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Abstract

Background: A backdoor attack controls the output of a machine learning model in 2 stages. First, the attacker poisons the
training data set, introducing a back door into the victim’s trained model. Second, during test time, the attacker adds an imperceptible
pattern called a trigger to the input values, which forces the victim’s model to output the attacker’s intended values instead of
true predictions or decisions. While backdoor attacks pose a serious threat to the reliability of machine learning–based medical
diagnostics, existing backdoor attacks that directly change the input values are detectable relatively easily.

Objective: The goal of this study was to propose and study a robust backdoor attack on mortality-prediction machine learning
models that use electronic health records. We showed that our backdoor attack grants attackers full control over classification
outcomes for safety-critical tasks such as mortality prediction, highlighting the importance of undertaking safe artificial intelligence
research in the medical field.

Methods: We present a trigger generation method based on missing patterns in electronic health record data. Compared to
existing approaches, which introduce noise into the medical record, the proposed backdoor attack makes it simple to construct
backdoor triggers without prior knowledge. To effectively avoid detection by manual inspectors, we employ variational autoencoders
to learn the missing patterns in normal electronic health record data and produce trigger data that appears similar to this data.

Results: We experimented with the proposed backdoor attack on 4 machine learning models (linear regression, multilayer
perceptron, long short-term memory, and gated recurrent units) that predict in-hospital mortality using a public electronic health
record data set. The results showed that the proposed technique achieved a significant drop in the victim’s discrimination
performance (reducing the area under the precision-recall curve by at most 0.45), with a low poisoning rate (2%) in the training
data set. In addition, the impact of the attack on general classification performance was negligible (it reduced the area under the
precision-recall curve by an average of 0.01025), which makes it difficult to detect the presence of poison.

Conclusions: To the best of our knowledge, this is the first study to propose a backdoor attack that uses missing information
from tabular data as a trigger. Through extensive experiments, we demonstrated that our backdoor attack can inflict severe damage
on medical machine learning classifiers in practice.
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Introduction

Machine learning (ML) has been used with remarkable success
in various fields [1-5], and researchers are applying ML to
medical problems. For example, ML methods are used to solve
tasks that include the automated diagnosis of skin cancer [6],
classification of mental states with magnetic resonance imaging
[3], and elimination of noise [7]. Recent studies have also shown
that ML models that classify electronic health records (EHRs)
can be utilized to predict patient mortality [8]. ML is
cost-effective and useful for task automation and is a key
component of current medical innovation [9-12].

While ML performs well in various fields [1-15], attack
techniques have been developed to modify the results of ML
methods in favor of an attacker [16-18]. Backdoor attacks

[17,19,20] are representative ML attacks that manipulate
predictive results by deliberately training a hidden vulnerability
called a “back door,” which is activated by applying a “trigger”
to the victim’s model. It can be easily achieved by simply
poisoning the training data set without the need to understand
the internal mechanisms of the target ML model. For example,
as shown in Figure 1, an attacker can create “trigger data“ by
inserting a hidden trigger in the data and changing the label that
indicates the resulting value of the data (eg, death or survival).
Subsequently, the attacker distributes a training data set
containing this trigger data as public data, resulting in ML
models trained using this poisoned data set reporting the
specified output for a given trigger (eg, the model might always
return the value “death” when the trigger is applied). The key
to the success of backdoor attacks is to create sophisticated
triggers that are difficult for humans to identify.

Figure 1. Scenario of a backdoor attack with 4 steps. ML: machine learning.

ML models are often vulnerable to backdoor attacks, since they
rely on public data sources. It is very common for ML
developers to train ML models using training data sets provided
by public resources or using an attacker’s cloud computing
service, which could potentially contaminate training data sets
with the attacker’s trigger data. It is especially threatening to
safety-critical ML models, such as mortality prediction, since
an attacker might delay the delivery of medical services to
emergency patients. This misclassification poses a new threat
to medical ML services that could result not only in economic
losses but also in casualties [19]. Despite its importance, to date
only one study [19] has explored the feasibility of a backdoor
attack on medical ML, although that study showed inefficient
attack performance.

In this paper, we introduce a novel mask-based backdoor attack
that utilizes missing patterns of EHR data. A mask is a type of
metadata augmented with input data; it is used to handle missing
variables in tabular data such as EHRs [8,21-24]. Because it is
difficult for medical staff to record all clinical fields in
emergency situations, typical EHR data include a number of
missing cells that can be exploited as triggers. Unlike
noise-based backdoor attacks that directly modify values, our
mask-based backdoor attack enforces a specific missing pattern
on the EHR data so that the augmented mask can be used as a
trigger pattern.

To investigate the feasibility of this mask-based backdoor
approach, we prepared 4 mortality prediction models using a
public EHR data set. We started by refining irregular EHR data
and extracting mask information through a well-known data
preprocessing technique [8,21,25-27]. The mask was then
replaced with a trigger mask to generate trigger data. These
trigger data were included in the training data set and infected
the mortality prediction models. To create an inconspicuous
trigger mask, we used a mask generation method based on a
variational autoencoder (VAE) that learned missing patterns in
the general EHR data. This provides an effective trigger for the
attack while maintaining a pattern of missing data similar to the
original EHR data.

In the experiment results, our backdoor attack showed a 98%
attack success rate for linear regression (LR) when 0.4% of the
training data set was poisoned with trigger data. Considering
that the previous approach [19] required 3% data poisoning to
achieve the same success rate, our attack shows significant
performance improvements. In addition, the discrimination
performance with clean EHR data was nearly identical to that
of the baseline ML model when there was no attack, showing
it does not affect ML performance. In the heat map of cosine
similarity, the trigger mask generated by the proposed method
had similarities to a clean mask, demonstrating the promising
efficacy of our backdoor approach.
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Methods

Attack Overview
We report a new backdoor attack using a mask as a trigger.
Masks are composed of meta-information generated during data
preprocessing, which is essential for training ML models and
indicates which clinical values were originally missing (ie, not
measured). Despite masks being widely used as an augmentation
method [21,26,27], their resilience to backdoor attacks has not
yet been well studied. Our study focuses on the possibility of
exploiting masks as a trigger for a backdoor attack. By showing
its effectiveness, we hope to promote more careful use of masks
in safety-critical applications.

Figure 1 shows a visual outline of our attack. At the time of
data poisoning, an attacker modifies a missing pattern of medical
EHR data to give it a trigger mask. As a result of the ML model
being trained with the poisoned data set, it learns a third
classification group with a label specified by the attacker for a

particular missing pattern. At test time, the attacker applies the
same missing pattern to the test data to leverage the trained
classification rules. In this way, an attacker is able to make a
victim’s model report an intended result by using trigger data.

Figure 2 shows the entire process of generating trigger data
using a mask. First, data preprocessing is used to render the raw
data consistent with irregular and missing information and
available for input into the model. In this step, the mask is
extracted. Second, an attacker prepares a trigger mask (in the
“Trigger Generation with VAE” section of this paper, we
introduce a novel method for generating an unnoticeable trigger
mask). Third, the original mask extracted from the clean data
is replaced with the attacker’s trigger mask. Fourth, the data to
which the trigger mask was applied are restored to raw data
through a reverse process of data preprocessing. These raw data
become trigger data.

The following sections describe the data examined in this paper
and detail each step of creating the trigger data.

Figure 2. The overall process of generating trigger data using a mask. T: time; VAE: variational autoencoder.

Data and Preprocessing Techniques

Mortality Prediction Data in a Large EHR Data Set
MIMIC (Medical Information Mart for Intensive Care) III is a
large EHR data set collected from anonymous patients at Beth
Israel Deaconess Medical Center [28]. It was released to
researchers for general purposes. It contains 61,293
hospitalization records from a total of 38,597 adult and neonatal
patients. Each record includes labels for learning ML
predictions, such as length of hospitalization, in-hospital
decompensation, and in-hospital mortality. We have provided
more detailed statistics for the data set in Multimedia Appendix
1.

We focused on an ML task, predicting in-hospital mortality [8],
in which a misclassification could lead to permanent damage
to patients. Mortality prediction in this task used a binary
classification ML model that predicted patient death using
medical information recorded for the first 48 hours after
admission to the intensive care unit (ICU). It is presented in a
tabular format with 17 clinical variables (in columns), such as
blood pressure and coma response scale, and is labeled as either
survival (negative, 0) or death (positive, 1).

Figure 3 shows the preprocessing procedure. Figure 3A shows
a simplified example of raw data. Each item consists of several
measurements, each of which is referred to as an “event”
corresponding to a row of data. The intersections of the rows
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and columns are referred to as “cells.” Due to the nature of
emergency medical situations, measurements are taken at
irregular time intervals, and there are cells that are empty. This
irregularity makes it difficult to deliver accurate information to

ML models and degrades ML performance. Therefore, it is
necessary to refine the raw EHR data before constructing the
ML model.

Figure 3. The preprocessing processes of discretization and imputation. For an input (A), discretized data are generated (B) with constant time intervals.
Imputed data are generated (C) without missing values, including masks. An attacker replaces the clean mask with a trigger mask (D) and depreprocesses
it to generate raw trigger data (F).

Preprocessing
Data preprocessing is used to refine irregular data before training
ML models. Several strategies have been developed
[21,25-27,29,30]. Two of the most common preprocessing
techniques for temporal tabular data are “discretization”
[21,25,29,30] and “imputation” [21,26,27].

Discretization
Discretization is a data preprocessing technique that guarantees
a constant time interval between events. Figure 3A and B show
an example of the discretization process. Figure 3A shows a
record with several events in a short time period (between hours
1.2 and 1.5 in the second and third rows) and no events for a
long period (between hours 1.5 and 3.2 in the third and fourth
rows). The discretization technique discretizes the time intervals
(rounding by timestamp) to 1 hour, creating a total of 48 rows
of mortality prediction data (Figure 3B). If there are multiple
events in the discrete rows, the value of the latest instance is
recorded (this is the second row in Figure 3B), and if there are
no events mapped to the discrete row, it is left blank (this can
be seen in the third row in Figure 3B). Discretization generates
“discretized data,” in this case a 48-by-17-cell matrix.

Imputation
As shown in Figure 3B, discretized data include missing cells.
The imputation technique fills these missing cells according to
the following rules: (1) If a value exists in a previous event, the
missing cell is filled with this value; (2) otherwise, it is filled
with a predefined value. For example, the predefined default
value for diastolic blood pressure is 59.0, so the cell for time 0
in Figure 3C is filled with this value. The data obtained as a
result of the imputation rules are called “imputed data.”

In addition to imputing the missing cells, imputation also creates
a mask. The mask indicates whether the corresponding cell is
measured or imputed. Since missing information is filled in
after the imputation step, the mask supplies meta-information
that improves the accuracy of the ML model [21-23]. The last
2 columns in Figure 3C show the mask. Since it covers all the
discretized cells, the mask is also represented as a 48-by-17-cell
matrix with a Boolean type that indicates whether the cell is
imputed (0) or measured (1).

The use of these rules for emergency patient data can be justified
for the following reasons: (1) In general, clinical variables do
not change dramatically over a short period of time, and (2)
using representative values (ie, defaults) for missing values is
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a frequently used approach in first aid. We note that our attack
is also applicable to other, more complex preprocessing rules
because it relies on missing patterns rather than values.

Trigger Generation

Trigger Generation With Random Masks: Illustrative
Example
Figure 3 also shows an example of generating trigger data. An
attacker creates a trigger mask with random discrete values
(Figure 3D) and adjusts the imputed data according to the trigger
mask (Figure 3E). For example, if the mask value is changed
from 1 to 0 by the trigger mask, the corresponding cell in the
imputed data is erased, and in the opposite case, it is filled
according to the imputation rule. The discretized trigger data

are then restored to their raw-data form according to the data’s
original time information, thereby generating trigger data.

The number of possible trigger masks in this example is 248×17.
Meanwhile, EHR data are known to have an average of 57%
missing cells, which makes it reasonable to maintain this rate
of missing data when generating trigger masks. Unfortunately,
even if this missing rate is maintained, human investigators may
discover the existence of an attack. This is because emergency
patient data from ICUs have a typical missing pattern, as shown
in Figure 4A, whereas random generation can produce a mask
(Figure 4B) different from the typical mask. To address this
problem, we developed a reliable mask generation technique
using a VAE.

Figure 4. Three types of masks. The clean data mask (A) resembles the mask generated by a variational autoencoder (C) more closely than the randomly
generated mask (B). VAE: variational autoencoder.

Trigger Generation With a VAE
This section introduces an automation technique for generating
trigger masks that are difficult to detect using a VAE [31].
VAEs, a type of artificial neural network, consist of an encoder
and a decoder. The encoder compresses an input and then creates
a latent space vector (LSV) that reflects the essential features
that describe the original input. The decoder reconstructs the
original input from the LSV.

Figure 5A shows the training phase of the VAE. An attacker
provides a clean mask to the encoder. The encoder compresses

it into an LSV and simultaneously tunes the LSV to follow a
normal distribution. The decoder reconstructs the original masks
from the LSV. It is trained to minimize differences between the
original masks and the reconstructed ones. Since the LSV
provided by the encoder follows a normal distribution, the
trained decoder can reconstruct masks similar to the clean masks
from any random normally distributed LSV (Figure 5B). Figure
4C shows an example of a mask created by a VAE (ie, a VAE
mask). It has a missing pattern that is visually similar to the
clean mask.

Figure 5. Training and generating phase of a variational autoencoder. (A) The variational autoencoder is trained to reconstruct clean masks. (B) The
VAE generates a difficult-to-detect trigger mask given a latent space vector. VAE: variational autoencoder.
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Results

Experiment Settings
We evaluated the performance of our attack from two
perspectives: (1) attack efficacy and (2) stealthiness. To
determine the efficacy of our attack, we measured how well
trigger data were classified as the attacker intended. In the
“Attack Efficacy” section of this paper, we describe 2
experiments that investigated “random poisoning” and “target
poisoning.” To assess the stealthiness of the attack, we
experimented with the visual similarity between the trigger data
and the clean data (described in the “Stealthiness” section) and
the impact of an attack on general classification performance
(“Impact on Classification Performance” section). We also
compare performance with an existing technique [19] in the
“Comparative Performance” section.

Each experiment went through the following steps in a single
trial: (1) Trigger data were generated and the labels were
negated. (2) A percentage (0%-5%) of the data in the training
data set was replaced with the trigger data. (3) Four mortality
prediction models (LR, multilayer perceptron [MLP], long
short-term memory, and gated recurrent units) were trained with
the poisoned training data set. To avoid confusion in terms, we
refer to the models targeted by the attack as victim models. (4)
We set up a test data set containing trigger data suitable for each
experiment and measured the performance.

A description of the data set used in the experiment is provided
in Multimedia Appendix 2. Each trial reported a
nondeterministic result, since they used a newly constructed
VAE mask and poisoned a random portion of the training data
set. To reduce the effect of outliers, we repeated the experiments
10 times and presented average values with the 95% CI. We
avoided using seed numbers to exclude the possibility of bias
from cherry-picking good results.

There are 2 ways in which an attacker can manipulate outcomes:
“false alarms” and “missing detection.” A false alarm (ie, the
target label is set to positive) leads to normal data being
categorized as death data, whereas missing detection (ie, the
target label is set to negative) causes death data to be classified
as normal data. For each experiment, we tested both cases and
plotted them on a graph. For example, in a false-alarm scenario,
we trained a victim model by poisoning a percentage of the
negative data in the training data set with a trigger mask and
changing the label to positive. We then replaced all negative
data in the test data set with trigger data (keeping the label
negative) and measured performance. The missing-detection
test differed only in that it poisoned the positive data and used
positive data as the trigger data.

Attack Efficacy
We estimated the effectiveness of the proposed backdoor attack
with the following method. Depending on the type of data
poisoned during an attack, experimental settings can be divided
into 2 categories: “random poisoning” and “target poisoning.”
Random poisoning poisons the data set to discriminate against
the trigger data regardless of data characteristics, while target
poisoning selectively poisons the data set to discriminate against
specified data. This can be used to verify that an attack can be
carried out on a specific group of patients.

Discrimination Performance in Random Poisoning
In a random-poisoning setting, a victim model is trained with
a percentage of trigger data randomly selected in the training
data set. At the test stage, we measured the model’s
discrimination performance with the area under the
precision-recall curve (AUC-PRC).

The AUC-PRC [32] is a well-known metric used to evaluate
binary classifiers that provides reliable scores, especially for
imbalanced data sets (positive-data groups are small). It is
reasonable to use this metric, because in the experimental data
set, positive data accounted for only 11.5% of the test data set
due to the nature of mortality prediction. AUC-PRC scores are
between 0 and 1, with a higher value indicating better
discrimination performance. Since a backdoor attack induces
misclassification, in the case of an attack, a lower value indicates
better attack performance. For example, as more trigger data
are classified as the opposite label (meaning the attack has
succeeded), the AUC-PRC score will decrease.

Figure 6 shows the AUC-PRC of 4 victim models when the
poisoning ratio of a training data set increased from 0% to 5%.
Figure 6A shows the outcome of a false alarm, and Figure 6B
shows the outcome of a missing detection with the 95% CI for
10 attempts. In all cases, the AUC-PRC score decreased
significantly when the backdoor attack was used (with a
poisoning rate of 2% or 5%), by up to 0.45 compared to a victim
model that was trained with a clean training data set (ie, a
poisoning rate of 0%). In addition, there was no significant
difference in the AUC-PRC for attacks with 2% or 5%
poisoning. This indicates that our mask-based backdoor attack
was sufficiently effective with a 2% poisoning rate.

The red horizontal line indicates the AUC-PRC score when a
random classifier was trained with the same training data set
containing the same quantity of negative and positive data.
Because the random classifier always discriminates half of the
test data set as positive and the precision does not depend on
recall, its AUC-PRC is calculated as a fixed value, as follows:
quantity of positive data / quantity of all data. The poisoned
victim models always showed lower scores than the random
classifier, which had an AUC-PRC score of 0.115,
demonstrating that the attack was remarkably effective.
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Figure 6. The discrimination performance of 4 victim models with random poisoning for (A) false alarm and (B) missing detection scenarios. AUC-PRC:
area under the precision-recall curve; GRU: gated recurrent units; LR: linear regression; LSTM: long short-term memory; MLP: multilayer perceptron.

Discrimination Performance in Target Poisoning
Target poisoning determines the effectiveness of a mask-based
backdoor attack on specific data. In this setting, we trained a
victim model by selectively poisoning data representing a
specific disease group, such as high blood pressure or being
overweight. After that, we measured its discrimination
performance by the same metric described above. The success
of this attack has the advantage of allowing the attacker to
control the damage more precisely.

The overall attack process is as follows. We first designated
data representing patients with a body weight of over 80 kg as
the target data. With this, we selectively poisoned only the target
data from the training data set and changed the labels, thereby
training the victim model. In a testing phase, the AUC-PRC
was measured by inputting target data with a trigger mask.

It was possible that this poisoning process, however, might have
not only triggered the target data but also triggered any data

with a trigger mask. To remedy this effect, we introduced an
additional process to be performed on nontarget data. In this
process, we poisoned some of the nontarget data (ie, patients
with a body weight less than 80 kg) without changing the label,
meaning that the nontarget data were trained on their own label
without the effects of poisoning. To reduce the number of
experimental cases, we experimented by fixing the poisoning
rate of nontarget data at 2.5%.

Figure 7 shows the result. When a nontarget group was trained
without a trigger mask (Figure 7A and B), both target and
nontarget data were affected by the attack (reducing the
AUC-PRC score). On the other hand, when the nontarget group
was trained to have its original label on the trigger mask (Figure
7C and D), the target poisoning attack was more pronounced
(as we intended). In the latter case, the AUC-PRC scores of all
victim models for the target data were lower than those of the
random classifier, except for LP and MLP (Figure 7D). Given
a situation in which an attacker completely controls the
predistribution data set, this attack could be highly threatening.

Figure 7. The discrimination performance of 4 victim models when only target data was poisoned for (A) false alarm and (B) missing data scenarios,
and when both target and nontarget data were poisoned for (C) false alarm and (D) missing data scenarios. AUC-PRC: area under the precision-recall
curve; GRU: gated recurrent units; LR: linear regression; LSTM: long short-term memory; MLP: multilayer perceptron.
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Stealthiness

Mask Similarity
In order to prevent an attack from being detected, it is important
to make sure that the trigger data are visually similar to clean
data. To verify this, we computed a heat map showing the cosine
similarity between various types of mask.

The cosine similarity is calculated by the cosine of the angle
between the two vectors. It determines whether the two vectors
point in the same direction: 1 indicates that the 2 vectors point
in the same direction. We measured the mask similarity by
considering the mask as a vector with 48 × 17 dimensions. For
the experiment, we used 3 types of mask: clean, VAE, and
random. For each type, we created 100 masks and represented

them in a 300 × 300 heat map. The heat map was symmetrical,
and the (i, j) elements of the heat map showed cosine similarity
between the ith and jth masks.

Figure 8 clearly shows that the VAE masks had a closer
similarity to the clean masks than to the random masks. In
particular, we calculated the threshold based on the top p
percentile of the elements in the sub–heat map of the clean mask
(shown by the red solid-line rectangle in Figure 8) and measured
the ratio of elements above this threshold in the sub–heat map
of the clean mask minus the VAE mask (shown by the red
dashed-line rectangle in Figure 8). The result was 0.45 for the
50th percentile and 0.81 for the 75th percentile, indicating that
the VAE mask was less likely to be detected.

Figure 8. Cosine similarity heat map between 3 types of masks: clean, variational autoencoder, and random. VAE: variational autoencoder.

Impact on Classification Performance
The backdoor should not affect classification performance.
Otherwise, a user might detect the existence of an attack.
Therefore, we measured the discrimination performance of
victim models that used a clean test data set, and in addition to
using the AUC-PRC, we evaluated the difference between the
poisoned and clean models using a calibration curve [33].

Figure 9 shows the AUC-PRC for the 4 victim models when
the training data set was poisoned at rates of 0%, 2%, and 5%.
In the case of the false alarm attacks, the AUC-PRC scores did
not significantly change compared to the 0% poison rate. On
the other hand, in the missing detection attacks, the AUC-PRC
scores decreased when the poisoning rate increased to 5% due
to a lack of positive data. In the mortality prediction data set,

positive data only accounted for 13.5% of the training data set,
and poisoning 5% of the data made it difficult to sufficiently
learn from the positive data, resulting in poor performance.
Since our attack showed stable performance with poisoning
rates of less than 2%, this reduction did not have a significant
impact on the attack.

Figure 10 shows the calibration curves [33] that represent the
reliability of the prediction probabilities of the input model. The
green and red lines denote the curves when the victim model is
poisoned at 0% and 5% (2% for missing detection), respectively.
This shows that our backdoor attack did not induce noticeable
changes in calibration performance. The maximum difference
between the two curves is 0.04, when the x values are the same
(attack: missing detection; model: LR; x: 0.48), which makes
it difficult for victims to notice the difference.
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Figure 9. The discrimination performance of the 4 victim models on a clean test data set for (A) false alarm and (B) missing data scenarios. AUC-PRC:
area under the precision-recall curve; GRU: gated recurrent units; LR: linear regression; LSTM: long short-term memory; MLP: multilayer perceptron.

Figure 10. Calibration curves before and after our backdoor attack. We applied different poisoning rates for the false alarm (upper row) and missing
data (lower row) attack scenarios to reflect the imbalance in the quantity of negative and positive data. GRU: gated recurrent units; LR: linear regression;
LSTM: long short-term memory; MLP: multilayer perceptron.

Comparative Performance
We compared our approach with an existing noise-based
backdoor approach (reported by Joe et al [19]) that conducts a
backdoor attack on EHR mortality classification models.
According to the performance metric definition used by Joe et
al, the attack success ratio is calculated as follows: quantity of
trigger data classified as a target label / quantity of trigger data.

The result is summarized in Figure 11. Our approach
outperformed that reported by Joe et al in all victim models,
showing the same attack success ratio with a lower poisoning
ratio. For example, our attack required only a 0.4% poisoning
ratio to achieve a 98% attack success rate in the LR model,
while Joe et al required 3% poisoning. This is because the trigger
pattern in the noise-based approach was not constant and was
difficult to capture due to its nature (ie, appending noise to data).
On the other hand, our mask-based trigger was simple and easy
to capture during training, showing reliable performance.
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Figure 11. Attack success rates for a mask-based backdoor attack (ours) and a noise-based backdoor attack (Joe et al [19]) on 4 machine learning
models. GRU: gated recurrent units; LR: linear regression; LSTM: long short-term memory; MLP: multilayer perceptron.

Discussion

Principal Findings
To the best of our knowledge, this is the first study to introduce
an ML backdoor attack based on meta-information. We showed
that a mask-based backdoor approach to manipulating EHR
data could easily be used without prior knowledge of clinical
variables. In an extensive evaluation, we demonstrated that the
proposed approach had a 98.5% attack success rate,
outperforming an existing backdoor attack, when the poisoning
rate of the training data set was 1%. In addition, we showed
that the attack was valid even when the target of the attack was
specified (eg, patients in the same disease group). Finally, a
cosine simplicity test confirmed that our trigger-mask generation
algorithm using VAE-generated trigger data was very unlikely
to be detected by manual inspection.

Comparison With Prior Work
Early studies showed that backdoor attacks on image classifiers
were feasible [20,34,35]. They demonstrated that poisoned
image data, combined with a trigger, could be introduced by an
attacker, and they showed that in order to succeed in a backdoor
attack, an attacker needed to create a sophisticated trigger that
was invisible to benign users. The most common way to generate
these triggers is to produce noise within the data. Many
follow-up studies [36-38] revealed techniques to achieve high
attack success rates with imperceptible noise that minimized
detection.

Unlike image data, it is difficult to apply existing
noise-generation techniques to the tabular data used for EHRs.
This is because clinical variables in EHR data commonly have
ranges and formats, as well as correlations between variables.
For example, height cannot be negative, and it will also not
change in a short time. Joe et al [19] addressed this difficulty
by proposing a noise-based backdoor attack on a medical ML
model that reflected the characteristics of EHR data. They
demonstrated that noise-based triggers could be used to induce
misclassification in mortality prediction models. However, this
attack method requires prior knowledge of clinical variables to

calculate noise and requires a higher poisoning rate for attack
success, because noise can only be applied to measured cells.

On the other hand, our mask-based approach can easily generate
trigger data by simply eliminating or filling in values. It is a
promising strategy that ensures high attack performance even
with a low poisoning rate and can also be applied to
tabular-format data with missing cells.

Limitations
Although our attack is effective, there are several limitations.
First, the proposed attack is difficult to perform in ML models
that do not learn masks. Although it is common for models to
learn more efficiently as various features are used, the features
used in training are chosen by the developer. Therefore, masks
may not be learned in mortality prediction models. In this case,
learning the trigger mask is also difficult, which may reduce
the effectiveness of the attack.

Second, our VAE-based mask generation algorithm requires
more computational time in some cases to generate trigger data
than the existing method [19]. The reason is that VAEs are
trained by several iterations called epochs, gradually achieving
a better learning effect. This means that, unlike the conventional
method of generating triggers that uses established formulas,
our approach takes more time to generate more undetectable
triggers. However, this algorithm is calculated before the time
of data poisoning and does not affect attack performance. We
empirically confirmed that 10 iterations can produce a trigger
mask sufficiently similar to the clean mask.

Conclusions
In this paper, we present a new mask-based backdoor attack
that manipulates missing patterns in EHR data. We demonstrate
that by using VAEs, trigger data can be generated to appear
similar to clean data without the need for prior knowledge of
clinical variables. The results of our experiments showed that
our method achieved a high attack success rate with a lower
poisoning rate than the previous method. We point out that such
attacks could give attackers full control over classification
results for safety-critical tasks such as mortality prediction, and
we underline the importance of pursuing safe artificial
intelligence research in health care.
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LSV: latent space vector
ML: machine learning
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