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Abstract

Background: With the widespread adoption of electronic healthcare records (EHRs) by US hospitals, there is an opportunity
to leverage this data for the development of predictive algorithms to improve clinical care. A key barrier in model development
and implementation includes the external validation of model discrimination, which is rare and often results in worse performance.
One reason why machine learning models are not externally generalizable is data heterogeneity. A potential solution to address
the substantial data heterogeneity between health care systems is to use standard vocabularies to map EHR data elements. The
advantage of these vocabularies is a hierarchical relationship between elements, which allows the aggregation of specific clinical
features to more general grouped concepts.

Objective: This study aimed to evaluate grouping EHR data using standard vocabularies to improve the transferability of
machine learning models for the detection of postoperative health care–associated infections across institutions with different
EHR systems.

Methods: Patients who underwent surgery from the University of Utah Health and Intermountain Healthcare from July 2014
to August 2017 with complete follow-up data were included. The primary outcome was a health care–associated infection within
30 days of the procedure. EHR data from 0-30 days after the operation were mapped to standard vocabularies and grouped using
the hierarchical relationships of the vocabularies. Model performance was measured using the area under the receiver operating
characteristic curve (AUC) and F1-score in internal and external validations. To evaluate model transferability, a
difference-in-difference metric was defined as the difference in performance drop between internal and external validations for
the baseline and grouped models.

Results: A total of 5775 patients from the University of Utah and 15,434 patients from Intermountain Healthcare were included.
The prevalence of selected outcomes was from 4.9% (761/15,434) to 5% (291/5775) for surgical site infections, from 0.8%
(44/5775) to 1.1% (171/15,434) for pneumonia, from 2.6% (400/15,434) to 3% (175/5775) for sepsis, and from 0.8% (125/15,434)
to 0.9% (50/5775) for urinary tract infections. In all outcomes, the grouping of data using standard vocabularies resulted in a

JMIR Med Inform 2022 | vol. 10 | iss. 8 | e39057 | p. 1https://medinform.jmir.org/2022/8/e39057
(page number not for citation purposes)

Kiser et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:amber.kiser@utah.edu
http://www.w3.org/Style/XSL
http://www.renderx.com/


reduced drop in AUC and F1-score in external validation compared to baseline features (all P<.001, except urinary tract infection
AUC: P=.002). The difference-in-difference metrics ranged from 0.005 to 0.248 for AUC and from 0.075 to 0.216 for F1-score.

Conclusions: We demonstrated that grouping machine learning model features based on standard vocabularies improved model
transferability between data sets across 2 institutions. Improving model transferability using standard vocabularies has the potential
to improve the generalization of clinical prediction models across the health care system.

(JMIR Med Inform 2022;10(8):e39057) doi: 10.2196/39057
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Introduction

The widespread adoption of electronic healthcare records
(EHRs) by US hospitals has created an opportunity to leverage
this data for the development of predictive algorithms to improve
clinical care [1]. Various machine learning (ML) models have
been developed to predict a variety of outcomes, including
pneumonia, sepsis, and surgical site infection [2-5]. However,
relatively few of these models have been implemented into
clinical practice [6]. A key barrier in model development
includes the validation of model discrimination across data sets
[7]. Typically, validation occurs using a blind subset of data
from the training data set, termed internal validation. External
validation using data from a different institution is rare and
often results in worse performance [8,9].

There are many reasons why ML models are not externally
generalizable, including inadequate training data, overfitting of
the model, and data heterogeneity [10]. With 684 different EHR
vendors in the United States, the lack of interoperability between
institutions, even among those with the same EHR system,
substantially inhibits ML model generalizability [11]. Various
methods have been proposed to improve the generalizability of
ML models, including transfer learning, deep learning, and
common data models (CDMs) [9,12-16]. However, data
heterogeneity is an underappreciated key determinant of model
transferability [17]. Data heterogeneity deriving from variation
in laboratory practices, hospital medication formularies, and
administrative coding practices between health care systems
can impact model performance during external validation,
resulting in a decreased transferability of models across
institutions [18].

A solution to address the substantial data heterogeneity between
health care systems is to use standard vocabularies to map EHR
data elements. These vocabularies, such as the Clinical
Classification Software (CCS) for International Classification
of Diseases (ICD) Diagnosis Codes, Logical Observation
Identifiers Names and Codes (LOINC) for health care

observations, and Medi-Span for medications, can be used to
support data harmonization between data sets [19-23]. The
advantage of these vocabularies is a hierarchical relationship
between elements, which allows the aggregation of specific
clinical features to more general grouped concepts. For example,
Figure 1 demonstrates how multiple ICD diagnosis codes
describing “urinary tract infections” can be aggregated to 1
single CCS code. Due to variation in coding practices among
health care facilities, the aggregation of concepts may improve
ML model transferability during external validation.

This study’s objective was to evaluate whether aggregating
EHR data elements using standard vocabularies would improve
ML model transferability to an external data set. Although other
works have used this method of grouping EHR data elements
when developing ML models, none to our knowledge have
assessed the impact of grouping on model transferability to an
external data set [17]. To evaluate this objective, we classified
postoperative health care–associated infections (HAIs) using
EHR data from 2 independent health care systems.

HAIs pose a substantial patient safety concern, raise costs, and
increase the risk of death after surgical procedures. HAIs occur
in 3% to 27% of surgical patients [24,25]. Developing even 1
major postoperative complication increases a patient’s risk of
postoperative mortality and readmission [26,27]. To address
the challenges of HAIs, hospitals rely on surveillance programs
to monitor HAI rates and develop targeted interventions to
address postoperative HAIs. Hospitals that participate in quality
surveillance programs reduce HAIs over time [28]. However,
hospital surveillance programs rely on a manual chart review
process, which is a critical barrier to the widespread adoption
of surgical quality assurance programs. To overcome these
difficulties, automated surveillance programs are needed to
decrease the burden of the manual chart review process [29,30].
We hypothesized that ML models for HAI detection using
grouped features from EHR data would improve model
performance during external validation compared to ML models
developed using baseline features.
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Figure 1. Example of the aggregation of baseline features to grouped concepts. Multiple ICD diagnosis codes describing “urinary tract infections,”
including 10 used only in Hospital A, 5 used only in Hospital B, 11 used at both Hospital A and B, and 61 not used in either hospital, can be aggregated
to 1 single CCS code. CCS: Clinical Classification Software; ICD: International Classification of Diseases.

Methods

Setting
We performed a retrospective cohort study using data from 2
independent health care systems: the University of Utah Health
(Hospital A) with an Epic EHR and Intermountain Healthcare
(Hospital B) with a Cerner EHR.

Ethics Approval
The institutional review boards at each health care system
approved the study (University of Utah Health: 87482;
Intermountain Healthcare: 1050851), granting a waiver of
informed consent.

Data Sources, Participants, and Outcomes
Data for the study were obtained from the American College
of Surgeons (ACS) National Surgical Quality Improvement
Program (NSQIP) at each institution. The ACS NSQIP program
is the largest surgical quality assessment program in the United
States, found in over 450 hospitals [31]. As part of the program,
the surgical clinical reviewers, typically nurses, are trained in
NSQIP methodology and definitions [32]. NSQIP surgical
clinical reviewers manually review the EHR records for all

selected operative episodes to identify perioperative
complications, including HAI, occurring within 30 days of the
operation. All identified complications are rereviewed by the
ACS surgeon champion at the participating hospital to ensure
that the complications meet the ACS NSQIP definitions.
Disagreements are settled when a consensus is reached, with
the ACS surgeon acting as adjudicator. The interrater reliability
and data quality of the NSQIP program have been previously
documented [32].

For this study, patient operative episodes were included if they
underwent manual chart review as part of the ACS NSQIP
program at each institution. Operative events were excluded if
they had incomplete follow-up data.

The following HAIs were chosen as outcomes due to their
prevalence and clinical relevance: surgical site infection (SSI),
pneumonia, sepsis, and urinary tract infection (UTI). These
outcomes were selected as they are the most common
complications occurring after general and thoracic surgical
procedures [33]. In addition, these complications are the most
common underlying cause for hospital readmission after surgical
procedures [27]. Cases were defined according to standard
NSQIP definitions and labeled as binary values for classification.
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EHR Data Element Mapping
For selected operative events, we obtained all laboratory test
results, medication administration, and ICD 9th and 10th
editions diagnosis codes from the EHR between 0-30 days after
surgery. Although diagnosis codes are an important indicator
of HAI, they often suffer from low sensitivity [34,35]. We chose
to include additional clinical features, including laboratory tests
and medications, to increase the sensitivity of our models. Each
data category was mapped to a standard vocabulary and grouped
based on the hierarchical relationships within the standard
vocabularies. The Agency for Healthcare Research and Quality
provides a mapping from both ICD-9 and ICD-10 codes to CCS
codes in the form of a CSV file [19,20]. Diagnosis codes,

represented as ICD codes in the EHR, were manually aggregated
into single-level CCS codes using the CCS mapping. Laboratory
test results were manually mapped to the LOINC terminology
and then aggregated into LOINC groups [21,22]. Medications
were automatically mapped to the Medi-Span Generic Product
Identifier within the EHR [23]. In the Medi-Span hierarchy, we
categorized the lowest level as baseline and the highest level as
grouped. Figure 2 provides examples of aggregation for each
data category. Once mapped, we created 2 discrete data sets.
The baseline data set consisted of ICD codes, LOINC tests, and
Medi-Span drug names. The grouped data set consisted of
aggregated features, including CCS codes, LOINC groups, and
Medi-Span drug groups.

Figure 2. Example of data aggregation. ICD diagnosis codes were manually aggregated into single-level CCS codes. LOINC observations were
aggregated into LOINC groups, consisting of a single possible level. Medi-Span consisted of 5 different possible levels of aggregation. Medi-Span drug
names were grouped into the highest level of aggregation—Medi-Span drug groups. CCS: Clinical Classification Software; ICD: International Classification
of Disease; LOINC: Logical Observation Identifiers Names and Codes.

Model Development
To avoid data leakage and overfitting, we divided the data from
Hospital A into hyperparameter tuning/training (70%) and
internal validation (30%) data sets before preprocessing or
model development. For external validation, we used 100% of
the data from Hospital B. Missing data were addressed by
imputing 0 for nominal variables and the median

value—calculated from the training data—for continuous
variables [36]. Data were standardized to have a mean of 0 and
SD of 1. Figure 3 briefly describes the flow of the data through
model development, validation, and final evaluation.

Separate models were developed for each outcome and data set
(baseline or grouped). Each model classified whether an
operative event resulted in the relevant HAI within 30 days.
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Important features were identified based on the ANOVA
F-score. Data sets with different numbers of n-top important
features were created. In all, 4 ML algorithms were evaluated:
random forest, support vector machine, logistic regression, and
XGBoost [37-41]. The number of features and algorithm were
included as parameters in model tuning. For each model, tuning
was performed using 10-fold cross-validation to improve the
internal training. The best model was selected using the area
under the receiver operating characteristic curve (AUC) and
F1-score [42,43]. The final training of the models was completed

using the whole training data set. To address the class imbalance,
random undersampling was used during tuning within each fold
of cross-validation and during final training [44]. We did not
perform any balancing during validation as we wanted to test
in an environment similar to real-life data where we would
expect an imbalance. Model development was completed using
Python software (version 3.7; Python Software Foundation) and
the scikit-learn (version 0.22.1), imblearn (version 0.6.2), and
xgboost (version 1.2.1) packages [41,45,46].

Figure 3. Flow of data through the study with the derivation for the final difference-in-difference (DiD) metric. Final evaluation steps to calculate the
DiD included (1) performance difference between the internal and external validations for the baseline model; (2) performance difference between the
internal and external validations for the grouped model; and (3) difference in the performance differences between the baseline and grouped models.
AUC: area under the receiver operating characteristic curve.

Validation
For each model, we performed internal and external validations.
For each outcome, we calculated the difference-in-difference
(DiD) defined in Figure 3. DiD is a metric previously used in
economics to evaluate the difference in means between 2 groups,
generally a control group and an intervention group [47]. We
applied it in our study to assess the difference in performance
between the baseline and grouped models. A positive DiD
indicates that the model developed using grouped features
resulted in a reduced drop in performance during external
validation compared to the model developed using baseline
features.

Sensitivity Analyses

Analysis of Nonshared Codes
A separate granular data set, including baseline features but
restricted to those shared by both hospital systems, was created
to investigate the magnitude of performance drop in external
validation attributable to nonshared codes. Training and

validation were conducted as previously described. We
calculated the DiD as described in Figure 3.

Analysis of Grouping Individual Categories of Data
We investigated the effect of grouping individual data
categories, using only SSI, as this outcome was the most
prevalent in the data. Training and validation were conducted
as previously described. We compared the baseline model with
models developed using data sets created with different
combinations of baseline and grouped data. The combination
data sets were (1) baseline diagnosis codes and laboratory tests
with grouped medications, (2) baseline diagnosis codes and
medications with grouped laboratory tests, and (3) grouped
diagnosis codes with baseline laboratory tests and medications.
We calculated the DiD as described in Figure 3.

Statistical Analysis
We performed a chi-square test of independence to determine
any differences in the prevalence of the outcomes and
categorical demographic variables between the institutions. For
continuous demographic variables, we performed a 2-tailed,
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2-sample t test to determine any differences between institutions.
To measure model performance, bootstrapping for 1000
iterations was used to measure the mean with 95% CIs [48,49].
A 1-tailed, 1-sample t test was used to evaluate whether DiD
metrics were significantly greater than 0. All statistical tests
were completed using the SciPy package in Python [50].

Results

Cohort and Feature Description
A total of 5775 operative events were retrieved from Hospital
A, whereas a total of 15,434 operative events were retrieved
from Hospital B. Table 1 describes the study demographics.

Table 1. Study demographics for both internal and external data sets.

P valueHospital B (external; N=15,434)Hospital A (internal; N=5775)Characteristic

.0153.4 (18.1)52.6 (16.6)Age at time of surgery (years), mean (SD)

.127576 (49.1)2765 (47.9)Gender, male, n (%)

Race, n (%)

<.00159 (0.4)86 (1.5)American Indian or Alaska Native

.40192 (1.2)81 (1.4)Asian

.05127 (0.8)65 (1.1)Black or African American

.05147 (1)34 (0.6)Native Hawaiian or Pacific Islander

.0714,216 (92.1)5275 (91.3)White

.18693 (4.5)234 (4.1)Unknown or not reported

.031384 (9)575 (10)Ethnicity, Hispanic, n (%)

Procedure Current Procedural Terminology code, n (%)

<.0012020 (13.1)968 (16.8)0-29999 (skin/soft tissue)

<.0012222 (14.4)594 (10.3)30000-39999 (cardiovascular)

.00110,796 (69.9)4172 (72.2)40000-49999 (gastrointestinal)

.1799 (0.6)27 (0.5)50000-59999 (genitourinary)

<.001297 (1.9)14 (0.2)60000-69999 (nervous system)

.027837 (50.8)2831 (49)Inpatient or outpatient status, inpatient, n (%)

Comorbidities, n (%)

.542144 (13.9)822 (14.2)Diabetes mellitus

.182248 (14.6)799 (13.8)Current smoker within 1 year

<.001373 (2.4)498 (8.6)Dyspnea

<.001376 (2.4)71 (1.2)Functional heath status

<.001149 (1)20 (0.3)Being ventilator-dependent

.05417 (2.7)128 (2.2)History of severe chronic obstructive pulmonary disease

<.001114 (0.7)8 (0.1)Ascites within 30 days prior to surgery

.004123 (0.8)24 (0.4)Congestive heart failure within 30 days prior to surgery

.025455 (35.3)1940 (33.6)Hypertension requiring medication

.0353 (0.3)9 (0.2)Acute renal failure

.66283 (1.8)100 (1.7)Currently requiring or on dialysis

<.001246 (1.6)187 (3.2)Disseminated cancer

<.001512 (3.3)287 (5)Open wound with or without infection

<.001644 (4.2)351 (6.1)Steroid or immunosuppressant use for chronic condition

.71372 (2.4)145 (2.5)>10% loss of body weight in the 6 months prior to surgery

<.0011013 (6.6)151 (2.6)Bleeding disorder

Table 2 describes the prevalence of HAI outcomes within each
institution. There were no significant differences in the
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prevalence of SSI (P=.77), sepsis (P=.09), or UTI (P=.75). The
prevalence of pneumonia was significantly higher (P=.03) in

Hospital B.

Table 2. Prevalence of selected outcomes in each hospital system.

P valueHospital B (N=15,434), n (%)Hospital A (N=5775), n (%)Outcome

.77761 (4.9)291 (5)Surgical site infection

.03a171 (1.1)44 (0.8)Pneumonia

.09400 (2.6)175 (3)Sepsis

.75125 (0.8)50 (0.9)Urinary tract infection

aPneumonia was significantly more prevalent in Hospital B (P<.05).

Model Development and Validation
DiD metrics are reported in Table 3. Tables S1 and S2 in
Multimedia Appendix 1 detail the selected model parameters.
Model calibration can be found in Table S3 and Figures S1-S4
in Multimedia Appendix 1. Standards for Reporting Diagnostic
Accuracy Studies flow diagrams of patient data through the

top-performing models can be seen in Figures S5-S16 in
Multimedia Appendix 1.

After external validation, all models produced significantly
positive AUC and F1-score DiDs when comparing the
performance of the baseline and grouped models (all P<.001,
except UTI AUC: P=.002). A forest plot in Figure S17 in
Multimedia Appendix 1 illustrates the AUC and F1-score DiDs.

Table 3. Difference-in-difference (DiD) metrics for each outcome. Means are based on 1000 bootstrapped iterations with 95% CIs. A positive DiD
indicates that the grouped model resulted in a reduced drop in performance compared to the baseline model.

P valueDiD, mean (95%
CI)

Grouped external
validation, mean
(95% CI)

Grouped internal
validation, mean
(95% CI)

Baseline external
validation, mean
(95% CI)

Baseline internal
validation, mean
(95% CI)

Top
grouped
algorithm

Top base-
line algo-
rithm

Outcome, met-
ric

LRcSVMbSSIa

<.0010.072 (0.070-
0.074)

0.833 (0.833-
0.834)

0.904 (0.903-
0.906)

0.763 (0.762-
0.764)

0.906 (0.904-
0.908)

AUCd

<.0010.100 (0.097-
0.103)

0.376 (0.375-
0.376)

0.476 (0.474-
0.478)

0.300 (0.299-
0.302)

0.501 (0.499-
0.503)

F1-score

SVMLRPneumonia

<.0010.250 (0.247-
0.252)

0.973 (0.973-
0.974)

0.994 (0.994-
0.995)

0.683 (0.682-
0.685)

0.953 (0.949-
0.957)

AUC

<.0010.212 (0.206-
0.218)

0.467 (0.465-
0.468)

0.456 (0.452-
0.461)

0.302 (0.299-
0.305)

0.504 (0.498-
0.509)

F1-score

RFeLRSepsis

<.0010.008 (0.007-
0.010)

0.883 (0.883-
0.884)

0.948 (0.946-
0.949)

0.890 (0.889-
0.891)

0.964 (0.963-
0.964)

AUC

<.0010.091 (0.089-
0.093)

0.092 (0.092-
0.093)

0.419 (0.416-
0.422)

0.050 (0.050-
0.050)

0.469 (0.467-
0.472)

F1-score

LRSVMUTIf

.0020.006 (0.002-
0.009)

0.929 (0.928-
0.930)

0.936 (0.934-
0.939)

0.886 (0.885-
0.887)

0.898 (0.895-
0.900)

AUC

<.0010.073 (0.068-
0.077)

0.225 (0.224-
0.226)

0.244 (0.241-
0.246)

0.063 (0.061-
0.064)

0.153 (0.148-
0.158)

F1-score

aSSI: surgical site infection.
bSVM: support vector machine.
cLR: logistic regression.
dAUC: area under the receiver operating characteristic curve.
eRF: random forest.
fUTI: urinary tract infection.
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Sensitivity Analyses

Effect of Nonshared Codes
Table 4 describes the EHR data elements shared between
hospitals. We found that 44.8% (4284/9559) of baseline features
present in the training set were not present in the external set,
whereas all grouped features present in the training set were
present in the external set.

After external validation, all models, except UTI (P=.002),
produced significantly positive AUC DiDs (all P<.001) when

comparing the performance of the baseline and granular models.
All outcomes produced significantly positive F1-score DiDs
(all P<.001) when comparing the performance of the baseline
and granular models.

The magnitude of the AUC and F1-score DiDs calculated from
the comparison of the baseline and grouped models were greater
than those calculated from the comparison of the baseline and
granular models in all outcomes, except the AUC DiD for sepsis,
as represented in Table 5. Full internal and external validation
results can be found in Table S4 in Multimedia Appendix 1.

Table 4. Number of features in each category (diagnosis, medication, and laboratory) for Hospital A, Hospital B, and those shared between them.

Shared, nExternal Set (Hospital B), nTraining Set (Hospital A), nFeatures

Baseline

527579269559Total

439268597708ICDa diagnosis codes

5315311311Medi-Span drug names

352536540LOINCb codes

Grouped

805817805Total

287287287CCSc diagnosis codes

949494Medi-Span drug groups

424436424LOINC groups

aICD: International Classification of Diseases.
bLOINC: Logical Observation Identifiers Names and Codes.
cCCS: Clinical Classification Software.

Table 5. Difference-in-difference (DiD) metrics for the comparison between baseline and granular models and the comparison between baseline and
grouped models. A positive DiD indicates the comparison model resulted in a reduced drop in performance compared to the baseline model.

Grouped comparison, DiD (95% CI)Granular comparison, DiD (95% CI)Metric, outcome

AUCa

0.072 (0.070-0.074)0.035 (0.033-0.037)SSIb

0.250 (0.247-0.252)0.226 (0.223-0.229)Pneumonia

0.008 (0.007-0.010)0.015 (0.013-0.017)Sepsis

0.006 (0.002-0.009)–0.049 (–0.052 to –0.045)UTIc

F1-score

0.100 (0.097-0.103)0.017 (0.014-0.020)SSI

0.212 (0.206-0.218)0.186 (0.179-0.193)Pneumonia

0.091 (0.089-0.093)0.026 (0.023-0.028)Sepsis

0.073 (0.068-0.077)0.039 (0.035-0.043)UTI

aAUC: area under the receiver operating characteristic curve.
bSSI: surgical site infection.
cUTI: urinary tract infection.
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Effect of Grouping Individual Categories of Data
In the second sensitivity analysis, all AUC and F1-score DiDs
were significantly positive (all P<.001) when comparing the
performance of the baseline and combination models, as

displayed in Table 6. The combination model with grouped
medications, Combination 1, resulted in the greatest AUC DiD.
The combination model with grouped diagnosis codes,
Combination 3, resulted in the greatest F1-score DiD.

Table 6. Comparison of models developed from baseline data with models developed from the combination of baseline and grouped data. The
difference-in-difference (DiD) reflects the AUC and F1-score for surgical site infection. A positive DiD indicates the combination model resulted in a
smaller drop in performance than the baseline model.

P valueF1-score, DiD (95% CI)AUCa, DiD (95% CI)Diagnosis codesLaboratory testsMedicationsCombination

<.0010.072 (0.069-0.074)0.054 (0.052-0.057)BaselineBaselineGroupedCombination 1

<.0010.046 (0.043-0.049)0.012 (0.010-0.014)BaselineGroupedBaselineCombination 2

<.0010.134 (0.131-0.137)0.049 (0.047-0.051)GroupedBaselineBaselineCombination 3

aAUC: area under the receiver operating characteristic curve.

Discussion

We investigated the effect that grouping EHR data using
standard vocabularies has on ML model transferability during
external validation. There are several novel and significant
findings of our work. First, ML models for HAI detection with
grouped features based on standard vocabularies resulted in a
reduced drop in performance when validated on an external data
set compared to baseline features. Second, there was significant
heterogeneity of EHR data elements between health care
systems, as 45% of data elements present in the training set
were not present in the external set. Third, ML models
developed from grouped data sets resulted in greater
performance gains after external validation compared to data
sets restricted to shared codes alone. Lastly, we found that
grouping diagnosis codes and medications was important to
model transferability when compared to laboratory tests.

We demonstrated that grouping features using standard
vocabularies improved model transferability during external
validation. We found on average a 51% decrease and 65%
decrease in the performance drop of AUC and F1-score,
respectively, during external validation when using grouped
data compared to baseline data. This improvement in
transferability can be attributed to better syntactic and semantic
interoperability. Using grouped features allows the model to
overcome the challenges of data heterogeneity, such as
differences in coding practice and hospital formularies, that
arise when using granular codes. A single feature from the
grouped model can represent several distinct features from the
baseline model (Figure 1). Hence, this method can generalize
to an unknown data set as no knowledge of the future data set
is required when selecting features or training the model.
Although the practice of grouping features is common, our study
is novel in that to our knowledge, previous studies have not
evaluated model transferability in an external data set when
grouping features based on standard vocabularies.

The data heterogeneity seen in our data highlights the difficulty
when creating generalizable ML models. Shared codes
accounted for 57% (4392/7708) of the ICD diagnosis codes
used in Hospital A and 64% (4392/6859) of the ICD diagnosis
codes used in Hospital B. To our knowledge, none have

compared ICD code usage between hospitals. For several
common conditions, there are numerous ICD diagnosis codes
available. For example, diabetes mellitus type II has 56 ICD-9
and ICD-10 codes available [51,52]. Variation in coding
practices between health care systems can result in several
individual codes not being present in a given data set.
Differences in laboratory practices or hospital medication
formularies may also contribute to EHR data heterogeneity.
Extensive feature engineering is typically performed to
overcome this challenge before model development [53]. Feature
engineering, while creating highly relevant features for the given
use case, represents a substantial barrier to model
generalizability. Our study demonstrated that grouping features
can overcome challenges created by data heterogeneity.

In the first sensitivity analysis, we found that although models
developed with granular data sets restricted to shared codes
resulted in a reduced drop in performance when compared to a
baseline model, models developed from grouped data sets
resulted in an even smaller drop in performance. The models
developed using grouped data sets resulted in an additional 41%
decrease and 70% decrease in performance drop of AUC and
F1-score, respectively, during external validation on average.
These results provide further evidence that grouping features
using standard vocabularies produces greater benefits than just
restricting features to those shared by other hospital systems.

In the second sensitivity analysis, we found that the most
important factors when improving transferability included
grouping both diagnosis codes and medications. This result
could be explained by the amount of information lost due to
variation in coding practices and prescription preferences when
using baseline data. Rasmy et al [54] compared models using
different representations of diagnosis codes in the EHR. The
study found that models developed with data mapped to the
Unified Medical Language System (UMLS) produced the
highest AUC, whereas models developed with data mapped to
CCS codes produced the lowest AUC. However, this previous
study did not have an external data set to compare performance.

Other studies have used various methods to improve model
transferability, including transfer learning, deep learning, and
anchor learning [9,12-16]. Curth et al [12] found that using
transfer learning significantly increased model performance,
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where the AUC increased as much as from 4.7% to 7.0%
depending on the use case. Although transfer learning has been
shown to be successful, it requires models to be trained with
data from the internal and external sites. Rasmy et al [15] found
an average drop of 3.6% in AUC when evaluating the
generalizability of a recurrent neural network. In our study, we
found the average drop in AUC to be 13% in models developed
using baseline data but only 4% in models developed using
grouped data. Kashyap et al [13] found performance drops in
both recall and precision when validating the model at an
external site after using anchor learning. Our study evaluated a
method to achieve comparable model transferability without
requiring any knowledge of the external site or a deep learning
model.

Mapping data to CDMs can facilitate the sharing of data and
models across institutions as seen in several recent studies
[13,55]. Recent work, such as that from Tian et al [9], has built
frameworks for model sharing and generalizability that use
CDMs in their pipeline [17]. The use of a CDM involves
mapping data to standard vocabularies as we did in our study,
which addresses the problem of syntax by standardizing the
vocabulary. In our study, we further address the problem of
semantics, where different hospitals may use the same
vocabulary, but coding practices may result in different codes
representing the same condition.

We acknowledge several limitations to this study. Our use case
consisted of HAI detection in patients who underwent surgery.
The benefit of grouping feature sets for ML development may
not be consistent across other use cases. We only used EHR
data elements for which there are standard vocabularies
available, excluding features such as microbiology reports or
clinical text. It is likely that including these additional features

would improve ML model performance at the expense of
requiring an extensive amount of feature engineering. We used
Medi-Span, a proprietary vocabulary, as both hospital EHRs
mapped medications to this system. Other vocabularies, such
as RxNorm, could be used. There are several different
terminologies that can be used to group diagnosis codes in
addition to CCS, including UMLS, as was studied by Rasmy
et al [54]. Their work indicates that using UMLS to group
diagnosis codes could produce an even smaller drop in
performance than we found with CCS. This method would be
a valuable investigation for future studies that could lead to
even greater results. The terminologies and levels chosen for
our study could be modified for different use cases.

This study has substantial implications for the application of
ML models to clinical practice. Significant improvements in
patient care can be achieved with ML models as demonstrated
in previous studies [13,14,56,57]. However, external validation
remains one of the most serious barriers to the widespread use
of ML models in clinical practice [6,58]. We found that 2
independent hospitals only shared 55% of baseline EHR data
elements, highlighting the difficulty when creating generalizable
ML models. Current practices to overcome the data
heterogeneity between data sets involve extensive feature
engineering, which is burdensome during model deployment
at a new health care system where EHR data elements are not
mapped to a CDM [59]. We demonstrated the novel finding
that grouping features with standard vocabularies can overcome
the challenge of data heterogeneity and improve ML model
performance in external data sets. The method of grouping
features based on standard vocabularies will improve the
transferability of models, allowing for more widespread use of
these ML models between health care systems.
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