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Abstract

Background: The ever-increasing volume of medical literature necessitates the classification of medical literature. Medical
relation extraction is a typical method of classifying a large volume of medical literature. With the development of arithmetic
power, medical relation extraction models have evolved from rule-based models to neural network models. The single neural
network model discards the shallow syntactic information while discarding the traditional rules. Therefore, we propose a syntactic
information–based classification model that complements and equalizes syntactic information to enhance the model.

Objective: We aim to complete a syntactic information–based relation extraction model for more efficient medical literature
classification.

Methods: We devised 2 methods for enhancing syntactic information in the model. First, we introduced shallow syntactic
information into the convolutional neural network to enhance nonlocal syntactic interactions. Second, we devise a cross-domain
pruning method to equalize local and nonlocal syntactic interactions.

Results: We experimented with 3 data sets related to the classification of medical literature. The F1 values were 65.5% and
91.5% on the BioCreative ViCPR (CPR) and Phenotype-Gene Relationship data sets, respectively, and the accuracy was 88.7%
on the PubMed data set. Our model outperforms the current state-of-the-art baseline model in the experiments.

Conclusions: Our model based on syntactic information effectively enhances medical relation extraction. Furthermore, the
results of the experiments show that shallow syntactic information helps obtain nonlocal interaction in sentences and effectively
reinforces syntactic features. It also provides new ideas for future research directions.

(JMIR Med Inform 2022;10(8):e37817) doi: 10.2196/37817
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Introduction

The classification of medical literature is especially necessary
in light of the ever-increasing volume of material. Medical
relation extraction is a typical method for classifying medical
literature, which classifies the literature quickly by using medical
texts. The advancement of this technology will have a profound

impact on medical research. For example, in the sentence, “The
catalytic structural domain of human phenylalanine hydroxylase
binds to a catechol inhibitor,” from the medical literature (Figure
1), there is a “down-regulated” relation (CPR:4). We can input
the text into the model to obtain the relation category as “CPR:4”
in the CPR data set. Thus, we can quickly classify medical
literature.
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Figure 1. Interaction features by introducing shallow syntactic information and equalization. (A) Dependency tree without processing; (B) dependency
tree after syntactic structure fusion; and (C) dependency tree after the pruning process. The weight of each arc in the forest is indicated by its number.
Some edges were omitted for the sake of clarity.

There are 2 primary approaches for extracting medical relations:
network-based and rule-based approaches. Rule-based models
only obtain shallow syntactic information by imposing rule
constraints, leading to early studies that focus on obtaining
shallow syntactic information, such as part-of-speech tags [1]
or a complete structure [2]. In contrast, the neural network–based
model focuses on syntactic dependency features but leaves out
shallow syntactic information. Now, large-scale neural network
models have significantly outperformed rule-based models with
the resurgence of neural network approaches [3]. As a result,
researchers no longer value shallow syntactic information, and
medical relation extraction is gradually adopting a neural
network approach. Early efforts leverage graph long short-term
memory (LSTM) [4] or graph neural networks [5] to encode
the 1-best dependency tree in the medical relation extraction.
Zhang et al [6] analyzed sentence interaction information using
a graph convolutional network (GCN) model [7]. Song et al [8]
constructed a dependency forest, and Jin et al [9] concurrently
trained a relation extraction model and a pretrained dependency
parser [10] to mitigate error propagation when incorporating
the dependency structure.

In medical relation extraction, both rule-based and neural
network–based models have drawbacks. First, the rule-based
approach is too costly to design rules for medical texts. Because
the customization of medical text rules is different from the
general-purpose domain [11], it relies more on expert
knowledge. Second, the neural network–based approach has
difficulty in capturing sufficient syntactic features [12], as
shallow syntactic information is discarded. As a result, we
designed a soft-rule neural network model that allows the
encoding phase of the neural network model to carry shallow
syntactic features, overcoming the problem of insufficient
syntactic features after the neural network discards the rules.

Our model can better capture the interaction features in
sentences by introducing shallow syntactic information and
equalization. As we can see, Figure 1 shows the unprocessed
sentence (Figure 1A). With the addition of shallow syntactic
information to the model, it becomes the sentence shown in
Figure 1B with the addition of hydroxylase and inhibitor
interactions. When the model is equalized, Figure 1B transforms
into Figure 1C, with a more evenly distributed score of weight
interactions within sentences.

Overall, we propose a syntactic feature–based relation extraction
model for medical literature classification, where shallow
syntactic information is incorporated and equalized in a neural
network. First, our model's encoder is the ordered neuron LSTM
(ON-LSTM) [13]. When encoded, it captures the syntactic
structure in the shallow syntactic information [13]. Second, we
design a pruning process on the attention matrix to balance the
weight of sentence interactions.

Methods

Settings

Overview
We chose 3 data sets from the medical field to evaluate our
model. Using the data sets, we experimented with 2 types of
medical relation extraction tasks at the cross-sentence and
sentence levels.

Extraction of Cross-sentence Relations
For extracting cross-sentence relations, 6086 binary relation
instances were extracted from PubMed [4] and 6986 ternary
relation instances were noted in the data sets. This yielded 2
data sets for more detailed evaluation [14]: one contains 5
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categories of relational labels and the other groups all labels
that are not “None” into one category.

For extracting sentence-level relation. We referred to the
BioCreative ViCPR (CPR) and Phenotype-Gene Relationship
(PGR) data sets. The PGR data set introduces the information
between human genes with human phenotypes; it contains 218
test instances and 11,781 training instances and 2 types of
relation labels: “No” and “Yes.” The CPR data set contains
information about the interactions between human proteins and
chemical components. It has 16,106 training, 14,268 testing,
and 10,031 development instances, as well as containing 5
relations such as “None,” “CPR:2,” and “CPR:6” relation. We
combined these 2 data sets into 1 table to make it more intuitive.

Experimental Parameter Setting
For the cross-sentence relation task, we referred to the same
data divides that Guo et al [14] used. The hidden size of
ON-LSTM is set to 300 in our stochastic gradient descent

optimizer with a 300-dimensional Glove and 0.9 decay rate and
reports the average test accuracy over 5 cross-validation folds.
For the sentence-level task, the F1 results are shown [8], and
we randomly divided 10% of the PGR training set as the
development set to ensure consistent data division. We
fine-tuned the hyperparameters based on the outcomes of the
development sets. The results marked with an asterisk are based
on a reimplementation of the original model. The
aforementioned configuration ensures that our model has a
consistent data partitioning and operating environment with the
baseline.

The Overall Architecture
An overview of our proposed syntactic enhancement graph
convolutional network (SEGCN) model (Figure 2) consists of
3 parts: an Encoder, a Feature Processor, and a classifier. The
Encoder incorporates the syntactic structural features, and the
Feature Processor handles the features containing structural
information.

Figure 2. Diagrammatic representation of the syntactic enhancement graph convolutional network model showing an instance and its syntactic
information processing flow. The syntactic structure tree can be obtained from the encoder, and a matrix-tree can transform the syntactic dependency
tree in the feature processor.

Encoder
We used ON-LSTM [13] to obtain a syntactic structure in
shallow syntactic information. The ON-LSTM introduces
syntactic structure information while encoding by layering the
neurons. In terms of the overall framework, it is similar to
LSTM. Here, we mathematically illustrate how ON-LSTM
incorporates syntactic structural features.

Given a sentence s = x1,…,xn, where xi represents the i-th word.
We have written h = h1,…,hn for the structural output of the

sentence h Rn×d, where hi Rd denotes the i-th word’s hidden
state with a d dimension. A cell ct is used to record the state of
ht; to control ht, which is the data flow between the inputs and
outputs, a forget gate ft, an output gate ot and an input gate it

are employed. Where Wx, Ux, and bx(x f, I, o, c) are model
parameters, and c0 is a zero-filled vector:

ft = σ(Wfxt + Ufht–1 + bf) (1)

it = σ(Wixt + Uiht–1 + bi) (2)

ot = σ(Woxt + Uoht–1 + bo) (3)

ct = tanh(Wcxt + Ucht–1 + bc) (4)

ht = ot • tanh(ct) (5)

It differs from the LSTM in that it uses a new function to replace
the update function of the cell state ct. Specific ordering of
internal neurons by replacing the update function, allowing the
syntactic structure to be integrated into the LSTM. The update
rules are as follows.

(6)

(7)

(8)

We used softmax to predict the layer order of neurons and then
calculate the cumulative sum by cs. Finally, f t and i t contains
the layer order information of ct–1 and ct, respectively, and the
intersection of the two is ωt. The cumulative sum equation is
as follows.
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(9)

(10)

Following the cumulative sum’s properties, the master forget
gate f t has values that change from 0 to 1, while the master
input gate i t has values that decrease monotonically from 1 to
0. The overlap of f t and i t is represented by the product of the
two master gates ωt.

C = ωt • (ft • ct–1 + it • ct) + (f t – ωt) • ct–1 + (i t – ωt)
• ct(11)

Finally, the cell state C is segmented by layer order information,
and the fused syntactic structure is fused in the model.

Feature Processor

Multi-Head Attention

By building an attention adjacency matrix Sk, we converted the
feature h to a fully connected weight graph. A set of key-value
pairs and a query were used in the calculation. The obtained
attention matrices represent the potential syntactic tree, which
is computed from the function of the keyword K with the
corresponding query Q. In this case, both Q and K are the same
as h.

(12)

Where WQ Rd×d and WK Rd×d are parameters for

projections, d denotes the vector dimension. Sk consists of .
hi and hj represent the normalized weight scores of the i-th and
the j-th token, respectively.

Matrix-Tree Pruning

We pruned the matrix-tree Sk to balance the syntactic features,
output as matrix-tree A. It is achieved by multiplying a Gaussian
kernel with an attention matrix. In the field of image processing,
Gaussian kernel functions are commonly used to equalize
images. In the model, we chose a 2-dimensional Gaussian kernel
to balance the syntactic features. The following is the Gaussian
kernel function.

(13)

where a is the amplitude, xo and yo are the coordinates of the
center point, and σx and σy are the variance. With the
aforementioned 2-dimensional Gaussian kernel function, we
could obtain the Gaussian kernel.

GCN
GCN is a neural network that can use information about the
graph's structure. On the input of the GCN, we replaced the

graph structure of the input with the syntactic tree matrix A
generated above, and the feature vector is the output vector h
of the Encoder. The layer-wise propagation rules of GCN are
as follows:

(14)

The adjacency matrix of an undirected graph g with extra
self-connections is denoted by Ã, Ã = A + IN. IN is the identity

matrix, D ii = ΣiÃij. W(l) is a trainable weight matrix. The

activation function is denoted by σ(•). H(l) RN×D is the

activation matrix in the l-th layer, H(0) denotes the h.

Classifier
To obtain final categorization representations, we combined
sentence and entity representations and fed them into a
feedforward neural network.

Hfinal = FFNN([Hsent ; Hs ; Ho]) (15)

Hsent, Hs, and Ho denote sentence, subject, and object
representations, respectively. Finally, the logistic regression
classifier performs predicted categorization of the outcome
using Hfinal as a token.

Results

Results of the Cross-sentence Task
For the cross-sentence task, we used 3 types of models as
baselines: (1) feature-based classifier [15] based on all entity
pairs' shortest dependency pathways; (2) graph-structured LSTM
methods, including bidirectional directed acyclic graph (DAG)
LSTM (Bidir DAG LSTM) [5], Graph State LSTM (GS LSTM),
and Graph LSTM [4]—these approaches extend LSTM to
encode graphs generated from dependency edges created from
input phrases; and (3) pruned GCNs [6] including
attention-guided GCN (AGGCN) [14] and Lévy Flights GCN
(LFGCN) [11]. These methods use GCNs to prune graphs with
dependency edges. Additionally, we added the Bidirectional
Encoder Representations from Transformers (BERT) pretraining
model to complement the model with experiments. The results
marked with an asterisk are based on a reimplementation of the
original model.

In the multi-class relation extraction task (last 2 columns in
Table 1), our SEGCN model outperforms all baselines with
accuracies of 81.7 and 80.2 on all instances (Cross). In the
ternary and binary relations, our SEGCN model outperforms
the best performing graph-structured LSTM model (GS LSTM)
by 10.0 and 8.5 points, respectively, our model outperforms the
best performing model with LFGCN by 1.8 and 2.6 points when
compared to the GCN models.
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Table 1. Results of the cross-sentence task.

Multi-class, accuracyBinary-class, accuracyModel

BinaryTernaryBinaryTernary

CrossCrossCrossSingleCrossSingle

——a75.273.977.774.7Feature-Based

——76.775.680.777.9Graph LSTMb

——76.574.380.777.9DAGc LSTM

71.771.783.683.583.280.3GS LSTMd

73.678.183.783.885.885.8GCNe + Pruned

77.480.285.685.287.087.1AGGCNf

77.679.985.786.786.587.3LFGCNg

78.180.584.986.187.187.2AGGCN + BERTh

78.080.386.786.586.587.3LFGCN + BERT

80.281.787.587.288.288.5SEGCNi

80.481.987.786.888.488.7SEGCN + BERT

aNot determined.
bLSTM: long short-term memory.
cDAG: directed acyclic graph.
dGS LSTM: graph-structured long short-term memory.
eGCN: graph convolutional network.
fAGGCN: attention-guided graph convolutional network.
gLFGCN: Lévy Flights graph convolutional network.
hBERT: Bidirectional Encoder Representations from Transformers.
iSEGCN: syntactic edge-enhanced graph convolutional network.

In the binary-class relation extraction task, our SEGCN model
also outperforms all baselines (first four columns in Table 1).
The task was expanded to cross-sentence– (Cross) and
sentence-level (Single) subtasks. In cross-sentence–level ternary
and binary classification, our model received 88.2 and 87.5
points, respectively. Our model received 88.5 and 87.2 for
sentence-level ternary and binary classifications, respectively.

These experiments show that our model achieves better results
than previous models that discard shallow syntactic information,
such as the previous GS LSTM and GCN models. We attribute
the results of our models to the introduction of shallow syntactic
information and the equalization process. Finally, for
comparison with the latest methods, we attempted to introduce
BERT pretraining. We found that the results of the task
improved slightly after BERT pretraining. We believe that
BERT also captured some shallow syntactic information during
pretraining.

Results of the Sentence-Level Task
The results of the sentence-level task using the CPR [11] and
PGR [16] data sets are shown in Table . Our model has been

compared to 2 types of models: (1) sequence-based models,
including the randomly initialized Dilated and Depthwise
separable convolutional neural network (Random-DDCNN)
[9], which uses a parser that is a relational prediction model
through random initialization and fine-tuning; attention-based
multilayer gated recurrent unit [17], which overlays attentional
mechanisms on top of the recursive gated units; Bran [18],
which uses a bi-affine self-attention model to capture the
sentence's interactions; and Bidirectional Encoder
Representations from Transformers for Biomedical Text Mining
[19], which is a pretrained language representation model for
medical literature; and (2) dependency-based models, which
are based on a single dependency tree, including the biological
ontology–based long short-term memory network [20] and
GCN. There are also dependency forest–based models, including
the Edgewise–graph recurrent network (GRN) [8], which prunes
scores greater than a threshold; kBest-GRN [8], which involves
merging of k-best trees for prediction; ForestFT-DDCNN [9],
which constructs a learnable dependency analyzer; and AGGCN
and LFGCN [11], which relate multiheaded attention to
dependency features.
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Table 2. Results of the sentence-level task.

Binary-class (Phenotype-Gene Relationship
data set), F1 score

Multi-class (BioCreative ViCPR data
set), F1 score

Type and model

Sequence-based model

—b45.4Random-DDCNNa

—49.5Att-GRUc

—50.8Bran

67.2—BioBERTd

Dependency-based model

52.3—BO-LSTMe

81.352.2GCNf

83.653.4Edgewise-GRNg

85.752.4kBest-GRN

89.355.7ForestFT-DDCNN

88.556.7AGGCNh

89.664.0LFGCNi

89.864.2LFGCN+BERT

Our models

91.365.4SEGCNj

91.565.6SEGCN+BERT

aDDCNN: Dilated and Depthwise separable convolutional neural network.
bNot determined.
cAtt-GRU: attention-based multilayer gated recurrent unit.
dBioBERT: Bidirectional Encoder Representations from Transformers for Biomedical Text Mining.
eBO-LSTM: biological ontology–based long short-term memory.
fGCN: graph convolutional network.
gGRN: graph recurrent network.
hAGGCN: attention-guided graph convolutional network.
iLFGCN: Lévy Flights graph convolutional network.
jSEGCN: syntactic enhancement graph convolutional network.

As shown in the results of the sentence-level task in Table 2,
our model achieved the best performance on both the multiclass
data set CPR and the dichotomous data set PGR, with F1 scores
of 65.4 and 91.3. Specifically, our model outperformed the
previous state-of-the-art dependency-based model (LFGCN)
by 1.2 and 1.5 points on the CPR and PGR data sets,
respectively. We found that the model's improvement was
smaller than that on the cross-sentence level task. We argue that
shallow syntactic information has a smaller impact on short
sentence lengths in sentence-level tasks, and it is better suited
to long sentence lengths in cross-sentence tasks.

Discussion

Ablation Study
We validated the different modules of our model on the PGR
data set, including BERT pretraining, the matrix-tree pruning
layer, and the feature capture layer. Table 3 shows these results.
We can see that model effectiveness decreases after removing
any of the modules. All three modules can aid in the model's
learning of a more accurate feature representation. The feature
capture layer and the matrix-tree pruning layer improved by 2.4
and 2.5 points, respectively, indicating that the shallow syntactic
information and equalization process resulted in a model boost.
In contrast, the popular BERT pretraining approach was not
suitable for the model.
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Table 3. An ablation study using the Phenotype-Gene Relationship data set.

F1 scoreModel

91.5SEGCNa (All)

91.3SEGCN (- BERT Pretraining)

90.0SEGCN (- Matrix-tree pruning)

89.1SEGCN (- Feature capture)

88.5Baseline (- All)

aSEGCN: syntactic enhancement graph convolutional network.

The ablation experiments show that shallow syntactic
information and equalization processing methods can improve
model performance significantly. We believe that these two
methods function by processing the interaction information in
the sentences. The shallow syntactic information complements
the nonlocal interaction of the sentence, and the equalization
process balances the local and nonlocal interactions of the
sentence.

Performance Against Sentence Length
We examined the effect of introducing shallow syntactic
information on different sentence lengths through comparative

experiments. Figure 3A shows the F1 scores of the 3 models at
different sentence lengths. There are 3 categories based on
sentence length ((0,25), [25,50),>50). In general, our SEGCN
outperformed ForestFT-DDCNN and LFGCN in all 3 length
categories. Furthermore, the performance gap widened as the
instance length increased. These results suggest that adding
shallow syntactic information, particularly in long sentences,
improves our model significantly. We attribute this to the fact
that our model complements the nonlocal interactions of the
sentences with the introduction of shallow syntactic information.
Because they rely more on nonlocal interactions, longer
sentences received higher F1 scores.

Figure 3. Performance against sentence length and Bidirectional Encoder Representations from Transformers (BERT) pretraining. (A) F1 scores at
different sentence lengths. Results of the ForestFT– Dilated and Depthwise separable convolutional neural network are based on Jin et al [10]. (B) F1
scores against sentence length after BERT pretraining. AGGCN: attention-guided graph convolutional network; LFGCN: Lévy Flights graph convolutional
network.

Performance Against BERT Pretraining
To show the superiority of syntactic enhancement of our models,
we compared the models with the addition of pretraining. After
BERT pretraining, the F1 scores of the 3 models are shown in
Figure 3B for different sentence lengths. There are 3 categories
based on sentence length ((0,25], [25,50),>50). Overall, BERT
pretraining showed small improvements for models of different
sentence lengths. It supports our hypothesis that the neural
network models acquire insufficient syntactic features.
Furthermore, we found that our SEGCN without BERT still
functioned better than the other models with BERT. These
results indicate that our model outperforms BERT in using
syntactical features.

Case Study
To demonstrate the impact of our approach on sentence
interaction, we compared the features obtained from different
model layers. Figure 4 shows the attention weights of the
example sentences at the different layers of the model. We
decided to use a heat map to represent the attention weights.
The color of each point represents the weight of the interactive
information. The darker the color, the greater the weighting.
For more intuition, we have omitted the points with smaller
weights. In addition, the output of the multi-headed attention
layer before and after incorporation into the shallow syntactic
information is represented by matrices A and B, respectively.
Matrix C represents the output of the equalization processing
matrix B.
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Figure 4. The heat maps of an example sentence in the syntactic enhancement graph convolutional network model.

As shown in Figure 4, the weight distribution in matrix A is
more concentrated in the diagonal distribution. In contrast,
matrix B and matrix C have significantly more nondiagonal
weight distributions than matrix A. This supports our view that
the model incorporating shallow syntactic information gradually
focuses on nonlocal interactions in the sentence. Furthermore,
by comparing matrices B and C, we see that equalized matrix
C pays more even-handed attention to the model's weights (the
more similar the color, the closer the weights). We believe that
the model's performance is improved by balancing the attention
to local and nonlocal interactions. These results further
demonstrate how our model makes use of syntactic information
for syntactic enhancement.

Conclusions
This study is the first to propose incorporating shallow syntactic
information for syntactic enhancement in medical relation
extraction. In addition, we devised a new pruning method to
equalize the syntactic interactions in the model. The results for
the 3 medical data sets show that our method can improve and
equalize syntactic interactions, significantly outperforming
previous models. The ablation experiments demonstrate the
effectiveness of our two proposed methods. In future, we intend
to continue our research on the connection between shallow
syntactic information and sentence interactions.
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