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Abstract

Background: The Centers for Medicare and Medicaid Services projects that health care costs will continue to grow over the
next few years. Rising readmission costs contribute significantly to increasing health care costs. Multiple areas of health care,
including readmissions, have benefited from the application of various machine learning algorithms in several ways.

Objective: We aimed to identify suitable models for predicting readmission charges billed by hospitals. Our literature review
revealed that this application of machine learning is underexplored. We used various predictive methods, ranging from glass-box
models (such as regularization techniques) to black-box models (such as deep learning–based models).

Methods: We defined readmissions as readmission with the same major diagnostic category (RSDC) and all-cause readmission
category (RADC). For these readmission categories, 576,701 and 1,091,580 individuals, respectively, were identified from the
Nationwide Readmission Database of the Healthcare Cost and Utilization Project by the Agency for Healthcare Research and
Quality for 2013. Linear regression, lasso regression, elastic net, ridge regression, eXtreme gradient boosting (XGBoost), and a
deep learning model based on multilayer perceptron (MLP) were the 6 machine learning algorithms we tested for RSDC and
RADC through 10-fold cross-validation.

Results: Our preliminary analysis using a data-driven approach revealed that within RADC, the subsequent readmission charge
billed per patient was higher than the previous charge for 541,090 individuals, and this number was 319,233 for RSDC. The top
3 major diagnostic categories (MDCs) for such instances were the same for RADC and RSDC. The average readmission charge
billed was higher than the previous charge for 21 of the MDCs in the case of RSDC, whereas it was only for 13 of the MDCs in
RADC. We recommend XGBoost and the deep learning model based on MLP for predicting readmission charges. The following
performance metrics were obtained for XGBoost: (1) RADC (mean absolute percentage error [MAPE]=3.121%; root mean
squared error [RMSE]=0.414; mean absolute error [MAE]=0.317; root relative squared error [RRSE]=0.410; relative absolute
error [RAE]=0.399; normalized RMSE [NRMSE]=0.040; mean absolute deviation [MAD]=0.031) and (2) RSDC (MAPE=3.171%;
RMSE=0.421; MAE=0.321; RRSE=0.407; RAE=0.393; NRMSE=0.041; MAD=0.031). The performance obtained for MLP-based
deep neural networks are as follows: (1) RADC (MAPE=3.103%; RMSE=0.413; MAE=0.316; RRSE=0.410; RAE=0.397;
NRMSE=0.040; MAD=0.031) and (2) RSDC (MAPE=3.202%; RMSE=0.427; MAE=0.326; RRSE=0.413; RAE=0.399;
NRMSE=0.041; MAD=0.032). Repeated measures ANOVA revealed that the mean RMSE differed significantly across models
with P<.001. Post hoc tests using the Bonferroni correction method indicated that the mean RMSE of the deep learning/XGBoost
models was statistically significantly (P<.001) lower than that of all other models, namely linear regression/elastic net/lasso/ridge
regression.

Conclusions: Models built using XGBoost and MLP are suitable for predicting readmission charges billed by hospitals. The
MDCs allow models to accurately predict hospital readmission charges.
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Introduction

Background
Electronic health records (EHRs) are now widely adopted by
hospitals. EHR adoption has almost doubled since 2008, one
of the reasons being the implementation of the
government-related mandate as part of the American Recovery
and Reinvestment Act of 2009 [1,2]. Even with the
implementation of technological innovations like EHRs and
various reforms for funding health care initiatives, health care
costs have continued to increase. As per the recent National
Health Expenditure Fact Sheet provided by the Centers for
Medicare and Medicaid Services (CMS), the national health
expenditure has grown 9.7% by the end of 2020, totaling US
$4.1 trillion (approximately 19.7% of the Gross Domestic
Product). On average, the United States of America spends over
US $10,000 per resident per year toward health care. It is
considerably higher than that in other countries included in the
Organization for Economic Co-operation and Development,
where the average cost is only US $4000 per person after
adjusting for purchasing power [3].

Readmissions have been a significant contributor to rising health
care costs. The hospital cost associated with 30-day all-cause
readmissions was approximately US $41.3 billion for 2011 [4].
Even before the pandemic, annual hospital readmission costs
were approximately US $26 billion for Medicare alone [5]. The
pandemic caused a further increase in readmission costs [6].
Being expensive at the individual level, readmission is often
postponed by patients until their health severely degenerates,
leading to further increases in readmission costs, and these in
turn contribute to the rapidly rising health care costs.

As a result, it is important for hospitals to plan for potential
readmissions and associated costs. Although past research has
primarily focused on predicting the probability of readmissions,
the cost of readmissions is understudied, which is an important
element in the financial planning done by hospitals as well as
various concerned governmental agencies. As our task is to
predict future hospital readmission charges, we take cues from
existing literature on predictive analytics that have been applied
and found beneficial in multiple areas of health care, such as
risk analysis, disease diagnosis, disease progression, and
preventive care [7-12]. Thus, we expect that predicting hospital
readmission charges would help hospital policymakers plan for
the upcoming expenditures. Hospitals can use these predictions
to design policies based on the costs borne by individual
patients.

According to the CMS, readmission is defined as an admission
to a hospital within 30 days of discharge [13]. It could be from
the same or another hospital, irrespective of the cause of
readmission. However, readmission charges can be expected to
vary significantly across major diagnostic categories (MDCs).

To better control such variations and develop effective
prediction models, we consider predicting the charges based on
MDCs in this study, which is a novel aspect of our research. To
the best of our knowledge, this aspect has not been explored in
the past. We compare the predictions with the case when all
diagnostic categories are pooled to predict readmission charges.
Accordingly, we deploy the term readmission in two ways:
readmission with the same major diagnostic category (RSDC)
and all-cause readmission category (RADC). RSDC is defined
as an admission to a hospital (same or another hospital) within
30 days of discharge with the cause of readmission being the
same as the previous admission. In this context, the “cause of
readmission” is based on the major diagnostic category (MDC).
RADC is defined as an admission to a hospital within 30 days
of readmission, irrespective of the cause of readmission.

Objective
The hospital charges for readmitted individuals can vary based
on different services (such as procedures, labs, X-rays, and
scans) used. Predicting these charges would be beneficial for
financial planning by hospitals. Existing studies mainly focus
on predicting either readmission probabilities or general health
care costs. To date, no thorough research on suitable machine
learning models exists for predicting hospital readmission
charges. An exception is a study focusing on predicting
readmission costs (not charges) [14]; however, it also does not
include modern approaches, such as deep learning and
regularization-based techniques. Our objective is to consider
and compare traditional and modern predictive techniques to
identify a suitable approach for predicting readmission charges.

Before building predictive models for RSDC and RADC, we
also conducted preliminary analyses. First, for understanding
the contribution of readmissions to the rising health care costs
based on different criteria for readmissions (ie, RSDC and
RADC), we determined the variation in the percentage of
individuals contributing to hospital charges in our research
context. Next, we analyzed whether readmissions varied across
MDCs based on RSDC and RADC. As readmission policies
vary across countries, we analyzed different readmission criteria
for MDCs. Then, we determined whether the readmission
charges changed significantly compared to the previous
admission charges for RSDC and RADC. Finally, we strived
to build models for predicting readmission charges billed by
hospitals for RSDC and RADC.

Prior Work
The literature on applications of predictive methods for health
care outcomes is vast. We focus on discussing works that
directly relate to our study and context. Numerous machine
learning–based approaches have been applied to predict
readmissions and health care costs. For the sake of brevity, we
list them succinctly in Table 1.
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Table 1. Models used in prior studies.

Contexts and models usedPrediction area

All-cause: Artificial neural network (Jamei et al [15]); Bayesian network (Cai et al [16]); bidirectional encoder repre-
sentation from transformers (Huang et al [17]); convolutional neural network (Wang et al [18]); Cox regression model
(Yu et al [19]); decision trees (Sushmita et al [14] and Shadmi et al [20]); generalized boosting model (Sushmita et al
[14]); multilayer perceptron (Wang et al [18]); multiple logistic regression (Sushmita et al [14], Schoonver et al [21],
Picker et al [22], and Morris et al [23]); neural network (Shadmi et al [20] and Zheng et al [24]); random forest (Sush-
mita et al [14] and Zheng et al [24]); support vector machine (Sushmita et al [14], Yu et al [19], and Zheng et al [24])

Population-specific: Beta geometric Erlang-2 model (Bardhan et al [25]); lasso regularization with group-level feature
selection (Radovanovic [26]); logistic regression (Yu et al [19], Kelly [27], and Hasan et al [28]); multivariate logistic
regression (Tabata et al [29] and Greenblatt [30]); naïve Bayes (Shameer et al [31]); tree lasso logistic regression (Jo-

vanovic et al [32]); multivariate Cox proportional hazard model (Schmutte et al [33]); XGBoosta (Morel et al [34])

Readmissions

General costs: Classification trees and clustering (Bertsimas et al [35]); linear regression (Farley et al [36], Sushmita
et al [37], and Leigh et al [38]); M5 model tree (Sushmita et al [37])

High-cost patients: logistic regression (Fleishman and Cohen [39])

Health care costs

aXGBoost: eXtreme gradient boosting.

The first stream of research related to our study is on predicting
readmissions. This body of literature is very large; therefore,
we provide details on some representative research papers. A
review paper [40] on readmission prediction models reports C
statistic values between 0.55 and 0.65. Accordingly, the authors
conclude that the models perform poorly. A recent study [41]
reviewing articles from 2015 to 2019 reports an improvement
in the C statistic values (greater than 0.75). For predicting
readmissions, authors [21,42] explore the effects of
physiological and medication regimens in some studies, whereas
in another study [14], the authors use administrative data. Along
these lines, existing studies [16,18,43] use machine learning
approaches (such as deep learning and Bayesian network) to
predict hospital readmission within 30 days. While using
ensemble models, a model combining modified weighted
boosting with a stacking algorithm shows a prediction
performance 22% higher than that of a model combining the
random forest algorithm, lasso algorithm, and Synthetic Minority
Oversampling Technique [44]. A recent study [17] explores the
use of unstructured data to predict readmission using
bidirectional encoder representation from transformers.
Extracting patient information from clinical notes using deep
learning algorithms and then training them using graph neural
networks is beneficial for prediction [45].

Next, focusing on specific subpopulation readmissions, past
studies [25,29,31,46] use methods such as beta geometric
Erlang-2, naïve Bayes, multivariate logistic regression, and
tree-based lasso. In the case of readmissions with at least 7 past
emergency department visits, boosted decision trees perform
marginally better than logistic regression and the Bayes point
machine [47]. A deep learning–based model built for congestive
health failure patients using human-derived features,
machine-derived contextual embeddings, and cost-sensitive
sequential visit patterns in the EHR has the highest predictive
power when compared to reduced models that use either 1 or
more combinations of these [48]. eXtreme gradient boosting
(XGBoost) shows better predictability than regularization
techniques for predicting readmissions in mental or substance
use disorders [34]. Interestingly, in a study related to psychiatric
inpatients [33], the authors consider readmission within 12
months instead of the traditional 30 days to find which patient

characteristics predict the time to readmission within 12 months.
In terms of interpretability, existing studies [26,32] show that
the tree-based lasso provides better interpretability. In an
intensive care unit setting, attention-based networks may be
preferable over recurrent neural networks when interpretability
is of importance for a marginal decrease in accuracy [49].
Altogether, our literature review reveals that ensemble
tree–based methods and deep learning approaches typically
perform better than other approaches in predicting readmissions.
However, none of the abovementioned studies predicts
readmission charges, the focus of our study.

The literature closest to our work is on predicting health
care–related costs. In one of the studies [35], the authors use
classification trees and clustering algorithms to predict the
general cost of health care and not specifically readmission
charges. To apply these methods, the authors classify the
continuous cost variable into discrete classes. In another study
[50], the authors use more sophisticated machine learning
methods, such as gradient boosting, an artificial neural network,
and a ridge regression model, to predict cost-based classes.
Although predicting general health care costs is useful, nothing
can be concluded about the efficacy of these methods for
predicting readmission charges because readmission is a
fundamentally different phenomenon from general hospital
visits. Specifically, readmission is usually associated with
chronic illnesses and diseases requiring multiple visits.
Moreover, bucketing a continuous variable into classes causes
loss of information and may decrease predictive power.

There are studies [37,38] that predict general health care costs
as a continuous variable. Apart from this, existing studies
[51,52] derive costs based on predicting diagnosis-related groups
(DRGs) to make operational decisions. However, as explained
earlier, readmission charges are characteristically different from
other types of costs. The prediction of readmission costs is
considered in 1 study [14]. The authors use a limited set of
methods, specifically linear regression and tree-based models,
for predicting the costs (not charges). Based on our analysis of
the existing literature, tree-based models and deep
learning–based methods are likely to produce high prediction
accuracies. We include a wide variety of prediction algorithms,
including deep learning methods, to comprehensively study the
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problem of predicting readmission charges. Moreover, we use
a data set that spans the entire United States, unlike the existing
study [14] that focuses on costs (not charges) using a data set
with patients from a much smaller geographic region. Thus, we
can provide robust recommendations on the methods that are
best suited for making readmission charge predictions across
different regions of the country.

Methods

Data Set and its Description
We used data from the Nationwide Readmission Database
(NRD) of the Healthcare Cost and Utilization Project (HCUP)
by the Agency for Healthcare Research and Quality for this
study [53]. The data set consists of 4 parts, namely the core data
set, severity data set, hospital-level data set, and diagnosis and
procedure group data set. It includes inpatient individuals from
the entire United States for 2013 (first fiscal year introducing
readmission policies). Readmission policies and variables in
the NRD data set have not changed much after that. We used
nationally representative data available publicly to find
generalizable insights that can be applied to all hospitals. The
total number of records in the data set was 14,325,172, including
those with and without repeat hospital visits. Initially, we
analyzed readmissions with respect to hospital charges using
the core data set part, which consists of hospital charges for an
individual. We used variables from all 4 data set parts for
building predictive models (see Multimedia Appendix 1 for the
categorical and numeric variables used, along with their
descriptive statistics and description). After cleaning the entire
data set, we identified 576,701 and 1,091,580 individuals for
the 2 readmission categories, namely RSDC and RADC,
respectively. Each admission record consists of the following:
demographics (gender, age, median household income, etc);
clinical information (diagnosis, the procedure used, etc);
comorbidities (hypertension, diabetes, depression, etc); hospital
details (bed size, teaching or nonteaching hospital, etc); severity
details (All Patients Refined Diagnosis Related Groups for
severity of illness, risk of mortality, etc); and cost-related and
administrative data (length of stay, charges billed by hospitals,
etc).

The data set has close to 285 mutually exclusive categories of
International Classification of Diseases (ICD-9) codes for
grouping diagnoses and procedures related to patients for
adjusting risks. Prior studies [26] have shown that aggregated
higher-level grouping of diseases was effective in providing
better results than going to a specific condition at the lowest
level of hierarchy in the case of pediatric readmissions. MDC
codes are at a higher level than the specific DRG payment codes
in this context. Per the CMS, DRGs are grouped under MDCs
formed focusing on a particular medical specialty and are
mutually exclusive to make them clinically consistent. They
are built based on principal diagnosis codes (ICD-9 codes in
this data set).

We define the terms previous admission charge and average of
previous admission charges used in this study. These terms
differ for RSDC and RADC. The previous admission charge
for RSDC is defined as the charge billed by the hospital for only

the last previous admission having the same MDC. The previous
admission charge for RADC is defined as the charge billed by
the hospital for the last previous admission irrespective of the
MDCs. The readmission charge for RSDC and RADC is defined
as the charge billed by the hospital associated with 1 readmission
visit using the readmission criteria based on the definitions of
RSDC and RADC, respectively. The average of previous
admission charges for RSDC is defined as the average charge
billed by the hospital for all the previous admissions having the
same MDC. The average of previous admission charges for
RADC is defined as the average charge billed by the hospital
for all the previous admissions, irrespective of the MDCs.

Ethical Considerations
We have signed the HCUP data use agreement. As per the
HCUP data use agreement policy, HCUP databases are limited
data sets. According to the Health Insurance Portability and
Accountability Act of 1996 , review by an institutional review
board is not required for limited data sets. Therefore, we did
not apply for institutional review board approval for using the
NRD data set [53].

Models Used and Their Description
The average previous admission charge was considered as one
of the independent variables because the previous cost proved
helpful in predicting future health care costs [35,37]. All the
numeric independent variables were standardized except for the
average admission charge for which log transformation was
applied. Log transformation was also applied to the readmission
charge, namely the dependent variable. We provide brief
rationales behind the models considered for RSDC and RADC
below.

Linear Regression (Baseline Model)
It is a simple and easily interpretable method compared to other
nonlinear methods. It works well when there is a linear
relationship between the dependent (target) variable and
independent variables. We considered using linear regression
as a baseline for this study, as it has been widely used for
predicting general health care costs and is also computationally
efficient [36-38].

Lasso Regression, Elastic Net Regression, and Ridge
Regression
Regularization techniques prevent overfitting and
multicollinearity by constraining the loss function. We could
either add the penalty as the sum of the absolute values of
coefficients (L1 penalty) in lasso or as the sum of the squared
values of coefficients in the case of ridge regression (L2
penalty). Lasso gives us sparse solutions by shrinking the
estimates for some coefficients to 0, whereas ridge regression
shrinks the estimates near 0. Elastic net regression takes
advantage of lasso and ridge regression by linearly combining
L1 and L2 penalties. The literature review section explains that
health-related data are complex and often face multicollinearity
issues. To address these challenges, we applied regularization
techniques to predict readmission charges billed by hospitals.
In terms of hyperparameter tuning, we tuned α (that accounts
for the relative importance of the lasso and ridge regression)
ranging from 0 to 1 with a step size of 0.1, and estimated λ (the
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regularization penalty) using cross-validation. The optimization
objective in the hyperparameter tuning (in all methods used,
including those introduced below) was set to minimize the root
mean squared error (RMSE). We report results for lasso
regression with α=1, elastic net regression with α=.5, and ridge
regression with α=0.

XGBoost Model
It is one of the popular tree-based models for tabular data
[54-56]. Prior studies [14] on predicting readmission costs (not
charges) have also shown tree-based ensemble models to be

beneficial. Therefore, we included this tree-based ensemble
model for predicting readmission charges to take care of any
nonlinearity. We chose XGBoost, as it has not been previously
used in this context. Existing studies [57-59] show that a random
search is sufficient and efficient in terms of the computation
time for hyperparameter tuning. Hence, we performed a random
search on the typical range of values for the relevant parameters
depending on the type of booster [60]. The final values
configured for this study are given in Table 2. The booster (type
of learner) used was the tree booster (gbtree).

Table 2. eXtreme gradient boosting configuration details.

ValueConfiguration

120Number of rounds

5Maximum depth of the tree

0.2Learning rate

0.7Subsample ratio of the training instances

5L1a regularization term on weights

20L2b regularization term on weights

5Minimum loss required to make a split (gamma)

0.9Subsample ratio of columns while constructing each tree

aL1: the sum of the absolute values of coefficients.
bL2: the sum of the squared values of coefficients.

Deep Learning Model Using Multilayer Perceptron
As discussed in the literature review section, even though deep
learning–based models are more suitable for health-related data,
there is no prior study that specifically predicts readmission
charges using deep learning. A popular deep neural network
architecture for tabular data is multilayer perceptron (MLP).
Therefore, we used MLP, which requires multiple
hyperparameters to be tuned. We chose the hyperparameters
through a random search process, which is consistent with the
recommendation provided in the literature pertaining to our

case [57]. While choosing hyperparameters, we also used
guidelines provided in relevant studies [61,62]. In our study,
we found that models with even fewer hidden layers performed
better than multiple linear regression. However, for the final
configuration, we chose 4 hidden layers (beyond this, there was
no further reduction in error values) to obtain fine-tuned
low-error values and fewer epochs with consistent error values
for the majority of the epochs. The values selected in this
application are given in Table 3. The rectified linear unit was
used as the activation function. The final activation function
was linear, and the batch type was a minibatch.

Table 3. Configuration of the multilayer perceptron–based deep learning network.

ValueConfiguration

4Number of hidden layers

80Number of neurons in the first hidden layer

60Number of neurons in the second hidden layer

50Number of neurons in the third hidden layer

20Number of neurons in the fourth hidden layer

30Minibatch size (weights get updated after each minibatch)

0.9000Momentum

0.0001Learning rate

400Number of epochs (1 epoch = 1 forward pass + 1 backward pass)
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Performance Measures Used
We used 7 metrics to measure the performance of the methods.
We define n as the total number of observations (ie, patients),
yi as the actual values of readmission charges incurred by

patients, as the mean of readmission charges, and as the
predicted values of readmission charges. The performance
measures are provided below.

Mean Absolute Percentage Error
Mean absolute percentage error (MAPE) measures the error
size in terms of percentage:

Root Mean Squared Error
Root mean squared error (RMSE) gives the standard deviation
of the residual, which is the difference between actual and
predicted values:

Mean Absolute Error
Mean absolute error (MAE) gives the average value of the errors
for a given set of predictions:

Root Relative Squared Error
Root relative squared error (RRSE) gives the relative
comparison of what the output would have been if a naïve model
(simply predicting with the mean) were used:

Relative Absolute Error
Relative absolute error (RAE) compares the total absolute error
of the model to the total absolute error of the simplest model
(predicting with the mean):

Normalized Root Mean Squared Error
Normalized root mean squared error (NRMSE) is used to
compare models with different scales:

NRMSE = RMSE / 

Mean Absolute Deviation
Mean absolute deviation (MAD) describes how the values are
spread away from the mean:

The lower the MAPE, RMSE, MAE, RAE, RRSE, NRMSE,
and MAD, the better the prediction performance of the model.

Results

Initially, we analyzed the distribution of hospital charges (in
percentage) contributed by individuals (in percentage) by giving
different criteria for readmissions within RADC and RSDC, as
shown in Figures 1 and 2. We found that 48% (US
$294,802,405,683/US $614,171,678,507) of hospital charges
came from 21% (2,108,143/10,038,776) of the individuals who
had more than 1 admission.

Further analysis showed that the charges associated with
readmissions varied from the initial admission charges for most
diagnoses, with 541,090 individuals from the RADC category
having readmission charges higher than the previous admission
charges. Similarly, the current readmission charge was higher
than the previous admission charge for 319,233 of the
individuals for the RSDC category.

Next, we identified the MDCs having the highest number of
readmissions for RADC and RSDC. The 2 groups are similar
in terms of the MDCs with the highest number of readmissions.
The categories with the highest number of readmissions for
RSDC and RADC are given in Textbox 1 in descending order.

Next, we analyzed if the average readmission charge for each
MDC in RSDC and RADC varied from the previous admission
charge. In Figures 3 and 4, we explain the difference between
the average readmission charge (ARC) and average previous
admission charge (APAC) for RSDC and RADC, respectively.
In the case of RSDC, the ARC was higher than the APAC for
21 of the MDCs (Figure 3). In contrast, the ARC was higher
for only 13 of the MDCs in RADC (Figure 4).

We observed that readmission charges varied from previous
admission charges at the individual and aggregated levels based
on the above analysis. Next, we applied various predictive
methods to predict readmission charges at an individual level
for RSDC and RADC. We used 10-fold cross-validation. The
test results are shown in Table 4 for RSDC and Table 5 for
RADC.

Tables 4 and 5 show that the deep learning–based model and
XGBoost performed the best compared to all the other models
for all the performance metrics in RSDC and RADC. In addition,
models such as lasso, elastic net, and ridge regression using
regularization techniques on a linear model showed almost the
same performance. Repeated measures ANOVA revealed that
the mean RMSE differed significantly across models with
P<.001. As ANOVA is an omnibus test, we also performed a
post hoc test using the Bonferroni correction method. The test
showed that the mean RMSE was statistically significantly
(P<.001) lower for the deep learning/XGBoost models when
compared to that of linear regression/elastic net/lasso/ridge
regression. The test showed that the mean RMSE was
statistically significantly (P<.001) lower for the deep learning
and XGBoost models when compared to that of linear
regression, elastic net, lasso, and ridge regression.
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Figure 1. Distribution of hospital charges contributed by individuals (actual count in each category>10) for readmission with the same major diagnostic
category.

Figure 2. Distribution of hospital charges contributed by individuals (actual count in each category>10) for all-cause readmission category.
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Textbox 1. Major diagnostic categories having the highest number of readmissions listed in descending order.

Readmission with the same major diagnostic category

• Diseases and disorders of the circulatory system

• Diseases and disorders of the respiratory system

• Diseases and disorders of the digestive system

• Infectious and parasitic diseases and disorders (systemic or unspecified sites)

• Diseases and disorders of the kidney and urinary tract

• Diseases and disorders of the nervous system

All-cause readmission category

• Diseases and disorders of the circulatory system

• Diseases and disorders of the respiratory system

• Diseases and disorders of the digestive system

• Pregnancy, childbirth, and puerperium

• Mental diseases and disorders

• Diseases and disorders of the nervous system

Figure 3. Difference between average readmission charge and average previous admission charge for readmission with the same major diagnostic
category. MDC: major diagnostic category.

Figure 4. Difference between average readmission charge and average previous admission charge for all-cause readmission category. MDC: major
diagnostic category.
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Table 4. Test results of readmission with the same major diagnostic category based on different performance measures.

MADg, mean (SD)NRMSEf,
mean (SD)

RAEe, mean
(SD)

RRSEd, mean
(SD)

MAEc, mean
(SD)

RMSEb, mean
(SD)

MAPEa (%), mean
(SD)

Model

0.042 (0.000)0.055 (0.000)0.528 (0.004)0.546 (0.005)0.431 (0.002)0.564 (0.002)4.268 (0.035)Linear regression

0.042 (0.000)0.055 (0.000)0.528 (0.004)0.546 (0.005)0.431 (0.002)0.564 (0.002)4.269 (0.036)Lasso

0.042 (0.000)0.055 (0.000)0.528 (0.004)0.546 (0.005)0.431 (0.002)0.564 (0.002)4.269 (0.036)Elastic net

0.042 (0.001)0.055 (0.000)0.531 (0.004)0.547 (0.005)0.434 (0.002)0.565 (0.003)4.299 (0.037)Ridge

0.031 (0.000)0.041 (0.001)0.393 (0.003)0.407 (0.004)0.321 (0.002)0.421 (0.003)3.171 (0.027)XGBoosth

0.032 (0.000)0.041 (0.001)0.399 (0.003)0.413 (0.004)0.326 (0.002)0.427 (0.003)3.202 (0.022)Deep learning

aMAPE: mean absolute percentage error.
bRMSE: root mean squared error.
cMAE: mean absolute error.
dRRSE: root relative squared error.
eRAE: relative absolute error.
fNRMSE: normalized root mean squared error.
gMAD: mean absolute deviation.
hXGBoost: eXtreme gradient boosting.

Table 5. Test results of all-cause readmission category based on different performance measures.

MADg, mean
(SD)

NRMSEf,
mean (SD)

RAEe, mean
(SD)

RRSEd, mean
(SD)

MAEc, mean (SD)RMSEb, mean
(SD)

MAPEa (%), mean
(SD)

Model

0.041 (0.001)0.054 (0.000)0.537 (0.005)0.554 (0.005)0.427 (0.003)0.558 (0.004)4.208 (0.047)Linear regression

0.041 (0.001)0.054 (0.000)0.537 (0.005)0.554 (0.005)0.427 (0.003)0.558 (0.004)4.208 (0.047)Lasso

0.041 (0.001)0.054 (0.000)0.537 (0.005)0.554 (0.005)0.427 (0.003)0.558 (0.004)4.209 (0.047)Elastic net

0.042 (0.001)0.054 (0.000)0.531 (0.005)0.555 (0.005)0.429 (0.003)0.559 (0.005)4.240 (0.049)Ridge

0.031 (0.000)0.040 (0.000)0.399 (0.002)0.410 (0.001)0.317 (0.002)0.414 (0.002)3.121 (0.019)XGBoosth

0.031 (0.000)0.040 (0.000)0.397 (0.003)0.410 (0.002)0.316 (0.003)0.413 (0.003)3.103 (0.018)Deep learning

aMAPE: mean absolute percentage error.
bRMSE: root mean squared error.
cMAE: mean absolute error.
dRRSE: root relative squared error.
eRAE: relative absolute error.
fNRMSE: normalized root mean squared error.
gMAD: mean absolute deviation.
hXGBoost: eXtreme gradient boosting.

Discussion

Principal Results and Comparison With Prior Work
This study shows that national administrative data can be used
to build effective predictive models for hospital charges billed
for readmissions, even if there are different criteria for
readmissions. The deep learning–based algorithm and XGBoost
outperformed all other algorithms. Based on our experiments,
we also made a few observations specific to configuring
XGBoost. While configuring the XGBoost model, we found
that using the gradient descent of the tree-type booster gave the
best performance compared to other boosters such as a linear
booster or dropouts with multiple additive regression tree
boosters. Moreover, in the same context, setting the booster to

linear with regularization for XGBoost gave a performance
equivalent to linear, lasso, elastic net, and ridge regression.

In summary, this study makes 2 important contributions. To the
best of our knowledge, this is the first study to apply
regularization techniques, a tree-based ensemble model using
XGBoost, and deep learning–based models for predicting
readmission charges billed by hospitals. Deep learning–based
models and XGBoost have proven useful in modeling
health-related data. A related study that focused on predicting
readmission costs (not charges) used only linear regression and
tree-based models on narrow data sets (~10k samples) with
limited features, and hence, its applicability in different
geographies is questionable. Besides, it predicted readmission
costs (not charges) using only the all-cause definition of
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readmission. Our study considered readmission using MDCs
instead of DRGs by using different MDC criteria to determine
which models would be suitable for predicting readmission
charges.

Implications
This study has 2 practical implications. First, health systems
use high-risk care management programs to improve health
outcomes in individuals with complex needs and reduce costs.
As these programs are resource-intensive and expensive, health
systems use costs as a proxy to identify individuals suitable for
these programs [63]. Our study related to readmissions will aid
such programs by prescribing models that will provide reliable
estimates of readmission charges.

Second, hospital reimbursement mainly depends on DRG codes
and the case mix index (CMI). The CMI is calculated as the
average DRG weight of the hospitals’ inpatient discharges. A
higher CMI would indicate more reimbursement for hospitals.
As the CMI is not directly tied to either hospital charges (which
can vary depending on various factors specific to the hospital,
such as staffing expenses and technologies used) or
individual-specific expenses, hospitals often do not get
reimbursed for the services they have provided [64]. In this
study, we predicted readmission charges that will give hospitals
a better estimate of the cost they are going to incur in case the
patients get readmitted. Now, hospitals can use the CMI and
DRGs to determine their reimbursement amounts and compare
that with the estimated charges. If there are any differences in
the amount, hospitals can now more effectively plan for
mitigation strategies. Thus, in a nutshell, our study can be
helpful for health care policymakers and hospital planners.

Limitations and Future Research
Modeling readmission likelihood and the length of stay are also
crucial in readmissions, as these outcomes influence one another.

Moreover, modeling readmission charges, readmission
likelihood, and length of stay might be more beneficial than
focusing only on modeling readmission charges. In this study,
we identified readmissions belonging to RSDC and RADC. We
will also use the term readmission in the readmission with
different major diagnostic category (RDDC) for our future
analysis. RDDC will consider readmission as an admission to
a hospital within 30 days of discharge from the same or another
hospital with the cause of readmission being different. We will
then build predictive models for RDDC. Then, we will compare
the predictive models built for RDDC with those built for RSDC.

In this study, we considered the standard defined categories of
MDCs as the cause of readmission. The standard defined
categories of MDCs belong to either a single organ system or
an etiology. For our future study, we will consider correlated
categories in terms of the set of related health complications
that eventually lead to readmissions. These categories may span
multiple MDCs. We expect that such recategorizations could
help in the better prediction of charges. The recategorization in
terms of correlated categories would significantly contribute to
health care economics.

Conclusions
Readmissions are one of the main contributors to health care
costs. However, most previous studies have focused mainly on
predicting early readmissions. The implementation of the
Hospital Readmissions Reduction Program has mixed reviews,
with no conclusion regarding its effectiveness. This study aimed
to determine if readmission charges, which vary from initial
admission charges, could be accurately predicted. Results
revealed that the deep learning–based model and XGBoost
performed the best in terms of all performance measures. MDCs
can be used to accurately predict charges billed by hospitals for
readmissions.
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Abbreviations
APAC: average previous admission charge
ARC: average readmission charge
CMI: case mix index
CMS: Centers for Medicare and Medicaid Services
DRG: diagnosis-related group
EHR: electronic health record
HCUP: Healthcare Cost and Utilization Project
ICD: International Classification of Diseases
MAD: mean absolute deviation
MAE: mean absolute error
MAPE: mean absolute percentage error
MDC: major diagnostic category
MLP: multilayer perceptron
NRD: Nationwide Readmission Database
NRMSE: normalized root mean squared error
RADC: all-cause readmission category
RAE: relative absolute error
RDDC: readmission with different major diagnostic category
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RMSE: root mean squared error
RRSE: root relative squared error
RSDC: readmission with the same major diagnostic category
XGBoost: eXtreme gradient boosting
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