: convolutional recurrent neural
networks transfer learning; DFFNN: delayed feed-forward neural network; DRNN: dilated recurrent neural network; DT: decision tree; FC: fully
connected (neural network); fNN: feed-forward neural network; GCN: gradually connected neural network; JINN: jump neural network; KNN: k-nearest
neighbor; LGBM: light gradient boosting machine; L STM: long short-term memory; LV X: latent variable with exogenousinput; ML: machinelearning;
NARX: one neural network model; NN-LPA: neural network—linear prediction algorithm; NNM: neural network model; PH: prediction horizon; RF:
random forest; RNN: recurrent neural network; SAX: one symbolic model; SVR: support vector regression.
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Table5. Relative ranks of ML?models for predicting BGP levelsin PH°=60 minutes.

ML model sucrad Relative rank
ARME 41.0 10.4
Gradually connected neura network (GCN) 14.2 14.7
Fully connected (FC [neural network]) 55.7 8.1
Light gradient boosting machine (LGBM) 56.0 8.0
Ref 59.7 75
GluNet 97.8 14
NNMY 59.9 74
svmh 495 9.1
Latent variable with exogenous input (LV X) 85.9 33
Convolutional recurrent neural network multitask learning (CRNN-MTL) 61.4 72
Convolutional recurrent neural network multitask learning glycemic variability (CRNN-MTL-GV) 54.2 8.3
Convolutional recurrent neural network transfer learning (CRNN-TL) 445 9.9
Convolutional recurrent neural network single-task learning (CRNN-STL) 325 11.8
k-Nearest neighbor (kNN) 425 10.2
DT 45 16.3
AdaBoost 241 131
XGBoost! 66.5 6.4

3\L: machine learning.

bBG: blood glucose.

PH: prediction horizon.

dSUCRA: surface under the cumul ative ranki ng.
€ARM: autoregression model.

'RF: random forest.

INNM: neural network model.

hsvm: support vector machine.

'DT: decision tree.

IX GBoost: Extreme Gradient Boosti ng.
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Table6. Relative ranks of ML?models for predicting BGP levelsin PH°=15 minutes.

ML model sucrad Relative rank
NNMm® 84.4 30
ARMf 86.8 2.7
ARINNY 99.1 11
REN 64.6 5.6
VMl 209 11.3
One symbolic model (SAX) 0.3 14.0
Recurrent neural network (RNN) 45.9 8.0
One neural network model (NARX) 11.8 125
Jump neural network (JNN) 62.2 59
Delayed feed-forward neural network model (DFFNN) 39.6 89
k-Nearest neighbor (KNN) 53.7 7.0
DTl 33.3 9.7
AdaBoost 36.8 9.2
XGBoost® 608 61

3\IL: machine learning.

bBG: blood glucose.

PH: prediction horizon.

dSUCRA.: surface under the cumulative ranki ng.
ENNM: neural network model.

'ARM: autoregression model.

9ARINN: ARTiDe jump neural network.
PRF: random forest.

iSVM: support vector machine.

IDT: decision tree.

KX GBoost: Extreme Gradient Boosti ng.
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Table 7. Relative ranks of ML?models for predicting BGP levelsin PH°=45 minutes.

ML model sucrad Relative rank
Convolutional recurrent neural network multitask learning (CRNN-MTL) 52.1 5.8
Convolutional recurrent neural network multitask learning glycemic variability (CRNN-MTL-GV) 418 6.8
Convolutional recurrent neural network transfer learning (CRNN-TL) 316 7.8
Convolutional recurrent neural network single-task learning (CRNN-STL) 275 8.2
SVME 320 7.8
k-Nearest neighbor (kNN) 61.4 49
T 26.3 84
REY 703 4.0
AdaBoost 34.1 7.6
XGBoogt” 735 37
NNM' 99.4 11

&WIL: machine learning.

bBG: blood glucose.

®PH: prediction horizon.

dSUCRA.: surface under the cumulative ranki ng.
€SVM: support vector machine.

'DT: decision tree.

9RF: random forest.

PX GBoost: Extreme Gradient Boosting.

'NNM: neural network model.

MachineLearning Modelsfor Predicting Hypoglycemia

ML models for predicting hypoglycemia (adverse BG events)
involved 19 (41.3%) studies[15,29-39,47,48,56-60], with pooled
estimates of 0.71 (95% CI 0.61-0.80) for sensitivity, 0.91 (95%
Cl1 0.87-0.94) for specificity, 8.3 (95% Cl 5.7-12.0) for the PLR,
and 0.31 (95% CI 0.22-0.44) for the NLR. The heterogeneity
between different ML models in these studies is shown in the
forest plot in Figure 5, which was high for both sensitivity
(12=100%, 95% CI 100%-100%) and specificity (12=100%, 95%
Cl 100%-100%). The SROC curveisshownin Figure 6A, with
an area under the curve (AUC) of 0.91 (95% CI 0.88-0.93).
According to the meta-regression results, the type of DM and
time were statistically significant sources of heterogeneity for
sensitivity whilethe type of DM, reference, data source, setting,
and threshold were datistically significant sources of
heterogeneity for specificity (Multimedia Appendix 6). No
statistically significant publication bias was detected (P=.09).
Inaddition to integral analysisfor the hypoglycemia prediction
model, we also carried out analysis of 4 subgroups based on the
characteristics of the included studies, including the NNM, the
RF, the SVM, and ensemble learning (RF, Extreme Gradient
Boosting [ XGBoost], bagging).

For the NNM, 3 (6.5%) studies[15,34,47] were included, with
pooled estimates of 0.50 (95% CI 0.16-0.84) for sensitivity,

https://medinform.jmir.org/2023/1/e47833

0.91 (95% CI 0.84-0.96) for specificity, 5.9 (95% Cl 3.2-10.8)
for the PLR, and 0.54 (95% CI 0.24-1.21) for the NLR. As
shown in the forest plot in Figure 7A, 12 values were 99.59%
(95% Cl 99.46%-99.71%) and 97.82% (95% CI
96.68%-98.86%) for sensitivity and specificity, respectively.
The SROC curveis shown in Figure 6B, with an AUC of 0.90
(95% CI 0.87-0.92). Meta-regression results revealed that
statistically significant heterogeneity was detected in al the
factors between these studies (type of DM, reference, time, data
source, setting, threshold) for sengitivity and 4 factors (reference,
data source, setting, threshold) for specificity (Multimedia
Appendix 7). No statistically significant publication bias was
detected (P=.86).

For the RF, 5 (10.9%) studies [15,34,56,58,60] were included,
with pooled estimates of 0.87 (95% CI 0.79-0.93) for sensitivity,
0.94 (95% CI 0.91-0.96) for specificity, 13.9 (95% Cl 10.1-18.9)
for the PLR, and 0.14 (95% CIl 0.08-0.22) for the NLR. The
forest plot in Figure 7B shows that statistically significant
heterogeneity was detected in both sensitivity (12=98.32%, 95%
Cl 97.61%-99.02%) and specificity (12=99.41%, 95% CI
99.24%-99.58%). The SROC curveisshownin Figure 6C, with
an AUC of 0.97 (95% CI 0.95-0.98). Meta-regression failed to
run due to data instability or asymmetry. No statistically
significant publication bias was detected (P=.21).
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Figure 5. Sensitivity and specificity forest plots of ML models for predicting adverse BG events. The horizontal lines indicate 95% Cls. The square
markers represent the effect value of a single study, and the diamond marker represents the combined results of al studies. The vertical line shows the
line of no effects. BG: blood glucose; ML: machine learning.
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Figure 6. SROC curves of al ML algorithms (A), NNM algorithms (B), RF algorithms (C), SVM algorithms (D), and ensemble learning algorithms
(E) for predicting adverse BG events. The hollow circles represent results of all studies, and the red diamonds represent the summary result of all studies.
AUC: area under the curve; BG: blood glucose; ML: machine learning; NNM: neural network model; RF: random forest; SROC: summary receiver

operating characteristic; SVM: support vector machine.
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Figure 7. Sensitivity and specificity forest plots of NNM algorithms (A), RF models (B), SVM algorithms (C), and ensemble learning algorithms (D)
for predicting adverse BG events. The horizontal linesindicate 95% Cls. The square markers represent the effect value of asingle study, and the diamond
marker represents the combined results of all studies. The vertical line shows the line of no effects. BG: blood glucose; NNM: neural network model;
RF: random forest; SROC: summary receiver operating characteristic; SVM: support vector machine.
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For the SVM, 8 (17.4%) studies [15,29,33-35,37,39,47] were
involved, with pooled estimates of 0.75 (95% Cl 0.52-0.89) for
sensitivity, 0.88 (95% CI 0.75-0.95) for specificity, 6.3 (95%
Cl 3.4-11.7) for the PLR, and 0.29 (95% CI 0.15-0.55) for the
NLR. Statistically significant heterogeneity was detected for
both sensitivity (12=99.30%, 95% Cl 99.15%-99.44%) and
specificity (12=99.67%, 95% Cl 99.62%-99.73%), as shown in
Figure 7C. The SROC curve is shown in Figure 6D, with an
AUC of 0.89 (95% CI 0.86-0.92). Meta-regression results
showed that reference, time, data source, setting, and threshold
were sources of heterogeneity for sensitivity, while reference,
datasource, setting, and threshold were sources of heterogeneity
for specificity (Multimedia Appendix 8). Publication bias was
not statistically significant (P=.83).

For ensemble learning models (RF, XGBoost, bagging), 7
(15.2%) studies [15,32,34,48,56,58,60] were involved, with
pooled estimates of 0.77 (95% CI 0.65-0.85) for sensitivity,
0.96 (95% Cl 0.93-0.98) for specificity, 20.4 (95% Cl 12.5-33.3)
for the PLR, and 0.24 (95% CI 0.16-0.37) for the NLR.
Statistically significant heterogeneity was detected for both
sensitivity (12=99.13%, 95% Cl 98.95%-99.32%) and specificity
(12=98.44%, 95% Cl 98.04%-98.84%), as shown in Figure 7D.
The SROC curve is shown in Figure 6E, with an AUC of 0.96
(95% CI 0.93-0.97). Meta-regression results showed that there
was no source of heterogeneity for sensitivity, while the type
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of DM, setting, and threshold were sources of heterogeneity for
specificity (Multimedia Appendix 9). No statistically significant
publication bias was detected (P=.50).

Machine Learning Modelsfor Detecting Hypoglycemia

ML models for detecting hypoglycemia (adverse BG events)
involved 17 (37%) studies [10,16,40-46,61-68], with pooled
estimates of 0.74 (95% CI 0.70-0.78) for sensitivity, 0.70 (95%
Cl 0.56-0.81) for specificity, 2.4 (95% Cl 1.6-3.7) for the PLR,
and 0.37 (95% CI 0.29-0.46) for the NLR. The heterogeneity
between different modelsin these studiesis shown in the forest
plotsin Figure 8 and was high for both sensitivity (12=92.80%,
95% CI 91.10%-94.49%) and specificity (12=99.04%, 95% ClI
98.82%-99.16%). The SROC curveisshownin Figure 9A, with
an AUC of 0.77 (95% CI 0.73-0.81). Based on the
meta-regression results, reference, time, data source, setting,
and threshold were dtatistically significant sources of
heterogeneity for sensitivity, while reference, data source, and
threshold were statistically significant sources of heterogeneity
for specificity (Multimedia Appendix 9). Statistically significant
publication bias was detected (P<.001). In addition to integral
analysisfor the hypoglycemiadetection model, we also carried
out analysis of 2 subgroups based on the characteristics of the
included studies, including the NNM and the SVM.
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For the NNM, 11 (23.9%) studies [40-42,45,46,62-67] were
involved, with pooled estimates of 0.76 (95% CI 0.70-0.80) for
sensitivity, 0.67 (95% Cl 0.49-0.82) for specificity, 2.3 (95%
Cl 1.4-3.9) for the PLR, and 0.36 (95% CI 0.27-0.48) for the
NLR. The heterogeneity between different studies is shown in
the forest plot in Figure 10A and was high for both sensitivity
(12=97.30%, 95% ClI 96.62%-97.99%) and specificity
(12=98.23%, 95% Cl 97.83%-98.62%). The SROC curve is
shown in Figure 9B, with an AUC of 0.78 (95% CI 0.74-0.81).
Based on the of meta-regression results, reference, time, data
source, setting, and threshold were statistically significant
sources of heterogeneity for sensitivity, while reference and
setting were statistically significant sources of heterogeneity

Liuetd

For the SVM, 4 (8.7%) studies [10,44,61,62] were included,
with pooled estimates of 0.80 (95% CI 0.73-0.86) for sengitivity,
0.65 (95% CI 0.41-0.83) for specificity, 2.3 (95% Cl 1.2-4.4)
for the PLR, and 0.31 (95% CIl 0.18-0.51) for the NLR. The
heterogeneity between different studies is shown in the forest
plot in Figure 10B and was high for both sensitivity (12=55.86%,
95% CI 11.96%-99.76%) and specificity (12=99.02%, 95% ClI
98.68%-99.36%). The SROC curveisshown in Figure 9C, with
an AUC of 0.81 (95% CI 0.78-0.85). Meta-regression results
indicated that reference, time, data source, setting, and threshold
were statistically significant sources of heterogeneity for
sensitivity, while reference, data source, setting, and threshold
statistically significant sources of heterogeneity for specificity

for gpecificity (Multimedia Appendix 10). Statistically
significant publication bias was detected (P<.001).

(Multimedia Appendix 11).
publication bias was detected (P=.31).

No satistically significant

Figure 8. Sensitivity and specificity forest plots of ML models for detecting adverse BG events. The horizontal lines indicate 95% Cls. The square
markers represent the effect value of a single study, and the diamond marker represents the combined results of all studies. The vertical line shows the
line of no effects. BG: blood glucose; ML: machine learning.

Studyld SENSITIVITY (85% Cl)
|
laione (2005)-NNM & | 0.60 (0.57-0.63)
Skiadnev (2010)-FNN 0.73(0.39-0.94)
Ling (2010)-FSVM 0.75(0.35-0.97)
Ling (2010)-8¥M 0.75(0.35-0.97)
Hasselstrom (2013)-SVM e 0.81(0.74-0.86)
Jin (2019)-LDA | —e— 0.86 (0.79-0.92)
Chen (2019)-LR L) 0.73 (0.39-0.94)
Rubega (2020)-NNM | L 0.87 (0,85-0.89)
Nguyen (2010)-BNN —te 0.78 (0.58-0.91)
Chan (2011)-FNN - 0.75 (0.61-0.86)
Ngo (2018)-BNN . 0.73(0.52-0.88)
Ngo (2019)-BRNN | e 0.83 (0.70-0.92)
Nguyen (2012)-NNM . 0.75 (0.51-0.91)
Ling (2016)-FRM —_— 0.75(0.61-0.85)
Ling (2016)-FRM+ . | 0.52 (0.38-0.66)
Ling (2016)}-FFNN |.7 0.75 (0.61-0.85)
Ling (2016)-MRFIS - 0.63 (0.49-0.76)
Ling (2016)-ELMNN —t— 0.78 (0.64-0.88)
Ling (2012}-PSONN L 0.62 (0.44-0.78)
Ling (2012)-MRFIS o—+— 0.65 (0.46-0.80)
Ling (2012)}-LMR —te 0.79 (0.62-0.91)
Ling (2012)-FIS —e 0.76 (0.59-0.89)
San (2013)-RBRNNM el 0.70 (0.54-0.83)
San (2013)-BBNN4 el 0.68 (0.52-0.81)
San (2013)-BBNNZ .: 0.72 (0.56-0.85)
San (2013)-WNN4 |._ 0.77 (0.61-0.88)
San (2013)-FWNN4 — T 0.79 (0.64-0.90)
San (2013)-8VM —r 0.81(0.67-0.92)
MURYANI (2012)-SVMRBF) —— | 0.46 (0.37-0.55)
NURYANI (2012)-LMR | —e— 0.86 (0.79-0.92)
Nguyen (2013)-LM —— 0.74 (0.62-0.83)
Nguyen (2013)}-GA +—o— 0.83 (0.73-0.91)
MNguyen (2013)-LM+GA 704— 067 (0.55-0.77)
|
COMBINED é 0.74 (0.70-0.78)
I Q=444.18, df=32.00, p=0.00
: 12=02.80 (61.10-94.49)
T T
0.3 1.0
SENSITIVITY

https://medinform.jmir.org/2023/1/e47833

RenderX

Studyld I SPECIFICITY (85% CI)
Iaions (2005):NNM I . 1,00 (1.00-1.00)
Skladnev (20101-FNN o — 0.66 (0.49-0.80)
Ling (2010)}-FSVM . — 0.53 (0.29-0.76)
Ling (2010}-8VM 1 0.58 (0.33-0.80)
Hasselstrom (2013)-SVM | 0.93 (0.61-0.94)
Jin (2019)-LDA | . 1,00 (1.00-1,00)
Chen (2019}LR | . 0.97 (0.95-0.99)
Rubega (2020)-NNM | 0.88 (0.87-0.90)
Nguyen (2010}-BNN o— 0.56 (0.41-0,70)
Chan (2011)-FNN o—+ 0,58 (0.43-0.72)
Ngo (2018}-BNN S 061 (0.41-0.78)
Ngo (2019)-BRNN —— I 052 (0.41-063)
Nguyen (2012)-NNM CI 0.67 (0.45-0,84)
Ling (2016}-FRM —— : 0.52 (0.45-0,58)
Ling (2016)-FRM= —— I 0.52 (0.45-0.58)
Ling (2016)-FFNN —— | 0.50 (0.43-0.57)
Ling (2016)-MRFIS —o— | 0.55 (0.48-0,62)
Ling (2016}-ELMNN —e— | 0,60 (0.53-0.67)
Ling (2012}-PSONN —— | 0.52 (0.46-0.59)
Ling (2012)-MRFIS —— | 0.54 (0.48-0.61)
Ling (2012FLMR —o— | 0.55 (0.49-0.62)
Ling (2012)-FIS —— | 0.50 (0.44-0.57)
San (2013)-RBRNNM —— I 0.39 (0.30-0.49)
San (20131-BBNN4 —— I 0.48 (0.39-0.58)
San (2013}-BBNN2 —— : 0.45 (0.35-0.51)
San (2013)-WNN4 —e— 0.50 (0.40-0.60)
San (2013)}-FWNN4 —.— 0,50 (0.40-0.60)
San (2013)1-8VM —— 0.51 (0.41-0.61)
NURYANI (2012)-SVMRBF I 0.95 (0.92-0.96)
NURYANI (2012}-LMR - | 0.58 (0.54-0.63)
Nguyen (2013)-LM —— | 0,51 (0.39-0.64)
Nguyen (2013}-GA ——— I 0.40 (0.28-0.52)
Nguyen (2013}LM#GA —— I 0.43 (0.31-0.55)
|
COMBINED <i‘:—— 0.70 (0.56-0.81)
©=3343.30, df=32.00, p=0.00
: 12=00.04 (98.52.60.16)

0.3

SPECIFICITY

JMIR Med Inform 2023 | vol. 11 | e47833 | p.180

(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

Liuetd

Figure9. SROC curvesof al ML algorithms (A), NNM agorithms (B), and SVYM agorithms (C) for detecting adverse BG events. The hollow circles
represent results of all studies, and the red diamonds represent the summary result of all studies. AUC: area under the curve; BG: blood glucose; ML:
machine learning; NNM: neural network model; SROC: summary receiver operating characteristic; SVM: support vector machine.
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Discussion

Principal Findings

This meta-analysis systematically assessed the performance of
different ML modelsin enhancing BG management in patients
with DM based on 46 eligible studies. Comprehensive evidence
obtained via exhaustive searching allowed us to assess the
overdl ability of the ML mode sin different scenarios, including
predicting BG levels, predicting adverse BG events, and
detecting adverse BG events.

Comparison to Prior Work

Obvioudly, the RMSE of ML models for predicting BG levels
increased as the PH increased from 15 to 60 minutes, which
indicates that the longer the PH, the larger the prediction error.
Based on the results of relative ranking, among al the ML
modelsfor predicting BG levels, neural network—based models,
including the DRNN, GluNet, ARINN, and NNM, achieved
the minimum RMSE and the maximum SUCRA in different
PHSs, indicting the highest relative performance. In contrast, the
DT achieved the maximum RM SE and the minimum SUCRA
in a PH of 60 and 45 minutes, indicating that lowest relative
performance. Thus, for predicting BG levels, neural
network—based a gorithms might be an appropriate choice. We
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found that time domain features combined with historical BG
levels as input can further improve the performance of NNM
algorithms [49,55]. However, the quality of training data for
NNM s needsto be high; therefore, the requirements during data
collection and preprocessing of raw data are high [22,51].

Regarding ML models for predicting adverse BG events, the
pooled sensitivity, specificity, PLR, and NLR were 0.71 (95%
Cl 0.61-0.80), 0.91 (95% CI 0.87-0.94), 8.3 (95% CI 5.7-12.0),
and 0.31 (95% CI 0.22-0.44), respectively. According to the
Users Guide to Medical Literature, with regard to diagnostic
tests[69], aPLR of 5-10 should be able to moderately increase
the probability of persons having or developing a disease and
an NLR of 0.1-0.2 should be able to moderately decrease the
probability of having or developing a disease after taking the
index test. Hence, current ML models have relatively sufficient
ability to predict the occurrence of hypoglycemia, especialy
RF agorithms with a PLR of 13.9 (95% CI 10.1-18.9) and an
NLR of 0.14 (95% CI 0.08-0.22). On the contrary, although the
PLR of NNM agorithms was 5.9 (95% CI 3.2-10.8), their
sensitivity and NLR were 0.50 (95% CI 0.16-0.84) and 0.54
(95% Cl 0.24-1.21), respectively, which isfar from satisfactory.
Although RF a gorithms seem to be able to capture the complex,
nonlinear patterns affecting hypoglycemia[56], it was still not
enough to determine which algorithm shows the best
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performance, asthetest scenarioswere quite different and there
was high heterogeneity between studies.

Regarding ML models for detecting hypoglycemia, the pooled
sensitivity, specificity, PLR, and NLR were 0.74 (95% CI
0.70-0.78), 0.70 (0.56-0.81), 2.4 (1.6-3.7), and 0.37 (0.29-0.46),
respectively, which indicates that the algorithms generate small
changesin probability [69]. Nevertheless, it does not mean that
ML models combined with ECG or EEG monitoring, which we
found in 13 of 17 studies, should not be further investigated.
Considering patients with both DM and cardiovascular risk, or
patients under intensive care and in a coma, combined ML
modelsand ECG or EEG signals might be able to avoid deficits
in physical and cognitive function and death caused by
hypoglycemia[70].

Strengths and Limitations

The study has several limitations. First, although we devel oped
acomprehensive search strategy, there was still a possibility of
potential missing studies. To further increase the rate of
literatureretrieval, we included the main medical databaseswith
afeasible search strategy, including PubMed, Embase, Web of
Science, and | EEE Explore, and references from relevant studies
were also screened for eligibility to avoid omissions. Second,
statistically significant high heterogeneity was detected in all
subgroups, with different sources of heterogeneity, including
different types of DM, ML models, data sources, reference
index, time and setting of data collection, and threshold of
hypoglycemia, among studies. To addressthisissue, hierarchical
analysis and meta-regression analysis were carried out in
different subgroups to explore the possible sources of
heterogeneity. Furthermore, for several studies that provided
no required outcome measures or had inconsistent outcome
measures, relevant estimation methods were used to calculate
the indicators, which might have led to a certain amount of
estimation error. However, the estimation error was small
enough to be accepted owing to an appropriate estimation
method, and the results of this study were further enriched.
However, future studies are required to report all relevant
outcome measures for further evaluation.

Future Directions

In future, more accurate ML models will be used for BG
management, which will certainly improve the quality of life
of patients with DM and reduce the burden of adverse BG
events. First, as mentioned before, current ML models have
relatively sufficient ability to predict BG levels and
hypoglycemia, and the fact that an extended PH is more
beneficial for increasing the time available for patients and
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cliniciansto respond still needs to be emphasized [15]. Hence,
future studies should focus on enhancing the performance of
ML modelsinlonger PHs (ie, 60 minutes). Second, most of the
raw data from CGM devices are highly imbalanced due to the
low incidence of adverse BG events, which may lead to several
performance distortions. Previous studies have reported several
approaches to reduce the data imbalance, including
oversampling [71] and cost-based learning [15]. However, to
the best of our knowledge, few studies have investigated the
effectiveness of those approaches in BG management models,
which needs to be further studied in the future. Furthermore,
the high variability of BG levels in the human body due to
several factors, such asmeal intake, high-intensity exercise, and
insulin dosage, creates challenges for ML models; thus, future
works need to integrate these factors with existing models to
further enhance their accuracy [22,51]. It is also necessary to
consider the computational complexity and convenience of use
for patients and physicians. Moreover, severa studies have
implied that acombination of ML modelsand features extracted
from CGM profiles can achieve better predictability compared
to an ML model alone [15,56]. Recently, studies have focused
on more novel deep learning models, such as transformers,
which have also been proved clinically useful [72]. Therefore,
further studies that focus on optimizing the structure of an
ensemble method are needed to explore more models with a
new structure. Lastly, it should be mentioned that athough
several studies have achieved high performance using rel atively
small data set [29,31,32,35,39,47,57], which can reduce the
difficulty in model development, it also creates aconcern about
whether this will decrease the generalization ability of the
models. Most of the models were developed and tested with a
certain data set, and few of them have been prospectively
validated in aclinical setting. Therefore, they need to be applied
in clinical practice and be updated, as needed, to provide
real-time feedback for the automatic collection of BG levels
and generate a basis for prompt medical intervention [73].

Conclusion

In summary, in predicting precise BG levels, the RMSE
increases with an increase in the PH, and the NNM shows the
relatively highest performance among all the ML models.
Meanwhile, according tothe PLR and NLR, current ML models
have sufficient ability to predict adverse BG (hypoglycemia)
events, while their ability to detect adverse BG events needsto
be enhanced. Future studies are required to focus on improving
the performance and using ML models in clinical practice
[70,73].

The study was funded by the National Natural Science Foundation of China (grant no. 82073663) and the Shaanxi Provincial
Research and Development Program Foundation (grant nos. 2017JM 7008 and 2022SF-245).

Data Availability

The data sets used and analyzed during the study are available from the corresponding author upon reasonabl e request.

https://medinform.jmir.org/2023/1/e47833

JMIR Med Inform 2023 | vol. 11 | e47833 | p.182
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS Livetd

Authors Contributions

YW and CC conceived and designed the study. KL and LL undertook the literature review and extracted data. KL, LL, and JJ
interpreted the data. KL, YM, and SL wrote the first draft of the manuscript, with revision by YW, ZL, CP, and ZY. All authors
have read and approved the final version of the manuscript and had final responsibility for submitting it for publication.

Conflictsof I nterest
None declared.

Multimedia Appendix 1
Supplemental plotl1-forest (RMSE PH=30). PH: prediction horizon; RM SE: root mean square error.

[PNG File, 808 KB - medinform_v11i1e47833 appl.png ]

Multimedia Appendix 2
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) checklist.
[PDF File (Adobe PDF File), 66 KB - medinform_v11i1e47833_app2.pdf |

Multimedia Appendix 3
Supplemental plot2-forest (RM SE PH=60). PH: prediction horizon; RM SE: root mean square error.
[PNG File, 565 KB - medinform_v11i1e47833 app3.png ]

Multimedia Appendix 4
Supplemental plot3-forest (RMSE PH=15). PH: prediction horizon; RM SE: root mean square error.

[PNG File, 1014 KB - medinform_v11i1e47833_app4.png |

Multimedia Appendix 5
Supplemental plot4-forest (RMSE PH=45). PH: prediction horizon; RM SE: root mean square error.
[PNG File, 838 KB - medinform v11i1e47833 app5.png ]

Multimedia Appendix 6
Supplemental plot5 - metaregression (pre-all).
[PNG File, 130 KB - medinform_v11i1e47833 app6.png ]

Multimedia Appendix 7
Supplemental plot5-metaregression(pre-NN).
[PNG File, 136 KB - medinform_v11i1e47833 app7.png ]

Multimedia Appendix 8
Supplemental plot5-metaregression(pre-SVM).
[PNG File, 132 KB - medinform_v11i1e47833 app8.png ]

Multimedia Appendix 9
Supplemental plot5-metaregression(det-all).
[PNG File, 129 KB - medinform_v11i1e47833 app9.png ]

Multimedia Appendix 10
supplemental plot5-metaregression(det-NN).
[PNG File, 123 KB - medinform_v11i1e47833 app10.png ]

Multimedia Appendix 11
Supplemental plot5-metaregression(det-SVM).
[PNG File, 132 KB - medinform v11i1e47833 appll.png ]

References
1. Oviedo S, Vehi J, Cam R, Armengol J. A review of personalized blood glucose prediction strategies for TLDM patients.
Int JNumer Method Biomed Eng 2017 Jun;33(6):€2833. [doi: 10.1002/cnm.2833] [Medline: 27644067]

https://medinform.jmir.org/2023/1/e47833 JMIR Med Inform 2023 | vol. 11 | e47833 | p.183
(page number not for citation purposes)

RenderX


https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app1.png&filename=12a82371b7c5c8d6b4fd7b7313f6c6df.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app1.png&filename=12a82371b7c5c8d6b4fd7b7313f6c6df.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app2.pdf&filename=198550473c630a83a19736a7c56f59f7.pdf
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app2.pdf&filename=198550473c630a83a19736a7c56f59f7.pdf
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app3.png&filename=33dc8498f5cb55b14cb3f79714a19ab6.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app3.png&filename=33dc8498f5cb55b14cb3f79714a19ab6.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app4.png&filename=a3fca55b12dfb4e240ccf6aeaf3893a9.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app4.png&filename=a3fca55b12dfb4e240ccf6aeaf3893a9.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app5.png&filename=6b514ad68cb1cf5f90f42fe4b5ee871a.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app5.png&filename=6b514ad68cb1cf5f90f42fe4b5ee871a.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app6.png&filename=0f8d4f8e7946d248d7fc246621c1465f.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app6.png&filename=0f8d4f8e7946d248d7fc246621c1465f.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app7.png&filename=4104efcb757976e1d5e6664ac5886e68.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app7.png&filename=4104efcb757976e1d5e6664ac5886e68.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app8.png&filename=ea65b6f04a876393156af297baa71002.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app8.png&filename=ea65b6f04a876393156af297baa71002.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app9.png&filename=764c61952189dd2ee11dbe1340e10fa9.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app9.png&filename=764c61952189dd2ee11dbe1340e10fa9.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app10.png&filename=3ca86ad4f168ba00560dac34095654c3.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app10.png&filename=3ca86ad4f168ba00560dac34095654c3.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app11.png&filename=a02a9f8221ba3d733d16788714545f0f.png
https://jmir.org/api/download?alt_name=medinform_v11i1e47833_app11.png&filename=a02a9f8221ba3d733d16788714545f0f.png
http://dx.doi.org/10.1002/cnm.2833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27644067&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS Livetd

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Saeedi P, Petersohn |, Salpea P, Malanda B, Karuranga S, Unwin N, IDF Diabetes Atlas Committee. Global and regional
diabetes prevalence estimates for 2019 and projectionsfor 2030 and 2045: resultsfrom the International Diabetes Federation
Diabetes Atlas, 9 edition. Diabetes Res Clin Pract 2019 Nov;157:107843. [doi: 10.1016/j.diabres.2019.107843] [Medline:
31518657]

BMC Medicine. Diabetes education for better personalized management in pediatric patients. BMC Med 2023 Jan 24;21(1):30
[FREE Full text] [doi: 10.1186/s12916-022-02709-2] [Medline: 36690983]

Chen D, Wang M, Shang X, Liu X, Liu X, GeT, et a. Development and validation of an incidence risk prediction model
for early foot ulcer in diabetes based on a high evidence systematic review and meta-analysis. Diabetes Res Clin Pract 2021
Oct;180:109040. [doi: 10.1016/j.diabres.2021.109040] [Medline: 34500005]

LiY,SuX, YeQ, Guo X, XuB, Guan T, et a. The predictive value of diabetic retinopathy on subsequent diabetic
nephropathy in patients with type 2 diabetes: a systematic review and meta-analysis of prospective studies. Ren Fail 2021
Dec;43(1):231-240 [FREE Full text] [doi: 10.1080/0886022X.2020.1866010] [Medline: 33478336]

Wu B, NiuZ, Hu F. Study on risk factors of peripheral neuropathy in type 2 diabetes mellitus and establishment of prediction
model. Diabetes Metab J 2021 Jul;45(4):526-538 [FREE Full text] [doi: 10.4093/dm;j.2020.0100] [Medline: 34352988]
BellemoV, Lim G, Rim TH, Tan GSW, Cheung CY, Sadda S, et al. Artificial intelligence screening for diabetic retinopathy:
the real-world emerging application. Curr Diab Rep 2019 Jul 31;19(9):72. [doi: 10.1007/s11892-019-1189-3] [Medline:
31367962]

Jain AMC, Ahmeti |, Bogoev M, Petrovski G, Milenkovikj T, Krstevska B, et al. A new classification of diabetic foot
complications: a simple and effective teaching tool. J Diab Foot Comp 2012;4(1):1-5.

Okonofua FE, Odimegwu C, Ajabor H, Daru PH, Johnson A. Assessing the prevalence and determinants of unwanted
pregnancy and induced abortion in Nigeria. Stud Fam Plann 1999 Mar;30(1):67-77. [doi: 10.1111/].1728-4465.1999.00067.X]
[Medline: 10216897]

JinY, Li F, Vimalananda VG, Yu H. Automatic detection of hypoglycemic events from the electronic health record notes
of diabetes patients: empirical study. IMIR Med Inform 2019 Nov 08;7(4):€14340 [FREE Full text] [doi: 10.2196/14340]
[Medline: 31702562]

LipskaKJ, Ross JS, Wang Y, Inzucchi SE, Minges K, Karter AJ, et al. National trends in US hospital admissions for
hyperglycemiaand hypoglycemiaamong Medicare beneficiaries, 1999 to 2011. JAMA Intern Med 2014 Jul; 174(7):1116-1124
[FREE Full text] [doi: 10.1001/jamainternmed.2014.1824] [Medline: 24838229]

ZouY, Zhao L, Zhang J, Wang Y, Wu Y, Ren H, et al. Development and internal validation of machine learning algorithms
for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease. Ren
Fail 2022 Dec;44(1):562-570 [FREE Full text] [doi: 10.1080/0886022X.2022.2056053] [Medline: 35373711]

Felizardo V, GarciaNM, Pombo N, Megdiche |. Data-based algorithms and models using diabetics real data for blood
glucose and hypoglycaemia prediction - a systematic literature review. Artif Intell Med 2021 Aug;118:102120. [doi:
10.1016/j.artmed.2021.102120] [Medline: 34412843]

Rodbard D. Continuous glucose monitoring: areview of recent studies demonstrating improved glycemic outcomes. Diabetes
Technol Ther 2017 Jun;19(S3):S25-S37 [FREE Full text] [doi: 10.1089/dia.2017.0035] [Medline: 28585879]

Seo W, LeeY, LeeS, Jin S, Park S. A machine-learning approach to predict postprandia hypoglycemia. BMC Med Inform
Decis Mak 2019 Nov 06;19(1):210 [FREE Full text] [doi: 10.1186/s12911-019-0943-4] [Medline: 31694629]

Nguyen LB, Nguyen AV, Ling SH, Nguyen HT. Combining genetic algorithm and L evenberg-Marquardt algorithmin
training neural network for hypoglycemia detection using EEG signals. Annu Int Conf IEEE Eng Med Biol Soc
2013;2013:5386-5389. [doi: 10.1109/EMBC.2013.6610766] [Medline: 24110953]

Rodriguez-Rodriguez |, Rodriguez J, Woo WL, Wei B, Pardo-Quiles D. A comparison of feature selection and forecasting
machine learning algorithms for predicting glycaemiain type 1 diabetes mellitus. Appl Sci 2021 Feb 16;11(4):1742. [doi:
10.3390/app11041742]

Wang Y, Wu X, Mo X. A novel adaptive-weighted-average framework for blood glucose prediction. Diabetes Technol
Ther 2013 Oct;15(10):792-801 [FREE Full text] [doi: 10.1089/dia.2013.0104] [Medline: 23883406]

San PP, Ling SH, Soe NN, Nguyen HT. A novel extreme learning machine for hypoglycemia detection. Annu Int Conf
|EEE Eng Med Biol Soc 2014;2014:302-305. [doi: 10.1109/EMBC.2014.6943589] [Medline: 25569957]

Pérez-Gandia C, Facchinetti A, Sparacino G, Cobelli C, Gomez EJ, RiglaM, et al. Artificial neural network algorithm for
online glucose prediction from continuous glucose monitoring. Diabetes Technol Ther 2010 Jan;12(1):81-88. [doi:
10.1089/dia.2009.0076] [Medline: 20082589)]

Prendin F, Del Favero S, Vettoretti M, Sparacino G, Facchinetti A. Forecasting of glucose levels and hypoglycemic events:
head-to-head comparison of linear and nonlinear data-driven a gorithms based on continuous glucose monitoring dataonly.
Sensors (Basel) 2021 Feb 27;21(5):1647 [FREE Full text] [doi: 10.3390/s21051647] [Medline: 33673415]

Zhu T, Li K, Chen J, Herrero P, Georgiou P. Dilated recurrent neural networks for glucose forecasting in type 1 diabetes.
JHealthc Inform Res 2020 Sep 12;4(3):308-324 [ FREE Full text] [doi: 10.1007/s41666-020-00068-2] [Medline: 35415447]
Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred Reporting Items for Systematic Reviews and
Meta-Analyses: the PRISMA statement. PLoS Med 2009 Jul 21;6(7):€1000097 [EREE Full text] [doi:
10.1371/journal.pmed.1000097] [Medline: 19621072]

https://medinform.jmir.org/2023/1/e47833 JMIR Med Inform 2023 | vol. 11 | e47833 | p.184

(page number not for citation purposes)


http://dx.doi.org/10.1016/j.diabres.2019.107843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31518657&dopt=Abstract
https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-022-02709-2
http://dx.doi.org/10.1186/s12916-022-02709-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36690983&dopt=Abstract
http://dx.doi.org/10.1016/j.diabres.2021.109040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34500005&dopt=Abstract
https://europepmc.org/abstract/MED/33478336
http://dx.doi.org/10.1080/0886022X.2020.1866010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33478336&dopt=Abstract
https://europepmc.org/abstract/MED/34352988
http://dx.doi.org/10.4093/dmj.2020.0100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34352988&dopt=Abstract
http://dx.doi.org/10.1007/s11892-019-1189-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31367962&dopt=Abstract
http://dx.doi.org/10.1111/j.1728-4465.1999.00067.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10216897&dopt=Abstract
https://medinform.jmir.org/2019/4/e14340/
http://dx.doi.org/10.2196/14340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31702562&dopt=Abstract
https://europepmc.org/abstract/MED/24838229
http://dx.doi.org/10.1001/jamainternmed.2014.1824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24838229&dopt=Abstract
https://europepmc.org/abstract/MED/35373711
http://dx.doi.org/10.1080/0886022X.2022.2056053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35373711&dopt=Abstract
http://dx.doi.org/10.1016/j.artmed.2021.102120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34412843&dopt=Abstract
https://europepmc.org/abstract/MED/28585879
http://dx.doi.org/10.1089/dia.2017.0035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28585879&dopt=Abstract
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-0943-4
http://dx.doi.org/10.1186/s12911-019-0943-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31694629&dopt=Abstract
http://dx.doi.org/10.1109/EMBC.2013.6610766
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24110953&dopt=Abstract
http://dx.doi.org/10.3390/app11041742
https://europepmc.org/abstract/MED/23883406
http://dx.doi.org/10.1089/dia.2013.0104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23883406&dopt=Abstract
http://dx.doi.org/10.1109/EMBC.2014.6943589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25569957&dopt=Abstract
http://dx.doi.org/10.1089/dia.2009.0076
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20082589&dopt=Abstract
https://www.mdpi.com/resolver?pii=s21051647
http://dx.doi.org/10.3390/s21051647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33673415&dopt=Abstract
https://europepmc.org/abstract/MED/35415447
http://dx.doi.org/10.1007/s41666-020-00068-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35415447&dopt=Abstract
https://dx.plos.org/10.1371/journal.pmed.1000097
http://dx.doi.org/10.1371/journal.pmed.1000097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19621072&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS Livetd

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Liberati A, Altman DG, Tetzlaff J, Mulrow C, Ggtzsche PC, loannidis JPA, et a. The PRISMA statement for reporting
systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ
2009 Jul 21;339:b2700 [FREE Full text] [doi: 10.1136/bmj.b2700] [Medline: 19622552]

Akl E, Altman D, Aluko P, Askie L, Beaton D, Berlin J. Cochrane Handbook for Systematic Reviews of Interventions.
New York, NY: John Wiley & Sons; 2019.

Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, QUADAS-2 Group. QUADAS-2: arevised
tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011 Oct 18;155(8):529-536 [ FREE Full
text] [doi: 10.7326/0003-4819-155-8-201110180-00009] [Medline: 22007046]

White |. Multivariate random-effects meta-regression: updates to Mvmeta. Stata J 2011 Jul 01;11(2):255-270. [doi:
10.1177/1536867x1101100206]

Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003 Sep
06;327(7414):557-560 [FREE Full text] [doi: 10.1136/bmj.327.7414.557] [Medline: 12958120]

Parcerisas A, Contreras |, Delecourt A, Bertachi A, Beneyto A, Conget I, et al. A machine learning approach to minimize
nocturnal hypoglycemic eventsin type 1 diabetic patients under multiple doses of insulin. Sensors (Basel) 2022 Feb
21;22(4):1665 [FREE Full text] [doi: 10.3390/s22041665] [Medline: 35214566]

Stuart K, Adderley NJ, Marshall T, Rayman G, Sitch A, Manley S, et a. Predicting inpatient hypoglycaemiain hospitalized
patientswith diabetes: aretrospective analysis of 9584 admissionswith diabetes. Diabet Med 2017 Oct 12;34(10):1385-1391.
[doi: 10.1111/dme.13409] [Medline: 28632918]

Bertachi A, VifialsC, Biagi L, Contreras|, Vehi J, Conget |, et a. Prediction of nocturnal hypoglycemiain adultswith type
1 diabetes under multiple daily injections using continuous glucose monitoring and physical activity monitor. Sensors
(Basel) 2020 Mar 19;20(6):1705 [FREE Full text] [doi: 10.3390/s20061705] [Medline: 32204318]

Elhadd T, Mall R, Bashir M, Palotti J, Fernandez-Luque L, Farooq F, for PROFA ST-Ramadan Study Group. Artificial
intelligence (Al) based machine learning models predict glucose variability and hypoglycaemiarisk in patients with type
2 diabetes on a multiple drug regimen who fast during ramadan (the PROFAST - IT Ramadan study). Diabetes Res Clin
Pract 2020 Nov;169:108388 [ FREE Full text] [doi: 10.1016/j.diabres.2020.108388] [Medline: 32858096]
Mosquera-Lopez C, Dodier R, Tyler NS, Wilson LM, El Youssef J, Castle JR, et al. Predicting and preventing nocturnal
hypoglycemiain type 1 diabetes using big data analytics and decision theoretic analysis. Diabetes Technol Ther 2020
Nov;22(11):801-811 [FREE Full text] [doi: 10.1089/dia.2019.0458] [Medline: 32297795]

Ruan, Bellot A, MoysovaZ, Tan GD, Lumb A, DaviesJ, et al. Predicting the risk of inpatient hypoglycemiawith machine
learning using electronic health records. Diabetes Care 2020 Jul;43(7):1504-1511. [doi: 10.2337/dc19-1743] [Medline:
32350021]

Guemes A, Cappon G, Hernandez B, Reddy M, Oliver N, Georgiou P, et a. Predicting quality of overnight glycaemic
control in type 1 diabetes using binary classifiers. IEEE JBiomed Health Inform 2020 May;24(5):1439-1446 [FREE Full
text] [doi: 10.1109/JBHI.2019.2938305] [Medline: 31536025]

Jensen MH, Dethlefsen C, Vestergaard P, Hejlesen O. Prediction of nocturnal hypoglycemia from continuous glucose
monitoring datain people with type 1 diabetes: a proof-of-concept study. J Diabetes Sci Technol 2020 Mar;14(2):250-256
[FREE Full text] [doi: 10.1177/1932296819868727] [Medline: 31390891]

Oviedo S, Contreras |, Quiroés C, Giménez M, Conget I, Vehi J. Risk-based postprandial hypoglycemia forecasting using
supervised learning. Int JMed Inform 2019 Jun;126:1-8. [doi: 10.1016/j.ijmedinf.2019.03.008] [Medline: 31029250]
Toffanin C, Aiello EM, Cobelli C, Magni L. Hypoglycemia prevention via personalized glucose-insulin models identified
in free-living conditions. J Diabetes Sci Technol 2019 Nov;13(6):1008-1016 [FREE Full text] [doi:
10.1177/1932296819880864] [Medline: 31645119]

FisK, Bunescu R, Marling C, Shubrook J, Schwartz F. A machine learning approach to predicting blood glucose levels
for diabetes management. 2014 Presented at: AAAI-14: 2014 Association for the Advancement of Artificial Intelligence
Workshop; 2014; Ohio.

Chan K, Ling S, Dillon T, Nguyen H. Diagnosis of hypoglycemic episodes using a neural network based rule discovery
system. Expert Syst Appl 2011 Aug 19;38(8):9799-9808 [FREE Full text] [doi: 10.1016/j.eswa.2011.02.020] [Medline:
37860015]

Nguyen HT, Jones TW. Detection of nocturnal hypoglycemic episodes using EEG signals. Annu Int Conf |EEE Eng Med
Biol Soc 2010;2010:4930-4933. [doi: 10.1109/EM BS.2010.5627233] [Medline: 21096665]

Rubega M, ScarpaF, Teodori D, Sejling A, Frandsen CS, Sparacino G. Detection of hypoglycemia using measures of EEG
complexity in type 1 diabetes patients. Entropy (Basel) 2020 Jan 09;22(1):81 [FREE Full text] [doi: 10.3390/e22010081]
[Medline: 33285854]

Chen J, Lalor J, LiuW, Druhl E, Granillo E, Vimalananda VG, et al. Detecting hypoglycemiaincidents reported in patients
secure messages: using cost-sensitive learning and oversampling to reduce dataimbalance. J Med Internet Res 2019 Mar
11;21(3):€11990 [FREE Full text] [doi: 10.2196/11990] [Medline: 30855231]

Jensen MH, Christensen TF, Tarnow L, Seto E, Dencker Johansen M, Hejlesen OK. Real-time hypoglycemia detection
from continuous glucose monitoring data of subjectswith type 1 diabetes. Diabetes Technol Ther 2013 Jul;15(7):538-543.
[doi: 10.1089/dia.2013.0069] [Medline: 23631608]

https://medinform.jmir.org/2023/1/e47833 JMIR Med Inform 2023 | val. 11 | e47833 | p.185

(page number not for citation purposes)


https://europepmc.org/abstract/MED/19622552
http://dx.doi.org/10.1136/bmj.b2700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19622552&dopt=Abstract
https://www.acpjournals.org/doi/abs/10.7326/0003-4819-155-8-201110180-00009?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
https://www.acpjournals.org/doi/abs/10.7326/0003-4819-155-8-201110180-00009?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.7326/0003-4819-155-8-201110180-00009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22007046&dopt=Abstract
http://dx.doi.org/10.1177/1536867x1101100206
https://europepmc.org/abstract/MED/12958120
http://dx.doi.org/10.1136/bmj.327.7414.557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12958120&dopt=Abstract
https://www.mdpi.com/resolver?pii=s22041665
http://dx.doi.org/10.3390/s22041665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35214566&dopt=Abstract
http://dx.doi.org/10.1111/dme.13409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28632918&dopt=Abstract
https://www.mdpi.com/resolver?pii=s20061705
http://dx.doi.org/10.3390/s20061705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32204318&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0168-8227(20)30641-0
http://dx.doi.org/10.1016/j.diabres.2020.108388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32858096&dopt=Abstract
https://europepmc.org/abstract/MED/32297795
http://dx.doi.org/10.1089/dia.2019.0458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32297795&dopt=Abstract
http://dx.doi.org/10.2337/dc19-1743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32350021&dopt=Abstract
http://hdl.handle.net/10044/1/73798
http://hdl.handle.net/10044/1/73798
http://dx.doi.org/10.1109/JBHI.2019.2938305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31536025&dopt=Abstract
https://europepmc.org/abstract/MED/31390891
http://dx.doi.org/10.1177/1932296819868727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31390891&dopt=Abstract
http://dx.doi.org/10.1016/j.ijmedinf.2019.03.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31029250&dopt=Abstract
https://europepmc.org/abstract/MED/31645119
http://dx.doi.org/10.1177/1932296819880864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31645119&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2372-7705(23)00084-0
http://dx.doi.org/10.1016/j.eswa.2011.02.020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37860015&dopt=Abstract
http://dx.doi.org/10.1109/IEMBS.2010.5627233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21096665&dopt=Abstract
https://www.mdpi.com/resolver?pii=e22010081
http://dx.doi.org/10.3390/e22010081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33285854&dopt=Abstract
https://www.jmir.org/2019/3/e11990/
http://dx.doi.org/10.2196/11990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30855231&dopt=Abstract
http://dx.doi.org/10.1089/dia.2013.0069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23631608&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS Livetd

45,

46.

47.

48.

49,

50.

51.

52.

53.

55.

56.

57.

58.

59.

60.

61.

62.

63.

65.

66.

67.

Skladnev VN, Ghevondian N, Tarnavskii S, Paramalingam N, Jones TW. Clinical evaluation of anoninvasive alarm system
for nocturnal hypoglycemia. J Diabetes Sci Technol 2010 Jan 01;4(1):67-74 [EREE Full text] [doi:
10.1177/193229681000400109] [Medline: 20167169]

laione F, Marques JLB. Methodology for hypoglycaemia detection based on the processing, analysis and classification of
the electroencephal ogram. Med Biol Eng Comput 2005 Jul;43(4):501-507. [doi: 10.1007/BF02344732] [Medline: 16255433]
Bertachi A, Biagi L, Contreras|, Luo N, Vehi J. Prediction of blood glucose levels and nocturnal hypoglycemia using
physiological modelsand artificial neural networks. 2013 Presented at: 3rd International Workshop on Knowledge Discovery
in Healthcare Data; July 13, 2018; Stockholm, Sweden.

Eljil KAAS. Predicting Hypoglycemiain Diabetic Patients Using Machine Learning Techniques. United Arab Emirates:
American University of Sharjah; 2014.

D’Antoni F, Merone M, Piemonte V, lannello G, Soda P. Auto-regressive time delayed jump neural network for blood
glucose levels forecasting. Knowl Based Syst 2020 Sep;203:106134. [doi: 10.1016/j.knosys.2020.106134]

AmarY, Shilo S, Oron T, Amar E, Phillip M, Segal E. Clinically accurate prediction of glucose levelsin patients with type
1 diabetes. Diabetes Technol Ther 2020 Aug 01;22(8):562-569. [doi: 10.1089/dia.2019.0435] [Medline: 31928415]

Li K, LiuC, Zhu T, Herrero B, Georgiou P. GluNet: a deep learning framework for accurate glucose forecasting. |EEE J
Biomed Health Inform 2020 Feb;24(2):414-423. [doi: 10.1109/jbhi.2019.2931842]

Zecchin C, Facchinetti A, Sparacino G, De Nicolao G, Cobelli C. Neural network incorporating meal information improves
accuracy of short-time prediction of glucose concentration. |EEE Trans Biomed Eng 2012 Jun;59(6):1550-1560. [doi:
10.1109/TBME.2012.2188893] [Medline: 22374344]

Mohebbi A, Johansen AR, Hansen N, Christensen PE, Tarp JM, Jensen ML, et al. Short term blood glucose prediction
based on continuous glucose monitoring data. Annu Int Conf |EEE Eng Med Biol Soc 2020 Jul;2020:5140-5145. [doi:
10.1109/EMBC44109.2020.9176695] [Medline: 33019143]

Daniels J, Herrero P, Georgiou P. A multitask |earning approach to personalized blood glucose prediction. IEEE J Biomed
Health Inform 2022 Jan;26(1):436-445. [doi: 10.1109/JBHI.2021.3100558] [Medline: 34314367]

Alfian G, Syafrudin M, Anshari M, BenesF, Atmaji F, Fahrurrozi |, et al. Blood glucose prediction model for type 1 diabetes
based on artificial neural network with time-domain features. Biocybern Biomed Eng 2020 Oct;40(4):1586-1599 [FREE
Full text] [doi: 10.1016/j.bbe.2020.10.004]

Dave D, DeSavo DJ, Haridas B, McKay S, Shenoy A, Koh CJ, et al. Feature-based machine learning model for real-time
hypoglycemia prediction. J Diabetes Sci Technol 2021 Jul 01;15(4):842-855 [FREE Full text] [doi:
10.1177/1932296820922622] [Medline: 32476492]

MarcusY, Eldor R, Yaron M, Shaklai S, Ish-Shalom M, Shefer G, et al. Improving blood glucose level predictability using
machine learning. Diabetes Metab Res Rev 2020 Nov 14;36(8):€3348. [doi: 10.1002/dmrr.3348] [Medline: 32445286]
Reddy R, Resalat N, Wilson LM, Castle JR, El Youssef J, Jacobs PG. Prediction of hypoglycemia during aerobic exercise
in adults with type 1 diabetes. J Diabetes Sci Technol 2019 Sep;13(5):919-927 [FREE Full text] [doi:
10.1177/1932296818823792] [Medline: 30650997]

Sampath S, Tkachenko P, Renard E, Pereverzev SV. Glycemic control indices and their aggregation in the prediction of
nocturnal hypoglycemiafrom intermittent blood glucose measurements. J Diabetes Sci Technol 2016 Nov;10(6):1245-1250
[FREE Full text] [doi: 10.1177/1932296816670400] [Medline: 27660190]

Sudharsan B, Peeples M, Shomali M. Hypoglycemia prediction using machine learning models for patients with type 2
diabetes. J Diabetes Sci Technol 2015 Jan;9(1):86-90 [FREE Full text] [doi: 10.1177/1932296814554260] [Medline:
25316712

Nuryani N, Ling SSH, Nguyen HT. Electrocardiographic signals and swarm-based support vector machinefor hypoglycemia
detection. Ann Biomed Eng 2012 Apr;40(4):934-945. [doi: 10.1007/s10439-011-0446-7] [Medline: 22012087]

San PP, Ling SH, Nuryani N, Nguyen H. Evolvable rough-block-based neural network and its biomedical application to
hypoglycemia detection system. |EEE Trans Cybern 2014 Aug;44(8):1338-1349. [doi: 10.1109/TCY B.2013.2283296]
[Medline: 24122616]

Ling SH, Nguyen HT. Natural occurrence of nocturnal hypoglycemia detection using hybrid particle swarm optimized
fuzzy reasoning model. Artif Intell Med 2012 Jul;55(3):177-184. [doi: 10.1016/j.artmed.2012.04.003] [Medline: 22698854]
Ling SH, San PP, Nguyen HT. Non-invasive hypoglycemia monitoring system using extreme learning machine for type 1
diabetes. |SA Trans 2016 Sep;64:440-446. [doi: 10.1016/j.isatra.2016.05.008] [Medline: 27311357)

Nguyen LB, Nguyen AV, Ling SH, Nguyen HT. An adaptive strategy of classification for detecting hypoglycemia using
only two EEG channels. Annu Int Conf |EEE Eng Med Biol Soc 2012;2012:3515-3518. [doi: 10.1109/EMBC.2012.6346724)]
[Medline: 23366685]

Ngo CQ, Chai R, Nguyen TV, Jones TW, Nguyen HT. Electroencephal ogram spectral momentsfor the detection of nocturnal
hypoglycemia. IEEE J Biomed Health Inform 2020 May;24(5):1237-1245. [doi: 10.1109/JBHI.2019.2931782] [Medline:
31369389]

Ngo CQ, Truong BCQ, Jones TW, Nguyen HT. Occipital EEG activity for the detection of nocturnal hypoglycemia. Annu
Int Conf |[EEE Eng Med Biol Soc 2018 Jul;2018:3862-3865. [doi: 10.1109/EMBC.2018.8513069] [Medline: 30441206]

https://medinform.jmir.org/2023/1/e47833 JMIR Med Inform 2023 | vol. 11 | e47833 | p.186

(page number not for citation purposes)


https://europepmc.org/abstract/MED/20167169
http://dx.doi.org/10.1177/193229681000400109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20167169&dopt=Abstract
http://dx.doi.org/10.1007/BF02344732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16255433&dopt=Abstract
http://dx.doi.org/10.1016/j.knosys.2020.106134
http://dx.doi.org/10.1089/dia.2019.0435
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31928415&dopt=Abstract
http://dx.doi.org/10.1109/jbhi.2019.2931842
http://dx.doi.org/10.1109/TBME.2012.2188893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22374344&dopt=Abstract
http://dx.doi.org/10.1109/EMBC44109.2020.9176695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33019143&dopt=Abstract
http://dx.doi.org/10.1109/JBHI.2021.3100558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34314367&dopt=Abstract
https://doi.org/10.1016/j.bbe.2020.10.004
https://doi.org/10.1016/j.bbe.2020.10.004
http://dx.doi.org/10.1016/j.bbe.2020.10.004
https://europepmc.org/abstract/MED/32476492
http://dx.doi.org/10.1177/1932296820922622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32476492&dopt=Abstract
http://dx.doi.org/10.1002/dmrr.3348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32445286&dopt=Abstract
https://europepmc.org/abstract/MED/30650997
http://dx.doi.org/10.1177/1932296818823792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30650997&dopt=Abstract
https://europepmc.org/abstract/MED/27660190
http://dx.doi.org/10.1177/1932296816670400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27660190&dopt=Abstract
https://europepmc.org/abstract/MED/25316712
http://dx.doi.org/10.1177/1932296814554260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25316712&dopt=Abstract
http://dx.doi.org/10.1007/s10439-011-0446-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22012087&dopt=Abstract
http://dx.doi.org/10.1109/TCYB.2013.2283296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24122616&dopt=Abstract
http://dx.doi.org/10.1016/j.artmed.2012.04.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22698854&dopt=Abstract
http://dx.doi.org/10.1016/j.isatra.2016.05.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27311357&dopt=Abstract
http://dx.doi.org/10.1109/EMBC.2012.6346724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23366685&dopt=Abstract
http://dx.doi.org/10.1109/JBHI.2019.2931782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31369389&dopt=Abstract
http://dx.doi.org/10.1109/EMBC.2018.8513069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30441206&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

68.

69.

70.

71.

72.

73.

Liuetd

Nuryani N, Ling SH, Nguyen HT. Hypoglycaemia detection for type 1 diabetic patients based on ECG parameters using
fuzzy support vector machine. 2010 Presented at: IJCNN 2010: 2010 International Joint Conference on Neural Networks;

July 18-23, 2010; Barcelona, Spain. [doi: 10.1109/ijcnn.2010.5596916]

Jaeschke R, Guyatt GH, Sackett DL. Users guides to the medical literature. I11. How to use an article about a diagnostic
test. B. What aretheresultsand will they help mein caring for my patients? The Evidence-Based Medicine Working Group.
JAMA 1994 Mar 02;271(9):703-707. [doi: 10.1001/jama.271.9.703] [Medline: 8309035]

Kodamas, FujiharaK, Shiozaki H, Horikawa C, YamadaMH, Sato T, et al. Ability of current machine learning algorithms
to predict and detect hypoglycemiain patients with diabetes mellitus: meta-analysis. IMIR Diabetes 2021 Jan 29;6(1):€22458

[FREE Full text] [doi: 10.2196/22458] [Medline: 33512324]

McShinsky R, Marshall B. Comparison of forecasting algorithmsfor type 1 diabetic glucose prediction on 30 and 60-minute
prediction horizons. 2020 Presented at: KDH@ECAI 2020: 5th International Workshop on Knowledge Discovery in
Healthcare Data co-located with 24th European Conference on Artificia Intelligence; August 29-30, 2020; Santiago de

Compostela, Spain, and virtually.

DengY, LulL, Aponte L, Angelidi AM, Novak V, Karniadakis GE, et al. Deep transfer learning and data augmentation
improve glucose levels prediction in type 2 diabetes patients. NPJ Digit Med 2021 Jul 14;4(1):109 [FREE Full text] [doi:

10.1038/s41746-021-00480-x] [Medline: 34262114]

Van Calster B, Steyerberg EW, Wynants L, van Smeden M. Thereis no such thing as a validated prediction model. BMC
Med 2023 Feb 24;21(1):70 [FREE Full text] [doi: 10.1186/s12916-023-02779-w] [Medline: 36829188]

Abbreviations

ARM : autoregression model

ARJNN: ARTiDe jump neural network

AUC: areaunder the curve

BG: blood glucose

CGM: continuous glucose monitoring

DM diabetes mellitus

DRNN: dilated recurrent neural network

DT: decision tree

ECG: eectrocardiograph

EEG: electroencephal ograph

EHR: electronic health record

ML: machine learning

NLR: negative likelihood ratio

NNM: neural network model

PH: prediction horizon

PLR: positive likelihood ratio

QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies
RF: random forest

RM SE: root mean square error

SROC: summary receiver operating characteristic
SUCRA: surface under the cumulative ranking
SVM: support vector machine

T1DM: type 1 diabetes mellitus

T2DM: type 2 diabetes mellitus

XGBoost: Extreme Gradient Boosting

21.08.23; accepted 12.10.23; published 20.11.23.

Please cite as:
LiuK, Li L, MaY, Jiang J, LiuZ, Ye Z, Liu S, Pu C, Chen C, Wan Y

Meta-Analysis

JMIR Med Inform 2023;11:e47833

URL: https:.//medinform.jmir.org/2023/1/e47833
doi:10.2196/47833

PMID: 37983072

Edited by C Lovis; submitted 03.04.23; peer-reviewed by C Toffanin, S Lee; comments to author 30.07.23; revised version received

Machine Learning Models for Blood Glucose Level Prediction in Patients With Diabetes Méllitus. Systematic Review and Network

https://medinform.jmir.org/2023/1/e47833

RenderX

JMIR Med Inform 2023 | vol. 11 | e47833 | p.187
(page number not for citation purposes)


http://dx.doi.org/10.1109/ijcnn.2010.5596916
http://dx.doi.org/10.1001/jama.271.9.703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8309035&dopt=Abstract
https://diabetes.jmir.org/2021/1/e22458/
http://dx.doi.org/10.2196/22458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33512324&dopt=Abstract
https://doi.org/10.1038/s41746-021-00480-x
http://dx.doi.org/10.1038/s41746-021-00480-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34262114&dopt=Abstract
https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-023-02779-w
http://dx.doi.org/10.1186/s12916-023-02779-w
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36829188&dopt=Abstract
https://medinform.jmir.org/2023/1/e47833
http://dx.doi.org/10.2196/47833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37983072&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS Livetd

©Kui Liu, Linyi Li, Yifei Ma, Jun Jiang, Zhenhua Liu, Zichen Ye, Shuang Liu, Chen Pu, Changsheng Chen, Yi Wan. Originally
published in IMIR Medical Informatics (https://medinform.jmir.org), 20.11.2023. Thisis an open-access article distributed under
thetermsof the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work, first published in IMIR Medical Informatics, is

properly cited. The complete bibliographic information, alink to the original publication on https://medinform.jmir.org/, as well
asthis copyright and license information must be included.

https://medinform.jmir.org/2023/1/e47833 JMIR Med Inform 2023 | vol. 11 | e47833 | p.188

(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS Yeetd

Review

The Roles of Electronic Health Records for Clinical Trials in Low-
and Middle-Income Countries: Scoping Review

Jiancheng Ye"*', PhD; Shangzhi Xiong®**', MS; Tengyi Wang®, MS; Jingyi Li® Nan Cheng’; Maoyi Tian*®, PhD;
Yang Yang®, PhD

el Cornell Medicine, New York, NY, United States

Northwestern University Feinberg School of Medicine, Chicago, IL, United States

3The George Institute for Global Health, Faulty of Medicine and Health, University of New South Wales, Sydney, Australia
4Global Health Research Centre, Duke Kunshan University, Kunshan, China

Sschool of Public Health, Harbin Medical University, Harbin, China

8school of Basic Medicine, Harbin Medical University, Harbin, China

"The First Affiliated Hospital of Harbin Medical University, Harbin, China

8school of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China

" these authors contributed equally

Corresponding Author:

Maoyi Tian, PhD

School of Public Health

Harbin Medical University

157 Bagjian Road, Nangang District
Harbin, 150081

China

Phone: 86 1082800577

Email: mtian@georgeinstitute.org.cn

Abstract

Background: Clinical trialsareacrucial el ement in advancing medical knowledge and devel oping new treatments by establishing
the evidence base for safety and therapeutic efficacy. However, the success of these trials depends on various factors, including
trial design, project planning, research staff training, and adequate sample size. It isalso crucial to recruit participants efficiently
and retain them throughout the trial to ensure timely completion.

Objective: Thereisanincreasing interest in using € ectronic health records (EHRs)—awidely adopted tool in clinical practice—for
clinical trials. This scoping review aims to understand the use of EHR in supporting the conduct of clinical trials in low- and
middle-income countries (LMICs) and to identify its strengths and limitations.

Methods: A comprehensive search was performed using 5 databases: MEDLINE, Embase, Scopus, Cochrane Library, and the
Cumulative Index to Nursing and Allied Health Literature. We followed the latest version of the PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guideline to conduct this review.
We included clinical trials that used EHR at any step, conducted a narrative synthesis of the included studies, and mapped the
roles of EHRs into the life cycle of aclinical trial.

Results: A total of 30 studies met the inclusion criteria: 13 were randomized controlled trials, 3 were cluster randomized
controlled trials, 12 were quasi-experimental studies, and 2 were feasibility pilot studies. Most of the studies addressed infectious
diseases (15/30, 50%), with 80% (12/15) of them about HIV or AIDS and another 40% (12/30) focused on noncommunicable
diseases. Our synthesisdivided theroles of EHRsinto 7 major categories: participant identification and recruitment (12/30, 40%),
baselineinformation collection (6/30, 20%), intervention (8/30, 27%), fidelity assessment (2/30, 7%), primary outcome assessment
(24/30, 80%), nonprimary outcome assessment (13/30, 43%), and extended follow-up (2/30, 7%). None of the studies used EHR
for participant consent and randomization.

Conclusions: Despite the enormous potential of EHRs to increase the effectiveness and efficiency of conducting clinical trials
in LMICs, challengesremain. Continued exploration of the appropriate uses of EHRs by navigating their strengthsand limitations
to ensurefitness for use is hecessary to better understand the most optimal uses of EHRs for conducting clinical trialsin LMICs.
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Introduction

Clinical trials are a crucial element in advancing medical
knowledge and developing new treatments by establishing the
evidence base for safety and therapeutic efficacy [1]. However,
the success of these trial s depends on variousfactors, including
trial design, project planning, research staff training, and
adequate samplesize[2]. Itisalso crucial to recruit participants
efficiently and retain them throughout thetrial to ensure timely
completion [3].

Randomized controlled trials (RCTs) are considered the gold
standard for evaluating the benefits and risks of health care
treatments. Despitetheir high level of evidence, RCTsare often
time consuming and expensive and may be limited by strictly
standardized research settingsthat can hinder the generalizability
of their results [4]. One promising solution to this challengeis
the use of electronic health records (EHRs) to conduct large
and pragmatic trials [5]. However, the gap in health care
resources between high-income countries (HICs) and low- and
middle-income countries (LMICs) variesgreetly [6,7]. Although
HICs have made significant progressin using EHR for clinical
trials [8-10Q], little is known about the effectiveness of similar
applications in LMICs [11,12]. Understanding the progress
madein LMICsand how EHR hasbeen applied to clinical trials
can provide vauable insights for promoting and improving
population health [13]. Conducting clinical trialsin LMICscan
also provide a comprehensive evaluation of interventions in
different settings beyond HICs [14].

This scoping review aims to comprehensively understand the
roles of EHRsin thelife cycle of clinical trials, determine how
EHRswereimplemented in clinical research settings, and further
describe specifically how this technology should be used to
support different types of clinical trialsin an LMIC context.

Methods

This scoping review followed the latest version of the
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews)
guideline for the entire review process [15].

Data Sources and Search Strategy

A comprehensive search was performed using 5 databases for
articles published until the end of 2021: PubMed or MEDLINE,
Embase, Scopus, Cochrane Library, and the Cumulative Index
to Nursing and Allied Health Literature. We prepared the search
terms using the patients, problem, or population; issue of interest
or intervention; comparison, control, or comparator; outcome;
and study type (PICOS) approach. As the search aimed to be
as comprehensive as possible and correspond to the research
guestions, 3 domainsincluding EHRs, clinical trials, and LMICs
(based on the list on the World Bank definition) were used to
develop the search strategy [16]. A combination of keywords

https://medinform.jmir.org/2023/1/e47052

and controlled vocabulary terms related to the target concepts
was used. The search strategy was designed and devel oped by
2 authors (JY and SX) independently and confirmed with an
experienced librarian. Multimedia Appendix 1 presents the
search strategy.

Study Selection

Studies were included in this review if they met the following
criteria (1) clear indication of clinical trias; (2) EHR was
involved in the tria conduct, including identification,
recruitment, informed consent collection, implementation,
outcome adjudication, and outcome verification; (3) the study
was conducted in an LMIC; (4) the study was published until
December 31, 2021; and (5) no language restrictions. The
exclusion criteriawere asfollows: (1) absence of aclinical trial
focus; (2) the primary research question was nonclinical (ie,
cost analysis study); (3) not availablein full text; (4) conference
abstracts or posters; (5) nonresearch articles (ie, perspectives,
commentaries, letters, and reviews); and (6) retrospective
secondary data analysisin aclinical trial, for example, studies
that used retrospective datafor 2 groups of patientswho received
different treatments and compared their outcomes.

First, duplicate articles were eliminated from the retrieved
articles. Then, 4 reviewers (JY, SX, TW, and YY) independently
screened articles based on titles and abstracts to identify the
studiesthat could potentialy fit the research question and meet
the dligibility criteria. Records were excluded if they were
marked asirrelevant by 2 reviewers. For records that were kept
or were difficult to decide based on the title or abstract, the full
text was scrutinized. When disagreements regarding study
inclusion occurred between the 2 reviewers, a third or fourth
reviewer was involved in the discussion until consensus was
reached.

Data Extraction

A data extraction form was developed for data extraction. For
each included study, we first extracted the studies' basic
information, including the first author’s name, publication year,
country, trial setting, trial design, target population, intervention,
and outcome. Of note, for trial designs, we considered individual
RCT, cluster RCT, quasi-experimental studies, and feasibility
pilot studies. To determine how the studies used EHR in
conducting thetrials, we extracted information on the roles that
EHR played at any step in each of the included studies.

Data Synthesisand Analysis

We conducted a descriptive analysis on the basic information
of each included paper and conducted qualitative synthesis to
analyze the roles that EHR played in conducting the trials and
to identify their associated implications. In the qualitative
synthesis process, we referred to an established framework from
apublication in 2019 [11]. The study reviewed the current and
prospective usesof EHRin clinical trialsworldwide and outlined
five stepsinwhich EHR could be used: (1) patient identification
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and recruitment, (2) participant consent and randomization, (3)
intervention, (4) outcome assessment, and (5) extended
follow-up [11]. On the basis of this framework, we first
attempted to map our identified roles of EHR in clinical trials
into these 5 steps, and then, we performed modifications by
adding our identified new roles of EHR from the included
studies. The identifications and articul ations of new roleswere
based on research team discussions until consensuswas reached
(JY, SX, and YY). In addition, when available, we further
synthesized text information about implications of using EHR
in conducting clinical trials, by summarizing them as* strengths”
and “limitations’” under each role of EHR.

Quality Assessment

We followed the National Heart, Lung, and Blood Institute’s
Study Quality Assessment Tools for the quality assessment of
the included studies [17]. For studies with control groups, a
total of 14 questions were considered, including the adequacy
of randomi zation, blinding of treatment assignment and outcome
assessment, use of intention-to-treat analysis, and sufficiency
of the sample size. For the quasi-experimental studies without

Yeetd

independent control groups (eg, pre-post studies), atotal of 12
guestionswere considered, including clarity in study objectives,
participant eligibility criteria, prespecification of outcomesand
subgroups, and sample size sufficiency. We marked studiesthat
met =80% of applicable criteriaas*good quality,” 60% to 80%
as“fair quality,” and <60% as “poor quality.”

Results

Selected Char acteristics of the Included Studies

Figure 1 displays the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) flow diagram for
articleselection. Theinitial search fromthe 5 databasesyielded
atotal of 7725 references. After removal of duplicates, thefirst
round of screening excluded 6051 references for ineligibility,
leaving 123 references for full-text screening. A total of 93
references were then further excluded, primarily for wrong
populations (ie, studies conducted exclusively in HICs) and
wrong study types (ie, study types other than clinical trias).
Finaly, 30 studies were included in the data charting and
analysis.

Figure 1. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of the included studies in the review.

EHR: electronic health record.

Identification of studies via databases and registers

As shown in Table 1, the 30 studies were conducted in 15
LMICs, with China being the most represented (n=7, 23%),
followed by Kenya (n=5, 17%). Zambia, South Africa, and
Malaysiawere all included in an equal number of studies, with
each country being part of 3 (10%; 3 for each) studies. Of note,
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RenderX

o Records identified from:
o Embase (n=4111)
‘5 Medline (n=480) Records removed before screening:
= CINAHL (n=1985) — Duplicate records removed
= Scopus (n=965) (n=1674)
§ Cochrane Library (n=184)
A4
Records screened Records excluded
—
(n=6051) (n=5928)
v
Reports sought for retrieval o Reports not retrieved
2 (n=123) " (n=0)
E
@
5
& v
Reports assessed for eligibility Reports excluded:
(n=123) Wrong population (n=41)
Wrong publication type (n=24)
No full text (n=12)
Wrong study design (n=10)
Mo information related to EHR (n=6)
v
-
S Studies included in review
=
5 (n=30)
=

27 (90%) of the 30 studies were conducted in asingle LMIC,
and 3 (10%) were conducted in multiple LMI1Cs[18-20]. Table
2 presents the summaries of the characteristics of included
studies. Most of the reported trials were conducted after 2010
(29/30, 97%), with the majority published in 2018 (5/30, 17%),
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2019 (5/30, 17%), and 2020 (7/30, 23%). The oldest study was
conducted in 2004 (1/30, 3%), whereas the most recent studies
were conducted in 2021 (3/30, 10%). For study types, most
included studies were RCTs (13/30, 43%), followed by
quasi-experimental studies (12/30, 40%), cluster RCTs (3/30,
10%), and feasibility pilot studies (2/30, 7%). Of note, 9
quasi-experimental studies adopted aretrospective design using

https://medinform.jmir.org/2023/1/e47052

Yeetd

past datafrom the EHR systems. Regarding disease types, most
studies addressed infectious diseases (15/30, 50%), with 40%
(12/30) of them addressing HIV or AIDS. Another 12 studies
focused on noncommunicable diseases, such as hypertension,
diabetes, cancer, and mental illness. Three studies focused on
injuries, such as hip fracture and brain injury.
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Table 1. Characteristics of the included studies.
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Study, year Country Trial design Disease areas Summary of interventions Outcomes

Figar et a [21], Argentina Quasi-experimental  Hypertension A complex antihyperten- «  Systolic and diastolic blood pres-

2004 study sive intervention program sure and the proportion of patients
for physicians of the older who were well controlled
adults

Lakkiset a Lebanon Randomized con- Cancer Aninformative SMStext «  Performance of (whether or not

[22], 2011 trolled trial remainder about mammo- performed) the mammogram test
gram tests

Wereeta [23], Kenya Randomized con-  AIDS A CDSS2with clinician- ¢  Thenumber of clinical visitsbefore

2013

Lieta[24],  China
2014

Zhang et a China
[25], 2014

Ghadieh et al Lebanon
[26], 2015

Alieta [18],  Indiaand Pok-
2016 istan

Oluoch et a Kenya
[27], 2015

Wangetal [28], China
2016

Al-Hashar etal  Oman
[29], 2018

trolled trial

Quasi-experimental
study, using retro-
spective data

Quasi-experimental
study, using retro-
spective data

Randomized con-
trolled trial

Randomized con-
trolled trial

Cluster randomized
controlled tria

Quasi-experimental
study, using retro-
spective data

Randomized con-
trolled trial

Cardiovascular dis-
ease

Urologic diseases

Bacterial infection

Diabetes

AIDS

Hypertension

Chronic disease

targeted computer-generat-
ed reminders

Salvianolate injection
treatment over 14 days

Pharmacist interventions
that included real-time
monitoring of medical
recordsand controlling the
prescription of prophylac-
tic antibiotics

A set of reminderstoinvite
participants to get the

PPSV23° vaccine

A multicomponent quality
improvement strategy

A CDSSwith pop-upinfor-
mation and reminder
whenever action is needed
for an individual patient,
and an alert when apatient
had immunological treat-
ment failure

A guideline for hyperten-
sion management

Medication reconciliation
on admission and dis-
charge, medication review,
bedside medication coun-
seling, and take-home
medication list

the completion of overdue tasks,
including HIV testing, laboratory
monitoring, initiating antiretroviral
therapy, and making referrals

« Indexesof liver and kidney func-
tion, including alanine aminotrans-
ferase, aspartate aminotransferase,
creatinine, and blood urea nitrogen

»  Rationa useof antibiotic prophylax-
is, including frequency of prophy-
lactic antibiotic use, indicationsfor
and rate of prophylactic antibiotic
use, medical cost/patient, inappro-
priate prophylactic antibiotic use,
rate of correct antibiotic administra-
tion, and cost-benefit

«  Thevaccine administration rate in
the clinics

«  Primary: the proportion that
achieves multiple care targets

«  Secondary: achieving individual
risk factor targets, mean risk factor
changes, and patient reported out-
comes (eg, health-related quality of
life and treatment satisfaction
scores)

«  Primary: the difference between
groupsin the proportion of patients
who experienced immunological
treatment failure

«  Secondary: the effect of CDSS on
time from detection of immunolog-
ical treatment failureto clinical ac-
tion and time from antiretroviral

treatment initiation to first CD4°
cell measurement

«  Theincidence of stroke

«  Primary: percentage of preventable
adverse drug events

«  Secondary: rates of readmission,
rates of emergency department vis-
its, rates of unplanned visitsto hos-
pitals or health centers, and the 3
combined
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Study, year Country Trial design Disease areas Summary of interventions Outcomes
George et al Kenya Randomized con- AIDS A SMSinterventionpro- «  HIV testing rates
[30], 2018 trolled trial moting the availability of
ord sdlf-administered HIV
self-testing kits
Mody eta [31], Zambia Quasi-experimental  AIDS A new HIV treatment «  Timely antivirus treatment initia-
2018 study, using retro- guideline tion, retention in care at 6 mo, and

Bachmannetal Brazil
[32], 2019

Engelbrecht et South Africa
al [33], 2018

Ismail et al
[34], 2019

Saudi Arabia

Kelvinet a
[35], 2018

Kenya

Limaet a [36],
2018

Brazil

Phillips et al South Africa

[37], 2020

spective data

Cluster randomized
controlled tria

Quasi-experimental
study, using retro-
spective data

Quasi-experimental

study

Randomized con-
trolled trial

Quasi-experimental
study, using retro-
spective data

Randomized con-
trolled trial

Asthma or chronic
obstructive pul-
monary disease

Mental illness
Renal disease
AIDS
Cancer
AIDS

A guide and training pro-
gram for doctors and nurs-
es

A mental health therapy in
an occupational therapy-
led day treatment center

A patient-centered pharma:
cist carein the hemodialy-
sisunit, using comprehen-
sive medication review
through medication thera-
py management and moti-
vational interviewing

Anintervention consisting
of sending a text message
and offering a brief
demonstration of the self-
testing kit on the site

A guideline for hemody-
namic and depth of anesthe-
siamonitoring

A maternal and child
health servicein the antena-
ta clinic through cessation
of breastfeeding

being retained and on antiretroviral
treatment at 6 mo

Primary: composite scores of treat-
ment changes, spirometry, and new

asthmaand COPDY di agnosisrates
Secondary: the disaggregated treat-
ment and spirometry components
of asthma and COPD scores, pre-
scriptions (eg, support tobacco ces-
sation, depression), diseases diag-
nosed for thefirst time (eg, cardio-
vascular disease and diabetes melli-
tus), and cardiovascular risk as-
sessed

Hospitalization days, frequency of
attendance and admissionsto hospi-
tal, frequency of attendance and
number of days spent in hospital,
and attendance rate at day treatment
center

Primary: changes in serum phos-
phate levels and differencesin
number of medications
Secondary: systolic blood pressure,
serum low-density lipoprotein lev-
els, glycosylated hemoglobin levels,
the prevalence and types of medica-
tion-related problems, and the rates
of therapeutic interventions accep-
tances or rejections

HIV testing rates

Postoperative outcomes including
the use of cardiac output, central
venous oxygen saturation, depth of
anesthesia monitoring, intraopera-
tive total fluid volume and colloid
volumes, number of patientsreceiv-
ing colloids and received inotropes,
rates of postoperative delirium and
urinary tract infection, postopera-
tive morbidity, and length of hospi-
tal stay
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Study, year Country Trial design Disease areas Summary of interventions Outcomes
«  Primary: acomposite of female
participants' retention in HIV care
and viral suppression preceding the
long-term adherence and care en-
gagement study visit
o Secondary: current use of family
planning, pregnancies since thetri-
al, maternal hospitalizations and
tuberculosis diagnoses in the past
year
Tay etd [38], Madaysia Quasi-experimental  Bacterial infection ~ Aneducation program for «  Antibiotic prescription rate and
2019 study both physicians and pa- rates of reattendance or hospital
tientson the rational use of admission
antibioticsfor upper respi-
ratory infection and acute
diarrhea
Wueta [39], China Quasi-experimental  Hip fracture A comanagement program .  Primary: the proportion of patients
2019 study, using retro- involving both orthopedic who received surgery within 48 h
spective data surgeons and geriatricians of admission to award
embeddinginapathway «  Secondary: the proportion of pa-
of care spanning emergen- tients who were admitted to award
cy department presentation within 4 h of presentation to emer-
to discharge from hospital gency department, who devel oped
a pressure ulcer, who received
geriatrician care, and who received
osteoporosis and falls prevention
assessment
Ali et al [40], India Randomized con- Depressionand dia= A multicomponent quality «  Primary: between-group difference
2020 trolled trial betes improvement strategy with in Symptom Checklist Depression
nonphysician care coordi- Scale scores and areduction in
nators and decision support glycosylated hemoglobin, systolic
EHRSS blood pressure, or low-density
lipoprotein
«  Secondary: percentage of patients
who met treatment targets or had
improvements in individual out-
comes, percentage of patients who
met all glycosylated hemoglobin,
systolic blood pressure, or low-
density lipoprotein targets; and
mean reductions in Symptom
Checklist Depression Scale scores
and Patient Health Questionnaire-9
scores
Yang et d [41], China Randomized con- Orthognathicdisease A hydroactivedressingon «  Theincidence of nasal alapressure
2020 trolled trial the nasal ala of patients injury associated with nasotracheal
undergoing orthognathic intubation
surgery
Puttkammer et Haiti Feasibility pilot AIDS An EHR-based alert for o HIV viral load status, antiretroviral
a [42], 2020 study adherence intervention treatment adherence, and proportion
of patients who were never >7 d
late for an antiretroviral treatment
refill pickup
Roy et a [43], Zambia Cluster randomized AIDS Adherenceclubgroupinter- «  Primary: timeto first late drug
2020 controlled trial vention to improve on-time pickup

drug pickup and retention
in HIV care through off-
hours facility access and
pharmacist-led group drug
distribution

Secondary: medication possession
ratio, implementation outcomes
(adoption, acceptability, appropri-
ateness, feasibility, and fidelity),
and viral load suppression at 12 mo
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Study, year Country

Trial design

Disease areas

Summary of interventions

Outcomes

SethKalichman South Africa
et al [44], 2020

Mahmood et a
[19], 2020

United King-
dom and
Malaysia

Mody eta [45], Zambia

2021

Semeereet a
[20], 2021

Uganda and
Kenya

Xuet al [46],
2021

China

Abdulrahmanet Malaysia
al [47], 2017

Randomized con-
trolled trial

Randomized con-
trolled trial

Quasi-experimental
study, using retro-
spective data

Feasibility pilot
study

Quasi-experimental
study, using retro-
spective data

Randomized con-
trolled trial

Sexually transmitted
infections

Traumatic brain in-
jury

AIDS

AIDS

Bacterial infection

AIDS

Two counseling sessions
for brief risk reduction
sexual behavior change
and brief enhanced partner
notification

A tranexamic acid treat-
ment

A new national HIV treat-
ment

A rapid case ascertainment
measurement shortly after
diagnosis

A pharmacist-led intra-

venous to oral antibiotic
conversion practice with
computerized reminders

Mobile phone reminders
based on SMS, telephone
call, and peer counseling

Primary: return sexually transmitted
infection visits after counseling and
rate of scale representing the per-
centage of times condoms were
used

Secondary: sexually transmitted in-
fection risk and prevention-related
knowledge assessed by 4 heteroge-
neous items, HIV stigma assessed
by the HIV Stigma Scale, and pre-
vention skills self-efficacy

Primary: the volume of intra-
parenchymal hemorrhage after ran-
domization

Secondary: presence of progressive
intracranial hemorrhage, new in-
tracranial hemorrhage, presence of
cerebral infarction, composite poor
outcome, and intracranial hemor-
rhage volume

Primary: rates of both antiretroviral
treatment initiation and retention
on antiretroviral treatment across
subgroups in 3 timestamps, an-
tiretroviral treatment initiation
within 1 mo of enrollment, and re-
tention in care on antiretroviral
treatment at 12 mo

Performance of (whether or not
performed) rapid case ascertain-
ment

Primary: the proportion of patients
who converted to oral therapy on
the day patients were eligible for
the conversion

Secondary: length of Iv! antibiotic
therapy days, total length of antibi-
otic therapy days, and length of
hospital stays

Primary: improved scheduled clinic
attendance and medi cation adher-
ence self-report

Secondary: immunologicd, virolog-
ical, and clinical measurements

8CDSS: clinical decision support system.
bPPSV/23: Pneumococcal Polysaccharide Vaccine.

°CD4: cluster of differentiation 4.

dCOPD: chronic obstructive pulmonary disease.

®EHR: electronic health record.
fIv: intravenous therapy.
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Table 2. Summaries of the characteristics of the included studies (N=30).

Yeetd

Characteristics

Studies, n (%)

Year of publication
2017 or before
2018-2019
2020-2021

Trial design
Randomized controlled trials
Cluster randomized controlled trials
Quasi-experimental studies
Feasibility pilot study

Trial settings
Primary health care
Secondary health care
Tertiary health care

Roles of EHR?
| dentification and recruitment
Participant consent and randomization
Baseline information collection
Intervention
Fidelity assessment
Primary outcome assessment
Secondary outcome assessment
Disease areas

Infectious (AIDS) and maternal and perinatal conditions

Noncommunicable diseases (eg, diabetes, hypertension, cancer, and mental illness)

Injury

10(33)
10(33)
10(33)

13 (43)
3(10)
12 (40)
2(7)

8(27)
3(10)
8(27)

12 (40)
0(0)

6 (20)
8(27)
2(7)
24(80)
13 (43)

15 (50)
12 (40)
3(10)

3EHR: electronic health record.

Interventions and Outcomesin Included Trials

The included clinica trials covered various types of
interventions, ranging from single behavioral interventions such
asinformative SMSsfor clinical appointments or vaccinations
and clinical therapies such as tranexamic acid treatment or
Salvianolate injection to complex multifaceted intervention
packages for service quality improvements or education
programs [28,31,36,45]. Corresponding to the diversity of
interventions, theincluded studies also focused on awiderange
of outcomes, including individual clinical outcomes such as
blood pressure and incidence of stroke, individual behavioral
outcomes such as medication use and retention in antiretroviral
care, and facility-level administration data such as the number
of hospital visits and vaccine administration rates [48,49].

Of the 8 steps of conducting clinical trials (Figure 2), we
identified 7 in which EHR was used in the 30 included studies,

https://medinform.jmir.org/2023/1/e47052

with the only exception for “participant consent and
randomizations.” The role of EHR in primary outcome
assessment (24/30, 80%) was the most commonly documented,
followed by the use of EHR to assess nonprimary outcomes
(13/30, 43%). For example, 1 study focused on the effects of
adherence club groups on the on-time antiretroviral drug pickup
among peoplewith HIV or AIDS, whose primary outcome was
“time to first late drug pickup,” and secondary outcome was
“the proportion of time that a patient has antiretrovira drug in
their possession over 12 months” and both of them were
ascertained using EHR data[43]. One study used EHR to obtain
safety outcomes as a honprimary outcome, which was the
adverse change in participants’ bioindicators after the
intervention [24]. We summarized that there were 3 main types
of information collected from the EHR: people’'s clinical
information (eg, systolic and diastolic blood pressure),
behavioral information (eg, medication use), and health facility
administration data (eg, frequency of hospital visits).
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Figure2. Therolesof electronic medical recordsin the different steps of conducting clinical trialsamong the included studies. NCD: noncommunicable

disease.
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Steps of conducting clinical trials

@ Infectious disease studies, good quality
O Infectious disease studies, fair quality
¢ Infectious disease studies, poor quality

Injury studies, good quality

Rolesof EHRsin Trial Steps

Table 3 demonstrates the roles of electronic medical recordsin
the different steps of conducting clinical trials among included
studies. A total of 12 trials used EHR to identify and recruit
study parti cipants based on automatically or manually extracted
data. These studies queried a series of data entries of clinical
information from the databases to identify their target
populations and retrieved the contact information to approach

https://medinform.jmir.org/2023/1/e47052

RenderX

@ NCD studies, good quality
O NCD studies, fair quality
<& NCD studies, poor quality

the potential patient participants. For example, Bachmann et a
[32] identified eligible participants with asthma or chronic
obstructive pulmonary disease using the International
Classification of Disease diagnostic codes in a consolidated
municipal EHR databasein Brazil. Lakkis et al [22] used EHR
to extract cell phone numbers of femal e participants who were
recommended to undergo a screening mammogram for breast
cancer.
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Table 3. Therolesof electronic medical recordsin the different steps of conducting clinical trials among included studies.

Roles of EHR? (number of
studies)

Descriptions

Implications

References

Participant identification and

Recruitment (n=12)

Baselineinformation collec-
tion (n=6)

Intervention (n=8)

Fiddlity (n=2)

Primary outcome assessment
(n=24)

People'sdemographic, clinical, and
contact information from the EHR
systemswas either automatically or
manually extracted to help re-
searchersidentify and then recruit
trial participants.

For peoplewho were enrolled, many
trials used EHR systems to collect
their baseline basic characteristics,
including demographical and socioe-
conomical information, which were
used as covariates in later analyses.

Many trials incorporated EHR sys-
temsin the intervention packages,
including three scenarios:. (1) elec-
tronic reminders or alertsto health
providers based on EHR data, (2)
clinical decision support systems
built in the EHR system, and (3)
monitoring of EHR data by health
providersto makeclinical decisions.

Sometrials used EHR systems to
assess the fidelity of trial conduct
according to predefined protocols,
such as providers adherence to
study protocols and patients' adher-
enceto lifestyle changes.

Most included trials used EHR sys-
temsto assess studies’ primary out-
comes, including clinical data (eg,
blood pressure), behavioral data(eg,
medication use), and service use
data (frequency of hospital visits).

Strength: EHR enabled researchers to
access participantsthat were otherwise
unfeasible to access.

Strength: EHR enabled researchers to
identify and include al eligible pa-
tients whose interaction with health
systems were electronically recorded,
which increased generalizability and
sample size at minimal cost.
Limitation: some eligible participants
may not be documented in the EHR
systems.

Limitation: artifacts, errors, and mis-
classficationsin EHR may causeinclu-
sion of ineligible participants or exclu-
sion of eligible ones.

Not mentioned.

Strength: EHR could integrate differ-
ent intervention components of com-
plex interventions.

Strength: the EHR-based data review
by health providers allowed real-time
monitoring of patients' health.
Limitation: lack of complete and high-
quality datain EHR systems would
prohibit relevant, timely, and accurate
clinical decision support.

Limitation: technical glitches such as
server breakdown compromised the
continuity of EHR-based interventions.

Not mentioned.

Strength: using EHR for data extrac-
tion istime saving compared with
conventional individual chart review.
Limitation: EHR's data quality could
be questionabl e, subject to inaccuracy,
misclassification, and incompl eteness.
Limitation: somerelevant information
was not availablein the EHR systems.
Limitation: lack of integration across
or linkage with different EHR systems
might cause missing information or
underdetection of events.

Limitation: EHR was not able to pro-
vide information for individuals who
moved out of the region in the middle
of thetrial.

Limitation: some data might be miss-
ing or omitted in the transformation
from handwritten medical recordsto
EHR.

[19,21,22,24-28,30,32,35,39]

[31,32,34,41,43,45]

[18,21,23,25,40,42,46]

[21,42]

[19,23-27,29-40,42-45,47,50]
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Roles of EHR? (number of ~ Descriptions Impl
studies)

ications References

Nonprimary outcomeassesss Many trials used EHR systemsto
ment (N=13) assess studies’ nonprimary out-
comes, including clinical, behav-
ioral, and service use data. In addi- «
tion, 1 study used EHR to assess
safety outcomes (eg, the occurrence
of adverse events).

Extended follow-up (n=2) A few trialsused EHR systemsto  «
follow-up with participants beyond
the study time frame to determine
the sustainability of effects.

Strength: using EHR for dataextrac-  [19,23,24,27,35,37-44]
tion istime saving compared with

conventional individual chart review.

Limitation: somerelevant information

was not availablein the EHR systems,

which might omit potential con-

founders.

Not mentioned. [23,37]

3EHR: electronic health record.

Wefound 8 studiesthat incorporated EHR into their intervention
packages. There were 3 types of interventions that used EHR.
Firgt, 3 studiesused electronic remindersor aertsto health care
providers based on EHR data [21,42,46]. For example,
Puttkammer et al [42] used the EHR systemsto aert physicians
of patients at elevated risk of treatment failure through
automated calculations of patients’ risk score based on their
past EHR data. Second, 4 studiesincorporated clinical decision
support systems into the EHR systems [18,23,27,40]. Third, 2
studies involved manual monitoring and review of EHR data
by health care providers [25,40]. For example, Ali et a [40]
included both an EHR-based clinical decision support system
and manual monitoring of EHR data. Their EHR-based clinical
decision support system integrated patient characteristics,
depressive symptom scores, and laboratory data to provide
evidence-based guidelines to physicians based on treatment
guidelines, and the study team also manually monitored and
reviewed the EHR data and developed consensus
recommendations for patients with severe symptoms.

A total of 6 studies used EHR to collect baseline information,
which mainly included individua demographic, socioeconomic,
and clinical information to determine the basic characteristics
of the participants. For example, 1 study collected baseline
information through EHRs, including age, sex, pregnancy status,
HIV clinic enrollment date, and antiretroviral treatment initiation
date among people with HIV or AIDS in Zambia[45].

Only 2 studies used EHR for fidelity assessment of the trial.
Puttkammer et a [42] used EHR to determine health workers
“engagement” with the EHR-based computerized aert, which
was defined as the frequency of the health workers' clicking on
the aert to bring up the “pop up” window. Figar et al [21] used
EHR to determine adherence to lifestyle changes in older
patients with hypertension [21]. Both studies were feasibility
studies and both lacked randomization.

Two studies used EHR to follow-up with participants beyond
the study timeframeto determine the sustainability of the effects
[23,37]. Phillips et a [37] used EHR to follow-up with female
participants who attended a past trial on HIV or AIDS to
determine the continued effects of the interventions on female
participants’ retention in HIV care and viral suppression. Were
et al [23] queried the EHR data 3 months after the study closure

https://medinform.jmir.org/2023/1/e47052

to capture the study’s sustai ned effects on the quality of pediatric
HIV carein aresource-limited setting in Kenya.

Some studies discussed the strengths and limitations of using
EHR in conducting clinical trials. For participant identification
and recruitment, Semeere et al [20] reported that EHR enabled
researchersto access participantswho were otherwise unfeasible
to access, and Bachmann et al [32] mentioned that EHR enabled
researchers to identify and include all eligible patients whose
interactions with health systems were electronically recorded,
which increased generalizability and sample size at minimal
cost. However, afew studies shared concerns about theinclusion
of ineligible participants or exclusion of eligible participants
owing to artifacts, errors, and misclassifications in EHR
[22,32,35].

For studiesthat incorporated EHR in their interventions, Ali et
al [40] mentioned the advantage of EHR to “integrate different
intervention components of complex interventions,” and Zhang
et a [25] mentioned that EHR systems enabled real-time
monitoring and reviewing of patients' health data by health
providers. For limitations, by contrast, Were et al [23] argued
that the lack of complete and high-quality datain EHR systems
prohibitsrelevant, timely, and accurate clinical decision support.
The server breakdown in the study by Puttkammer et a [42]
represented ageneral concern about potential technical glitches
of EHR, which could lead to risks of discontinuity of
interventions.

For studiesthat used EHR for outcome assessment, an important
strength was that it was more time saving than conventional
outcome research approaches, for which databases and patient
registries are often fragmented and limited in the number of
patients[26]. However, numerous limitations were documented,
particularly concerning dataquality. Theselimitationsincluded
inaccuracies, misclassifications, and incompleteness, which
were evident in various aspects, including the use of EHR for
participant identification, recruitment, baseline information
collection, and interventions [35,37,45]. Data quality issues
were emphasized in the study by Oluoch [26], which observed
a loss of information in the transformation process from
handwritten recordsto EHR. However, 1 study argued that these
intrinsic flaws in EHR data represented the situation of
real-world care delivery and was thus valuable in its own way
[45]. Four studies mentioned that not all relevant information

JMIR Med Inform 2023 | vol. 11 | e47052 | p.200
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

was availablein EHR systems, which could prohibit suboptimal
data analysis such as underadjustment for study confounders
[36,37,42,45]. Finally, some studies mentioned that the lack of
integrated EHR systems across different health facilities might
cause missing information or underdetected events [37,44,46].

Roles of EHRsin Trial Designs

We further found that the roles of EHR in conducting clinical
trialsdiffered by different trial designs (Figure 3). Of the 4 types
of trials, RCT covered the most steps of conducting trials that

Yeetd

used EHR and was the only type that used EHR for “extended
follow-up” [23,37]. Other than that, RCTS, cluster RCTs, and
quasi-experimental studies covered the same 5 steps of
conducting trials using EHR: participant identification and
recruitment, baseline information collection, intervention,
primary and nonprimary outcome assessment. Notably, a
controlled trial without randomization [21] and a feasibility
study [42] were the only 2 studies that used EHR to assess the
fidelity of conducting their interventions.

Figure 3. Theroles of electronic health recordsin conducting clinical trials by different trial designs.

Total=

Randomized
controlled trial
(n=13)

Cluster randomized
controlled trial
(n=3)

Feasibility or pilot study
(n=2)

Quality Assessment

The quality assessment results are presented in Multimedia
Appendices 2 and 3. Lessthan half of theincluded studieswere
found to be of good quality (14/30, 47%), 40% (12/30) of fair
quality, and 13% (4/30) of poor quality. For the 20 studies that
had control groups (ie, al the RCTSs, cluster RCTs, non-RCTSs,
some quasi-experimental studies, and 1 of the feasibility pilot
studies), the most common factors that compromised the quality
of the studies was the lack of prespecification of outcomes and
subgroups (9/30, 30%), followed by the lack of similar baseline
characteristics between groups (8/30, 27%), lack of blindingin
treatment assignment (7/30, 23%) and outcome assessment
(7/30, 23%), and nonreport of calculationsfor sufficient sample
size (7/30, 23%). Of the 10 studies that did not have control
groups, 7 (70%) did not have interrupted time series design, 6
(60%) did not report sufficient sample size, and 5 (50%) had
suboptimal representativeness of the participants to the target
population.

Discussion

Summary of Principal Findings

We synthesized our findings on the use of EHR for conducting
clinical trialsin LMICsinto aframework that depictsthe typical
life cycle of aclinical trial. The EHRs were primarily used for

https://medinform.jmir.org/2023/1/e47052
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eligible participant identification or recruitment, trial outcome
assessment, and intervention implementation in LMICs. The
limited use of EHR was documented for participant consent,
randomization, and fidelity assessment. An encouraging
observation was the diversity of disease types covered in the
selected studies, highlighting that EHRs have a wide appeal
across various medical domains. Notably, a wide range of
outcomes were assessed using EHRs in these trials, including
clinical outcomes [51,52], behavioral outcomes [53,54], and
health service outcomes [55].

Characteristics of EHR-Supported Trialsin LMICs

The identified EHR-supported trials in LMICs were
heterogeneous in terms of their targeted populations and
outcomes. LMICsinclude, by nature, adiverse group of regions
with varying population characteristics including health
conditions and socioeconomic status. In general, many LMICs
reportedly face challenges in terms of technological
infrastructure [56], data quality, and interoperability of EHR
systems, which can impact the feasibility and reliability of
EHR-based trials [57]. Moreover, regulatory frameworks and
guidelines for EHR-supported clinical trials have been poorly
defined in some LMICs, especially for data use and security in
these settings [58].

In our review, athough there was a clear use of EHR in
conducting clinical trials in LMICs, few of them focused on
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medication. One possible explanation is that the focus of the
medication-related trialsismore explanatory (ie, understanding
whether an intervention or medication is efficaciousin an ideal
setting) rather than pragmatic (ie, determining the effectiveness
of interventions in real-world settings). As EHRs are usually
routine health information systemsrather than tool s specialized
for clinical trials, they are naturally more suitable for studies
focusing on real-world effectiveness and implementation of an
intervention but not necessarily for those focusing on
intervention efficacy under strictly controlled conditions. In
addition, thereported data quality issues and lack of population
coverage in EHRs may aso have limited their usability in
efficacious studies. However, EHR can still be used to inform
planning, participant recruitment, baseline statistics, and
outcome extraction in medication-related trial s[43].. Given that
current medication devel opment studiesare primarily conducted
in HICs [59], future uses of EHR may have the potential to
enable more medication-related trial sto be conducted in LMICs,
thusincreasing the representation of LMICsin study populations
and geographic settings at arelatively low cost [60,61].

Challengesof Usng EHRsin Clinical TrialsinLMICs

Thereare 2 potential challengesto using EHRsin clinical trials.
The first relates to possible barriers, including difficulties in
accessing relevant data, linking different data sources, high
financial costs, and limited familiarity with such systems [62].
The second pertains to the underreporting or exclusion of EHR
information. For example, researchers may neglect theinclusion
of EHR data owing to time constraints or competing priorities
[63] or selectively report the EHR data that aligns with their
hypotheses or desired outcomes, potentially introducing bias
into the results [64]. Integrating EHR datainto a clinical trial
can be technicaly complex and time consuming [65].
Researchers may lack the resources or technical expertise to
effectively integrate EHR data with the clinical trials’ data set,
leading to the decision to exclude or underreport it [12,66].

Another prominent observation wasthat amost all theincluded
articles expressed challengeswith using EHR, with some being
explicit experiences and lessons. Common challenges were
typicaly related to data availability, data quality, data
interoperability, and missing data. For dataavailability, it meant
that some relevant components to define a clinical entity were
absent [37]. For data quality, the most common concern was
data missingness, such as missing laboratory valuesin an EHR
system; data artifacts were also amain concern, especially when
the data were manually entered into the EHR [24]. Ultimately,
the specifics of these challenges can be potentially beneficial
for devel oping guidance on optimal EHR uses[67]. Specific to
the LMICs, atailed framework for using EHRsin clinical trias
may be useful to assess the fitness of EHR for the trials [68];
using theinsightsfrom theseidentified challenges may be useful
in ensuring the EHR selected best fits the desired need [69,70].

None of the selected studies used EHRs to collect participants
consent information and conduct randomi zation, which has been
successfully performed in HICs. For example, the Join Us
initiativein Australiausesthe linkage of the routinely collected
dataincluding EHRsto recruit residents and collect their consent
to enrall in potential clinical trials [71]. To do thisin LMICs,
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it may be necessary to establish an updated regulatory
framework for research ethics, such as the consent process for
using and sharing routinely collected data and for intervention
implementation. Nevertheless, obtaining informed consent for
automated trials conducted using EHRs may be difficult [5].
For example, there is still debate on whether informed consent
needs to be acquired when only variations of usual care are
explored [72]. There are also disconnections between clinical
trials that use EHRs and regulation guidelines created for
traditional RCTswithout theinvolvement of EHRs (eg, thelack
of standardized requirements of institutional review boards for
the use of EHRs in trids). With more examples of
EHR-supported tridls emerging, further research and
constructive dialogues among all stakeholders are needed to
alter and align the ethical horms and regulatory processes to
enable more successful and accountable uses of EHRsin clinical
trialsin LMICs.

Notably, the quality assessment of the included trialsindicated
that asubstantial portion of the studies did not meet the criteria
for good quality. The lack of prespecification of outcomes and
subgroups, for example, emerged as anotabl e issue, which may
lead to outcome reporting bias and ambiguity in result
interpretation. Other major issues included the absence of
comparable baseline characteristics between the treatment and
control groups, inadequate blinding, lack of considerations for
sample size sufficiency, and lack of control groups. On the one
hand, these commonly identified shortcomings revealed the
exploratory nature of many of the included EHR-supported
trials in LMICs, which needs to be addressed in future efforts
to enhance rigor and credibility. On the other hand, they also
implied that quasi-experimental designs, such as interrupted
time series and self-controlled studies, might be the “comfort
zone” for using EHRs to support future clinical trials.

Limitations

This scoping review hassomelimitations. First, we only focused
on EHRsin clinical trialsin the context of LMICs, rather than
comparing the results between HICs and LMICs. Different
LMICsfollow different dataschemasand regulatory structures,
which may lead to challengeswhen considering generdizability.
Second, we required the mention or self-tagging of EHR within
the articles. This requirement likely led to a swath of missed
potential articles. However, we included a wide range of
synonyms of EHR in the search syntax, which should have
helped address this limitation. Third, we did not test any
hypothesis regarding the effect of using EHR in clinical trials,
and we did not we assess the impact of using EHRs on health
outcomes. Although we extracted a few characteristics that
could point to the methodological quality of the studies,
including the evaluation of risk of bias, we did not evaluate the
intervention effects reported in the trials but merely offered a
description of EHRS' rolesin the trial conduct.

Conclusions

We mapped therolesof EHRsin clinical trialsfrom the selected
studies to the life cycle of clinical trials and identified
opportunities to enhance the use of EHRs for clinical trialsin
LMICs. Specifically, the most commonly documented use was
the incorporation of EHRs into clinical trials for outcome
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assessment, whereas the use of EHR in collecting participant
consent and conducting randomization was scarce. Efforts
should be made to improve the curation of EHR datato improve
data quality, explore the integration of automated processesin
EHR to obtain people’s consent for data use in research, and
standardize regulatory frameworksfor using EHR for research.
Future research and practices are recommended to navigate the
strengths of EHRSs, such as time sensitivity and low costs, and
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mitigate the current challenges, such as suboptimal data quality
and limited population coverage, to ensure better use of EHR
infutureclinical trialsin LMICs. With the ongoing digitization
of heath information systems globally, researchers,
practitioners, and policy makers are recommended to maintain
continued evaluations of the availability and quality of EHRs
to better understand their optimal use and unlock the full
potential of EHRsfor health care services and research purposes.
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Abstract

Background: Information overflow, a common problem in the present clinical environment, can be mitigated by summarizing
clinical data. Although there are several solutionsfor clinical summarization, thereisalack of acomplete overview of theresearch
relevant to thisfield.

Objective: This study aimsto identify state-of-the-art solutions for clinical summarization, to analyze their capahilities, and to
identify their properties.

Methods: A scoping review of articles published between 2005 and 2022 was conducted. With a clinical focus, PubMed and
Web of Science were queried to find an initial set of reports, later extended by articles found through a chain of citations. The
included reports were analyzed to answer the questions of where, what, and how medical information is summarized; whether
summarization conserves temporality, uncertainty, and medical pertinence; and how the propositions are evaluated and deployed.
To answer how information is summarized, methods were compared through anew framework “ collect—synthesi ze—communicate”
referring to information gathering from data, its synthesis, and communication to the end user.

Results: Overall, 128 articleswere included, representing various medical fields. Exclusively structured data were used asinput
in 46.1% (59/128) of papers, text in 41.4% (53/128) of articles, and both in 10.2% (13/128) of papers. Using the proposed
framework, 42.2% (54/128) of the records contributed to information collection, 27.3% (35/128) contributed to information
synthesis, and 46.1% (59/128) presented solutions for summary communication. Numerous summarization approaches have been
presented, including extractive (n=13) and abstractive summarization (n=19); topic modeling (n=5); summary specification
(n=11); concept and relation extraction (n=30); visual design considerations (n=59); and complete pipelines (n=7) using information
extraction, synthesis, and communication. Graphical displays (n=53), short texts (n=41), static reports (n=7), and problem-oriented
views (n=7) were the most common typesin terms of summary communication. Although temporality and uncertainty information
were usually not conserved in most studies (74/128, 57.8% and 113/128, 88.3%, respectively), some studies presented solutions
to treat this information. Overall, 115 (89.8%) articles showed results of an evaluation, and methods included evaluations with
human participants (median 15, |QR 24 participants): measurementsin experiments with human participants (n=31), real situations
(n=8), and usability studies (n=28). Methods without human involvement included intrinsic evaluation (n=24), performance on
aproxy (n=10), or domain-specific tasks (n=11). Overall, 11 (8.6%) reports described a system deployed in clinical settings.
Conclusions: The scientific literature contains many propositions for summarizing patient information but reports very few
comparisons of these proposals. This work proposes to compare these algorithms through how they conserve essential aspects
of clinical information and through the *“collect—synthesize—communicate” framework. We found that current propositions
usually address these 3 steps only partially. Moreover, they conserve and use temporality, uncertainty, and pertinent medical
aspects to varying extents, and solutions are often preliminary.

(IMIR Med Inform 2023;11:e44639) doi:10.2196/44639
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Introduction

Background

Summarization is an essential element of human cognition and
consists of taking a set of information and retaining the pertinent
elements to take action [1]. Feblowitz et a [2] defined
information summarization in the health care context as “the
act of collecting, ditilling, and synthesizing patient information
for the purpose of facilitating any of a wide range of clinical
tasks” This definition translates as simplifying the presented
information so that health care professionals (HCPs) can act
more smoothly and efficiently in different clinical situations.

Automatic summarization of information in electronic health
records (EHRS) can serve asa sol ution for information overload
[3], a widespread problem in health care when the presented
data are too much to be efficiently processed in acare situation.
Information overload can have detrimental effects on patient
care in the form of professiona stress, fatigue, delays, and
medical errors[4]. Although the phenomenon is not novel, itis
increasingly present owing to an aging population with an
exponentially increasing presence of chronic diseases, increased
administrative burden, overabundance, and suboptimal storage
of medical data[5,6]. Furthermore, current EHR systems present
information in a fragmented manner [7] with widespread
repetition, copy-pasting [8], and details not relevant to clinical
care[9].

Despite the need for automatic patient information
summarization, there is no widely accepted theory or
methodology. This report aimed to synthesi ze the contributions
of patient informati on summarization scattered in the literature.
Scoping review is the chosen form with the aim of mapping
ideas, mapping conceptsrelated to the question, and identifying
knowledge gaps.

The review is not unprecedented: in their narrative review,
Pivovarov and Elhadad [10] already summarized the most
important contributions to clinical summarization in 2015.
Moreover, there have been several published studies surveying
the literature in related fields, including the summarization of
biomedical literature[11,12], the summarization from medical
documents [13], neural natural language processing (NLP) in
EHRs [14], named entity recognition, a type of information
extraction and NLP technique, free-text clinical notes [15],
automatic clinical documentation [16], the visuaization of
medical information in the clinical context [17-20], the
visualization of intensive care unit (ICU) data [21], and the
visualization of trendsin medical data[22]. The latter reviews,
although exhaustive in their specific scope, do not permit the
identification of state-of-the-art summarization methods for
HCPs. For example, it is difficult to state the current state of
research for the management of uncertainty and timein clinical
summarization. Moreover, they did not provide any informed
guidelines for clinical summarization.

https://medinform.jmir.org/2023/1/e44639

Objective

This review, building on a broader scope of articles than the
combination of all the previous studies, systematically evaluates
where, what, and how medical information is summarized;
whether summarization conserves temporality, uncertainty, and
medical pertinence; and how the propositions are evaluated and
deployed.

On the basis of cognitive science literature, this review also
proposes a novel “collect—synthesize—communicate”
framework to compare studies on how they contributeto clinical
summarization.

Methods

Overview

The methodology was designed to process a broad scope of
articles; hence, different search strategies were combined to
diversify the sources. Two reviewers agreed on the selection
method: 2 databases with a clinical focus were searched with
similar queries and the retrieved articles were filtered by one
of thereviewers according to their titlesand abstracts. The same
reviewer read the remaining reportsin the full text and selected
them according to theinclusion and exclusion criteria. The same
filtering was then carried out on citations within these articles
and the citations of these articles. The reporting was done using
the PRISMA-SCR (Preferred Reporting Items for Systematic
Reviews and Meta-Anayses extension for Scoping Reviews)
[23], and a checklist is provided in Multimedia Appendix 1.

The 2 databases searched in thisreview were the Web of Science
Core Collection and PubMed as they contain a broad scope of
articles in the medical field and are less inclusive of other
articles in computer science, not related to the medical or
scientific domain.

The search query for Web of Science was designed as a
combination of 2 parts: capturing the summarization process
and capturing the health care content. An iterative process was
used to define the exact search term, where the gain of adding
a keyword was examined by determining whether the first 5%
(sorted by relevance defined by Web of Science) of the results
from a query containing the new word but excluding the
previous words shows any relevant article. This led to the
following query: “ALL=(("ehr OR ‘emr’ OR ‘health’ OR
‘patient’” OR ‘medical’ OR ‘hospital’ OR *‘healthcare’) AND
(‘summarization’ OR ‘summarisation’ OR ‘summarizing’))”
searching in the title, abstract, and metadata of the articlesin
the database, including the “keyword plus’ field containing
terms frequently appearing in the body of an article but not
mentioned in the title or abstract.

The query in PubMed was “(‘her’ OR 'emr' OR ‘health’ OR
‘patient’ OR ‘medical’ OR ‘hospital’ OR ‘hedlth care OR
‘medical record' [(MeSH Terms])) AND (‘ summarization’ OR
‘summarisation’ OR ‘summarizing’).” This query was almost
identical to the search made in Web of Science except that
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PubMed does not have a “keyword plus’ field like Web of
Science to search in. Instead, preindexed articles with the
Medical Subject Headingsterm “medical records’ wereincluded
in the search.

All results of the queries were imported into the Rayyan app
[24], helping to organize the citationsfor areview article. After
duplicates were removed, the abstracts and titles were scanned
inthisapplication tofilter records that were obvioudly irrelevant
to patient information summarization. The app enables
highlighting specific wordsin the abstract with 2 distinct colors,
speeding up the review process. After this filtering step, the
remaining articles were read in the full text for inclusion using
the inclusion and exclusion criteria detailed in the following
section.

After identifying the relevant works, thelist of referencesin the
selected articlesand thelist of citing papersretrieved by Google
Scholar were manually reviewed for titles related to the topic.
These potentially relevant titles were manually added to the
citation manager and further filtered by reading their abstract
and eventually reading them in the full text (aswith the original
results). If these articles contained further (previously unseen)
relevant references or citations toward them, they were also
processed.

Inclusion and Exclusion Criteria

According to the inclusion criteria, all records mentioning the
summarization of clinical or health data as a general goal in
their abstract, proposing solutions for information overflow, or
claiming to make steps for these general goals were included.

All records were excluded where the corresponding article was
not availableinthefull text for the authors (ie, at the University
of Geneva campus), as the analysis could not be conducted on
these records.

Asseverd articlesdo not mention the source of the datain their
abstracts, an exclusion criterion excludes articles about
summarizing non-EHR data (eg, summarizing research articles;
not EHR). Similarly, articles developing summarization for

https://medinform.jmir.org/2023/1/e44639
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users other than HCPs (not for HCP) or for contexts other than
clinical applications (not clinical) were excluded.

Asmany different methods can be labeled as“ summarization,”
only records presenting atype of overview of apatient’s current
or past status are aimed to be included, therefore articles
proposing alerts (eg, risk scores and cues) or similar simple
parameters to summarize the state of adisease or patient (alert)
and articles proposing other remediesfor information overflow
than automatic summarization for information overflow (not
automatic) were excluded.

As previous reviews analyzed articles using different aspects,
a broad timeframe was aimed at the review. However, as early
EHR systems were very different from current systems, and
hence the concept of summarizationislargely different inthese
systems, articles before 2005 were excluded (< 2005). The cutoff
year issomewhat of an arbitrary (but round) threshold, although
contributions before this year are sporadic.

Finally, articles presenting summarization solutions only for
nontextual and nonstructured data (eg, video or signal
summarization; Other data) and review papers (Review) were
also excluded.

Articles found relevant to the review were evaluated by one of
thereviewersfor several criteriachosen to answer thefollowing
guestions:

1 Whereis summarization performed?

2. What is summarized? How?

3. How crucia aspects of clinical information are conserved
and used?

4. How are the algorithms evaluated?

Textbox 1 presents the detailed criteria. Some of these criteria
were defined a priori, whereas others were shaped during the
analysis process. For 1 aspect, the input data type for
summarization, the analysiswas carried out on abroader scope,
and reports excluded by the “other data’ criterion were aso
analyzed for thisinformation.
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Textbox 1. Criteriaaccording to which articles are evaluated in the analysis part of this review. For some of the criteria, categories are defined a priori.
For others, they are shaped during the analysis process (the ones defined a posteriori are marked with an asterisk).

General aspects
o  Typeof the study

«  Prototype: articles describing a summarization system or algorithm that can be evaluated. The evaluation might be present or absent from
the article.

«  Evaluation study: articles eval uating summarization systems, algorithms, or current summarization processesin health care without presenting
anew automatic summarization sol ution.

«  Recommendations: articles with theoretical contributions not being implemented.

Where are summaries needed?

«  Field of application*: themedical or clinical domain where the summarizationisapplied. The categories are discovered during thereview process.

What should be summarized?
«  Source of information:

«  Single encounter

«  Multiple encounters

« Thisinformation cannot be inferred from the text.

« Input for the summarization:
«  Structura data: a combination of numerical and categorica data

«  Textual data: free-text patient information present in electronic health record systems

How to summarize?

«  The summarization method*: the categories of summarization methods are shaped during the review process.

«  Presentation*: how the summary is presented to the end user. The types of presentations are shaped during the review process.
«  View on the summarization problem:

«  Thetop-down group represents records where summarization consists of eliminating “disturbances’ from all available information, that is,
hiding information deemed to be unnecessary.

«  Bottom-up methods see summarization as a process of finding the most salient information available and building a summary from it.

Aspectsto be conserved during summarization

o Temporality*: if and how temporal information is conserved and used during summarization. The categories are shaped by the discoveriesin the
scoping review.

o Uncertainty*: if and how the uncertainty of information is represented during summarization. The categories are shaped by the discoveriesin
the scoping review.

«  Medical knowledge*: if any medical knowledge isincluded in the design of the summarization system or during summarization. The categories
are shaped during the review process.

What isa good summary? Evaluation and deployment

.  Evauation*: the method of evaluation. The types are shaped according to the discoveries from the review process.

o Deployment: if the summarization system was deployed in real clinical settings

of information from raw data, synthesis describes the selection

Collect—Synthesize—Communicate Framewor k

During the analysis, we devel oped anew framework to compare
methods of how they summarizeclinical information. Following
the definition presented in theintroduction [2], the moddl divides
the summarization processinto an ideally sequential process of
information collection, information synthesis, and summary
communication. Information collection refers to the extraction

https://medinform.jmir.org/2023/1/e44639

and eventua transformation of the retrieved information, and
communication refers to the representation of the synthesized
information in a human-digestible format.

This view was consistent with that of severa sources of
cognitive psychology. For example, Johnson [25] describes
summari zation as a sequence of prerequisitesfor summarization
(including comprehending individual propositions of a story,
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establishing connections, identifying the consistent structure of
the story, and remembering the information), information
selection, and formulating a concise summary. This is aso
similar to the view presented by Hidi and Anderson [26], who
discussed selection, condensation, and transformation.

Nevertheless, the few theoretical studies on clinica
summarization have slightly different views on the process.
Feblowitz et a [2] described clinical summarization asaprocess

Keszthelyi et a

of aggregation, organization, reduction, transformation,
interpretation, and synthesis. Jones [27,28] describes textual
summarization as a process of interpretation, transformation,
and text generation. Although these theories mention seemingly
different stepsfor summary creation, they can be mapped to the
proposed simpler and more general 3-step framework. Table 1
presents the mapping to the present framework of these theories
and some of the most commonly used summarization methods.

Table 1. Summary of how existing theoretical frameworks and most abundant summarization methods relate to the collect—synthesize—communicate

framework.

Theory or method Collection

Synthesis Communication

Feblowitz et al [2] Aggregation, organization,  Reduction, transformation,  Organization and synthesis
and interpretation and synthesis

Jones [27,28] Interpretation Transformation Text generation

Extractive summarization (eg, Liang et a [29]) N/A2 (not covered) Sentence selection N/A (not covered)

Abstractive summarization (eg, Gundogdu et a [30]) Encoding Attention mechanism N/A (not covered)

Topic modeling (eg, Botsis et a [5])

Topic extraction

N/A (not covered) N/A (not covered)

8N/A: not applicable.

Results

Overview

Asshown in Multimedia Appendix 2 [31], atotal of 7925 titles
were retrieved from PubMed and 3641 articles were retrieved
from Web of Science. After removing duplicates, 9166 records
were screened by their title and abstract for inclusion criteria
and 380 records were chosen for full-text reading. From these,
1 could not be accessed by the authors and 328 were excluded
based on the exclusion criteria.

From the 52 articlesincluded in the analysis, 612 records were
identified as potentially relevant by their title and 175 titles
were chosen to be read in the full text after screening the
abstracts. From these 175 titles, 2 could not be accessed, 97
records were excluded according to the exclusion criteria, and
76 titles were included in the analysis.

Among the 128 articles remaining in the analysis, 102 titles
were categorized as a prototype, 20 were categorized as
evaluation studies, and 6 were categorized as
“recommendations.”

Fields of Application

This review identified diverse fields of application for which
summarization methods have been developed. A grouping of
thesefieldsis asfollows:

1 ICU (27/128, 21.1%), where recent events and vital
parameters are summarized

2. Surgery (1/128, 0.8%) and related anesthesiology (5/128,
3.9%), requiring al the information related to surgery to
be summarized

3. Diagnostics, showing findings from one or severa
diagnostic sessions and including radiology (19/128,
14.8%), out of which 5.5% (7/128) were presented as a
solution in the MEDIQA 2021 summarization task [32],
ultrasound (2/128, 1.6%), prostatectomy (1/128, 0.8%), and

https://medinform.jmir.org/2023/1/e44639

laboratory data management in a clinical context (1/128,
0.8%)

4. Hospital care (9/128, 7%), where information related to a
hospital stay requires efficient summarization

5. Chronic disease monitoring including diabetes (4/128,
3.1%), HIV (1/128, 0.8%), chronic obstructive pulmonary
disease care (1/128, 0.8%), cardiology (2/128, 1.6%),
nephrology (1/128, 0.8%), and monitoring of multiple
chronic diseases (4/128, 3.1%), where salient events and
information during a complex and long-lasting disease are
required

6. Oncology (5/128, 3.9%), where the main events and
elements of complex treatment are summarized

7. Drug prescription (3/128, 2.3%), where pharmaceutical
history is summarized

8. Other medical environmentsincluded psychotherapy (3/128,
2.3%), opioid misuse treatment (1/128, 0.8%), general
practice (2/128, 1.6%), emergency room (2/128, 1.6%),
older adult care (2/128, 1.6%), and maternal care (1/128,
0.8%).

In addition, 25% (32/128) of articles did not specify their field
of application or were meant to be usable in multiple types of
medical environments and domains.

Input for Summarization

Regarding the source of information, 62.5% (80/128) of reports
talk about systems summarizing single patient encounters, 27.3%
(35/128) of reports explicitly talk about summarizing multiple
encounters, 6.3% (8/128) of reportsimplicitly describe multiple
encounter summarization, and 3.9% (5/128) of reports did not
specify the cardinality of encounters.

Among the 128 articles in the review, 3 (2.3%) reports do not
specify theinput type for the summary, 59 (46.1%) worked only
with structured data, 53 (41.4%) worked only with textual data,
and 13 (10.2%) worked with both types. The trends in the
number of articleswith different input typesare shownin Figure
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1. Although more records use only structured data as the input
type, the number of articles using textual information has shown
arapidly increasing trend in recent years. Textual information

Keszthelyi et al

is usualy assumed to be in English [33,34] and presents
solutions for Finish and German languages [ 35,36].

Figure 1. The number of records by year of publication and the input type used in the summarization system or method presented or evaluated. Each
column corresponds to a year, the different input types are aggregated into this column, their proportion for the given year is visible on the figure. ICU:

intensive care unit.
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A rapid analysis of the excluded articles using other types of
clinical dataidentified the following:

1 Oveall, 37 video and image sequence visualization tools
in the clinical domain, mainly keyframe extraction [37,38]
or motif discovery [39] methods in various fields of
medicine, including older adult care, endoscopy [40],
hysteroscopy [40,41], |aparoscopy [42], magnetic resonance
image [39,43], and ultrasound [44]

2. Overdl, 20 sensory data simplification techniques using
time-seriesanalysis, motif discovery [45], and classification
[46] methodsfor el ectrocardiogram or other types of signals

3. Overdl, 117 articles about summarizing genomic data[47]

How Data Can Be Summarized? Summarization
M ethods

Common summarization methods used in the analyzed studies
include (areport might use several of these) the following:

1 Visual design (59/128, 46.1%) organizes the information
visually to help HCPs understand it within a short
timeframe.

2. Concept and relation extraction (30/128, 23.4%): extracts
semantic information from textual information

3. Abstractive summarization (19/128, 14.8%) [30,48-52]
shortens texts by reformulating them using different
wording to describe the content of a document [10].

4. Extractive summarization (13/128, 10.2%) [29,53] shortens
texts by omitting apart of it, that is, composing a short text
(asummary) from extracts of the original document.

5 Summary specification (11/128, 8.6%) describesthe content
to be presented for a summary.

6. Pipeline extracting information and synthesizing and
communicating it with natural language generation tools
(7/128, 5.5%)

7. Topic modeling (5/128, 3.9%) [54-57] -categorizes
documents according to their content and labels them with
alist of representative words [58]

8. Time-seriesanalysis(6/128, 4.7%) identifies characteristic
properties in a temporal data series, including motif

https://medinform.jmir.org/2023/1/e44639
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discovery, identifying meaningful patternsin temporal data
(used in the study by Jane et al [59]), trend detection [60],
or change detection [61].

9. Dimensionality reduction (3/128, 2.3%) treats patient data
as along vector encoding all patient information (ie, arow
in atablewith many columns), and reducesthisinformation
to a shorter vector (ie, arow with a much smaller number
of columns) without losing too much information.

Some of these methods are intrinsic to the input data type and
work only with a particular data type. For example, time-series
analysis (including motif discovery), risk scores, and
dimensionality reduction are intrinsic methods for structured
data. Although a large number of articles using these
methodologies are not included in this review as they are used
by non-HCPs (eg, machine learning agorithms), some of the
titles propose this approach as the first step to clinica
summarization [62-64].

The most common intrinsic methods for textual data are
extraction, abstractive summarization, and topic modeling.

Some of these summarization methods can apply machine
learning techniques. An overview of the applied machine
learning methods is presented in Table 2. The table lists all
records obtained using machine learning and categorizes the
records according to the summarization method and the type of
machine learning method they use. Machine learning methods
can be categorized into traditional machine learning methods,
deep neural networks, and transformers. Traditiona methods
include support vector machines, random forests, and conditional
random field methods; deep neural networksinclude deep neural
networks, recurrent neural networks, and convolutional neural
networks; transformers contain BART [65], BERT [66],
Pegasus-based [67] methods, and pointer-generator models. In
addition, Reunamo et al [34] used an interpretable machine
learning technique (Loca Interpretable Model-Agnostic
Explanations, LIME [68]). N/A indicatesthat amachinelearning
method is not used for a given type of summarization method.
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Table 2. Summary of records applying machine learning methods for clinical summarization®,

Traditional techniques Deep neural networks Transformers
Extractivesum- «  yMP+CREC ¢ cNNG BERT
marization . Liangetal [29], 2019 o Liangetal [29], 2019 o Chenetal [53], 2019
. Liangetal [9], 2021 .« Liangetal [9], 2021 « Kanwal and Rizzo [72], 2022
e  Subramanian et a [69], 2021 «  Mclnerney et a [73], 2020
. « Lianget a [36], 2022
* RNN «  Shah and Mohammed [56], 2020
o  Alsentzer and Kim[70], 2018
. Liuetd [71],2018 - Other
. Liangeta [9], 2021
Abstractive . N/AY . RNN . BERT
summarization «  Gundogdu et a [30], 2021 . Caietal [48], 2021
e Huetal [74,75], 2021 « Changeta [76], 2021
« Mahaaneta [77], 2021
«  Sotudeh et a [50], 2020
*  BART"
o Daeta [78], 2021
« Heetd [79], 2021
«  Kondadadi et a [80], 2021
. Shingeta [81], 2021
o Xuetd [82], 2021
o  Pegasus
. Daeta [78], 2021
« Heetd [79], 2021
«  Kondadadi et a [80], 2021
o Zhuetal [89], 2021
. Xuetal [82], 2021
«  Pointer generator
« MacAvaney et al [49], 2019
« Zhangetal [51], 2018
o Zhangetal [83], 2019
«  Own architecture
« Delbrouck et a [84], 2021
*  GPT-2
« Xueta [85], 2019
Conceptandre- «  N/A RNN: « BART:

lation extraction

« Reunamo et a [34], 2022

. Tangeta [86], 2022

Pipeline « Random forest: N/A « N/A
« Leeand Uppal [87], 2020
Topic modeling «  Alternating decision tree: « N/A « N/A

. Devarakondaet a [88], 2017

3\ achine learning methods are categorized into traditional machine learning methods, deep neural networks, and transformers.
bsvm: support vector machine.

°CRF: conditional random field.

dCNIN: convolutional neural network.

®RNN: recurrent neural network.

fBERT: Bidirectional Encoder Representation from Transformers.

IN/A: not applicable.

PBART: Bidirectional Autoregressive Transformer.

IGPT-2: Generative Pre-trained Transformer 2.
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Summarization methods can also be categorized based on their
outputs. The review identified several ways in which the
summarized information is presented to the end user:

« A graphica display (53/128, 41.4%) is a specific way
(interactive or not) to present information on the computer
screen.

« A short textual summary (41/128, 32%) describes
information in an ordinary language (eg, English).

« A preset static report: including its content designed to
include specific medical information (6/128, 4.7%) or
chosen statistical distributions representative of the patient
(1/128, 0.8%)

«  Problem-oriented view: aview grouping findings according
to the problems the patient may present (7/128, 5.5%).

Keszthelyi et al

« Low-dimensional vector (4/128, 3.1%): encoding
information n numbers (where n is the dimension) where
each number represents the state of the patient from a
particular aspect.

- List of words representing a topic (5/128, 3.9%), problem
list (2/128, 1.6%), list of medical concepts found in the
document (2/128, 1.6%), or label (2/128, 1.6%)

- Atable(1/128, 0.8%) with rows and columns or adirected
graph or concept map representing information in a
graph-structured data model (2/128, 1.6%)

«  Nopresentation: the articlesin the* recommendation” group
(5/128, 3.9%) did not present the results to the end user.

Figure 2 depicts the evolution (by the time of publication of
records) of the most abundant formats for communicating the
summarization results.

Figure 2. The number of records by year of publication and the most common ways of summary presentation used in the summarization method
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Concerning their view on summarization, 32.8% (42/128) of
the records regarded summarization as a bottom-up approach
and 64.8% (83/128) used the top-down view, whereas 1.6%
(2/128) of records do not show a clear opinion on

summarization.

Using the proposed framework, 42.2% (54/128) of the records
contributed to information collection, 33.6% (43/128) recorded
information synthesis, and 46.1% (59/128) presented solutions
for summary communication. Figure 3
[9,29,30,33-36,48-57,59-64,69-84,86-149] visualizes al the
analyzed prototype articles and how they fall into these
categories (ie, which step of the framework is addressed within
the corresponding work). The records year of publication,
presentation of summaries, and relationship between records
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2014
Year

2016 2018 2020 2022

are also displayed. The diagram has avertical axis showing the
year of publication, and all the “prototype” records (presented
as a reference) published in that year appear in aline (or in 2
linesif the number of publicationsfor agiven year isvery high).
The order within aline has no significance, although the records
were grouped within a line to show their contributions. The
shape or shapes surrounding a reference symbolizes the steps
that the record addresses in the
“collect—synthesize—-communicate” framework. Thereference
to the study by Liang et a [9] is surrounded by all 3 shapes,
indicating that the study addresses al the 3 steps. The records
also have a color representing in which format the summaries
are presented to the HCPs. Closer relationships (ie, follow-up
studies) are also presented. The studies submitted to the
MEDIQA-2021 challenge[21] are a so marked in the diagram.
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Figure 3. Diagram showing references to all analyzed “prototype” records and how they contribute to the “collect—synthesize—communicate”
framework (ie, which step of the framework is addressed within the corresponding work). Therecords' year of publication, the presentation of summaries,
and the relation between records are also displayed [9,29,30,33-36,48-57,59-64,69-84,86-149].

Overview of the "prototype" records,
their contribution to the proposed framework,
and their types of summary presentation
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Regarding information collection, concept and relation
extraction (50/54, 56%), time-series analysis (6/54, 11%),
encoding (22/54, 41%), temporal abstraction (6/54, 11%), and
topic extraction (5/54, 9%) were proposed as solutions. Medical
concepts are extracted from textual data either using publicly
available solutions (eg, cTAKES[164] in the study by Goff and
Loehfelm [94]) or tools developed by the authors (eg,
[113,114,157]). The retrieved list of concepts can be used for
simpler tasks, such as problem list generation [88], or some

https://medinform.jmir.org/2023/1/e44639

RenderX

records present systems that take a step further extracting the
context [115], syntactic structure[94], or approximate semantic
structure of a sentence [116] aswell.

With regard to information synthesis, sentence selection by
scoring (13/43, 30%), knowledge-based rules (18/43, 42%),
and attention mechanism (19/43, 44%) were possible solutions.

Proposals for summary visualizations are usually featureson a
graphical screen; they are listed and compared in Table 3. For
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unprocessed textual data, the solutions included highlighting
important concepts (3/5, 60%) and creating graphsthat visualize

Keszthelyi et al

the semantic structure of the textual data (2/5, 40%).

Table 3. The number of records presenting various features for visualizations in works with graphical displays. A record can use several features.

Feature Occurrence (out of 58), n
Colors 43
Selection of features 37
Tabular interface 35
Changeintime 31
Visualization of divergence 22
Placement of variables 19
Interactive display 18
Pictograms 10
Physical location shown 6
Alerts 5
Size difference 5
Customizabhility 3
Shape 3
Word cloud 3
Comparison 2
Variability of parameters 1

Aspectsto Be Conserved and Used

In total, 58.6% (75/128) of the titles did not conserve temporal
information, whereas 2.3% (3/128) of titles were agnostic to
temporal information (they conserve but do not use it). The
remaining articles used a variety of approaches:

« Timeine visualization: plotting information along a
horizontal or vertical temporal axis (34/128, 26.6%).

«  Other visualizations: showing only thetrend of parameters
(1/128, 0.8%) or providing a complex visuaization
framework in which temporal information can be displayed
and analyzed (1/128, 0.8%).

« Information extraction from the temporal domain by
analyzing how the parameters change during the patient
journey. Thisgroup included atime-series analysis (6/128,
4.7%), pattern recognition (2/128, 1.6%), and change
detection (1/128, 0.8%). Time-series anaysis (applied in
severa studies) [59,60,125-127,150] extracts statistical
information from the temporal evolution of one or several
variables. Pattern recognition [117,128] attemptsto identify
meaningful patterns in temporal data. Change detection
[61] seeksimportant events that manifest in the trends and
patterns of temporal variables. Some studies have revealed
the relationship between these events.

« A theoretical model of temporal events, which can either
describe more complex interactions between temporal
events (6/128, 4.7%) or be very simple (eg, creating an
order: 1/128, 0.8% or describing events with asingle time
[n=1]).

https://medinform.jmir.org/2023/1/e44639

It is worth noting that timeline visualization was applied in 3
articles in the temporal information extraction and in 1 article
in the complex model of the temporality group as well.

Regarding information uncertainty, 89.1% (114/128) of the
articles did not consider the uncertainty of information. Others
have proposed the following solutions:

- Statistical methods were used to treat uncertainty in data.
These methodsincluded correcting detectable errors (3/128,
2.3%[60,79,150]) and optimizing the statistical description
of the data using robust statistics (1/128, 0.8% [62]).

«  Uncertainty of temporal eventswas described (2/128, 1.6%).

«  Uncertainty of statementswas described by assigning them
to uncertainty categories (3/128, 2.3%[71,74,75]) or using
existing ontology (3/128, 2.3%).

Medical pertinence was not conserved in 34.4%, (44/128) of
the studies (ie, they had no requirements that the summary had
any relation to medical concepts or knowledge). A total of
35.9% (46/128) of records used medical knowledge to specify
the information to be included in the summary and with what
design. Other propositions included the following:

« Using ontologiesto find and relate concepts within textual
notes (20/128, 15.6% [87,92,93]), the use of Unified
Medical Language System (UMLS) extraction tools (6/128,
4.7%) to extract them (eg, [94-96]), or improving the
performance of abstractive summarization (2/128, 1.6%
[76])

« Use of risk scores to create visualizations (3/128, 2.3%
[97-99]) or the application of guidelines to assess risks
(2/128, 1.6% [100,101])
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- The use of medicdly sdient rules to constrain
summarization (3/128, 2.3% [29,61,102])

- BEvaluation of the factua correctness of the created
summaries integrated into reinforcement learning (2/128,
1.6%[79,83])

- Application of medical knowledge to select pertinent
information (2/128, 1.6% [103,151])

« The use of medical knowledge to construct evaluation
metrics (2/128, 1.6% [81,152])

What Isa Good Summary? Evaluation and
Deployment

Several types of evaluation methods and metrics are presented
in the publications:

«  Quantitative measurements in experiments with human
participants (31/128, 24.2%)

+  Quantitative measurements when summarization was
performed in areal clinical environment (8/128, 6.3%)

« Interviews (7/128, 5.5%), focus groups (2/128, 1.6%), or
surveys (19/128, 14.8%) asking the opinions of the users
after exposure to the summarization system

« Intrinsic evaluation (25/128, 19.5%) of measuring quality
by comparing the results to a ground truth

«  Performanceon aproxy task (ie, disease prediction; 10/128,
7.8%)

« Performance in identifying human-annotated concepts
(9/128, 7%) or topics (2/128, 1.6%)

The distribution of the number of human evaluators is shown
in Multimedia Appendix 3. Two records [119,173] used
significantly more evaluators than other solutions, which are
represented as 2 distinct groups at thetail of the histogram. One
of theserecords[173] isalarge-scale survey, whereas the other
[119] isapilot study measuring user performance.

Although some records present several evaluation techniques,
in 9.4% (12/128) of the articles, no evaluation is presented; in
1.6% (2/128) of articles, the evaluation is not detailed; and in
4.7% (6/128) of records, the evaluation consists of a subjective
evaluation carried out by the authors of the article.

The metrics used in the evaluations are as follows:

«  Performance metrics (eg, precision, recall, and F score) on
a prediction/classification task measuring the “goodness’
(validity) of predictions or classifications (used both in
usability experiments and formative evaluations, 11/128,
8.6%)

«  Performance metrics (eg, accuracy) of human participants
(ie, the validity of their decisions) on an experimental task
(24/128, 18.8%)

« Time savings due to summarization systems. time to
completion (ie, the time needed to perform a predefined
task) in experiments (21/128, 16.4%) or time saved during
patient visits (1/128, 0.8%) in deployed systems

«  Patient outcome metrics (6/128, 4.7%) included mortality
and hospital readmission rates.

« The NASA-TLX score describes the workload of the user
(5/128, 3.9%) and the rel ationship between the NASA-TLX
score and error count (1/128, 0.8%).

https://medinform.jmir.org/2023/1/e44639
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« Number of interactions (eg, click and screen change) in
usability studies (3/128, 2.3%)

« Grades given by human evaluators measuring the utility
and usability of a system (13/128, 10.2%) or trust in it
(1/128, 0.8%).

- Scorescomparing textual summarieswith properties of the
input text. These scores included Recall-Orientated
Understudy for Gisting Evaluation (ROUGE) [153] (20/128,
15.6%), bilingual evaluation understudy [154] (2/128,
1.6%), and comparison between input and output
distributions(2/128, 1.6%).

«  Other properties of the output textual summariesincluding
readability/fluency (10/128, 7.8%), accuracy or factual
correctness (5/128, 3.9%), completeness (7/128, 5.5%),
and overall quality (7/128, 5.5%) in qualitative evaluations
of textua outputs. Two (N=128, 1.6%) records
distinguished between ontological and nonontological
correctness.

« Proxy measures for the faithfulness of
summarization (6/128, 4.7%)

« Heuristics derived from requirement specification (5/128,
3.9%)

The evaluation metrics used in quantitative evaluations usually
depend on the method of summarization; for dimensionality
reduction, it is often a performance metric to predict diseases,
for extractive and abstractive summarizations, the ROUGE
score [153] is the most commonly used metric, as it is
considered the most reliable [32], and for topic modeling, it is
its empirical likelihood [174].

textual

For text summarization, evaluations with human participants
are often carried out by annotators subjectively grading each
produced summary along some metrics, including readability,
factual correctness, and completeness. For other summarization
methods, this task is usually approximated by either usability
tests [134-139] or experiments [140-147] where performance
and workload are measured. The few systems deployed in
clinical settings are often evaluated by measuring patient
outcomes or clinical indicators.

Reviewing the results of each report, some records compared
the results with summarization methods in the general domain
[48], and 6 (5%) [30,32,50,75,78,144] presented a comparison
of clinical summarization methods. The distribution of
cross-citations between articles, that is, the number of other
publications appearing in the review cited by each report, is
represented in Multimedia Appendix 4. Furthermore, 80% of
the records cited fewer than 3 other articles analyzed in this
review.

Among the 128 records analyzed, 4 (3.1%) talked about a
method deployed on a large scale, 7 (5.5%) described
deployment in a pilot study, and 1 (0.7%) disclosed the code
alongside the publication.
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Discussion

Principal Findings

Where Are Summaries Needed in Health Care?

Publications on clinical summarization are tied to severa
different medical and clinical fields, mainly where quick
decision-making is crucia (eg, ICU) or where a large amount
of information is routinely produced (eg, oncology, chronic
disease management, and hospital care).

However, some fields requiring quick decision-making (eg,
emergency room environments) have seen less progress. In
contrast, otherswhere quick decision-making islesscritical (eg,
radiology) are covered by arelatively large number of records.
This discrepancy suggests that clinical summarization can be
beneficial in aimost all medical fields, athough the idea may
not have reached all domains at the same pace. Although the
previous drivers are easily identifiable, we speculate that the
presence of other solutions proposed to handle information
overload (eg, the study by Xu et a [85]; see the study by Hall
and Walton [4] for review) can decelerate, whereas a shortage
of personnel in a field (eg, radiology [155]) can accelerate
adaptation.

What Should Be Summarized?

The increasing trend in both single-encounter and
multiencounter summarizations suggests that both types are
salient and should be used depending on the care situation.

Regarding the input for summarization, severa experiments
show that HCPs can act at least as accurately and in a timely
manner with summarized structured [104-110,156] data or
textual data [60,157] or with most information coded in these
types of data [158] than using complete documentation.
Therefore, the focus should be on summarizing textua and
structured data when creating summaries for HCPs.

The increasing trend of using textual data for summarization
might be attributed to the improvement of NLP, the improved
computing power required for some NLP tasks, and the results
published by Van Vleck et a [158], who claimed that a
significant portion of patient information liesin clinical notes.
In contrast, Hsu et a [111] challenged this hypothesis by
presenting experiments to predict some clinical measures (eg,
hospital readmission and mortality) using textual and structured
patient information sources. They concluded that textual sources
have little predictive power for the outcomes. However, their
analysis might be biased by their methodol ogy, asthey use only
simple syntactic metricsto describetextual information, whereas
semantic information is not included in their model.

How Data Can Be Summarized?

The records analyzed in this review show myriad techniques
for summarizing clinical data. Some are intrinsic to the input
data type and work only with a particular data type, whereas
others are not dependent on the input data type.

For textual data, the review reveals more works about abstractive
summarization than extractive summarization or topic modeling
combined, whereas in the general domain, topic modeling and
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extractive summarization techniques are the most researched
[58,159]. This discrepancy suggests that despite abstractive
summarization techniques being immature [160], general
problems with extractive summarization, such as redundancy
[161], lack of coherence [162,163], and lengthiness [163], can
be problematic for clinical applications. The verdict about topic
modeling isunclear. Arnold et a [112] arguethat cliniciansare
good at interpreting topic model results, but other records using
this technique do not present evaluations with human
participants.

An aternative (and natural) way of organizing summarization
methods is to assess how they contribute to the summarization
process. Mativated by the lack of awidely accepted theory of
the summarization process, this review proposes a 3-step
(collect—synthesize—communicate) framework to describe
the summarization process, where each step should ideally be
addressed by all summarization methods.

For the information collection step, many studies assume an
easily queriableinformation source or propose medical concept
extraction from textual data as a solution. More complex
information (context, syntactic, or semantic structure of
statements) is extracted in only a few studies, and some works
propose extracting specific aspects as information.

Concerning information synthesis, a common approach is to
precisely definethe content of the summary (eg, [118,165,166])
or at least its format [167]. However, these studies do not
evaluate the quality of their proposition (except the study by
Ham et a [119]). In contrast, some records carried out
experiments on the information needs of physicians[158,168];
however, the results were not integrated into any of the reviewed
systems.

Concerning summary visualizations, there is no clear opinion
on whether textual or graphical summariesare preferableinthe
medical context. Although there is a dight dominance of
graphical displays among the analyzed records, some works
[169,170] argue that textual summaries lead to more accurate
decisions. However, agenera pattern of theseworksisthat they
compare a specific graphical display with a particular textual
display, limiting generalizability. These contradictory results
suggest that both formats are helpful for clinical summarization,
if relevant features are present. Problem-oriented views
presented in some records (eg, [120]) can include both types of
display and might have other advantages, as they group all
available information about patient-specific problems[171].

Concerning the view on summarization, both top-down and
bottom-up approaches are judtifiable in a clinical setting.
However, severa bottom-up approaches have been inspired by
studiesthat use top-down approaches. One exampleisthe recent
development of techniques for identifying salient concepts in
source documents for abstractive summarization. This
phenomenon may be due to the natural need for accountability
and interpretability, which can be achieved more easily with a
bottom-up approach closer to human cognition. The need for
bottom-up approaches also suggests that there is a need that
summarization techniques address al 3 steps of the proposed
“collect—synthesize—communicate” framework, including
information collection, synthesis, and visualization.
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How Are the Temporal, Uncertain Aspects of
Information and I tsMedical Persistence Conserved and
Used?

The tempora nature of clinical data is an essential aspect of
clinical reasoning [172], and a relatively large portion of
analyzed records presents solutions to use this aspect of
information. However, in most of these studies, this aspect was
only represented as a visualization feature. Most visualizations
are timeline visualizations, plotting information aong a
horizontal or vertical tempora axis following Plaisant et al
[175], athough some alternative methods exist [121-124].
Alternatively, some studies have revealed the relationship
between events by analyzing how variables change during the
patient journey.

Although temporality in clinical settingsis believed to be more
complex [172] than aseries of punctual events, current solutions
to clinical summarization hardly reflect this complexity. Very
few studies have attempted to incorporate more temporal
information by using more complex models of temporality (eg,
eventslasting during aninterval). Complex temporal information
isusually not directly available in patient records and must be
deduced from the context and knowledge-based rules. This
process is caled temporal abstraction and was applied in
previous studies [90,91,129-132,176]. Hunter et a [129,130]
considered the uncertainty of temporal information by defining
the beginning and end of each timeinterval asan interval.

Although several levels of uncertainty exist in clinical care
[177], the majority of the analyzed reports do not present
solutions to conserve or handle any information uncertainty.

To a lesser extent, the pertinence of medical knowledge has
been overlooked by many summarization approaches. Many
records do not consider medical pertinence or use it only for
some design considerations. However, the few records that
handle this aspect of medical data provide a relatively wide
range of solutionsto constrain the resulting summaries. |n most
cases, these congraints are relatively weak; for example,
concepts are assumed to be part of a specific medical ontology.
Thisis obviously the case for concept extraction tools, but the
records using reinforcement learning approximate factual
correctness using this approach as well.

Deeper integration of medical knowledge is only present in
works using medical rules to select salient information and in
the 2 works using medical rules to create summaries. Liang et
al [9] used medical knowledge to create components of their
proposed NLP pipeline, whereas Shi et al [102] used medical
knowledge—based rulesto visualize abnormalitiesin the human
body.

How to | dentify a Good Summary?

Using the definition of clinical summarization (ie, smplifying
and presenting information so that HCPs can act more smoothly
and efficiently in different clinical situations), the ultimate
purpose of an evaluation might be to determine whether using
the proposed summarization systems would improve the
efficiency of HCPs.
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However, such an evaluation is often unfeasible owing to the
high costs and ethical issues associated with potential medical
errors.

This is supported by the results, as many of the proposed
evaluations are approximative solutions, and there is
quasi-uniform agreement that evaluating summarization is
challenging and suboptimal [168]. The spectrum of these
evaluations is broad, but a common trend is to carry out a
qualitative evaluation using an easily calculable evaluation
metric describing either the quality of the summary or its
“usefulness’ to perform aproxy task (ie, disease prediction).

These qualitative analyses are suboptimal. For example, one of
the most common qualitative metrics, the ROUGE score,
assumes a human-annotated “ gold standard” summary to which
to compare, but this standard may not exist given the high cost
of annotation or because there are disagreements between people
about what would be a“gold standard summary” [70,168]. To
tacklethis problem, somerecords[72,178] present acomparison
between the semantic distribution of theinput and the summary;,
whereas others [133,150,179] use heuristics to evaluate the
results. Another problem with the ROUGE score is that even
with a high ROUGE score, a summary can be very inaccurate
[168]; therefore, there have been attempts to measure the
“faithfulness’ of summaries either by the number of medical
concepts retrieved [81] or with a more complex faithfulness
measure defined by Zhang et al [83].

Evaluations with human participants often complement the
qualitative eval uations. Human eval uations have mainly positive
outcomes (except in the study by van Amsterdam et al [148]);
however, most of the evaluations are carried out on a small
scale. This can explain why very few long-lasting
implementations in health care have been presented in the
literature.

It isalso important to mention that thereisvery little comparison
between summarization methods, and citations between records
are scarce. This suggests that the research in this domain is
fragmented.

These shortcomings suggest that evaluation is a weak point in
clinical summarization proposals, and the lack of widely
accepted evaluation metrics and methodology might be amain
obstacle for research in the field.

Limitations

Methodological biases are present in selection, synthesis, and
reporting. First, the number of reviewers was limited both in
the selection and analysis of records, resulting in selection and
synthesis bias.

Selection bias also comes from the fact that the review was
carried out on works published in a scientific paper or in the
gray literature, and the initial search was carried out on 2
databases that are more specific to medicine. However, several
unpublished summarization solutions have been applied to
current EHR systems.

Moreover, publishing bias also adds to selection bias, as there
isaclear dominance of positive resultsin scientific publishing.
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Furthermore, the applied research queries and the selection of
the database are also a source of bias. Using other data sources
(eg, |IEEE Xplore and Scopus) might have introduced further
bias to the analysis. However, including the citations and
references in the review process might have reduced this bias
significantly. Moreover, the queries are formulated in English;
therefore, results not in English and containing non-English
terms might be missed if their abstract was not translated or if
they do not appear in the citation list or references in the
retrieved articles. Finally, there were potentially relevant records
[149,180,181], wherethefull text could not be read and analyzed
asit was not available at the time of writing the manuscript.

Conclusions

Clinical summarization has not reached all domains at the same
pace, althoughit ispotentially beneficial in most medical fields.
Two aspects, the requirement for quick decision-making and
the overabundance of data, were identified as the main drivers
for the development of automatic summarization methods.
However, other less-evident drivers might also play arole in
adaptation.

Despitethisneed, very few [113,119,182] scientific publications
are presenting adaptation in real clinical settings, suggesting a
low successratein clinical environments.

Despite the large number and variety of propositions, hardly
any comparisons exist between the solutions. This low rate is
due to the difficulty in comparing the summarization methods.

Keszthelyi et al

From acognitive psychological perspective and to measure how
the summarization methods align with the definition of
summarization, this review proposes to compare these
algorithms through a *“collect—synthesis—communicate’
framework referring to information gathering from data, its
synthesis, and communication to the end user.

Only asmall proportion of the current propositions address all
3 steps, and none of the most abundant methods (ie, abstractive,
extractive summarization, and visual design) address them
completely.

Beyond the lack of aignment of the dimensions of
summarization, propositions conserve and use crucial aspects
of information (temporaity, uncertainty, and medical pertinence)
to varying extents.

Although uncertainty israrely considered, temporality and some
medical pertinence are conserved during some presentations,
but the solutions are often preliminary or lack depth in these
aspects. Further research is necessary to address these issues.

Nevertheless, the main shortcoming of the current automatic
summarization methods is the lack of consistent evaluation.
Although there are some new proposals to evaluate the quality
of summarizations more rigorously [83], further research is
required to relate these metrics to human perceptions.
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Multimedia Appendix 1

PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) checklist

for the review.

[PDFE File (Adobe PDF File), 497 KB - medinform_v11i1e44639 appl.pdf ]

Multimedia Appendix 2

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 flow diagram describing the review

process applied in the study [182].
[DOCX File, 59 KB - medinform_v11i1e44639 app2.docx |

Multimedia Appendix 3

Histogram showing the distribution of the number of evaluatorsin studies where eval uations with human participants are present.

[DOCX File, 53 KB - medinform_v11i1e44639 app3.docx |

Multimedia Appendix 4

Histogram showing the number of other publications appearing in the review cited by each report. The number of cross-citations

between the works are low.
[DOCX File, 50 KB - medinform_v11i1e44639_app4.docx |
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Abstract

Background: In recent years, health data collected during the clinical care process have been often repurposed for secondary
use through clinical data warehouses (CDWSs), which interconnect disparate data from different sources. A large amount of
information of high clinical value is stored in unstructured text format. Natural language processing (NLP), which implements
algorithmsthat can operate on massive unstructured textual data, hasthe potential to structure the dataand make clinical information
more accessible.

Objective: The aim of this review was to provide an overview of studies applying NLP to textual datafrom CDWs. It focuses
on identifying the (1) NLP tasks applied to data from CDWs and (2) NL P methods used to tackle these tasks.

Methods: This review was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines. We searched for relevant articles in 3 bibliographic databases: PubMed, Google Scholar, and ACL
Anthology. We reviewed the titles and abstracts and included articles according to the following inclusion criteria: (1) focus on
NLP applied to textual datafrom CDWs, (2) articles published between 1995 and 2021, and (3) written in English.

Results: We identified 1353 articles, of which 194 (14.34%) met the inclusion criteria. Among all identified NLP tasksin the
included papers, information extraction from clinical text (112/194, 57.7%) and the identification of patients (51/194, 26.3%)
were the most frequent tasks. To address the various tasks, symbolic methods were the most common NLP methods (124/232,
53.4%), showing that some tasks can be partially achieved with classical NLP techniques, such as regular expressions or pattern
matching that exploit specialized lexica, such asdrug lists and terminologies. Machinelearning (70/232, 30.2%) and deep learning
(38/232, 16.4%) have been increasingly used in recent years, including the most recent approaches based on transformers. NLP
methods were mostly applied to English language data (153/194, 78.9%).

Conclusions: CDWs are central to the secondary use of clinical texts for research purposes. Although the use of NLP on data
from CDWs is growing, there remain challenges in this field, especially with regard to languages other than English. Clinical
NLP is an effective strategy for accessing, extracting, and transforming data from CDWSs. Information retrieved with NLP can
assist in clinical research and have an impact on clinical practice.

(JMIR Med Inform 2023;11:e42477) doi:10.2196/42477
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Introduction

Background

For >20 years, hedth data from patient care have been
systematically archived in the form of electronic health records
(EHRs) [1,2]. Databases have been created to gather both
structured data (eg, vital signs and clinical-biological
characteristics and demographics) and unstructured data (eg,
textual reports of hospitalizationsor visits). Theselarge amounts
of data involve multiple contributors: patients, for whom data
are collected during hospitalizations or visits; caregivers, who
care for the patients and collect the data; and health care
ingtitutions, which organize all operational and financial logistics
involving the care and related data [3]. The first purpose of
collecting these data is to broadly deliver high-quality care to
patients, even if the data may be repurposed for secondary use,
such as reduction in hedth care costs, population health
management, and clinical research [1]. Human datain clinical
research areintended for research purposesand limited in terms
of sample size, scope, and longitudinal follow-up (ie, clinical
trials or disease registries). The secondary use of EHRs allows
to increase patient recruitment in trials [4] and enables access
to alarger variety of clinical information for clinical research
[5,6].

The rapid increase in digital data production prompted the
construction of clinical data warehouses (CDWSs), also known
as health data warehouses or biomedical data warehouses, for
the secondary use of EHRs [2]. CDW refers to the
interconnection of disparate datafrom different sources, which
are restructured into a common format and indexed using
standard vocabularies. CDWs collect data from millions of
patientstreated in hospitals and can be accessed by stakeholders
to analyze care situations and make critical decisions[7]. Unlike
in the fields of logistics, marketing, and sales, the health care
field has been slow to fully integrate data warehouses. CDWs
require managing security and privacy constraints related to
medical data[7]. Depending onwhich country housesthe CDW,

https://medinform.jmir.org/2023/1/e42477
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medical data—related policies can vary and potentially slow the
construction process [8]. Data warehouses have been part of
the health care landscape for decades [9], especially in the
United States, where the first CDWSs appeared in the 1990s. In
some countries, such as France, CDWs have only been
constructed more recently owing to policy constraints. At the
institutional level, the use of CDWSs underscores that
organizations recognize the transformative potential and value
of the data generated by their activity. This secondary use of
data is facilitated by technological advances in artificial
intelligence [10]. Among many types of data, textual data
reinforce the popularity of a subgroup of artificia intelligence
methods, natural language processing (NLP), which implements
algorithmsthat can operate on massive unstructured textual data
[11]. The majority of clinical information is stored in
unstructured text format, and NLP allows accessing this
information [12,13].

Objectives

Thisreview aims at providing an overview of studies applying
clinical NLP to textua data from CDWs. The focus of this
review is to identify the (1) NLP tasks applied to data from
CDWs and (2) NLP methods used for each task.

Methods

The PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines were followed for
reporting this review (Multimedia Appendix 1).

Review M ethod and Selection Criteria

Articlesidentified from the queries were manually included on
the basis of the following inclusion criteria: articles (1)
mentioning the use of NLP on data from CDWs, (2) published
between 1995 and 2021, and (3) written in English. The
inclusion was carried out by reading titles and abstracts or by
searching the article for the keywords used in the queries to
determinewhether it wasrelevant. Details of the article selection
steps are described in Figure 1.
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Figurel. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) article selection flowchart.
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Bibliogr aphic Databases

We searched for relevant articles in 3 bibliographic databases:
PubMed, ACL Anthology, and Google Scholar. PubMed is
specialized in biomedical literature; its query builder alows
searchers to construct queries based on both Medical Subject
Headings terms and natural language. ACL Anthology covers
theliterature published in conferences rel ated to computational
linguistics and NLP. Google Scholar does not have a dedicated
area of specialty for the papersit references and covers awide
range of the literature.

Search Strategy

Identifying papers with NLP applied to data from CDWs
involved combining multiple designations: the term data
warehouse is sometimes referred to as a database or a
repository. In addition, the source of the data used in clinical
studies may only be listed in the main manuscript. Data
collection requires using multiple queries to aim at both high
specificity and high sensitivity.

To retrieve arepresentative sel ection of papers, we used queries
based on specific keywords for each topic of interest, that is,
(1) CDWsand (2) NLP:
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- CDWs. “clinicadl data warehouse” “biomedical data
warehouse,” and “health data warehouse” The selected
keywords representing this topic correspond to the most
commonly used terms for CDWs.

« NLP: “natura language processing,” “NLP” and “text
mining.” The keyword “text mining” complements the
concept of the“ natural language processing” keyword. Text
mining stands out as the most frequently used NLP
application in the medical field. As a result, the term
“natural language processing” can sometimes be eclipsed
by “text mining.”

Several queries were made using the selected keywordsin each
bibliographic database. The details of each query are available
in Multimedia Appendix 2.

All queries were run on February 23, 2022. PubMed and ACL
Anthology paperswereretrieved by manually executing queries
on the respective websites of these bibliographic databases.
Google Scholar paperswere collected using free software [14].
The results of the queries were merged, and duplicates were
removed.

The queries are not exhaustive but rather aim to provide a
limited and representative selection of papers covering thetopics
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of interest. Synonyms for warehouse, such as database or
repository, were not used in the queries to avoid the collection
of a significant number of irrelevant articles to review.
Furthermore, some papers may aso apply NLP to data from
CDWs without mentioning the CDW and could be missed by
the queries.

Data Collection

The following data were manually collected from the included
articles: (1) NLPtasksaddressed in the original paper (the NLP
task classification is based on the one provided by Névéol et a
[13]), (2) NLP methods used to address the tasks, (3) the CDW
that is the source of the data, and (4) the language of the data
used in the paper.

Results

Overview

A total of 1353 articles (PubMed: n=82, 6.06%; Google Scholar:
n=1266, 93.57%; and ACL Anthology: n=5, 0.37%) were
identified with the initial search strategy. After reviewing the
title and abstract of each article, of the 1353 articles, 1159
(85.66%) were excluded owing to duplication (n=104, 8.97%),
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language issues (n=14, 1.21%), and for being out of the scope
of this review (n=1041, 89.82%). Overall, of the initialy
identified 1353 articles, 194 (14.34%) met theinclusion criteria.
These 194 articles were published between 2002 and 2021,
which means that articles published between 1995 and 2001
did not meet the inclusion criteria

This section gathers the topics covered in published research
on NLP applied to datafrom CDWs. Theresults of thereviewed
articlesare presented by the NL P task mentioned in the articles.
Although many articles address the same NL P task, we decided
to not directly compare the performances of the methods used
inthe articlesin this review. Methods have been evaluated with
different datain different languages and with different metrics.
Hence, we concluded that it was not relevant to perform this
comparison.

Table 1 gives the count of studies based on the NLP task for 2
periods of time: 2002-2015 and 2016-2021. The 2 time periods
were chosen owing to the transition in the NLP paradigm,
shifting from knowledge-based to machine learning methods.
This transition coincided with the emergence of new tasks,
including language modeling.
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Table 1. Natural language processing (NLP) tasks reported in the retrieved publications (n=194).
NLP tasks NLP methods used, n (%) References
2002-2015 2016-2021
Information extraction (n=112)
Medical concepts (n=37) S 14 (74); ML 5 (26) S:10(40); ML: 11 (44); DL® 4 (16) ~ [1551]
Specific characteristics (n=40) S: 4 (67); ML: 2(33) S: 22 (56); ML: 12 (31); DL: 5 (13) 52-91]

Drugs and adverse events (n=26) S: 10 (77); ML: 3 (23)
S: 1(50); ML: 1 (50)

S: 1(100)

Findings and symptoms (n=8)
Relation extraction (n=1)
Classification (n=51)

Phenotyping (n=38) S: 7 (78); ML: 2 (22)

Indexing and coding (n=7) S: 3(100)
Topic modeling (n=3) N/A
Patient identification (n=3) N/A
Context analysis (n=18)
Similarity (n=6) S: 2(100)
Temporality (n=4) S: 1 (100)
Negation detection (n=3) N/A
Abbreviation (n=2) N/A
Uncertainty (n=1) N/A
Experiencer (n=2) N/A
Language modeling (n=11) N/A
Resour ce development (n=6)
Corporaand annotation (n=4) N/A
Lexica(n=2) N/A

Shared tasks (n=5)
Deidentification (n=2)

S: 4 (57); ML: 3(43)
S: 1 (50); ML: 1 (50)

Data cleaning (n=1) N/A

S: 8(57); ML: 1(7); DL: 5(36)
S: 2(25); ML: 2 (25); DL: 4 (50)

49,52,92-115]

[
[
[49,52,116-121]
[

N/AY 50]

S: 17 (49); ML: 12 (34); DL: 6 (17) [50,122-158]
S: 2 (50); ML: 1 (25); DL: 1 (25) [159-165]

S: 1(25); ML: 3(75) [166-168]

S: 1(25); ML: 2 (50); DL: 1 (25) [169-171]

S: 1(25); DL: 3(75) [172-177]

S: 2 (100) [93,178-180]
S: 2(67); DL: 1(33) [178,181,182]
S: 2 (100) [183,184]

S: 1(100) [180]

S: 2 (100) [178,182]
ML: 6 (46); DL: 7 (54) [171,185-194]
ML: 1 (100) [195-198]

S: 2(67); ML: 1(33) [199,200]

S: 1(100) [201-205]
DL: 1 (100) [206,207]
ML: 1 (100) [208]

8s: symbolic methods.
BML : machine learning.
°DL: deep learning.
dN/A: not applicable.

Information Extraction

Information extraction is one of the most studied tasksin NLP
within the clinical field. In the included articles, named entity
recognition (NER) primarily focuses onidentifying entities such
as protected health information (PHI) to deidentify clinical
documents[206,207], aswell asvariousclinical concepts. These
concepts encompass diseases [20,25,40,41,45,47,49]; findings
and symptoms [49,52,116-119,121]; and medication names
[49,52,93-95,99,100,102,106,107,112,113,115], aong with
their associated details such as dose, frequency, and duration
[52,93-95,112,113,115] as well as potential adverse events
[96-98,100,101,106-110,114]. These medical concepts can be
mapped to terminologies or ontologies such as the Unified
Medical Language System (UMLS) [23,24,30,37-39,41,46,97],
Systematized Nomenclature of MedicineClinical Terms
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(SNOMED-CT) [27,28,30], or International Classification of
Diseases, Ninth Revision (ICD-9) [21].

Several popular NLP systems have been extensively used for
extracting, structuring, and encoding clinical information from
narrative patient reports in English. Numerous studies detail
the application of the Medical Language Extraction and
Encoding System (MedLEE) for clinica concepts
[24,27-29,32-36,50,51,121] or medication [103,104,111]
extraction, aswell asUML S coding. The extraction and mapping
of clinical information from clinical notes to UMLS has also
been accomplished using the clinical Text Analysis and
Knowledge Extraction System (CTAKES)
[16,17,20,22,100,129,134,168], MetaMap [31,37,38,47],
MedTagger [44,45,67,78,86,105], and the National Center for
Biomedical Ontology (NCBO) Annotator
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[97,99,106,107,109,114]. Extracted concepts can be mapped to
other standard ontologies and terminologies, such as
SNOMED-CT [27]. Cadliskan et a [95] evaluated the Averbis
Health Discovery NLP system on a medication extraction task
on German clinical notes.

Other systems addressing NER or information extraction were
customized to specific use cases. Rule-based methods encoded
dictionaries and terminologies to match terms and conceptsin
clinical texts [40-42,49,102,108,112,113]. Machine learning
methods take advantage of the clinical knowledge in the large
amount of datain CDWSs. According to thetime period, methods
that were used reflect the trend of using NLP state-of-the-art
methods and language models. Conditional random fields
(CRFs) were used to extract clinical concepts [23,46] or PHI
for the deidentification of clinica documents [207].
Hierarchically supervised latent Dirichlet allocation was applied
to hospital discharge summaries to predict ICD-9 codes [21].
Deep learning approaches such asbidirectional long short-term
memory—CRF (BiLSTM-CRF) [93,113,115] and recurrent
neural network grammars [93] performed medical entity
extractionin French clinical texts. Chokshi et al [119] compared
abag-of-words model with support vector machine (SVM) and
2 neural network models: aconvolutiona neura network (CNN)
and a neural attention model, both with Word2Vec embedding
asinput. The accuracies of the CNN and neural attention model
models were relatively equal, but they were higher than the
accuracy of the SYM model. Lerner et al [49] compared 3
systemsfor clinical NER: aterminology-based system built on
UMLS and SNOMED-CT, a bidirectional gated recurrent
unit—-CRF system, and a hybrid system using the prediction of
the terminol ogy-based system as afeature for the bidirectional
gated recurrent unit—CRF system. Yang et al [206] identified
PHI from freetext with along short-term memory (LSTM)-CRF
model.

Recent state-of-the-art models based on transformer neural
architectures [209] were aso applied to extract medical
concepts. Neuraz et a [52] used a BiLSTM-CRF layer on top
of avector representation of tokens computed by Bidirectional
Encoder Representationsfrom Transformers (BERT) in French.
BERT and Robustly Optimized BERT Pretraining Approach
were examined to extract social and behavioral determinants of
health conceptsfrom clinical narratives[15]. Some of the studies
paired a neural language model with simple pattern matching
techniques; for example, Jouffroy et al [115] proposed ahybrid
approach for the extraction of medication information from
French clinical text that combined regular expressions to
preannotate the text with contextual word embeddings
(embeddings from language models [ELM0]) that are fed into
a deep recurrent neural network (BiLSTM-CRF).

Some of the studies (31/194, 16%) addressed specific clinical
information extracted from clinical texts. These included bone
density [59], breast cancer gene 1 or 2 mentions [86], the
predictors and timing of lifestyle modification for patientswith
hypertension [60], the determination of positivity at imaging
presentation in radiology reports[66], Banff classification [69],
surgical site infection [70], Breast Imaging Reporting and
Database System category 3 [71,72], chemotherapy toxicities
[76], vital signs[79], transurethral resection of bladder tumors

https://medinform.jmir.org/2023/1/e42477

Bazoge et a

[80Q], statin use [57], human leukocyte antigen genotypes [82],
unplanned episodes of care [83], smoking status [65,84],
monoclonal gammopathy [90], skeletal site-specific fractures
[85], and socia determinants of health [66]. Methods used to
extract this information were rule Dbased
[67,69-72,76,79,80,82-85], statistical [59,60], or acombination
of both [86,90].

Multiple pieces of information about patients were extracted
from clinical texts for application in retrospective studies [56].
Ansoborlo et al [89] extracted 52 pieces of bioclinical
information from French multidisciplinary team meeting reports
concerning lung cancer by applying regular expressions and
then compared this approach with aBayesian classifier method.

Extracting information from clinical text was also carried out
asaprediction task. Predicted data cover length of hospital stay
[73], thelikelihood of neuroscienceintensive care unit admission
[64], therisk of 30-day readmission in patientswith heart failure
[55], or quality metricsfor the assessment of pretreatment digital
rectal examination documentation [62]. Risk assessments of
diseases or pathologies, including HIV [61,81], pancreatic
cancer [75], pressure ulcer [91], chronic kidney disease [63],
and breast cancer [54], have also been studied as prediction
tasks. Predicting this clinical information can be achieved with
rule-based methods [73,81], machine learning techniques such
as latent Dirichlet alocation [63,73], or a combination of both
[75,91].

Context Analysis

Linguistic occurrences are particularly relevant where medical
information is concerned, such as negation, temporality,
uncertainty, or experiencer (ie, determine whether theidentified
information is related to the patient or a third party, such as a
family member). In the included studies, rule-based methods
were often used to detect contextual information in clinical text
[178,180,182]. Although these methods offer good results (with
an approximate F;-measure value of 0.90), they rely on
handmade resources, such as terminologies and regular
expressions, and customization is often needed for specific use
cases. Temporality patterns have been studied by Liu et al [92]
to discern adverse drug eventsfrom indicationsin clinical text.
Zhou et a [179] describe a temporal constraint structure
constructed from temporal expressionsin discharge summaries
to model these expressions. In the clinical domain, many
temporal expressions have unique characteristics, and this
structure provides comprehensive coverage in encoding these
expressions. Abbreviations are widely used in medicine and
have been studied in French [183] and English [184] clinical
texts to better handle medical abbreviations. Recent
embedding-based methods such as BERT have made it easier
to study negation detection [181] and text similarity [173,174].
Text similarity has also been studied to identify semantically
similar concepts [175], similar patients [177], or to detect
redundancy in clinical texts[172,176].

Classification
Identifying patientsis akey component in clinical research for

constructing popul ation studies. NL P can improve the querying
and indexing of patientsand their datain CDWSs. Zhu et a [161]
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addressed query expansion based on alarge in-domain clinical
corpus to solve problems of polysemy, synonymy, and
hyponymy in clinical text to improve patient identification.
Query expansion was al so studied through 3 methods: synonym
expansion strategy, topic modeling, and a predicate-based
strategy derived from MEDLINE abstracts[165]. An automated
electronic search agorithm for identifying postoperative
complications was evaluated by Tien et al [162]. A semantic
health data warehouse was designed to assist health
professionals in prescreening eligible patientsin clinical trials
[163,164]. A combination of structured and unstructured German
datawas used by Scheurwegset a [160] to assign clinical codes
to patient stays.

Downstream of the query of CDWSs, NLP can be applied to
identify patients or documents of interest when the classification
methods offered by CDWSs are not precise enough. Patient
identification can be carried out using methods such as
rule-based approaches, which involve using terms related to
eligible criteria [127,137,140-150,153,170], or learning-based
approaches [126,131,133], or a combination of both
[152,155-157,169]. Li et a [166] and Chen et al [167] applied
latent Dirichlet allocation in clinical notes for topic modeling.
Agarwal et al [154] detailed a logistic regression model of
phenotypes learned on noisy labeled data. Some of the studies
(4/194, 2.1%) relied on Dr Warehouse, a biomedical data
warehouse oriented toward clinical narrative reports, devel oped
at Necker Children's Hospital in Paris, France. This data
warehouse was used to explore, using the frequency and term
frequency—inverse document frequency (TF-IDF), the
association between clinical phenotypes and rare diseases such
as the potassium voltage-gated channel subfamily A member
2 variant in neurodevelopmental syndromes [138], Dravet
syndrome [125], ciliopathy [139], and other rare diseases[136].

L anguage M odeling

Recent word embedding—based methods take advantage of the
large amount of datastored in CDWsto learn effective semantic
representations of clinical texts. In the included articles, these
methods allowed to make calculations on words to find, for
example, similar termsin the embedding space [88,130]. Among
these methods, transformer-based models, such as BERT, were
fine-tuned for multiple tasks, including text classification to
map document titlesto Logical Observation Identifiers Names
and Codes Document Ontology [159] and sequence labeling to
detect and estimate the location of abnormalitiesin whole-body
scans [53]. Similarly, clinical text was structured with the
classification of 1CD-9 codes based on vectorization methods
[190,191].

Some of the studies evaluated the effectiveness of word
embedding models on multiple tasks. Lee et a [135] evaluated
Node2Vec, singular value decomposition, Language
| dentification for Named Entities, Word2Vec, and global vectors
for word representation (GloVe) in retrieving relevant medical
features for phenotyping tasks. The authors demonstrated that
GloVe, when trained on EHR data, outperforms other
embedding methods. GloVe and Word2Vec were used in
conjunction with LSTM and gated recurrent unit and evaluated
across multiple tasks, with gated recurrent unit outperforming
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LSTM [192]. Similarly, Dynomant et a [193] compared on
multiple tasks 3 embedding methods (Word2Vec, GloVe, and
fastText) trained on a French corpus. The 3 methods were
evaluated on 4 tasks, and Word2Vec with the skip-gram
architecture had the highest score on 3 (75%) of the 4 tasks.
Peng et al [185] evaluated 2 transformer-based models, BERT
and ELMo, on 10 benchmark data sets and found that the BERT
model achieved the best results. BERT was also evaluated on
sentence similarity, relation extraction, inference, and NER
tasks on data sets from clinical domains [186]. The study by
Neuraz et al [188] comparing fastText and ELMo showed that
models learned on clinical data performed better than models
learned on data from the general domain. The study by Tawfik
and Spruit [187] described atoolkit to eval uate the eff ectiveness
of sentence representation learning models.

Text representation models are commonly used as embedding
layers in neural network models developed for specific tasks.
Word2Vec has been used in numerous studies for various
purposes, including assessing bone scan use among patients
with prostate cancer with a CNN [151], screening and
diagnosing of breast cancer with a deep learning architecture
[123], extracting features used for risk prediction of liver
transplantation for hepatocellular cancer with a capsule neural
network [124], and using aCNN to learn theclinical tria criteria
eligibility status of patients for participation in cohort studies
[171]. Lee et al [194] proposed a unified graph representation
learning framework based on graph convolutional networksand
LSTM to construct an EHR graph representation of medical
entities. Dligach et al [189] developed a clinical text encoder
for specific phenotypes. Experiments were conducted with a
deep averaging network and a CNN to construct this text
encoder.

Resour ce Development and Shared Tasks

Many NLP methods rely on clinically specific resources to be
developed. Intheincluded articles, datafrom CDWs, combined
with clinical expert knowledge, alowed the development of
resources such as annotation guidelines and schemes
[195,196,198], lexica [200], ontologies [199], or frameworks
to validate the outputs of NLP systems[197].

International community efforts have been demonstrated through
shared tasks involving clinical notes from CDWs. In the
included articles, the Informatics for Integrating Biology and
the Bedside (i2b2) obesity challenge focused on obesity and its
15 most common comorbiditiesthrough amulticlass multilabel
classification task [204,205]. Another i2b2 challenge held in
2009 concerned extracting medication information from clinical
text [202,210]. Three tasks were proposed in the fourth i2b2 or
Department of Veterans Affairs shared-task and workshop
challenge: extraction of medical problems, tests, and treatments;
classification of assertions made on medical problems; and
classification of arelationship between a pair of concepts that
appear in the same sentence where at least 1 conceptisamedical
problem [202]. These i2b2 shared tasks relied on deidentified
discharge summaries from the Partners HealthCare research
patient data repository. The 2018 Nationa NLP Clinical
Challenges (n2c2) shared-task workshop presented a cohort
selection task for clinical trials[203].
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Previously presented NLP tasks and methods were applied to
medical datain different languages, with the majority being in
English (153/194, 78.9%; Table 2).

Multimedia Appendix 3 presents the CDWs used in the
publications presented in thisreview. Overall, the oldest CDWSs,

Table 2. Language of the data used in the papers (n=194).

Bazoge et a

such as the Columbia University Irving Medical Center CDW,
Mayo Clinic, and the Partners HealthCare research patient data
repository, are the ones that reuse the most textual data and
contribute the most to developing the application of NLP on
EHR data.

Datalanguage Publications, n (%) References

English 153 (78.9) [15-17,19-25,27-38,41-48,50,51,53-68,71,72,74,75,78-80,83-88,90-92,96,97,99-112,114,116,119-124,126-135,
137,140,142-149,151-154,156-159,161,162,165-176,179,181,184-187,189-192,194-196,198,200-208]

French 27 (13.9) [39,49,52,73,76,77,81,89,93,94,113,115,118,125,136,138,139,155,163,164,177,178,182,183,188,193,197]

German 9(4.6) [18,26,69,95,117,150,160,180,199]

Korean 3(15) [40,65,82]

Japanese 1(0.5) [98]

Not mentioned 21 [70,241]

Discussion

Principal Findings

As CDWs become more prevalent and are adopted in many
countries, they open up opportunities for clinical NLP to
flourish. This review shows that the use of NLP on data from
CDWs is primarily focused on extracting information from
clinical texts and identifying patients. Depending on the task,
various methods can be used, from symbolic methods to
machine learning and deep learning techniques. The oldest
CDWs are associated with the most numerous publications.
This shows that the use of NLP is not a 1-time event but is
intended to be established in the long term. It contributes to the
continuous quality improvement of data made available in
CDWs.

Symbolic and linguistics methods have still been widely used
in recent years, despite the preponderance of deep learning
approaches that have shown excellent results across a majority
of tasks. This shows that some tasks can be partially achieved
with classical NL P techniques, such as regular expressions and
pattern matching that exploit speciaized lexica such as drug
lists and terminologies. Existing information extraction tools
such as cTAKES, MedLEE, and MetaMap offer easy handling
and satisfactory results. As a result, they are often used for
processing English language clinical text.

Interestingly, the number of data languages presented in our
review is quite low—only 5 languages. English, French,
German, Korean, and Japanese. This can be explained by three
factors: (1) CDWs are not cited as data sources in articles,
resulting in abias related to queries; (2) CDWSs are operational
in another country, but NL P has not yet been used on these data;
and (3) CDWs have not yet been adopted in every country.

Opportunitiesand Challenges

Although NLP methods are becoming increasingly popular,
there remain challenges within the clinical field. This review
demonstrates that the use of NLP in CDWs is becoming more
frequent over time. However, CDWs till rarely provide open
access for NLP research owing to medical data confidentiality.
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A first step to partially overcome the privacy constraints could
involve working on deidentified or anonymized data from
CDWs, as has been done in some recent shared tasks
[202,204,205,210]. These shared tasks, crucial for making
advancesin medical NLP research, are too scarce, particularly
for languages other than English [9]. Providing an appropriate
measure to respect patient privacy should encourage
collaboration among hospital and NLP research teams and
facilitate access to clinical data.

The globa movement is toward the structuring and
interoperability of clinical data; yet, the finer points of medical
reasoning are always expressed in textual reports, and such
information cannot always be structured. The increase in NLP
approaches applied to clinical datacould lead to major advances
in clinical research, both to identify the populations of interest
and to retrieve relevant information of these patientsfor clinical
research. NLP could also have a positive impact on the daily
life of caregivers by speeding up accessto information contained
in patient EHRs using automated tools for the summarization
of patient history. Indeed, caregiversinvest asignificant amount
of time recording information gathered during care delivery in
textual reports. Surprisingly, they also dedicate an equivalent
amount of time sifting through numerous documentsto retrieve
this information when needed.

Structured or semistructured data stored in CDWs provide
information about patient follow-up and can serve asavaluable
resource for developing or enhancing NLP systems. Indeed,
temporal data can offer guidance on where the information is
most relevant in the text. In addition, other data such as PHI,
including names, surnames, and addresses, can be used as a
starting point in NLP systems.

Clinical dataare ause casefor NLP research. They possessthe
advantage of being accessible in multiple languages owing to
the global nature of medical care. This accessibility enhances
research efforts focused on multilingualism. Such data are
available in abundance, facilitating the acquisition of effective
clinical text representations that can be applied in deep neural
networks to learn relevant concept models. Clinical data fall
within the category of specialized domains or languages
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designed for specific purposes. They share certain properties,
such as specific knowledge, uses, and discourse. Thisalso entails
undertaking specific tasks such as deidentification or
anonymization.

Theanalysisof the literature conducted here highlightsthe need
for further development of CDWSs, with a stronger integration
of NLP applications throughout the entire data value chain.

Limitations

The NLP tasks identified in this review cover only asmall part
of al existing NLP tasks in the general domain. These tasks
globally reflect the primary needsin clinical research, such as
identifying the study population and extracting clinical
information for a defined population. Other tasks, such as
context analysis and language modeling, have been widely
studied in the general domain NLP but are less prevalent in the
clinical domain. In recent years, transformer-based approaches
have emerged as the state-of-the-art methods for most NLP
tasks. However, this review indicates that these methods have
not fully spread to the clinical domain. Thisdemonstratesagap
between methodsthat are well establishedin the general domain
NLP and their adoption in specific domains such asthe clinical
domain.

This review focuses on 2 very specific subjects from different
emerging domains: clinical NLP and CDWs. This combination
of subjects implies the use of multiple bibliographic databases
and the aggregation of multiple queriesto ensure good coverage
of the literature. Some bibliographic databases cover a wider
range of articles and include articles already present in other
more specialized sources. To avoid having asurfeit of duplicate
articles, we prioritized the use of the most encompassing
bibliographic databases. Google Scholar and PubMed. This
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introduces abias of completeness because relevant articles could
be missing from the selected bibliographic databases and be
present in otherswe did not use in this review, such as Scopus,
Web of Science, and Embase.

There is another bias of completeness related to the search by
keywords in the bibliographic databases. A given concept can
be expressed in variouswaysin natural language, using different
keywords. The choice of keywordsiscrucial to aim at both high
specificity and high sensitivity, even if the selected keywords
are searched in the whole paper. In this review, we used very
broad keywordsto have the highest sensitivity but at the expense
of specificity (n=194, 14.34% relevant articles among 1353
articlesidentified from the queries).

Conclusions

CDWs are centra to the secondary use of clinical texts for
research purposes. Our review highlights the growing interest
in computerized health data, particularly in clinical texts, where
NLPisused to addressvariousclinical tasks. Thesetasksinclude
patient identification and information extraction, as well as
clinical NLPtasks such aslanguage modeling, context analysis,
and EHR deidentification. The broad spectrum of NLP
approaches has been effectively leveraged, ranging from
symbolic methods to machine learning and deep learning
methods. Despitethe prevalence of pretrained language models
in the broader NLP domain, symbolic and linguistics methods
have continued to be used in recent years. Intherealm of clinical
NLP for CDWs, the trends align with global NLP patterns,
where resources and methods are predominantly developed for
the English language. The development of NLP in the medical
field will require cooperation between health care and NLP
experts.
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