
Viewpoint

Tempering Expectations on the Medical Artificial Intelligence
Revolution: The Medical Trainee Viewpoint

Zoe Hu1*, BSc, MD; Ricky Hu1,2*, BASc, MASc; Olivia Yau3, BSc; Minnie Teng3, MSc; Patrick Wang1, BHSc, MD;

Grace Hu4, BSc; Rohit Singla2,3, BASc, MASc
1School of Medicine, Queen's University, Kingston, ON, Canada
2School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
3School of Medicine, University of British Columbia, Vancouver, BC, Canada
4Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
*these authors contributed equally

Corresponding Author:
Zoe Hu, BSc, MD
School of Medicine
Queen's University
166 Brock Street
Kingston, ON, K7L5G2
Canada
Phone: 1 6132042952
Email: zhu@qmed.ca

Abstract

The rapid development of artificial intelligence (AI) in medicine has resulted in an increased number of applications deployed
in clinical trials. AI tools have been developed with goals of improving diagnostic accuracy, workflow efficiency through
automation, and discovery of novel features in clinical data. There is subsequent concern on the role of AI in replacing existing
tasks traditionally entrusted to physicians. This has implications for medical trainees who may make decisions based on the
perception of how disruptive AI may be to their future career. This commentary discusses current barriers to AI adoption to
moderate concerns of the role of AI in the clinical setting, particularly as a standalone tool that replaces physicians. Technical
limitations of AI include generalizability of performance and deficits in existing infrastructure to accommodate data, both of
which are less obvious in pilot studies, where high performance is achieved in a controlled data processing environment. Economic
limitations include rigorous regulatory requirements to deploy medical devices safely, particularly if AI is to replace human
decision-making. Ethical guidelines are also required in the event of dysfunction to identify responsibility of the developer of the
tool, health care authority, and patient. The consequences are apparent when identifying the scope of existing AI tools, most of
which aim to be physician assisting rather than a physician replacement. The combination of the limitations will delay the onset
of ubiquitous AI tools that perform standalone clinical tasks. The role of the physician likely remains paramount to clinical
decision-making in the near future.

(JMIR Med Inform 2022;10(8):e34304) doi: 10.2196/34304
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Introduction

The field of artificial intelligence (AI) in medicine has seen
rapid development in the last decade, with an increasing number
of applications introduced in clinical settings [1]. With the rapid
growth in computing power and data, medical AI has
transformed from an afterthought into an imminent possibility.

Currently, the utility of AI in completing tasks such as diagnostic
prediction, automation, and generation of features from clinical
data is recognized in many specialties. Models predicted the
incidence of myocardial infarction and outperformed the current
gold standard American College of Cardiology and American
Heart Association risk algorithm [2]. These technological
advancements have understandably raised concerns among
health care trainees and professionals that AI may be taking
over their duties. A study assessing medical students’ views
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regarding the impact of AI on future careers reported that
78.77% (1707/2167) expect significant changes due to AI and
89.62% (1942/2167) expressed that careful supervision by
humans is required [3].

To moderate the concerns of AI in disrupting the future role of
physicians, an understanding of the capabilities and limitations
of AI tools is required. Wiens et al [4] reported AI adoption
challenges, including problem formulation to market transition,
all of which will require cooperation with interdisciplinary teams
and systemwide change. In addition to refining the results of
an AI algorithm, how the results are conveyed must also be
accepted. Even if a physician accepts the judgement of a
computer as legitimate, patients may not be nearly as receptive.

The aim of this commentary is to analyze the multifaceted issue
of medical AI adoption to temper preconceived notions
regarding its impact and rapid progression. We identify and
explore four major barriers to AI adoption: (1) the limitations
of performance and biases in AI applications, (2) the limitations
due to heterogeneous digital infrastructure, (3) the limitations
due to lack of technological literacy, and (4) the limitations of
ethical challenges associated with medical AI usage.

Limitations of Performance

A significant barrier for AI applications to be implemented is
regulatory approval, such as by the Food and Drug
Administration (FDA), where AI applications would be included
in the recently created category of Software as a Medical Device
[5]. Certification is required for a recognized regulatory body
to approve of a device’s safety and effectiveness. If a new
medical device is not considered a low- or moderate-risk device,
it is required to enter the stringent premarket approval pathway,
where demonstration of safety and effectiveness is required
from clinical studies. The device is also classified in risk classes
from Class I (the lowest risk) to Class III (the highest risk) [5].
AI, particularly machine learning, poses unique challenges as
a machine learning model may continuously update with new
training data. As such, the FDA has created recent guidelines,
indicating that surveillance is required over the total product
life cycle of the device, including model updates from retraining
[6].

A standalone diagnostic tool would likely enter the premarket
approval pathway and require extensive testing such as
randomized controlled trials [7]. Leeuwen et al [8] evaluated
100 AI devices with CE-marked approval in Europe and reported
that only 2 products were classified as class III, requiring
premarket approval. Of 100 AI devices, 64 had no peer-reviewed
studies validating the product performance. Wu et al [9]
evaluated 54 AI medical devices approved by the FDA, with
none being standalone diagnostic devices without physician
supervision and none tested in a prospective trial. Hence, the
current state of AI devices toward the FDA label of
Computer-Assisted Detection Devices, which pose less
resistance for market entry. The financial incentive results in a
trend of devices being developed as physician-assisting tools
that physicians can use at their discretion [10].

A technical barrier for AI devices to replace human analysis is
the current performance of AI devices. For instance, when
validated on a data set from a single center, convolutional neural
networks (CNNs) routinely achieve accuracies above 0.90 [11].
However, with the variability of medical imaging from different
machines, operators, or imaging protocols, multicenter studies
are required to validate the generalizability of these classifiers.
Alice et al [11] reported that 81% of diagnostic algorithms
reviewed results in significant decrease of accuracy when
externally validated. Thus, rigorous validation is required with
a diverse data set to address the major machine learning
challenges of data scarcity, population shifts from different data
sets, prevalence shifts, and selection biases [12]. External
validation also reveals a more accurate comparison between
human and machine performance. Rodriguez-Ruiz et al [13]
reported that when testing a published CNN to classify
malignancies from mammography on a data set of 2652 images
from seven different countries, the CNN performed within the
same 95% CI accuracy range of 101 different radiologists [13].

The rigorous validation requirements for AI to be usable in
clinical practice is evident when analyzing rapidly developed
AI models. In the COVID-19 pandemic, over 100 diagnostic
prediction models have been trained and published in literature,
using features such as chest x-ray data, lung ultrasound, vital
signs, and lab values. The reported concordance index of such
models ranged from 0.71-0.99. However, Wynants et al [14]
assessed that only 5% of the models found performed external
validation, and only 2 models addressed selection biases during
sampling.

An additional challenge for AI applications is that the ability
to learn complex features is restricted to the architecture of the
AI model. For instance, medical applications for CNNs
commonly use architectures that perform well on the ImageNet
challenge. The CNN architecture defines model parameters such
as resolution, depth, and number of input channels, all of which
affect the ability to detect complex features related to some
objective. However, newer architectures are frequently
developed, such as EfficientNet outperforming ResNet,
DenseNet, Xception, and ResNeXT, all of which have been
previously used in medical image classifiers [15]. Updating the
model architecture is a significant change to the model. For
instance, ResNet introduces the usage of residual blocks in a
layer as an input for a subsequent layer to begin learning,
changing how the model is initialized. This may require
reapproval from regulatory bodies due to nontrivial changes in
the device.

The alternative of a physician-assisting device is more likely
in the near future, such as automating report extraction from
imaging studies or image reconstruction to reduce excessive
radiation from repeated imaging [16,17]. This reduces
competition with physician tasks while still providing clinical
utility from complex AI analyses.

Limitations of Current Infrastructure

Implementation of an AI product, even with validated
performance, is limited by heterogenous digital infrastructure
in health care systems. Different areas of patient care such as
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inpatient progress notes, laboratory results, and discharge
summaries may all have independent databases. This complexity
is further multiplied by interactions with outpatient clinics and
health authorities across provincial or state boundaries.

The incomplete adoption of electronic medical records (EMRs)
illustrates the lag in digital infrastructure integration despite
electronic record technology being available. The Canadian
Federal Government’s Economic Action Plan provided funding
to health care providers toward establishing EMRs in primary
care in 2010, leading to an increase of EMR adoption [18]. A
similar progression took place in the United States in 2014 [19].
Despite this, there continues to be reliance on paper files in both
primary care clinics and hospitals [20]. If, for instance, an
algorithm in an emergency department requires baseline
laboratory markers for a patient from their family physician,
then standardization and likely digitalization of the input data
is required.

There are currently 11 certified EMR vendors and 12 EMR
products in Ontario [21]. Although hospitals often have a
primary vendor, they often employ a variety of disparate EMR
products in affiliated practices [21]. In theory, digitization of
health care data would provide an abundance of high-quality
data for AI research. However, EMR vendors operate in silos
and use their own approach to storing data. To implement an
AI product in practice may necessitate creation of a completely
novel data pipeline to aggregate records across different
databases. There are attempts at standardization including the
“EMR Content Standard” by the Canadian Institute for Health
Informatics [22]. This introduces a content standard for EMR
data entry, but levels of prioritization of the standard differ
across provinces, and no standard EMR data entry has been
universally adopted, resulting in the persistence of difficulty in
coalescing data to be usable by AI.

For AI technology to be successful, patients must consent to its
use and trust the safety of the technology. A recent public
opinion survey in the United States on AI indicated that data
privacy was considered to be the most important issue [23].
Privacy concerns and restricted access limits access to a diverse
and large sample size, which is necessary for an AI algorithm
to be validated and implemented in clinical practice [24]. A
diverse data set is also crucial to guarantee adequate
representation of patient cohorts in AI algorithm training [25].
There are approaches to overcome these barriers including
federated learning, where a model is shared across different
centers for training without exporting data [24]. However, these
approaches require universal agreements regarding scope and
are currently not standard of practice.

Limitations of Technological Literacy

Medical AI applications have become increasingly relevant at
an accelerated rate, though the lag in technological literacy of
health care professionals for AI technology exceeds the expected
social and cognitive lag of adapting new technology [26]. One
challenge is that there is currently no standardized curriculum
for AI education nor are there any relevant accreditation
requirements within most medical doctorate programs [27].
This gap is significant as health care professionals are the main

users of medical AI applications and will have to be responsible
for appropriate usage of AI applications [28].

Despite a recent surge in interest in training health care trainees
in AI, universal integration of AI education into current health
care training is a nontrivial challenge. Medical training is dense
and rigorous with significant demands on trainees and staff [29].
Implementation of such a curriculum also requires specific
faculty expertise. Even with qualified educators available, there
is the challenge of selecting the correct depth and breadth of
topics required for medical trainees.

Without appropriate medical AI education, health care
professionals may not be adequately equipped to navigate the
potential ethical and legal implications of AI in health care. The
flexibility that health care providers have in using their
judgement to make clinical decisions tailored to an individual
patient, using contextual understanding of interpatient and
intrapatient variations, is essential to medicine. This process
may be impeded if the end user lacks the basic digital literacy
to understand the limitations of such applications of AI; for
instance, deciding when to override an AI analysis in favor of
contextual clinical judgement or vice versa. However, acquiring
digital competency in AI applications may imply time away
from service for health care providers and extra study workload
for health care trainees, in addition to growing medical
knowledge. Other challenges that contribute to the gap in
technological literacy include lack of awareness of digital
knowledge required for health care, lack of equitable access to
AI education, and limited trust in AI applications in health care.

Medical applications must be well performing, trustworthy,
transparent, interpretable, and explainable. Interpretation of AI
models requires technical training, making it difficult to assess
its performance. This is especially true in complex AI models
such as deep neural networks, where it is not often possible to
examine what features are used to compute the output, creating
a colloquial “black box” algorithm. The gap in technological
literacy among health care professionals, which is further
hindered by the difficulty in implementing AI literacy training
of an appropriate scope, prevents many AI applications from
advancing beyond the proof-of-concept “computer-side” stage
to bedside application [30].

Limitations of Ethical Challenges

In the presence of errors by AI decisions, there lies challenges
not only in identifying liability but also in quality improvement
analysis. Harm caused by AI may be due to several reasons in
the pipeline, such as poor data stewardship, incomplete
mathematical constraints resulting in an inaccurate model, or
inappropriate usage by a clinician [31]. For instance, if an AI
algorithm misdiagnoses a patient, causing an adverse event, is
the error associated with data collection that was not
representative of patient characteristics, with inadequate
algorithm development resulting in computations that produce
an inaccurate prediction, or with health care administration for
deciding to use an AI product? Traditional quality improvement
analysis in medicine, such as cause-effect analysis, may be
insufficient because it lacks a 1-dimensional cause-to-effect
pathway, particularly with multiparametric AI models such as
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neural networks, which contain millions of computational
kernels [32]. Interdisciplinary collaboration between data
scientists, data stewards, clinicians, and health care workers is
crucial to developing a risk liability and quality improvement
system before AI can serve as a medical decision maker.

Additionally, substantial data bias may lead to unforeseen
disparities in patient care as AI may stratify based on
unintentional subgroups. Gichoya et al [33] observed that chest
x-ray AI models can be used to predict patient’s race with image
features physicians were unaware of. The implication is that
bias is unavoidable even when looking at data that appears
agnostic, such as chest x-rays. This may further encourage health
care disparities if the model makes decisions directly correlated
with race or gender. There is then a utilitarian conflict of
beneficence in deciding the extent to which it is acceptable to
use an AI algorithm that may be more accurate and benefit
certain subgroups at the expense of others; for instance, triaging
resources for subgroups that AI can accurately analyze. There
is also a deontological conflict to adhere to nonmaleficence. If

we know there is a high likelihood of increasing disparity despite
the beneficial aspects of AI, the application of AI would be
unethical.

Hence, AI poses unique ethical issues due to limitations of
transparency and inherent potential for harm when used as a
decision maker. AI is capable of identifying hidden features
within data that can be leveraged to improve decision-making,
but it is not without potential risk and needs to be deliberated
by all stakeholders involved in the process.

Conclusions

Implementation of AI in medicine faces barriers of regulatory
approval, performance, compatibility of digital infrastructure,
and shared multidisciplinary collaboration. Although AI shows
potential in improving quality of life for patients by enhancing
decision-making and tasks carried by health care professionals,
the adoption of AI is likely incremental rather than a stark
change in standard of care.
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