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Abstract

Background: Deep neural networks are showing impressive results in different medical image classification tasks. However,
for real-world applications, there is a need to estimate the network’s uncertainty together with its prediction.

Objective: In this review, we investigate in what form uncertainty estimation has been applied to the task of medical image
classification. We also investigate which metrics are used to describe the effectiveness of the applied uncertainty estimation

Methods: Google Scholar, PubMed, IEEE Xplore, and ScienceDirect were screened for peer-reviewed studies, published
between 2016 and 2021, that deal with uncertainty estimation in medical image classification. The search terms “uncertainty,”
“uncertainty estimation,” “network calibration,” and “out-of-distribution detection” were used in combination with the terms
“medical images,” “medical image analysis,” and “medical image classification.”

Results: A total of 22 papers were chosen for detailed analysis through the systematic review process. This paper provides a
table for a systematic comparison of the included works with respect to the applied method for estimating the uncertainty.

Conclusions: The applied methods for estimating uncertainties are diverse, but the sampling-based methods Monte-Carlo
Dropout and Deep Ensembles are used most frequently. We concluded that future works can investigate the benefits of uncertainty
estimation in collaborative settings of artificial intelligence systems and human experts.
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Introduction

Overview
Digital image analysis is a helpful tool to support physicians in
their clinical decision-making. Originally, digital image analysis

was performed by extracting handcrafted features from an input
image. These features can be tuned to the underlying data, which
means that for a specific disease, only specific features can be
looked for in the observed image. With the advent of deep
learning, however, a “black box” has been established that can,
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in the setting of supervised learning, intrinsically learn such
features from labeled data. In recent years, deep learning–based
methods have vastly outperformed traditional methods that rely
on handcrafted features. With the learning-based methods, the
focus has shifted from manually defining image features to
providing clean and correctly annotated data to the learning
system. With the data-centric approach, however, new
challenges arise.

In a clinical setting, when such algorithms are meant to be used
as diagnostic assistance tools, the user has to be able to
understand how the artificial intelligence (AI) system came up
with the diagnosis. One key component in this regard is a
measure of confidence of the AI system in its prediction. Such
a measure is important to increase trust in the AI system, and
it may improve clinical decision-making [1]. We will use the
term “uncertainty estimation” for measures to evaluate model
confidence. When the AI system provides a measure for its
uncertainty, predictions with high uncertainties can be treated
with extra care by medical experts. On the other hand, the human
expert can better trust the prediction of an AI system where it
reports low uncertainty. In this study, we review recent
publications that have applied uncertainty estimation methods
to medical image classification tasks. The area of uncertainty
estimation in deep neural networks is an active research field,
and the currently most popular methods have been proposed
from 2016 onward. In the next section, we provide an overview
of the most prominent methods for uncertainty estimation.

In the results section, we categorize the reviewed works by the
uncertainty estimation method they apply. We provide a table
that serves as an overview of all the included studies. In the last
section, we discuss the most frequently used metrics for
evaluating the benefit of uncertainty estimation and give an
outlook of possible future research directions with a focus on
human-machine collaboration.

Technical Background
In a classification task, the neural network is supposed to predict
how likely it is for a given input x to belong to class y out of a
fixed number of possible classes. The output of the neural
network can be interpreted as a probability distribution over all
classes, with each individual value indicating how likely it is
for the input to belong to the respective class.

In formula, the predictive distribution can be written as follows:

The predictive distribution given input x and training data D is
described as the integral over the likelihood p(y|x,θ) with prior
p(θ|D) computed over the model’s parameters θ. In deep neural
networks, this integral cannot be computed analytically.
Therefore, methods that try to capture uncertainty in neural
networks try to approximate the predictive distribution.

Depending on the modeled uncertainty, the predictive
uncertainty can be divided into aleatoric uncertainty and
epistemic uncertainty. The aleatoric uncertainty describes the

uncertainty inherent in the data, whereas the epistemic
uncertainty captures the uncertainty of the model. The softmax
output of a typical classification network is only able to capture
aleatoric uncertainty [2].

Methods for Uncertainty Estimation
Ovadia et al [3] compared several popular methods for
uncertainty estimation. In this work, we name the methods that
we discovered to be most popular and refer the reader to the
respective works for a detailed description of the proposed
methods. We categorize the methods into (1) model sampling,
(2) single network methods, and (c) data augmentation.

Model Sampling
Sampling-based methods are easy to implement as they make
use of existing network architectures. The 2 most popular
methods are Monte Carlo dropout (MCDO) [4] and Deep
Ensembles [5]. Both methods rely on several prediction runs
of either an ensemble of multiple neural networks or a neural
network with dropout layers to compute a predictive uncertainty.

Single Network Methods
The field of directly modifying the network architecture for
improved uncertainty estimation is quite diverse. In the
derivation of MCDO, the authors compare their approach to
Gaussian processes (GPs). A GP is a method to estimate a
distribution over functions [6] and can be applied to estimate
uncertainties in neural networks.

Approaches that have been included in the comparison by
Ovadia et al [3] include stochastic variational inference (SVI)
[7] and temperature scaling (TS) [8]. SVI applies the concept
of variational inference to deep neural networks, whereas TS
works as a post hoc method. By applying a scaling factor to the
network output, TS can improve network calibration. Another
method worth mentioning is evidential deep learning (EDL)
[9]. EDL fits a Dirichlet distribution to the network output to
estimate the network’s uncertainty.

Data Augmentation
Comparable to sampling multiple models, one can also compute
a distribution of predictions by running the network on different
augmentations of the input data. Ayhan and Berens [10] propose
such a method for improved aleatoric uncertainty estimation
called test-time data augmentation (TTA).

Methods

Data Extraction
For the systematic review, we searched through Google Scholar,
PubMed, IEEE Xplore, and ScienceDirect to identify relevant
works that apply uncertainty estimation methods to medical
image classification. We limited our search to works that have
appeared between January 2016 and October 2021. As search
terms, we used “uncertainty,” “uncertainty estimation,” “network
calibration,” and “out-of-distribution detection,” and we
combined them with the terms “medical images,” “medical
image analysis,” and “medical image classification.”
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Selection Process
The selection process was conducted according to the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines [11]. We found 320 potentially
relevant publications from the database search. During title and
abstract screening, we discarded the majority of the works, as
they either did not estimate uncertainties at all or dealt with

other image analysis problems such as image segmentation.
From the first screening round, 65 papers were selected for
full-text analysis. During the full-text analysis, we discarded
several other works, as they turned out to deal with other
problems including semantic segmentation. Eventually, 22
papers were included in the review. Figure 1 visualizes the
selection process.

Figure 1. PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) flow diagram.

Results

Paper Categorization
Figure 2 provides an overview of the applied methods in all of
the reviewed works. Note that most included works apply more

than 1 method for uncertainty estimation. We observed that the
majority of works apply sampling-based methods (ie, MCDO
and Deep Ensembles). In the category that we denoted as single
network methods, all corresponding methods are almost equally
represented. Lastly, 4 works that we included apply TTA to
compute an uncertainty estimate.

JMIR Med Inform 2022 | vol. 10 | iss. 8 | e36427 | p. 3https://medinform.jmir.org/2022/8/e36427
(page number not for citation purposes)

Kurz et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Number of publications that apply the respective uncertainty estimation method. EDL: evidential deep learning; GP: Gaussian process;
MCDO: Monte Carlo dropout; SVI: stochastic variational inference; TS: temperature scaling; TTA: test-time data augmentation.

Most of the included works evaluate the applied methods by
computing an uncertainty measure (mostly predictive variance
or predictive entropy). This uncertainty measure is often used
to generate retained data versus accuracy evaluations. Figure 3
shows an example of retained data versus accuracy plot from

the study by Filos et al [2]. From the plot, it can be observed
that when only the more certain samples are retained, accuracy
on the retained data increases. The methods for uncertainty
estimation are then ranked by how far they increase the accuracy
on the retained data.

Figure 3. Retained data versus accuracy plot from Filos et al [2]. MFVI: mean field variational inference.

Some included works focus on network calibration and try to
decrease the expected calibration error (ECE) within their
experiments. Some other works use the computed uncertainty
measure to detect out-of-distribution (OOD) samples. Table 1

provides an overview of all included works. In the following
sections, we will briefly cover the content of each included
study.
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Table 1. Overview of the selected studies.

ReferenceCode
available

Data accessReported metricsNetwork architec-
ture

SensorOrgans or sicknessMethods

Leibig et al [12]YesPublic (Kag-
gle competi-
tion)

Retained data or ac-
curacy, uncertainty
or density

Custom CNNscCameraDiabetic retinopa-
thy from fundus
images

MCDOa, GPb

Laves et al [13]YesPublicPredictive varianceResNet-18Optical coher-
ence tomogra-
phy

RetinaMCDO, SVId

Mobiny et al [14]YesPublicUncertainty or densi-
ty, retained data or

VGG-16,
ResNet-50,
DenseNet-169

CameraSkin cancerMCDO

accuracy, uncertain-
ty, confusion matrix

Herzog et al [15]YesPrivateReliability diagrams,

AUROCf
Modified VG-
GNet

MRIeBrainMCDO

Caldéron-
Ramírez et al
[16]

NoPublicUncertainty, confu-
sion matrix

VGG-19MammographyBreast cancerMCDO

Caldéron-
Ramírez et al
[17]

NoPublicJensen-Shannon di-
vergence

WideResNetX-rayCOVID-19MCDO, DUQg

Filos et al [2]YesPublic (Kag-
gle competi-
tion)

Retained data or ac-
curacy, retained data

or AUROC, ROCi

VGG VariantsCameraDiabetic retinopa-
thy from fundus
images

MCDO, Ensem-

bles, MFVIh

Linmans et al
[18]

NoPublicRetained data or
AUROC

DenseNetMicroscopeHistopathological
slides

MCDO, Ensem-
bles, M-heads

Thagaard et al
[19]

NoPrivateECEj, AUROC,

AUPRCk

ResNet-50MicroscopeHistopathological
slides

MCDO, Ensem-
bles, Mix-up

Yang and Fevens
[20]

NoPublicPredictive entropy,
retained data or accu-
racy

ResNet-152-V2,
Inception-V3, In-
ception-ResNet-
V2

CTl, micro-
scope

COVID-19,
Histopathological
slides (breast can-
cer)

MCDO, Ensembles

Abdar et al [21]NoPublic (Kag-
gle competi-

Entropy, AUROCResNet-152, In-
ception- ResNet-

CameraSkin cancerMCDO, Ensem-

bles, TWDm

tion, ISIC data
set)

V2, DenseNet-
201, MobileNet-
V2

Berger et al [22]NoPublicAUROC, AUPRCWideResNetX-rayLungMCDO, Ensem-
bles, others

Toledo-Cortés et
al [23]

YesPublic (Kag-
gle competi-
tion)

AUROCInception-V3CameraDiabetic retinopa-
thy from fundus
images

GP

Ghesu et al [24]NoPublicAUROCDenseNet-121X-rayChestEDLn + Ensembles

Tardy et al [25]NoPublic + pri-
vate

AUROCVGGNetMammographyBreast cancerEDL + MCDO

Ghesu et al [26]NoPublicAUROC, coverage
or F1 score, cover-
age or AUROC

DenseNet-121X-ray, ultra-
sound, MRI

Chest, abdomen,
and brain

EDL

Carneiro et al
[27]

NoPublic + pri-
vate

ECE, predictive en-
tropy, predictive
variance

ResNet-101,
DenseNet-121

Colonoscopy
(camera)

PolypTSo, MCDO

Liang et al [28]NoPublicECEAlexNet,

ResNet-50,

DenseNet-121,

SqueezeNet

MultimodalHead CT, mam-
mography, chest x-
ray, histology

TS, DCAp
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ReferenceCode
available

Data accessReported metricsNetwork architec-
ture

SensorOrgans or sicknessMethods

Ayhan and
Berens [10]

YesPublic (Kag-
gle competi-
tion)

Uncertainty or densi-
ty, retained data or
AUROC

ResNet-50CameraDiabetic retinopa-
thy from fundus
images

TTAq

Jensen et al [29]NoPrivate
(31,000 anno-
tated images)

ECEResNet-50CameraSkin cancerTTA,

MCDO,

MCBNr,

Ensembles

Combalia et al
[30]

NoPublic (ISIC
data set)

Predictive entropy,
predictive variance,
Bhattacharya coeffi-
cient, retained data
or accuracy

Efficient-Net-B0CameraSkin cancerTTA + MCDO

Ayhan et al [31]YesPublic (Kag-
gle competi-
tion)

Reliability diagrams,

AECEs, retained da-
ta or AUROC

Modified ResNetCameraDiabetic retinopa-
thy from fundus
images

TTA, TS, Ensem-
bles

aMCDO: Monte Carlo dropout.
bGP: Gaussian process.
cCNN: convolutional neural network.
dSVI: stochastic variational inference.
eMRI: magnetic resonance imaging.
fAUROC: area under the receiver operating curve.
gDUQ: deterministic uncertainty quantification.
hMFVI: mean field variational inference.
iROC: receiver operating curve.
jECE: expected calibration error.
kAUPRC: area under the precision recall curve.
lCT: computed tomography.
mTWD: three-way decision theory.
nEDL: evidential deep learning.
oTS: temperature scaling.
pDCA: difference between confidence and accuracy.
qTTA: test-time data augmentation.
rMCBN: Monte-Carlo batch norm.
sAECE: adaptive expected calibration error.

Sampling-Based Methods
The first work that we have included is the study by Leibig et
al [12], which applies MCDO to the task of diabetic retinopathy
classification. To evaluate the impact of the applied uncertainty
estimation method, the authors report retained data versus
accuracy curves. This means that a fraction of uncertain
predictions is discarded, and it is evaluated how discarding
uncertain samples can improve the accuracy on the test data set.
The results show that discarding 20% or more of the most
uncertain samples can notably improve the accuracy of the
neural network. In their work, the authors compare the
performance of MCDO to an alternatively implemented GP and
find that MCDO leads to better accuracies on the retained data
versus accuracy evaluations.

Laves et al [13] apply MCDO and SVI to retina scans observed
through optical coherence tomography. The authors show that
both methods lead to higher standard deviations on false-positive
predictions compared to true positive predictions. This indicates

that the standard deviations can be used to refer predictions with
high uncertainty to human experts to improve the classification
accuracy.

Mobiny et al [14] estimate uncertainties using MCDO with
different types of networks including VGGNet [32], ResNet
[33], and DenseNet [34] on dermoscopic images of 8 different
skin lesion types. Similar to Leibig et al [12], the authors report
retained data versus accuracy curves and show that the accuracy
can be increased when referring a fraction of uncertain samples
to a medical expert. As a measure for uncertainty, the
normalized predictive entropy is computed. As an additional
metric, the authors also compute an uncertainty-related
confusion matrix that includes the numbers of correct-certain,
correct-uncertain, incorrect-certain, and incorrect-uncertain
predictions. The respective numbers vary when the uncertainty
threshold is changed. One possible goal with this evaluation is
to decrease the number of incorrect-certain predictions as much
as possible.
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Another work by Herzog et al [15] applies MCDO to the
classification of brain magnetic resonance imaging (MRI)
images. The goal of their work is to infer patient-level
diagnostics from the predictions from multiple images.
Therefore, the authors compute a variety of 5 uncertainty
measures per image. To draw conclusions on a patient level,
the authors run another neural network that processes the
uncertainties of all images belonging to one patient.

In two other published works, Caldéron-Ramírez et al [16,17]
apply MCDO to the tasks of breast cancer classification from
mammography images and to COVID-19 classification from
chest x-ray scans. Unfortunately, even among the two works,
the authors report different metrics, which prevents comparing
the results. In the breast cancer classification task, the authors
use a metric called uncertainty balanced accuracy, which builds
up on the uncertainty-related confusion matrix also used by
Mobiny et al [14]. In the work related to COVID-19 detection,
the authors report the Jensen-Shannon divergence as an
uncertainty measure, which we did not encounter in any of the
other reviewed works.

Another set of studies compared MCDO to Deep Ensembles
(further simply denoted as Ensembles) and partly to other
methods. Filos et al [2] compare MCDO to Ensembles and mean
field variational inference (MFVI), which is a variation of SVI,
and apply it to the task of diabetic retinopathy classification. In
addition to comparing MCDO and Ensembles individually, they
also combine both approaches and include the combination in
the evaluation, denoted as “Ensemble MCDO.” As neural
network architecture, the authors use variants of VGGNet [32].
The retained data versus accuracy plots show that “Ensemble
MCDO” leads to the best performance, followed by MCDO
and Ensembles applied individually. MFVI did not achieve the
same performance as the sampling-based methods.

Linmans et al [18] perform uncertainty estimation on the
publicly available Camelyon data sets for breast cancer detection
on histopathological slides. The authors propose a new method
for uncertainty estimation called “M-heads,” which adds
multiple output heads to the convolutional neural network
(CNN). They compare their method to the MCDO and
Ensembles of 5 and 10 networks, respectively. From the
different evaluations, the confidence versus accuracy plot shows
that accuracy increases when only keeping predictions with
high confidence. The methods rank from M-heads performing
best, followed by the Ensembles of 5 and 10 networks. In the
reported results, MCDO does not perform better than the vanilla
softmax output.

Thagaard et al [19] apply Ensembles and MCDO to private data
sets of histopathological slides for breast cancer detection. In
their work, the authors focus on OOD detection while analyzing
combinations of different internal data sets. Concerning the
comparison of the uncertainty estimation methods, the ECE is
calculated on 3 different data sets. For all 3 data sets, the
Ensemble of 5 ResNet-50 networks reaches the best ECE scores.

In another work, Yang and Fevens [20] apply MCDO,
Ensembles, and a combination of both to several publicly
available data sets. The modalities include COVID-19
classification from x-ray scans, brain tumor classification from

MRI images, and breast cancer detection from histopathological
slides. On the histopathological images, the authors present
retained data versus accuracy plots. For the reported accuracies,
the Ensemble MCDO approach with 5 Inception-ResNet
networks leads to the best results.

Abdar et al [21] apply MCDO, Ensembles, and Ensemble
MCDO to skin cancer classification from dermoscopic images.
The authors report entropies and standard deviations of the
applied methods for 4 different network architectures on 2
different publicly available data sets. From the reported values,
the authors conclude that the Ensembles overall perform best.
In an additional setup, the authors combine 2 uncertainty
estimation methods (Ensembles and Ensembles MCDO) in a
decision tree that they refer to as 3-way decision theory.

In another work, Berger et al [22] evaluate confidence-based
OOD detection on x-ray scans of lung diseases. The authors
compare MCDO, Ensembles, and specific methods for OOD
detection, including a method based on Mahalanobis distance
and the “out-of-distribution detector for neural networks” [35].
In their experiments, the authors find that the OOD detector for
neural networks leads to the best results for OOD detection with
respect to the area under the receiver operating curve (AUROC)
and area under the precision recall curve (AUPRC) values.

Single Network Methods
After having covered several works that focus on
sampling-based uncertainty estimation methods, we will now
look into works that directly apply to the network’s classification
output to estimate uncertainties. One example is the work by
Toledo-Cortés et al [23] that applies a GP to the output of their
implemented Inception-V3 network [36]. Similar to Laves et
al [13], the authors report standard deviations on true positive
and false positive predictions. Since the standard deviations for
both cases are quite similar, it must be concluded that the applied
GP is not well suited for a useful uncertainty estimation.

A set of other works applies EDL to estimate uncertainties. In
their first work, Ghesu et al [24] work with x-ray scans of the
chest and later extend their approach to ultrasound images of
the abdomen and MRI images of the brain [26]. The results
show that discarding a fraction of the most uncertain predictions
can notably improve the AUROC score averaged over different
x-ray classification tasks.

Comparably, Tardy et al [25] apply EDL to the task of breast
cancer classification from mammography images. The authors
also report improved AUROC and AUPRC values when
discarding a fraction of uncertain samples.

Two works that we have included apply TS to medical image
classification tasks. Carneiro et al [27] combine TS and MCDO
to compute a calibrated confidence measure as well as an
uncertainty measure in the form of predictive entropy and
predictive variance. The authors evaluate the methods on 2
different cohorts of colonoscopy images with respect to a 5-class
polyp classification task. The reported ECE and accuracy values
show that the DenseNet-121 architecture with both MCDO and
TS leads to the best results.
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Liang et al [28] present a new approach for network calibration
in the form of an auxiliary loss term called “difference between
confidence and accuracy” (DCA) that can be integrated into an
existing CNN training procedure. The authors compare their
approach to TS and uncalibrated networks on different medical
data sets with several different network architectures. The results
show that in most cases, DCA produces the best ECE values.
It is also shown that depending on the data set and model
architecture, TS does not always improve the expected
calibration error.

Test-Time Data Augmentation (TTA)
The concept of TTA is introduced by Ayhan and Behrens [10],
where it is applied to the task of diabetic retinopathy from
fundus images. The authors apply 128 different augmentations,
ranging from cropping and resizing to different color
augmentations. As measure for uncertainty, the interquartile
range of the predictions is computed. Similar to Leibig et al
[12], the authors report retained data versus AUROC curves
and show that the AUROC values improve when referring
uncertain samples to a medical expert.

Another work by Jensen et al [29] focuses on evaluating
interrater agreement on dermoscopic images of different skin
lesions. In the experiment, multiple experts have provided labels
for the respective images, and the labels for each sample can
vary across experts. Therefore, the approaches of label fusion
and label sampling are compared for training the neural network.
These approaches are combined with methods that estimate
uncertainties to evaluate the influence on the network’s
calibration of the combined methods. It is shown that in the
specific experimental setting, the combination of label sampling
and TTA leads to the highest classification accuracies among
all data splits.

Combalia et al [30], also working with dermoscopic images,
combine TTA and MCDO to evaluate aleatoric as well as
epistemic uncertainties. In their experiments, the authors show
that the combination of both methods leads to the best results
for OOD detection as well as on the retained data versus
accuracy evaluation. For the evaluations, 100 forward passes
through the network are performed with either TTA or MCDO
or both methods combined. The uncertainties are quantified by
computing the predictive entropy, the predictive variance, and
additionally, the Bhattacharyya coefficient [30].

In a follow-up of their original work, Ayhan et al [31] extend
their experiments on diabetic retinopathy classification by other
uncertainty estimation methods. Besides TTA, the authors also
include TS and an ensemble of 3 modified ResNet networks.
To compare the results, the authors compute The Adaptive

Expected Calibration Error [37]. In terms of Adaptive Expected
Calibration Error, the median probability of 128 forward passes
with different data augmentations leads to the best calibrated
results. On the retained data versus AUROC curves, TTA and
Deep Ensembles perform equally well. The experiments on a
different cohort of fundus images show that TS generalizes
worse to new data compared to TTA and Deep Ensembles.

Discussion

Through the reviewed publications, we gained an overview of
which methods for uncertainty estimation are most frequently
used in the field of medical image classification. We found that
the sampling-based methods MCDO and Deep Ensembles are
the most frequently applied methods. With the sampling-based
approaches, it is possible to compute a distribution of predictions
and from there determine an uncertainty measure, usually either
in the form of predictive entropy or predictive variance. These
measures help to identify samples where the neural network is
uncertain about its predictions.

In addition to the sampling-based uncertainty evaluations, we
also observed evaluations that analyze the calibration of the
neural network. The calibration evaluations in terms of reliability
diagrams and ECE are used to determine if the neural network’s
output probabilities represent the actual likelihood of the
prediction being correct. In the original paper on neural network
calibration [8], the authors claim that most modern CNNs are
not well calibrated and produce overconfident predictions. In
this review, we saw that several methods including TS and TTA
can be applied to improve calibration [31].

Another observation we made is that combining uncertainty
estimation methods can improve the results. This holds for
combinations of Ensembles and MCDO [2,20,21], TS and
MCDO [27], or TTA and MCDO [30].

By presenting retained data versus accuracy curves, several
works [2,10,12,14,20,26,30] show that discarding uncertain
predictions leads to an improved accuracy of the neural network
on the remaining samples. This insight holds for all 3 categories
of uncertainty estimation methods that we denoted as (1) model
sampling, (2) single network methods, and (3) data
augmentation. An important message from this observation is
that uncertainty estimation can be used as a tool to improve the
collaboration between AI systems and human experts. Thus far,
all studies were performed in very artificial settings. Future
work should therefore analyze the performance improvement
of a collaboration between an uncertainty-aware AI system and
human experts in scenarios that are closer to real-life situations
in clinics.
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