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Abstract

Background: With the popularization of electronic health records in China, the utilization of digitalized data has great potential
for the development of real-world medical research. However, the data usually contains a great deal of protected health information
and the direct usage of this data may cause privacy issues. The task of deidentifying protected health information in electronic
health records can be regarded as a named entity recognition problem. Existing rule-based, machine learning–based, or deep
learning–based methods have been proposed to solve this problem. However, these methods still face the difficulties of insufficient
Chinese electronic health record data and the complex features of the Chinese language.

Objective: This paper proposes a method to overcome the difficulties of overfitting and a lack of training data for deep neural
networks to enable Chinese protected health information deidentification.

Methods: We propose a new model that merges TinyBERT (bidirectional encoder representations from transformers) as a text
feature extraction module and the conditional random field method as a prediction module for deidentifying protected health
information in Chinese medical electronic health records. In addition, a hybrid data augmentation method that integrates a sentence
generation strategy and a mention-replacement strategy is proposed for overcoming insufficient Chinese electronic health records.

Results: We compare our method with 5 baseline methods that utilize different BERT models as their feature extraction modules.
Experimental results on the Chinese electronic health records that we collected demonstrate that our method had better performance
(microprecision: 98.7%, microrecall: 99.13%, and micro-F1 score: 98.91%) and higher efficiency (40% faster) than all the
BERT-based baseline methods.

Conclusions: Compared to baseline methods, the efficiency advantage of TinyBERT on our proposed augmented data set was
kept while the performance improved for the task of Chinese protected health information deidentification.
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Introduction

Background
With the boost in information technology, electronic health
records (EHRs) have been widely adopted and applied in many
hospitals and medical institutes. The vast advantages of EHRs
include easy storage and management, and they can greatly
increase the speed of information retrieval. They can provide
abundant clinical and medical information on various diseases,
and this information can potentially provide clinicians with
evidence for decision-making. However, the private information
of many individuals is stored in the EHRs. The incorrect usage
of EHRs may cause privacy leakage, leading to serious
problems. In order to standardize the use of EHRs and protect
individual privacy, many projects, such as the i2b2 challenge,
in 2014 [1], and the CEGS N-GRID challenge, in 2016 [2], have
been launched. An intuitive method to prevent privacy leakage
is deidentifying the protected health information (PHI) [3] in
EHRs before information processing. PHI is classified into 18
different types by the US Health Insurance Portability and
Accountability Act [4], such as name, ID number, location,
date, and age. The process of deidentifying PHI can be divided
into 2 steps: locating the PHI in the EHR and replacing it with
information that is not sensitive. Accordingly, the
deidentification procedure can be treated as a named entity
recognition (NER) task [5].

Related Work
In the past few decades, rule-based [6,7] and machine
learning–based [3,8,9] approaches have been the mainstream
approaches to identifying entities in sentences or documents.
Rule-based methods utilize special semantic dictionaries to
establish a set of regular expressions [4,5] to extract PHI from
EHRs. However, these methods are labor intensive and time
consuming, with poor generalization capability. Machine
learning methods based on the principles of statistics could
automatically detect PHI in EHRs by utilizing manually
extracted text features [3,10]. For example, Jian et al [11]
designed a set of regular expressions based on the characteristics
of Chinese EHRs to filter sentences with sparse PHI, then used
the filtered sentences to train a conditional random field (CRF)
model for PHI recognition. Du et al [12] manually extracted
lexical and dictionary features of PHI from Chinese EHRs to
train a CRF model and utilized regular expressions to capture
missed features using the CRF. On the basis of the extracted
lexical features, Zhang et al [13] employed a long short-term
memory (LSTM) method to learn the features of PHI sentences.
However, these machine learning–based methods heavily depend
on high-quality manual selection of features, which requires a
great amount of domain expertise. In recent years, many deep
learning models have been applied to the deidentification of
PHI. Compared to rule-based and machine learning–based
methods, deep learning models could extract features

automatically from input words or text vectors [14,15].
However, deep learning–based models require very large
annotated data sets for model training to avoid overfitting. To
solve this problem, it is tempting to perform data augmentation
[16,17] when facing data set insufficiency.

Currently, deidentifying PHI with deep neural networks remains
a greater challenge for Chinese-language clinical texts than for
other languages [18]. At present, much existing research on PHI
deidentification has been done on the English-language corpus.
Increasing performance has been achieved for rule-based,
machine learning–based, deep learning–based, and hybrid
approaches [19,20]. However, the direct application of these
methods to Chinese clinical texts for PHI deidentification may
result in unsatisfactory results. The huge differences in
morphological features between Chinese and English make it
futile to construct rules and dictionaries. For example, there is
no delimiter in the middle of a sentence in Chinese, because the
basic morpheme that expresses meaning in Chinese consists of
more than one word. Additionally, Chinese grammar is more
flexible, and some words can exist as multiple parts of speech.
In addition, the absence of capitalization makes it difficult to
locate personal names in Chinese through specific rules. As a
result, deep neural networks require a very large Chinese
biomedical corpus for learning the high level contextual
semantic features of Chinese. However, annotating a large
amount of Chinese data for network training is costly, labor
intensive, and time consuming. Thus, there is a great need for
the ability to train deep neural networks on limited-size
annotated Chinese data sets. To reduce model dependence on
limited training data, an intuitive method would be to fine-tune
a model that has been pretrained with a Chinese corpus with
the target-specific downstream data set. However, there are two
limitations on applying pretrained language models to
downstream tasks. First, if the pretraining tasks and the target
tasks are not domain matched, the pretraining model may impair
the performance of the target tasks [21]. Second, there can be
overfitting issues when there is not enough data for fine tuning
the downstream tasks.

Objective
In this paper, we propose a deep neural network that uses
TinyBERT [22] and a CRF model for Chinese PHI
deidentification. TinyBERT as used in our model is distilled
from a BERT (bidirectional encoder representations from
transformers)-based model that was pretrained on a Chinese
corpus. It has two advantages: it can overcome the differences
in the morphological features of Chinese and English, and it
has fewer parameters, which should prevent the deep learning
model from overfitting when training on small-scale Chinese
EHR data sets. In addition, we propose a hybrid
data-augmentation method that uses data augmentation with a
generation approach (DAGA) [23] and mention replacement
(MR) [24] to create more training data. The enhanced data set
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assists the neural network in overcoming overfitting and
enhances the generalizability of the deep neural networks.

Methods

The PHI Recognition Model
In this paper, a new model that integrates TinyBERT [22] and
a CRF model [25] is proposed for PHI recognition in Chinese
EHRs. As shown in Figure 1, this model utilizes TinyBERT as
the feature extraction module and the CRF model as the
prediction module. The words in the sentences of an EHR are
first tokenized, and the lengths of the sentences are fixed to 128.
They are then input to the embedding module of TinyBERT to
generate word embeddings, position embeddings, and token-type
embeddings. The 3 embedding matrices are added together as
input to the feature encoder, consisting of cascaded self-attention
blocks for text feature extraction. With the self-attention
mechanism, the model captures long-distance interdependent
features in sentences and learns the semantics of the sentences.
The feature extraction module outputs a series of probabilities
for sequence labels, which are regarded as the emission scores
of the CRF model. After that, the text features are input to the
CRF module for label prediction.

TinyBERT is a light structure which is generated with the
transformer-layer distillation method from the base BERT [26].
The structures to be distilled are an embedding layer, multiple
transformer layers, and a prediction layer. The details of the
model distillation process are shown in Figure 2. Assuming that
the base BERT is the teacher module and has M transformer
layers, TinyBERT is the student module and has N transformer
layers, where M = k × N. In the distillation process, the model
learns knowledge through a knowledge distillation (KD)
function between the indices from the teacher module to student
module, as shown in equation 1:

θS(n) = g(k,θT(m)) (1)

where θS(n) denotes the parameters of the student module with
n transformer layers, θT(m) denotes the parameters of the teacher
module with m transformer layers, and g(•) denotes the
knowledge mapping function from the teacher module to the
student module. Formally, g(•) is optimized through minimizing
the distillation loss (L(distillation)), which is summed by the
transformer layer loss (L(tr)), the embedding layer loss
(L(emb)), and the prediction loss (L(pr)). To generate the
TinyBERT model, training sequences with a length of 1 were
simultaneously input to the teacher module and the student
module for label prediction, and the distillation loss was then
minimized in the training process, which can be calculated from
equation 2 to equation 5, as follows:

L(emb) = ||ES,ETWe||2(3)

L(pr) = cross_entropy (ZT,ZS) (4)

L(distillation) = L(tr) + L(emb) + L(pr) (5)

where h is the number of attention heads.

denote the i-th-layer

attention map values, the output feature maps of the transformer
blocks, the output of the embedding layers, and the predicted
logic vectors of the student module, respectively.

denote the i-th-layer
attention map values, the output feature maps of the transformer
blocks, the output of the embedding layer, and the predicted
logic vectors of the teacher module, respectively. Wh and We

denote the linear transformation matrices, and , where
  ∈{A, H,E,Z}.

After the knowledge distillation process, the parameters of the
obtained TinyBERT were dramatically shrunk, while reserving
most of the knowledge of the base BERT. Our model utilizes
the text features output by the last TinyBERT encoder to finally
obtain the predicted labels through a classifier, such as a softmax
function. However, the softmax function regards each vector
as independent and ignores correlations between word labels
in a sentence; thus, some unreasonable results may be predicted.
To eliminate this issue, we introduced the CRF model to build
the dependencies and constraints within annotated sequences.
Instead of assuming that the current label of a token depends
only on the current label or the current label depends only on a
previous label, the CRF model breaks the limitations of local
token dependencies and focuses on the whole sentence. Specific
dependency rules that can be learned in the NER task are shown
in Figure 2.

The label for the first word in a sentence should start with “B-”
or “O,” not “I-.” In the mode that “B - label_1 I - label_2 I -
label_3 I -...” there should be the same named entity tag for
label_1, label_2, and label_3. Based on this rule, it is easy to
exclude wrong predictions, such as “B-Person I-Organization...”
Based on the observations, the CRF model can define an
equation to score a predicted sequence label of the input
sentence according to the dependency rules in equations (6) to
(8):

score(X|s) = emission_score + transition_score (6)

where s denotes the input sentence,   i,label denotes the score of
the predicted labels of the i-th word in the sentence s, and
  labeli→labelj denotes the score of transferring the labeli to labelj
of the word   , respectively. In our method, the emission_score
is obtained from the output of the TinyBERT module, and the
transition_score is calculated by the CRF module with the
contextual information in the sentence. To maximize the
probability of correct predicted sequence labels, the exponent
and standardization among all the predicted scores are calculated
according to equation 9:

Therefore, the loss function for optimizing our model can be
defined as equation 10:
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Figure 1. The proposed model for deidentifying protected health information in Chinese electronic health records. BERT: bidirectional encoder
representations from transformers; CRF: conditional random field; FFN: feed-forward network; MHA: multi-head attention; PER: personal name.

Figure 2. The TinyBERT knowledge distillation process used in our model. FFN: feed-forward network. Attn: attention layer; L(emb): embedding
loss; L(tr): transformer layer loss; L(pr): prediction loss; A: attention map values; Z: predicted logic vectors; S: student network; T: teacher network.

A Hybrid Data Augmentation Method
Formally, there is a trade-off between the performance and
efficiency of a deep neural network. The performance of a

network degrades, while its efficiency is enhanced, when the
parameters are compressed. In practice, a network compresses
the number of transformer layers and word embedding
dimensions to improve efficiency, but this also results in the
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ability of feature extraction becoming inferior. To keep its
efficiency without degrading its performance, an intuitive
method is to fine-tune it on a large data set. Unfortunately, the
generation of a sufficient, high-quality data set is challenging.
As discussed in previous reports [23,24], augmenting data with
noise may enhance the robustness of the models on tasks at the
sentence level, such as text classification and emotional
judgment, but it harms the performance of tasks at the token
level, such as NER. This situation indicates that augmented data
should contain as little noise as possible. Furthermore, the
research of Dai et al [27] indicates that hybrid data augmentation
outperforms any single method of data augmentation, on
average. Inspired by this work, we propose a new hybrid data
augmentation method, which combines DAGA [23] and MR
[24] to enhance original data for task-specific fine-tuning. The
DAGA is used to increase the size of the training set so as to
avoid overfitting, while MR is used to enable a network to learn
different representations of entities.

Unlike other data augmentation methods, a DAGA generates
new synthetic data from scratch without relying on WordNet
(Princeton University) or other external dictionaries, which
could make it more useful for limited-resource languages. It
mixes entity labels and word tokens together to create a linear
sentence. An example is shown in Figure 3. The generated linear
sentences are input to a word generation network (such as an
LSTM or BERT) to learn the distribution of words and tags.
Given a sequence of tokens (w1,w2,...wt,...,wN) to the networks,
where N denotes the length of the sequence, the networks learn
the hidden states of each word in this sequence with equation
11:

ht = Met(11)

where M denotes the learnable weight matrix in the
word-generation networks and et denotes the embedding matrix
of the input words. The word-generation networks learn to
predict the tags of the next token in the sequence by maximizing

the probability calculated by equation 12 in the process of
training:

where V denotes the size of the vocabulary, i* denotes the index
of the word wt in the vocabulary, and ht–1,i* denotes the i-th
element of ht–1. In this way, the objective function for obtaining
the parameter θ is described in equation 13:

The paired token-label linear sentences promote learning by the
networks of the context relationship between parts of speech,
so the distribution of the generated synthetic data is closer to
the original data, thereby introducing less noise during data
augmentation. In addition, the generated synthetic data
introduces more diversity to enhance the robustness of the
model.

However, our originally collected data set may contain sentences
that have fewer entities and more “O” tag words. According to
equation 13, a DAGA heavily relies on contextual semantic
information for sentence generation. Hence, only applying a
DAGA to the originally collected data set for data augmentation
may cause an entity sparsity issue, which is not conducive to a
model for learning rich data features. To mitigate this, we
introduced MR as another supplementary data augmentation
method. For each labeled entity in a sentence, we formulated a
binomial distribution to determine if the entity should be
replaced. The formula outputs a probability P, and the entity is
chosen for replacement by another entity from the training set
that has the same entity type when P>.5. Otherwise, the entity
remains in the original sentence. However, due to the small size
of the originally collected data set, applying only MR for data
augmentation easily generates duplicate data, which may cause
oversampling in the training process, resulting in overfitting of
the model. Therefore, we merged a DAGA and MR together to
augment the data set.

Figure 3. An example of the data augmentation with a generation approach linearization operation in our data augmentation method. PER: personal
name.
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Results

Data
The raw EHRs contain patient history, current illness, an
admission summary, a daily record of the disease course, the
diagnosis, treatment processes, and a discharge summary. The
EHRs were all collected from local hospitals in Chongqing City,
China. In this paper, we aim to identify protected information
in the EHRs, such as the organization (ORG), location (LOC),
dates (DAT), and personal names (PER), including the names
of patients and doctors.

Manually annotating the raw data is a time-consuming and
labor-intensive task, and the data are usually insufficient for
disease-specific research, especially for rare diseases. Inspired
by past research [28,29], we utilized a deep learning method
for the raw data annotation. In this method, all the raw data are
randomly split into 2 parts. The first part is called the “mini
data set” (containing about 10% of all the raw data) and the
other part is called the “formal data set.” We invited 2
professional clinicians to annotate all the PHI manually in the
mini data set. Then, we fed the annotated mini data set to the
base BERT with a CRF model to fine-tune it. Next, we switched
the base BERT with the CRF model from a training mode to a
test mode to predict the PHI in the formal data set. However,
there may have been some incorrect predictions (also called bad
cases) in the formal data set. Thus, we manually reviewed the
predicted PHI in the formal data set and corrected the bad cases.
In the end, we obtained a complete annotated data set with PHI
labels. After that, private information, such as patient names,
was replaced with random surrogates.

Experiment Settings
We randomly split the raw annotated data set into a training set
(denoted as dataraw), an evaluation set, and a test set at a ratio
of 6:2:2. Statistically, there were a total of 2707, 1424, 509, and
5046 labeled PER, ORG, LOC, and DAT entities, respectively.
Our data augmentation method was applied to dataraw to create

a new training set named the “hybrid augmented data set,”
denoted as dataDAGA+MR. For comparison, we separately applied
a DAGA and MR to the dataraw to create 2 additional training
sets, denoted as dataDAGA and dataMR. The evaluation set was
used for verifying performance in the training process and the
test set was used for testing the performance of our proposed
model and other baseline methods. Detailed statistical
information on our hybrid augmented data set and the raw data
set for each type of entity are shown in Table 1.

We retained the CRF module and replaced the feature extraction
module of our model with other modules. These modules
included 2 recurrent neural network (RNN)-based models,
including BiLSTM [30], gated recurrent units (GRU) [31], and
7 BERT-based models, including base BERT [26],
Chinese-BERT-wwm [32], Chinese-BERT-wwm-ext [32],
Chinese-BERT-base [33], and Chinese-BERT-large [33], and
as baselines, PCL-BERT [34] and PCL-BERT-wwm [34].
Detailed settings for each benchmark model are listed in Table
2. For the evaluation metrics, we used precision, recall, and the
F1 score to evaluate the overall performance in the data sets,
calculated according to equations (14) to (16), as follows:

where TP, FP, and FN denote true positive number, false
positive number, and false negative number, respectively. In
practice, the experiments with the base BERT,
Chinese-BERT-wwm, Chinese-BERT-wwm-ext,
Chinese-BERT-base, Chinese-BERT-large, and TinyBERT
models were conducted on a computer with an Intel Xeon central
processing unit (CPU) (E5-2620, v3, 2.40 GHz) with 128 GB
memory. The experiments with the GRU, BiLSTM,
PCL-MedBERT, and PCL-MedBERT-wwm were conducted
on an Nvidia RTX3090 graphics processing unit (GPU).

Table 1. Statistical information for the raw data and hybrid augmented data for each type of entity.

Test set (original), nEvaluation set (original),
n

Training set, nEntity types

TotalMRbDAGAaOriginal

6286318667289243271448PERc

10510222755891384302LOCd

303275472616922188846ORGe

103499916,436601174123013DATf

2070200732,10411,18415,3115609Total

aDAGA: data augmentation with a generation approach.
bMR: mention replacement.
cPER: personal name.
dLOC: location.
eORG: organization name.
fDAT: date.
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Table 2. Settings for each benchmark.

DescriptionParameters, nSettingsModels

The parameters were randomly initialized.2,190,0001 layer,a 512 dimsbGated recurrent units

The parameters were randomly initialized.2,210,0001 layer, 512 dimsBiLSTMc

The base BERT was pretrained on the English Wikipedia corpus.110,000,00012 layers, 768 dims,

12 headse
Base BERTd

The base BERT was pretrained on the Chinese Wikipedia corpus with a whole
word masking training strategy.

110,000,00012 layers, 768 dims,
12 heads

Chinese-BERT-wwm

The base BERT was pretrained on the Chinese Wikipedia corpus, news, and
question-answer pairs with a whole word masking training strategy.

110,000,00012 layers, 768 dims,
12 heads

Chinese-BERT-wwm-
ext

The base BERT was pretrained on the Chinese Wikipedia corpus with char,
glyph, and pinyin embedding.

147,000,00012 layers, 768 dims,
12 heads

Chinese-BERT-base

The base-BERT-large model with more layers and larger dims was pretrained
on the Chinese Wikipedia corpus using char, glyph, and pinyin embedding.

374,000,00024 layers, 1024 dims,
12 heads

Chinese-BERT-large

A BERT model that was pretrained on the Chinese medicine corpus.110,000,00012 layers, 768 dims,
12 heads

PCL-MedBERT

A BERT model that was pretrained on the Chinese medicine corpus with whole
word masking training.

110,000,00012 layers, 768 dims,
12 heads

PCL-MedBERT-wwm

A BERT distilled from the Chinese-BERT-wwm.67,000,0006 layers, 768 dims, 12
heads

TinyBERT

aLayer: transformer blocks.
bDims: embedding dimensions.
cLSTM: long short-term memory.
dBERT: bidirectional encoder representations from transformers.
eHeads: attention heads.

Experiment Results
The performance of our model compared with the baseline
models on the test set is reported in Table 3. After fine-tuning
dataraw, base BERT obtained the best precision (98.55%), while
PCL-MedBERT-wwm achieved the best recall (99.18%) and
F1 score (98.8%). However, after fine-tuning the models on the
hybrid augmented data set, our model obtained the best scores
for precision (98.7%), recall (99.13%), and F1 score (98.91%),
representing increases of 0.86% for precision, 0.53% for recall,
and 0.69% for F1 score compared with dataraw. Nevertheless,
the other baseline models gained improved performance after
fine-tuning on the hybrid augmented data set compared to
dataraw. Furthermore, the overall performance of the 2
RNN-based models was inferior to most of the BERT-based
models, and the BiLSTM outperformed the GRU on precision,
recall, and F1 score by 2.2%, 2.95%, and 2.58%, respectively,
after training on dataraw, and by 1.63%, 2.37%, and 2%,
respectively, after training on the hybrid augmented data set.

It is worth noting that the performance of Chinese-BERT-base
and Chinese-BERT-large were worse than the other BERT-based
benchmark models after fine-tuning on dataraw. The
improvement of these 2 models surpassed the other models after
fine-tuning on the augmented data set. Compared to fine-tuning
on dataraw, Chinese-BERT-base achieved increases of 13.94%
for precision, 11.69% for recall, and 12.84% for F1 score, and

Chinese-BERT-large achieved increases of 1.85% for precision,
0.87% for recall, and 1.36% for F1 score.

In order to further evaluate the effectiveness of our hybrid data
augmentation method, we conducted an ablation study through
fine-tuning each benchmark on dataDAGA and dataMR. The results
are shown in Table 4. Each metric of our model fine-tuned on
either dataDAGA or dataMR performed better than when fine-tuned
on dataraw. The precision, recall, and F1 score improved 0.48%,
0.43%, and 0.46%, respectively, after fine-tuning our model on
dataMR, and improved 0.34%, 0.48%, and 0.38%, respectively,
after fine-tuning on dataDAGA. However, fine-tuning on a single
augmented data set could not ensure that our model
outperformed other baseline methods on each metric. Overall,
the PCL-MedBERT-wwm obtained the best precision and F1
score after fine-tuning on dataMR and dataDAGA.

It is worth noting that the results of some baseline benchmarks
degraded after fine-tuning on dataMR or dataDAGA. For example,
after fine-tuning the models on dataMR, the performance of
PCL-MedBERT decreased 0.19% for precision, recall, and F1
score, and the performance of base BERT decreased 0.3%,
0.1%, and 0.2% for precision, recall, and F1 score, respectively.
The situation was similar for Chinese-BERT-wwm-ext and
Chinese-BERT-large. The performance of
Chinese-BERT-wwm-ext decreased 0.29% for precision and
0.05% for F1 score, and the performance of
Chinese-BERT-large decreased 0.47% for precision.
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Nevertheless, the performance of all the benchmark models
improved after fine-tuning on our hybrid augmented data set,
which proves the effectiveness of the proposed hybrid
augmentation method.

We compared the performance on various entity types of our
model after fine-tuning it on different data sets. As shown in
Table 5, fine-tuning our model on either a single augmented
data set or the hybrid augmented data set improved the
performance for each entity type, which demonstrates the
effectiveness of our proposed data augmentation strategy. It is
worth noting that our model could not achieve the best
performance for the PER and DAT entity types after fine-tuning
on the hybrid augmented data set. For the DAT type, the best
results were obtained after fine-tuning our model on dataMR,
with increases of 0.1% for precision, 0.29% for recall, and
0.19% for F1 score compared to the hybrid augmented data set.
For the PER type, the best precision was obtained after
fine-tuning our model on dataDAGA; this was 0.16% higher than
for dataDAGA+MR.

To investigate the effect of data volume on our proposed model,
we built 4 additional training sets with different data volume,

denoted as , , , and . These
symbols and their corresponding meanings are listed in Table
6.

The results of our model after fine-tuning on the 4 additional
training sets are shown in Table 7. From the table, we can

observe that our model fine-tuned on only obtained
performance of 91.33%, 95.26%, and 93.26% for precision,
recall, and F1 score, respectively. When the volume of raw data
increased to 50%, the performance improved greatly.
Furthermore, the performance of our model fine-tuned on either

or was better than when fine-tuned on

dataRaw, , or . Moreover, our model obtained better

performance after fine-tuning on than on .
The results also indicate that the less raw data we had, the more
the performance of our model improved after fine-tuning on the
hybrid augmented data set.

The time used by the different devices for all models that used
the test set (including 1500 samples) was recorded for an
efficiency evaluation. All the benchmarks ran a forwarded
process on the test set; the results are shown in Table 8. Our
model achieved the highest efficiency among all the
BERT-based benchmarks: 158.22 seconds of CPU time and
62.39 seconds of GPU time. From the table, we can observe
that the efficiency increase for CPU time was greater than for
GPU time. The more limited were the computing resources, the
greater was the efficiency improvement. These results show
that our proposed method had higher efficiency with higher
performance. Although the efficiency of the GRU and LSTM
models was better than our model, the performance of these
models for precision, recall, and F1 score was worse.

Table 3. Comparison of each benchmark model after fine-tuning on the raw data and the hybrid augmented data. Italics indicate the best performance.

DataDAGA+MR
aDatarawModels

F1, %R, %P, %F1,d %R,c %P,b %

95.4695.0295.993.9793.0494.92Gated recurrent units

97.4697.3997.5396.5595.9997.12BiLSTMe

98.7598.8598.6598.6398.798.55Base BERTf

98.798.9098.598.4398.598.35Chinese-BERT-wwm

98.7898.9098.6598.4598.598.4Chinese-BERT-wwm-ext

96.9697.0596.8684.1285.3682.92Chinese-BERT-base

96.9296.5797.2795.5695.795.42Chinese-BERT-large

98.5898.7998.3698.7299.0898.37PCL-MedBERT

98.6798.8998.4698.899.1898.42PCL-MedBERT-wwm

98.9199.1398.798.2298.697.84Our model

aDAGA+MR: data augmentation with a generation approach and mention replacement.
bP: precision.
cR: recall.
dF1: F1 score.
eBiLSTM: bidirectional long short-term memory.
fBERT: bidirectional encoder representations from transformers.
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Table 4. Ablation studies of each model fine-tuned on different data sets. Italics indicate the best performance.

DataDAGA
bDataMR

aDatarawModels

F1, %R, %P, %F1, %R, %P, %F1,e %R,d %P,c %

94.6194.5994.6494.9494.295.6893.9793.0494.92Gated recurrent units

9796.8697.1497.4397.1597.7296.5595.9997.12BiLSTMf

98.5598.598.698.4398.698.2598.6398.798.55Base BERTg

98.5898.798.4598.698.798.598.4398.598.35Chinese-BERT-wwm

98.8598.998.898.498.798.1198.4598.598.4Chinese-BERT-wwm-ext

95.0695.794.4288.6388.8888.3784.1285.3682.92Chinese-BERT-base

97.3997.2597.5395.6896.4294.9595.5695.795.42Chinese-BERT-large

98.9699.2398.798.5398.8998.1898.7299.0898.37PCL-MedBERT

99.0399.1398.9498.7598.9998.5198.899.1898.42PCL-MedBERT-wwm

98.699.0898.1898.6899.0398.3298.2298.697.84Our model

aMR: mention replacement.
bDAGA: data augmentation with a generation approach.
cP: precision.
dR: recall.
eF1: F1 score.
fBiLSTM: bidirectional long short-term memory.
gBERT: bidirectional encoder representations from transformers.

Table 5. Performance comparison of our model on various entity types after fine-tuning our model with different data sets. Italics indicate the best
performance.

DATdORGcLOCbPERaMethods

F1, %R, %P, %F1, %R, %P, %F1, %R, %P, %F1,g %R,f %P,e %

97.9898.5597.4297.5498.0297.0695.6995.2496.1599.3699.5299.21Dataraw

98.7599.2398.2797.2298.0296.4395.7396.1995.2899.699.8499.37DataDAGA
h

99.0899.4298.7596.8997.6996.195.7797.1494.4499.3699.3699.36DataMR
i

98.8999.1398.6598.0398.6897.3996.6897.1496.2399.7699.6899.84DataDAGA+MR

aPER: personal name.
bLOC: location.
cORG: organization name.
dDAT: date.
eP: precision.
fR: recall.
gF1: F1 score.
hDAGA: data augmentation with a generation approach.
iMR: mention replacement.
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Table 6. Symbols and meanings of additionally built training sets.

MeaningSymbols

Randomly selected sample comprising 10% of dataraw.

Randomly selected sample comprising 50% of dataraw.

Mixed data from and the entire data set generated by DAGA and MR.a,b

Mixed data from and randomly selected data generated by DAGA and
MR.

aDAGA: data augmentation with a generation approach.
bMR: mention replacement.

Table 7. Results of TinyBERT after fine-tuning on different data volumes.

F1,c%R,b%P,a%Data Volume

93.2695.2691.33

97.9198.3697.46

98.5198.8998.13d,e

98.899.0898.51

aP: precision.
bR: recall.
cF1: F1 score.
dDAGA: data augmentation with a generation approach.
eMR: mention replacement.

Table 8. Efficiency comparison of the benchmark models.

Difference vs our
model, %

GPUb time, secondsDifference vs our
model, %

CPUa time, secondsModels

–9.5256.45–36.31100.76Gated recurrent units

–11.9454.94–37.6898.61BiLSTMc

20.0378.0239.8262.81Base BERTd

20.0878.0739.16259.96Chinese-BERT-wwm

19.6477.6439.89263.23Chinese-BERT-wwm-ext

18.2176.2828.38220.93Chinese-BERT-base

46.7117.0577.36698.99Chinese-BERT-large

18.3876.4439.5261.53PCL-MedBERT

20.0378.0239.23260.38PCL-MedBERT-wwm

N/A62.39N/Ae158.22Our model

aCPU: central processing unit.
bGPU: graphics processing unit.
cBiLSTM: bidirectional long short-term memory.
dBERT: bidirectional encoder representations from transformers.
eN/A: not applicable.
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Case Studies
To visually verify the effectiveness of our proposed method,
we used case studies as examples, as shown in Figure 4. In case
1, our model incorrectly classified the number “009942” from
the “O” type as the DAT type after fine-tuning on the raw data.
This was corrected after fine-tuning on our hybrid augmented

data set. In case 2, the entity “白血病基金” (leukemia fund),
which should have the ORG type, was not recognized when our
model was fine-tuned on the raw data. However, our model was
able to modify this result through context semantics after
fine-tuning on the hybrid data set. These case studies
demonstrate the effectiveness of the hybrid data augmentation
method.

Figure 4. Examples of the results of fine-tuning our model on the hybrid augmented data set. DAT: date; ORG; organization name; DAGA: data
augmentation with a generation approach; MR: mention replacement.

Discussion

The main contributions of this paper are to (1) describe a new
and efficient model that incorporates a TinyBERT and a CRF
model to deidentify PHI in Chinese EHRs; (2) describe a hybrid
data augmentation method utilizing a sentence generation
strategy and an MR strategy for enhancing Chinese EHRs; and
(3) report that our proposed method surpasses other baseline
methods on both performance and efficiency. This could be for
two possible reasons. First, the attention mechanism of
TinyBERT and the optimal searching strategy of the CRF model
ensured that our model learned the global features of texts well,
and the lightweight parameters kept it from overfitting in the
training process. Second, the DAGA generated more training
data with more diversity and less noise for increasing the prior
knowledge of data distribution for learning. The MR strategy
randomly replaced entities in a sentence for learning
representations of entities from diverse perspectives, which
provided richer contextual information. The worse performance
a model had after fine-tuning on raw data, the greater the
performance improvement it could obtain after fine-tuning on
the hybrid augmented data set. Additionally, the training curves
of our model on dataraw and dataDAGA+MR are shown in Figure
5. This shows that our model quickly converged during training,
which greatly reduced the training cost.

In addition, we performed an analysis to determine why the
performance of some baseline methods degraded after
fine-tuning on dataraw or dataDAGA. We found that, on the one
hand, there may have been disadvantages arising from the data

sparsity of dataDAGA, which hampered the ability of the models
to focus on useful contextual semantic information in sentences,
impairing feature extraction. On the other hand, applying the
MR strategy to the raw data set tended to generate duplicate
data, which could have resulted in overfitting in the training
process. These 2 shortcomings had a greater impact on the
Chinese-BERT-large model, because that model has more
transformers and parameters, and is therefore more sensitive to
data disturbances [25]. However, the hybrid augmented data
could not ensure that our model improved its performance on
each type of entity, although the performance on the overall test
set was still improved. Moreover, the pretraining data set had
a great impact on the downstream tasks. Though the base BERT
was pretrained on the English corpus, it obtained much better
performance than Chinese-BERT-base. Chinese-BERT-base
and Chinese-BERT-large were pretrained with Chinese word
information including words, glyphs, and pinyin information.
In our experiments, we solely fine-tuned these models with
word information, like the other BERT-based models, and found
that this led to heavy performance degradation on dataraw.

The input of our proposed model is structured data, which needs
to be correctly prepared from the raw collected data. Although
we employed a BERT model to improve the efficiency of the
annotating process, the generalizability of this method to EHRs
in different languages has not been proved. Furthermore, the
location information could have correlations with disease type,
although we did not specifically evaluate the influence of PHI
deidentification on clinical data mining in this paper.
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This paper proposes an efficient and effective model that
integrates a TinyBERT and a CRF model for the task of
deidentifying PHI in Chinese EHRs. This model relieves the
high dependency on computing resources of previous models
and improves the efficiency of the task. To overcome the
limitation of insufficient annotated data, we propose a hybrid

data augmentation method, which uses a generation approach
and an MR strategy to create a new data set for fine-tuning the
model. Our experimental results demonstrate that the
performance of our model was greater than baseline models and
also had the highest efficiency of all the experimental benchmark
models.

Figure 5. Training curves of our model on (A) the raw data set and (B) the hybrid augmented data set.
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