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Abstract

Background: Cardiac magnetic resonance imaging (CMR) is a powerful diagnostic modality that provides detailed quantitative
assessment of cardiac anatomy and function. Automated extraction of CMR measurements from clinical reports that are typically
stored as unstructured text in electronic health record systems would facilitate their use in research. Existing machine learning
approaches either rely on large quantities of expert annotation or require the development of engineered rules that are
time-consuming and are specific to the setting in which they were developed.

Objective: We hypothesize that the use of pretrained transformer-based language models may enable label-efficient numerical
extraction from clinical text without the need for heuristics or large quantities of expert annotations. Here, we fine-tuned pretrained
transformer-based language models on a small quantity of CMR annotations to extract 21 CMR measurements. We assessed the
effect of clinical pretraining to reduce labeling needs and explored alternative representations of numerical inputs to improve
performance.

Methods: Our study sample comprised 99,252 patients that received longitudinal cardiology care in a multi-institutional health
care system. There were 12,720 available CMR reports from 9280 patients. We adapted PRAnCER (Platform Enabling Rapid
Annotation for Clinical Entity Recognition), an annotation tool for clinical text, to collect annotations from a study clinician on
370 reports. We experimented with 5 different representations of numerical quantities and several model weight initializations.
We evaluated extraction performance using macroaveraged F1-scores across the measurements of interest. We applied the
best-performing model to extract measurements from the remaining CMR reports in the study sample and evaluated established
associations between selected extracted measures with clinical outcomes to demonstrate validity.
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Results: All combinations of weight initializations and numerical representations obtained excellent performance on the
gold-standard test set, suggesting that transformer models fine-tuned on a small set of annotations can effectively extract numerical
quantities. Our results further indicate that custom numerical representations did not appear to have a significant impact on
extraction performance. The best-performing model achieved a macroaveraged F1-score of 0.957 across the evaluated CMR
measurements (range 0.92 for the lowest-performing measure of left atrial anterior-posterior dimension to 1.0 for the
highest-performing measures of left ventricular end systolic volume index and left ventricular end systolic diameter). Application
of the best-performing model to the study cohort yielded 136,407 measurements from all available reports in the study sample.
We observed expected associations between extracted left ventricular mass index, left ventricular ejection fraction, and right
ventricular ejection fraction with clinical outcomes like atrial fibrillation, heart failure, and mortality.

Conclusions: This study demonstrated that a domain-agnostic pretrained transformer model is able to effectively extract
quantitative clinical measurements from diagnostic reports with a relatively small number of gold-standard annotations. The
proposed workflow may serve as a roadmap for other quantitative entity extraction.

(JMIR Med Inform 2022;10(9):e38178) doi: 10.2196/38178
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Introduction

Cardiac magnetic resonance imaging (CMR) facilitates the
characterization of many important cardiac diseases including
left and right ventricular failure, left ventricular hypertrophy,
and aortic root aneurysms. Quantification of left ventricular
ejection fraction (LVEF) and classification of patients with heart
failure into those with reduced, moderately reduced, or preserved
ejection fraction is the cornerstone of selecting appropriate
therapies for a given patient [1]. CMR also quantifies right
ventricular function and is notably the only noninvasive
diagnostic modality able to fully evaluate the right ventricle [2].
Anatomic information from CMR is also diagnostic of other
important cardiac diseases, including left ventricular
hypertrophy, which is an important marker for overall cardiac
health, and thoracic aortic root aneurysms [3]. CMR
measurements, in addition to other diagnostic information, are
embedded in narrative clinical text. In many electronic health
record (EHR) systems, these measurements are unavailable in
easily accessible harmonized structured formats. The
development of tools to automatically extract quantitative
measurements from unstructured CMR reports would facilitate
their use in research, including as inputs to machine learning
models.

Existing approaches for extracting measurements from clinical
text are often based on manually developed heuristics or
machine learning methods that learn from labeled data but do
not leverage pretrained language representations. Rule-based
approaches [4], while computationally efficient, require
substantial manual effort to construct and can suffer performance
degradation with shifts in linguistic structure of reports [5].
Other work has used machine learning approaches such as
support vector machines and long short-term memory models
to extract measurements from clinical notes, but these
approaches have required large quantities of expert annotations
due to absence of pretraining [6]. In addition, prior methods for
clinical measurement extraction rely on considerable
data-specific preprocessing, which may not translate well to
EHRs outside of where the heuristics were developed [7].

Transformer-based neural networks like Bidirectional Encoder
Representations from Transformers (BERT) [8,9] have achieved
state-of-the-art results across a wide variety of natural language
processing (NLP) tasks [10]. These models are pretrained on
large amounts of text to learn general linguistic structure and
produce contextualized representations of language. The
advantage of this pretraining paradigm is that these networks
can be fine-tuned using minimal problem-specific labels to
achieve state-of-the-art performance on many natural language
tasks. BERT was originally pretrained on general domain text
such as Wikipedia but has since been adapted for use in clinical
applications by pretraining on domain-specific text [11-14].
Although transformer-based models have shown efficacy in
extracting nonnumerical entities such as anatomical terms and
disease states from clinical text [14], their application to
extracting numerical quantities from clinical text has been
limited [15,16].

In this study, we hypothesized that pretrained transformers
fine-tuned on a small set of annotations can efficiently extract
numerical quantities from diagnostic text. We fine-tuned a range
of pretrained transformers, including clinically oriented ones,
to develop an NLP workflow that simultaneously extracts 21
specific measurements of cardiac structure and function from
CMR reports in a cardiology-based EHR cohort. This set
represents all clinically meaningful quantitative imaging findings
available in the CMR reports. We also explored whether
alternative numerical representations impact extraction quality
compared to the default representations that appear in reports.
After selecting the best-performing model, we applied our
workflow to extract measurements from all available CMR
reports in the study cohort. To demonstrate the accuracy of these
extractions, we assessed the expected associations between
extracted cardiac anatomy and function indices and incident
clinical outcomes.

Methods

Study Sample
Individuals were selected from a retrospective community-based
ambulatory cardiology sample (Enterprise Warehouse of
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Cardiology [EWOC]) in a multi-institutional academic health
care system (Mass General Brigham). EWOC comprises 99,252
adults aged 18 years or older with ≥2 cardiology clinic visits
within 1 to 3 years between 2000 and 2019. A broad range of
EHR data are available for each individual in the cohort,
including demographics, anthropometrics, vital signs, narrative
notes, laboratory results, medication lists, radiology and

cardiology diagnostic test results, pathology reports, and
procedural and diagnostic administrative billing codes [16].
These data were processed using the JEDI Extractive Data
Infrastructure [17]. After excluding 6 individuals and reports
that had no CMR date available, 12,720 CMR reports were
available for 9280 individuals in EWOC (Figure 1).

Figure 1. CONSORT (Consolidated Standards of Reporting Trials) diagram for study sample. CMR: cardiac magnetic resonance imaging; EWOC:
Enterprise Warehouse of Cardiology.

Ethics Approval
This research was approved by the Massachusetts General
Brigham Institutional Review Board (2017P001650).

Clinical Feature Ascertainment
Baseline characteristics were defined using previously published
groupings of International Classification of Diseases, 9th and

10th revision diagnosis codes [16]. Definitions for clinical
features used in the analysis are provided in Table S1 in
Multimedia Appendix 1. Baseline characteristics of individuals
in the modeling sample were ascertained prior to the date of the
CMR (Table 1).
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Table 1. Baseline characteristics of training the set, test set, and CMR outcomes set.

CMRa outcomes setb

(N=9280)

Test set

(N=100)

Training set

(N=278)

57 (46, 67)58 (45, 66)54 (46, 64)Age (years), median (Q1, Q3)

3666 (39.5)33 (33)95 (34.2)Female sex, n (%)

1216 (13.1)10 (10)23 (8.3)Diabetes mellitus, n (%)

3406 (36.7)31 (31)69 (24.8)Coronary artery disease, n (%)

1791 (19.3)15 (15)42 (15.1)Myocardial infarction, n (%)

3164 (34.1)24 (24)104 (37.4)Atrial fibrillation, n (%)

631 (6.8)7 (7)12 (4.3)Obesity, n (%)

1123 (12.1)7 (7)26 (9.4)Chronic kidney disease, n (%)

5563 (59.9)55 (55)130 (46.8)Hypertension, n (%)

Ethnicity, n (%)

7814 (84.2)93 (93)237 (85.3)White

251 (2.7)1 (1)14 (5.0)Asian

520 (5.6)2 (2)13 (4.7)Black

195 (2.1)1 (1)7 (2.5)Other

111 (1.2)0 (0)4 (1.4)Hispanic

390 (4.2)3 (3)3 (1.1)Unknown

aCMR: cardiac magnetic resonance imaging.
bIncludes all individuals in Enterprise Warehouse of Cardiology with a CMR report.

CMR Labeling
Similar to other EHRs, quantitative CMR measurements are
contained in free-text diagnostic reports in the Mass General
Brigham EHR [14,18]. We leveraged PRAnCER (Platform
Enabling Rapid Annotation for Clinical Entity Recognition)
[19], an open-source software application for intuitive labeling,
to annotate 21 clinically important measurements from EWOC
CMR reports (Textbox 1). We adapted PRAnCER to work with
a custom schema containing CMR features rather than the
Unified Medical Language System vocabulary [20] for which
it was designed. There is significant variability in the format
and context of measurement instances. This includes the
ordering of measurements in the report, the language used to
reference a particular measurement, the presence or absence of
units, and the positional relationship between a measurement
name and the value itself (Figure 2).

Of all available reports, 370 were randomly selected from unique
individuals for annotation by a study clinician (JSH). From
these reports, 270 were randomly partitioned into a training set
while the remaining 100 were reserved for model testing (Figure

1). No individuals appeared in both the training and test sets.
As CMR protocols may vary based on the clinical indication
for the study, the total number of measurements per report
ranged from 1 to 21. The counts of each unique feature across
the training and test sets are available in Table S2 in Multimedia
Appendix 1. Total clinician labeling time for all 370 reports
was estimated at 15 hours.

Finally, to address the quality of clinical annotations, we
employed a secondary annotator (PB) to label only the 100
reports reserved for model testing. We computed interannotator
agreement as the proportion of matched extractions between
annotators, in line with clinical entity extraction literature [15].
Overall agreement was excellent at 91.6%, and
measurementwise agreement values are available in Table S3
in Multimedia Appendix 1. Given the nature of the annotation
task, there was perfect precision when both annotators picked
out a measurement from a report, and any disagreement
represents values missed due to fatigue or difference in
guidelines. Given the high agreement, we performed model
derivation and validation on annotations from the study clinician
(JSH) only.
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Textbox 1. Clinical measurements extracted from cardiac magnetic resonance imaging reports.

Left ventricle anatomy and function

• Left ventricular end diastolic volume

• Left ventricular end diastolic volume index

• Left ventricular end diastolic diameter

• Left ventricular end systolic volume

• Left ventricular end systolic volume index

• Left ventricular end systolic diameter

• Left ventricular ejection fraction

• Left ventricular stroke volume

• Left ventricular mass

• Left ventricular mass index

• Cardiac output

• Cardiac index

Right ventricle anatomy and function

• Right ventricular end diastolic volume

• Right ventricular end diastolic volume index

• Right ventricular end systolic volume

• Right ventricular end systolic volume index

• Right ventricular stroke volume

• Right ventricular stroke volume

Other cardiac structural anatomy

• Left atrial anterior-posterior dimension

• Pulmonary artery dimension

• Aortic root dimension

Figure 2. Example text from 3 cardiac magnetic resonance imaging reports (A,B,C) quantifying right ventricular function. The lack of consistency in
how equivalent measurements are presented makes accurately extracting measurements challenging. Yellow highlighted features indicate right ventricular
end diastolic volume (RVEDV), whereas blue highlighted features indicate right ventricular end diastolic volume index (RVEDVI). Example C does
not contain the RVEDVI feature. EDV: end diastolic volume; EF: ejection fraction; ESV; end systolic volume; RVEF: right ventricular ejection fraction;
RVESV: right ventricular end systolic volume; RVESVI: right ventricular end systolic volume index; RVSV: right ventricular stroke volume.

Numerical Representations
Previous work has shown that the use of alternative
representations in place of default surface representations of
numbers has a significant impact on a transformer model’s
ability to perform quantitative manipulations within text, such

as simple arithmetic [21]. The vocabularies of most
transformer-based models include a limited number of numerical
values and generally no decimal numbers since they are
constructed from the most frequently occurring words in the
corpus used for pretraining. The tokenization procedure
employed by most transformer models separates “words” based
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on punctuation and does not distinguish between periods and
decimal places, which results in decimal numbers being broken
up into multiple tokens. Given the potential limitations of default
numerical representations, we investigated whether
implementing alternative numerical representations impacts the
extraction quality of quantitative clinical measures. We designed
4 different types of numerical transformations for quantitative
tokens in the CMR reports, which were applied to both the

training and test samples for model derivation. These included
replacing decimal points with a special token to ensure that
decimal numbers stay intact during tokenization, a consistent
number of digits for all values, scientific notation, and
converting quantities to words. Table 2 demonstrates these
transformations for 1 snippet of text, and Multimedia Appendix
1 contains more information about their implementations.

Table 2. Numerical transformations for an example snippet of text.

NotesTransformed snippetTransformation name

No transformation; for referenceRVESVa: 51.01 mlOriginal

Decimal points replaced with special separator character; enables
parsing as a single token rather than being broken up

RVESV: 51|01 mlReplaced decimal

All numbers converted to be 6 digits in lengthRVESV: 051010 mlConsistent digits

All numbers converted to scientific notation, with 5 significant digitsRVESV: 5.10100e+01Scientific notation

Number converted to corresponding word representationRVESV: fifty one point zero one mlWords

aRVESV: right ventricular end systolic volume.

Model Derivation and Validation
Our modeling approach involved fine-tuning transformer-based
models using the HuggingFace transformers library [22] to
predict a label for each token in a given CMR report. To do so,
we attached a linear classification head on top of the last layer
of a BERT architecture. The classification head produces a
distribution over 22 possible labels—the 21 cardiac
measurements of interest plus a “0” label for all other tokens
(Figure 3). We preprocessed report text into sections containing
128 tokens, accounting for subword tokenization, in accordance
with input size limitations of the transformer-based models. We

used cross-entropy loss with a learning rate of 5e–5 and a batch
size of 32 across all experiments. To evaluate the impact of
clinical pretraining on numerical clinical value extraction, we
experimented with initializing the weights of the BERT
architecture with the weights provided by BERTLARGE [8,9]
cased (~340 million parameters) as well as the clinically oriented
weights of PubMedBERT [11], SapBERT [12], and
Bio+DischargeSummaryBERT [13] (each with ~110 million
parameters). Pretrained weights were downloaded from the
HuggingFace model hub [23]. Each pretrained architecture was
paired with the 5 numerical representations.

Each model was fine-tuned on the Center for Clinical Data
Science computational cluster hosted by Mass General Brigham.

On a graphic processing unit–equipped machine, each model
trained at a rate of approximately 2 minutes per epoch. Each
combination of weight initialization and numerical
representation strategy was fine-tuned for 20 epochs, requiring
an average of 40 minutes. For the purpose of model evaluation,
we assigned a label to a token if the predicted score for that
label was greater than 0.5. Performance was evaluated using
the macroaveraged F1-score over all 21 measurements of
interest, as this metric captures featurewise performance
regardless of the frequency of occurrence in the reports. For
each model, we selected the number of epochs that maximized
the macroaveraged F1-score.

Minimal postprocessing was applied based on the results of the
labels assigned by our modeling experiments. This included
merging with additional significant digits that should obviously
be included as part of a measurement and the consolidation of
model-predicted tokens into a structured format (Multimedia
Appendix 1). Finally, we applied upper and lower bounds on
extracted values using reference ranges derived from the CMR
literature [24-26] (Table S4, Multimedia Appendix 1). An
overview of the workflow, including collecting clinical
annotations, modeling, and postprocessing to extract final
measurements is provided in Figure 4.
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Figure 3. Architecture for fine-tuning pretrained transformer architecture with gold-standard cardiac resonance imaging annotations and predicting
labels for each token. BERT: Bidirectional Encoder Representations from Transformers; ESV: end systolic volume.

Figure 4. Natural language processing workflow for collecting clinical annotations, modeling, and extracting measurements from cardiac magnetic
resonance imaging reports. BERT: Bidirectional Encoder Representations from Transformers; ESV: end systolic volume; CMR: cardiac magnetic
resonance imaging; PRAnCER: Platform Enabling Rapid Annotation for Clinical Entity Recognition; RVEDV: right ventricular end diastolic volume;
RVESV: right ventricular end systolic volume.
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Associations With Clinical Outcomes
Finally, to assess the clinical validity of model extractions, we
evaluated whether selected extracted features demonstrated
known relationships with clinical outcomes, including mortality,
atrial fibrillation, and heart failure [27-29]. We first applied the
highest performing model to extract left ventricular mass index
(LVMI), LVEF, and right ventricular ejection fraction (RVEF)
from all CMR reports in EWOC. Rather than choose a model
score threshold for each label, we chose the label with the
highest score for each token. For individuals with multiple
reports containing a given feature, we used features extracted
from the earliest report for the primary analysis.

We then assessed incidence rates of mortality, atrial fibrillation,
and heart failure by quartile of extracted left ventricular mass.
We also measured the incidence rate of mortality by abnormal
and normal LVEF and RVEF, defined as LVEF <50% and
RVEF <45%, respectively [1,30]. Clinical outcomes were
defined using previously described groupings of diagnostic
codes [31,32]. For incidence analysis, we omitted individuals
with the primary outcome (ie, atrial fibrillation or heart failure)
occurring prior to or on the same day as the CMR. For incident
atrial fibrillation and heart failure analyses, follow-up time
began at the time of the CMR and continued until occurrence
of the primary outcome, death, or last clinical encounter. For
mortality analysis, follow-up time began at the time of the CMR
and continued until time of death or last clinical encounter.
Confidence intervals were calculated by the exact method. We
compared incidence rates using the 2-sample test of proportions
[33]. In order to assess potential confounding of report timing
on associations between extracted features and clinical
outcomes, we also performed a sensitivity analysis where we
selected features extracted from the last report.

Results

Model Performance
The training set included reports from 270 individuals with a
median age of 65 (IQR 54-74) years at time of CMR of whom
34.2% (n=92) were female (Table 2). The test set included
reports from 100 individuals with a median age of 58 (IQR
45-66) years at time of CMR of whom 33% (n=33) were female
(Table 2).

All combinations of pretrained weights and numerical
representations achieved excellent macroaveraged F1-scores on
the test set. Table 3 illustrates the maximum macroaveraged
F1-scores for all combinations of pretrained weight initializations
and numerical representations. The best-performing combination
was BERTLARGE, fine-tuned on the replaced decimal numerical
representation scheme, which achieved a maximum
macroaveraged F1-score of 0.957 after fine-tuning for 12 epochs.
A plot of macroaveraged F1-score on the test set over the
training epochs is available in Figure S1 in Multimedia
Appendix 1, and featurewise receiver operating characteristic
curves are shown in Figure 5. The range of feature-level
macroaveraged F1-scores was 0.902 to 1.000, and all scores are
reported in Table S5, Multimedia Appendix 1. To investigate
the impact of labeling effort on model performance, we
fine-tuned this combination of BERTLARGE pretraining and the
replaced decimal numerical representation scheme on varying
subsets of the training data, and plotted the macroaveraged
F1-score on the test set (Figure 6). This plot demonstrates
consistently significant gains in performance when the number
of training reports is iteratively increased from 45 to about 200
but starts to saturate after this point. We also correlated the
number of annotations in the training sample with test F1

performance for each measurement and did not find a strong
relationship (Figure S2, Multimedia Appendix 1).

Table 3. Maximum macroaveraged F1-scores and bootstrapped 95% CIs on gold-standard test labels by pretrained weight initialization and numerical
representation.

Numerical representation, maximum macroaveraged F1-score (95% CI)Architecture

WordsScientificConsistent digitsReplaced decimalOriginal

0.953

(0.949-0.958)
0.955b

(0.948-0.960)

0.950

(0.945-0.955)

0.952

(0.947-0.960)

0.954

(0.947-0.960)
PubMedBERTa

0.956b

(0.951-0.961)

0.955

(0.948-0.960)

0.955

(0.949-0.960)

0.954

(0.949-0.960)

0.955

(0.949-0.960)

SapBERT

0.946

(0.942-0.952)

0.952

(0.945-0.958)

0.953

(0.945-0.958)
0.953b

(0.947-0.959)

0.950

(0.944-0.957)

Bio+Discharge

SummaryBERT

0.952

(0.947-0.957)

0.944

(0.938-0.951)

0.951

(0.945-0.957)
0.957b (0.951-0.962)0.951

(0.945-0.957)

BERTLARGE

aBERT: Bidirectional Encoder Representations from Transformers.
bBest-performing numerical representation for each pretrained weight initialization.
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Figure 5. Receiver operating characteristic curves for model predictions on the test set by cardiac magnetic resonance imaging measurement. AUC:
area under the receiver operating characteristic curve.

Figure 6. Fine-tuned BERTLARGE performance with replaced decimal numerical representations, as a function of number of annotated reports in the
training set.

In EWOC, there were 12,720 CMR reports from 9280
individuals, which composed the CMR outcomes set (Figure
1). The median age of individuals in the outcomes set at the
time of CMR was 57 (IQR 46-67) years, and 39.50%
(3666/9280) were female (Table 1). After selecting the best
model configuration, we applied the top-performing model to
infer CMR values on all reports in this set. After running
inference, we filtered by physiologic lower and upper bounds
(Table S6, Multimedia Appendix 1) and extracted a total of
136,407 measurements. Counts for each extracted feature and
distribution metrics are illustrated in Table S7 in Multimedia
Appendix 1. We also compared the proportion of reports that
contained model-predicted measurements in the CMR outcomes
set and found them to be consistent with gold-standard
annotation proportions in the test set (Table S8, Multimedia
Appendix 1).

Associations With Clinical Outcomes
The median follow-up time of individuals in the CMR outcomes
set was 5.3 (IQR 2.8-9.2). In the outcomes set, we observed

1520 incident heart failure events, 1488 incident atrial
fibrillation events, and 909 deaths during follow-up. LVMI was
extracted from 5015 of 9280 individuals (54.04%). In the
outcomes set, increasing LVMI was associated with increasing
incidence of mortality, atrial fibrillation, and heart failure with
statistically significant differences in incidence rates between
the lowest and highest quartiles (Figure 7). The mortality rate
was 0.9 deaths per 100 person-years (PY; 95% CI 0.7-1.1) in
the lowest quartile of extracted LVMI compared to 2.2 deaths
per 100 PY (95% CI 1.9-2.6) in the highest quartile of extracted
LVMI (P<.05; Figure 7). The incidence rate of atrial fibrillation
was 3.0 events per 100 PY (95% CI2.5-3.5) in the lowest
quartile of extracted LVMI compared to 7.9 events per 100 PY
(95% CI 6.8-8.7) in the highest quartile of extracted LVMI
(P<.05). The incidence rate of heart failure was 3.2 events per
100 PY (95% CI 2.7-3.7) in the lowest quartile of extracted
LVMI compared to 8.1 events per 100 PY (95% CI 7.2-9.1) in
the highest quartile of extracted LVMI (P<.05).
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Figure 7. Association of extracted left ventricular mass index, left ventricular ejection fraction, and right ventricular ejection fraction with clinical
outcomes.

LVEF was extracted from 7389 of 9280 individuals (79.62%),
and 2297 met the criteria for abnormal LV systolic dysfunction
(LVEF <50%). RVEF was extracted from 6324 of 9280
individuals (68.15%), and 1626 met criteria for abnormal RV
systolic function (RVEF <45%; Figure 7). Both abnormal LVEF
and RVEF were significantly associated with increased
incidence of mortality compared to normal ventricular function
(P<.05 for both measures). In the abnormal LVEF group, the
mortality rate was 2.5 deaths per 100 PY (95% CI 2.2-2.8)
compared to 1.1 deaths per 100 PY (95% CI 0.9-1.2) in the
normal LVEF group (P<.05). In the abnormal RVEF group, the
mortality rate was 2.5 deaths per 100 PY (95% CI 2.1-2.8)
compared to 1.0 deaths per 100 PY (95% CI 0.9-1.2) in the
normal RVEF group (P<.05).

We also performed a sensitivity analysis where the last CMR
report was used for feature extraction of LVMI, LVEF, and
RVEF. There were 687 of 5015 (13.70%) individuals with more
than 1 extracted LVMI, 1268 of 7389 (17.16%) individuals with
more than 1 extracted LVEF, and 1038 of 6324 (16.41%)
individuals with more than 1 extracted RVEF. The mean time
difference between the first and last reports for LVMI was 2.4
(SD 2.2) years, the LVEF was 2.9 (SD 2.9) years, and the RVEF
was 2.7 (SD 2.6) years. Similar to the primary analysis, we

observed increasing rates of mortality, atrial fibrillation, and
heart failure with increasing LVMI; and significantly higher
mortality rates in individuals with abnormal LVEF or RVEF
compared to individuals with normal LVEF or RVEF (Figure
S3, Multimedia Appendix 1).

Discussion

Principal Results
In this study, we report the results of an accurate and practical
NLP-based approach for simultaneously extracting 21
quantitative measurements from CMR reports. Our final model,
which yielded a macroaveraged F1-score of 0.957, was derived
from a workflow leveraging open-source frameworks for
collecting gold-standard clinician labels and publicly available
transformer model weights. We also highlight the clinical
validity of our approach by demonstrating known associations
of extracted CMR measurements with outcomes such as atrial
fibrillation, heart failure, and mortality (Figure 7) [30,34].

We found that BERTLARGE demonstrated excellent performance
when compared to model initializations based on clinically
oriented pretraining, indicating that clinical pretraining does
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not have a significant impact on clinical numerical value
extraction (Table 3). BERTLARGE is larger than the available
clinically oriented models, and model complexity may play a
role in comparable performance, indicating that larger clinically
pretrained models represent a direction for future work. We also
experimented with 4 different alternative representations of
numerical measurements and found the test performance to be
similar to that of the default representation (Table 3). Our
findings suggest that for the particular case of extracting
numerical quantities, transformer-based models do not require
clinical pretraining or alternative numerical representations.
Through experiments with limited training set sizes, we found
that excellent performance can be achieved with fewer than 50
labeled reports. Furthermore, a training set with 175 reports
was sufficient to train a model with performance that was within
the 95% CI of a model trained with 270 reports (Figure 6).

Measurements extracted by our model potentially facilitate the
automated characterization of a range of important cardiac
diseases, which we leave to future work. We expect that our
proposed workflow can be easily used by others to extract
arbitrary measurements from clinical text. The PRAnCER
platform is open source and can be easily adapted to label
clinical measurements of interest. Our software for fine-tuning
and evaluating NLP models is also open source [34], and model
training is possible using a standard graphic processing
unit–equipped machine. We expect it to be possible to extract
an arbitrary number of clinical measurements with a practical
amount of labeling effort and computational requirements in
clinical domains not limited to CMRs.

Attention-Based Exploration of Error Modes
The characterization of error modes can be instructive toward
having confidence in model predictions and for finding ways
to improve a model by future researchers. Despite the overall
high accuracy of our best model across all the types of
measurements that we considered, the most common error mode
involved the model assigning a “0” label to values that should
have been labeled as measurements. In many cases that we
examined, a measurement such as “aortic root dimension” would
be correctly labeled in one report and not labeled in another
report despite a similar sequence of tokens surrounding the
value to be labeled. By examining the attention weights for the
token to be labeled in both reports, we discovered that the
correctly labeled value most heavily weighted the word
“dimension” in the preceding “aortic root dimension” phrase.
For the incorrectly labeled value, 3 of the 4 most-attended tokens
were separate instances of the word “dimension,” one of which
was part of the correct phrase, with the other instances appearing
in the remainder of the text. All of the attention weights were
much lower than the attention paid to the word “dimension” by
the correctly labeled example. This may indicate that an
opportunity for further improvement could involve providing
more training examples with sections of text that are absent
from most reports in our data set or by augmenting existing
labeled text with synthetic text containing critical tokens.

Additionally, we recognize that while our models perform well,
extraction errors are inevitable. The clinical consequences of
these errors depend on the specific feature. For example,

incorrect LVEF extraction could misclassify a patient with heart
failure as reduced ejection fraction or preserved ejection fraction
and thereby impact treatment choices. Similarly, incorrect RVEF
could misclassify a patient with right-sided heart failure.
Incorrect aortic root size could misclassify an aortic root
aneurysm. False-positive errors may be particularly difficult to
detect as the final postprocessing stop of physiologic filtering
means that false positives will still be within the expected range.
Therefore, careful evaluation of model performance is necessary,
especially if applying such a model to new data sets.

Comparison With Prior Work
To our knowledge, this is the first example of using a
transformer-based model (without pretraining from scratch)
fine-tuned on clinician labels to extract numerical measurements
from diagnostic text. We previously demonstrated the value of
extracting 4 vital sign measurements from clinical text based
on a large number of weak labels that were generated using a
rule-based approach [16]. Our previous approach was based on
the assumption that it would be impractical to accrue a sufficient
quantity of gold-standard annotations in order to fine-tune a
transformer-based approach. However, we found that a single
clinician required at most 15 hours to produce sufficient
gold-standard annotations for 21 types of quantitative
measurements, thereby eliminating the need for rule-based
approaches and enabling easy scaling to a large number of
relevant measurements.

Recent work [15] used a combination of embeddings produced
by pretraining a BERT model and a FLAIR model from scratch
on domain-specific data. Embeddings were then used as input
to a combination of a bidirectional long short-term memory
with a conditional random field layer to label tokens of interest,
including numerical measurements. This approach worked well
and achieved comparable performance to our approach with a
similar amount of labeling effort. We demonstrate with our
work that pretraining a model from scratch on domain-specific
data is not necessary to achieve a high level of accuracy. The
days, or perhaps even weeks, of computation required to pretrain
a model from scratch on clinical data can be avoided.
Furthermore, our work examines the impact of the number of
annotations on performance.

Other approaches for extracting numerical measurements from
clinical text have also achieved reasonable accuracy, but we
suggest that our approach minimizes labeling effort, is more
robust, and is sufficiently computationally efficient to serve as
a practical solution for accelerating EHR-based clinical research.
Rule-based approaches, while potentially accurate, generally
require multiple iterations of development and validation to
ensure accuracy given the wide variability of clinical text [4].
Prior work has also shown that rule-based approaches may not
be easily portable to other EHRs outside of where they were
developed. In their work evaluating the portability of a
rule-based model for extraction of echocardiogram
measurements, Adekkanattu et al [7] report variable F1-scores
that differ by clinical site. We demonstrate that
transformer-based models pretrained on clinical text can be
fine-tuned on a practical number of labels to learn to extract
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measurements in a way that is flexible to variability in how such
measurements are expressed in clinical text.

Limitations and Directions for Future Work
Our study must be interpreted in the context of its limitations.
Our test set consisted of a relatively small sample of 100 reports,
but an analysis to randomly resample the test set of the same
size yielded models with a markedly close range of macro
F1-scores (0.947-0.970 across 10 samples), which indicates the
robustness of our approach. Our approach required a minimal
degree of postprocessing and mainly involved imposing
physiologic ranges for values extracted by the model. Although
relatively few values were filtered this way, these may represent
model false positives. Another aspect of postprocessing involved
extending model predictions to include missed significant digits,
which happened very rarely. Our experiments with numerical
representations and pretrained models enabled high extraction
accuracy, but further work is required to understand how to best
use transformer-based models in handling arbitrary numerical
values [35]. In addition, CMR reports were taken from a large
heterogeneous health care system, and while our model was
able to handle significant variability in the presentation of
relevant measurements, further work is required to show that
our modeling approach is portable to other institutions.

Similar to other artificial intelligence models with health care
applications, clinical implementation of our model is stymied
by several barriers [36]. The first is deployment of a model

within an EHR environment, which involves both accessing
siloed clinical data and integrating modeling results into the
electronic environment for presentation. The second is ensuring
that the model is adaptable to changes in report structure either
between institutions or prospectively over the lifetime of the
model. Last, monitoring and regular quality control is essential
to ensuring patient safety. Although few models have
successfully overcome these numerous challenges, we
hypothesize that our work offers a modeling strategy that is
adaptable to changes in report structure and provides a
framework for developing new quantitative models aimed at
other important clinical tasks. Future work should test the
performance of models like these in real-time settings to prove
generalizability to new environments and data structures.

Conclusions
We present a powerful natural language workflow for
simultaneously extracting 21 types of numerical measurements
from CMR free-text reports. We found that general pretrained
transformer-based language models require a relatively small
number of gold-standard annotations, necessitate minimal data
processing, and are robust to significant variability in the context
and presentation of numerical measurements. We observed
expected associations between extracted CMR measurements
and known clinical outcomes like heart failure, atrial fibrillation,
and mortality. Our workflow is reproducible and is likely
applicable to many other types of clinical data.
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