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Abstract

Background: Adverse reactions to drugs attract significant concern in both clinical practice and public health monitoring.
Multiple measures have been put into place to increase postmarketing surveillance of the adverse effects of drugs and to improve
drug safety. These measures include implementing spontaneous reporting systems and developing automated natural language
processing systems based on data from electronic health records and social media to collect evidence of adverse drug events that
can be further investigated as possible adverse reactions.

Objective: While using social media for collecting evidence of adverse drug events has potential, it is not clear whether social
media are a reliable source for this information. Our work aims to (1) develop natural language processing approaches to identify
adverse drug events on social media and (2) assess the reliability of social media data to identify adverse drug events.

Methods: We propose a collocated long short-term memory network model with attentive pooling and aggregated, contextual
representation generated by a pretrained model. We applied this model on large-scale Twitter data to identify adverse drug
event–related tweets. We conducted a qualitative content analysis of these tweets to validate the reliability of social media data
as a means to collect such information.

Results: The model outperformed a variant without contextual representation during both the validation and evaluation phases.
Through the content analysis of adverse drug event tweets, we observed that adverse drug event–related discussions had 7 themes.
Mental health–related, sleep-related, and pain-related adverse drug event discussions were most frequent. We also contrast known
adverse drug reactions to those mentioned in tweets.

Conclusions: We observed a distinct improvement in the model when it used contextual information. However, our results
reveal weak generalizability of the current systems to unseen data. Additional research is needed to fully utilize social media data
and improve the robustness and reliability of natural language processing systems. The content analysis, on the other hand, showed
that Twitter covered a sufficiently wide range of adverse drug events, as well as known adverse reactions, for the drugs mentioned
in tweets. Our work demonstrates that social media can be a reliable data source for collecting adverse drug event mentions.
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Introduction

Background
Adverse reactions to drugs are among the most significant
concerns in both clinical practice and public health monitoring,
but they do not have a consistent definition in the literature.
According to Edwards and Aronson [1], side effects of a
particular drug are defined as “unintended effects related to the
pharmacological properties occurring at normal dose” of the
drug. Unintended effects can be either harmful or beneficial.
For example, β-blockers are mainly used for hypertension, but
they can also relieve chest pain (or angina) in patients [1].
According to a World Health Organization (WHO) report [2],
adverse reactions are defined as “any response to a drug that is
noxious, is unintended, and occurs at doses normally used in
humans.” A similar definition of adverse reaction was used by
Asscher et al [3] and Pirmohamed et al [4], except that their
definitions included the condition that the drug was used in its
proper clinical application. In other words, the WHO definition
allows for an improper use of a drug with a normal dose, while
Asscher et al and Pirmohamed et al do not include such cases.
A definition of adverse reactions by Karch and Lasagna [5] is
similar but includes the effects of intentional overdoses and
drug abuse. Although various definitions of adverse reactions
are used, the most common component of these definitions is
unintended consequences caused by or suspected to be due to
the use of a drug [1-5].

Adverse events, on the other hand, are defined as “untoward
occurrences following exposure to a drug but not necessarily
caused by the drug” [1,3]. While the terms “adverse event” and
“adverse reaction” are similar, they cannot be used
interchangeably, because there is no causality assumption in
the definition of adverse events, while there is a causality
assumption in the definition of adverse reactions. Adverse
reactions are reported to be among the top 10 leading causes of
death [6,7]. To increase postmarketing surveillance of drugs
and improve drug safety, multiple measures have been put into
place. These include implementing spontaneous reporting
systems, such as the US Food and Drug Administration Adverse
Events Reporting System (FAERS) [2,7,8].

On the other hand, researchers have also looked at developing
automated systems that use electronic health records and social
media data [9-11] to collect experiences of adverse events that
can be further investigated as possible adverse reactions.
Recently, deep neural network–based models have been
developed to detect adverse events in tweets [12-14]. Long
short-term memory (LSTM) networks and pretrained language
models, such as bidirectional encoder representations from
transformers (BERT) [15] and generative pretraining language
models [16], have been chosen as models for this application
[12-14]. However, there is still room for improvement in the
implementation of such systems [9-11]. Various neural network
systems have been presented by other researchers, but no system
to date incorporates both recurrent-based networks (eg, LSTM)
and attention-based networks (eg, BERT). Capturing both
sequentially processed output and contextually processed output
could help the model better learn the data and the task. Lastly,

machine learning and deep learning models have shown their
effectiveness at detecting adverse event mentions in social media
data [17], but it is still uncertain whether social media are valid
as a data source for the purpose of adverse event detection.

Goal of This Study
In this paper, we use the term “adverse drug event” (ADE) rather
than “adverse event.” We formulated the task of identifying
ADE mentions from tweets as a classification task, that is,
labeling tweets based on whether or not they contain a mention
of an ADE. We propose a neural network–based framework
that incorporates augmented medical representation and
contextual representation to build a robust classification model.
Our work aims to develop a natural language processing (NLP)
system that identifies ADE mentions based on social media
texts and to assess the reliability of social media data, especially
Twitter, as a means to collect that information. Our research
questions are as follows: “Could contextual representation from
a pretrained language model help enhance a model for
classifying ADE tweets?” and “Could social media be a reliable
data source to collect mentions of ADEs?”

We conducted a comprehensive experimental analysis to validate
the effectiveness of the model. In addition, we performed a
systematic evaluation study to determine the reliability of
Twitter as a data source for collecting mentions of ADEs. Our
work makes the following empirical contributions: (1) we
demonstrate that incorporating contextual representations with
augmented medical representations significantly improves the
performance of the adverse event detection task compared to
not incorporating contextual representations, (2) we show that
the current automated systems to identify mentions of ADEs in
tweets are not sufficiently generalizable, and (3) we observe
that Twitter covers a sufficiently wide range of ADEs relatively
well, including known ADEs, and conclude that social media
can be a reliable data source for collecting ADE mentions.

Related Work
Before a drug is released to market, an initial description of
related ADEs is obtained through randomized controlled trials
[18]. These trials may provide an initial description that is not
fully complete [19]. Due to the incompleteness of the initial list
of ADEs, pharmacovigilance plays a significant role in the
postmarketing phase and is necessary to collect any new
information on ADEs. Social media, including Twitter, have
been explored as platforms for pharmacovigilance, such as by
collecting mentions of ADEs through NLP [11,17,20-22]. The
text of tweets is relatively short but still conveys information
about patient experiences that are often self-disclosed. For a
tweet to be considered ADE-related, the tweet must not only
mention at least one adverse event, but must also mention a
drug by name. Notably, a tweet cannot be considered
ADE-related if there is no mention of drugs.

Data sets of labeled tweets for identifying mentions of ADEs
have been developed to benchmark NLP systems in shared
competitions [11-13,22-25]. These annotated data sets have
allowed researchers to develop automated systems and compare
them against each other. Early systems for identifying mentions
of ADEs in tweets were based on curated lexicons, heuristic
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rules, pattern matching, or supervised machine learning
approaches [23,24]. Various dictionary-based features, such as
ADE lexicons, drug names, and medical concepts were explored,
along with linguistic and sentiment analysis. Recently, neural
network–based models have been a popular choice due to their
outstanding performance [11].

Methods

Data Sources
We used 3 Twitter-based data sets to develop and evaluate our
models—1 for training and 2 for evaluation. The training set
and the first evaluation set were obtained from a shared task for
automatic classification of English-language tweets that report
adverse effects, organized as part of the 2020 Social Media
Mining for Health (SMM4H) workshop [11]. According to the
organizers of the shared task, the tweets were collected via
Twitter’s public streaming API. Generic and trade names for
drugs, along with their common misspellings, were used as
keywords to collect data. After the collection, the tweets were
annotated independently by 2 annotators, with a Cohen κ for
interannotator agreement of 0.82. Tweets with disagreements
were reannotated until the pair reached consensus. The second
evaluation set was obtained from a publicly available reference
data set called WEB-RADR (web-recognizing adverse drug
reactions), developed by Dietrich et al [22]. These tweets were
collected in a similar fashion. Annotations were done by 2 teams
of 9 annotators each; however, no measures for interannotator
agreement are reported.

Table 1 summarizes the statistics of the 3 data sets. After
preprocessing and removing duplicate tweets, there were 24,700
tweets in the training set. Of these, approximately 9% (2362)
of them were labeled as ADE tweets, that is, tweets containing
1 or more mentions of adverse events along with at least 1
mention of a drug. The remaining 91% (22,338) of tweets were
labeled as non-ADE tweets, meaning that these tweets did not
contain any mention of an adverse reaction but contained a drug
mention. Of 24,700 tweets, 20,098 (81.4%) were used to train
the models while the other 4602 (18.6%) were used for
validation. The distribution of ADE versus non-ADE tweets
was more skewed in the SMM4H evaluation set. Of the 4759
tweets in the evaluation set, only 194 (4.1%) were labeled as
ADE tweets and 4565 (95.9%) were labeled as non-ADE tweets.

We also evaluated our models on WEB-RADR [22], which we
used as a second, independent data set. The original data set
consists of 57,473 tweets, with 1056 tweets (1.8%) labeled as
ADE tweets and 56,417 (98.2%) as non-ADE tweets. However,
from the original data set, we were able to successfully collect
only 34,369 (59.8%) tweets, possibly due to suspended accounts
or deleted tweets. Of these, 645 (1.9%) were labeled as ADE
tweets, while the remaining 33,724 (98.1%) were non-ADE
tweets.

All tweets were preprocessed to separate punctuation marks,
remove special characters and URLs, replace user mentions
beginning with @, and replace text emoticons with a normalized
token. No specific text cleaning packages were used.

Table 1. Statistics for the training and evaluation data sets.

Drugs in tweets but not in library, nUnique drugs, nNon-ADE tweets, nADEa tweets, nTweets, NData set

31102022,338236224,700SMM4Hb training

12968845651944759SMM4H evaluation

25,64668533,72464534,369WEB-RADRc evaluation

aADE: adverse drug event.
bSMM4H: Social Media Mining for Health.
cWEB-RADR: web-recognizing adverse drug reactions.

NLP System Development

Model Selection
In recent years, pretrained language models have been widely
deployed as base models for numerous NLP tasks that can be
fine-tuned to a data set for a particular downstream task, often
referred to as transfer learning. Despite relatively simple
training, such transfer learning approaches have been shown to
be powerful tools for many NLP tasks, including ADE
classification. Transfer learning makes downstream tasks
successful because these language models are trained on a large
corpus; hence, they gain strong representational power.

In our previous work, we proposed a collocated LSTM model
with attentive pooling and aggregated representation (CLAPA)

that utilized neighborhood information to build a better
representation of medical concepts [26]. The model focused on
enhancing medical concepts by incorporating neighborhood
information through a collocation graph. While CLAPA
enriched the representation of medical concepts, it had relatively
weak representation of other context information, such as
semantics. The capability of a pretrained model to provide a
robust representation of context information may help assist
CLAPA to learn better. With this motivation, we extended
CLAPA to BERT-augmented CLAPA (baCLAPA), which
incorporated BERT’s logits with CLAPA’s trained
representation. BERT was chosen because it was the most
competitive model among pretrained models reported in the
2019 SMM4H task [13]. The 3 models compared in this task
are illustrated in Figure 1 and summarized below.
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Figure 1. Schematic diagram of the 3 models that highlights how each model is configured. A: CLAPA; B: BERT; C: baCLAPA. baCLAPA: bidirectional
encoder representations from transformers–assisted collocated long short-term memory with attentive pooling and aggregated representation; BERT:
bidirectional encoder representations from transformers; CLAPA: collocated long short-term memory with attentive pooling and aggregated representation;
FC: fully connected; LSTM: long short-term memory; MHA: multi-head attention.

CLAPA Model
CLAPA [26], illustrated in Figure 1A, uses collocation
information to improve the representation of medical concepts.
CLAPA requires three main components: (1) medical concepts,
(2) a collocation graph, and (3) a model architecture.

First, for medical concepts, the generic names and brand names
of medications were collected from MedlinePlus [27]. A few
generic medical words or brand names, such as “Amen” and
“Heather,” were removed to reduce noise. Then, the list of
medical concepts was expanded by adding medical words from
tweets in the training set that were missing in the drug list
obtained from MedlinePlus. As a result, a total of 4888 medical
concepts were collected, including 4747 drug names from
MedlinePlus and 141 drug names from the SMM4H training
set.

Second, for the collocation graph, each unique word in the
training set was assigned as a node, and edges were added
between node pairs if the corresponding pair of words were
adjacent to each other. After the graph was constructed, the
graph was reduced by retaining only the closest 15 neighbor
nodes per medical concept, following an empirical analysis of
neighborhood size [26].

Third, for the model architecture, LSTM networks with 4 layers
and 300 input sizes were implemented, followed by 3 multi-head
attention layers and max pooling and pooling layers. FastText
pretrained embedding [28] was used for word embedding. All
hyperparameters were jointly trained with a learning rate of
0.001 and a cross-entropy loss function.

BERT Model
As another baseline model, we instantiated a BERT model [15],
illustrated in Figure 1B. The bert-base-uncased model was used
for classification and was tuned based on the recommendation
for hyperparameter settings [15]. The BERT model was
fine-tuned on the training set without any further modification
on hyperparameters. Two tokens, [CLS] and [SEP], were added
to the beginning and end of the input representation. Each
sentence was tokenized through BertTokenizer and fed into the

BERT model. Our BERT model contained the same parameters
as the base model, with 12 layers, 768 input sizes, and 12
multi-head attentions. The hyperparameters of the classification

layer were jointly trained with a learning rate of 5e–5.

baCLAPA Model
Our proposed baCLAPA model is illustrated in Figure 1C. The
model consists of 2 parallel stacks—a CLAPA model and a
BERT model. The input sentence feeds into both the CLAPA
and BERT models. Each network independently learns input
embeddings. Once each model produces the final hidden states,
the states are reduced to representations with a size of 2, which
are commonly referred to as logits. The raw output
representation of BERT is then incorporated into CLAPA, either
as large as the final hidden states or as small as logits, mapped
to a 2-dimensional vector space for a binary classification. In
the task presented in this paper, BERT’s logits were used to
assist CLAPA because logits provide a brief but comprehensive
representation of how networks have learned from inputs. Thus,
BERT’s logits were concatenated with CLAPA’s logits to
generate predictions. In Figure 1C, 2 bold boxes inside the fully
connected layer show how BERT’s logits and CLAPA’s logits
are concatenated. Formally, this can be written as follows:

where refers to the last fully-connected layer in CLAPA,

and are logits from CLAPA and BERT, and is the
final logit. Once CLAPA and BERT produce their logits,
BERT’s logits are passed to CLAPA. Then, a concatenation of

their logits is fed into , which produces . Finally, the
final logits are fed into Softmax for binary classification.

Baselines
Two additional models were used as baselines. First, we used
an SVM model with a linear kernel, with other hyperparameters
set to default values. The input representation included a term
frequency–inverse document frequency weighted representation
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with trigram features. As a second baseline, we used a random
model with weighted distribution.

Validation Study to Determine the Reliability of Social
Media as a Data Source

Study Questions
To validate the reliability of the social media data as a means
to collect ADEs, we analyzed tweets that were collected by our
baCLAPA model. This study aimed to answer two questions
about social media data: (1) what kinds of ADEs are mentioned
on Twitter? and (2) of the ADE mentions for each known drug
on Twitter, how many also mentioned known adverse reactions
listed in an authoritative source? Answering the first question
would reveal how various kinds of ADEs are covered on social
media, and answering the second would reveal how many
relevant ADEs are mentioned on social media. The known
adverse events were collected from MedlinePlus, an
authoritative, popular, and credible website run by the US
National Library of Medicine.

Obtaining ADE Tweets: Data Source and ADE
Classification
The Twitter data used for this study were obtained from a paper
by Vydiswaran et al [29]. The data were collected via the Twitter
API, user timelines, and the Decahose stream, which is a 10%
random sample of the real-time Twitter stream. First, the Twitter
API and user timelines were used to collect all tweets from users
near the Detroit metropolitan area. Then, the data set was
expanded through the Decahose stream. In total, the data set
contained 28.8 million tweets. More details about the data
collection can be found in the paper by Vydiswaran et al [29].

First, the 28.8 million tweets were filtered through our drug list,
which consisted of 4888 drug names. This step allowed us to
sort out tweets containing at least one drug keyword. This let
us identify 34,536 of 28.8 million tweets as drug-mentioning
tweets. Then, our baCLAPA model was applied to those tweets
and identified 1544 ADE tweets.

Qualitative Content Analysis of Tweets
We conducted a qualitative content analysis [30] to answer the
two questions mentioned above: (1) how many different types
of ADEs are covered on Twitter? and (2) how many ADE tweets
about a particular drug identify an adverse event that is a known
adverse reaction for that drug on MedlinePlus? We first
extracted 139 unique drugs mentioned in the 1544 tweets. Then,
we conducted a qualitative content analysis to derive themes
for the ADEs within the 1544 tweets. During the qualitative
coding process, we found that the drug word “caffeine” mostly
referred to coffee and the word “vitamin” was too general to
determine which vitamin supplement was taken. Therefore,

tweets containing only these drug words were dropped—462
tweets for “caffeine” and 141 tweets for “vitamin”. A total of
941 ADE tweets were thus qualitatively analyzed. These tweets
were manually coded to identify themes for ADEs until the
themes were saturated. The themes were reviewed by a domain
expert after the analysis was completed.

Once we identified the themes, we collected information about
known adverse reactions for each drug through MedlinePlus
and compared them against themes identified by the content
analysis. For example, when analyzing ADE tweets about
ibuprofen, we identified two themes: nausea and sweating.
When reviewing information about ibuprofen on MedlinePlus,
we only found relevant mentions of ibuprofen potentially
causing nausea, and did not find any sweating-related adverse
reactions. Thus, ibuprofen was paired with the nausea-related
ADE theme as a known adverse reaction but not with the
sweat-related ADE theme. This way, we linked all ADE tweets
and known adverse reactions to a particular drug to each ADE
theme.

Results

Experimental Results of the NLP System
We first present the performance of the models on the validation
set. This allows us to compare the overall performance of the
models, including the baselines. Both CLAPA and baCLAPA
were evaluated on the SMM4H evaluation set [31]. We further
evaluated the models on another data set, the WEB-RADR
evaluation set, to validate whether the extended models
performed better than the original models on various data sets.

As shown in Table 2, the random and SVM baseline models
did not outperform the neural network–based models, but the
recall score for the SVM model was the second highest. Of all
models, baCLAPA performed the best for all performance
metrics: precision, recall, and F1. On average, it performed
about 0.026 F1 points better than CLAPA on the validation set.

To further evaluate our method, we picked the best CLAPA
and baCLAPA models from the 10 validation runs. Their
performance on the validation set is shown in the first 2 result
rows of Table 3. On both evaluation data sets, baCLAPA
outperformed CLAPA on the F1 metric. Precision and recall
values are not available for CLAPA on the SMM4H evaluation
set because it was used only for the best (baCLAPA) model
[31]. While baCLAPA performed better for F1 score than
CLAPA on the SMM4H evaluation set by 0.07, the improvement
was relatively small on the WEB-RADR evaluation set. Most
of this improvement was attributable to the significantly higher
recall. CLAPA outperformed baCLAPA on the precision
measure on WEB-RADR.
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Table 2. Average performance of 10 runs on the validation set. Italics represent the best model for each performance metric.

F1 score (SD)Recall (SD)Precision (SD)Model

0.101 (0.01)0.103 (0.01)0.099 (0.01)Random

0.481 (0)0.638 (0)0.386 (0)SVMa

0.599 (0.01)0.623 (0.03)0.581 (0.03)CLAPAb

0.567 (0.01)0.602 (0.04)0.54 (0.03)BERTc

0.625 (0.007)0.652 (0.03)0.603 (0.02)baCLAPAd

aSVM: support vector machine.
bCLAPA: collocated long short-term memory with attentive pooling and aggregated representation.
cBERT: bidirectional encoder representations from transformers.
dbaCLAPA: bidirectional encoder representations from transformers–assisted collocated long short-term memory with attentive pooling and aggregated
representation.

Table 3. Evaluation of collocated long short-term memory with attentive pooling and aggregated representation (CLAPA) and bidirectional encoder
representations from transformers–assisted CLAPA (baCLAPA) on 2 evaluation sets. Italics represent the best model for each performance metric.

F1 scoreRecallPrecisionData set and model

Validation

0.6030.6490.563CLAPAa

0.6290.6760.589baCLAPAb

SMM4Hc evaluation

0.44——dCLAPA

0.510.540.48baCLAPA

WEB-RADRe evaluation

0.3710.3860.356CLAPA

0.3940.4790.334baCLAPA

aCLAPA: collocated long short-term memory with attentive pooling and aggregated representation.
bbaCLAPA: bidirectional encoder representations from transformers–assisted collocated long short-term memory with attentive pooling and aggregated
representation.
cSMM4H: Social Media Mining for Health.
dNot available.
eWEB-RADR: web-recognizing adverse drug reactions.

Qualitative Content Analysis of ADE Tweets
Table 4 summarizes the top 7 ADE themes, shows the frequency
of tweets for each theme, and provides paraphrased examples.
The major thematic areas include mental health–related ADEs
and sleep-related ADEs. Tweeters also frequently shared their
experience of pain-related ADEs. The remaining themes were
discussed less frequently in our data set.

Each row in Figure 2 represents a drug. In the 108 tweets for
“ibuprofen,” mentions of 3 drugs are grouped together: Advil
(n=40), ibuprofen (n=36), and Motrin (n=32); the 73 tweets for
“acetaminophen” group together mentions of 2 drugs: Tylenol

(n=71) and acetaminophen (n=2). The third column indicates
the number of themes with known adverse reactions from
MedlinePlus as well as the number of themes with ADE
mentions on Twitter. The fourth column can have 2 different
numbers, separated by a comma: the first is the number of
themes that overlap with known adverse reactions, while the
second, if present, is the number of themes that do not overlap
with known adverse reactions. For example, Benadryl has 3
themes with known adverse reactions, all of which were
captured in tweets, and 1 theme that was not listed in
MedlinePlus but only mentioned in tweets. For Adderall, 6
themes contained known adverse reactions; 5 of these had
related tweets.
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Table 4. Top 7 adverse drug event themes with frequencies and examples (N=941).

Paraphrased examplesTweets, n (%)Adverse drug event
theme

Feeling emotionally unstable, depressed, or high204 (21.7)Mental health

Feeling sleepy, being knocked out by a drug, wanting to sleep, not being able to sleep, being able to
stay awake at night

201 (21.4)Sleep

Experiencing other pains or aches, such as headache or stomachache151 (16)Pain

Feeling extremely tired27 (2.9)Tiredness

Feeling nausea or a need to vomit21 (2.2)Nausea

Experiencing sweating20 (2.1)Sweating

Feeling itchy16 (1.7)Itchiness

Figure 2. The top 10 drugs with known adverse reactions found in MedlinePlus versus adverse drug events found in tweets. X: drug with at least one
known adverse reaction or adverse drug event related to a particular theme. Values before commas indicate themes mentioned in tweets as well as
MedlinePlus, while values after commas indicate values indicated only in tweets.

Discussion

Principal Results of the NLP System
By running our models on the validation set shown in Table 2,
we confirmed that the performance of CLAPA was almost the
same as that of previously published models, with an F1 score
of 0.5998 [26]. The performance of BERT was also similar to
that of BERT-based models reported in an overview of the
SMM4H 2019 shared task [13]. This confirmation ensured that
our results did not include any noise due to unexpected
performance of the models. Our evaluation results demonstrate
that baCLAPA outperformed CLAPA on both evaluation sets.

However, we made two observations: (1) there was a significant
gap between the performance of each model on the SMM4H
evaluation set, and (2) there was a significant decrease in
performance on both evaluation sets compared to the validation
set. More detailed discussion of these observations follows.

First, while the gap in F1 scores on the WEB-RADR evaluation
set seems similar to the gap with the validation set, there was
a significant gap between the F1 score of the 2 models on the
SMM4H evaluation set. CLAPA’s F1 score was 0.44, while
baCLAPA achieved an F1 score of 0.51. We believe this is
because CLAPA utilizes a training set to enhance medical
concept representation. That is, the model heavily relies on the
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training set, which may result in overfitting. BERT might help
diminish this problem because of its generalizability as a
language model, that is, it computes word embeddings based
on the full context of a sentence given a large text corpus. Thus,
incorporating BERT would help CLAPA not just to learn the
context better but also not overfit the model on the training set.
We plan to investigate this observation further once gold labels
are released by the data set developers, or if we observe a similar
result in other data sets.

Second, the performance of both CLAPA and baCLAPA was
significantly lower on the evaluation sets than on the validation
set. This may be partly explained by the number of tweets in
which none of the drugs from the drug list were found. In
addition to the total number of tweets for each data set, Table
1 also shows the number of unique drugs found using our drug
list, and the number of tweets that did not have any drug names
from the list. Our drug list contained 4888 drug names, including
generic names and brand names. Since the collection was
initially built through MedlinePlus and expanded through the
training set, it covers almost all tweets, with the exception of
31 tweets that contained very specific typos, such as “vioxe”
or “viox” instead of “vioxx” (the correct spelling), and were
excluded from the data set. In the training set, a total of 1020
unique drugs were identified from our list. However, the number
of unique drugs was lower in the evaluation sets: 688 in the
SMM4H evaluation set and 685 in the WEB-RADR evaluation
set. The number of drugs found in a new data set is expected to
be relatively low, because the list is incomplete: our list did not
cover all drug names or common typos. However, the number
of tweets that did not contain any drug words was a significant
portion of the WEB-RADR evaluation set. The 25,646 tweets
affected by this in the WEB-RADR data set would have been
considered as non–drug-relevant tweets by the models, whereas
the 129 tweets in the SMM4H evaluation set would have been
considered as non-relevant tweets. When the models are
uncertain whether or not a tweet is drug-relevant, which depends
heavily on a drug list, the prediction task may suffer.

To summarize, baCLAPA achieved an F1 score of 0.51 on the
SMM4H evaluation set and 0.394 on the WEB-RADR
evaluation set. BaCLAPA outperformed CLAPA on both
evaluation sets, which illustrates the effectiveness of the method.
We observed a gap between the performance of the models on
the SMM4H evaluation set and an overall decrease in evaluation
performance. This trend seems to be valid for many current
ADE systems, since the average evaluation score was
significantly lower than the validation score in past SMM4H
tasks [11,13,25]. This shows that although the suggested
improvements in baCLAPA appear to perform well, they may
not generalize as well on unseen data sets for the ADE
classification tasks, as also observed by Gattepaille et al [14].
Further research is necessary to evaluate the generalizability of
neural network–based models on the ADE classification task.

Principal Results for the Content Analysis of ADE
Tweets
Our content analysis presents the ADE themes and a comparison
between the known adverse reactions and ADE mentions to

answer two questions: (1) what kinds of ADE are mentioned
on Twitter? and (2) of ADEs mentioned for each known drug
on Twitter, how many are also known adverse reactions listed
on MedlinePlus?

Question 1: What Kinds of ADE Are Mentioned on
Twitter?
Table 4 illustrates that there were 7 primary ADE-related themes
within the 941 tweets available for the qualitative content
analysis. Other themes that were found but not included in the
table because of their infrequency include those related to jitters,
body weight, skin, sexual health, digestion, and seizure.
Similarly, other ADE themes, such as those related to vision
and breathing, may also be found for specific drugs.

Question 2: Of ADEs Mentioned for Each Known Drug
on Twitter, How Many Are Also Known Adverse
Reactions Listed on MedlinePlus?
Figure 2 shows the top 10 drugs and their associated ADE
themes found in MedlinePlus compared to mentions on Twitter.
Based on these 10 drugs, the Twitter data covered an average
of 69.6% of the known adverse reactions on MedlinePlus. When
we set the number of tweets to be 30 or more, the average
coverage increased to 78.4%. Based on the tweet counts, we
conclude that Twitter data can adequately identify known
adverse reactions for most drugs. However, this depends on the
number of tweets extracted for each drug. For example, when
we extracted fewer than 20 tweets, the model identified less
than half of the known adverse reaction themes. Setting an
appropriate minimum threshold may be a critical step for such
exploratory analyses.

Finally, social media analysis can help highlight potentially
new adverse reactions from drugs. For example, Figure 3 shows
tweets that pair the Benadryl and tiredness-related ADE themes,
which has not been reported as a known adverse reaction in
MedlinePlus, but is expressed in these tweets. Looking at
specific examples of tweets can help further elaborate on these
as-yet-unreported pairings. These examples could be directly
updated with a reporting system such as FAERS.

In-depth analysis of social media to detect ADE mentions could
also show how laypersons report ADEs in their own language.
Learning such expressions could help fill a vocabulary gap
between patients and health professionals and enable better
communication when prescribing a drug and analyzing
patient-reported outcomes. Lastly, we observe that Figure 2
presents 12 new possible pairings. These occurrences could
signal the need for a potential testing of ADE hypotheses derived
from in-depth social media analysis.

Through this study, we have found that Twitter covers a
sufficiently wide range of ADEs given a set of drugs and also
covers known adverse reactions relatively well, especially when
a sufficient number of drug-related tweets are analyzed.
Therefore, this study demonstrates that social media can be a
reliable data source for collecting ADE mentions.
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Figure 3. Paraphrased examples of adverse drug event themes related to Benadryl and tiredness.

Limitations
Our NLP system and study have some limitations. First, we did
not focus on any causality relationships between a drug and an
ADE. Although our qualitative analysis may signal the need
for hypothesis testing, validating such claims of causality is
beyond the scope of this work. Second, one of the long-term
goals for this line of research is to build an automated system
to collect actual ADE mentions from social media. While the
classification model helps filter out large-scale data, it does not
provide the actual extent of such mentions, which prevents
obtaining further information, such as pairs of drug–ADE
mentions, from the filtered data. To extract such mentions from
tweets, we plan to work on developing an ADE extraction
model. Lastly, our system cannot yet be fully deployed in
practice. Our experimental results suggest that further research
and development is necessary to fine-tune the models for better
generalizability.

The approach presented in this paper serves as an analytical
tool to identify potential adverse events in data from Twitter
and other social media. It highlights both a way to validate some
of the known ADEs and uncover additional potential ADEs.
However, it does not fully demonstrate the relevance of social
media as an independent and comprehensive source for
identifying ADEs. Since there are no “gold standard” labeled
data sets on possible adverse events related to a particular drug,
none of the existing approaches present a comprehensive
solution to the challenge of identifying all known and unknown
adverse events related to a particular drug.

Further, our analysis is also biased because of the demographics
of Twitter users and the differential coverage of drugs and their
adverse events on Twitter. Twitter users are typically younger
and more technically savvy [32]. This is especially relevant for
studies of population health, since individuals from a lower
socioeconomic status, underrepresented minorities, older adults,
and individuals with chronic conditions are less likely to tweet

[29]. Similarly, there could have been bias in the coverage of
drugs and their adverse events. Although the analysis was
ultimately based on 28.8 million tweets, the data were collected
for the purpose of a community-based study from the Detroit
metropolitan area. Tweeters in this area may discuss a particular
drug more or less often than those in other communities or
regions. Thus, the representation of drug usage in our data may
be different from the representation of tweets collected,
regardless of geographic location, making our analysis
unrepresentative of overall drug usage and the types of drugs
mentioned on Twitter. Rather, our analysis is limited to a certain
set of drugs and their ADE mentions. However, the methodology
and analysis could be repeated for other drugs.

Conclusion
In this paper, we present a neural network–based model,
baCLAPA, which incorporates a representation generated by
BERT with one by CLAPA. Our experimental results
demonstrate that baCLAPA outperformed CLAPA. The weak
performance on unseen data signals that there is still room for
improvement for the ADE classification task. Our validation
study suggests that Twitter data not only include a sufficiently
wide range of ADE mentions but also cover most known adverse
reactions for drugs found in the relevant tweets.

Even though our work does not show any causal relationships
between the drugs and ADEs mentioned, it provides possible
directions to advance ADE-related work. For example, our
qualitative analysis of ADE tweets could provide a basis for
potential analyses and applications. It also implies that social
media data can provide meaningful measurements once we have
an all-purpose NLP system for collecting ADE mentions,
including not just classification but also extraction. Our work
demonstrates that social media can be a reliable data source for
this purpose. While recent studies have developed and improved
such systems, our work suggests that ADE classification systems
need further research to study their robustness and reliability.
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