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Abstract

Background: Knowledge discovery from treatment data records from Chinese physicians is a dramatic challenge in the
application of artificial intelligence (AI) models to the research of traditional Chinese medicine (TCM).

Objective: This paper aims to construct a TCM knowledge graph (KG) from Chinese physicians and apply it to the
decision-making related to diagnosis and treatment in TCM.

Methods: A new framework leveraging a representation learning method for TCM KG construction and application was
designed. A transformer-based Contextualized Knowledge Graph Embedding (CoKE) model was applied to KG representation
learning and knowledge distillation. Automatic identification and expansion of multihop relations were integrated with the CoKE
model as a pipeline. Based on the framework, a TCM KG containing 59,882 entities (eg, diseases, symptoms, examinations,
drugs), 17 relations, and 604,700 triples was constructed. The framework was validated through a link predication task.

Results: Experiments showed that the framework outperforms a set of baseline models in the link prediction task using the
standard metrics mean reciprocal rank (MRR) and Hits@N. The knowledge graph embedding (KGE) multitagged TCM
discriminative diagnosis metrics also indicated the improvement of our framework compared with the baseline models.

Conclusions: Experiments showed that the clinical KG representation learning and application framework is effective for
knowledge discovery and decision-making assistance in diagnosis and treatment. Our framework shows superiority of application
prospects in tasks such as KG-fused multimodal information diagnosis, KGE-based text classification, and knowledge
inference–based medical question answering.

(JMIR Med Inform 2022;10(9):e38414) doi: 10.2196/38414
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Introduction

Background
Having a long history of 5000 years, traditional Chinese
medicine (TCM) is featured as the scientific thinking of holistic
view and syndrome differentiation, as well as the long-time
practice of technical methods of personalized treatment. TCM

has the advantages of precise clinical efficacy, relatively safe
medication, flexible treatment, and relatively low cost [1].
However, a large amount of empirical knowledge exists with
Chinese physicians, which is difficult to be applied directly in
assisting clinical decision-making systems. At the same time,
the dismantling of medical guidelines alone cannot cope with
all situations, and existing clinical assisted decision-making
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systems cannot explain the ins and outs of diagnostic decisions
as senior experts do.

The combination of knowledge graphs (KGs) and artificial
intelligence (AI) models has the bilateral advantages of “black
box” and “logic.” Using knowledge graph embedding (KGE)
techniques, KGE models may partially simulate the cognitive
process of the human brain by representing massive entities,
relations, and attributes. By combining with the causal events
extracted from the text of event descriptions by causality
extraction techniques, event information can be presented in
structured form. KGs and machine learning models are expected
to be integrated to assist machine understanding and concept
interpretation, allowing the decision-making process of machines
to be interpretable. However, how to construct a TCM KG and
apply it with KGE models is still a challengeable problem.

To that end, this paper proposes a new framework leveraging
a representation learning method for TCM KG construction and
application. TCM knowledge is extracted from Chinese
physicians based on 1 of our previous works [2] by using an
automatic procedure of information extraction concept
normalization, entity alignment. The framework collects
multimodal information about Chinese medicines to support
the automatic construction of personalized KGs according to
clinical disease treatments by Chinese physicians. Our
framework has application potential in text classification,
KG-based question answering, and recommendations of
practitioners and specialties.

The main contributions of this paper are threefold: (1) A new
framework for the construction and application of TCM KG by
leveraging representation learning is proposed, (2) a
transformer-based Contextualized Knowledge Graph Embedding
(CoKE) model is applied to KG representation learning and
knowledge distillation by integrating multihop relations, and
(3) a TCM KG containing 59,882 entities, 17 relations, and
604,700 triples is constructed.

Related Work

Medical Knowledge Graph
The concept of KG was proposed by Google in 2012. Research
applications evolved by previously improving the capabilities
of search engines and enhancing the search quality and
experience of users related to finance, healthcare, geography,
e-commerce, and medical care. There exist many KGs, including
on Google Knowledge Graph [3], DBpedia [4], Yet Another
Great Ontology (YAGO; Max Planck Institute for Computer
Science) [5], and FreeBase (Metaweb Technologies, Inc.) [6].
In China, there are Zhi Cube (Sogou), Zhi Xin (Baidu),
zhishi.me (Shanghai Jiao Tong University) [7], and the GDM
Lab Chinese KG project (Fudan University) [8]. In the medical
field, the KG of medicine NKIMed [9] was developed by the
Institute of Computer Technology of the Chinese Academy of
Sciences, and the KG of Chinese medicine [10] was constructed
by the Institute of Chinese Medicine Information of the Chinese
Academy of Traditional Chinese Medicine. The Traditional
Chinese Medicine Language System (TCMLS) is a relatively
large semantic network for the KG of Chinese medicine [11],
containing more than 100,000 concepts and 1 million semantic

relations, which basically covers the conceptual system of TCM
disciplines. The TCMLS was in the leading position of the TCM
community in terms of its scale and completeness. Rotmensch
et al [12] extracted positive mentions of diseases and symptoms
(concepts) from structured and unstructured data in electronic
medical records (EMRs) and used them to construct a health
KG automatically.

Knowledge Graph Representation Learning
Graph neural networks (GNNs) are deep learning architectures
for graph-structured data, which combine end-to-end learning
with inductive reasoning. GNNs are promising research topics
of AI, and they are expected to solve the problems of causal
inference and interpretability that cannot be handled by
traditional deep learning models. KG representation learning is
a critical branch of the research on GNNs and plays a nontrivial
role in knowledge acquisition and downstream application. KG
representation learning consists of elements such as
representation spaces (pointwise space, complex vector space,
gaussian distribution, manifold, and group), scoring functions
(distance-based and semantic-matching scoring functions), and
encoding models (linear/bilinear, factorization models and neural
networks).

Translational models leverage translational distances (eg, L1
or L2 norm) to model relations between head and tail entities.
TransE is one of the representative translational models [13].
Dealing with 1-to-N, N-to-1, and N-to-N relations, TransE
suffered from inefficiency problems in representing head or tail
entities. To alleviate such problems, KGE models, including
TransH [14], TransR [15], and TransD [16], were designed to
impose translational distance constraints through different entity
projection strategies. RotatE considers the embedding vectors
of relations as rotations from source entities to target entities in
a complex space [17].

The basic idea of factorization models is to decompose the
matrix of each slice in a 3-way tensor into a product of entity
vectors and relation matrices in the lower-dimensional space.
The RESCAL model leveraged a relation-associated matrix to
capture interactions between head and tail entities, which
required a large number of parameters to model relations [18].
Therefore, vector forms of relations were introduced in DistMult
[19] to decrease model parameters by restricting the interaction
matrices to diagonal matrices. To increase the interactions
between head and tail entities, a circular correlation operation
was leveraged as the score function in the expressive HolE
model [20]. Inspired by DistMult, the ComplEx model extended
the representations of entities and relations by utilizing
embedding vectors in a complex space [21]. An expressive KGE
model named SimplE used 2 vectors for each entity to learn
independent parameters through simplifying ComplEx by
removing redundant computation [22].

In recent years, inspired by convolution operations,
convolution-based KGE models, such as ConvE [23], ConvKB
[24], and CapsE [25], were designed as different strategies to
capture features between entities and relations for KG
representation learning. A KGE model named knowledge base
attention (KBAT) extended the graph attention (GAT) network
by exploring the multihop representation of a given entity for
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representation aggregation via multihead attention and graph
attention mechanisms [26]. The natural language pretraining
model BERT [27] learned to integrate contextual information
in the KG based on the representation of the transformer [28].
CoKE [29] used a transformer to encode edge and path
sequences. These promising methods have attracted much
attention due to the high efficiency of convolution in
representation learning. CoKE aimed to learn the dynamic
adaptive representations of entities and relations based on a rich

graph structure context. Compared with static representations,
the performance of contextual models is state of the art, since
the representations combined with contextual semantic
information are richer and more flexible. Despite the use of a
transformer, CoKE was still parameter-efficient to obtain
competitive performance with fewer parameters. The
comparison of the KG representation learning models is shown
in Table 1.

Table 1. Comparison of baseline KGEa models.

Entity and relation embeddingScoring function fr(h,t)Model

Translational model

TransE [13]

TransH [14]

TransR [15]

TransD [16]

Linear/bilinear model

SimplE [22]

HolE [20]

Rotational model

QuatE [30]

RotatE [17]

Convolutional neural network

ConvE [23]

ConvKB [24]

GNNb

KBATc [26]

Neural network transformer

CoKEd [29]

aKGE: knowledge graph embedding.
bGNN: graph neural network.
cKBAT: knowledge base attention.
dCoKE: Contextualized Knowledge Graph Embedding.
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Application of Medical Knowledge Graphs
The hot topics related to the application of medical KGs are
KG-fused multimodal information diagnosis, KGE-based text
classification, and knowledge inference–based medical question
answering and assisted diagnosis. Shen et al [31] reused the
existing knowledge base to build a high-quality KG and
designed a prediction model to explore pharmacology and KG
features. The model allowed the user to gain a better
understanding of the drug properties from a drug similarity
perspective and insights that were not easily observed in
individual drugs. Zheng et al [32] took advantage of 4 kinds of
modality data (X-ray images, computed tomography [CT]
images, ultrasound images, and text descriptions of diagnoses)
to construct a KG. The model leveraged multimodal KG
attention embedding for diagnosis of COVID-19. The
experimental results demonstrated that it was essential to capture
and join the importance of single- and multilevel modality
information in a multimodal KG. Li et al [33] designed an
AI-powered voice assistant by constructing a comprehensive
knowledge base with ontologies of defined Alzheimer disease
and related dementia (ADRD) diet care and user profiles. They
extended the model with external KGs, such as FoodData
Central and DrugBank, which personalized ADRD diet services
provided through a semantics-based KG search and reasoning
engine.

With the development of deep learning methods, diagnostic
decisions have become interpretable. Theoretically, rule-based
engines may infinitely approximate the performance of nonlinear
classifiers by mining the expanded knowledge. In other words,
through the integration of interpretable knowledge rules,
rule-based engines may approximate the performance of deep
learning models. Through deep mining of rules, the clinical
assisted decision-making system may be able to perform
multiple rounds of rule expansion under dynamic thresholds
and further extend the capability of decision-making based on
existing knowledge.

Methods

TCM Knowledge Graphs
To construct a TCM KG (Table 2) for ordinary usage, such as
disease diagnosis and treatment assistance, we cleaned the EMR
data set of diagnosis and treatment of TCM diseases and
represented the relations of entities in triples. For instance, given
a description text of insulin resistance as a mechanism of type
2 diabetes, the entities and relations in the sentence were
extracted and organized into a disease mechanism triple of
(insulin resistance, mechanism=>disease, diabetes). A KG was
defined as G=(E,R,S), where entities, relations, and triples are

, respectively, and |E| and
|R| are the counts of entities and relations. The triples consisted
of entities, relations, describing concepts, or attributes.

Traditional KGE models are designed to learn static
representations of entities and relations. The features of graph
contexts are obtained by representing neighbor entities and
relations. Different meanings are expressed by entities and
relations in diverse contexts, as words appear in different textual
contexts. Multihop relations (ie, paths between entities) can
provide rich contextual features for reasoning in KG [29].
Existing work [34] shows that multihop relation paths contain
rich inference patterns between entities. Since not all relation
paths are reliable, we designed a causal-constraint algorithm to
filter the reliability of relation paths. Relation paths were
represented via semantic composition of relation embeddings.
The screened multihop relations were extended to triple
alternative combinations.

The rules for screening potential multihop causal relations are
shown in Figure 1. For example, there exist triples (insulin
resistance, treat, diabetes mellitus) and (metformin, mechanism,
insulin resistance) in a clinical KG describing the relations
between clinical mechanism and disease (or drug) as a positive
example in the figure. The relations can be inferred as the causal
multihop relation between a drug and a disease by the rules
drug=>mechanism and mechanism=>disease, indicating that
metformin can treat insulin-resistant diabetes. The triples
(dyslipidemia, symptom, diabetes mellitus) and (dyslipidemia,
symptom, CKD [where CKD refers to chronic kidney disease])
co-occurred and thus could not reflect the causal relation
between diabetes mellitus and CKD or dyslipidemia. Such
negative triples were screened according to the rules.

An example of a casual multihop relation of TCM disease
(abdominal mass)=>mechanism (phlegm dampness, toxin, blood
stasis)–mechanism=>mechanism (clearing heat-toxin,
eliminating dampness)–disease=>drug (root of Chinese
Pulsatilla) can be inferred according to the rules (abdominal
mass, disease=>drug, phlegm dampness, toxin, blood stasis),
(phlegm dampness ,  toxin ,  blood stasis ,
mechanism=>mechanism, clearing heat-toxin, eliminating
dampness), and (abdominal mass, disease=>drug, root of
Chinese Pulsatilla). In other words, casual multihop relations
of TCM can be inferred, which conform to the cognition of
diseases–syndrome–principle–method–recipe–medicines of
TCM, including the aforementioned path
disease=>mechanism=>treatment=>drug.

The semantics of the entities diabetes mellitus and metformin
were enriched by the embeddings of the 2-hop path inferred by
triples (metformin, mechanism, insulin resistance) and (insulin
resistance, treat, diabetes mellitus). To represent multihop
relations, given the 2-hop path from the entity metformin to
diabetesmellitus, triple forms (metformin, mechanism-treat,
diabetes mellitus) were used for consistency. Since the multihop
features were integrated, the representations of entities and
relations tended to have strong inference capability, which
facilitated entity link prediction. The KG was represented as
textual triples that described multihop relations of entities.
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Table 2. Overview of the TCMa KGb.

Triples, nTails, nHeads, nRelation name

51,34585448101symptom=>symptom

133,64815,07112,225disease=>symptom

84,52411,52612,650disease=>drug

59051527mechanism=>mechanism

24,72461453941symptom=>drug

10,90610966544symptom=>mechanism

87,65110,3918101symptom=>disease

4408651908mechanism=>department

54885318symptom=>body parts

3221722217mechanism=>body parts

16,37741912147mechanism=>symptom

24,87017810,157symptom=>department

46,42553047774disease=>mechanism

13,5051107607disease=>body parts

40,76228414,484disease=>department

40,57510,5459728disease=>disease

20,62154432228mechanism =>disease

aTCM: traditional Chinese medicine.
bKG: knowledge graph.

JMIR Med Inform 2022 | vol. 10 | iss. 9 | e38414 | p. 5https://medinform.jmir.org/2022/9/e38414
(page number not for citation purposes)

Weng et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Positive and negative examples of multihop relation filtering and generation. CKD: chronic kidney disease; T2DM: type 2 diabetes mellitus.

Knowledge Graph Representation Framework
After preprocessing of the TCM KGs, we applied a CoKE-based
KG representation learning model based on a diagnosis and
treatment KG of Chinese and Western medicine and proposed
a new KG representation framework. Compared with popular

knowledge representation learning models, such as TransE and
KBAT, our framework features the fusion of CoKE and
multihop relations. The framework was verified with
downstream applications, such as assisted decision-making and
question answering, as shown in Figure 2.
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Figure 2. Proposed framework of TCM KG representation learning. CoKE: Contextualized Knowledge Graph Embedding; KG: knowledge graph;
TCM: traditional Chinese medicine.

Entity Link Prediction
The CoKE model was leveraged as the base model in this paper.
The BERT model was leveraged to learn contextualized
embeddings of entities and relations in CoKE. The input
sequence X = (x1, x2, …, xn) consisted of the embeddings of a
head entity x1 and a tail entity xn, while the embeddings of
relations were denoted as x2 from xn–1. Given xifrom the input
sequence, the hidden representation hi was expressed as
Equation 1:

where is the embedding of an element and is the
positional embedding of an element. The former was used to

identify the current entities or relations in , and the latter
presented the positional features of the element in the sequence.
The constructed hidden representations were fed into transformer
encoders of L layers as Equation 2:

where is the hidden representation of xi at the l-th layer of
the encoder. A multihead self-attention mechanism was
leveraged by the transformer, which allowed each element to
attend to other elements in the sequence effectively for
contextual feature modeling. As the use of transformers has
become ubiquitous recently, we omitted a detailed description

of the transformer. The final hidden representations are
representations for entities and relations within the sequence
X. The learned representations were naturally contextualized
and automatically adaptive to the input.

Multihop Relational Representation Learning
Given a triple (s,r,o) in a KG, the contexts between a head and
a tail entity can be described as an edge and a path. An edge
s→r→o is presented as a sequence that can be viewed as a triple.
For instance, an edge metformin→mechanism→insulin
resistance can form a triple (metformin, mechanism, insulin
resistance) equivalently. As the basic unit of a KG, an edge (or
a triple) is the simplest form of a graph context describing an
entity. Another context is a path s→r1→…→rk→o as a sequence
consisted of head and tail entities and a list of linked relations
be tween  them.  For  ins tance ,  the  pa th

describes multihop
relations between the head entity metformin and the tail entity
diabetesmellitus, where insulin resistance is the intermediate
entity in the path, while mechanism and treat are the relations.
The path can be expressed as a triple (metformin,
mechanism-treat, diabetes mellitus). Consisting of contextual
features of entities, the multihop path representation can be
leveraged for reasoning in a KG.

To verify the effectiveness of the model, experiments of entity
link prediction in knowledge graph completion (KGC) [35] and
multihop relation representation learning were conducted. Entity
link prediction refers to a task that predicts missing target
entities of triples (h, r, ?) and (?, r, t) with a candidate entity set
by semantic constraints of KGE models. PathQuery answering
[36] was utilized in the experiments of multihop relation
representation learning. Given a source entity s and a relation
path p, a set of target entities that were inferred from the source
entity s via the path p was predicted.
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In entity link prediction, our model was trained to predict
missing target entities, given a context in the KG, answering
1-hop or multihop queries. Different strategies were considered
to train our model with respect to the cases of edges and paths.
Each edge s→r→o is associated with 2 instances ?→r→o and
s→r→?, which can be regarded as 1-hop query answering. For
instance, metformin→mechanism→? is to answer the query,
What is the mechanism of metformin? Similarly, each path
s→r1→…→rk→o is also associated with 2 instances, one to
predict s and the other to predict o, which can be viewed as
multihop question answering. For instance,

is to answer the query, What
disease can be treated by the mechanism of metformin?

In the training procedure, edges or paths were unified as an
input sequence X = (x1, x2, …, xn). Two instances were created
by replacing x1 with a special token [MASK] for s prediction
and by replacing xn with [MASK] for o prediction. The masked
sequence was fed into the transformer encoding blocks to obtain
the final hidden representation for target entity prediction.

As in the BERT model, the representations of the masked
entities were fed into a feedforward neural network and a
standard Softmax layer was leveraged for classification
(Equation 3):

where z1 and zn are the representations of hL
1 and hL

n produced

by the feedforward layer, while is a matrix shared
with the input element embedding matrix for classification. D
is the hidden size, V is the size of the entity vocabulary, and p1

and pn are the predicted distributions of target entities s and o.
Cross-entropy loss was leveraged as the loss function for
classification (Equation 4):

where yt and pt are the t-th components of the 1-hot label vector
y and the distribution vector p, respectively. A label-smoothing
strategy was leveraged to lessen the restriction of 1-hot labels.
In other words, the value of the target entity was set to ε, while
yt = (1 – ε)/(V – 1) for incorrect entities in the candidate entity
set.

Knowledge Distillation
Inspired by the idea of TinyBERT [37] for knowledge
distillation, our model CoKE-distillation contains a teacher and
a student model for knowledge distillation, as shown in Figure
3.

Figure 3. Architecture of CoKE-distillation. CoKE: Contextualized Knowledge Graph Embedding.

Our proposed CoKE-distillation model consists of 3 levels of
distillation: embedding layer distillation, transformer -layer
distillation, and prediction layer distillation. At the embedding
layer distillation level, the embedding matrices of the student
and teacher model are constrained by the mean-square error
(MSE) loss (Equation 5):

where is a trainable linear transformation matrix
to project the embedding of the student model into the semantic
space of the teacher model. The embedding matrices of the
student and teacher models are denoted by

, where l is length of the sequence, d0

is the size of the embeddings of the teacher model, and d is the
size of the embeddings of the student model.

At the level of transformer layer distillation, the
CoKE-distillation model distills knowledge in k-layer intervals.
For instance, if the student model has 4 layers, a transformer
loss is calculated every 3 layers, since the teacher model has 12
layers. The first layer of the student model corresponds to the
third layer of the teacher model, while the second layer of the
student model corresponds to the sixth layer of the teacher model
and so on. The transformer loss of each layer is divided into 2
parts, attention-based knowledge distillation and implicit
state–based knowledge distillation. The loss of each layer
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consists of an attention-based knowledge distillation loss and
a hidden state-based knowledge distillation loss.

The attention-based knowledge distillation loss is expressed as
Equation 6:

where h is the number of attention heads, refers to the
attention matrix corresponding to the i-th head of the teacher
or the student, and l is the length of the input text.

The hidden state-based knowledge distillation loss is expressed
as Equation 7:

where the matrices refer to the hidden
representations of student and teacher models, respectively. At
the level of prediction layer distillation, prediction loss is shown
as Equation 8:

where zT and zS are the logit vectors predicted by the student
and the teacher respectively, CE means the cross-entropy loss,
and t means the temperature value. In our experiment, t was set
to .

Results

Data Set
To evaluate the proposed model, a widely used standard data
set FB15k-237 [38] was used, which is a subset of the Freebase
knowledge base [6] with 14,541 entities and 237 relations. Due
to redundant relations existing in the FB15k data set,
FB15K-237 removes the inverse relations, preventing models
from directly inferring target entities by inverse relations. The
FB15k-237 data set is randomly divided into 3 sets (training,

validation, and test sets), with 272,115 triples in the training
set, 17,535 triples in the validation set, and 20,466 triples in the
test set.

We constructed a medical diagnosis and treatment data set of
TCM, called TCMdt, consisting of entities and relations as
triples. The data set contained 17 kinds of relations, 59,882
entities, and 604,700 triples without repetitive and inverse
relations. There were 3811 kinds of N–1 relations, such as
relation combinations mechanism-body parts and
mechanism-mechanism. The rest of the relations were N–N
relations, 600,868 in total. There were no 1–1 and 1–N relations
in the data set. The data set was divided into a training, a
validation and a test set, containing 59,882 entities and 17
relations in total. The details of the FB15k-237 and TCMdt data
sets are shown as Table 3.

The hypertension data set (Table 4) in TCM for the multilabel
modeling task was used in our experiment to evaluate the
effectiveness of KGE learning. TCM has been used for the
diagnosis of hypertension and has significant advantages.
Symptom analysis and modeling of TCM provide a way for
clinicians to accurately and efficiently diagnose hypertension.
In this study, the initial data were collected from trained
practitioners and clinical practitioners. Details of 928 cases of
hypertension were collected from the clinical departments of
the Guangdong Provincial Hospital, with both inpatient and
outpatient medical records from the Liwan district [39]. All
cases with incomplete information were removed from the data
set, and the remaining 886 (95.47%) cases were used for analysis
in this study.

Each case in the data set had 129 dimensions of TCM symptom
features and syndrome diagnosis labels in 1-hot format. Each
case had 2-5 labels of TCM syndrome diagnosis reidentified
by trained clinicians. The KGE of the syndrome entities and
the symptom vectors and matrix were constructed from the
aforementioned TCMdt data set.

Table 3. Statistics of the FB15k-237 data set and the constructed TCMdt data set.

Triples in the test set, nTriples in the validation set, nTriples in the training set, nRelations, nEntities, nData set

20,44617,535272,11523714,541FB15k-237

30,23530,235544,230 1759,882TCMdt

Table 4. Statistics of the hypertension data set in TCMa.

ValidationTotal cases, NClasses, nFeatures, n

10-fold cross-validation8868121

aTCM: traditional Chinese medicine.

Baselines
Baseline methods were used for comparison in the experiments,
including translational models, bilinear models, a rotational

model, a GNN, and a transformer-based model. The details of
the models and their types are shown in Table 5.
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Table 5. Baseline methods for KGa representation learning.

ModelsType of model

TransE [13], TranH [14], TransR [15], TransD [16]Translational model

ComplEx [21], DistMult [19], SimplE [22]Linear/bilinear model

RotatE [17]Rotational model

KBATc [26]GNNb

CoKEd [29]Transformer-based model

aKGE: knowledge graph.
bGNN: graph neural network.
cKBAT: knowledge base attention.
dCoKE: Contextualized Knowledge Graph Embedding.

Evaluation Metrics
With respect to the evaluation metrics, Sun et al [40] found that
some high performance can be attributed to the inappropriate
evaluation protocols and proposed an evaluation protocol to
address this problem. The proposed protocol was more robust
to handle bias in the model, which could substantially affect
the final results. Ruffinelli et al [41] conducted systematic
experiments on the training methods used in various KGE
models and found that some early models (eg, RESCAL) can
outperform the state-of-the-art models, after adjusting the
training strategies and exploring a larger search space of
hyperparameters. This indicated that the performance
improvement of the models might not reflect their advantage,
since the training strategies might play a critical role. Therefore,
we established a unified evaluation standard to mine the valuable
ideas and superiority of the models.

We used the mean reciprocal rank (MRR) and Hits@N, which
are frequently used evaluation metrics for link prediction task
in KGs (Equations 9 and 10). Applying the filtered settings
given by Wang et al [14], the rank of the head or tail entities in
a test triple (ei, rk, ej) was computed within a filtered entity set.
The filtered entity set contained entities that could be used to
generate valid triples without valid head or tail entities in the
training set. A large value of the MRR indicates that the KGE
model have the capability of precise entity representation, while
Hits@N denotes a rate of head and tail entities that rank within
N (1, 3, or 10) empirically.

In the equations, |Γt| is the size of testing triple set Γt and I(·) is

an indicator function, while denote values of ranks
for a head and a tail entity ei and ej, respectively.

Model Performances
During the comparison, we evaluated the models with
embedding vectors of 256, 512, 1024, and 2048 dimensions and
sufficient iterations to ensure the obtained embeddings were
qualified for the sake of the downstream task. The results are
shown in Tables 6 and 7. Compared with the baseline models,
the CoKE model showed a competitive performance on both
the standard data set and the constructed TCMdt data set. The
CoKE model had the highest MRR and CoKE-multihop model
had the best Hits@10. The CoKE-multihop-distillation model
still showed a competitive performance on the MRR and
HIT@10 compared to the CoKE model.

To evaluate the effectiveness of the KGE learning, 10-fold
cross-validation was used in the multilabel modeling task
experiments. Compared with typical models multilabel k nearest
neighbors (MLKNN), RandomForest-RAkEL (where RAkEL
refers to random k-labelsets), LogisticRegression-RAkEL, and
deep neural network (DNN) [42], the proposed model
outperformed the baseline models on metrics precision, recall,
and the F1 score, as shown in Table 8. In addition, multilabel
models with KGE had better performance than those without
KGE. The results demonstrate that learned KGE is capable of
improving the performance of deep learning models.

As shown in Figure 4, the DNN+BILSTM-KGE (where
BILSTM refers to bidirectional long short-term memory)
outperformed the DNN on evaluation metrics (eg, precision and
F1 score) in the training procedure. Compared with the DNN,
the average precision and F1 score of DNN+BILSTM-KGE
showed improvement, with the Hamming loss significantly
decreasing for the first 50 iterations.
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Table 6. Performance comparison of link prediction on the FB15k-237 data set.

Hits@NMRRaModels

@1@3@10

0.1960.3300.4990.296TransE

0.2120.3410.4960.306SimplE

0.2210.3470.5050.314RotatE

0.2000.3330.4890.296ComplEx

0.2110.3460.5060.309DistMult

0.1030.2480.3370.103KBATb

0.2000.3330.5270.407ConvKB

0.2690.4000.5500.362CoKEc

aMSE: mean-square error.
bKBAT: knowledge base attention.
cCoKE: Contextualized Knowledge Graph Embedding.

Table 7. Performance comparison of link prediction on the TCMdt data set.

Hits@NMRRaModels

@1@3@10

0.1500.2790.4280.243TransE

0.1130.2220.4360.162SimplE

0.0900.1930.4240.146RotatE

0.0800.1770.4110.137ComplEx

0.1170.2230.4380.164DistMult

0.1920.3020.4640.271ConvKB

0.2500.3650.4910.332CoKEb

0.0880.1780.3690.129KBATc

0.2610.2780.5150.251CoKE-multihop

0.2600.3740.4830.32CoKE-multihop-distillation

aMSE: mean-square error.
bKBAT: knowledge base attention.
cCoKE: Contextualized Knowledge Graph Embedding.
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Table 8. Results of 10-fold cross-validation of deep learning multilabel models.

F1 scoreRecallPrecisionIndex

MLKNNa (Hamming loss=0.186; best parameter: K=26)

0.7600.7100.810Micro-avg

0.6600.6100.800Macro-avg

RandomForest-RAkELb (Hamming loss=0.186; best parameter: n_estimators=800)

0.7600.7400.790Micro-avg

0.6700.6400.760Macro-avg

LogisticRegression-RAkEL (Hamming loss=0.173; best parameter: C=0.5)

0.7800.7500.810Micro-avg

0.7000.6600.760Macro-avg

DNNc (Hamming loss=0.186; best parameters: hidden=500, layer=3)

0.7600.7400.790Micro-avg

0.7000.6700.750Macro-avg

DNN+LSTMd-KGEe (Hamming loss=0.167; best parameters: hidden=500, layer=3, LSTM=128)

0.7900.7900.800Micro-avg

0.7400.7400.740Macro-avg

DNN+BILSTMf-KGE (Hamming loss=0.127; best parameter: LSTM=128)

0.8400.8200.860Micro-avg

0.7900.7700.810Macro-avg

aMLKNN: multilabel k nearest neighbors.
bRAkEL: random k-labelsets.
cDNN: deep neural network.
dLSTM: long short-term memory.
eKGE: knowledge graph embedding.
fBILSTM: bidirectional long short-term memory.

Figure 4. Performances of DNN and DNN+BILSTM-KGE. BILSTM: bidirectional long short-term memory; DNN: deep neural network; KGE:
knowledge graph embedding.
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Learned representations of entities were visualized by t-SNE,
as shown in Figure 5. Symptoms and TCM syndrome elements
are denoted by ○ and X, respectively. The representation
distribution conformed to theoretical common sense in TCM
with obvious boundaries (ie, silhouette score>0.44) between
different classes of TCM syndromes. Intuitively, the learned
representations preserved the semantic information about TCM
syndromes by using the proposed KGE learning methods. In

addition, the relation between entities Yang hyperactivity and
dizziness was similar to the relation between entities liver
depression and stringy pulse, indicating that the semantic
constraint of translational distance is preserved after training.
The results show that representations learned by the proposed
KGE learning method are capable of providing semantic
information in TCM.

Figure 5. Learned representations of entity visualization.

Discussion

Principal Findings
The experiments show that the CoKE model has a more stable
performance and can be used for improving downstream tasks.
We assume that downstream tasks may be improved by KGE
learning, since semantic information provided by KGE is
preserved in learned representations of missing entities and
relations in a KGC task. KGE is suitable to be applied in
scenarios that suffer from incompleteness issues, including
knowledge discovery for diagnosis and treatment and assisted
decision-making in TCM. Based on the clinical KGE model,
we automatically extracted the information about dominant
diseases treated by Chinese physicians, evidence, symptoms,
theories, treatment methods, prescriptions, medicines, and
concept mappings according to the definition of clinical
knowledge ontology by the physicians. Inspired by Luo et al
[43] and Jin et al [44], the triples in a clinical KG are used to
learn a personalized KGE model of Chinese physicians.

The problem of incompleteness of a KG is alleviated by entity
link prediction of the personalized KGE model. Through the
visualization of the KG, our system assists experts in identifying

and expanding the potential relations and neighbors of entities
in order to obtain explicitness of the implicit knowledge.
Through multiple iterations of embedded learning, the KGE
model is suitable for treatment decision-making of Chinese
physicians. The theories, treatment methods, prescriptions,
capability of cause-effect reasoning, and interpretability are
enhanced.

Consisting of theories, treatment methods, prescriptions, and
medicines of endometriosis (EM) in TCM, the visualization of
our KG is shown in Figure 6. A personalized KG for gynecology
is constructed to assist experts in knowledge discovery and
decision-making. The thickness of the arrows represents the
strength of the potential causality, and the size of the nodes
represents their importance in the KG of EM in gynecology.
Our system clusters the nodes and represents them with different
colors of the clusters. Different shapes of nodes represent
different entity types.

We referred to a large amount of ancient and modern literature
and the diagnosis and treatment data of Chinese and Western
medicine, combined with the techniques of entity extraction
and causality extraction in natural language processing.
According to the definition of domain knowledge by Chinese
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physicians, valid entities and relations from real cases include
the names of TCM diseases, Chinese medicines and
prescriptions, tests and examinations, names of Western
medicines and diseases, TCM symptoms, and hospital
departments. In the training procedure, the weights of the CoKE
model were updated until convergence in order to generate
embedding vectors that captured semantic features for clinical

interpretability. The proposed model can be applied for
personalized recommendations of Chinese physicians, question
answering, and optimization of diagnostic models.

Inspired by the heterogeneous network representation learning
model [45], a framework for knowledge discovery and
decision-making in TCM was proposed, as shown in Figure 7.

Figure 6. Visualization of a personalized KG that consists of theories, treatment methods, prescriptions, and medicines of EM in TCM. EM: endometriosis;
KG: knowledge graph; TCM: traditional Chinese medicine.
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Figure 7. Application of the framework to knowledge discovery and decision-making in TCM. CKG: collaborative knowledge graph; TCM: traditional
Chinese medicine; QA: question and answer.

For medical recommendation and assisted decision-making, the
first step is to collect objective information about the four
diagnostic methods. The clinical KG incorporates multimodal
information recognized from tongue and facial diagnosis
equipment, which can be used to improve the performance of
models, even in few-shot learning scenarios. KGs can be used
to effectively solve the problems of sparsity and cold start in
recommendation systems. Integrating KGs into recommendation
systems as external information facilitates the systems with
common-sense reasoning capability. Based on the powerful
capability of information aggregation and the inference of
GNNs, we designed a recommendation system to recommend
symptoms, diseases, and Chinese physicians, which effectively
improves the performance of recommendations. In addition,
the information propagation and inference capability of GNNs
also provide interpretability for the results of recommendations.

The model can be used for high-quality assisted decision-making
in diagnosis and treatment based on multimodal information
and specialty questionnaires. Our system helps practitioners
and patients efficiently build online profiles, which enhances
the research value of clinical cases. Constructed from natural
language, KGs have a strong connection to text mining. KGE
can be used to boost the performance of models for text
classification and generation. For example, KGE can be

leveraged for entity disambiguation when answering the question
of what glucose-lowering drug is better for obese diabetics.
Similar to link prediction, knowledge inference in question
answering infers new relations between entities, given a KG,
which is often a multihop relation inference process. For
instance, the question can be viewed as a query

which can be predicted
by PathQuery answering of CoKE for medicine recommendation
to obtain related medicines, including metformin [46-49].

Conclusion
In this paper, a KG-fused multihop relational adaptive CoKE
framework was proposed for screening enhancement, knowledge
complement, knowledge inference, and knowledge distillation.
The superiority of the model in knowledge discovery and
assisted decision-making in TCM was shown in experiments
and clinical practice. TCM is a systematic discipline focusing
on inheritance and practice. A large amount of knowledge is
hidden in the ancient literature and experimental cases of
Chinese physicians, which can be mined by researchers. In the
future, we aim to improve the quality of the intelligent system
of human-machine collaborative KGs in TCM. More in-depth
research will be conducted on the knowledge fusion of
heterogeneous GNNs, complex inference of KGs with GNNs,
and interpretable learning of GNNs.
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