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Abstract

Background: Artificial intelligence (AI) has shown promising results in various fields of medicine. It has the potential to
facilitate shared decision making (SDM). However, there is no comprehensive mapping of how AI may be used for SDM.

Objective: We aimed to identify and evaluate published studies that have tested or implemented AI to facilitate SDM.

Methods: We performed a scoping review informed by the methodological framework proposed by Levac et al, modifications
to the original Arksey and O'Malley framework of a scoping review, and the Joanna Briggs Institute scoping review framework.
We reported our results based on the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) reporting guideline. At the identification stage, an information specialist performed a comprehensive
search of 6 electronic databases from their inception to May 2021. The inclusion criteria were: all populations; all AI interventions
that were used to facilitate SDM, and if the AI intervention was not used for the decision-making point in SDM, it was excluded;
any outcome related to patients, health care providers, or health care systems; studies in any health care setting, only studies
published in the English language, and all study types. Overall, 2 reviewers independently performed the study selection process
and extracted data. Any disagreements were resolved by a third reviewer. A descriptive analysis was performed.

Results: The search process yielded 1445 records. After removing duplicates, 894 documents were screened, and 6 peer-reviewed
publications met our inclusion criteria. Overall, 2 of them were conducted in North America, 2 in Europe, 1 in Australia, and 1
in Asia. Most articles were published after 2017. Overall, 3 articles focused on primary care, and 3 articles focused on secondary
care. All studies used machine learning methods. Moreover, 3 articles included health care providers in the validation stage of
the AI intervention, and 1 article included both health care providers and patients in clinical validation, but none of the articles
included health care providers or patients in the design and development of the AI intervention. All used AI to support SDM by
providing clinical recommendations or predictions.

Conclusions: Evidence of the use of AI in SDM is in its infancy. We found AI supporting SDM in similar ways across the
included articles. We observed a lack of emphasis on patients’values and preferences, as well as poor reporting of AI interventions,
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resulting in a lack of clarity about different aspects. Little effort was made to address the topics of explainability of AI interventions
and to include end-users in the design and development of the interventions. Further efforts are required to strengthen and
standardize the use of AI in different steps of SDM and to evaluate its impact on various decisions, populations, and settings.

(JMIR Med Inform 2022;10(8):e36199)   doi:10.2196/36199

KEYWORDS

artificial intelligence; machine learning; shared decision making; patient-centered care; scoping review

Introduction

Shared Decision Making
Shared decision making (SDM) is the process in which patients
and health care providers collaborate to make decisions based
on the latest medical evidence and patients’ preferences and
values [1]. In this process, health care providers present the
patient with options for screening or treatment and evidence for
each option’s harms and benefits. The patient is invited and
supported in expressing their preferences and values, and
eventually, patients and their health care providers
collaboratively make a decision that is best aligned with patients’
preferences and values [1]. Thus, the final shared decision is
informed by the best evidence and by what matters most to the
patient [2]. The use of SDM in clinical practice has been limited
[3-5]. The most frequently reported reasons by health care
providers are time pressure, lack of applicability because of
patient characteristics, and clinical situations [6].

Elwyn et al [7,8] presented a 3-step model for clinical practice,
consisting of team talk, option talk, and decision talk. During
team talk, the need to provide support to patients when choices
are presented and to elicit their goals to guide decision-making
is emphasized. Option talk consists of providing more
information about these options and comparing them through
risk communication. Finally, during decision talk, health care
providers guide patients to a decision based on their experience
and expertise, which reflects the informed preferences of
patients. The model aims to simplify the process so that health
care providers can integrate SDM and patient decision support
into their practice. Despite this, the use of SDM in clinical
practice faces barriers that can potentially be alleviated by using
artificial intelligence (AI).

Artificial Intelligence and Its Potential in Health Care
AI, defined as “computational intelligence” or the “science and
engineering of making intelligent machines” [9], describes the
fast-growing field of simulating intelligent, human-like behavior
in computers and technology [10]. AI can provide decisional
support to health care providers and patients. Machine learning,
a subfield of AI, enables computers to learn from data without
explicit programming [11,12]. Computers are provided with
large data sets and learn to make accurate predictions, for
example, on the diagnosis and prognosis of health outcomes of
an individual, in different settings, including primary health
care [13], identifying patterns and trends and learning from
previous experience [14].

In the last 2 decades, AI has been applied in various fields, such
as telecommunications [15], financial services [16], and health
care [17]. AI has shown promising results in various fields,

including radiology [18], ophthalmology [19], cardiology [20],
orthopedics [21], and pathology [22]. For example, in medical
imaging, AI can be used to assess x-rays, thus reducing the
workload of health care providers [23]. It also has the potential
to help health care providers assess patients’ health risks,
increase the efficiency and effectiveness of intervention and
treatment, empower patients to better understand their health
and self-manage their conditions, reduce waiting times and
costs, and ultimately improve the quality of care and patient
outcomes [24-26].

AI has the potential to foster SDM by informing
decision-making and allowing health care providers to focus
their energy on spending more time with the patient [27]. AI
tools provide a wide variety of information with the ability to
analyze large amounts of data and discover correlations that
may have been missed by researchers and health care providers
[28]. There is emerging literature regarding the bioethics and
obstacles behind using AI for health decision-making [27],
patients’ and health care providers’ perceptions of AI-based
decision aids [29] and how it should be incorporated to ensure
that health care is patient-centered. However, little is known
about how AI is used in SDM in practice and how it can
facilitate the decision-making step of SDM. Therefore, we aimed
to systematically examine the evidence on the use of AI in SDM
through a scoping review to map existing knowledge.

Objective and Research Question
The objective of the scoping review is to examine evidence on
the use of AI in SDM, namely, to explore what has already been
done and what future roles may exist for the use of AI in SDM.

Our specific research questions are as follows: (1) What is the
available knowledge on the use of AI interventions for SDM?
(2) How is AI being used for the decision-making point of
SDM?

Methods

Study Design
The scoping review methodological framework proposed by
Levac et al [30], modifications to the original framework of a
scoping review [31], and the Joanna Briggs Institute
methodological guidance for scoping reviews [32] were used
to guide this research. We developed a protocol with the
following steps: (1) identifying the research question; (2)
identifying relevant studies; (3) selecting studies using an
iterative team approach to study selection and data extraction;
(4) charting the data by incorporating a numerical summary;
(5) collating, summarizing, and reporting the results; and (6)
consulting the results regularly. This protocol is registered and
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available on the Open Science Framework website [33]. We
completed this review according to the published protocol.
Finally, we used the PRISMA-ScR (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses extension for
Scoping Reviews) checklist for reporting [34]. The filled
PRISMA-ScR checklist is available in Multimedia Appendix
1.

Eligibility Criteria
We defined the eligibility criteria for our search using the
Population, Intervention, Comparison, Outcomes, Setting and
study designs components [35].

Population
Any population that provided health care (eg, general
practitioners, nurses, social workers, pharmacists, and public
health practitioners) and any individual who received care (eg,
patients and their families and caregivers) were included.

Intervention
Any AI intervention implemented or tested during an SDM
process in a clinical context was included in the study. AI was
defined according to the definition provided by McCarthy [9]
and Russell et al [36]. AI interventions included expert systems,
knowledge representation, machine learning involving predictive
models, reinforcement learning, natural language processing,
and computer vision. If the AI intervention was not used for the
decision-making point in SDM, it was excluded. We defined
SDM as a process that occurred if the following three steps had
taken place: (1) team talk, (2) option talk, and (3) decision talk
[7,8].

Comparators or Control
No limitation.

Outcome
Any outcome related to patients, health care providers, or health
care systems were included in this study.

Setting and Study Design
Studies in any health care setting (eg, primary care and
secondary care); all studies using qualitative, quantitative, and
mixed methods designs; and only studies published in the
English language were included. Reviews, opinion pieces,
editorials, comments, news articles, letters, and conference
abstracts were excluded.

Information Sources and Search Strategy
A comprehensive literature search was designed and conducted
by an experienced information specialist in consultation with
the research team. The seed articles were identified by experts
on the team, and the final search strategy was reviewed by the
lead author. The process of the literature search was iterative.
The following six electronic databases were searched from their
inception to May 2021: MEDLINE (Ovid), EMBASE (Ovid),
Web of Science Core Collection, CINAHL, Cochrane Library
(CENTRAL), and IEEE Xplore Digital Library. The reference
lists of the included studies were searched manually. Retrieved
records were managed with EndNote X9.2 (Clarivate) and
imported into the DistillerSR review software (Evidence

Partners) to facilitate the selection process. The final search
strategies and key terms for each database are available upon
request.

Study Selection Process
We removed duplicates and then applied the inclusion criteria
for level 1 (title and abstract) and level 2 (full text) screening
using a standardized inclusion criteria grid. A pilot test of 55
studies (12% of the total 458 citations) for level 1 screening
was conducted. Once familiar with the literature of interest, we
modified the a priori eligibility criteria to adjust our study
selection where necessary. Subsequently, 2 reviewers (PG, MC,
and YH) independently screened the titles and abstracts. The
reasons for exclusion were recorded for full-text selection. Any
disagreements regarding study inclusion were resolved by a
third reviewer (SAR).

Data Items and Data Collection Process
A data extraction form was drafted and finalized with feedback
from the team members. Elements for data extraction included
study characteristics (eg, year published, country of the
corresponding author, and study setting), characteristics of the
AI intervention (eg, purpose of the intervention,
methods/techniques used, data sources, and performance),
involvement of end users in the development of the intervention
(eg, health care providers and patients), aspects of the AI
intervention (eg, explainability of AI and reproducibility of
intervention), whether AI was implemented or tested, how the
AI intervention was used for decision-making in SDM, and
outcomes (eg, related to patients, health care providers, and
health care systems). A total of 2 reviewers (YH, PG, and MC)
independently extracted relevant data from each included study.
All data were verified by a third reviewer (SAR).

Critical Appraisal
In alignment with the proposed framework for methodological
guidance in scoping reviews, we did not conduct a quality
appraisal. Critical appraisal in scoping reviews is not considered
mandatory [30-32].

Synthesis
We summarized our findings using descriptive statistics and
performed a narrative synthesis describing the characteristics
of the AI intervention, whether end users were involved in the
development and/or its validation, how the AI intervention
supported the decision point of SDM, and what the outcomes
were if it was implemented in a clinical setting. We informed
our synthesis through the work and toolkits published by Popay
et al [37], titled “Guidance on the conduct of narrative synthesis
in systematic reviews.” Specifically, we performed a thematic
analysis and identified 3 main themes across the included studies
in an inductive manner (involvement of end users, outcomes of
AI interventions, and AI interventions for the decision point).
This allowed us to organize and present our results
comprehensively.

Consultation
The results were provided to the team members for their
feedback. Study updates were also provided to the researchers
and health care providers during 2 workshops led by the first
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author (SAR) at 2 international scientific conferences, that is,
the 10th International Shared Decision Making Conference and
the annual meeting of the North American Primary Care
Research Group.

Results

Flow of Studies
The search process resulted in 1445 records from the selected
electronic databases, 551 of which were excluded as duplicates.

Of the remaining 894 studies, we excluded 677 at level 1
screening because they did not meet the inclusion criteria and
the remaining 217 underwent full-text review. Citations were
manually searched (n=227), of which 3 studies were sought for
retrieval and was assessed for eligibility. No eligible studies
were found in the reference search. Ultimately, 6 articles met
our inclusion criteria (Figure 1). Of 6 articles, 2 referred to the
same study [38,39]. The full list of included articles and their
details can be found in Multimedia Appendix 2 [34-39].

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram. Adapted from Page et al [40]. AI: artificial
intelligence; SDM: shared decision making.

Characteristics of Included Articles
The number of studies published annually has increased since
2017, with the majority conducted in North America and Europe.

The distribution and publication dates of the included studies
are shown in Figure 2.
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Figure 2. Years of publication and countries where studies are outlined in the included papers.

AI Characteristics—Purpose, Development, Data Sets,
and Performance
In Table 1, we highlight the AI characteristics of the included
studies, such as the AI method used, characteristics of the data
set, and performance measures.
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Table 1. Characteristics of artificial intelligence (AI) interventions.

PerformanceData set and its characteristicsAI methodStudy

Not providedMachine learning, artificial neural net-
works, and case-based reasoning

Frize et al [41] • Not provided

Performance accuracy of
0.76

Machine learning, multilabel classifica-
tion methods, k-nearest neighbors, and
random k-label sets

Wang et al [42] • Electronic health records
• 2542 patients
• 65.6% male, 34.4% female
• Mean age 66.46 (SD 13.81) years
• 70% of this was used for training,

and 30% was used for testing

Not providedMachine learning, Bayesian belief net-
work, and Bayes network

Twiggs et al [43] • Data from the National Institutes of
Health Osteoarthritis Initiative

• 330 patients, between the ages of
45 and 79 years, have undergone
total knee arthroplasty

Not providedMachine learning (type not specified)Jayakumar et al [44] • Not provided

Not providedMetalevel argumentation frameworksKökciyan et ala [38,39] • Not provided

aThis refers to both articles describing the system developed by Kökciyan et al [38,39], which were included.

Of the included articles, all used machine learning as the type
of AI. Only 2 articles presented information on the data set used
to develop the AI intervention [42,43], and 1 article reported
the performance accuracy (0.76) of their intervention [42].

Most of the included articles (n=4) did not report on the data
set used to develop the AI intervention; among those that did
(n=2), only 1 reported on the sex distribution of the patient data
[42], and both provided information about the age (mean or
range) of patients in their data set. Only 1 article specifically
mentioned the breakdown of data used to develop and test their
intervention [42] but did not report data set characteristics for
the 2 breakdowns. None of the included articles commented on
the generalizability of the algorithm or representativeness of
the data used to develop and train the AI intervention. Although
2 articles mentioned the aspects of explainability and
interpretability [39,43], none of the included articles reported
on how they developed their AI interventions to be explainable
and/or interpretable.

Explainable AI is a broad and new domain and is being studied
in AI. In general, we can consider explainability throughout AI
development: (1) premodeling explainability, (2) explainable
modeling, and (3) postmodeling explainability. One of the
challenges in this field is the so-called explainability versus
performance trade-off (often, high-performance methods such
as deep learning are less explainable).

In health care, explainability and interpretability are required
for patients and health care providers to understand why AI
interventions produce a certain prediction or suggestion and to
trust this output [45]. Without this understanding, ethical and
practical challenges arise, including a lack of trust and
transparency in AI tools [28]. A lack of explainability and
interpretability creates an informational discrepancy between
patients and health care providers, impeding risk assessment
and giving rise to ethical issues such as the ascription of
responsibility when an incorrect decision is made [28].

Moreover, a lack of explainability and interpretability ties into
the issue of informed consent in health care [46]. It is unclear
as to what level of understanding patients who use AI require
to provide informed consent and to what extent health care
providers are responsible for educating their patients on its use
[46]. However, explainability and interpretability are crucial in
increasing the transparency of the inner workings of the system
and in fostering the trust of health care providers and patients
in the outcomes the AI may provide throughout the process of
SDM [45].

Frize et al [41] developed and tested a decision support system
that used AI to tailor information to help parents decide to
continue, limit, or discontinue intensive care of newborns [41].
Machine learning methods, such as artificial neural networks
and case-based reasoning methods, were used in this decision
support system. The AI component was capable of knowledge
learning, processing, and derivation. The developed system was
able to provide structuralized knowledge translation and
exchange between all participants and facilitate collaborative
decision-making. Overall, clinicians found the classification
rates of the model acceptable in comparison with the constant
predictor used as a statistical benchmark, but no other
performance metrics were presented.

Wang et al [42] proposed an SDM system framework connected
to the electronic health records (EHRs) of patients with type 2
diabetes to provide them and their health care providers with
tailored knowledge and choices about medications [42]. Machine
learning methods, multilabel classification methods including
k-nearest neighbors algorithms, and random k-label sets using
EHR data were used to provide a medication recommendation
list based on patients’ current conditions. The data set used to
develop the AI intervention included data from 2542 patients.
Of these, 65.62% (1668/2542) were men and 34.38% (874/2542)
were women. The mean age of the included patients was 66.46
(SD 13.81) years. Associated diseases and vital sign values were
also reported. The authors used 70% of the total data set to train
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the AI algorithm, and the remaining 30% to test it. The AI model
had an accuracy of 0.76.

Twiggs et al [43] developed a clinical tool to predict total knee
arthroplasty outcomes for patients with advanced osteoarthritis
to help patients and surgeons decide whether a surgical or
nonsurgical pathway is most appropriate on a patient-specific
basis. The group developed a Bayesian belief network to identify
patients at risk of limited improvement from total knee
arthroplasty using data from the National Institutes of Health
Osteoarthritis Initiative, a publicly accessible database. A total
number of 330 patients between the ages of 45 and 79 years
who had undergone total knee arthroplasty were included. The
team used a machine learning method, that is, a naive Bayes
network, for variable selection and model generation.

Jayakumar et al [44] performed a randomized clinical trial to
assess whether an AI-based decision aid influenced decision
quality, patient experience, functional outcomes, and
process-level outcomes in patients with advanced osteoarthritis
considering total knee replacement. They used a machine
learning–based platform to generate personalized outcomes.
Neither the development nor the performance of the model was
described in the article; however, they mentioned that the AI
intervention had been tested in a clinical setting and that its
fidelity had been discussed with the clinical team before
deployment.

Kökciyan et al [38,39] developed a decision support system,
that is, “CONSULT,” to help patients who had stroke in
self-management and adherence to treatment plans, in
collaboration with health care providers. Patients, caregivers,
and health care providers collaborate to decide the best treatment
plan for the patient. The system was developed using metalevel
argumentation frameworks. Wellness sensor data, EHR data,
and clinical guidelines were used as input, and recommendations
and textual explanations for automated decisions were provided
as output.

Involvement of the End Users
In terms of end user (ie, patients and health care providers)
involvement in the design, development, and/or validation of
AI systems, we found that 3 of the articles [39,41,44] included
health care providers to validate the AI intervention, and 1 of
the articles included both health care providers and patients in
clinical validation of their AI tool [43]. The first 3 articles
involved clinicians validating the correctness of the
recommendations and explanations provided to patients by the
AI tool [39], confirmed the fidelity of the AI intervention before
deployment [44], and were included in the testing of usability
and acceptability as well as a needs assessment of the
intervention [41]. Twiggs et al [43] clinically validated their
tool for both patients and health care providers.

One of the articles [38] also held initial patient focus groups in
which co-design activities were held. These activities resulted
in a user-centered version of how they wished to see the
information displayed by the decision support tool. No additional
information on how the co-design activities were organized was
provided.

Population Characteristics and Outcomes
In total, 4 of the included articles tested their interventions for
usability and acceptability [38,39,41,42], and 2 of the articles
implemented their interventions in clinical settings with targeted
end users (eg, patients and health care providers) [43,44]. Only
the last 2 articles reported outcomes related to patients and
health care providers. These were primarily psychosocial
outcomes and included better decisional quality, improved SDM,
increased satisfaction, and better clinical postoperative
outcomes. Of the included articles, 3 also reported outcomes
related to health care systems [42-44]. These were related to
the general workflow and how the interventions did not
significantly alter the flow or time it took to provide care. They
also include the high feasibility and convenience of integrating
AI into health care systems.

All the included articles provided some level of detail related
to the population of the data sets that they used to train or test
their algorithm. Only 1 article provided a thorough presentation
of the population by reporting the sociodemographic
characteristics of the participants involved [44]. In total, 4
articles tested the interventions for usability and acceptability,
whereas 2 articles observed actual outcomes by applying their
intervention in clinical contexts [43,44].

Frize et al [41] tested their AI for acceptability and usability
with an expert panel consisting of a neonatologist, engineer or
computer scientist, clinical nurse specialist, social worker, and
ethicist. The classification rate of the intervention was found to
be acceptable for a clinical trial tool. The needs assessment
performed through interviews with 5 neonatal clinicians
confirmed that the design of their tool met the needs of the
population for which it was designed. Acceptability was
evaluated using open-ended questions based on a questionnaire
from the Foundation for Informed Medical Decision-Making.
The expert panel found the tool clear and easy to use.

Kökciyan et al [38,39] performed a pilot study using their
CONSULT system to assess its usability and acceptability. The
system was implemented as a mobile Android app, and 6 healthy
volunteers were recruited to use the system for a week. They
interacted with different aspects of the system and were asked
to regularly collect measurements from wellness sensors and
input data. A pilot study demonstrated the usability of the app.

Wang et al [42] tested their AI interventions using clinical data.
The authors used 30% of the clinical data set mentioned earlier
to test the AI intervention. The total data set included data on
2542 patients, of which 65.6% (n=1668) were male. As these
EHRs only included hospitalized patients, the outcome of
medication use was not considered. In terms of outcomes for
health care systems, the intervention was reported to have high
feasibility and maintenance—if the model or knowledge required
for proper function became outdated, the intervention could be
modified without affecting the normal operation of the hospital’s
EHR system.

Jayakumar et al [44] conducted a randomized clinical trial that
recruited 129 patients with presumptive knee osteoarthritis who
were candidates for primary total knee replacement. A total of
69 patients were in the intervention group (n=46, 67% women)
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and 60 were in the control group (n=37, 62% women). The
mean age of the intervention group was 62.59 (SD 8.85) years,
whereas the mean age of the control group was 62.62 (SD 7.81)
years. The authors reported on ethnicity, education, work status,
social status, and insurance status for both the intervention and
control groups. The control group received an educational
module and usual care, whereas the intervention group received
a preference model and an output from the AI tool. Both groups
met the surgeons afterward for the decision-making discussion.
In terms of patient-related outcomes, the intervention group
showed better decisional quality and improved SDM, patient
satisfaction, and functional outcomes. Overall, the use of the
AI tool did not prolong consultation times.

Twiggs et al [43] performed a clinical validation with 150
patients who presented to a surgeon with >30 years of
experience in 2 cohorts. They included patients aged ≥55 years
with knee pain without a history of meniscal or ligamentous
injury. They collected data over 3 months. Patients were first
asked to fill a digital questionnaire based on knee osteoarthritis
and injury outcome scores, as well as demographic and medical
condition data. These data were used by their developed
intervention to calculate a predictive postoperative score and
display it visually on a percentile scale of the pain of a
population of patients with osteoarthritis seeing a surgeon. The
first cohort consisted of 75 (50%) consenting patients who filled
the group’s developed questionnaire. In this cohort, the surgeon

and patients were blinded to the predictive output of the tool
and proceeded with their consultations as normal. The second
cohort consisted of 75 (50%) consenting patients, and both the
patients and surgeons were exposed to the output of the
intervention. The outcomes were reported for patients and
surgeons. Although the use of the AI intervention output did
not change the proportion of patients booked for total knee
arthroplasty surgery, there was a change in the level of
patient-reported pain between those booked and not booked for
surgery when using the tool. Apart from the questionnaire,
which only took 10 minutes to complete, there was no disruption
to the normal surgeon consultation workflow.

AI Interventions for the Decision Point
Of the included articles, 3 designed AI interventions for primary
care [38,39,42], relating to the care of individuals with chronic
conditions including patients with diabetes and stroke survivors,
and 3 for secondary care [41,43,44], of which 2 (67%) focused
on patients requiring treatment for their knee and 1 (33%)
focused on neonatal intensive care. The included articles
supported the decision-making step of SDM by introducing
interventions to predict outcomes [41,43,44] of clinical
significance and for clinical recommendations [38,39,42]. In
Table 2, we provided information about the setting,
decision-making problem, and a summary of how AI is being
used for decision-making in SDM.

Table 2. Summary of artificial intelligence interventions and how they are being used for decision-making in the included studies.

AIa for decision-makingDecision-making problemSettingStudy

The tool provides patients and health care providers
with tailored knowledge and choices about antihyper-
glycemic medications through the integration of
electronic health record data. Patients and physicians
can review patients’conditions more comprehensive-
ly and tailor consultations to the patient’s current
condition.

Knowledge and choices about antihyperglycemic
medications

Primary careWang et al [42]

The tool allows health care providers to predict out-
comes in neonatal intensive care and counsel families
on the pros and cons of deciding to initiate or with-
draw treatment. The tool also promotes parental in-
volvement in the decision-making process.

Neonatal intensive care decisionsSecondary careFrize et al [41]

The AI intervention presents end users (patients and
surgeons) with interpretable information relating to
the risk of no improvement after total knee arthroplas-
ty. This helps them decide whether to proceed with
total knee arthroplasty.

The decision about total knee arthroplastySecondary careTwiggs et al [43]

AI system provides patients with a personalized
outcome report, which is then discussed with the
surgeon during decision-making discussions.

The decision about total knee replacementSecondary careJayakumar et al
[44]

This tool supports the decision-making point by
providing an up-to-date view of the patients’situation
based on personalized metrics and provides explana-
tions for its recommendations.

The decision about treatment plans and options
for stroke survivors

Primary careKökciyan et al

[38,39]b

aAI: artificial intelligence.
bThis refers to both articles describing the system developed by Kökciyan et al [38,39] that were included.

The AI intervention by Wang et al [42] supports the decision
point by providing patients and health care providers with
tailored knowledge and choices about antihyperglycemic

medications through the integration of EHR data. Their tool
was designed with specific end-user interfaces for each step of
SDM (team talk, option talk, and decision talk). During decision
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talk, patients can have more efficient conversations with their
health care providers based on the medication recommendations
that the AI system provides. It is designed for both inpatient
and outpatient settings and provides a more intuitive
understanding of patient conditions and knowledge of diabetes
medications.

The AI intervention by Frize et al [41] supports the decision
point as the components of the tool interact to provide predictive
analysis, document repository, customized delivery, and adaptive
interfaces. They aimed to augment group clinical processes in
various phases of decision-making. The goal was to promote
parental involvement and collaboration with the clinical team.
The tool allows health care providers to predict outcomes in
neonatal intensive care and counsel families on the pros and
cons of deciding to initiate or withdraw treatment.

The tool presented by Twiggs et al [43] supports the decision
point by presenting end users, that is, patients and surgeons,
with interpretable information relating to the risk of no
improvement following total knee arthroplasty. It provides
interpretable output, allowing end users to understand the impact
of alternative treatments. This tool helps patients and their
surgeons decide whether they are good candidates for the
procedure.

The intervention by Jayakumar et al [44] supports the decision
point by providing patients with a personalized outcome report
based on data inputs (ie, demographics, patient-reported outcome
measurements, and clinical comorbidities), which is discussed
with the surgeon during the decision-making.

The CONSULT system by Kökciyan et al [38,39] supports the
decision-making point in SDM by presenting an up-to-date view
of the patient’s situation based on personalized metrics, from a
patient’s EHR and wireless sensor input and providing textual
explanations of automated decisions of the tool to accompany
the recommendations it provides. The relevant, up-to-date,
summarized data CONSULT provides, along with treatments
and recommendations, support the decision-making point
between patients and their health care professionals.

Discussion

Principal Findings
We conducted a scoping review as a first step toward a
comprehensive overview of the literature on the use of AI in
SDM. This overview provides a basis for future systematic
review. The results of our study lead us to make the following
observations.

Role of AI in SDM
The included articles presented AI interventions used for
decision-making during SDM in similar ways. Within the
included articles, AI interventions were specifically applied to
predict outcomes of clinical significance and for clinical
recommendations. The decision-making step can benefit from
AI interventions because AI can present a comprehensive and
personalized list of treatment options, as well as risks and
benefits, thus increasing the amount of knowledge related to
the condition, treatment, side effects, risks, and outcomes. AI

models are capable of learning and processing all information
related to a patient’s care and can generate evidence-based
recommendations to support SDM [47]. These models can also
be used to support risk communication. Similar to how they
may be integrated into an intelligent tutoring system, predictive
models can present relevant information when discussing risks
associated with a patient’s condition in a manner appropriate
for that specific patient, as well as assess their level of
understanding and provide supplementary information
accordingly [48].

The decision-making step is a core step of SDM, in which
patient–health care provider interaction is essential and should
remain independent of and unrestrained by AI intervention.
Patient–health care provider relationships are based on
responsibilities that provide a foundation for the relationship to
grow. Despite acknowledging the benefits AI may have on
facilitating SDM, patients continue to expect their health care
provider to retain final discretion over treatment plans and
monitor their care, as well as to adapt any contribution from the
AI intervention to their unique situation [49]. Conversely,
patients expect to remain empowered in decision-making and
can either dispute or refuse the input of AI [49]. It is important
to design and implement AI interventions in clinical settings in
a way that does not negatively impact the human and personal
aspects of certain decisions during the SDM process. AI
interventions must be implemented in ways that preserve and
uplift patient–health care provider relationships in care, as well
as facilitate making shared medical decisions.

AI interventions can open up more time for health care providers
to spend connecting with their patients; however, they may
place the health care provider in a mediator-like role, in which
they will be responsible for explaining the AI output to their
patients. This can be difficult to achieve, especially when a lack
of interpretability and explainability may exist in certain AI
models, such as deep learning. This lack of interpretability and
explainability can result in a lack of trust and decisional delay
or conflict consequently, which are factors that SDM aims to
resolve [27]. AI interventions in health care can influence
patient–health care provider relationships [27], but little is
known about how they influence this relationship and what are
the best ways to integrate AI into SDM, to use its benefits and
mitigate potential risks. Further work is required to investigate
how the different steps of SDM can benefit from AI intervention
without affecting the patient–health care provider relationship.

Explainability and Interpretability of AI Systems
One of the principal challenges in the incorporation of modern
AI interventions into health care is explainability and
interpretability. This refers to the insight an AI intervention
gives to clarify its function to an audience; that is, how an
algorithm generates output from a given input [50-52]. The
levels of explainability and interpretability depend on the AI
method used. This is the case in certain AI models such as deep
learning.

Despite the promising performance of AI, its implementation
in clinical practice remains challenging. Trust in AI is one of
the main barriers to its adoption in clinical practice [53]. The
inability of humans to understand why an AI system makes
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particular decisions limits the effectiveness of the new
generation of AI systems in critical settings, such as primary
health care. Prior work has highlighted the significance of
explainable AI in health care and has shown that the lack of
explainability (black box) in AI systems can affect physicians’
and patients’ trust in AI [54-56].

In our review, 2 of the included articles [39,43] briefly touched
on explainability and interpretability, stating that textual
explanations were provided by the AI tool to explain automated
decisions [39] and that the outcome of their AI model is
interpretable [43]. However, these 2 articles did not explain the
steps they had taken in the development of their tool to make
it explainable or interpretable, and none of the other included
articles considered these aspects. This might introduce barriers
to the implementation of these systems in the process of SDM
in clinical practice. As in any other context that attempts to
integrate AI into sensitive human interactions, AI explainability,
and interpretability for SDM needs to be addressed.

Moreover, the level of understanding of the explainability and
interpretability of AI tools might differ for various stakeholders.
For instance, an AI expert trained in this field can understand
and interpret the reasoning behind an AI algorithm better and
quicker than a nonexpert in AI. Therefore, health care providers
and patient education about AI can lead to a better understanding
of the algorithm, which leads to a better understanding of the
explainability of an AI intervention. In brief, end users’
understanding of the predictions/decisions made by the AI
intervention, as well as increased explainability and
interpretability of the AI tool, can increase end-user trust in the
outcome given [57].

A lack of trustworthiness is one of the many bioethical barriers
that may arise when implementing an AI intervention in health
care and SDM; therefore, improving AI literacy in both patients
and health care providers, as well as increasing the explainability
and interpretability of AI systems, trust can be increased. In
addition, there is a discrepancy in the literature regarding the
level of explainability required within the health care setting to
ensure a proper understanding of and trust in the outcomes
provided by the algorithm [58]. Future studies are required to
determine how to efficiently educate end users about AI-SDM
tools, how to efficiently incorporate explainability and
interpretability in this context, and how much explainability
and interpretability are deemed sufficient in this context and
the context of informed consent.

Human-Centered AI
Of the included articles, 3 [39,41,44] involved health care
providers in the validation stage of the AI system, and 1 included
both health care providers and patients in the clinical validation
stage of the AI system [43]. One article [38] included patients
and health care providers in co-design activities, resulting in
user-generated versions of the developed tool. However, no
details were provided on how the co-design activity was
organized, and end users were not involved in the subsequent
design and development of the AI tool.

Further efforts are needed, both from the AI and SDM
communities, to include health care providers and patients (as

end users of the developed AI systems) in the design,
development, validation, and implementation of AI-SDM tools.
SDM is the core of patient-centered care; thus, patient values
and preferences need to be considered in every step defining
the process. Ethicists argue that by not using patient preferences
or values as input or influencing the output, but rather leaving
the shared decision aspect to the patient choosing from
evidence-based options presented by the AI, the process is not
truly patient centered [59].

Thus, to ensure that SDM fundamentally occurs when AI
interventions are introduced, patient preferences must be
incorporated into the design. Termed value-sensitive design,
this method incorporates human values throughout the design
process [59]. However, the successful incorporation of
individual patient values into algorithm design and how to
efficiently include patients and health care providers in the
development and validation of AI systems in health for SDM
remains a challenge, and further studies are required. A recent
assessment of the current methods showed that most existing
user-centered design methods were primarily created for non-AI
systems and did not effectively address the unique issues in AI
systems [60]. This is also the case for AI-SDM tools.

Reporting on AI Interventions
In our review, we observed poor reporting of AI interventions
in the included studies. Studies that report AI interventions
should use validated frameworks and guidelines to report their
results. Transparent and complete reporting of AI interventions
supporting SDM is important for detecting errors and potential
biases and evaluating the usefulness of the intervention [61].
An example of such a reporting framework is the Transparent
Reporting of a multivariable prediction model of Individual
Prognosis or Diagnosis (TRIPOD), which consists of a checklist
of items deemed essential for transparent reporting [62]. As the
original framework is primarily applied to regression-based
predictive models, the TRIPOD-AI extension is being
developed, specifically for machine learning–based prediction
model studies [63]. Transparent and complete reporting allows
for a good understanding and encourages reproducibility of the
work in future studies, which is an important factor to consider
in the growing implementation of AI-SDM in clinical settings.

None of the articles included in this review mentioned adhering
to a specific reporting framework or considered reproducibility.
This resulted in a lack of clarity in the included articles regarding
different aspects, including whether the training data set was
representative, how the potential bias (eg, representativeness
and algorithmic biases) and missing data were considered, how
AI had been used in the clinical setting, and what were the
outcomes resulting from AI implementation. In fact, only 1
article [44] comprehensively reported on the sociodemographic
characteristics of the participants involved in the use of AI
intervention. Such reporting should be standardized so that AI
interventions and clinical implementations can be better
understood and compared effectively. The importance of using
a reporting framework needs to be emphasized in future AI
studies to promote an increased understanding and
reproducibility of AI-SDM in clinical contexts.
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Limitations of the Study
We did not conduct a quality appraisal of the included articles,
although it is not common, nor is it required to include within
a scoping review. However, our review sheds light on this
important area, and there are some areas for improvement. Our
inclusion criteria were quite strict, and only included articles in
which AI intervention was used to support the decision-making
point in SDM. Therefore, we may have missed work related to
other aspects of SDM. Further systematic reviews may be
needed in this area to ensure that the results of this review can
be applied in policy and practice.

Conclusions
In this scoping review, we demonstrated the extent and variety
of AI systems being tested and implemented in SDM, showed

that this field is expanding, and highlighted that knowledge
gaps remain and should be prioritized in future studies. Our
findings suggest that existing evidence on the use of AI to
support SDM is in its infancy. The low number of included
studies shows that not much research has been conducted to
test, implement, and evaluate the impact of AI on SDM. Future
research is required to strengthen and standardize the use of AI
intervention in different steps of SDM and to evaluate its impact
on particular decisions, populations, and settings. Greater focus
and effort from the research community needs to be made on
addressing the aspects of explainability, interpretability,
reproducibility, and human-centered AI, especially when
developing an intervention of their own. Finally, future research
should further investigate which SDM steps will benefit most
from what type of AI and how AI interventions can be applied
to enforce the patient–health care provider relationship.
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Abstract

The Health Insurance Portability and Accountability Act (HIPAA) was an important milestone in protecting the privacy of patient
data; however, the HIPAA provisions specific to geographic data remain vague and hinder the ways in which epidemiologists
and geographers use and share spatial health data. The literature on spatial health and select legal and official guidance documents
present scholars with ambiguous guidelines that have led to the use and propagation of multiple interpretations of a single HIPAA
safe harbor provision specific to geographic data. Misinterpretation of this standard has resulted in many entities sharing data at
overly conservative levels, whereas others offer definitions of safe harbors that potentially put patient data at risk. To promote
understanding of, and adherence to, the safe harbor rule, this paper reviews the HIPAA law from its creation to the present day,
elucidating common misconceptions and presenting straightforward guidance to scholars. We focus on the 20,000-person population
threshold and the 3-digit zip code stipulation of safe harbors, which are central to the confusion surrounding how patient location
data can be shared. A comprehensive examination of these 2 stipulations, which integrates various expert perspectives and relevant
studies, reveals how alternative methods for safe harbors can offer researchers better data and better data protection. Much has
changed in the 20 years since the introduction of the safe harbor provision; however, it continues to be the primary source of
guidance (and frustration) for researchers trying to share maps, leaving many waiting for these rules to be revised in accordance
with the times.

(JMIR Med Inform 2022;10(8):e37756)   doi:10.2196/37756

KEYWORDS

Health Insurance Portability and Accountability Act; HIPAA; data privacy; health; maps; safe harbor; visualization; patient
privacy

Introduction

Background
When addressing many types of research problems, maps should
generally be shared at a resolution that best portrays the reality
of the underlying data. In terms of health and disease mapping,
this realism often means desiring a fine-detailed visualization
that helps make community-level public health interventions
more effective. Geotechnology offers innovative ways of
creating these fine-detailed maps and customizing them for the
analysis and display of health data. However, at the same time,
these data and tools can be dangerous when working with
sensitive data, such as patient health records. In particular,

scholars must be careful not to share maps that contain so much
detail that individuals can be identified. To prevent the
identification of patient records, in the United States, the Health
Insurance Portability and Accountability Act (HIPAA) provides
guidance on ways of deidentifying protected health information
(PHI) before it is shared; however, HIPAA guidelines are
difficult to apply to spatial data.

The HIPAA law poses several challenges to researchers seeking
to use and share spatial data. First, many researchers find core
elements of the safe harbor provisions of HIPAA (a set of
conditions that define how data can be shared) ambiguous or
difficult to understand, which is reflected in the disagreement
and uncertainty in research and policy circles on how to meet
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the safe harbor standards. Second, playing it safe by taking a
conservative approach to sharing maps to better meet the safe
harbor standard—most often by releasing only highly aggregated
maps or no maps at all—is a form of data loss that imposes
potentially serious costs as it does not allow for the examination
of local health distributions at reasonable resolutions for many
common health problems. These 2 challenges lead to
disagreement on how to follow privacy rules, and in fact, many
scholars and policy makers have challenged these rules, saying
that it is possible to share finer-grained mapped health data
without jeopardizing patient privacy.

Addressing the twin challenges of the safe harbor provisions
(ambiguity and data loss) requires an exploration of past and
current understanding of how the provisions are enacted and
identification of specific ways in which finer-scaled data may
be legally and technically possible. The following section of
this paper begins this exploration by examining the legal
dimensions of the HIPAA law, from its creation to current
practice. This section examines the events and concerns that
fueled the motivations of those who helped write the safe harbor
provisions, with a particular focus on answering the question
of why zip codes and a population threshold of 20,000 were
chosen as anchors for the safe harbors. The following section
explores the first of the twin challenges—uncertainty—and
establishes how some unintentional ambiguity in the law has
led to different interpretations of HIPAA privacy provisions
specific to geographic data in the public health literature. We
focus on how this ambiguity has led to 2 common but different
interpretations across a range of scholarships based on 3-digit
and 5-digit zip codes and what this means for mapped data. The
following section presents and explores data loss, the second
of the twin challenges of the safe harbor provisions. The section
builds on the previous ones to explore whether there is a middle
ground between sufficiency and stringency, asking, in essence,
if there are ways of minimizing risk under HIPAA while
allowing for more useful maps. This paper concludes by
presenting new approaches to the deidentification of patient
data and discusses ways forward.

This paper advances our understanding, and potential use, of
the safe harbor provision of HIPAA law, as applied to spatial
data presented as maps. It is the first comprehensive overview
of the long-standing and important conversations on this general
topic. By untangling the law and reviewing its history and use,
this paper offers avenues for finding safe and more useful ways
of sharing mapped patient data. In addition, it seeks to spur a
broader conversation on ways forward that necessarily expand
and improve shared understanding of privacy regulations to
encourage researchers to investigate alternative strategies.

HIPAA Privacy Act: Zip Codes and the
20,000-Person Population Threshold

Overview
To better understand the safe harbor provision and what it asks
of researchers, it is best to first understand its origin. Examining
HIPAA in terms of its history and evolution sheds light on how
to approach the sharing of geographic information under the

safe harbor standard. We asked two related questions: (1) why
do zip codes hold such sway over defining the safe harbor rule,
and (2) why is a threshold of 20,000 people used to define
privacy? Answering these questions clarifies some of the key
ambiguities in HIPAA safe harbors and provides insight into
why there is so much seeming disagreement within and across
research domains. The following section provides a brief
overview of HIPAA privacy law before diving into the history
of the safe harbor provision to provide insights into the 2 key
ambiguities (the use of zip codes and the population threshold).

The Safe Harbor Provision
To protect patient privacy, HIPAA limits the ways in which
patient data can be shared. Patient data are considered PHI that
needs to be kept secure as they include private medical
information along with identifying information such as names,
birth dates, addresses, and social security numbers. Address
data, in particular, are considered extremely sensitive as they
(along with other location data such as longitude and latitude)
may be used to pinpoint the residence of an individual. This
degree of locational specificity substantially increases the
likelihood of identification, if not fully guaranteeing
identification in the case of single-occupant residences. For this
reason, patient locations need to be masked in accordance with
HIPAA privacy law.

Two standards are specified under the HIPAA rule for
deidentifying patient data—the safe harbor standard and expert
determination—but the former is the de facto standard [1].
Expert determination—also termed as the statistical standard—is
the process by which an investigator masks their data and has
a third-party expert determine whether the applied location
masking strategy provides a low probability of identification
[1]. Expert determination is not frequently used in large part as
it is ambiguous and requires unspecified documentation, in
addition to placing a great deal of pressure on the third-party
expert who is charged with certifying HIPAA compliance. This
leaves the safe harbor standard as the most commonly relied
upon practice for deidentifying patient data [2]. Its immediate
appeal, and the primary reason for broader acceptance than
expert determination, is that it offers ostensibly clear guidance.
The safe harbor standard is the focus of the remainder of this
paper.

In essence, the safe harbor method protects patient data by
simply removing 18 types of identifiers (Textbox 1). Many of
these elements are straightforward to comprehend and
implement, such as not including names, birth dates, and social
security numbers. Some of the other elements pose their own
challenges in an age of surveillance, such as biometric markers,
including vehicle license plates and facial imagery. However,
our focus is section 2 of the safe harbor relating to the patient’s
location, which is especially relevant to mapping and, not
surprisingly, the primary source of confusion in applying the
safe harbor rule to mapping. The location provision of the safe
harbor rule requires a minimum population of at least 20,000
people to be contained within each aggregated geographical
unit, and the rule further requires that the only permissible
geography (smaller than the state) be a form of zip code.
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Ambiguity arises when the type of zip code is not specified.
Although it seems fairly clear from Textbox 1 that the rule
intends for investigators to rely on the use of 3-digit zip codes
(compared with 5-digit zip codes), not all who read this
stipulation see it that way. There are many reasons for this,

including various misleading representations of the rule found
in legal web-based documentation and in the literature on public
health and disease mapping [3-11]. The following section
explores how zip codes have come to play a key role in the safe
harbor rule.

Textbox 1. The key elements of the safe harbor provision.

The following identifiers of the individual or of relatives, employers, or household members of the individual, are removed:

1. Names

2. All geographic subdivisions smaller than a state, including street address, city, county, precinct, zip code, and their equivalent geocodes, except
for the initial 3 digits of the zip code if, according to the current publicly available data from the Bureau of the Census, the geographic unit formed
by combining all zip codes with the same 3 initial digits contains >20,000 people, and the initial 3 digits of a zip code for all such geographic
units containing ≤20,000 is changed to 000

3. All elements of dates (except year) for dates that are directly related to an individual, including birth date, admission date, discharge date, death
date, and all ages >89 years, and all elements of dates (including year) indicative of such age, except that such ages and elements may be aggregated
into a single category of the age of ≥90 years

4. Telephone numbers

5. Vehicle identifiers and serial numbers, including license plate numbers

6. Fax numbers

7. Device identifiers and serial numbers

8. Email addresses

9. Web Universal Resource Locators (URLs)

10. Social security numbers

11. IP addresses

12. Medical record numbers

13. Biometric identifiers, including finger and voice prints

14. Health plan beneficiary numbers

15. Full-face photographs and any comparable images

16. Account numbers

17. Any other unique identifying number, characteristic, or code, except as permitted by paragraph c of this section (paragraph c is presented in the
section “Re-identification”)

18. Certificate and license numbers

Why Zip Codes?
If we were to remove zip codes from the safe harbor provision,
there would be no ambiguity in terms of its interpretation as the
rule would simply focus on the threshold of 20,000 people to
define whether an arbitrary geographical unit is sufficient.
Hence, why are zip codes still written into the law? To answer
this, we need to start at the very beginning and understand how
the political, social, and technological milieu of the early and
mid-1990s shaped some core principles and guidelines. Zip
codes were originally not included in the rule; however, this
quickly changed as a result of a mix of happenstance and
deliberation. The following paragraphs provide insight into the
series of events that led to the HIPAA safe harbor provision
that we understand today, beginning with the proposed bill.

Before HIPAA was law, it was a bill, specifically bill H.R. 3103
of the 104th Congress from 1995 to 1996. This bill was
introduced in the spring of 1996 as part of an initial attempt at
health care reform by the Clinton administration. The

overarching focus of H.R. 3103 was to improve access to health
care and address fraud, waste, and abuse in health insurance
and health care delivery; however, it also—quite
briefly—mentions a specific interest in the protection of patient
data (section 1177 of H.R. 3103, 1996). In a single paragraph,
the bill addresses the wrongful disclosure of individually
identifiable health information, in large part, as it relates to
insurance fraud and abuse:

A person who knowingly and in violation of this part
uses or causes to be used a unique health identifier;
obtains individually identifiable health information
relating to an individual; or discloses individually
identifiable health information to another person,
shall...be fined not more than $50,000, imprisoned
not more than 1 year, or both; if the offense is
committed under false pretenses, be fined not more
than $100,000, imprisoned not more than 5 years, or
both; and if the offense is committed with intent to
sell, transfer, or use individually identifiable health
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information for commercial advantage, personal gain,
or malicious harm, fined not more than $250,000,
imprisoned not more than 10 years, or both. [Section
1177. Wrongful disclosure of individually identifiable
health information]

This bill was the first step toward the development of a series
of protections that would eventually become the HIPAA privacy
law that we know today. However, much changed during the
journey from the bill’s initial proposal to the passage of the final
law and attendant guidelines, especially in terms of
modifications made to the data privacy and deidentification
standards. Early renditions of HIPAA provided very little
guidance on how to define deidentified health information. Mass
computerization of individual health information had only just
begun, with electronic health records making their first
appearance in 1992 [12]. In the mid-1990s, with the rise of the
internet and home computers, threats to data privacy elicited
much fear among the American public [13]. Despite these
concerns, when the bill went to Congress in the summer of 1996,
the disclosure of identifiable health information was not
documented as a part of the discussion on the congressional
record [14].

A year after its introduction, Sweeney [15], a computer scientist
working at the Massachusetts Institute of Technology, purchased
a voter registration list for Cambridge, Massachusetts, United
States, and cross-referenced it with a “de-identified” (meaning
the names were missing but other information such as birth date
remained) Massachusetts Group Insurance hospitalization data
set that was provided to researchers. Sweeney [15] determined
that by using birth date, gender, and a 5-digit zip code, she could
match a patient’s medical records with their name on the voter
registration list. This meant that for only US $20 (the cost of
the voter registration list), Sweeney [15] could potentially
identify (by name) some of the registered voters and their
medical records, which included sensitive information such as
diagnoses, procedures, and medications. With this knowledge,
Sweeney [15] famously mailed the governor of Massachusetts
his own medical records. This event fueled anxiety about the
potential misuse of patient information and put data protection
at the forefront of many conversations on privacy reform. The
study by Sweeney [15] was central to the next chapter of the
story of HIPAA’s evolution, the 1999 Notice of Proposed
Rulemaking (NPRM) [16,17].

In response to the work by Sweeney [15], the 1999 NPRM
proposed a stringent definition of deidentified health
information. Of particular interest to this paper is how the
NPRM defined the smallest unit of allowable geography as the
state. All other geographic identifiers would be removed,
meaning that street addresses, cities, counties, and both 3- and
5-digit zips were not permissible. This state-level geographic
standard was too restrictive for any researcher interested in
studying the geographic variation in health and disease, such
as geographers and epidemiologists. Under such rules,
researchers are only able to publish maps at the state level

(usually at the national level). For most scholars, this limit meant
that only statistical point estimates (such as regression output)
could be published under the safe harbor rule.

Fortunately, for researchers, feedback from the 1999 NPRM’s
call for public comments pushed the Department of Health and
Human Services (HHS) to allow slightly more geographic
information to be shared as deidentified information. The safe
harbor standard’s 3-digit zip code rule made its first appearance
on a federal record [18]. The rule states the following:

In the safe harbor, we explicitly allow...some
geographic location information to be included in the
deidentified information, but...zip codes must be
removed or aggregated (in the form of most
three-digit zip codes) to include at least 20,000
people.

Compared with the 1999 NPRM guidelines, this safe harbor
standard was much less stringent but still meant to withstand a
population-level identification attack of the sort developed by
Sweeney [15], which required 5-digit zip codes.

This simple 3-digit zip code rule became more complicated in
the decade after HIPAA was promulgated. The initial
formulation seemed clear (3-digit zip codes were the intended
level of aggregation); however, subsequent modifications to
HIPAA introduced ambiguity. Changes to the final rule in 2002
left out the key clause that made it clear that 3-digit zip codes
would be the only permissible form of aggregation (other than
the state level) [19]. This contributed to the ever-growing
ambiguity regarding the provision of geographic
deidentification, and along with other nebulous aspects of the
law, many researchers found it difficult to navigate HIPAA.
Therefore, with the passage of the Health Information
Technology for Economic and Clinical Health Act in 2009, the
HHS was required “to issue guidance on methods for
de-identification of PHI as designated in HIPAA’s Privacy
Rule.” In response, the US Office of Civil Rights (OCR) held
a workshop in 2010 to provide guidance on strategies for the
deidentification of PHI. OCR used input from panelists,
including Sweeney and Barth-Jones (noted later in this paper),
and workshop attendees to develop a lengthy guidance document
[1]. This comprehensive document is helpful in that it provides
a more detailed description of the safe harbor rule; however,
unfortunately, it still contained the same ambiguous phrasing
(regarding zip codes) found in the modifications of the written
law. To make matters worse, the landing page for the workshop
on HIPAA’s deidentification standard (which features a link to
the guidance document page) uses the term geocodes rather
than zip codes (Textbox 2 provides the full phrasing) when
referring to aggregating geographic data, which could easily
lead readers to believe that any unit (not only zip codes) could
be used for aggregation. These ambiguities, alongside
inconsistencies in use and opinion found throughout the
literature (explored below in section Twin Challenge 1:
Ambiguity) about core HIPAA documents [1,19], may have
contributed to the widespread confusion that continues today.
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Textbox 2. The various ways investigators interpret the geographic location stipulation of the Health Insurance Portability and Accountability Act
(HIPAA) safe harbor rule.

Paper, author, and interpretation

• Confidentiality risks in fine scale aggregations of health data (Curtis et al [6])

• “Unfortunately there are few guidelines with regards the release of aggregated data. A commonly discussed threshold between researchers
is that health data should only be visualized for ZIP codes with a base population of no less than 20,000.”

• Reidentification risks in HIPAA safe harbor data: a study of data from one environmental health study (Sweeney et al [10,20])

• “[T]he provision requires removing explicit identifiers (such as name, address and other personally identifiable information), reporting dates
in years, and reducing some or all digits of a postal (or ZIP) code.”

• Workshop on the HIPAA privacy rule’s deidentification standard (US Office of Civil Rights [11])

• “[The Safe Harbor approach] permits a covered entity to consider data to be de-identified if it removes 18 types of identifiers (eg, names,
dates, and geocodes on populations with less than 20,000 inhabitants) and has no actual knowledge that the remaining information could
be used to identify an individual, either alone or in combination with other information.”

• Conforming to HIPAA regulations and compilation of research data (Clause et al [3])

• “Implementation of these methods can be somewhat difficult for the clinical researcher for data sets of less than 20,000 records (as determined
by collapsing populated geographic codes representing sparse populations).”

• From healthy start to hurricane Katrina: using GIS to eliminate disparities in perinatal health (Curtis [4])

• “The error of recording ‘70808’ rather than ‘70806’ in Baton Rouge would involve considerable changes in social, economic, and racial
contexts. This is a problem if data are only available by zip code, which unfortunately is still too common in terms of releasing data for GIS
analysis.”

• “Although there are HIPAA regulations regarding the display of aggregate data on choropleth maps, these guidelines are generally considered
too restrictive for useful cartography (only zip codes with more than 20 000 can be visualized).”

• A linear programming model for preserving privacy when disclosing patient spatial information for secondary purposes (Jung and El Emam [7])

• “A prevailing method to create de-identified data sets is to aggregate pre-defined areas, such as ZIP codes or counties, into a new area.”

• “Yet, the first three digits of a ZIP code may be included, provided that at least 20,000 people share the same first three digits.”

• The challenges of creating a gold standard for deidentification research (Browne et al [8])

• “[The guidelines of the Privacy Rule] say that units smaller than a state should be redacted, although Baltimore has a population of well
over 20,000, the size limit for Zip-Codes. D.C. was considered a state for this purpose.”

• Challenges and insights in using HIPAA privacy rule for clinical text annotation (Kayaalp et al [9])

• “The Privacy Rule states that information about all geographic subdivisions smaller than state, except the first two digits of the zip code,
must be de-identified. The third digit of the zip code can be left intact, only if the size of the population in the area of the censored two digits
is greater than 20,000 according to the most recent census data.”

• Broken promise of privacy: responding to the surprising failure of anonymization (Ohm [5])

• “Id. § 164.514(b)(2)(B) (allowing only two digits for ZIP codes with 20,000 or fewer residents).”

Why 20,000 People?
Part of the ambiguity surrounding the use of zip codes is tied
to the 20,000-person threshold in defining safe harbor rules.
The decision to allow substate-level geographies, specifically
zip codes, is partially tied to research on the role of the
population size in protecting privacy. In simple terms, by
increasing the number of people reported within a given region,
the chances of successfully matching an individual in that region
to their health records decreases. This is because the odds of a
unique combination of identifying characteristics occurring in
a population decline as the number of people in a data set
increases.

How did the HHS determine that 20,000 was the appropriate
population threshold? To answer this, we must look to the
proposed final rule [18] as there is little to no discussion of this
determination within the literature or on the HHS support and
guidance webpages. In the final rule, the HHS points to the
precedent of how the Bureau of the Census “shares geographical
units only if they contain populations of at least 100,000 people”
[20]. This standard is conservative, and thus, the HHS turned
to other sources so that they might be able to drop the threshold
lower.

Specifically, the HHS drew on 2 simulation studies, one by
Greenberg and Voshell [21] and the second by Horm [22]. These
studies explored how the proportion of unique records within
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a data set can be influenced by changes in the size of the
population and the number and type of variables included. For
instance, approximately 7.3% of records within the 1990 census
are unique, or potentially identifiable, given the 100,000-person
population threshold using standard census variables such as
age, race, ethnicity, sex, and housing or household information
[23]. Nevertheless, the proportion of unique records is a function
of the available information. Sharing a greater number of
variables increases the potential to identify an individual;
therefore, the Census Bureau population threshold increases
from 100,000 to ≥250,000 when greater numbers of variables
are released as microdata [20].

There is a point at which increasing the size of the population
no longer adds notable increases to data protection. For census
data, when only 6 demographic variables are shared, there is a
point of diminishing returns for approximately 20,000 people
[21]. In addition to the number of demographic variables, the
type of variables shared also matters. For instance, a population
of 25,000 contains 25% unique records when 9 variables are
shared; however, when the occupation variable is removed, this
proportion drops to 10% [22]. In this case, occupation can be
particularly identified, given that some occupations are much
rarer than others. The HHS drew on this scholarship to make
their determination [23]:

After evaluating current practices and recognizing
the expressed need for some geographic indicators
in otherwise de-identified databases, we concluded
that permitting geographic identifiers that define
populations of greater than 20,000 individuals is an
appropriate standard that balances privacy interests
against desirable uses of de-identified data. In making
this determination, we focused on the studies by the
Bureau of Census cited above which seemed to
indicate that a population size of 20,000 was an
appropriate cut off if there were relatively few (6)
demographic variables in the database. Our belief is
that, after removing the required identifiers to meet
the safe harbor standards, the number of demographic
variables retained in the databases will be relatively
small, so that it is appropriate to accept a relatively
low number as a minimum geographic size.

In addition, as the HHS considers the 20,000-person population
stipulation, the lowest bound could also be tied to the adoption
of the 3-digit zip. Although 3-digit zip codes vary widely in
terms of the size of the population they contain (in 2020, ranging
from 3147 to 3,310,455 people), only 18 zip codes of 3 digits
containing <20,000 people at the time the safe harbor was first
determined. Currently, there are only 13 zip codes of 3 digits
in the nation, which are too small and would need to be merged
with neighboring geographies to meet the minimum threshold
of 20,000 people [24]. Fortunately, as most 3-digit zip codes
contain populations of >20,000 people, researchers following
the 3-digit zip code rule are not often burdened with the task of
data aggregation. Perhaps the HHS hoped that using these 3-digit
zip codes could help enforce a more conservative following of
the population threshold while also making the guidelines more
straightforward. Unfortunately, this is not the case in many
important ways.

Twin Challenge 1: Ambiguity

Overview
The safe harbor rule seems straightforward when seen from the
original final rule of 2000; however, given the modifications,
as well as how it appears in the literature today, it carries an
essential ambiguity that has led to large gaps and disagreements
in research and policy work. We first examine different
interpretations of the rule based on these ambiguities and draw
examples from the scientific literature to show how different
scholars rely on different interpretations. We then simplify the
discussion by proposing that the crux of many
disagreements—and the basis of productive ways forward—can
be seen by focusing on the use of 3-digit and 5-digit zip codes.

Safe Harbor Provision and Zip Code Ambiguity
The primary driver of disagreements in the literature seems to
hinge on how individual researchers and teams interpret the role
of zip codes versus the 20,000-person threshold. This often
comes to the fore in determining how much location data must
be removed from patient data to satisfy HIPAA requirements.

The potential for misunderstanding stems from one part of the
provision—the piece regarding geographic information that
states the following with respect to patient location data: all
geographic subdivisions smaller than a state, including street
address, city, county, precinct, zip code, and their equivalent
geocodes, except for the initial 3 digits of the zip code if,
according to the current publicly available data from the Bureau
of the Census: the geographic unit formed by combining all zip
codes with the same 3 initial digits contains >20,000 people,
and the initial 3 digits of a zip code for all such geographic units
containing ≤20,000 people is changed to 000.

An understanding of the HIPAA safe harbor rule has been
further muddied by the different ways in which it is described
by experts in the fields of public health and geography and by
the guidance of the HHS and the OCR. A reader of the
background and context section on the 2010 De-Identification
Standard Workshop page on the HHS website [11] could
justifiably conclude that any aggregation of 20,000 people is in
compliance with the safe harbor rule regardless of zip code. In
contrast, focusing on the zip code rules as they appear in the
literature could lead a person to conclude that zip codes are the
primary vehicle for data protection. This is because, in many
cases, authors simply do not specify the type of zip code used
in their work. This potential for ambiguity among different
sources has likely contributed to the number of studies that have
aggregated (or suggested the possibility of aggregating) in ways
that do not align with the 2000 HIPAA final rule [8,25-27].
Textbox 2 offers a number of different justifications for how
scholars have interpreted the safe harbor provisions.

The fact that a range of views exists is not surprising,
considering the ways in which HIPAA provisions have been
interpreted within the fast-growing scholarly literature using
spatial health data and among various web-based help resources.
Understanding of the safe harbor provision is muddied by
conflicting or ambiguous phrases that appear across a broad
array of resources and by how different scholars seem to follow
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different practices and procedures for handling patient location
data. This profusion of differing practices, although perhaps
engendering interesting conversations, likely comes at the cost
of research output being unnecessarily overly masked to protect
sensitive health data.

Two Different Interpretations
To find a way forward toward more standardized interpretations
of HIPAA safe harbor rules, it helps to delineate 2 distinct ways
of interpreting the safe harbor provision specific to location
data (while recognizing that less common interpretations may
also exist). In essence, 2 different and competing interpretations
have emerged: the 3-digit zip interpretation and the 5-digit zip
interpretation.

The 3-Digit Zip Code Interpretation
For many health researchers, there is only one interpretation of
the safe harbor provisions. This is likely because the privacy
rule was designed with tabular data in mind, and much medical
research involves working with data in its tabular form [9]. For
these investigators, a zip code is primarily a 5-digit number that
can be reduced to a 3-digit one [5]. For example, an analyst
receives a spreadsheet of patient data from which to build a risk
model. One column in the table would be designated for the
location attribute (ie, a column for zip codes). According to this
rule, only the first 3 digits of the zip code are permitted to be
shared (unless the population value is <20,000, whereby the
data are suppressed or converted to 000). For most lawyers,
medical researchers, and those using patient data in tabular
format, there is little ambiguity in the safe harbor standard.

The 5-Digit Zip Code Interpretation
For those who view zip code data primarily as spatial data, the
privacy rule elicits some confusion. Although a zip code is a

5-digit number, to geographers and a growing number of other
scholars who use spatial data, it is also an area on a map. Zip
codes divide regions into smaller areas designed to aid post
delivery. Both 3-digit zip code areas (Figure 1) and 5-digit zip
code areas (Figure 2) are present. The 5-digit zip code areas are
nested within 3-digit zip code areas (Figure 3). People who
work with spatial data are likely to be familiar with this
hierarchy of spatially nesting areas and how it can lead to
conflicting interpretations of provision §164.514(b)(2a), which
states the following:

(2a) The geographic unit formed by combining all
zip codes with the same three initial digits contains
more than 20,000 people

In this view, there are 2 ways of reading “Zip codes with the
same three initial digits,” namely either (1) using 3-digit zip
codes (as described in the previous paragraph) or (2) using
5-digit zip codes that share the same 3 initial digits.

The root of this apparent ambiguity comes from the phrase “all
zip codes.” If we interpret “all zip codes” as “all of the five-digit
zip codes,” then the 3-digit zip code rule would still apply, as
when one combines all the 5-digit zip codes together, they are
left with a 3-digit zip code area (Figure 4). However, if “all zip
codes” were interpreted as “all five-digit zip codes within the
aggregation,” a less conservative interpretation emerges where
5-digit zip codes can be combined to meet the 20,000 population
threshold as long as all the used 5-digit zip codes have the same
3 initial digits (Figure 4). Simply put, this interpretation permits
investigators to aggregate 5-digit zip codes when they all fall
within the same 3-digit zip code area. The large difference in
the areas highlighted in Figures 1 and 2 demonstrates the impact
of these 2 competing interpretations. Here, we must note that
the 5-digit interpretation does not meet HIPAA standards; the
reasons for this are discussed later in this paper.

Figure 1. Three-digit zip code boundaries.
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Figure 2. Five-digit zip code boundaries.

Figure 3. Five-digit zip codes nested within three-digit zip codes.

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e37756 | p.25https://medinform.jmir.org/2022/8/e37756
(page number not for citation purposes)

Krzyzanowski & MansonJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. (A) All the 5-digit zip codes beginning in “563.” (B) An aggregation of 5-digit zip codes that all begin with “563” and contain >20,000
people.

Drivers and Implications of the 2 Interpretations
Comparing studies that use 3-digit versus 5-digit zip codes
illuminates a potential cause for the existence of competing
interpretations tied to whether the work uses tabular data or
spatial data. In the case of either 3- or 5-digit zip code
interpretation, tabular data can appear in essentially the same
format (containing only the first 3 digits of a zip code).
However, the same mapped data would be very different. A
researcher operating under the 3-digit interpretation would share
maps of patient data at the 3-digit zip code level (Figure 5), and
if a 3-digit zip code contained <20,000 people, it would be
merged with a neighboring unit. The corresponding tabular data
for these maps would only contain 3-digit zip codes. However,
investigators operating under the 5-digit zip code interpretation
could share maps at the 5-digit zip code level; if the 5-digit zip
code contained <20,000 people, it would be merged with
neighboring units that share the same first initial digits. The
corresponding tabular data for these maps would only contain
the first 3 digits of a zip code as well; however, as >1
aggregation would fall within each 3-digit zip code area, there
would be multiple records with the same 3-digit zip code.

These differences are not hypothetical as relevant examples are
abundant in the literature. Bearing in mind that researchers
rarely describe their decision-making in detail, there is a body
of work that seems to operate under the 3-digit zip code
interpretation [8,10,17,27-30]. Another realm of scholarship
appears to operate under the 5-digit zip code interpretation
[4,26,30], and there is related work that seems to suggest the
capability of aggregating any geocode to meet the 20,000
threshold [7,8,25]. These are some of the many potential
examples of how there appears to be a divide between the 3-
and 5-digit zip code interpretations of HIPAA.

Interestingly, there appears to be some commonality within and
differences among disciplines regarding the way a safe harbor
is interpreted. Although this paper does not attempt to conduct
a full literature review, anecdotally, of the studies cited in the
previous paragraph, all those operating under the 3-digit zip
code interpretation are authored by epidemiologists, medical
researchers, or computer and information scientists, whereas

the papers backing the 5-digit zip code interpretation are
authored by geographers. Although this is just a sample of a
larger literature, there seems to be a trend where spatially
oriented researchers are more likely to embrace the 5-digit
interpretation or a more lenient understanding of the rules around
a threshold of 20,000 people. This is not surprising, given that
geographic research often necessitates a map, and 3-digit zip
codes are not intuitive map units. It is also the case that 3-digit
zip codes are not easy to find in the form of public shapefiles,
or mapping files, that are often used for research. Neither Census
[31] nor the US Geological Survey offers data at the 3-digit zip
code level. In fact, at the time of writing, we can only find 2
sources that provide data for download in the form of 3-digit
zip code boundaries for the United States, and both sources are
proprietary (Esri’s ArcGIS Online and Caliper’s Maptitude).
Even without access to these proprietary resources, it is possible
to create boundaries on one’s own. However, one would think
that as 3-digit zip codes are the required units for display under
HIPAA law, they should be more readily available on the web.
In contrast, data at the 5-digit zip code level are easy to find on
the web and appear abundantly in the public health literature.
The extent to which the dearth of 3-digit zip code map data
plays a role in the misunderstanding of the safe harbor rule is
unclear; however, one cannot help but wonder whether the
widespread confusion would exist if 3-digit zip code mapping
files were available for download on the HHS website.

The potential implications of misunderstanding privacy
guidelines are profound when considering that researchers share
patient data in inconsistent ways that bear on both the efficacy
of health interventions and the potential for privacy breaches.
When studies share aggregated patient data at the 3-digit zip
code level, their output is generally not useful for identifying
local distributions of health and disease, although they provide
a more generous degree of data security. When studies share
PHI at the 5-digit zip code level, they can provide a much more
useful depiction of the spatial health dynamics at hand but at
the cost of weaker data privacy.

In terms of this trade-off, the difference in identification risk
between 3-digit and 5-digit zip codes is substantial enough to
warrant an alarm, as discussed in detail in the following section
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[15]. At the same time, the difference in spatial resolution
between the 2 forms of zip codes carries potentially problematic
costs. For instance, one study demonstrated how different
disease patterns emerge depending on whether 3-digit or 5-digit
zip code areas are used, and with an example data set, the

authors showed that if 3-digit zip code areas are used to
determine how to best distribute N95 respirators during a
pandemic, it would result in a surplus of supplies for health care
workers in some communities and shortages others [30].

Figure 5. The aggregation process as seen within (A-C) 3-digit zip codes (D-F) and 5-digit zip codes. Zip codes with populations <20,000 people are
suppressed. To address suppression, low-population zip codes are merged with neighboring zip codes to meet Health Insurance Portability and
Accountability Act requirements. It is not in adherence with Health Insurance Portability and Accountability Act Safe Harbor to use 5-digit zip codes
as the unit of aggregation.

Twin Challenge 2: Data Loss

Overview
Even after gaining a clearer understanding of HIPAA law and
how it is meant to be interpreted, one more challenge remains,
namely that HIPAA guidelines are very likely too strict in
general, resulting in an unnecessarily large degree of data loss
[3,17]. The following sections provide insight into the extent
of the data loss that occurs when adhering to HIPAA Safe
Harbor’s 3-digit zip code rule and how other
(non-HIPAA–compliant) interpretations can reduce data loss
without adding much in terms of privacy risk, depending on the
types and amount of data being shared.

Data Loss From 3-Digit Zip Codes and 20,000 People
Opting for the 3-digit zip code interpretation is a conservative
choice that has a number of negative implications for research
and policy. The 3-digit zip code interpretation is very cautious
with respect to adhering to the 20,000-person rule. Bear in mind
that, as of 2020, the average population contained within a
3-digit zip code is 397,372 people, which is almost 4 times the
population threshold of 100,000 required by the Bureau of the
Census for the release of microdata (individual response data
from the census). Thirty years after the initial rule, there are
now only 13 zip codes of 3 digits that require suppression (as
they have <20,000 people in them). The number of ideal units

containing small but acceptable populations is disappointingly
low; only 12 units contain between 20,000 and 30,000 people,
and only 21 contain between 30,000 and 40,000 people. Just
over 91% of 3-digit zip code geographies contain >60,000
people or at least 3 times the 20,000-person threshold. In simple
terms, we should expect that most geographies shared under
the 3-digit zip code safe harbor standard will contain populations
far greater than the 20,000-person threshold (Figure 6).

Given that most 3-digit zip code geographies contain >20,000
people, under the HIPAA safe harbor provision, most will have
a very small proportion of unique records. However, some places
will have a proportion of unique records that are considered
relatively riskier in terms of patient protection. In any case, the
small number of instances that contain the “riskier” low-level
minimum populations still meet the minimum acceptable level
of risk (which, if we look back at the simulation study by Horm
[22], would result in approximately 10% unique records). This
is slightly higher than the 7.3% estimated unique records in the
1990 census microdata; however, the HHS points out that the
actual risk will be much lower because of the limited number
of publicly available tables that can be used to compare the
patient data with. These risk estimates are also subject to the
myth of the perfect population register, which is discussed later
in this paper [17]. Finally, the HHS suggests that the relatively
low probability of success should be a deterrent in and of itself.
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An interpretation of this threshold is that if the HHS is satisfied
with some units being shared at the level of 20,000 people,
could all units be shared at that resolution? After all, if
populations of 20,000 meet the minimum acceptable level of
risk, then what is stopping investigators from aggregating 5-digit
zip codes to meet this requirement? Zip codes of 3 digits are
rather impractical for research purposes; hence, it is very
uncommon to find a map shared at this level. For this reason,
it is easy to see how researchers could come to believe that the
5-digit interpretation is permissible if they have not given the
legal documents a thorough reading.

Aggregating 5-digit zip codes to create the finest-grained units
possible that also still meet the 20,000-person threshold is
tempting as this would allow investigators to meet the minimum

acceptable level of risk in a way that enables the sharing of
maps with more detailed and consistent geographies than that
provided by 3-digit zip codes. In this scenario, there would be
a slightly greater risk of identification because of the minimum
population size, although it would still seem to be an acceptable
level of risk as long as the 18 other safe harbor–restricted
identifiers were removed. The remaining problem is that 1 of
the 18 identifiers is not being fully removed in this scenario. By
aggregating 5-digit zip codes, an individual record contains
more information than a single 3-digit zip code; in addition, it
now contains a handful of 5-digit zip codes that can be used to
further narrow down the possible matches. Therefore, 5-digit
zip code aggregations do not meet HIPAA safe harbor
standards.

Figure 6. Three-digit zip codes (100-999) ordered least to greatest by population from 2020 estimates from the American Community Survey.

However, depending on what other information is kept, it is
reasonable to believe that sharing a map of patient data stripped
of age and other demographics at the aggregated 5-digit zip
code level would lead to a very low (certainly quite low) risk
of identification. One study showed that certain elements from
a list of 18 identifiers can still be shared without jeopardizing
patient privacy “when other features are reduced in granularity.”
Specifically, Malin et al [28] found that more detailed age data
(beyond what is permitted by safe harbors) could be shared
when they coarsened the specificity of other variables such as
ethnicity [28]. The authors noted that every data set is different,
and because of this, alternative deidentification practices can
be used to enable the safe disclosure of patient data that are
normally suppressed under the safe harbor method. This means
that there is potential for 5-digit zip code information to be
safely shared in an aggregated form as long as other identifying
information is suppressed.

In summary, it may be time to rethink the one-size-fits-all
strategy, which is the safe harbor method. It is reasonable to
ask whether aggregating 5-digit zip codes into regions that
contain at least 20,000 people could achieve a “sufficiently low”
risk of identification when other patient information is

suppressed, such as date of birth (DoB) and gender. It would
be even more reasonable to suggest that aggregating 5-digit zip
codes could work if no patient information other than diagnosis
and location was shared. Curtis et al [6] tested this claim in a
study that found that when put to the test, students were unable
to identify individuals in simulated cancer maps. There was
little reengineering risk, even at aggregated resolutions of finer
than 20,000 people. To this point, this paper has pointed out the
ambiguities within the safe harbor standard while shedding light
on some of the arbitrary determinations made by the HHS that
have contributed to a perhaps overly conservative definition of
privacy. The following section takes a closer look at how the
safe harbor rule has been criticized for being too stringent and,
at the same time, not sufficiently protective, specifically when
it comes to identification risk.

Do the Privacy Gains Justify the Amount of Data Loss?
To dive deeper, we must go back and consider the influence of
the population-level identification attack by Sweeney [15]. As
stated previously, this initially resulted in the decision to bar
both 3-digit and 5-digit zip codes from deidentified data;
however, after taking public comments, the HHS reconsidered,
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and 3-digit zip codes were deemed permissible as long as they
contained a population of at least 20,000 people. The HHS
justified their restrictions by citing particular studies that led
them to believe that the combination of 5-digit zip code, gender,
and DoB would be enough to potentially identify a great deal
(more than half) of the US population based on uniqueness [32].
Note that to be considered “unique,” a record must contain a
combination of characteristics that make it different from all
other records in that table [33]. If the number of unique
individuals within the US population was as large as Sweeney
[15] reported, the motion to block the 5-digit zip code and DoB
under safe harbor seems quite justified. However, some have
pointed out that the combination of these 3 identifiers, even
with their formidable discernibility capabilities, might not be
as threatening as the article by Sweeney [15] makes it out to
be.

Barth-Jones [17] describes the “myth of the perfect population
register” in his 2012 paper, which points out how many
investigators often forget to account for the people missing from
the lists used to link individuals to their medical records. These
missing populations add significant uncertainty to the calculation
of true population uniqueness [17]. Therefore, the actual
proportion of unique individuals on a list cannot be determined
with 100% certainty if potential matches exist off the list.
Therefore, these kinds of studies must be careful in the
statements they make—oftentimes including phrases such as
“likely unique” or “potentially identifying” as certain
identification cannot be claimed without a list of the entire
population or the knowledge that the individual under
identification attack was indeed contained within both lists.

For instance, consider the paper by Sweeney [15], which the
1999 NPRM cites saying “A 1997 MIT study showed that
because of the public availability of the Cambridge,
Massachusetts voting list, 97 percent of the individuals in
Cambridge whose data appeared in a data base which contained
only their nine-digit zip code and DoB could be identified with
certainty.” [16] According to this, nearly all Cambridge voters
can be identified using the combination of DoB and 9-digit zip
code. Sweeney [15] states that this proportion of people can be
“uniquely identified” on this basis; however, these individuals
are only uniquely identifiable within the population of registered
voters and not within the general Cambridge population (see
the study by Barth-Jones [17] for a full explanation). This means
that, for an intruder to identify an individual’s medical record,
they must know that the individual exists on both lists and that
no other person in Cambridge shares the same DoB and 9-digit
zip code. When deciphering the data, the intruder must account
for 35,000 nonregistered voting-aged people living in the city,
any of whom could be the true subject of the medical record of
interest. Unaccounted populations inject much uncertainty into
the identification of unique records (35% error in the study by
Sweeney [15]). With an imperfect population register, as
exemplified by the Cambridge attack, an intruder would be able
to identify no one with 100% certainty. Barth-Jones [17]
concludes that the governor was likely only identifiable based
on the fact that he was a public figure who had public
hospitalization. The date of hospitalization was known, as well
as his DoB, gender, and zip code; moreover, it could be easily

assumed that he would be a registered voter. In instances such
as this (having information a priori), an intruder can be confident
of a unique match.

It is unclear whether the HHS wrote the NPRM with a full
understanding of the methodological limitations of voter
list-based identity attacks of the kind described by Barth-Jones
[17]. It is possible that the clause “...could be identified with
certainty” was taken without really considering the implications
of the prior clause “...whose data appeared in the data base.”
Many assumptions must be met before we can ignore the myth
of the perfect population register. In this example, to identify
97% of the individuals with certainty, we would need to be sure
that none of the 54,805 voters on the voter list had the same
birth date as a nonvoter living in their neighborhood. We might
then wonder how 97% could be identified on the list compared
with the proportion identifiable in the entire Cambridge
population. This is something we cannot determine as we do
not have a population register. However, given that the total
population of Cambridge is approximately 88,000 [17], there
is much room for error. If the HHS based its development of
safe harbors on a limited understanding of these complexities,
it might lead us to wonder whether the level of protection
delineated within the safe harbor standard is overly conservative.

Nevertheless, even if the HHS misunderstood how Sweeney
[15] was using the term “identifiable” in her 1997 paper, there
is still room for concern about how far to read into the study.
The work by Sweeney [15] is bold, insightful, and conveys a
critical message: private information is vulnerable to attacks.
The extent to which we understand the vulnerability is unclear.
Even with the injection of uncertainty from missing populations,
the risk for identification may still be considered too high and
the implications would be quite serious. Let us return to the
Barth-Jones [17] review of the attack by Sweeney [15], which
finds that somewhat fewer (but perhaps not much fewer) than
29,000 people out of 88,000 in Cambridge are identifiable (if
the record is unique and the data intruder already knows that
the individual is on both lists). Depending on the motive of the
data intruder, this might not be far from likely. It is easier to
link a specific person to their medical record than to link a
specific medical record to the person to which it belongs. This
is because a motivated attacker is likely to have collected
background information on the person a priori. The data intruder
likely has a target in mind—someone they know—and therefore,
it is not that unlikely for them to already have information on
the target’s voting behaviors and place of work, allowing the
intruder to determine the employment insurance coverage that
could be used to confirm the target’s presence on the insurance
hospitalization data list. Moreover, even without knowing with
certainty if the target of the attack is on both lists, the fact that
the chance of a false positive (matching a record to a voter on
the list when the record actually belongs to a nonregistered
voter) occurring could be perceived as highly unlikely by the
attacker, which could encourage them to continue with their
plans regardless of the potential false positive.

The combination of DoB, gender, and 5-digit zip codes can be
problematic when shared in conjunction. The question that
remains is whether this combination of identifiers can be
reworked to reduce the risk of identification. In the literature
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on microdata anonymity, zip code, gender, and DoB are actually
not considered full identifiers themselves but rather
quasi-identifiers that can be used in combination to find unique
instances. The term “identifier” is reserved for information that
uniquely identifies an individual, such as a social security
number [34]. Nevertheless, quasi-identifiers can be dangerous
when used in combination; however, how dangerous are they?
To gain some insight into this question, we must look more
closely at how identification risk has appeared in the literature,
relying on the HIPAA safe harbor method.

What Level of Data Loss Defines Sufficient Data
Protection?
What is the acceptable level of identification risk? There is no
universally recognized standard that defines what a sufficient
proportion of unique records should be. Some have suggested
that the nationally accepted standard of reidentification risk is
defined by HIPAA’s safe harbor standard itself [27] but recall
that the safe harbor standard was derived somewhat arbitrarily,
being loosely based on rules used by the Bureau of the Census
and a couple of simulation studies. In fact, when determining
the population requirement of the HIPAA safe harbor rule, the
HHS made the following statement in regard to defining
“minimal risk”:

With respect to how we might clarify the requirement
to achieve a “low probability” that information could
be identified, the Statistical Policy Working Paper 22
referenced [see 18 in our references] discusses the
attempts of several researchers to define mathematical
measures of disclosure risk only to conclude that
“more research into defining a computable measure
of risk is necessary.” When we considered whether
we could specify a maximum level of risk of disclosure
with some precision (such as a probability or risk of
identification of <0.01), we concluded that it is
premature to assign mathematical precision to the
“art” of deidentification.

Twenty years later, there is still no threshold defining
“sufficiently low probability,” and investigators fall back on
the safe harbor standard as a point of reference for comparing
different levels of data protection. Deidentification with the safe
harbor method is said to leave somewhere around 0.03% or
0.04% of records within the US population vulnerable to
identification [17,35]; however, this proportion fluctuates
according to the geographical extent of the data set, where some
regions have much smaller proportions of unique records and
others have much higher. Specifically, the reidentification risk
has been found to range from 0.01% to 0.19% [28], 0.01% to
0.25% [36], and 0.013% to 0.22% [37] on a state-by-state basis.

Most studies estimate the identification risk under a safe harbor
to be low. However, there is no consensus on whether safe
harbor standards are sufficient to protect patient data. In other
words, “sufficiently de-identified” is subjective and, on
occasion, very similar proportions of unique records have
evoked very different assessments. For example, Sweeney
asserts that the estimated safe harbor reidentification risk of
0.04% of the US population is not a sufficient privacy guard
[10,35], whereas Barth-Jones [17] suggested that the risk would

actually be <0.03% (when using a voter list attack strategy) and
that this proportion is, in fact, sufficient; he goes on to compare
the identification risk under a safe harbor to the likelihood of
being struck by lightning [17]. A reidentification attack by Kwok
et al [37] reidentified only 2 of 15,000 individuals (0.013%)
from a safe harbor protected data set, and the intruder was
provided with a substantial amount of information from a market
research company. Kwok et al [37] concluded that there was a
low risk of reidentification and that masking with a safe harbor
makes reidentification a challenging task. Others asserted that
the safe harbor is too stringent. Malin et al [28] suggested in a
2011 article that the safe harbor method was too conservative
as it is possible to release more detailed information without
presenting a greater risk than that provided by the safe harbor
method. In contrast, a 2016 study found that even when data
seem sufficiently masked, computer science models can be used
to identify a large proportion (42.8%) of patients by linking
demographics such as age, sex, hospital, and year [38]. Although
specific to a single case study, this is a high and likely
unacceptable level of risk. More recently, Janmey and Elkin
[27] suggested that the safe harbor standard is sufficient for
preserving privacy at an overall population level. However, they
also found that encounter notes within data can sometimes
include indirect identifiers that can be used to help match
records, and this could increase the risk of identification to
0.07%, which is well over the estimated range of risk previously
mentioned when using safe harbor [17,35].

It is safe to say that there is disagreement regarding what is
sufficient for data protection. This type of risk calculation is
complicated in and of itself and a concept such as sufficiency
is necessarily a judgment call. Identification risk depends not
only on how the data are released but also on the alternative
lists publicly available to the data intruder. Sweeney [10]
described how identification risk for safe harbor–abiding data
sets can be as high as 25% when the intruder uses more than
just a voter registration list. Other detailed registries can be used
to reidentify masked data such as real estate tax data, credit
reports, and property records. Moreover, identification risk can
foreseeably jump much higher—far beyond the expected
ranges—for certain areas where the demographics of the base
populations allow an intruder to easily narrow down potential
matches based on age or ethnicity, as seen in regions dominated
by college dorms, ethnic enclaves, or transient communities
[15,38]. Sufficient data protection (leaving aside the definition
of sufficiency) will always be dependent on the data set being
masked as a slew of factors determines the overall identification
risk.

Ways Forward

Overview
So far, we have focused on 2 key issues of safe harbor
provisions: the confusion around which zip codes to use and
whether the rule warrants an unnecessarily large amount of data
loss. Reviewing the process by which the safe harbor concept
came into being provides insight into the intended interpretation
of the provision and the motivations that guided its development;
however, this is the first step. The ambiguity of how to best
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interpret and use zip codes or other geographic identifiers
persists, and there is no clear consensus on what defines
sufficient minimal risk. In this paper, we explore new
approaches to data privacy and how they may meet the needs
of some researchers; however, we conclude by arguing that the
most promising way forward to addressing the twin problems
of safe harbor is to steer away from one-size-fits-all guidelines
and toward deeper assessments of domain-specific and
data-specific modes of masking that could offer a middle ground
between useful data and protected data.

New Approaches to Deidentification
In the face of the complex nature of reidentification risk,
scholars and policy makers have begun to advocate for the
widespread adoption of k-anonymity or differential privacy
(DP) methods [10]. The primary argument for these approaches
is that deidentification methods should come with privacy
guarantees, especially as technology advances and powerful
automated systems can be made to search for matches between
multiple public lists. Therefore, although k-anonymity and DP
cannot necessarily guarantee data security, these methods have
been receiving considerable attention recently as they provide
a type of privacy guarantee that offers more complete data
protection than traditional masking approaches.

K-anonymity ensures that no unique records exist in the data
set and further requires that each record has a minimum of “k-1”
common records (those that have the same quasi-identifiers) so
that they cannot be differentiated and therefore identified with
certainty [39]. K-anonymity can be achieved through many
traditional methods such as jittering, aggregation, and location
swapping, and it often provides a higher level of protection than
if one were to use one of these traditional methods alone.
However, k-anonymity is not impervious to intruder attacks.
An intruder can still use background knowledge to narrow down
the possible matches to increase the likelihood of identification,
such as in a homogeneity attack (attacks based on data that
contain identical values for an attribute), in which a region with
a homogeneous population containing similar values for a record
in the table can be used (alone or linked with other data) to
identify an individual or diagnosis. Therefore, k-anonymity,
strictly speaking, does not guarantee privacy. However, it
guarantees nonuniqueness, which, in the absence of outside
knowledge, provides considerable data protection, and therefore,
k-anonymity remains a popular approach.

DP is attracting attention as a newer approach to protecting
sensitive data that assures a very low likelihood of individual
identification. The most common definition of DP is that of
epsilon DP introduced by Dwork et al [40]. The epsilon DP by
Dwork et al [40] involves creating a synthetic aggregated data
set from an original unprotected data set, which ensures that an
individual record cannot be identified. These simulated data are
built by injecting a predetermined amount of noise (based on a
Laplace distribution) into the original aggregate table such that
it does not significantly influence the output (of queries into
particular prespecified relationships). In other words, the
aggregate table is systematically adjusted to secure individual
privacy while also ensuring that the data provide similar results
to what would have been given if the original data were used

in a prespecified analytical model. This is achieved such that if
any one individual was removed from the data set, it would not
influence the overall results. This means that epsilon DP
provides relative guarantees about disclosure risk, and
essentially promises that “...any given disclosure will be, within
a small multiplicative factor, just as likely whether or not the
individual participates in the database.” [40]

Unlike k-anonymity, DP protects data under the assumption
that an intruder has close to perfect knowledge, and in doing
so, DP offers a level of protection unlike others. DP does not
succumb to the same weaknesses as traditional methods
(including the homogeneity attack) and provides stronger data
protection against differencing, linkage, and reconstruction
attacks [41]. In addition, because of its robustness, DP has the
advantage of reducing improper data analysis techniques by
limiting the ability of a single observation to have an effect on
the result, which helps to deter things such as p-hacking,
hypothesizing after the results are known, and overfitting models
[42]. For these, and many other reasons, DP has gained
considerable attention over the past 2 decades. In fact, DP
methods have the potential to replace existing masking methods
and have already been adopted by Apple and the Bureau of the
Census, which intends to use DP to protect the 2020 census
microdata. DP is not infallible; it offers “an extremely strong
guarantee, it does not promise unconditional freedom from
harm.” [41]

As DP provides a higher level of protection than many other
methods, it potentially offers a way for researchers to share data
at more detailed levels than previously allowed in safe harbors.
In an example of disease surveillance mapping, the safe harbors’
minimum population requirement of 20,000 people is rather
limited in terms of map resolution. A map with units containing
20,000 people would not provide enough detail to be helpful to
researchers, policymakers, or community members. However,
DP would allow investigators to share maps at much finer scales
(down to the neighborhood level) without putting patient
identities at risk.

Thus, why not use DP? This is because it has critical drawbacks
for research use [43]. For instance, a map created from a
differentially private aggregated table displays simulated data;
therefore, it is possible that some regions on the map would not
accurately reflect the original data, especially at finer scales
where the population numbers are lower. Santos-Lozada et al
[44] found that the infusion of noise from DP methods affects
observed distributions differently for different demographics,
meaning that DP has the potential to bias the understanding of
health disparities at the national level. In particular, the authors
demonstrated how mapping differentially private data led to
“overestimates of population-level health metrics of minority
populations in smaller areas and underestimates of mortality
levels in more populated ones,” and these effects were dramatic.
For instance, note the following:

...in McCulloch County, Texas, the mortality rate
ratio for non-Hispanic blacks is 75.9, indicating the
mortality rate would be 24% lower under the current
methodology compared with the differential privacy
methodology. Similarly, in Clarke County, Virginia,
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the mortality rate ratio for Hispanics is 121.4,
indicating the mortality rate would be 21% higher
under the current methodology compared with the
differential privacy methodology. At the same time,
the non-Hispanic white mortality rate ratios were
essentially unchanged for these two counties, at 100.3
and 99.8, respectively, meaning substantial biases
may enter into understandings of disparities.

The implications of DP for research are dire, and the recent
move by the Bureau of the Census to adopt this approach for
the 2020 census microdata has drawn much attention to its
advantages and disadvantages [45,46]. Census data are one of
the largest sources of sociodemographic data used by social
scientists; therefore, differentially private methods threaten to
degrade the reliability and effectiveness of social science
research. Other than threats to data accuracy and biases, another
source of concern regarding the 2020 census data is that these
differentially private tables would not enable exploratory data
analysis. This is because differentially private data are synthetic,
and therefore, relationships cannot be explored unless they are
prespecified when the synthetic table is created. For this, it is
very likely for DP to interfere with the process of data-driven
scientific research, pushing some scholars to suggest that
perhaps “...differential privacy goes far beyond what is necessary
to keep data safe” [46].

There is much uncertainty regarding the practicality of DP for
the protection of large-scale, sensitive data. DP is a relatively
new concept for several social scientists and epidemiologists.
There is a dearth of investigations into DP within the social
science literature, particularly regarding the impact it might
have on health mapping. We could only find 1 study at the time
of writing [44] but expected more, given the attention paid to
DP and the many unanswered questions that it poses. What are
the implications of DP in mapping in terms of accuracy and
use? How do differentially private maps compare with maps of
the original raw data? Furthermore, it is unclear how DP stands
within institutional review boards. This is relatively new
territory, and it is likely that many HIPAA compliance officers
are unfamiliar with DP. As part of our examination of the history
of HIPAA, we spoke with legal experts and HIPAA compliance
officers. One such officer, on being introduced to DP, stated
that “this doesn’t play into our office’s considerations of
deidentification.” DP holds some promise for mapping spatial
data but at known and unknown costs.

Current State and Future Research
Despite the ongoing interest in expanding the use and sharing
of health data mapping, the safe harbor rule stands as the
primary guidance for those interested in sharing maps. It is far
from perfect in that for many scholars, it is ambiguous and either
too stringent or insufficient in terms of securing data or reducing
data loss. Alternative methods exist, which have the potential
to do a better job; however, they have their own drawbacks.
HIPAA safe harbor provisions do not set out to guarantee data
protection similar to the newer modes of data protection; instead,
they only ensure a low risk of identification with the ultimate
goal being “to balance the needs of the individual with the needs
of the society” [18]. The challenge is to find the “sweet spot”

between protected data and useful data while also understanding
that this sweet spot changes for each data set depending on what
and how much information is available to the public.
Furthermore, with rapidly evolving technologies, this sweet
spot will continue to change over time. The amount of
individual-level data collected by companies today is large and
continuously growing. In fact, society may have already reached
the point where the myth of the perfect population register is
no longer a myth in the face of big data [47].

Although safe harbor continues to stand as the primary source
of guidance for handling spatial health data, researchers continue
to work with and against it in ways that reflect their
understanding of the law and their data against a larger
sociotechnical backdrop. As demonstrated by Malin et al [28],
there are ways of safely sharing more detailed data (ie, age
information) by coarsening the granularity of other data. From
this example, we can assume that there are also ways of sharing
fine-grained geographic data by censoring other elements in the
data. Given that some pieces of information contribute more
heavily to individual identification than others (ie, DoB being
more identifying than gender), we are left to ask questions that,
if answered, could help inform future approaches. Could a
5-digit zip code become innocuous without age information?
How many individuals can be uniquely identified by age and
5-digit zip code alone? What if all age and gender information
were removed? Would a 5-digit zip code still have the power
to identify an individual? In other words, is it reckless to share
maps at the 5-digit zip code level if all other patient information
is removed (ie, only the sharing of the 5-digit zip code and
diagnosis)? What if these zip codes were aggregated to form
units that each contained 20,000 people within them? What
would be the risk for identification? Of course, it is easier to
ask these questions than answer them; however, by examining
the history of HIPAA and clarifying the importance of 3-digit
zip codes versus 5-digit zip codes, we have a stronger foundation
for answering these questions. Until then, the safe harbor method
stands as our primary mode of guidance, and 2 decades after its
introduction, these guidelines do not meet the public’s need for
data security or researchers’ need for useful data.

Conclusions
Vague privacy provisions stand as an obstacle to progress and
pose a threat to public privacy by hindering the ways in which
epidemiologists and geographers understand how to share spatial
data. This paper promotes an understanding of the HIPAA safe
harbor provision by providing a comprehensive overview of
the law while also presenting various expert perspectives and
relevant studies that, taken together, show how alternative
methods to safe harbor can offer researchers better data and
better data protection. Two different interpretations of the safe
harbor rule exist—the 3-digit and 5-digit zip code
interpretation—and although 5-digit zip codes are not the
intended level of aggregation under the rule, there is reason to
believe that information can be safely shared on a map at this
level. More research is needed to determine whether the risk
for individual identification is sufficiently low for maps shared
at the 5-digit zip code level when DoB and gender are
suppressed from the map’s corresponding table. Much has
changed in the 20 years since the introduction of the safe harbor
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provision; however, it continues to be the primary source of
guidance (and frustration) for researchers trying to share maps,

leaving many waiting for these rules to be revised in accordance
with the times.

 

Availability of Data and Material
Data sharing is not applicable to this paper as no data sets were generated or analyzed during the study.

Authors' Contributions
BK drafted the first version of the manuscript. BK was responsible for data acquisition, data analysis, and interpretation. BK and
SMM edited and approved the final version of the manuscript.

Conflicts of Interest
None declared.

References
1. Guidance regarding methods for de-identification of protected health information in accordance with the health insurance

portability and accountability act (HIPAA) privacy rule. Guidance on De-identification of Protected Health Information.
2012. URL: https://www.hhs.gov/sites/default/files/ocr/privacy/hipaa/understanding/coveredentities/De-identification/
hhs_deid_guidance.pdf [accessed 2022-06-22]

2. Gupta A, Lai A, Mozersky J, Ma X, Walsh H, DuBois JM. Enabling qualitative research data sharing using a natural
language processing pipeline for deidentification: moving beyond HIPAA Safe Harbor identifiers. JAMIA Open 2021
Jul;4(3):ooab069 [FREE Full text] [doi: 10.1093/jamiaopen/ooab069] [Medline: 34435175]

3. Clause SL, Triller DM, Bornhorst CP, Hamilton RA, Cosler LE. Conforming to HIPAA regulations and compilation of
research data. Am J Health Syst Pharm 2004 May 15;61(10):1025-1031. [doi: 10.1093/ajhp/61.10.1025] [Medline: 15160778]

4. Curtis A. From healthy start to hurricane Katrina: using GIS to eliminate disparities in perinatal health. Stat Med 2008 Sep
10;27(20):3984-3997. [doi: 10.1002/sim.3260] [Medline: 18381702]

5. Paul O. Broken promises of privacy: responding to the surprising failure of anonymization. UCLA Law Rev 2009;57:1701.
6. Curtis A, Mills JW, Agustin L, Cockburn M. Confidentiality risks in fine scale aggregations of health data. Comput Environ

Urban Syst 2011 Jan;35(1):57-64. [doi: 10.1016/j.compenvurbsys.2010.08.002]
7. Jung H, El Emam K. A linear programming model for preserving privacy when disclosing patient spatial information for

secondary purposes. Int J Health Geogr 2014;13(1):16. [doi: 10.1186/1476-072x-13-16]
8. Browne AC, Kayaalp M, Dodd ZA, Sagan P, McDonald CJ. The challenges of creating a gold standard for de-identification

research. AMIA Annu Symp Proc 2014;2014:353-358 [FREE Full text] [Medline: 25954338]
9. Kayaalp M, Browne AC, Sagan P, McGee T, McDonald CJ. Challenges and insights in using HIPAA privacy rule for

clinical text annotation. AMIA Annu Symp Proc 2015;2015:707-716 [FREE Full text] [Medline: 26958206]
10. Sweeney L, Yoo J, Perovich L, Boronow K, Brown P, Brody J. Re-identification Risks in HIPAA Safe Harbor Data: a

study of data from one environmental health study. Technol Sci 2017;2017:2017082801. [Medline: 30687852]
11. Workshop on the HIPAA privacy rule's de-identification standard. HHS.gov. URL: https://www.hhs.gov/hipaa/

for-professionals/privacy/special-topics/de-identification/2010-de-identification-workshop/index.html [accessed 2021-01-15]
12. Evans RS. Electronic health records: then, now, and in the future. Yearb Med Inform 2018 Mar 06;25(S 01):S48-S61. [doi:

10.15265/iys-2016-s006]
13. Best SJ, Krueger BS, Ladewig J. Privacy in the information age. Public Opinion Q 2006 Aug 25;70(3):375-401. [doi:

10.1093/poq/nfl018]
14. All Information (Except Text) for H.R.3845 - District of Columbia Appropriations Act, 1997. CONGRESS.GOV. URL:

https://www.congress.gov/bill/104th-congress/house-bill/3845/all-info [accessed 2021-01-15]
15. Sweeney L. Guaranteeing anonymity when sharing medical data, the Datafly System. Proc AMIA Annu Fall Symp

1997:51-55 [FREE Full text] [Medline: 9357587]
16. Standards for privacy of individually identifiable health information. In: The Privacy Papers. Boca Raton, Florida: Auerbach

Publications; 2001.
17. Barth-Jones DC. The 're-identification' of governor William Weld's medical information: a critical re-examination of health

data identification risks and privacy protections, then and now. SSRN J 2012. [doi: 10.2139/ssrn.2076397]
18. Standards for privacy of individually identifiable health information. In: The Privacy Papers. Boca Raton, Fla: Auerbach

Publications; 2001.
19. Standards for Privacy of Individually Identifiable Health Information. In: The Privacy Papers. Boca Raton, Florida: Auerbach

Publications; 2001.
20. Statistical Policy Working Paper 22. The Federal Committee on Statistical Methodology (FCSM). 1994. URL: https://nces.

ed.gov/FCSM/pdf/spwp22.pdf [accessed 2022-07-12]

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e37756 | p.33https://medinform.jmir.org/2022/8/e37756
(page number not for citation purposes)

Krzyzanowski & MansonJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://www.hhs.gov/sites/default/files/ocr/privacy/hipaa/understanding/coveredentities/De-identification/hhs_deid_guidance.pdf
https://www.hhs.gov/sites/default/files/ocr/privacy/hipaa/understanding/coveredentities/De-identification/hhs_deid_guidance.pdf
http://europepmc.org/abstract/MED/34435175
http://dx.doi.org/10.1093/jamiaopen/ooab069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34435175&dopt=Abstract
http://dx.doi.org/10.1093/ajhp/61.10.1025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15160778&dopt=Abstract
http://dx.doi.org/10.1002/sim.3260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18381702&dopt=Abstract
http://dx.doi.org/10.1016/j.compenvurbsys.2010.08.002
http://dx.doi.org/10.1186/1476-072x-13-16
http://europepmc.org/abstract/MED/25954338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25954338&dopt=Abstract
http://europepmc.org/abstract/MED/26958206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26958206&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30687852&dopt=Abstract
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/2010-de-identification-workshop/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/2010-de-identification-workshop/index.html
http://dx.doi.org/10.15265/iys-2016-s006
http://dx.doi.org/10.1093/poq/nfl018
https://www.congress.gov/bill/104th-congress/house-bill/3845/all-info
http://europepmc.org/abstract/MED/9357587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9357587&dopt=Abstract
http://dx.doi.org/10.2139/ssrn.2076397
https://nces.ed.gov/FCSM/pdf/spwp22.pdf
https://nces.ed.gov/FCSM/pdf/spwp22.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/


21. The geographic component of disclosure risk for microdata. United States Census Bureau. Jul 7. URL: https://www.
census.gov/library/working-papers/1990/adrm/rr90-13.html [accessed 2022-07-24]

22. 22 HJ. A simulation study of the identifiability of survey respondents when their community of residence is known. National
Center for Health Statistics 2000.

23. Department of health and human services 45 CFR Parts 160 and 164 Standards for privacy of individually identifiable
health information; final rule. Federal Register. 2000. URL: https://www.govinfo.gov/app/details/FR-2000-12-28/00-32678
[accessed 2022-07-27]

24. ESRI homepage. ESRI. URL: http://www.esri.com/software/businessanalyst) [accessed 2022-06-21]
25. Mu L, Wang F, Chen VW, Wu X. A place-oriented, mixed-level regionalization method for constructing geographic areas

in health data dissemination and analysis. Ann Assoc Am Geogr 2014 Dec 10;105(1):48-66 [FREE Full text] [doi:
10.1080/00045608.2014.968910] [Medline: 26251551]

26. Acevedo-Garcia D. Zip code-level risk factors for tuberculosis: neighborhood environment and residential segregation in
New Jersey, 1985-1992. Am J Public Health 2001 May 01;91(5):734-741. [doi: 10.2105/ajph.91.5.734] [Medline: 11344881]

27. Janmey V, Elkin PL. Re-identification risk in HIPAA de-identified datasets: the MVA Attack. AMIA Annu Symp Proc
2018;2018:1329-1337 [FREE Full text] [Medline: 30815177]

28. Malin B, Benitez K, Masys D. Never too old for anonymity: a statistical standard for demographic data sharing via the
HIPAA Privacy Rule. J Am Med Inform Assoc 2011 Jan 01;18(1):3-10 [FREE Full text] [doi: 10.1136/jamia.2010.004622]
[Medline: 21169618]

29. Nicholson S, Smith CA. Using lessons from health care to protect the privacy of library users: guidelines for the
de-identification of library data based on HIPAA. J Am Soc Inf Sci 2007 Jun;58(8):1198-1206. [doi: 10.1002/asi.20600]

30. Tellman N, Litt ER, Knapp C, Eagan A, Cheng J, Radonovich LJJ. The effects of the Health Insurance Portability and
Accountability Act privacy rule on influenza research using geographical information systems. Geospat Health 2010 Nov
01;5(1):3-9. [doi: 10.4081/gh.2010.182] [Medline: 21080316]

31. Nation continues to age as it becomes more diverse. United States Census Bureau. URL: https://www.census.gov/ [accessed
2022-07-25]

32. Simple demographics often identify people uniquely. Carnegie Mellon University. URL: https://dataprivacylab.org/projects/
identifiability/paper1.pdf [accessed 2022-07-24]

33. Estimation of the number of unique population elements using a sample. Bureau of the Census. URL: http://www.asasrms.org/
Proceedings/papers/1991_061.pdf [accessed 2022-07-24]

34. Microdata protection. In: Secure Data Management in Decentralized Systems. Boston, MA: Springer; 2007.
35. Enhanced protections for uses of health data: a stewardship framework for “secondary uses” of electronically collected and

transmitted health data. Secretary of the U.S. Department of Health and Human Services. URL: https://tinyurl.com/3dptn9rh
[accessed 2021-01-15]

36. Benitez K, Malin B. Evaluating re-identification risks with respect to the HIPAA privacy rule. J Am Med Inform Assoc
2010;17(2):169-177 [FREE Full text] [doi: 10.1136/jamia.2009.000026] [Medline: 20190059]

37. Kwok P, Davern M, Hair E, Lafky D. Harder than you think: a case study of re-identification risk of HIPAA-compliant
records. In: Proceedings of the 2011 Joint Statistical Meetings. 2011 Presented at: 2011 Joint Statistical Meetings; Aug 2,
2011; Chicago, IL.

38. O’Neill L, Dexter F, Zhang N. The risks to patient privacy from publishing data from clinical anesthesia studies. Anesthesia
Analgesia 2016;122(6):2017-2027. [doi: 10.1213/ane.0000000000001331]

39. Samarati P, Sweeney L. Generalizing data to provide anonymity when disclosing information (abstract). In: Proceedings
of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems. 1998 Presented at:
SIGMOD/PODS98: Special Interest Group on Management of Data; Jun 1 - 4, 1998; Seattle Washington USA. [doi:
10.1145/275487.275508]

40. Differential privacy. In: Automata, Languages and Programming. Berlin, Heidelberg: Springer; 2006.
41. Dwork C, Roth A. The algorithmic foundations of differential privacy. FNT Theoretical Comput Sci 2014;9(3-4):211-407.

[doi: 10.1561/0400000042]
42. Dwork C, Feldman V, Hardt M, Pitassi T, Reingold O, Roth AR. Preserving statistical validity in adaptive data analysis.

In: Proceedings of the forty-seventh annual ACM symposium on Theory of Computing. 2015 Presented at: STOC '15:
Symposium on Theory of Computing; Jun 14 - 17, 2015; Portland Oregon USA. [doi: 10.1145/2746539.2746580]

43. Muralidhar K, Domingo-Ferrer J, Martínez S.   -Differential privacy for microdata releases does not guarantee confidentiality
(let alone utility). In: Privacy in Statistical Databases. Cham: Springer; 2020.

44. Santos-Lozada AR, Howard JT, Verdery AM. How differential privacy will affect our understanding of health disparities
in the United States. Proc Natl Acad Sci U S A 2020 Jun 16;117(24):13405-13412 [FREE Full text] [doi:
10.1073/pnas.2003714117] [Medline: 32467167]

45. Oberski DL, Kreuter F. Differential privacy and social science: an urgent puzzle. Harvard Data Sci Rev 2020 Jan 31;2(1).
[doi: 10.1162/99608f92.63a22079]

46. Ruggles S, Fitch C, Magnuson D, Schroeder J. Differential privacy and census data: implications for social and economic
research. AEA Papers Proceedings 2019 May 01;109:403-408. [doi: 10.1257/pandp.20191107]

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e37756 | p.34https://medinform.jmir.org/2022/8/e37756
(page number not for citation purposes)

Krzyzanowski & MansonJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://www.census.gov/library/working-papers/1990/adrm/rr90-13.html
https://www.census.gov/library/working-papers/1990/adrm/rr90-13.html
https://www.govinfo.gov/app/details/FR-2000-12-28/00-32678
http://www.esri.com/software/businessanalyst)
http://europepmc.org/abstract/MED/26251551
http://dx.doi.org/10.1080/00045608.2014.968910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26251551&dopt=Abstract
http://dx.doi.org/10.2105/ajph.91.5.734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11344881&dopt=Abstract
http://europepmc.org/abstract/MED/30815177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30815177&dopt=Abstract
http://europepmc.org/abstract/MED/21169618
http://dx.doi.org/10.1136/jamia.2010.004622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21169618&dopt=Abstract
http://dx.doi.org/10.1002/asi.20600
http://dx.doi.org/10.4081/gh.2010.182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21080316&dopt=Abstract
https://www.census.gov/
https://dataprivacylab.org/projects/identifiability/paper1.pdf
https://dataprivacylab.org/projects/identifiability/paper1.pdf
http://www.asasrms.org/Proceedings/papers/1991_061.pdf
http://www.asasrms.org/Proceedings/papers/1991_061.pdf
https://tinyurl.com/3dptn9rh
http://europepmc.org/abstract/MED/20190059
http://dx.doi.org/10.1136/jamia.2009.000026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20190059&dopt=Abstract
http://dx.doi.org/10.1213/ane.0000000000001331
http://dx.doi.org/10.1145/275487.275508
http://dx.doi.org/10.1561/0400000042
http://dx.doi.org/10.1145/2746539.2746580
http://europepmc.org/abstract/MED/32467167
http://dx.doi.org/10.1073/pnas.2003714117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32467167&dopt=Abstract
http://dx.doi.org/10.1162/99608f92.63a22079
http://dx.doi.org/10.1257/pandp.20191107
http://www.w3.org/Style/XSL
http://www.renderx.com/


47. Narayanan A, Shmatikov V. Robust de-anonymization of large sparse datasets. In: Proceedings of the 2008 IEEE Symposium
on Security and Privacy (sp 2008). 2008 Presented at: 2008 IEEE Symposium on Security and Privacy (sp 2008); May
18-22, 2008; Oakland, CA, USA. [doi: 10.1109/sp.2008.33]

Abbreviations
DoB: date of birth
DP: differential privacy
HHS: Department of Health and Human Services
HIPAA: Health Insurance Portability and Accountability Act
NPRM: Notice of Proposed Rulemaking
OCR: Office of Civil Rights
PHI: protected health information

Edited by C Lovis; submitted 05.03.22; peer-reviewed by L Nweke, D Reuter, J Ropero; comments to author 02.06.22; revised version
received 23.06.22; accepted 27.06.22; published 03.08.22.

Please cite as:
Krzyzanowski B, Manson SM
Twenty Years of the Health Insurance Portability and Accountability Act Safe Harbor Provision: Unsolved Challenges and Ways
Forward
JMIR Med Inform 2022;10(8):e37756
URL: https://medinform.jmir.org/2022/8/e37756 
doi:10.2196/37756
PMID:35921140

©Brittany Krzyzanowski, Steven M Manson. Originally published in JMIR Medical Informatics (https://medinform.jmir.org),
03.08.2022. This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information,
a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license information must be included.

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e37756 | p.35https://medinform.jmir.org/2022/8/e37756
(page number not for citation purposes)

Krzyzanowski & MansonJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1109/sp.2008.33
https://medinform.jmir.org/2022/8/e37756
http://dx.doi.org/10.2196/37756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35921140&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Viewpoint

Tempering Expectations on the Medical Artificial Intelligence
Revolution: The Medical Trainee Viewpoint

Zoe Hu1*, BSc, MD; Ricky Hu1,2*, BASc, MASc; Olivia Yau3, BSc; Minnie Teng3, MSc; Patrick Wang1, BHSc, MD;

Grace Hu4, BSc; Rohit Singla2,3, BASc, MASc
1School of Medicine, Queen's University, Kingston, ON, Canada
2School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
3School of Medicine, University of British Columbia, Vancouver, BC, Canada
4Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
*these authors contributed equally

Corresponding Author:
Zoe Hu, BSc, MD
School of Medicine
Queen's University
166 Brock Street
Kingston, ON, K7L5G2
Canada
Phone: 1 6132042952
Email: zhu@qmed.ca

Abstract

The rapid development of artificial intelligence (AI) in medicine has resulted in an increased number of applications deployed
in clinical trials. AI tools have been developed with goals of improving diagnostic accuracy, workflow efficiency through
automation, and discovery of novel features in clinical data. There is subsequent concern on the role of AI in replacing existing
tasks traditionally entrusted to physicians. This has implications for medical trainees who may make decisions based on the
perception of how disruptive AI may be to their future career. This commentary discusses current barriers to AI adoption to
moderate concerns of the role of AI in the clinical setting, particularly as a standalone tool that replaces physicians. Technical
limitations of AI include generalizability of performance and deficits in existing infrastructure to accommodate data, both of
which are less obvious in pilot studies, where high performance is achieved in a controlled data processing environment. Economic
limitations include rigorous regulatory requirements to deploy medical devices safely, particularly if AI is to replace human
decision-making. Ethical guidelines are also required in the event of dysfunction to identify responsibility of the developer of the
tool, health care authority, and patient. The consequences are apparent when identifying the scope of existing AI tools, most of
which aim to be physician assisting rather than a physician replacement. The combination of the limitations will delay the onset
of ubiquitous AI tools that perform standalone clinical tasks. The role of the physician likely remains paramount to clinical
decision-making in the near future.

(JMIR Med Inform 2022;10(8):e34304)   doi:10.2196/34304
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Introduction

The field of artificial intelligence (AI) in medicine has seen
rapid development in the last decade, with an increasing number
of applications introduced in clinical settings [1]. With the rapid
growth in computing power and data, medical AI has
transformed from an afterthought into an imminent possibility.

Currently, the utility of AI in completing tasks such as diagnostic
prediction, automation, and generation of features from clinical
data is recognized in many specialties. Models predicted the
incidence of myocardial infarction and outperformed the current
gold standard American College of Cardiology and American
Heart Association risk algorithm [2]. These technological
advancements have understandably raised concerns among
health care trainees and professionals that AI may be taking
over their duties. A study assessing medical students’ views
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regarding the impact of AI on future careers reported that
78.77% (1707/2167) expect significant changes due to AI and
89.62% (1942/2167) expressed that careful supervision by
humans is required [3].

To moderate the concerns of AI in disrupting the future role of
physicians, an understanding of the capabilities and limitations
of AI tools is required. Wiens et al [4] reported AI adoption
challenges, including problem formulation to market transition,
all of which will require cooperation with interdisciplinary teams
and systemwide change. In addition to refining the results of
an AI algorithm, how the results are conveyed must also be
accepted. Even if a physician accepts the judgement of a
computer as legitimate, patients may not be nearly as receptive.

The aim of this commentary is to analyze the multifaceted issue
of medical AI adoption to temper preconceived notions
regarding its impact and rapid progression. We identify and
explore four major barriers to AI adoption: (1) the limitations
of performance and biases in AI applications, (2) the limitations
due to heterogeneous digital infrastructure, (3) the limitations
due to lack of technological literacy, and (4) the limitations of
ethical challenges associated with medical AI usage.

Limitations of Performance

A significant barrier for AI applications to be implemented is
regulatory approval, such as by the Food and Drug
Administration (FDA), where AI applications would be included
in the recently created category of Software as a Medical Device
[5]. Certification is required for a recognized regulatory body
to approve of a device’s safety and effectiveness. If a new
medical device is not considered a low- or moderate-risk device,
it is required to enter the stringent premarket approval pathway,
where demonstration of safety and effectiveness is required
from clinical studies. The device is also classified in risk classes
from Class I (the lowest risk) to Class III (the highest risk) [5].
AI, particularly machine learning, poses unique challenges as
a machine learning model may continuously update with new
training data. As such, the FDA has created recent guidelines,
indicating that surveillance is required over the total product
life cycle of the device, including model updates from retraining
[6].

A standalone diagnostic tool would likely enter the premarket
approval pathway and require extensive testing such as
randomized controlled trials [7]. Leeuwen et al [8] evaluated
100 AI devices with CE-marked approval in Europe and reported
that only 2 products were classified as class III, requiring
premarket approval. Of 100 AI devices, 64 had no peer-reviewed
studies validating the product performance. Wu et al [9]
evaluated 54 AI medical devices approved by the FDA, with
none being standalone diagnostic devices without physician
supervision and none tested in a prospective trial. Hence, the
current state of AI devices toward the FDA label of
Computer-Assisted Detection Devices, which pose less
resistance for market entry. The financial incentive results in a
trend of devices being developed as physician-assisting tools
that physicians can use at their discretion [10].

A technical barrier for AI devices to replace human analysis is
the current performance of AI devices. For instance, when
validated on a data set from a single center, convolutional neural
networks (CNNs) routinely achieve accuracies above 0.90 [11].
However, with the variability of medical imaging from different
machines, operators, or imaging protocols, multicenter studies
are required to validate the generalizability of these classifiers.
Alice et al [11] reported that 81% of diagnostic algorithms
reviewed results in significant decrease of accuracy when
externally validated. Thus, rigorous validation is required with
a diverse data set to address the major machine learning
challenges of data scarcity, population shifts from different data
sets, prevalence shifts, and selection biases [12]. External
validation also reveals a more accurate comparison between
human and machine performance. Rodriguez-Ruiz et al [13]
reported that when testing a published CNN to classify
malignancies from mammography on a data set of 2652 images
from seven different countries, the CNN performed within the
same 95% CI accuracy range of 101 different radiologists [13].

The rigorous validation requirements for AI to be usable in
clinical practice is evident when analyzing rapidly developed
AI models. In the COVID-19 pandemic, over 100 diagnostic
prediction models have been trained and published in literature,
using features such as chest x-ray data, lung ultrasound, vital
signs, and lab values. The reported concordance index of such
models ranged from 0.71-0.99. However, Wynants et al [14]
assessed that only 5% of the models found performed external
validation, and only 2 models addressed selection biases during
sampling.

An additional challenge for AI applications is that the ability
to learn complex features is restricted to the architecture of the
AI model. For instance, medical applications for CNNs
commonly use architectures that perform well on the ImageNet
challenge. The CNN architecture defines model parameters such
as resolution, depth, and number of input channels, all of which
affect the ability to detect complex features related to some
objective. However, newer architectures are frequently
developed, such as EfficientNet outperforming ResNet,
DenseNet, Xception, and ResNeXT, all of which have been
previously used in medical image classifiers [15]. Updating the
model architecture is a significant change to the model. For
instance, ResNet introduces the usage of residual blocks in a
layer as an input for a subsequent layer to begin learning,
changing how the model is initialized. This may require
reapproval from regulatory bodies due to nontrivial changes in
the device.

The alternative of a physician-assisting device is more likely
in the near future, such as automating report extraction from
imaging studies or image reconstruction to reduce excessive
radiation from repeated imaging [16,17]. This reduces
competition with physician tasks while still providing clinical
utility from complex AI analyses.

Limitations of Current Infrastructure

Implementation of an AI product, even with validated
performance, is limited by heterogenous digital infrastructure
in health care systems. Different areas of patient care such as
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inpatient progress notes, laboratory results, and discharge
summaries may all have independent databases. This complexity
is further multiplied by interactions with outpatient clinics and
health authorities across provincial or state boundaries.

The incomplete adoption of electronic medical records (EMRs)
illustrates the lag in digital infrastructure integration despite
electronic record technology being available. The Canadian
Federal Government’s Economic Action Plan provided funding
to health care providers toward establishing EMRs in primary
care in 2010, leading to an increase of EMR adoption [18]. A
similar progression took place in the United States in 2014 [19].
Despite this, there continues to be reliance on paper files in both
primary care clinics and hospitals [20]. If, for instance, an
algorithm in an emergency department requires baseline
laboratory markers for a patient from their family physician,
then standardization and likely digitalization of the input data
is required.

There are currently 11 certified EMR vendors and 12 EMR
products in Ontario [21]. Although hospitals often have a
primary vendor, they often employ a variety of disparate EMR
products in affiliated practices [21]. In theory, digitization of
health care data would provide an abundance of high-quality
data for AI research. However, EMR vendors operate in silos
and use their own approach to storing data. To implement an
AI product in practice may necessitate creation of a completely
novel data pipeline to aggregate records across different
databases. There are attempts at standardization including the
“EMR Content Standard” by the Canadian Institute for Health
Informatics [22]. This introduces a content standard for EMR
data entry, but levels of prioritization of the standard differ
across provinces, and no standard EMR data entry has been
universally adopted, resulting in the persistence of difficulty in
coalescing data to be usable by AI.

For AI technology to be successful, patients must consent to its
use and trust the safety of the technology. A recent public
opinion survey in the United States on AI indicated that data
privacy was considered to be the most important issue [23].
Privacy concerns and restricted access limits access to a diverse
and large sample size, which is necessary for an AI algorithm
to be validated and implemented in clinical practice [24]. A
diverse data set is also crucial to guarantee adequate
representation of patient cohorts in AI algorithm training [25].
There are approaches to overcome these barriers including
federated learning, where a model is shared across different
centers for training without exporting data [24]. However, these
approaches require universal agreements regarding scope and
are currently not standard of practice.

Limitations of Technological Literacy

Medical AI applications have become increasingly relevant at
an accelerated rate, though the lag in technological literacy of
health care professionals for AI technology exceeds the expected
social and cognitive lag of adapting new technology [26]. One
challenge is that there is currently no standardized curriculum
for AI education nor are there any relevant accreditation
requirements within most medical doctorate programs [27].
This gap is significant as health care professionals are the main

users of medical AI applications and will have to be responsible
for appropriate usage of AI applications [28].

Despite a recent surge in interest in training health care trainees
in AI, universal integration of AI education into current health
care training is a nontrivial challenge. Medical training is dense
and rigorous with significant demands on trainees and staff [29].
Implementation of such a curriculum also requires specific
faculty expertise. Even with qualified educators available, there
is the challenge of selecting the correct depth and breadth of
topics required for medical trainees.

Without appropriate medical AI education, health care
professionals may not be adequately equipped to navigate the
potential ethical and legal implications of AI in health care. The
flexibility that health care providers have in using their
judgement to make clinical decisions tailored to an individual
patient, using contextual understanding of interpatient and
intrapatient variations, is essential to medicine. This process
may be impeded if the end user lacks the basic digital literacy
to understand the limitations of such applications of AI; for
instance, deciding when to override an AI analysis in favor of
contextual clinical judgement or vice versa. However, acquiring
digital competency in AI applications may imply time away
from service for health care providers and extra study workload
for health care trainees, in addition to growing medical
knowledge. Other challenges that contribute to the gap in
technological literacy include lack of awareness of digital
knowledge required for health care, lack of equitable access to
AI education, and limited trust in AI applications in health care.

Medical applications must be well performing, trustworthy,
transparent, interpretable, and explainable. Interpretation of AI
models requires technical training, making it difficult to assess
its performance. This is especially true in complex AI models
such as deep neural networks, where it is not often possible to
examine what features are used to compute the output, creating
a colloquial “black box” algorithm. The gap in technological
literacy among health care professionals, which is further
hindered by the difficulty in implementing AI literacy training
of an appropriate scope, prevents many AI applications from
advancing beyond the proof-of-concept “computer-side” stage
to bedside application [30].

Limitations of Ethical Challenges

In the presence of errors by AI decisions, there lies challenges
not only in identifying liability but also in quality improvement
analysis. Harm caused by AI may be due to several reasons in
the pipeline, such as poor data stewardship, incomplete
mathematical constraints resulting in an inaccurate model, or
inappropriate usage by a clinician [31]. For instance, if an AI
algorithm misdiagnoses a patient, causing an adverse event, is
the error associated with data collection that was not
representative of patient characteristics, with inadequate
algorithm development resulting in computations that produce
an inaccurate prediction, or with health care administration for
deciding to use an AI product? Traditional quality improvement
analysis in medicine, such as cause-effect analysis, may be
insufficient because it lacks a 1-dimensional cause-to-effect
pathway, particularly with multiparametric AI models such as
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neural networks, which contain millions of computational
kernels [32]. Interdisciplinary collaboration between data
scientists, data stewards, clinicians, and health care workers is
crucial to developing a risk liability and quality improvement
system before AI can serve as a medical decision maker.

Additionally, substantial data bias may lead to unforeseen
disparities in patient care as AI may stratify based on
unintentional subgroups. Gichoya et al [33] observed that chest
x-ray AI models can be used to predict patient’s race with image
features physicians were unaware of. The implication is that
bias is unavoidable even when looking at data that appears
agnostic, such as chest x-rays. This may further encourage health
care disparities if the model makes decisions directly correlated
with race or gender. There is then a utilitarian conflict of
beneficence in deciding the extent to which it is acceptable to
use an AI algorithm that may be more accurate and benefit
certain subgroups at the expense of others; for instance, triaging
resources for subgroups that AI can accurately analyze. There
is also a deontological conflict to adhere to nonmaleficence. If

we know there is a high likelihood of increasing disparity despite
the beneficial aspects of AI, the application of AI would be
unethical.

Hence, AI poses unique ethical issues due to limitations of
transparency and inherent potential for harm when used as a
decision maker. AI is capable of identifying hidden features
within data that can be leveraged to improve decision-making,
but it is not without potential risk and needs to be deliberated
by all stakeholders involved in the process.

Conclusions

Implementation of AI in medicine faces barriers of regulatory
approval, performance, compatibility of digital infrastructure,
and shared multidisciplinary collaboration. Although AI shows
potential in improving quality of life for patients by enhancing
decision-making and tasks carried by health care professionals,
the adoption of AI is likely incremental rather than a stark
change in standard of care.
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Abstract

Background: It is important to exploit all available data on patients in settings such as intensive care burn units (ICBUs), where
several variables are recorded over time. It is possible to take advantage of the multivariate patterns that model the evolution of
patients to predict their survival. However, pattern discovery algorithms generate a large number of patterns, of which only some
are relevant for classification.

Objective: We propose to use the diagnostic odds ratio (DOR) to select multivariate sequential patterns used in the classification
in a clinical domain, rather than employing frequency properties.

Methods: We used data obtained from the ICBU at the University Hospital of Getafe, where 6 temporal variables for 465
patients were registered every day during 5 days, and to model the evolution of these clinical variables, we used multivariate
sequential patterns by applying 2 different discretization methods for the continuous attributes. We compared 4 ways in which
to employ the DOR for pattern selection: (1) we used it as a threshold to select patterns with a minimum DOR; (2) we selected
patterns whose differential DORs are higher than a threshold with regard to their extensions; (3) we selected patterns whose DOR
CIs do not overlap; and (4) we proposed the combination of threshold and nonoverlapping CIs to select the most discriminative
patterns. As a baseline, we compared our proposals with Jumping Emerging Patterns, one of the most frequently used techniques
for pattern selection that utilizes frequency properties.

Results: We have compared the number and length of the patterns eventually selected, classification performance, and pattern
and model interpretability. We show that discretization has a great impact on the accuracy of the classification model, but that a
trade-off must be found between classification accuracy and the physicians’ capacity to interpret the patterns obtained. We have
also identified that the experiments combining threshold and nonoverlapping CIs (Option 4) obtained the fewest number of
patterns but also with the smallest size, thus implying the loss of an acceptable accuracy with regard to clinician interpretation.
The best classification model according to the trade-off is a JRIP classifier with only 5 patterns (20 items) that was built using

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e32319 | p.42https://medinform.jmir.org/2022/8/e32319
(page number not for citation purposes)

Casanova et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:isidoroj@um.es
http://www.w3.org/Style/XSL
http://www.renderx.com/


unsupervised correlation preserving discretization and differential DOR in a beam search for the best pattern. It achieves a
specificity of 56.32% and an area under the receiver operating characteristic curve of 0.767.

Conclusions: A method for the classification of patients’ survival can benefit from the use of sequential patterns, as these
patterns consider knowledge about the temporal evolution of the variables in the case of ICBU. We have proved that the DOR
can be used in several ways, and that it is a suitable measure to select discriminative and interpretable quality patterns.

(JMIR Med Inform 2022;10(8):e32319)   doi:10.2196/32319

KEYWORDS

sequential patterns; survival classification; diagnostic odds ratio; burn units

Introduction

Overview
Advances in the collection and storage of data have led to the
emergence of complex temporal data sets, in which the data
instances are traces of complex behavior characterized by time
series of multiple variables.

In the clinical domain, patients who have incurred severe burns
are treated in intensive care burn units (ICBUs). The first 5 days
are fundamental: there is a resuscitation phase during the first
2 days and a stabilization phase during the following 3 days,
and the patient’s evolution (incomings, diuresis, fluid balance,
pH, bicarbonate, base excess) is registered over this period.
These variables are not considered in scores for mortality
prediction and may play a relevant role in improving the current
knowledge of the problem.

Designing algorithms that are capable of learning patterns and
classification models from such data is one of the most
challenging topics in data mining research [1]. One approach
to deal with this problem is discovering patterns that are used
as predictors in classification algorithms [2].

The number of patterns initially generated is usually very large,
but only a few of these patterns are likely to be of interest to
the domain expert that analyzes the data. There are several
reasons for this: many of the patterns are either irrelevant or
obvious, many patterns do not provide new knowledge regarding
the domain, and many of them are similar or are included in
others. Measures of the level of interest are, therefore, required
to reduce the number of patterns, thus increasing the utility,
usefulness, and relevance of the patterns discovered [3]. Some
of these interestingness measures are based on the statistical
significance of discriminative patterns.

In addition to traditional multidimensional analysis and data
mining tasks, one interesting task is that of discovering notable
changes and comparative differences. This leads to gradient
mining and discriminant analysis [4].

Discriminative pattern mining is one of the most important
techniques in data mining. This challenging task comprises a
group of pattern mining techniques designed to discover a set
of significant patterns that occur with disproportionate
frequencies in different class-labeled data sets [5]. Research on
discriminative patterns evolves rapidly under several nonuniform
definitions, such as contrast sets, emerging patterns, or
subgroups. However, these definitions are actually equivalent
because their target patterns can be used interchangeably with

the same ability to capture the differences between distinct
classes [5].

The exploration of discriminative patterns generally includes 2
aspects: frequency and statistical significance. On the one hand,
the frequency of a pattern can be assessed by its support, which
is defined as the percentage of transactions (in our case, patients)
that this pattern contains. A pattern is frequent if its support
value is higher than a given threshold.

On the other hand, the statistical significance of discriminative
patterns can be measured by using various statistic tests. A
pattern is deemed significant if its significance value generated
from a certain statistical measure could meet certain user-defined
conditions, for example, no less (or more) than a given threshold.
Any statistical measure that is capable of quantifying the
differences between classes, such as the odds ratio, information
gain, or chi-square, is generally applicable, and the choice of
this measure will not typically affect the overall performance
of the discriminative pattern discovery algorithms [5].

Many specific quantitative indicators of diagnostic test
performance have been introduced into the clinical domain,
such as sensitivity and specificity, positive and negative
predictive values, chance-corrected measures of agreement,
likelihood ratios or area under the receiver operating
characteristic curve (AUC), among others. But there is a single
indicator of diagnostic performance, denominated as the
diagnostic odds ratio (DOR), which is closely linked to existing
indicators, facilitates the formal meta-analysis of studies on
diagnostic test performance, and is derived from logistic models
[6].

We propose and compare 4 approaches in which the DOR is
used as a statistical measure to select a reduced number of
patterns, and we put forward the use of these patterns as
predictors in a classification model. The calculation of the DOR
for a pattern enables us to use a terminology that is closer to
the language of clinicians, in which a pattern is considered to
be a risk factor or to have a protection factor.

The first approach consists of using the DOR as a minimum
threshold with which to select patterns. In the second approach,
we calculate the difference in the DOR of a sequential pattern
with respect to its extensions, and we establish a threshold for
this difference to reduce the number of patterns selected. One
advantage of this approach is that it can be used as an early
pruning within the pattern discovery algorithm. In the third
place, we calculate a CI for the DOR, and use this CI to prune
patterns that are not statistically different from their extension
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patterns. Finally, we combine the second and third approaches
to select patterns with different properties.

We have verified that these propositions provide acceptable
results by building a model for the classification of patients’
survival using their daily evolution in an ICBU, employing
multivariate sequential patterns. We have additionally compared
the 4 approaches with the selection of patterns founded on
classical frequency-based measures such as Jumping Emerging
Patterns (JEPs).

Background

Sequential Pattern Mining
A sequence database is based on ordered elements or events,
recorded with or without a concrete notion of time. There are
many applications involving sequence data, such as economic
and sales forecasting, speech or audio signals, web click streams,
or biological sequences. The mining of frequently occurring
ordered events or subsequences as patterns was first introduced
by Agrawal and Srikant [7] and has become a significant
challenge in data mining.

The purpose of sequential pattern mining is to discover
interesting subsequences in a sequence database, that is,
sequential relationships between items that are of interest to the
user. Various measures can be used to estimate how interesting
a subsequence is. In the original sequential pattern mining
problem, the support measure is used. The support (or absolute
support) of a sequence s in a sequence database is defined as
the number of sequences that contain s, and is denoted by sup(s).

Sequential pattern mining is the task of finding all the frequent
subsequences in a sequence database. A sequence s is said to
be a frequent sequence or a sequential pattern if and only if
sup(s)≥minsup, for a threshold minsup established by the user.
The assumption is that frequent subsequences are of interest to
the user.

With regard to the algorithms employed to mine sequential
patterns, there are 3 pioneer proposals: the GSP algorithm with
the a priori strategy [8]; the SPADE algorithm, an a priori–based
sequential pattern mining algorithm that uses vertical data format
[9]; and PrefixSpan with the pattern growth strategy [10]. A
number of algorithms based on these 3 proposals have focused
on improving their efficiency using different search strategies
or data structures.

The researchers refer the reader to [11] for more general
information about sequential pattern mining.

Pattern and Sequence-Based Classification
Classification rule mining attempts to discover a small set of
rules in the database to form an accurate classifier.

Initial approaches that combined pattern mining and
classification models employed a strict stepwise approach, in
which a set of patterns was computed once and those patterns
were subsequently used in models. However, a large number
of methods were later proposed, whose aim was to integrate
pattern mining, feature selection, and model construction [12].

Some of these are Classification Based on Predictive Association
Rules (CPAR), Classification Based on Multiple Association
Rules (CMAR) [12], Multi-class, Multi-label Associative
Classification (MMAC), and Classification Based on
Associations (CBA). Many experimental studies have shown
that these integrated classification methods have a high potential
approach that builds more predictive and accurate classification
systems than traditional classification methods such as decision
trees [13].

The classification of sequence patterns is one of the most
popular methodologies whose power has been demonstrated by
multiple studies [14], and which has a broad range of real-world
applications. In medical informatics, the classification of
electrocardiogram time series (the time series of heart rates)
shows whether the data originates from a healthy person or from
a patient with heart disease [15], whereas in financial systems,
transaction sequence data in a bank are classified for the purpose
of fighting money laundering [16].

The sequence classification methods can be divided into 3 large
categories [14]:

• The first category is that of feature-based classification,
during which a sequence is transformed into a feature
vector, after which conventional classification methods are
applied. Feature selection plays an important role in this
kind of methods.

• The second category is sequence distance–based
classification. The distance function that measures the
similarity between sequences determines the quality of the
classification in a significant manner.

• The third category is model-based classification, such as
using the hidden Markov model and other statistical models
to classify sequences.

Conventional classification methods, such as neural networks
or decision trees, are designed to classify feature vectors. One
way to solve the problem of sequence classification is to
transform a sequence into a vector of features by means of
feature selections. Sequences can be classified by employing
conventional classification methods, such as support vector
machine and decision trees.

Several researchers have worked toward building sequence
classifiers based on frequent sequential patterns. Lesh et al [17]
proposed an algorithm for sequence classification using frequent
patterns as features in the classifier. In their algorithm,
subsequences are extracted and transformed into sets of features.
After feature extraction, general classification algorithms such
as support vector machine, naïve Bayes, or neural network can
be used for classification. Their algorithm is the first attempt
to combine classification and sequential pattern mining.

Tseng and Lee [18] proposed a Classify-By-Sequence (CBS)
algorithm to combine sequential pattern mining and
classification. Two algorithms, namely, “CBS Class” and “CBS
All,” were proposed in their paper. In “CBS Class,” the database
is divided into a number of subdatabases according to the class
label of each instance. Sequential pattern mining is then
implemented on each subdatabase. In “CBS All,” a conventional
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sequential pattern mining algorithm is applied on the whole
data set. Weighted scoring is used in both algorithms.

With regard to the ICBU, few studies have dealt with the
problem of survival prediction using machine learning or
intelligent data analysis [19].

Interestingness Measures for Sequence Classification
In the original sequential pattern mining problem, the main
measure used is support. The assumption is that frequent
subsequences are of interest to the user.

A first important limitation of the traditional sequential pattern
mining problem is that a huge number of patterns may be
generated by the algorithms, depending on how the minsup
threshold is set and on the characteristics of the database [11].
Finding too many patterns could hamper the effectiveness in
some cases to which other measures could be better suited.

Many other rule interestingness measures are already used in
data mining, machine learning, and statistics. Geng and
Hamilton [20] have gathered together 9 different criteria that
specify the interestingness of a pattern. These 9 criteria are
conciseness, generality, reliability, peculiarity, diversity, novelty,
surprisingness, utility, and actionability. These authors
additionally classify these criteria into 3 main categories:
objective, subjective, and semantics-based measures. Objective
measures are those that depend only on raw data. Subjective
measures are those that consider the users’ background
knowledge in addition to data, and finally semantic-based
measures are a special type of subjective measures that take
into account the explanation and the semantic of a pattern which
are, like subjective measures, domain specific.

In this paper we focus on the probability-base objective
measures used in the clinical domain. Some examples of
objective rule interestingness measures that are often used in
epidemiology as a statistical metric are presented in Table 1.

Table 1. Usual clinical objective rule interestingness measures for rules in the form of A→c.

FormulaMeasure

P(Ac)Support

P(c|A)Confidence

P(A)Coverage

P(B)Prevalence

Specificity

Accuracy

Diagnostic odds ratio

Relative risk

Relative risk and the DOR are statistical metrics that are often
used in epidemiological studies. They are consistent: a larger
odds ratio leads to a larger relative risk, and vice versa. Under
the rare disease assumption, the DOR approximates the relative
risk [21]. The DOR is usually used in case-control studies.

Li et al [21,22] used an epidemiological metric, relative risk,
to measure pattern interestingness, and concluded that it is an
optimal measure to find high-risk patterns. The proposed method
was more efficient in covering the search space and produced
a smaller number of rules. However, the number of rules in the
output could still be too large for an easy interpretation. The
authors applied the method to a real-world medical and
pharmaceutical–linked data set and it revealed some patterns
that are potentially useful in clinical practice.

Most of the conventional frequent pattern–based classification
algorithms follow 2 steps [23]. The first step consists of mining
a complete set of sequential patterns given a minimum support,
while the second consists of selecting a number of discriminative
patterns with which to build a classifier. In most cases, mining
a complete set of sequential patterns in a large data set is
extremely time-consuming, and the huge number of patterns

discovered signifies that pattern selection and classifier building
are also very time-consuming.

In fact, the most important consideration in sequence
classification is not that of finding the complete rule set, but
rather that of discovering the most discriminative patterns. In
this respect, more attention has recently been paid to
discriminative frequent pattern discovery for effective
classification.

Heierman et al [24] presented a new data mining technique
based on the Minimum Description Length principle, which
discovers interesting features in a time-ordered sequence.
Petitjean et al [25] introduced a method with which to exactly
and efficiently identify the k most interesting patterns in a
sequential database for which the difference between its
observed and expected frequency is maximum: a measure
denominated as leverage. Other authors focused on measures
for the selection of patterns, such as the relative risk or a
coverage measure [26].

In the clinical domain, univariate frequent episodes of Sequential
Organ Failure Assessment (SOFA) subscores during the first
days after admission were identified in Toma et al [27]. The
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authors then selected a reduced number of patterns using
Akaike’s information criterion to build a logistic regression
model to predict the survivability of patients with multiorgan
failure. Later, Toma et al [28] showed that the use of univariate
patterns as predictors is at least as effective as clinical scores.

After mining JEPs, Ghosh [29] used coupled hidden Markov
learning models to build robust sequential patterns–based
classifiers. This made it possible to predict hypotension risk,
an acute hypotensive episode, or even of a septic shock, with
the measurements of the mean arterial pressure, the heart rate,
and the respiratory rate.

Survival Prediction in Intensive Care Burn Units
ICBUs are specialized units in which the main pathologies
treated are inhalation injuries and severe burns. Early mortality
prediction after admission is essential before an aggressive or
conservative therapy can be recommended. Severity scores are
simple but useful tools for physicians when evaluating the state
of the patient [30]. Scoring systems aim to use the most
predictive premorbid and injury factors to yield an expected
likelihood of death for a given patient. Baux and Prognostic
Burn Index scores provide a mortality rate by summing age and
the percentage of total burn surface area, while the Abbreviated
Burns Severity Index also considers gender and the presence
of inhalation injuries.

The evolution of other parameters during the resuscitation phase
(first 2 days) and during the stabilization phase (3 following
days) may, however, also be important. The initial evaluation
and resuscitation of patients with large burns that require
inpatient care can be guided only loosely by formulas and rules.
The inherent inaccuracy of formulas requires the continuous
reevaluation and adjustment of infusions based on resuscitation
targets. Incomings, diuresis, fluid balance, acid-base balance
(pH, bicarbonate, base excess), and others help define objectives
and assess the evolution and treatment response.

In the ICBU, a patient’s evolution is registered but not
considered in scores for mortality prediction. In a previous paper
[31], we used emerging patterns with a knowledge-based
temporal abstraction and then built classifiers of the survival of
the patients with a high sensitivity and specificity. The results
of the classification tests showed that our approach is
comparable to the burn severity scores used currently by
physicians.

Methods

Sequential Patterns
Let I = {i1, i2, ..., ik} be a set of items. An itemset is a non-empty

subset of I. A sequence is an ordered list of itemsets (also
called elements or events). Items within an element are
unordered and would be listed alphabetically. An item can occur
in an element of a sequence once at the most, but can occur
multiple times in different elements of a sequence.

The number of instances of items in a sequence is denominated
as the length of the sequence. A sequence with a length k is

called a k-sequence. For example, is a sequence that consists

of 7 distinct items {a, b, c, d, e, f, g} and 6 itemsets. The length
of the sequence is 12 items.

Each itemset in a sequence represents the set of events that occur
at the same time (same timestamp). A different itemset appears
at a different time.

Sequence is a subsequence of sequence (or β is a

super-sequence of the sequence α), denoted as , if there exist

integers i1 < i2 < … < in such that . For example, is a
subsequence of s.

The temporal representation of the patterns is principally carried
out using time point representation or time interval
representation.

In the time interval representation, there are different ways in
which to relate intervals to each other, of which the best known
is Allen’s interval algebra [32] or the Time Series Knowledge
Representation. In Allen’s interval algebra, there are 13 relations
that configure a very expressive language, thus making the
pattern representation and the tasks related to temporal reasoning
much more complicated.

Time point–based data are a special case of the time
interval–based data, in which both the beginning and the end
points occur at the same time (for each interval) and the relations
between these points become simpler (before, equals or
co-occurs, and after), usually denoted as (<, =, >). Furthermore,
because the “after” operator (>) is the inverse of the “before”
relation (<), if we always consider a relation from the point that
occurs first, it is not necessary to use the “after” relation. For
instance, if we have A>B, we will instead say B<A.

It is, therefore, possible to define patterns or sequences with
only these 2 relations (<, =). Two patterns a and b are exactly
equal if their points are exactly the same and they have exactly

the same relations in the same positions, that is, and .

We have used the FaSPIP algorithm [33] to discover multivariate
sequential patterns. FaSPIP is based on the equivalence classes
strategy and is able to mine both points and intervals. Moreover,
FaSPIP uses a new candidate generation algorithm based on
boundary points and efficient methods to avoid the generation
of useless candidates and to check their frequency.

In candidate generation, FaSPIP distinguishes between 2
operations to extend a sequence with an item, thus creating a
new sequence: Sequence extensions (S-extensions), when the
frequent points take place after, and Itemset extensions
(I-extensions), when the points take place at the same time as

the last item in the pattern. For instance, given the sequence 

and a point , the sequence is an S-extension and is an
I-extension.

Emerging Patterns
The classical approach employed for pattern selection is based
on the frequency of the patterns. Emerging patterns (EPs) or
contrast sets are a type of knowledge pattern that describes
significant changes (differences or trends) between 2 classes of
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data [34]. EPs are sets of item conjunctions of attribute values
whose frequency changes significantly from one data set to
another. The problem of mining EPs can be expressed as
follows: given 2 classes of data and a growth rate threshold,
find all patterns (itemsets) whose growth rates—the ratio of
their frequency between the 2 classes—are larger than the
threshold [3].

Like other rules or patterns composed of conjunctive
combinations of elements, EPs can be easily understood and
used directly by clinicians.

Furthermore, the concept of JEPs [35] has been proposed to
describe those discriminating features that occur only in the
positive training instances but do not occur in the negative class
at all. The most frequently appearing JEPs have been used to
build accurate classifiers [36,37].

Diagnostic Odds Ratio and CI
Clinicians must rely on the correct interpretation of diagnostic
data in a variety of clinical environments. A 2×2 table is an
essential tool to present the data regarding epidemiological
studies for diagnostic test evaluation (Table 2). The terms
commonly used with diagnostic tests are sensitivity, specificity,
and accuracy, which statistically measure the performance of
the test. Sensitivity indicates how well the test predicts one
category and specificity measures how well the test predicts the
other category, while accuracy is expected to measure how well
the test predicts both categories.

Sensitivity = TP/(TP+FN)

Specificity = TN/(TN+FP)

Other multiple tests with which to improve diagnostic decision
making in different clinical situations have also been suggested.
For example, Glas et al [6] proposed the use of the DOR as a
single indicator of diagnostic performance.

Table 2. 2×2 Contingency table.

Reference testTest

No target disorderTarget disorder

FPbTPaPositive

TNdFNcNegative

aTP: true positive.
bFP: false positive.
cFN: false negative.
dTN: true negative.

The DOR is used to measure the discriminative power of a
diagnostic test: the ratio of the odds of a positive test result
among the diseased to the odds of a positive test result among
the nondiseased. The DOR is not prevalence dependent, and
may be easier to understand, as it is a familiar epidemiological
measure. It can be expressed in terms of sensitivity and
specificity.

DOR = (TP/FN)/(FP/TN) = [sensitivity /
(1–sensitivity)] / [(1–specificity) / specificity]

The value of a DOR ranges from 0 to infinity. To calculate the
DOR, the potential problems involving division by 0 are solved
by adding 0.5 to the selected cells in the diagnostic 2×2 table.

The further the odds ratio is from 1, the more likely it is that
those with the disease are exposed when compared with those
without the disease (risk factor). A value of 1 means that a test
does not discriminate between patients with the disorder and
those without it. Values lower than 1 suggest a reduced risk of
disease associated with exposure (protection factor).

CIs for range estimates can be conventionally calculated as
shown in the next equation:

where Xhm is the Mantel-Haenszel chi-square and Z=1.96 if a
confidence of 95% is employed.

Li et al [38] built an algorithm based on the following
assumption: if adding an exposure to a rule does not produce a
significant change in the DOR, then the rule should not be
reported. The DOR between 2 rules is significantly different if
their 95% CIs do not overlap.

Several studies based on the nonoverlapping of the DOR have
been performed. Toti et al [39] discussed the differences in
performance achieved while extracting rules with the different
definitions of a nonexposed population, when no pruning
criterion is used to filter redundant rules, or when a pruning
criterion of redundant rules based on overlapping of 95% CI is
added. They confirmed that mining with no pruning criterion
produces a high number of redundant rules, thus proving the
need for a process with which to eliminate them. Toti et al [40]
in another study explained that the traditional interest metrics
of support and confidence need to be substituted for metrics
that focus on risk variations caused by different exposures. They
proposed 2 postprocessing pruning criteria: a rule is pruned if
its 95% CI for the DOR crosses the value of 1 or if there is no
overlapping of the 95% CI of the rule with all of its parents.

Case Study
A database contains 480 patient registries, which were recorded
between 1992 and 2002. In this database, the temporal attributes
that allow the monitoring and evaluation of the response to the
treatment of patients are recorded once a day for 5 days. All
attributes are continuous variables and represent the value
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accumulated during 24 hours. The registered variables are (1)
total of managed liquids measured in cubic centimeters (cc)
represented in the patterns as INC; (2) diuresis in cubic
decimeters (dc) represented in the patterns as DIUR; (3) balance
of fluids in cubic decimeters (dc) represented in the patterns as
BAL; (4) pH; (5) bicarbonate in millimoles/liter (mmol/L)
represented in the patterns as BIC; and (6) excess base in
milliequivalents/liter (mEq/L) represented in the patterns as BE.
Note that fluid balance is not the difference between revenues

and diuresis, but is rather considered to be all the possible
eliminations of fluids.

We have removed from the database only those patients who
died during the course of the study or those for whom it was
not possible to estimate the duration of their hospital stay. After
this cleansing, 465 patients remained, of whom 378 patients
(81.3%) survived, 324 patients (69.7%) were male, and 201
patients (43.2%) had inhalation injuries. Table 3 provides a
summary of the static attributes of the database.

Table 3. Attribute summary.

SDMedianMaximumMinimumAttribute

20.3446.42959Age (years)

10.7771.0512025Weight (kg)

24.2425.021623Length of stay (days)

20.1631.28901Total burn surface area (%)

17.4117.01900Deep burn surface area (%)

9.4920.67586Simplified Acute Physiology Score

Experiments
We carried out the experiments by following the 4-step
knowledge discovery process described in our previous paper
[31]: (1) preprocessing, (2) mining, (3) pattern selection, and
(4) classification.

In the first step, the preprocessing was carried out by employing
2 different discretization methods for the continuous attributes.
One method was attribute discretization performed by an expert.
This method provided the patterns with greater interpretability,
because they are expressed in clinical language. The other
method is the unsupervised correlation preserving discretization
(UCPD), because it provided the best classification in
comparison to several automatic discretization algorithms [41].

In the second step, we used the FaSPIP algorithm [33] to
discover multivariate sequential patterns. We considered pattern
supports ranging from 16% to 6% to find the greatest support
that generates the smallest number of patterns with the best
classification results. This, therefore, enabled us to obtain
interesting patterns, ranging from a small number to thousands
of them (Table 4).

The best results were not produced with the lowest supports,
which seems to imply that there is no overfitting.

The third step consisted of reducing the number of patterns
found to select only those that would be relevant for the
classification. If the support used in the previous step is low,
the number of frequent patterns increases acutely: the pattern
explosion phenomenon is one important disadvantage of using
patterns as predictors for classifiers.

We decided to use a baseline experiment to compare it with our
proposed methods. We therefore employed the frequency
property (because it is frequently used to measure

interestingness) to select discriminative patterns. To this end,
we selected only JEPs that are not common in the subset of
nonsurvivors and survivors, thus enabling us to remove common
behavior or a patient’s evolution that is not discriminative.

Finally, the fourth step consisted of building a classification
model with the constraint that it had to be interpretable. We
wished to obtain a model with a small number of patterns that
would be easy for the physician to interpret. In this case, we
used a rule learner and a decision tree.

On the one hand, we used Repeated Incremental Pruning to
Produce Error Reduction (RIPPER) as a rule learner. With this
sequential covering algorithm, rules are learned one at a time,
and each time a rule is learned, the tuples covered by the rule
are removed. This process is repeated until there are no more
training examples or if the quality of a rule obtained is below
a user-specified threshold. JRIP (the implementation of RIPPER
in WEKA) is one of the best classification algorithms to
combine human readability and accuracy [42].

On the other hand, we choose the J48 decision tree implemented
by WEKA for the C4.5 algorithm. This employs a greedy
technique that is a variant of ID3, which determines the most
predictive attribute in each step, and splits a node based on this
attribute. Mohamed et al [43] explained that J48 produces high
accuracy of classification and simple tree structure. Moreover,
Jiménez et al [19] showed that the J48 decision tree algorithm
provides the simplest model using the ICBU data set, and thus
it is easily interpretable by physicians.

In all cases, we configured the classifiers with the same
minimum number of elements in each leaf to 2% and also with
the minimal weights of rule instances within a split to 2%. The
accuracy, sensitivity, specificity, and AUC were calculated
using a 10-fold cross validation.
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Table 4. Number of interesting patterns selected after mining on the subset of survivors and on the set of nonsurvivors for UCPDa and expert discretization

Experiment 4, differen-
tial + nonoverlapping
DOR

Experiment 3,
nonoverlapping DOR

Experiment 2, differen-
tial DOR

Experiment 1, DORcBaseline

JEPsb
Survival + death
initial patterns

Discretization
and support (%)

BestAllBestAllBestAll<.04, >32<.08, >16

Expert

19823674685823592795750206539146,041 + 83,01510

50470118562195878110,655579814,424493188,084 + 241,8668

129315563803454526,15732,40641,05951,35247,113224,952 + 492,5046

UCPD

2723251415152919902401276614,1582179238,337 + 49,94716

4114872052229634654153748333,9797556396,238 + 68,65414

12121397522864188173990716,27265,56422,940647,943 + 137,54612

aUCPD: unsupervised correlation preserving discretization.
bJEP: Jumping Emerging Pattern.
cDOR: diagnostic odds ratio.

Ethics Approval
The study was approved by the Ethics Committee of Hospital
Universitario de Getafe (38/17, approved on 30/11/2017). This
research study was conducted from data obtained for clinical
purposes. Informed consent was not required.

Results

Overview
The results of the baseline experiment and the results of our 4
different proposals using the DOR are shown below. The

number of patterns generated in the subset of survivors and in
the set of nonsurvivors with different supports is shown in Table
4. We also studied the length of the patterns produced (Table
5). A short pattern is simpler and more general (it covers more
patients). However, a long pattern is more specific (covers fewer
patients) and is harder to understand. It is, therefore, more
difficult to build a classifier with short patterns.

In the discussion, we explore 3 aspects: classification
performance, number and length of patterns selected, and
classification interpretability.

Table 5. Number (and percentage) of interesting patterns by length (from 2 to 10) for 8% expert discretization and selecting all the patterns when it is
possible.

Experiment 4, differential
+ nonoverlapping DOR

(n=701)

Experiment 3,
nonoverlapping
DOR (n=2195)

Experiment 2,
differential DOR

(n=10,655)

Experiment 1b, DOR
(<0.04, >32) (n=5798)

Experiment 1a, DORb

(<0.08, >16)

(n=14,424)

Baseline JEPsa

(n=4931)

Pattern length

39 (5.6)76 (3.5)289 (2.7)0 (0)5 (0.0)0 (0)2

198 (28.2)461 (21.0)2063 (19.4)49 (0.8)187 (1.3)41 (0.8)3

299 (42.7)857 (39.0)3912 (36.7)552 (9.5)1610 (11.2)542 (11.0)4

140 (20.0)612 (27.9)3004 (28.2)1545 (26.6)4176 (29.0)1377 (27.9)5

23 (3.3)175 (8.0)1155 (10.8)1960 (33.8)4811 (33.4)1518 (30.8)6

2 (0.3)14 (0.6)212 (2)1190 (20.5)2698 (18.7)987 (20.0)7

0 (0)0 (0)20 (0.2)407 (7.0)785 (5.4)372 (7.5)8

0 (0)0 (0)0 (0)85 (1.5)139 (1.0)84 (1.7)9

0 (0)0 (0)0 (0)10 (0.2)13 (0.1)10 (0.2)10

aJEP: Jumping Emerging Pattern.
bDOR: diagnostic odds ratio.

Baseline Experiment: Using JEPs
In the baseline experiment, we searched for discriminative
patterns, one of the most important techniques in data mining
[44], where the patterns are pruned using only support

properties. We selected JEPs, signifying that we maintained
patterns found only in the survivors and patterns that occurred
exclusively in the nonsurvivors. In a previous paper [31], we
verified that this type of emerging patterns produces the best
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classification results. Furthermore, in this way there is no need
to set a threshold that could bring out different results.

Table 6 depicts the results of the experiments carried out using
2 discretization algorithms and by varying the pattern support.

Table 6. Results of the baseline experiment with JEPs.a,b

AUCcAccuracy
(%)

Specificity
(%)

Sensitivity
(%)

Average length
(items/pattern)

Total length
(items)

Number of
patterns

Classifier, discretization, and pattern
support (%)

J48

Expert

0.70989.4643.68100.004.7133710

0.78291.8356.32100.004.9484178

0.72089.6844.83100.00580166

UCPDd

0.76391.1852.87100.003.6329816

0.85393.7666.67100.003.7371014

0.79692.4759.77100.004481212

JRIP

Expert

0.70488.8240.23100.004.6337810

0.77792.2658.62100.005.2779158

0.72989.6844.83100.004.8387186

UCPD

0.71190.1147.13100.004.8634716

0.86695.0573.56100.003.5351014

0.83392.9062.07100.004.25511212

aJEP: Jumping Emerging Pattern.
bHighest specificity is in italics.
cAUC: area under the receiver operating characteristic curve.
dUCPD: unsupervised correlation preserving discretization.

As will be noted, the JEPs make it possible to achieve a
sensitivity of 100%, but the specificity has lower values. This
is due to the fact that the data set is imbalanced with a majority
of survivors, and the patterns cover only those patients that will
survive or those that will die. It is necessary to achieve a higher
specificity to predict the nonsurvivors, so the highest specificity
is in italics in Table 6 as a baseline best result.

The expert discretization is preferred by clinicians, because it
is based principally on reference ranges values. But note that it
is possible to improve the results by using an automatic
discretization, such as UCPD (see [41]).

When using expert discretization, the highest specificity
(58.62%) is obtained using the JRIP classifier with 8% support.

This classifier requires 15 patterns, with a total length of 79
items, with the average length per pattern being 5.27 items. As
an example, we show a pattern found in the subset of
nonsurvivors. For each variable, the subindex i marks the i
discretization interval where i=0 is the lowest interval:

< BAL4 < BIC1 < DIUR2 < BE0 (10 nonsurvivors, 0
survivors)

There is also an interesting pattern that appears in all the 5
experiments for the subset of nonsurvivors:

< DIUR3 < INC0 < INC0 < DIUR3 (10 nonsurvivors,
0 survivors)

It would, therefore, be possible to interpret this pattern as “a
patient will die if his/her diuresis is very high on one day, and
during the next 2 days there is a low income with a very high
diuresis the following day.”

Experiment 1: Using the DOR
In this experiment, we calculated the DOR for each pattern as
shown in “Methods” section. In clinical language, a DOR>1
implies that the exposure to the pattern is a risk factor.
Conversely, a DOR<1 implies that the pattern is a protection
factor and selecting a DOR threshold with a very low value
therefore suggests a reduced risk of disease associated with
exposure. A value of DOR=1 signifies that the pattern does not
discriminate between patients with the disorder and those
without it.

The selection of patterns with either a high value or a low value
for the DOR will therefore generate discriminative patterns. It
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is necessary to establish a manual threshold for the value of the
DOR to choose the patterns. We have carried out 2 experiments.
In the first experiment (1a), we have selected the patterns with
a DOR value higher than 16 or lower than 0.08, and in the
second experiment (1b), we have selected more exigent values,
which were double or half the DOR value, that is, with a DOR
value higher than 32 or lower than 0.04. This allowed us to
reduce the number of patterns (Table 4) and we obtained a
number of patterns in Experiment 1b that were similar to those

obtained in the previous experiment. In the more exigent
configuration, the length of the selected patterns was almost 6
(Table 5), which was again similar to the baseline experiment.

Tables 7 and 8 show the classification performance of the 2
experiments using expert discretization and UCPD methods
with different pattern supports. Expert discretization makes it
possible to attain better results than when using JEPs in the
previous experiment (Table 6), and worse results than when
using UCPD.

Table 7. Results of Experiment 1a using the DORa (<0.08, >16).

AUCbAccuracy
(%)

Specificity
(%)

Sensitivity
(%)

Average length
(items/pattern)

Total length
(items)

Number of patternsClassifier, discretization,
and pattern support (%)

J48

Expert

0.76684.9562.0790.215.15671310

0.75983.0158.6288.624.9489188

0.70283.4447.1391.80580166

UCPDc

0.76391.1852.87100.003.6229816

0.78792.9062.07100.003.91431114

0.79692.4759.77100.004481212

JRIP

Expert

0.71684.5255.1791.274.6461010

0.72085.8154.0293.124.8358128

0.70686.6752.8794.444.7967146

UCPD

0.71689.0341.38100.004.1333816

0.82892.9062.07100.003.92471214

0.81692.4759.77100.003.83461212

aDOR: diagnostic odds ratio.
bAUC: area under the receiver operating characteristic curve.
cUCPD: unsupervised correlation preserving discretization.
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Table 8. Results of Experiment 1b using the DORa (<0.04, >32).

AUCbAccuracy
(%)

Specificity
(%)

Sensitivity
(%)

Average length
(items/pattern)

Total length
(items)

Number of patternsClassifier, discretization,
and pattern support (%)

J48

Expert

0.71085.5950.5793.654.9491010

0.76786.8855.1794.184.9484178

0.65684.7337.9395.50580166

UCPDc

0.76391.1852.87100.003.6229816

0.78792.9062.07100.003.91431114

0.79692.4759.77100.004481212

JRIP

Expert

0.70487.3144.8397.094.55501110

0.80189.2562.0795.504.7967148

0.71588.8248.2898.155.4487166

UCPD

0.72790.1147.13100.003.7126716

0.79292.6960.92100.004.09451114

0.82292.6960.92100.003.93551412

aDOR: diagnostic odds ratio.
bAUC: area under the receiver operating characteristic curve.
cUCPD: unsupervised correlation preserving discretization.

If we choose expert discretization, with a JRIP classifier and
the highest values of the DOR (Table 8), we obtain a higher
specificity than with JEPs (62.07%), but a lower sensitivity
(95.50%). This can be explained as follows: if we look at one
of the 14 patterns used in that classifier, we can find an example
of a short pattern with only 3 items:

BIC1 < BAL4 < PH1 (72.30 DOR) (14 nonsurvivors,
1 survivor)

This pattern, with a DOR value of 72.30, classifies a group of
patients that will die, although we know that there will be
minimal errors (1 patient survives).

We selected the pattern DIUR3 < INC0 < INC0 < DIUR3 in this
experiment because it has a DOR value of 98.05, and it is
necessary to recall that all the patients in this pattern will die
(10 deaths, 0 survivors). This kind of JEP therefore produces a
good specificity, and consequently 100% sensitivity (there are
no classification errors).

Experiment 2: Using the Differential DOR Between a
Pattern and Its Extensions
A sequential pattern pi, of a specific length (l), in a point in time
(t), has a DOR value DOR(pi). In every extension of this pattern
(l+1), which could be an S-extension (in the next time, t+1) or
an I-extension (in the same time, t), there will be n several
patterns (pi1, pi2, ..., pin) that are children of super-pattern pi with

different DOR values, . In this experiment, we choose only
the patterns that had a difference in DOR value between the
super-pattern and its extensions higher than a threshold γ, that
is DOR(pi) – DOR(pij) > γ.

For a better interpretation of the DOR, we calculated the risk
factor probability R(pi) and the protection factor probability
P(pi) as shown in the next equations:

R(pi) = DOR(pi)/[DOR(pi) + 1]

P(pi) = 1 – R(pi)

In our experiment we, therefore, selected the patterns with 2
conditions: (1) when the difference between the risk factor
probability R(pi) was greater than 25% or (2) when the
difference between the protection factor probability P(pi) was
greater than 30%. We chose a lower threshold value for R(pi)
because we wished to obtain a higher specificity by having more
patterns that were representative of nonsurvivors. In this
experiment we obtained patterns with a high quality that
produced great changes in the evolution of the patients.

We additionally used 2 alternative strategies to select patterns:
it is possible to maintain all the extensions with a difference in
the DOR value that is higher than a threshold or to explore the
extensions with a beam search, in which case we select only
the most promising extension with the highest DOR difference
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among all extensions. Tables 9 and 10 show the results attained
using both strategies.

With regard to the number of patterns selected (Table 4), when
we have chosen the best extension, we have only reduced the
total number of patterns by less than one-third because the
majority of the patterns only have 1 or 2 extensions.

If we study the length of the patterns (Table 5), in this
experiment (and in those that follow) the majority of the patterns
have a length of around 4, and it is now possible to find more
patterns with a shorter length. Note that the distribution of
patterns by length has changed. We currently have more general

patterns that are shorter. This produces worse classification
results when we use expert discretization with a JRIP classifier.
It is well known that expert discretization usually performs
worse because it is not based on a statistical or information
theory that has been specifically designed for classification
purposes. This also occurs in almost all of the following
experiments.

However, the results obtained with UCPD are similar, and even
with the JRIP classification and beam search, we need the lowest
number of items and patterns from all the experiments: only 5
patterns with a total length of 20 items are required to attain
56.32% specificity.

Table 9. Results of Experiment 2a using the differential DORa (keeping all pattern extensions).

AUCbAccuracy
(%)

Specificity
(%)

Sensitivity
(%)

Average length
(items/pattern)

Total length
(items)

Number of patternsClassifier, discretization,
and pattern support (%)

J48

Expert

0.66281.9449.4389.423.571002810

0.77381.9462.0786.514.2489218

0.69486.6744.8396.304.6784186

UCPDc

0.67785.3849.4393.653.86812116

0.75987.7456.3294.973.73561514

0.78892.2658.62100.004.33521212

JRIP

Expert

0.62079.5731.0390.743.2513410

0.60076.1329.8986.773.132588

0.59478.4929.8989.682.33736

UCPD

0.59480.0024.1492.863.70371016

0.67482.8033.3394.183.73411114

0.83189.6862.0796.033.2526812

aDOR: diagnostic odds ratio.
bAUC: area under the receiver operating characteristic curve.
cUCPD: unsupervised correlation preserving discretization.
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Table 10. Results of Experiment 2b using the differential DORa (using beam search for best pattern extension).

AUCbAccuracy
(%)

Specificity
(%)

Sensitivity
(%)

Average length
(items/pattern)

Total length
(items)

Number of patternsClassifier, discretization,
and pattern support (%)

J48

Expert

0.64280.8644.8389.153.65732010

0.78382.8062.0787.574.1988218

0.71087.3143.6897.354.6784186

UCPDc

0.67585.3849.4393.653.86812116

0.76087.5356.3294.713.73561514

0.76492.0457.47100.004.33521212

JRIP

Expert

0.58277.6327.5989.153.28591810

0.56977.6321.8490.483.41758

0.62380.2231.0391.533.622986

UCPD

0.61879.3528.7491.013.4431916

0.68383.0134.4894.183.74711914

0.76789.4656.3297.09420512

aDOR: diagnostic odds ratio.
bAUC: area under the receiver operating characteristic curve.
cUCPD: unsupervised correlation preserving discretization.

The J48 classification tree used to classify with expert
discretization and 8% support, using beam search for the best
pattern extension, makes it possible to attain 62.07% specificity,
and require 21 patterns, with an average length of 4.19 items
per pattern. This average is the lowest value of all the
experiments carried out using the J48 classifier with expert
discretization. Within these 21 patterns, we can find 2 patterns
with only 2 items, which are used to classify the survivors:

DIUR3 < BE2 (40.23% PROTECTION) (43 deaths,
150 survivors)

INC2 = PH3 (43.58% PROTECTION) (35 deaths, 176
survivors)

The first pattern, DIUR3 < BE2, is interesting because if the PH
is very high the next day and has the extension DIUR3 < BE2 <
PH4 (78.85% PROTECTION; 5 deaths, 70 survivors), the patient
survival rate increases by 38.62%.

Furthermore, we have discovered a pattern with which to
classify the nonsurvivors that can also be found in the J48 tree
classifiers of the subsequent experiments, and that was not
selected in the classification algorithms used in the previous
experiments:

pi1 = BIC1 < BIC1 < PH1 (98.87% RISK; 9 deaths, 0
survivors)

This pattern has a DOR value of DOR(pi1) = 87.12, with a risk
probability of R(pi1) = 98.87%. It has been selected because its
super-pattern pi = BIC1 < BIC2 (44 deaths, 111 survivors) has
a DOR value of DOR(pi1) = 2.46, with a risk probability of R(pi)
= 71.1%. This signifies that there is an increase in the risk of
R(pi1) – R(pi1) = 27.77%, which is higher than the 25% fixed
threshold.

Experiment 3: Using the Nonoverlapping of the CI of
the DOR
In this experiment, we have selected patterns based on the
nonoverlapping of 95% CI of the DOR (as stated in [38]). In
addition, only patterns whose CI does not include the value 1
have been included in the output (as occurred in [40]). All the
patterns are, therefore, either a protector factor or a risk factor,
but not both or undetermined.

Table 11 shows the results obtained when we maintain all the
pattern extensions, while Table 12 shows the results obtained
when only the best pattern extension is chosen using beam
search.

We also obtain a reduced number of patterns with respect to the
previous experiment (Table 4), and an advantage of this
experiment is that this number does not depend on a threshold
value.
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In general, the classification performance is similar to that of
the previous experiments, although with the JRIP classification
using expert discretization, we obtain better results when
selecting only the best child.

The J48 classification tree used to classify with expert
discretization, and 8% support, using beam search for best
pattern extension, allows us to obtain 58.62% specificity and a
higher sensitivity than the previous experiment: 16 patterns are
required.

One of the shortest patterns that we find in the J48 classification
tree is:

PH4 < PH4 < BE1 (6 deaths, 1 survivors)

This pattern has a DOR value of 27.93 in the interval (6.71,
116.26). Its super-pattern PH4 < PH4 (14 deaths, 109 survivors)
has a DOR value of 0.47 in the interval (0.26, 0.87). Note that
the CI of these patterns does not overlap.

Table 11. Results of Experiment 3a using the nonoverlapping CI of DORa (keeping all pattern extensions).

AUCbAccuracy
(%)

Specificity
(%)

Sensitivity
(%)

Average length
(items/pattern)

Total length
(items)

Number of patternsClassifier, discretization,
and pattern support (%)

J48

Expert

0.72185.3848.2893.924.1411010

0.74188.1758.6294.974.8177168

0.76889.0356.3296.56590186

UCPDc

0.79489.8957.4797.353.89701816

0.80392.6962.0799.743.91431114

0.78692.0457.47100.004.27471112

JRIP

Expert

0.68283.8741.3893.653.36371110

0.64180.8633.3391.804.6260138

0.72286.4542.5396.564.293076

UCPD

0.72786.0241.3896.303.8323616

0.80390.9756.3298.943.6733914

0.79389.6860.9296.304.14581412

aDOR: diagnostic odds ratio.
bAUC: area under the receiver operating characteristic curve.
cUCPD: unsupervised correlation preserving discretization.
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Table 12. Results of Experiment 3b using the nonoverlapping CI of DORa (using beam search for best pattern extension).

AUCbAccuracy
(%)

Specificity
(%)

Sensitivity
(%)

Average length
(items/pattern)

Total length
(items)

Number of patternsClassifier, discretization,
and pattern support (%)

J48

Expert

0.74286.2451.7294.184.1411010

0.73987.9658.6294.714.8177168

0.75889.0355.1796.83590186

UCPDc

0.79888.6055.1796.304.25681616

0.79592.9062.07100.003.92511314

0.81292.6960.92100.004.09451112

JRIP

Expert

0.73585.8148.2894.443.3320610

0.70085.1641.3895.243.8862168

0.74787.7452.8795.774.2551126

UCPD

0.69585.1640.2395.504.13661616

0.74789.6854.0297.883.67441214

0.78890.9755.1799.214601512

aDOR: diagnostic odds ratio.
bAUC: area under the receiver operating characteristic curve.
cUCPD: unsupervised correlation preserving discretization.

Experiment 4: Using a Differential DOR With the
Nonoverlapping of the CI
The last proposal consists of using the previous 2 approaches
together (Experiments 2 and 3), signifying that we prune the
patterns based on the overlapping of the CI of the DOR, and
also based on the difference between the risk (or protection)
factor probabilities. In both cases, we maintain the same
thresholds.

In this experiment we substantially reduced the number of
patterns generated (Table 4). For example, in the case of expert
discretization and 8% support (keeping all pattern extensions),
we obtained only 701 patterns with this experiment, which is a
decrease of 68.06% from nonoverlapping DOR (with 2195
patterns) and a decrease of 85.78% with respect to the baseline
experiment (with 4931 patterns).

It is necessary to consider that if the number of patterns is too
low, we do not usually achieve a good classification result. But

with this experiment, for example, with 8% support, expert
discretization, and the J48 classifier, with only 504 patterns, we
have obtained a similar result to previous ones, using only 13
patterns in the classifier, with a sensitivity of 96.30% and a
specificity of 57.47% in the beam search for the best pattern
extension (Table 13). This is the lowest number of patterns
required for expert and J48 discretization, with a total length of
only 55 items.

The classification performance, as is shown in Tables 13 and
14, is similar to that of the previous experiments.

Let us now analyze the pattern that is selected in this experiment
and in all the previous experiments: DIUR3 < INC0 < INC0 <
DIUR3 (10 deaths, 0 survivors). It has a DOR value of 98.05 in
the interval (24.21, 397.18), with a risk probability of 98.99%.
Its super-pattern DIUR3 < INC0 < INC0 has a DOR value of
2.07 in the interval (1.20, 3.57) with a risk probability of
67.39%, signifying that there is no overlapping in the CI, and
that there is an increase in the risk probability of 31.6%.
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Table 13. Results of Experiment 4b using the differential DORa and the nonoverlapping CI (using beam search for best pattern extension).

AUCbAccuracy
(%)

Specificity
(%)

Sensitivity
(%)

Average length
(items/pattern)

Total length
(items)

Number of patternsClassifier, discretization,
and pattern support (%)

J48

Expert

0.69485.3841.3895.503.5351010

0.77089.0357.4796.304.2355138

0.73989.4650.5798.414.6975166

UCPDc

0.75885.8150.5793.923.7742016

0.80889.6858.6296.83428714

0.81292.4759.77100.004.17501212

JRIP

Expert

0.59780.0025.2992.593.521610

0.61480.2229.8991.803.0743148

0.62680.8629.8992.593.857156

UCPD

0.67185.3835.6396.833.7371016

0.67386.2432.1898.683.6361014

0.75989.6850.5798.683.93591512

aDOR: diagnostic odds ratio.
bAUC: area under the receiver operating characteristic curve.
cUCPD: unsupervised correlation preserving discretization.
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Table 14. Results of Experiment 4a using the differential DORa and the nonoverlapping CI (keeping all pattern extensions).

AUCbAccuracy
(%)

Specificity
(%)

Sensitivity
(%)

Average length
(items/pattern)

Total length
(items)

Number of patternsClassifier, discretization,
and pattern support (%)

J48

Expert

0.67284.9544.8394.183.23421310

0.74387.9655.1795.504.2355138

0.71188.3947.1397.884.5978176

UCPDc

0.76186.6750.5794.973.7742016

0.80490.9758.6298.41428714

0.82093.5565.52100.004.17501212

JRIP

Expert

0.62281.2929.8993.123.2513410

0.62582.3729.8994.443.3340128

0.66881.9439.0891.803.774206

UCPD

0.63281.9427.5994.443.4324716

0.65385.1632.1897.353.8323614

0.79591.4059.7798.683.94631612

aDOR: diagnostic odds ratio.
bAUC: area under the receiver operating characteristic curve.
cUCPD: unsupervised correlation preserving discretization.

Discussion

Principal Findings
We have proposed different ways of using the DOR as a single
indicator of diagnostic performance, by carrying out a
classification of the survival of patients in an ICBU by studying
their daily evolution using multivariate sequential patterns. We
now discuss the factors that we have to consider to have a
trade-off mainly between interpretability and classification
performance.

In relation to interpretability, a model is more interpretable than
another model if its decisions are easier for a human to
comprehend than decisions from the other model. In this sense,
the presented method shows 3 advantages: (1) the readability
and interpretability of the content of the patterns, (2) the reduced
length of the patterns, and (3) the small set of significant patterns
selected to build the classifier.

Of these 3 advantages, the most direct one for the clinician is
that the patterns themselves have an interpretation in the
language understood by the clinician, who does not have to
spend time looking for a correspondence between what he/she
read in the pattern and his/her usual way of working. Moreover,
the definition of the patterns provides not only static information
about the patient at admission time, as it is usual, but also the
evolution of the patient. For example, a pattern like DIUR3 <

INC0 < INC0 < DIUR3 leads the clinician to the clinical factors
related to the pattern: high diuresis and very low incomings
during 4 different days.

For the second factor, if we study the length of the patterns
eventually selected (Table 5), it will be noted that the majority
of the patterns in the baseline experiment (using JEPs) and in
the first experiment (using DOR) have a length of 6 items,
whereas the majority of the patterns in the subsequent
experiments have a length of 4 items. We can observe that the
distribution of patterns by length has changed, with a larger
number of shorter patterns in the last experiments, which are
more difficult to use in a classifier, because they are more
general. In subsequent Experiments 2-4, we have observed that,
on the one hand, the classifier is less accurate. On the other
hand, the shorter patterns are easier to understand, more general,
and describe the population well, but simultaneously cover
survivors and nonsurvivors.

Overall, these shorter patterns produce worse classification
results when we use expert discretization with a JRIP classifier.
On the one hand, expert discretization generally performs worse,
because it is not based on a statistical or information theory that
has been specifically designed for classification purposes, and
on the other hand, JRIP provides the best performance in terms
of the complexity of the tree structure, while J48 produces a
high classification accuracy (as the authors explain in [43]).
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With shorter patterns, however, it is easier to interpret the
meaning of the patterns and explain their behavior.

With respect to the third factor, we could say that a model that
allows us to achieve a good classification result with a low
number of patterns (and consequently of items) is, therefore,
preferable. In Table 4 we obtained the smallest number of
patterns with Experiment 4 (using a differential DOR and the
nonoverlapping of the CI). These patterns are simultaneously
restricted by these 2 conditions, and as we have selected a small
number of patterns, it might even be interesting to carry out a
manual revision and a study of them (although that is out of the
scope of this work).

The baseline experiment (using JEPs) and Experiment 3
(nonoverlapping CI of DOR) do not depend on a threshold value
and we also obtain a reasonably small number of patterns.
Nevertheless the threshold value that has been established in
the other experiments (Experiments 1, 2, and 4) leads to changes
in the number of patterns eventually selected. We have therefore
made 2 variations in Experiment 1 (using DOR), by restricting
the minimum DOR value that is necessary to select patterns
(Table 8), signifying that we have been able to reduce
significantly the appropriate number of patterns selected.

When we work with imbalanced data, as is usual in medical
domains, it is necessary to highlight the correct classification
of rarely occurring cases when compared with other general
cases. It is consequently necessary to check the highest
specificity to choose the best classification result, which in our
experiments is produced by using UCPD automatic
discretization with JEPs as a classical frequency-based
discriminative measure. JEPs have usually been used to build
accurate classifiers, while UCPD exploits the underlying
correlation structure in the data so as to obtain the discrete
intervals and ensure that the inherent correlations are preserved.

Moreover, we have generally shown that this automatic
discretization performs better classifications than expert
discretization. But clinicians prefer to use a reference range
discretization for laboratory and physiologic values. This
signifies that, for example, they prefer to use the interval (7.35,
7.45) as a normal value for PH, as it is usually managed in
medicine. The interpretability of the classification results by
using expert discretization is, therefore, a prevailing factor in
our choice. A summary of the principal results of the
experiments using only expert discretization is shown in Table
15.

Table 15. Comparison of experimental results with the highest specificity using expert discretization.

AUCaAccuracy
(%)

Specificity
(%)

Sensitivity
(%)

Average length
(items/pattern)

Total length
(items)

Number of patternsExperiment, classifier, and pattern
support (%)

JEPsb

0.78291.8356.32100.004.9484178J48

0.77792.2658.62100.005.2779158JRIP

1b: DORc

0.76786.8855.1794.184.9484178J48

0.80189.2562.0795.504.7967148JRIP

2b: Differential DOR

0.78382.8062.0787.574.1988218J48

0.62380.2231.0391.533.622986JRIP

3b: Nonoverlapping DOR

0.73987.9658.6294.714.8177168J48

0.74787.7452.8795.774.2551126JRIP

4b: Differential + nonoverlapping
DOR

0.77089.0357.4796.304.2355138J48

0.62680.8629.8992.593.857156JRIP

aAUC: area under the receiver operating characteristic curve.
bJEP: Jumping Emerging Pattern.
cDOR: diagnostic odds ratio.

If we therefore consider only expert discretization, the best
classification result is achieved in Experiment 1b (using DOR),
with a specificity of 62.07% and an AUC value of 0.801 (Table
8). In this experiment we simultaneously obtained patterns found
in both the survivors and the nonsurvivors based on only the
DOR value of each pattern.

The classification model that is easiest to comprehend and has
high specificity requires only 5 patterns (with a total length of
20 items) and is achieved with UCPD and a JRIP classifier in
Experiment 2b (differential DOR) using beam search for the
best pattern. It obtains a specificity of 56.32% and an AUC
value of 0.767 (Table 10).
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If we take into consideration only expert discretization, with a
J48 classifier we need at least 13 patterns (with a total length
of 55 items) to obtain a specificity of 57.47% and an AUC value
of 0.770 (Table 13) in Experiment 4b (using a differential and
a nonoverlapping DOR).

Conclusions
In this research, we have developed a model to predict the
survival of patients by considering 2 aspects: the relevance of
the temporal evolution of the patients as part of the model and
an interpretable model for the physicians. We have achieved
these aspects by (1) using the multivariate sequential patterns
used in classification models that can be easily understood by
experts, (2) using a reduced number of patterns, and (3) using
a language that is well known by clinicians with regard to both
the discretization of values and measures of interest of the
patterns.

The main contribution of this work is the proposal and
evaluation of 4 ways in which to employ DOR to reduce the
number of patterns and to select only the most discriminative
ones, because pattern explosion is a principal problem in
pattern-based classifiers. We have compared the 4 proposals
with a baseline experiment using JEPs. This is, to the best of
our knowledge, the first time that some of these approaches
have been proposed and compared in scientific literature.

With regard to the number of patterns, the best option is that of
using both a differential and a nonoverlapping DOR (as in
Experiment 4). As we have increased the restrictions applied,
we have significantly reduced the number of patterns, thus
attaining more general, simple, and interesting patterns. With
expert discretization and 10% support, there are, for example,
only 198 patterns (using beam search for best pattern), and, very
interestingly, these patterns cover all the patients who did not
survive. Despite not being within the scope of this paper, it
would be interesting for a clinician to carry out a manual
interpretation of these patterns.

This experiment provides the second contribution of this paper,
because we have shown that beam search with the DOR could
be used in the algorithm to extract sequential patterns for

classification rather than using a traditional algorithm for
sequential pattern mining.

Despite the efforts made to reduce the amount and the length
of patterns in Experiments 2-4, in which we have compared
each pattern with its extensions, the classifier built is less
accurate. The shorter patterns are easier to understand, more
general, and describe the population well, but simultaneously
cover survivors and nonsurvivors.

With regard to accuracy, the best classification results are, not
surprisingly, produced using JEPs along with UCPD. JEPs have
been extensively used to build accurate classifiers and produce
better results when we use a discretization based on statistical
or information theory that is specifically intended for
classification. Nevertheless, we require interpretable patterns
that are easy for the clinician to understand, and must therefore
use a reference range discretization created by an expert. If we
consider only expert discretization, the highest specificity is
attained using only the DOR to select the patterns (as in
Experiment 1; Table 15).

With regard to interpretability, we can observe that discretization
has a great impact on classification performance at the expense
of interpretability, because more and longer patterns are
required. With UCPD, we require only 5 patterns (with a total
length of 20 items) to build a rule set and to obtain 56.32%
specificity when we use the differential DOR (see Experiment
2). With expert discretization, we need at least 13 patterns (with
a total length of 55 items) to obtain a specificity of 57.47%
using both a differential and a nonoverlapping DOR to select
the patterns (see Experiment 4).

Our future research will consist of exploring domain-based
measures to evaluate clinical patterns or to reduce the number
of patterns in postprocessing to an even greater extent. In this
respect, we intend to investigate more specific properties, such
as closed, maximal, or minimal patterns as a trade-off between
improving classification performance and not losing information
or representativeness of the population. The researchers
additionally intend to explore other measures and search
strategies that could be integrated into new algorithms.

 

Acknowledgments
This work was partially funded by the SITSUS project (Ref: RTI2018-094832-B-I00), the CONFAINCE project (Ref:
PID2021-122194OB-I00), supported by the Spanish Ministry of Science and Innovation the Spanish Agency for Research
(MCIN/AEI/10.13039/501100011033) and, as appropriate, by ERDF A way of making Europe.

Conflicts of Interest
None declared. This work does not relate to the employment of AG at Amazon.

References
1. Batal I, Fradkin D, Harrison J, Moerchen F, Hauskrecht M. Mining Recent Temporal Patterns for Event Detection in

Multivariate Time Series Data. : ACM Press; 2012 Presented at: Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2012; August 12-16; Beijing, China p. 280-288 URL: http:/
/europepmc.org/abstract/MED/25937993 [doi: 10.1145/2339530.2339578]

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e32319 | p.60https://medinform.jmir.org/2022/8/e32319
(page number not for citation purposes)

Casanova et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://europepmc.org/abstract/MED/25937993
http://europepmc.org/abstract/MED/25937993
http://dx.doi.org/10.1145/2339530.2339578
http://www.w3.org/Style/XSL
http://www.renderx.com/


2. Bringmann B, Nijssen S, Zimmermann A. Pattern-Based Classification: A Unifying Perspective. 2009 Presented at: From
Local Patterns to Global Models: Proceedings of the ECML/PKDD-09 Workshop (LeGo-09); September 7-11; Bled,
Slovenia p. 36-50 URL: http://arxiv.org/abs/1111.6191

3. Fan H. Efficient Mining of Interesting Emerging Patterns and Their Effective Use in Classification (PhD thesis). The
Department of Computer Science and Software Engineering, University of Melbourne. 2004. URL: http://hdl.handle.net/
11343/38912 [accessed 2022-07-25]

4. Han J, Cheng H, Xin D, Yan X. Frequent pattern mining: current status and future directions. Data Min Knowl Disc 2007
Jan 27;15(1):55-86. [doi: 10.1007/s10618-006-0059-1]

5. He Z, Gu F, Zhao C, Liu X, Wu J, Wang J. Conditional discriminative pattern mining: Concepts and algorithms. Information
Sciences 2017 Jan;375:1-15. [doi: 10.1016/j.ins.2016.09.047]

6. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM. The diagnostic odds ratio: a single indicator of test performance.
Journal of Clinical Epidemiology 2003 Nov;56(11):1129-1135. [doi: 10.1016/s0895-4356(03)00177-x]

7. Agrawal R, Srikant R. Mining sequential patterns. In: Proceedings of the Eleventh International Conference on Data
Engineering. New York, NY: IEEE; 1995 Presented at: Eleventh International Conference on Data Engineering; Taipei,
Taiwan; March 6-10, 1995 p. 3-14. [doi: 10.1109/icde.1995.380415]

8. Srikant R, Agrawal R. Mining sequential patterns: Generalizations and performance improvements. In: Apers P, Bouzeghoub
M, Gardarin G, editors. Advances in Database Technology — EDBT '96. Berlin, Heidelberg: Springer; 1996:1-17.

9. Zaki MJ. SPADE: an efficient algorithm for mining frequent sequences. Machine Learning 2001;42(1/2):31-60. [doi:
10.1007/3-540-45357-1_32]

10. Jian Pei, Jiawei Han, Mortazavi-Asl B, Jianyong Wang, Pinto H, Qiming Chen, Mei-Chun Hsu. Mining sequential patterns
by pattern-growth: the PrefixSpan approach. IEEE Trans. Knowl. Data Eng 2004 Nov;16(11):1424-1440. [doi:
10.1109/tkde.2004.77]

11. Gan W, Lin JC, Fournier-Viger P, Chao H, Yu PS. A Survey of Parallel Sequential Pattern Mining. ACM Trans. Knowl.
Discov. Data 2019 Jul 17;13(3):1-34. [doi: 10.1145/3314107]

12. Li W, Han J, Pei J. CMAR: accurate and efficient classification based on multiple class-association rules. In: IEEE Xplore.
New York, NY: IEEE; 2001 Presented at: 2001 IEEE International Conference on Data Mining; August 7, 2002; San Jose,
CA p. 369-376. [doi: 10.1109/icdm.2001.989541]

13. Nofal M, Bani-Ahmad S. Classification Based on Association-Rule Mining Techniquese a General Survey and Empirical
Comparative Evaluation. Ubiquitous Computing and Communication Journal 2010;5(3):9-17 [FREE Full text]

14. Xing Z, Pei J, Keogh E. A brief survey on sequence classification. SIGKDD Explor. Newsl 2010 Nov 09;12(1):40-48. [doi:
10.1145/1882471.1882478]

15. Hu B, Chen Y, Keogh E. Time Series Classification under More Realistic Assumptions. Philadelphia, PA: Society for
Industrial and Applied Mathematics; 2013 Presented at: Proceedings of the 2013 SIAM International Conference on Data
Mining; May 2-4, 2013; Texas, USA p. 578-586. [doi: 10.1137/1.9781611972832.64]

16. Drezewski R, Dziuban G, Hernik L, Paczek M. Comparison of data mining techniques for Money Laundering Detection
System. New York, NY: IEEE; 2015 Presented at: 2015 International Conference on Science in Information Technology
(ICSITech); October 27-28, 2015; Yogyakarta, Indonesia p. 5-10. [doi: 10.1109/icsitech.2015.7407767]

17. Lesh N, Zaki M, Ogihara M. Mining features for sequence classification. In: Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining - KDD 99. New York, NY: ACM; 1999 Presented at:
KDD99: The First Annual International Conference on Knowledge Discovery in Data; August 15-18, 1999; San Diego,
CA p. 342-346. [doi: 10.1145/312129.312275]

18. Tseng VSM, Lee CH. CBS: A new classification method by using sequential patterns. : Society for Industrial and Applied
Mathematics; 2005 Presented at: 2005 SIAM International Conference on Data Mining (SDM 2005); April 21-23, 2005;
Newport Beach, CA p. 596-600. [doi: 10.1137/1.9781611972757.68]

19. Jiménez F, Sanchez G, Juarez JM. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.
Artif Intell Med 2014 Mar;60(3):197-219. [doi: 10.1016/j.artmed.2013.12.006] [Medline: 24525210]

20. Geng L, Hamilton HJ. Interestingness measures for data mining. ACM Comput. Surv 2006 Sep 30;38(3):9. [doi:
10.1145/1132960.1132963]

21. Li J, Fu AWC, He H, Chen J, Jin H, McAullay D, et al. Mining risk patterns in medical data. In: KDD '05: Proceedings of
the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. New York, NY: ACM;
2005 Presented at: KDD05: The Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining; August 21-24, 2005; Chicago, IL p. 770-775. [doi: 10.1145/1081870.1081971]

22. Li J, Fu AW, Fahey P. Efficient discovery of risk patterns in medical data. Artif Intell Med 2009 Jan;45(1):77-89. [doi:
10.1016/j.artmed.2008.07.008] [Medline: 18783927]

23. Wu S, Zhao Y, Zhang H, Zhang C, Cao L, Bohlscheid H. Debt Detection in Social Security by Adaptive Sequence
Classification. In: Lecture Notes in Computer Science. Vol 5914 LNAI. Berlin Heidelberg: Karagiannis D, Jin Z. eds.
Springer; 2009 Presented at: Knowledge Science, Engineering and Management. KSEM 2009; november 25-27; Vienna,
Austria p. 192-203. [doi: 10.1007/978-3-642-10488-6_21]

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e32319 | p.61https://medinform.jmir.org/2022/8/e32319
(page number not for citation purposes)

Casanova et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://arxiv.org/abs/1111.6191
http://hdl.handle.net/11343/38912
http://hdl.handle.net/11343/38912
http://dx.doi.org/10.1007/s10618-006-0059-1
http://dx.doi.org/10.1016/j.ins.2016.09.047
http://dx.doi.org/10.1016/s0895-4356(03)00177-x
http://dx.doi.org/10.1109/icde.1995.380415
http://dx.doi.org/10.1007/3-540-45357-1_32
http://dx.doi.org/10.1109/tkde.2004.77
http://dx.doi.org/10.1145/3314107
http://dx.doi.org/10.1109/icdm.2001.989541
https://www.ubicc.org/files/pdf/507_507.pdf
http://dx.doi.org/10.1145/1882471.1882478
http://dx.doi.org/10.1137/1.9781611972832.64
http://dx.doi.org/10.1109/icsitech.2015.7407767
http://dx.doi.org/10.1145/312129.312275
http://dx.doi.org/10.1137/1.9781611972757.68
http://dx.doi.org/10.1016/j.artmed.2013.12.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24525210&dopt=Abstract
http://dx.doi.org/10.1145/1132960.1132963
http://dx.doi.org/10.1145/1081870.1081971
http://dx.doi.org/10.1016/j.artmed.2008.07.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18783927&dopt=Abstract
http://dx.doi.org/10.1007/978-3-642-10488-6_21
http://www.w3.org/Style/XSL
http://www.renderx.com/


24. Heierman E, Youngblood M, Cook D. Mining temporal sequences to discover interesting patterns. 2004 Presented at: Third
International Workshop on Mining Temporal and Sequential Data (TDM-04); August 22, 2004; Seattle, WA.

25. Petitjean F, Li T, Tatti N, Webb GI. Skopus: Mining top-k sequential patterns under leverage. Data Min Knowl Disc 2016
Jun 14;30(5):1086-1111. [doi: 10.1007/s10618-016-0467-9]

26. Li I, Huang J, Liao I, Lin J. A sequence classification model based on pattern coverage rate. In: Lecture Notes in Computer
Science, vol 7861. Springer. Berlin, Heidelberg, Germany: Springer; 2013 Presented at: Grid and Pervasive Computing:
GPC 2013; May 9-11; Seoul, Korea p. 737-745. [doi: 10.1007/978-3-642-38027-3_81]

27. Toma T, Abu-Hanna A, Bosman R. Discovery and integration of univariate patterns from daily individual organ-failure
scores for intensive care mortality prediction. Artif Intell Med 2008 May;43(1):47-60. [doi: 10.1016/j.artmed.2008.01.002]
[Medline: 18394871]

28. Toma T, Bosman R, Siebes A, Peek N, Abu-Hanna A. Learning predictive models that use pattern discovery--a bootstrap
evaluative approach applied in organ functioning sequences. J Biomed Inform 2010 Aug;43(4):578-586 [FREE Full text]
[doi: 10.1016/j.jbi.2010.03.004] [Medline: 20332034]

29. Ghosh S. Multivariate Sequential Contrast Pattern Mining and Prediction Models for Critical Care Clinical Informatics
(Thesis). OPUS.: University of Technology Sydney; 2017. URL: http://hdl.handle.net/10453/123204 [accessed 2022-07-25]

30. Sheppard N, Hemington-Gorse S, Shelley O, Philp B, Dziewulski P. Prognostic scoring systems in burns: a review. Burns
2011 Dec;37(8):1288-1295. [doi: 10.1016/j.burns.2011.07.017] [Medline: 21940104]

31. Casanova IJ, Campos M, Juarez JM, Fernandez-Fernandez-Arroyo A, Lorente JA. Using Multivariate Sequential Patterns
to Improve Survival Prediction in Intensive Care Burn Unit. In: Lecture Notes in Computer Science, vol 9105. Cham,
Switzerland: Springer; 2015 Presented at: AIME 2015: Artificial Intelligence in Medicine; June 17-20; Pavia, Italy p.
277-286. [doi: 10.1007/978-3-319-19551-3_36]

32. Allen J. Maintaining Knowledge about Temporal Intervals. Readings in Qualitative Reasoning About Physical Systems
2013;11(26):361-372. [doi: 10.1016/b978-1-4832-1447-4.50033-x]

33. Gomariz A. Techniques for the Discovery of Temporal Patterns (PhD Thesis). University of Murcia (Spain), University of
Antwerp (Belgium). 2014. URL: http://hdl.handle.net/10201/38109 [accessed 2022-07-25]

34. Dong G, Li J. Efficient mining of emerging patterns. In: Proceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD '99. New York, NY: ACM; 1999 Presented at: KDD99: The First Annual
International Conference on Knowledge Discovery in Data; August 15-18, 1999; San Diego, CA p. 43-52. [doi:
10.1145/312129.312191]

35. Dong G, Li J, Zhang X. Discovering Jumping Emerging Patterns and Experiments on Real Data sets. 1999 Jul Presented
at: 9th International Database Conference on Heterogeneous and Internet Databases (IDC); July 15-17, 1999; Hong Kong
p. 15-17 URL: http://corescholar.libraries.wright.edu/knoesis/402

36. Li J, Dong G, Ramamohanarao K. Making Use of the Most Expressive Jumping Emerging Patterns for Classification.
Knowledge and Information Systems 2001 May;3(2):131-145. [doi: 10.1007/pl00011662]

37. Dong G, Zhang X, Wong L, Li J. CAEP: Classification by aggregating emerging patterns. In: Lecture Notes in Computer
Science. Vol 1721.: Springer Berlin Heidelberg; 1999 Presented at: International Conference on Discovery Science (DS
1999); December, 6-8; Tokyo, Japan p. 30-42. [doi: 10.1007/3-540-46846-3_4]

38. Li J, Liu J, Toivonen H, Satou K, Sun Y, Sun B. Discovering statistically non-redundant subgroups. Knowledge-Based
Systems 2014 Sep;67:315-327. [doi: 10.1016/j.knosys.2014.04.030]

39. Toti G, Vilalta R, Lindner P, Price D. Effect of the Definition of Non-Exposed Population in Risk Pattern Mining. 2016
Jan Presented at: In 5th Workshop on Data Mining for Medicine and Healthcare; May 7, 2016; Miami, FL p. 5.

40. Toti G, Vilalta R, Lindner P, Lefer B, Macias C, Price D. Analysis of correlation between pediatric asthma exacerbation
and exposure to pollutant mixtures with association rule mining. Artif Intell Med 2016 Nov;74:44-52. [doi:
10.1016/j.artmed.2016.11.003] [Medline: 27964802]

41. Casanova IJ, Campos M, Juarez JM, Fernandez-Fernandez-Arroyo A, Lorente JA. Impact of time series discretization on
intensive care burn unit survival classification. Prog Artif Intell 2017 Jun 8;7(1):41-53. [doi: 10.1007/s13748-017-0130-8]

42. Daud NR, Corne DW. Human readable rule induction in medical data mining. In: Lecture Notes in Electrical Engineering.
Vol 27 LNEE. Boston, MA: Springer; 2009 Presented at: Proceedings of the European Computing Conference; June 26 -
28, 2009; Tbilisi Georgia p. 787-798. [doi: 10.1007/978-0-387-84814-3_79]

43. Mohamed WNHW, Salleh MNM, Omar AH. A comparative study of Reduced Error Pruning method in decision tree
algorithms. : IEEE; 2012 Presented at: 2012 IEEE International Conference on Control System Computing and Engineering,
ICCSCE 2012; 23 – 25 November 2012; Penang, Malaysia p. 392-397. [doi: 10.1109/iccsce.2012.6487177]

44. Liu X, Wu J, Gu F, Wang J, He Z. Discriminative pattern mining and its applications in bioinformatics. Brief Bioinform
2015 Sep 28;16(5):884-900. [doi: 10.1093/bib/bbu042] [Medline: 25433466]

Abbreviations
AUC: area under the receiver operating characteristic curve
CBA: Classification Based on Associations

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e32319 | p.62https://medinform.jmir.org/2022/8/e32319
(page number not for citation purposes)

Casanova et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1007/s10618-016-0467-9
http://dx.doi.org/10.1007/978-3-642-38027-3_81
http://dx.doi.org/10.1016/j.artmed.2008.01.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18394871&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(10)00037-7
http://dx.doi.org/10.1016/j.jbi.2010.03.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20332034&dopt=Abstract
http://hdl.handle.net/10453/123204
http://dx.doi.org/10.1016/j.burns.2011.07.017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21940104&dopt=Abstract
http://dx.doi.org/10.1007/978-3-319-19551-3_36
http://dx.doi.org/10.1016/b978-1-4832-1447-4.50033-x
http://hdl.handle.net/10201/38109
http://dx.doi.org/10.1145/312129.312191
http://corescholar.libraries.wright.edu/knoesis/402
http://dx.doi.org/10.1007/pl00011662
http://dx.doi.org/10.1007/3-540-46846-3_4
http://dx.doi.org/10.1016/j.knosys.2014.04.030
http://dx.doi.org/10.1016/j.artmed.2016.11.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27964802&dopt=Abstract
http://dx.doi.org/10.1007/s13748-017-0130-8
http://dx.doi.org/10.1007/978-0-387-84814-3_79
http://dx.doi.org/10.1109/iccsce.2012.6487177
http://dx.doi.org/10.1093/bib/bbu042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25433466&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


CBS: Classify-By-Sequence
CMAR: Classification Based on Multiple Association Rules
CPAR: Classification Based on Predictive Association Rules
DOR: diagnostic odds ratio
EP: emerging pattern
FN: false negative
FP: false positive
ICBU: intensive care burn unit
JEP: Jumping Emerging Pattern
MMAC: Multi-class, Multi-label Associative Classification
RIPPER: Repeated Incremental Pruning to Produce Error Reduction
SOFA: Sequential Organ Failure Assessment
TN: true negative
TP: true positive
UCPD: unsupervised correlation preserving discretization

Edited by C Lovis; submitted 22.07.21; peer-reviewed by D Hu, M Nuutinen, A Arbabisarjou; comments to author 02.01.22; revised
version received 26.02.22; accepted 27.03.22; published 10.08.22.

Please cite as:
Casanova IJ, Campos M, Juarez JM, Gomariz A, Lorente-Ros M, Lorente JA
Using the Diagnostic Odds Ratio to Select Patterns to Build an Interpretable Pattern-Based Classifier in a Clinical Domain: Multivariate
Sequential Pattern Mining Study
JMIR Med Inform 2022;10(8):e32319
URL: https://medinform.jmir.org/2022/8/e32319 
doi:10.2196/32319
PMID:35947437

©Isidoro J Casanova, Manuel Campos, Jose M Juarez, Antonio Gomariz, Marta Lorente-Ros, Jose A Lorente. Originally published
in JMIR Medical Informatics (https://medinform.jmir.org), 10.08.2022. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly
cited. The complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this
copyright and license information must be included.

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e32319 | p.63https://medinform.jmir.org/2022/8/e32319
(page number not for citation purposes)

Casanova et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://medinform.jmir.org/2022/8/e32319
http://dx.doi.org/10.2196/32319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35947437&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Viewpoint

Harnessing the Electronic Health Care Record to Optimize Patient
Safety in Primary Care: Framework for Evaluating e–Safety-Netting
Tools

Georgia Bell Black1*, PhD; Afsana Bhuiya2*, MRCGP; Claire Friedemann Smith3*, PhD; Yasemin Hirst1*, PhD; Brian

David Nicholson3*, MRCGP, DPhil
1Department of Applied Health Research, University College London, London, United Kingdom
2North Central London Cancer Alliance, London, United Kingdom
3Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
*all authors contributed equally

Corresponding Author:
Georgia Bell Black, PhD
Department of Applied Health Research
University College London
1-19 Torrington Place
London, WC1E 7HB
United Kingdom
Phone: 44 2031083157
Email: g.black@ucl.ac.uk

Abstract

The management of diagnostic uncertainty is part of every primary care physician’s role. e–Safety-netting tools help health care
professionals to manage diagnostic uncertainty. Using software in addition to verbal or paper based safety-netting methods could
make diagnostic delays and errors less likely. There are an increasing number of software products that have been identified as
e–safety-netting tools, particularly since the start of the COVID-19 pandemic. e–Safety-netting tools can have a variety of
functions, such as sending clinician alerts, facilitating administrative tasking, providing decision support, and sending reminder
text messages to patients. However, these tools have not been evaluated by using robust research designs for patient safety
interventions. We present an emergent framework of criteria for effective e–safety-netting tools that can be used to support the
development of software. The framework is based on validated frameworks for electronic health record development and patient
safety. There are currently no tools available that meet all of the criteria in the framework. We hope that the framework will
stimulate clinical and public conversations about e–safety-netting tools. In the future, a validated framework would drive audits
and improvements. We outline key areas for future research both in primary care and within integrated care systems.

(JMIR Med Inform 2022;10(8):e35726)   doi:10.2196/35726

KEYWORDS

primary care; patient safety; electronic health record; safety; optimize; framework; evaluation; tool; diagnostic; uncertainty;
management; netting; software; criteria

Introduction

Safety-netting was first formally defined in the mid-1980s by
Neighbour [1] and has since come to be viewed as a best practice
for managing diagnostic uncertainty [2]. This is particularly
relevant to primary care, wherein clinicians hold responsibility
for weighing up the costs, risks, and benefits of monitoring
symptoms against those of ordering tests, investigations, and
referrals for further care. Safety-netting includes verbally
advising to patients to practice self-care, monitor symptoms, or

seek further advice if their symptoms have not resolved.
Safety-netting is part of many primary care presentations, given
the high volume of patients with undifferentiated nonspecific
symptoms. For these patients, serious disease is a rare but
important component of a differential diagnosis [3,4].

Several studies have highlighted the importance of recording
safety-netting advice in patient records [5-7]. Examples of such
advice include ensuring that at-risk patients are monitored,
providing a reminder of the advice, facilitating the continuity
of care, and maintaining a medical-legal record. Despite their
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importance, safety-netting advice is not often recorded in
medical notes [8]. There have been calls to improve the
recording of safety-netting to facilitate follow-up and
monitoring. More recently, commercial e–safety-netting tools
have been developed to assist health care professionals in
managing diagnostic uncertainty [9-11]. These tools may be
integrated within the electronic health record (EHR) or provided
by a third-party application.

The aim of this paper is to consider how e–safety-netting tools
need to be developed in order to improve diagnostic safety in
primary care. We also outline an emergent framework of criteria
for e–safety-netting tools that can be used to facilitate evaluation
and outcome measurement [12].

Safety and Safety-Netting in Primary Care

The management of diagnostic uncertainty in primary care is a
part of every primary care physician’s role [13]. Safety-netting
mitigates the risks associated with some techniques, thereby
allowing physicians to manage diagnostic uncertainty. For
example, the safe use of the “test of time” allows for the
expected progression of a primary care physician’s initial
diagnosis to be observed. Safety-netting increases safety by
providing patients with information about concerning symptoms
and what to do if they arise [8-10,14]. Signposting to other
sources of information or to other services (eg, out-of-hours
services) is also a common component of safety-netting [10].
Effective safety-netting is important, since it can have
implications for a patient’s outcomes by preventing
misdiagnoses, complications, and delayed referrals [3,15]. It
may also have workload implications by safely reducing the
number of unnecessary reconsultations [15,16]. Historically,
safety-netting processes have been the focus of quality
improvement within the cancer clinical and research community,
ranging from national strategy documents to local system
providers. In health care policy and research, safety-netting has
been particularly identified as a tool for facilitating the timely
diagnosis of cancer [17-19].

Effective safety-netting results in patient self-care, patients’
recognition of the need for and their prompt seeking of further
medical attention, and the timely follow-up of patients [19].
High-quality safety-netting requires clinicians to understand a
patient’s information needs, the reasons for safety-netting
advice, and the expected clinical course of a condition.
Breakdowns in safety-netting communication could occur
through the omission of information, by providing information
in a way that is not easily understood or remembered, or by
failing to address patient concerns [19,20]. Inconsistencies in
safety-netting delivery may also harm how advice is perceived
and adhered to by patients [9]. Therefore, e–safety-netting tools
have a particular role in supporting clinicians’ and patients’
communication, information provision, knowledge, and memory.

Harnessing the EHR: e–Safety-Netting
Tools—How Might They Solve Some of
the Problems Above?

EHRs have been mandated for many years in primary care.
These systems have been developed to capture clinical
information in a way that is clinically relevant and user-friendly.
EHR providers regularly update their systems to ensure that
users are able to record and retrieve information easily. Over
time, EHR systems have built capabilities for supporting wider
functionalities, so that clinicians and managers can better support
their patient populations. Although safety-netting is embedded
into national health care strategies and policies, it is unclear
who holds responsibility for it and how it should work [18,21].
Safety-netting is no longer considered solely as a doctor-patient
interaction but as a responsibility of the “system,” which should
provide robust safety-netting protocols within the EHR [22].
As patients move through the multiple clinical contacts that
lead up to a diagnosis, the increased specification of the
safety-netting process could reduce the amount of errors in the
diagnostic process [2].

e–Safety-netting tools can be integrated into the EHR or be
provided by a separate piece of software. Typical functions
include, for example, clinician alerts, administrative tasking,
templates for standardized codes, tracking dashboards, and
additional support (eg, prepopulated referral forms). The tools
may support clinicians by tracking patients over a defined time
interval, providing templates to guide consultations, or
suggesting appropriate referral pathways [23-25]. They may
also support patients by sending them trigger text reminders.
Using e–safety-netting software in addition to verbal or
paper-based safety-netting methods could reduce the amount
of diagnostic errors and delays. This could also make
improvement easier via the provision of better audit data about
safety-netting. The COVID-19 pandemic has driven a surge of
new e–safety-netting tools. However, these have not been
evaluated by using robust research designs for patient safety
interventions [12]. The variations in designs and functions
suggest a lack of clarity with regard to how the tools should
prevent diagnostic errors and delays.

What Safety-Netting Failures Could Be
Prevented by an e–Safety-Netting Tool?

There is a lack of robust evidence suggesting whether
e–safety-netting tools prevent the types of errors that they are
designed to prevent. We found 2 evaluation reports of C the
Signs (C the Signs Limited)—a software tool for supporting
cancer decision-making and management that has been
commissioned in various locations in England, United Kingdom.
One evaluation found increased cancer detection rates for
clinical commissioning groups, who had implemented the tools,
when compared to those for groups who had not implemented
the tools [26]. However, a second, independent evaluation of
C the Signs found that changes to the number of referrals were
inconclusive. This report, which was titled C the Signs
evaluation: report for RM Partners (Frontier Economics, private
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report received upon request, 2021), found that there was limited
evidence of improved cancer detection.

e–Safety-netting tools require substantial further development
in order to reach their potential in reducing the amount of
diagnostic delays and errors in primary care. In Table 1, we
consider the exemplar of an urgent cancer referral pathway (ie,
a primary care process in which patients with suspected cancer
symptoms are expected to be seen within 2 weeks for further

investigations). We give details about the typical errors and
outcomes that occur and how e–safety-netting tools may be
developed to prevent this [27]. We also indicate whether certain
functions have already been developed in prominent
e–safety-netting tools that are currently available [23,25,28,29].
Future e–safety-netting tools could explore other potential
process errors associated with safety-netting, such as
automatically generating an alert if a patient has a number of
attendances within a short span of time [30].

Table 1. Types of errors that may be mitigated by an e–safety-netting tool. We use the exemplar of an urgent cancer referral pathway.

Currently
available

Role of the e–safety-netting toolOutcomeErrorClinical actionSetting

PartiallyClinical presentation prompts
physician to review clinical deci-
sion support tool, which reminds
primary care physician of the
clinical guidelines

Delay in investigation or
patient referral

Physician decides not
to investigate further, as
they are not aware of
clinical guidelines

Primary care physician
is unsure whether to re-
fer a patient with ab-
dominal pain to special-
ist

Doctor-patient en-
counter

NoTool identifies the repeat pattern
from coded data and alerts
physician

Delays in taking action de-
spite a persistent problem

Physician does not real-
ize that the patient has
visited multiple times

Patient visits physician
multiple times for the
same persistent problem

Doctor-patient en-
counter

YesTool alerts physician to any de-
lays in the expected reconsulta-
tion time frame

Delay in the timely review
of symptoms

Patient does not recon-
sult a physician within
the expected time frame

Patient with low-risk
symptoms is actively
monitored

After a consultation

PartiallyTrigger patient text message re-
garding reconsulting a physician
promptly when results of the in-
vestigation are available

Delays in taking action af-
ter investigation findings

Patient is unclear about
the timely review of re-
sults or how to obtain
results

Patient is given advice
about the need for a
suggested investigation

Physician follow-up

YesTool identifies nonattendance
and sends a message to the pa-
tient and primary care physician

No urgent review by a
specialist

Patient does not attend
the urgent referral

Patient is sent to an ur-
gent referral

Practice level

YesNominated lead for network can
review all cancer cases and dis-
seminate learnings

Lack of system improve-
ment

Primary care network
does not use this as an
opportunity for audit
and improvement

Patient is diagnosed
with cancer through an
emergency pathway

Regional level

NoAlert the physician to the incom-
plete patient record, including
hidden risk factors, during the
consultation

Physician is not aware of
risk factors in the patient’s
history

Patient history, includ-
ing risk factors, is not
recorded or visible in
health record

Patient with low-risk
symptoms presents to
primary care physician,
resulting in self-care at
home

Patient health record
data

YesAlerts to practice-level team state
that clinical risk has reached a
specified trigger level for further
action (investigations and refer-
rals)

The system does not identi-
fy the patient as one requir-
ing further action

The data are not ob-
served as a whole, and
significant patterns are
not established

Patient’s clinical risk
percentage for a certain
condition increases
prominently (per the
patient’s coded data)

Patient health
record—population

Establishing a Framework for What a
Good e–Safety-Netting Tool Would Do

e–Safety-netting tool development may be viewed as an
extension of EHR tool development. Hitherto, e–safety-netting
tools have not been tested with respect to diagnostic safety.
There are many frameworks and evidence bases on this topic.
We synthesized the relevant parts of 3 publications in
particular—(1) the World Health Organization Technical Series
on Safety in Primary Care: Diagnostic Errors, which addresses

how to improve the safety of multiple aspects of diagnostic and
administrative work in primary care [31]; (2) Murphy and
colleagues’ [32] Safer Dx Trigger Tools Framework, which
outlines good practice for the development of electronic tools
to improve diagnostic safety; and (3) Vincent and Almaberti’s
[33] compendium of safety strategies. Some additional papers
and our own knowledge of safety-netting and e–safety-netting
tools were used to construct an emergent framework for
e–safety-netting tool development (Table 2) [34-36]. This
framework may be useful for audits, for e–safety-netting tool
development and improvement, and for guiding future research.
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Table 2. Emergent framework of principles for high-quality e–safety-netting tools.

ExampleDetailse–Safety-netting principle

The tool has automatic functions that work for all
patients (eg, detecting multiple presentations or
consultation patterns that might indicate that ac-
tion is needed and triggering alerts).

The tool supports reductions in diagnostic errors
for all patients with all types of presentations,
not just those who are considered at-risk patients.

All patients registered will be e–safety-netted.

The e–safety-netting functions are integrated into
the electronic health record and cannot be
switched off. Algorithms and alerts are live for
every patient.

The tool is not reliant on sign-up but is automat-
ically applied for every user registered on the
system. The responsibilities would be configured
to the users’ credentials (eg, primary care
physician, nurse, and receptionist).

All clinicians and primary care staff are respon-
sible for e–safety-netting.

Data capture is facilitated by standardized autofill.
Patients are automatically selected for follow-up
by risk stratification tools.

The tool functions equally for every patient, not
just those selected by the primary care profes-
sional or those on a “list.”

Limit burden and cognitive bias by using auto-
matic functions, where possible.

The tool notifies primary health care professionals
when a patient data record is incomplete. Alerts
are triggered or sent to a patient as a reminder to
attend an investigation. The physician and patient
are alerted when the patient has not attended an
investigation, or the physician is alerted when the
patient has not attended a specialist appointment.

The tool supports continuous improvements in
data quality and decision-making during the
consultation, and it offers memory aids and alerts
for both professionals and patients.

Support diagnostic processes before, during, and
after consultations [34].

The tool automatically measures the time interval
since the last consultation and agreed upon action.
So, if there is delay in presentation, an alert is
triggered. If the tool detects that a patient has not
fulfilled the prescription, it alerts their health care
professional and the patient.

The tool monitors all appropriate parts of the
patient pathway. It automatically detects, ratio-
nalizes, and quantifies errors. It also alerts the
appropriate staff member to errors of interest.

Monitor, auto-detect, and measure pathway
process errors or deviations and alert the relevant
people [35].

The tool allows for the easy transfer of informa-
tion to other organizations and has simple and in-
tuitive displays. It also allows users to access up-
to-date pathways and referral criteria and has de-
cision support functionalities.

The tool is easy to navigate, seamless with exist-
ing electronic health records, and automatically
present at the point of care to support decision-
making. Only 1 tool is in use within the primary
care system to avoid confusion.

Use simple processes that make it easy to access
and transfer complex information.

There is shared responsibility for “flags” and er-
rors within the system and thus a higher likelihood
that the tool will initiate action. The tool supports
a culture of shared responsibility.

The tool allows the whole clinical and adminis-
trative team to use the tool with a centralized
alert system, including champions or experts
within the team.

Spread responsibilities and roles within primary
care that have an overall impact on the whole
patient pathway.

The tool allows for the automatic identification
of common diagnostic process errors, sends alerts
for unexpected increases in error, and has control
over the granularity of data.

The tool creates visual aggregate displays of in-
creased errors (ie, practice dashboards) to estab-
lish normative quality standards. It has the ability
to self-monitor and self-improve (ie, through
artificial intelligence, it improves itself with data
and feedback) [11].

Support senior leadership to optimize safety
strategies within a regular quality improvement
program.

Patients can self-report attendance to appointments
and tick it off. Patients can provide feedback on
changes in symptoms to trigger a follow-up ap-
pointment. Patients can record and report their
weight or blood pressure.

Patients can interact to input either their own
health metrics or feedback on symptom changes.
Patients can access the appropriate level of infor-
mation to support themselves in managing their
health. Integration with other e-consulting tools
is possible.

Allow for patient interaction and feedback [36].

Table 2 outlines 9 principles for e–safety-netting tools that we
suggest would denote a high-quality tool. There are currently
no tools available that meet all of the criteria in the framework.
We hope that the framework will facilitate the development and
improvement of e–safety-netting tools. It may also enable
national and local audits and analyses, highlighting differences
in performance and presenting potential solutions for
improvement. Building on the development of new or modified
e–safety-netting tools, health system leaders will need to ensure
that their organizations have the necessary resources to
implement them and to manage and respond to the data
generated.

Discussion

We have presented a framework for structuring the development,
evaluation, and implementation of e–safety-netting tools in
primary care. The framework includes individual user benefits,
technical features, and social aspects of use. Using this
framework could support the progress of policies to facilitate
the earlier diagnosis of serious diseases, such as cancer,
cardiovascular disease, lung disease, diabetes, renal failure, and
heart failure [21,37], and increase patient safety [32,38].
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The framework is based on principles from established EHR
tool development and patient safety frameworks but requires
further validation through clinical and public input as well as
empirical research. e–Safety-netting development via the use
of this framework may require multidisciplinary applied research
teams, including software developers; user experience and
design; clinical knowledge; applied psychology; health services
research; and epidemiological expertise.

The e–safety-netting framework proposed provides an approach
to appraising existing tools and guiding e–safety-netting tool
development. It would be valuable for commissioners to learn
not only from existing experiences of successful adoption but
also from decisions to decommission e–safety-netting tools
[39]. Currently, there are few opportunities to understand the
impact of each available e–safety-netting tool, as they are rarely
evaluated and their functions are often updated. Policy makers
should make it a condition that these tools be independently
evaluated with results that are kept in a centrally held repository
[40]. Evaluations would inform local adoption and allow for
the alignment of these systems with health care strategies.

Patients need a robust, evidence-based system to ensure that
they are monitored until their symptoms have been explained.
Without this, primary care services are prone to operational
failure. Operational failures (disruptions, errors, or inadequacies
in the information, supplies, or equipment needed for patient
care) are linked to often time-consuming compensatory actions
for ensuring that patient care is coordinated and remains safe.
At a time when workloads are continuing to increase in primary
care and the format of clinical contacts is changing,
e–safety-netting tools offer an approach to distributing the
responsibility for follow-up safely among members of practice
teams and to patients [41,42]. This is relevant to the
development of integrated digital care records and population
health management dashboards by integrated care systems [43].
There is further potential to look at the development of
e–safety-netting at scale in secondary care and elsewhere [44].

There are likely to be challenges to uptake and implementation,
even for tools that conform to the framework we have outlined
[45]. However, e–safety-netting tools that align with the
individual, social, and technical aspects of primary care work
are more likely to succeed [46].
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Abstract

Background: Cost-effectiveness analysis of artificial intelligence (AI) in medicine demands consideration of clinical, technical,
and economic aspects to generate impactful research of a novel and highly versatile technology.

Objective: We aimed to systematically scope existing literature on the cost-effectiveness of AI and to extract and summarize
clinical, technical, and economic dimensions required for a comprehensive assessment.

Methods: A scoping literature review was conducted to map medical, technical, and economic aspects considered in studies
on the cost-effectiveness of medical AI. Based on these, a framework for health policy analysis was developed.

Results: Among 4820 eligible studies, 13 met the inclusion criteria for our review. Internal medicine and emergency medicine
were the clinical disciplines most frequently analyzed. Most of the studies included were from the United States (5/13, 39%),
assessed solutions requiring market access (9/13, 69%), and proposed optimization of direct resources as the most frequent value
proposition (7/13, 53%). On the other hand, technical aspects were not uniformly disclosed in the studies we analyzed. A minority
of articles explicitly stated the payment mechanism assumed (5/13, 38%), while it remained unspecified in the majority (8/13,
62%) of studies.

Conclusions: Current studies on the cost-effectiveness of AI do not allow to determine if the investigated AI solutions are
clinically, technically, and economically viable. Further research and improved reporting on these dimensions seem relevant to
recommend and assess potential use cases for this technology.

(JMIR Med Inform 2022;10(8):e33703)   doi:10.2196/33703
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artificial intelligence; cost-effectiveness; systematic review; framework; health policy; research and development; cost; economics

Introduction

The most widespread definition of artificial intelligence (AI)
asserts that “It is the science and engineering of making
intelligent machines, especially intelligent computer programs.
It is related to the similar task of using computers to understand
human intelligence, but AI does not have to confine itself to
methods that are biologically observable” [1]. In the field of
health care, AI is frequently referenced [2,3] as a tool [4] to

improve diagnostics [5], facilitate screening [6], and optimize
appointments for surgeries [7], among other use cases.
Understanding these promising results requires considering AI
research and development (R&D) as technically demanding and
requiring consistent economic support for a long period of time.
Some unique properties of AI, such as its high technical
complexity and versatility of potential use cases, complicates
studying AI solutions with standard cost-effectiveness analysis,
which is frequent in the health care sector for pharmaceutical
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interventions. This in turn complicates judging its overall value
by decision-makers [8-10].

Currently, aspects to define funding decisions for the R&D of
AI, such as the success rate of these enterprises and the
monetization strategies to incentivize these investments, remain
understudied. We believe that this problem is to a degree due
to a lack of frameworks that explicitly state these exclusive
dimensions of AI analysis so that reporting of solutions can be
made comparable, reproducible, and useful [11].

We hence developed the following theories:

1. Without clinical relevance (a clear value proposition for a
health care stakeholder), AI solutions with a valid technical
component (availability and annotation of data, software
component, regulatory component, etc) and with a viable
monetization strategy (an appropriate payment mechanism
or model) could remain irrelevant to the health care system.

2. Without fulfilling technical requirements, clinically relevant
AI tools with clear and promising financial potential could
remain technically unfeasible.

3. Without sufficient monetization that justifies any
development and recuperates any investment, clinically and
technically feasible (and even desirable) AI solutions could
be economically unviable.

Previous systematic literature reviews have analyzed the
available body of evidence and have concluded that very few
studies assessed the economic impact of AI with sufficient
methodological rigor [12]. Importantly, no review to this date
has looked at AI development through a comprehensive
framework that relates the economic investment [13], the clinical
impact, and the technical development of the technology,
considering the cost of opportunity of investing in AI projects,
which is standard in the pharmaceutical industry [14]. These
factors have to be taken into account to improve our
understanding of AI solutions and to assess the value added to
patients by incorporating these solutions [15,16].

We conducted a systematic scoping review to assess existing
literature from clinical, technical, and economic perspectives.
We took a scoping approach to summarize the articles included
in our review and constructed a framework that facilitates the
comparison of AI R&D from these 3 perspectives, according
to our above-discussed theories.

Scoping reviews are replicable and systematic, and are especially
suited to assess an available body of evidence and to
eventually inform research and policy priorities [17-19].
Frequently, they allow an exploratory research question to be
framed within the available body of evidence to expose research
gaps [19]. For the summary of our scoping review, we developed
a health policy framework that merged and adjusted existing
frameworks to this novel technology, according to existing best
practice guides for health policy analysis [20]. These included
exploring a new approach for synthesis and making our
assumptions explicit, logical, interrelated, and open for empirical
testing while focusing on synergizing with existing methods
for analyzing AI technologies.

Methods

Synthesis and Reporting
Articles included in our scoping review were analyzed according
to clinical, technical, and economic dimensions relevant to AI
solutions, using our framework for analysis [21]. We consider
an AI solution as any algorithm capable of classifying,
recommending, analyzing, or suggesting the improvement of a
clinical or organizational process without previous exposure to
the data analyzed. We included AI solutions developed for a
specific purpose, third-party AI solutions used as software as a
service, and software solutions with an AI algorithm included
in the service provided.

We then designed a framework for scoping and analyzing the
literature included in our scoping review. This was achieved by
combining different existing frameworks according to our
proposed theory and extrapolating from them [20]. We then
proceeded to adjust and quantify the categories applicable to
this study. We then validated it by applying it to our research
methods and proceeded to assess its saturation. The aim was to
assess its usability, as well as determine which components
were more frequently deployed in the field.

This review was conducted following the principles modified
by Levac [18,22]. Reporting follows the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
[Multimedia Appendix 1] 2020 statement [23]. This review
could not be registered in the PROSPERO database since
scoping reviews are not included from October 2019. The
protocol entry is available from the authors on request.

Eligibility Criteria
We included all forms of economic evaluations, reports on
cost-effectiveness, and reports on the economic impact of AI
solutions or AI algorithms used by any health care–related actor.
Our population included patients, health care providers,
insurance companies, the pharmaceutical industry, and suppliers
of health care goods. Interventions would require the use of AI
directly through a programing language that allows analyzing
a certain database with a pre-existing open-source platform or
data analysis library, as well as an integrated AI solution within
a customized software. We preferred studies that compared AI
against at least one comparator (ideally standard of care, ie,
control), but we also assessed those without a control group,
since new treatment paths or analyses may not have a clear
comparator, such as in the case of fraud detection from an
insurance perspective. Outcomes included in our review had a
comparator of the utility, benefit, effectiveness, or cost assessed.
No time limitation for the publication date was set. Our search
was limited to English and German (the main languages spoken
by our team).

Information Sources, Search, and Study Selection
MEDLINE (via PubMed) and Embase (via Ovid) were searched
for studies published until April 2021. Search strategies were
adapted for each database. The following search strategy was
used for PubMed: (((((((economic analysis[Title/Abstract]) OR
(economic evaluation[Title/Abstract])) OR
(cost-effectiveness[Title/Abstract])) OR
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(monetization[Title/Abstract])) AND (artificial
intelligence[Title/Abstract])) OR (Convolutional neural
network[Title/Abstract])) OR (machine
learning[Title/Abstract])) OR (deep learning[Title/Abstract])

Two reviewers (JGR and BF) independently screened the
identified studies for eligibility. Potentially eligible studies were
assessed (JGR and BF), and inclusion was decided in consensus
with a third reviewer (FS). We created a list of cited sources
and then proceeded to manually retrieve the sources and evaluate
in full the articles for inclusion. When this second source lead

to a third source and the third source met the inclusion criteria,
this source was also included and classified as “citation
research” in our analysis. In order to expand our scope, a hand
search was performed online to look for scientific references
on regulatory AI databases mentioned in the studies included,
and these were included as studies identified from “websites.”
Details can be seen in Figure 1. The decision of not including
specific medical disciplines in the search strategy was deliberate
and aimed at achieving a broad inclusion of articles tailored to
medical databases.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 [23] flowchart. AI: artificial intelligence.

Inclusion/Exclusion Criteria
The inclusion criteria for AI studies were as follows: (1) a
solution developed using AI or any technique encompassed on
it (machine learning, deep learning, etc); (2) application to any
medical field/medical facility directly providing services to
patients, and (3) any claim over a cost-effectiveness analysis of
this technology, regardless of the methodology utilized.

The exclusion criterion was grey literature to accommodate for
the lack of a risk of bias assessment in scoping reviews.

Data Collection Process and Items
Data extraction was performed by 2 reviewers independently
(JG and BF) in a pilot-tested spreadsheet. Eligible studies were
collected in a single spreadsheet for screening, which was
performed by each reviewer independently. Studies meeting
the inclusion criteria were marked by each reviewer and
accepted after comparing results with those of the other
reviewer. Disagreements were solved by consensus-based

discussion, and if infructuous, they were solved by consulting
a third reviewer (FS).

The following data were collected: year and country where the
study was conducted, what outcomes were measured and how,
payer’s perspective assumed, comparator considered (if
applicable), what benefits were measured, and what analysis
was used to compare differences in the effect with the baseline
case. When applicable, the following data were collected: who
annotated the data for training the algorithm, how was the data
set composed, image type or information type used to train the
algorithm, use case assumed, AI algorithm used, and diagnostic
accuracy considered (sensitivity/specificity).

Data Synthesis and Framework Construction
Our policy framework was developed according to Walt et al
[20] and Hetrick et al [24] to synthesize our included articles.
According to our theory, the framework for synthesis considered
the following 3 dimensions: clinical aspects, technical aspects,
and monetization/economic aspects. To analyze these
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dimensions, 2 authors (JGR and BF) proceeded to generate 3
independent lists (1 per dimension) to include in the analysis
and rank the articles by completeness, correctness, and logic
consistency for the analysis of AI. Selected frameworks were
then adjusted and presented to a third reviewer (FS) who assisted
in maintaining the development of the tool within the scope of
our research theory by having the final vote over discrepancies
and presenting alternatives where evidence was not easily
available.

We desisted from using tools to assess the risk of bias or assess
methodological quality since scoping reviews do not aim to
produce a critically appraised and synthesized result/answer to
a particular question. They rather aim to provide an overview
or map of the evidence. Due to this, assessing methodological
limitations or risk of bias of the evidence included within a
scoping review is generally not performed [17]. The PRISMA
checklist for systematic scoping reviews was utilized.

The generated framework can be found in Multimedia Appendix
2.

Clinical Consideration of AI R&D
First, AI solutions were classified in the medical discipline they
are supposed to be designed for (part 1a), according to the
typology developed by the Association of American Medical
Colleges [25] and modified to include dentistry. We did so to
achieve a broader coverage of all medical disciplines contained
in this framework, since dentistry may not be within the
jurisdiction of medical colleges but instead dental colleges, and
despite that belongs to the health care field. The categories were
allergy and immunology, anesthesiology, dermatology,
diagnostic radiology, emergency medicine, public health,
internal medicine, medical genetics, neurology, nuclear
medicine, obstetrics and gynecology, ophthalmology, pathology,
pediatrics, physical medicine and rehabilitation, psychiatry,
radiation oncology, surgery, urology, and dentistry.

Second, we considered the perspectives of users (1b), defined
as those who use or benefit from using AI solutions. In health
care, differences exist between those who use a service (reflected
in this classification) and those who pay for it (analyzed in the
economic considerations of this framework; 3b). The typology
for this classification was extracted from the work of Sneha et
al [26] who categorized value propositions in eHealth. The
categories were as follows: patients, health care professionals,
insurance companies, pharmaceutical companies, and vendors
or suppliers.

Third, the value proposition (1c), that is, the benefit derived
from using AI solutions, was analyzed. Our classification was
derived from the frameworks for software and mobile health
published by Gorski et al [27] and Walther et al [28], who
defined value propositions for software and modified them to
include AI. The categories were as follows: improved experience
for users or professionals, improved data collection/curation,
outsourcing of screening to another provider, improved
financing, optimized direct resource utilization (medical
resources utilized for the process optimized: capital or labor),
optimized indirect resources (waiting times, detecting possible
cancellation of appointment, etc), branding, fraud

detection/quality control, risk assessment, improved
recommendation of a provider/product, community building
and transparency, accounting benefits, energy savings,
replacement of old infrastructure (outsourcing of processes),
improved data security, improved mobility, improved
availability, improved ease of use, improved helpdesk quality
(follow-up of cases and chatbots), facilitation of innovation,
improved actualization of a service or product, and strategic
flexibility (lower sunk costs).

As an “AI value proposition,” we added optimization, which
we defined as improved output with the same resources or
reduced costs producing the same output. We acknowledge that
this classification may require revision over time as AI unravels
new value for users.

Finally, AI solutions were grouped (1d) according to the “EU
software as medical device regulation (MDR)” from 2017 [29],
using a binary categorization to assess the need for premarket
approval. Because the exact determination of risks is normally
independently evaluated by regulatory bodies, this classification
is purposefully general to differentiate AI solutions that could
be part of medical devices and affect pathways of care from
those use cases that would not require market preapproval by
regulatory bodies. The categories were “No” or “Class I/II/III”
(needing premarket approval).

Technical Aspects of AI R&D
Developing AI solutions in health care could be particularly
demanding as regulatory bodies require, in some cases, extensive
testing of these products before granting them market approval.
As a result, AI investors could expect high costs to enter the
market and a lower success rate. It is expected that AI investors
take the perspective of pharmaceutical companies and expect
that the benefits from a successful digital product compensate
for the high failure rate of other projects [30-34]. This is a
common practice in the pharmaceutical field [35]. As a result,
the framework assesses the direct R&D costs per AI solution
generated that successfully enters the market (2a) and the R&D
costs of the jointly developed products that do not enter the
market (2b).

The direct costs per AI solution generated (2a) were divided
into the 2 categories of labor and capital. We considered the
following as “fixed” direct costs of AI development (paid once):
data generation/acquisition, data labeling, data science, software
engineering services, overheads (marketing, management, and
hardware), and regulatory costs.

The costs of R&D for the pharmaceutical industry from an
investor perspective (2b) comprise the costs of investing in the
development of an AI solution, adjusted by the risk of failure.
In this industry, previous studies have estimated the costs per
new product brought to the market considering both direct and
indirect (personnel and overhead) R&D costs per therapeutic
product each year, adjusted by inflation to US$ using the US
consumer price index [36]. Other studies have retrospectively
assessed the cost of the opportunity of investing in
pharmaceutical products by assessing all projects managed by
a pharmaceutical company, including those that failed, and
dividing total R&D costs by the costs for projects that
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succeeded, to conclude the “cost of money” for these enterprises,
as the real cost of capital rate has been historically 10.5% per
year [14]. This allows the estimation of the required risk-free
rate of return for an investor considering other investment
opportunities, paid as a yearly premium [37,38]. It is likely that
R&D costs of AI included in our framework would lead to
significant underestimation since, to this date, there is
insufficient information on the return of investment on AI in
health care.

The “variable” costs or costs per good sold grow with output
(2c). They were estimated based on a real-world AI solution in
dentistry [39] (Multimedia Appendix 3), which considered
exclusively cloud infrastructure and customer support. Although
this assumption is likely to underestimate other running costs,
such as improvement of the algorithm, marketing, and
surveillance, among others, it seeks to make explicit that some
commercial use cases of AI require a dedicated postmarket
launch team that could be later added to the section “Others”
of our framework.

The categories we assessed consisted exclusively of “cloud
infrastructure,” “customer support and quality management,”
“third-party products,” and “other costs.”

Monetization of AI
This dimension explicitly analyses AI solutions’ payment
mechanisms (3a) and payment model (3b). It should be noted
that the potential beneficiaries and users of AI solutions are
more diverse than the narrow patient perspective taken to
analyze clinical outcomes in standard pharmacological products.
Payment mechanisms are derived from an analysis of the value
of data by Deighton et al [40]. To make possible cross-country
comparisons, as well as comparisons across different use cases,
we focused exclusively on payment methods irrespective of the
legislation of the country we were assessing. Because there are
many major differences in access to the market by different
products, the results should be interpreted with caution. A certain
business model dependent on a monetization scenario may likely
be highly impactful, cost-effective, and profitable in one setting,
but completely irrelevant, not very cost-effective, or completely
illegal when extrapolated to another. Because of that, this
category exclusively focuses on naming options for monetization

found in the literature while remaining open to incorporating
future monetization scenarios. We acknowledge that for AI
developers, decisions on how and where to access a market will
be conditional on a complete evaluation of a legal landscape
rapidly changing and not considered in this review.

The categories in the payment mechanisms analyzed included
the following: license or white labeling, one-time purchase,
freemium and premium, SaaS (assuming a flat fee for each
service provided), publicity, pay-for-performance, profit sharing,
shared saving, bundled payment, and exclusivity contract.

An appropriate payment model is a requisite for a sound
business model in digital health [41]. As discussed previously,
this category helps to assess explicitly who is supposed to pay
for the solution and in which contractual modality, and not who
benefits from the AI solution. This category differentiates
between AI solution companies focused on offering services to
other companies (known as “business to business” or “B2B”)
and companies focused on offering the same AI services but to
individual consumers (“business to consumer” or “B2C”).

Risk of Bias
All classifications were carefully evaluated by the reviewer
team (JGR, FS, and BF), and disagreements were solved by
discussion. Further quantitative synthesis or evaluation of
meta-biases was not feasible due to high data heterogeneity.
The risk of bias or the assessment of methodological quality
was not included in this review since scoping reviews do not
aim to produce a critically appraised and synthesized
result/answer to a particular question, as discussed [17].

Results

Included Studies and Data Description
Mapping of the identified studies is presented in Figure 2.
Studies were grouped according to the clinical, technical, and
economic aspects of the AI. Each article was categorized in our
framework according to the pre-established categories extracted
from the literature. When the information necessary for
classification was not available, the corresponding AI solution
was classified as “unspecified.” AI solutions could only be
included at 1 level.
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Figure 2. Mapping of identified studies along with the developed framework. AI: artificial intelligence; COGS: costs per good sold; R&D: research
and development; SAMD: software as a medical device.

We identified 4820 articles as initially eligible for our review
through database screening. After screening, 16 studies were
retrieved and assessed in full, and 6 were included in this review
(Figure 1). Additionally, 7 other studies were included after
being identified via a web search and citation search. The studies
excluded did not meet the criterion of considering the
dimensions of cost-effectiveness in the AI solutions they
analyzed. Three systematic literature reviews met the inclusion
criteria posed by our review. Two of them were conducted by
a governmental body that aimed to find cost-effective therapies
for diagnostic screening.

Multimedia Appendix 4 summarizes the articles meeting the
inclusion criteria [39,42-53]. The studies included showed broad
variability in the data used by the AI solution to generate
inference and in the types of algorithms used, and frequently
compared their results to the standard of care. Among the 13
studies included, 5 (39%) took place in the United States, 2
(16%) took place in Germany, and 2 (16%) took place in

Canada, and Singapore, Turkey, Zambia, and the United
Kingdom had 1 (7%) study each.

The majority of the studies included (9 of 13) assessed AI
solutions that may require some form of premarket authorization.
Internal medicine and emergency remained the most frequently
studied specialties. AI solutions aimed at patients and health
care providers were studied in 5 cases. The optimization of
direct resource use remained the most frequent value proposition
(7/13, 54%).

The technical aspects analyzed remained unaddressed to a large
degree. Except for 3 (23%) studies, most of the articles
analyzing the cost-effectiveness of AI solutions disregarded
variable costs. Only 1 study estimated fixed costs of R&D,
disregarding any reporting on opportunity costs from an
investor’s perspective. No study considered the costs of data
acquisition or failed enterprises.

The economic aspects analyzed remained underreported to a
significant degree. Furthermore, even among those studies in
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which a payment model was assumed (6/13, 46%), the payment
mechanism could not be identified in the use case analyzed. A
minority of articles that analyzed the cost-effectiveness of AI
explicitly stated the payment mechanism assumed (5/13, 38%),
with a majority (8/13, 62%) insufficiently reporting the
mechanism.

Discussion

Principal Findings
AI is a novel yet highly promising and versatile technology with
a demonstrated capacity to undertake different tasks in the
medical field with high accuracy, and unlike standard
pharmaceutical products, it can help different actors of the health
care system in a variety of different use cases. However,
compared with other fields, standard cost-effectiveness
evaluations may require adaptations, which is why this study
developed a common framework for evaluation and to facilitate
communication between developers, patients, doctors, and
decision-makers.

The use of our framework fosters a comprehensive assessment
of different dimensions of AI and makes explicit assumptions
involving AI R&D, frequently overseen in previous studies.
We believe that having these in mind can help to optimize
research solutions where they can have the most impact by
considering appropriate budgeting. Importantly, this framework
could as well give both decision-makers and developers common
ground to negotiate payment methods by explicitly stating the
costs of development.

The analysis of our results using our framework indicates that
the majority of the economic evaluations included in our study
reported the clinical or organisational benefits of AI without an
appropriate disclosure and justification of technical and financial
aspects that substantiate these claims. It is likely that a relevant
share of information and aspects is hence not fully reflected,
possibly leading to biased conclusions by these studies. This
seems relevant because it possibly calls for an improvement in
reporting AI R&D, especially in the area of costs surrounding
technical and monetization aspects to facilitate recognizing the
niches where AI development will have the highest benefit for
society.

Our results also invite further consideration of the setting of
analysis, as regulation and market access may vary greatly and
determine the economic viability of AI solutions. More
transparent disclosure of clinical, technical, and economic

aspects could not only generate common ground to differentiate
promising projects from those excessively technically complex
or clinically irrelevant, but also simplify the cooperation between
AI developers, investors, clinicians, patients, and regulators.

Strengths and Limitations
First, in this review, we did not comprehensively assess the
qualitative aspects of the included studies, such as their risk of
bias. This limitation seemed acceptable in light of our initially
planned scope, which was focused on developing a framework
of analysis to gauge the comprehensiveness and completeness
of existing studies. Second, although our framework could
require extension with further categories of analysis and future
adjustments, we believe it has succeeded in making explicit the
current research gaps in the existing body of literature. Third,
we acknowledge the lack of other comprehensive frameworks
of analysis and limited evidence supporting our analyses, which
is why this article should be considered as the start of the
scientific analysis of the cost-effectiveness of AI in health care.
We acknowledge that our conclusions are preliminary in a field
that continues to evolve rapidly, and our results should be
interpreted with caution, as future methods of analysis will have
to be developed jointly with new AI solutions.

Future studies could validate or disprove the completeness of
this framework and possibly work to continue and reform some
of its components as AI technology continues to expand its
functionality over time. Additionally, future scoping reviews
could help to obtain an overview of the development of this
technology over time and help to identify suitable comparisons
between subfields involving AI, which could greatly facilitate
generating systematic literature reviews focused on clinical
effectiveness, such as meta-analyses and formal
cost-effectiveness comparisons.

Conclusion
The literature reviewed in our study was sparse and did not
seem comprehensive enough to draw a conclusive analysis on
AI's potential to facilitate cost-effective healthcare. While some
studies have showcased the positive impact of AI adoption,
future research should improve reporting of the technical aspects
of AI development. This seems important to achieve better
comparisons of similar use cases of this novel and highly
versatile technology. We believe that the adoption of the
framework discussed in this study can facilitate more robust
scientific analysis and better-informed conclusions on the
potential of this technology.
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Abstract

Background: Skin ulcers are an important cause of morbidity and mortality everywhere in the world and occur due to several
causes, including diabetes mellitus, peripheral neuropathy, immobility, pressure, arteriosclerosis, infections, and venous
insufficiency. Ulcers are lesions that fail to undergo an orderly healing process and produce functional and anatomical integrity
in the expected time. In most cases, the methods of analysis used nowadays are rudimentary, which leads to errors and the use
of invasive and uncomfortable techniques on patients. There are many studies that use a convolutional neural network to classify
the different tissues in a wound. To obtain good results, the network must be trained with a correctly labeled data set by an expert
in wound assessment. Typically, it is difficult to label pixel by pixel using a professional photo editor software, as this requires
extensive time and effort from a health professional.

Objective: The aim of this paper is to implement a new, fast, and accurate method of labeling wound samples for training a
neural network to classify different tissues.

Methods: We developed a support tool and evaluated its accuracy and reliability. We also compared the support tool classification
with a digital gold standard (labeling the data with an image editing software).

Results: The obtained comparison between the gold standard and the proposed method was 0.9789 for background, 0.9842 for
intact skin, 0.8426 for granulation tissue, 0.9309 for slough, and 0.9871 for necrotic. The obtained speed on average was 2.6,
compared to that of an advanced image editing user.

Conclusions: This method increases tagging speed on average compared to an advanced image editing user. This increase is
greater with untrained users. The samples obtained with the new system are indistinguishable from the samples made with the
gold standard.

(JMIR Med Inform 2022;10(8):e37284)   doi:10.2196/37284

KEYWORDS

wound assessment; pressure ulcers; wound tissue classification; labeling; machine learning

Introduction

Skin ulcers are an important cause of morbidity and mortality
everywhere in the world [1] and occur due to several causes,
including diabetes mellitus, peripheral neuropathy, immobility,
pressure, arteriosclerosis, infections, and venous insufficiency.

Ulcers are lesions that fail to undergo an orderly healing process
and produce functional and anatomical integrity in the expected
time (4 weeks to 3 months) [2]. This is usually due to an
underlying pathology that prevents or delays healing. Ulcers
have a major impact on the patient's life, causing a reduction in
the quality of life in physical, emotional [3], and social
dimensions. Several contributing and confounding factors are
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associated with both the cause and maintenance of ulcers. In
addition, care of these wounds requires the expenditure of
human and material resources and generates a great economic
impact [4]. For these reasons, complex wounds such as ulcers
are considered a major global problem.

In most cases, the methods of analysis used nowadays are
rudimentary, which leads to errors and the use of invasive and
uncomfortable techniques for patients. It is extremely difficult
to monitor [5] the evolution of the wound based on the healing
process as no data are stored or classified efficiently. Literature
covering different algorithms focused on the detection and
characterization of wounds is limited and mainly based on the
capture of size and depth of the wounds [6,7]. There are many
studies that use a convolutional neural network (CNN) to
classify the different tissues in a wound [8-11]. However, the
process of labeling the images for the training of a CNN in a
supervised algorithm is hard work and requires extensive time
and effort by a health professional.

In current CNN training models, the labeling of the data set
samples is a critical and important phase. In pretrained
classification networks, images have been labeled using
polygonal contour tools that help detect objects, parts of a body,
animals, and so on [12]. For tissue classification, more detailed
labeling is required. A wound expert user will have to label the
samples, typically using a professional photo editing software.
Using the editing tools, this user will paint the different tissues
of the wound with predetermined colors (eg, granulated in red,
slough in yellow, necrotic in black, and intact skin in blue),

pixel by pixel. At the end of the process, 2 files are obtained—1
with the original image and 1 modified with labels drawn with
the editing software.

The main goal of this work is to propose an interactive tool for
labeling wound samples used for training a CNN to classify
different tissues. With this interactive tool, the labeling process
is faster, more efficient, and more accurate than with the current
manual methods.

Methods

Materials
The collection of the necessary data for labeling was made with
a mobile app that uses a standard camera—in our case, a
Samsung Galaxy S10 tablet. The data were collected in a health
center by health care professionals.

Ethics Approval
The clinical protocol has been approved by the CEIC of the
Hospital General de Vic (2019093/PR224).

Proposal
A proposed labeling tool is developed and presented in this
study. The results of this application are used for training the
CNN model (see the complete working framework in Figure
1). This tool is based on an image editor tool and allows for
standard image editing actions such as zoom (Figure 2) and
gamma correction (Figure 3). It uses computer vision techniques
for tagging and labeling each tissue.

Figure 1. Generic overview of convolutional neural network (CNN) labeling, training, and inference process.
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Figure 2. Region selection to apply zoom (left) and the region zoomed (right).

Figure 3. The luminosity of the image can be modified by applying gamma correction. From left to right: original image, gamma value=0.5, and gamma
value=2.

The interactive labeling tool can be divided into 2 working
stages. In the first stage, the user can choose the part of the
image of interest, using the mouse on the original image to
define the region of interest (region to label). At the same time,
the user can change the image parameters and hyperparameters
of the automatic segmentation methods included in the tool.

During the first stage, the tool suggests different partitions of
the image the user can select based on which segments best suit
the labeling objective and define their class (Figure 4). The
partitions are calculated automatically, segmenting the image
using computer vision methods and separating the different
elements. When the user zooms in on parts of the image to be
able to increase the precision in complex areas, the segmentation
algorithm recalculates over the zoomed section (Figure 5). The
user can also change the hyperparameters (parameters whose
value is used to control the algorithm) of the segmentation
algorithms to recalculate the partitions and get new proposals
(Figure 6).

In the second stage, the user will use the segmentations proposed
by the tool to select those that best fit the clinical criteria for
tissue classification. The user can make use of sections from
different proposals. As the user selects the segmentations, the
final labeled image will be drawn in the Mask section (Figure
4).

Although the proposed tool allows a desired number of tissues
to be tagged, this study was based on the hypothesis of labeling
5 types of tissues: intact skin, slough, necrotic, granulated, and

background (or no skin). For this reason, only comparisons
between these tissue labels will appear in the results presented.

The segmentation process is based on superpixels and clustering
methodologies. It uses different configurations of superpixels
and clustering to receive different segmentations of the input
image. The resulting segmentations are shown to the user to
select the partitions that are closest to the tissue distributions.

In addition, the app has 2 different tools for manual image
editing (Figure 7). These tools allow for the correction of
mislabeled regions, thus improving the quality of the edges or
ambiguous regions hard to segment automatically. The first tool
is a brush that allows the user to paint the image using the
cursor. The second tool is equivalent to the “magic wand” tool
where selecting a pixel in the image causes all the adjacent
similar pixels under a threshold to be automatically selected as
well.

At the end of the process, the user can obtain a final labeled
image where each pixel value is related to the class of the
corresponding pixel in the original image (Figure 8).

As mentioned before, the tool uses different computer visual
methods based on superpixels (techniques 1, 2, and 3 below)
and clustering (technique 4 below). Superpixels are an
aggregation of pixels according to similar characteristics
between them, such as raw pixel intensity. There are different
algorithms and criteria used to measure the similarity between
pixels. Clustering is an unsupervised machine learning technique
that involves the grouping of data points in a different number
of clusters according to the similarity between them.
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Figure 4. Main menu view. Left options: brush, wand, back, gamma, quick, Felzenszwalb (FZ), N clusters, and simple linear iterative clustering (Slic).
Right options: red (R), yellow (Y), orange (O), black (B), gray (G), blue, move (mv), save, and close.

Figure 5. Recalculated partitions from a zoom in the original image. Left options: brush, wand, back, gamma, quick, Felzenszwalb (FZ), N clusters,
and simple linear iterative clustering (Slic). Right options: red (R), yellow (Y), orange (O), black (B), gray (G), blue, move (mv), save, and close.
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Figure 6. Example of hyperparameters, from left to right: simple linear iterative clustering (SLIC) segmentation with 30 clusters and SLIC segmentation
with 100 clusters.

Figure 7. Manual edition tools to classify pixels. RGB: an additive color model with primary colors (red, green, and blue); Std: standard deviation.

Figure 8. From left to right: original image and labeled image. The classified tissues are intact skin (green), slough (yellow), granulated (red), and
background (blue). In this case, there is no presence of necrotic.

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e37284 | p.86https://medinform.jmir.org/2022/8/e37284
(page number not for citation purposes)

Reifs et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Technique 1: Felzenszwalb Efficient Graph-Based
Segmentation
Based on superpixels, this technique is a graph-based approach
to segmentation [13]. The goal was to develop a computational
approach to image segmentation that is broadly useful, much
in the way that other low-level techniques such as edge detection
are used in a wide range of computer vision tasks. This
technique connects elements of the graph according to similarity

criteria and a greedy algorithm (Figure 9) to make the
boundaries between the different segments more evident.

The similarity criteria used is Pairwise Region Comparison
Predicate. This predicate is based on measuring the dissimilarity
between elements along the boundary of the 2 components. The
difference between the 2 components is defined by the minimum
weight edge connecting them together.

Figure 9. Felzenszwalb segmentation.

Technique 2: Quickshift Image Segmentation
This technique uses a “Mean-shift” [14] algorithm that segments
an RGB (red, green, and blue primary colors) image (or any
image with more than one channel) by identifying clusters of
pixels in the joint spatial and color dimensions. Segments are
local (superpixels) and can be used as a basis for further
processing. The cluster approach is carried out over a 5D space
defined by the L,a,b values of the CIELAB (International

Commission on Illumination) color space and the x,y pixel
coordinates (Figure 10).

Mean-shift is a mode-seeking algorithm that generates image
segments by recursively moving to the kernel-smoothed centroid
for every data point in the pixel feature space, effectively
performing a gradient ascent. The generated segments or
superpixels can be large or small based on the input kernel
parameters, but there is no direct control over the number, size,
or compactness of the resulting superpixels.

Figure 10. Quickshift segmentation.
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Technique 3: Simple Linear Iterative Clustering
Superpixels
This technique’s algorithm [15] consists of simple linear
iterative clustering, performing a local clustering of pixels in
the 5D space defined by the L,a,b values of the CIELAB color
space and the x,y pixel coordinates (Figure 11).

For simple linear iterative clustering, each pixel in the image
is associated with the nearest cluster center whose search area
overlaps this pixel. After all the pixels are associated with the
nearest cluster center, a new center is computed as the average
labxy vector of all the pixels belonging to the cluster. We then
iteratively repeat the process of associating pixels with the
nearest cluster center and recomputing the cluster center until
convergence.

Figure 11. Simple linear iterative clustering (SLIC) segmentation.

Technique 4: K-Means Image Segmentation
K-means [16] is a clustering method used to divide a set of data
into a specific number of groups. For image segmentation, the

clusters are calculated by raw pixel intensities. Image pixels are
associated to the nearest centroid using Euclidian distance as a
similarity measure (Figure 12).

Figure 12. K-means segmentation.

Results

To evaluate this proposed method, we compared the results
obtained by the proposed tool and the results obtained by wound
experts using manual segmentation. The manual segmentation
was carried out using Gimp, a free cross-platform image editing
software, and the experts classified each label pixel by pixel.

Specifically, we compared the time used to classify the wound
images in each method and the accuracy of our method against
the manual one.

Time Evaluation
Table 1 shows the time employed to label each one of the data
set samples using the gold standard method versus the proposed
method. With the proposed method, the image tagging speed
is increased by an average of 2.6 times.
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Table 1. Comparison of the time employed to label each sample of the data set with the 2 referred methods, and the speedup achieved with the proposed
method; time notation in minutes and seconds (mm:ss).

Speedup achievedNew method (time)Manual method (time)Sample

3.7x2:4710:301

2.2x2:3005:352

3.5x2:0607:303

2.2x4:1109:154

1.3x4:4206:305

2.3x5:3813:246

5.7x0:4103:547

2.3x1:1603:028

1.2x2:0902:449

4.7x1:2907:0610

2.8x1:3004:2011

3.3x1:2504:4212

3.0x1:0103:0513

1.6x4:0206:3714

2.6x1:1503:2115

1.7x1:3802:4916

2.0x1:3503:1817

2.8x1:4805:0718

1.4x2:5003:5919

2.6x1:1403:1720

Similarity
Precision, recall, and F-score measures are used to evaluate the
accuracy of labeling algorithms. The image obtained with the
gold standard is taken as ground truth. When tagging an image,
it is to be expected that the result obtained will be slightly
different each time, even if the same tool and the same criteria

are used. It is necessary to be able to evaluate whether the
samples labeled with the new method are as similar to the gold
standard reference samples as would be other samples made
with the same method. Therefore, we relabeled all the gold
standard samples to compare the quality of the similarity
obtained. The exact correlation between gold standard and new
labeling method would be 1.0 (Tables 2 and 3).

Table 2. Comparison between the gold standard and the proposed labeling method.

F-scoreRecallPrecisionTissue

0.98040.98240.9789No skin (background)

0.98540.98670.9842Intact skin

0.87530.91570.8426Granular

0.88380.84920.9309Base

0.83870.73620.9871Necrotic

Table 3. Comparison between the gold standard method samples.

F-scoreRecallPrecisionTissue

0.99190.99210.9919No skin (background)

0.99250.99120.9938Intact skin

0.87300.93770.8265Granular

0.89320.88210.9172Base

0.84810.76220.9771Necrotic
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Precision is the relationship between the correctly predicted
positive observations and the total expected positive
observations. This metric determines how many pixels match
out of all the pixels labeled as specific tissue. High precision is
related to the low rate of false positives.

Recall, or sensitivity, is the relationship between the correctly
predicted positive observations and all positive observations of
actual class. This metric determines how many pixels, out of
all the pixels that truly matched, were labeled.

F-score provides a single score that balances the concerns of
both precision and recall in one value. Therefore, this score
considers both false positives and false negatives.

Discussion

Principal Findings
By analyzing the difference between images labeled with the 2
methods, we see that the discrepancies are found at the edges
of the labeling (Figure 13).

This observation is especially relevant for the evaluation of the
smallest elements, where the area or perimeter ratio is more
significant and can affect the evaluation of similarity. Likewise,
any discrepancy of criteria that may exist in the labeling will
affect the minority classes to a greater extent. The majority of
the classes (no skin and intact skin) have higher F-score values
than the rest of the classes.

Evaluating the results in Tables 2 and 3, the results obtained
with the 2 methods are highly similar, with almost no difference
between the comparison of the labels.

Figure 13. From left to right: examples of original image, labeled image with digital method, labeled with gold standard method, and differences
between methods.
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Conclusions
The proposed method increases tagging speed by an average of
2.6 compared to an advanced image editing user. This gain is
larger with untrained users.

The samples obtained with the proposed system are
indistinguishable from the samples made with the gold standard.

The incorporation of this type of algorithm will undoubtedly
shorten the time required for training a tissue classification
network. It provides a tool that can be used by any clinician
regardless of their level of knowledge of photo editing. As such,
it makes training and using the neural network approach
accessible to all in a practical and fast way.
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Abstract

Background: With the popularization of electronic health records in China, the utilization of digitalized data has great potential
for the development of real-world medical research. However, the data usually contains a great deal of protected health information
and the direct usage of this data may cause privacy issues. The task of deidentifying protected health information in electronic
health records can be regarded as a named entity recognition problem. Existing rule-based, machine learning–based, or deep
learning–based methods have been proposed to solve this problem. However, these methods still face the difficulties of insufficient
Chinese electronic health record data and the complex features of the Chinese language.

Objective: This paper proposes a method to overcome the difficulties of overfitting and a lack of training data for deep neural
networks to enable Chinese protected health information deidentification.

Methods: We propose a new model that merges TinyBERT (bidirectional encoder representations from transformers) as a text
feature extraction module and the conditional random field method as a prediction module for deidentifying protected health
information in Chinese medical electronic health records. In addition, a hybrid data augmentation method that integrates a sentence
generation strategy and a mention-replacement strategy is proposed for overcoming insufficient Chinese electronic health records.

Results: We compare our method with 5 baseline methods that utilize different BERT models as their feature extraction modules.
Experimental results on the Chinese electronic health records that we collected demonstrate that our method had better performance
(microprecision: 98.7%, microrecall: 99.13%, and micro-F1 score: 98.91%) and higher efficiency (40% faster) than all the
BERT-based baseline methods.

Conclusions: Compared to baseline methods, the efficiency advantage of TinyBERT on our proposed augmented data set was
kept while the performance improved for the task of Chinese protected health information deidentification.

(JMIR Med Inform 2022;10(8):e38154)   doi:10.2196/38154
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Introduction

Background
With the boost in information technology, electronic health
records (EHRs) have been widely adopted and applied in many
hospitals and medical institutes. The vast advantages of EHRs
include easy storage and management, and they can greatly
increase the speed of information retrieval. They can provide
abundant clinical and medical information on various diseases,
and this information can potentially provide clinicians with
evidence for decision-making. However, the private information
of many individuals is stored in the EHRs. The incorrect usage
of EHRs may cause privacy leakage, leading to serious
problems. In order to standardize the use of EHRs and protect
individual privacy, many projects, such as the i2b2 challenge,
in 2014 [1], and the CEGS N-GRID challenge, in 2016 [2], have
been launched. An intuitive method to prevent privacy leakage
is deidentifying the protected health information (PHI) [3] in
EHRs before information processing. PHI is classified into 18
different types by the US Health Insurance Portability and
Accountability Act [4], such as name, ID number, location,
date, and age. The process of deidentifying PHI can be divided
into 2 steps: locating the PHI in the EHR and replacing it with
information that is not sensitive. Accordingly, the
deidentification procedure can be treated as a named entity
recognition (NER) task [5].

Related Work
In the past few decades, rule-based [6,7] and machine
learning–based [3,8,9] approaches have been the mainstream
approaches to identifying entities in sentences or documents.
Rule-based methods utilize special semantic dictionaries to
establish a set of regular expressions [4,5] to extract PHI from
EHRs. However, these methods are labor intensive and time
consuming, with poor generalization capability. Machine
learning methods based on the principles of statistics could
automatically detect PHI in EHRs by utilizing manually
extracted text features [3,10]. For example, Jian et al [11]
designed a set of regular expressions based on the characteristics
of Chinese EHRs to filter sentences with sparse PHI, then used
the filtered sentences to train a conditional random field (CRF)
model for PHI recognition. Du et al [12] manually extracted
lexical and dictionary features of PHI from Chinese EHRs to
train a CRF model and utilized regular expressions to capture
missed features using the CRF. On the basis of the extracted
lexical features, Zhang et al [13] employed a long short-term
memory (LSTM) method to learn the features of PHI sentences.
However, these machine learning–based methods heavily depend
on high-quality manual selection of features, which requires a
great amount of domain expertise. In recent years, many deep
learning models have been applied to the deidentification of
PHI. Compared to rule-based and machine learning–based
methods, deep learning models could extract features

automatically from input words or text vectors [14,15].
However, deep learning–based models require very large
annotated data sets for model training to avoid overfitting. To
solve this problem, it is tempting to perform data augmentation
[16,17] when facing data set insufficiency.

Currently, deidentifying PHI with deep neural networks remains
a greater challenge for Chinese-language clinical texts than for
other languages [18]. At present, much existing research on PHI
deidentification has been done on the English-language corpus.
Increasing performance has been achieved for rule-based,
machine learning–based, deep learning–based, and hybrid
approaches [19,20]. However, the direct application of these
methods to Chinese clinical texts for PHI deidentification may
result in unsatisfactory results. The huge differences in
morphological features between Chinese and English make it
futile to construct rules and dictionaries. For example, there is
no delimiter in the middle of a sentence in Chinese, because the
basic morpheme that expresses meaning in Chinese consists of
more than one word. Additionally, Chinese grammar is more
flexible, and some words can exist as multiple parts of speech.
In addition, the absence of capitalization makes it difficult to
locate personal names in Chinese through specific rules. As a
result, deep neural networks require a very large Chinese
biomedical corpus for learning the high level contextual
semantic features of Chinese. However, annotating a large
amount of Chinese data for network training is costly, labor
intensive, and time consuming. Thus, there is a great need for
the ability to train deep neural networks on limited-size
annotated Chinese data sets. To reduce model dependence on
limited training data, an intuitive method would be to fine-tune
a model that has been pretrained with a Chinese corpus with
the target-specific downstream data set. However, there are two
limitations on applying pretrained language models to
downstream tasks. First, if the pretraining tasks and the target
tasks are not domain matched, the pretraining model may impair
the performance of the target tasks [21]. Second, there can be
overfitting issues when there is not enough data for fine tuning
the downstream tasks.

Objective
In this paper, we propose a deep neural network that uses
TinyBERT [22] and a CRF model for Chinese PHI
deidentification. TinyBERT as used in our model is distilled
from a BERT (bidirectional encoder representations from
transformers)-based model that was pretrained on a Chinese
corpus. It has two advantages: it can overcome the differences
in the morphological features of Chinese and English, and it
has fewer parameters, which should prevent the deep learning
model from overfitting when training on small-scale Chinese
EHR data sets. In addition, we propose a hybrid
data-augmentation method that uses data augmentation with a
generation approach (DAGA) [23] and mention replacement
(MR) [24] to create more training data. The enhanced data set
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assists the neural network in overcoming overfitting and
enhances the generalizability of the deep neural networks.

Methods

The PHI Recognition Model
In this paper, a new model that integrates TinyBERT [22] and
a CRF model [25] is proposed for PHI recognition in Chinese
EHRs. As shown in Figure 1, this model utilizes TinyBERT as
the feature extraction module and the CRF model as the
prediction module. The words in the sentences of an EHR are
first tokenized, and the lengths of the sentences are fixed to 128.
They are then input to the embedding module of TinyBERT to
generate word embeddings, position embeddings, and token-type
embeddings. The 3 embedding matrices are added together as
input to the feature encoder, consisting of cascaded self-attention
blocks for text feature extraction. With the self-attention
mechanism, the model captures long-distance interdependent
features in sentences and learns the semantics of the sentences.
The feature extraction module outputs a series of probabilities
for sequence labels, which are regarded as the emission scores
of the CRF model. After that, the text features are input to the
CRF module for label prediction.

TinyBERT is a light structure which is generated with the
transformer-layer distillation method from the base BERT [26].
The structures to be distilled are an embedding layer, multiple
transformer layers, and a prediction layer. The details of the
model distillation process are shown in Figure 2. Assuming that
the base BERT is the teacher module and has M transformer
layers, TinyBERT is the student module and has N transformer
layers, where M = k × N. In the distillation process, the model
learns knowledge through a knowledge distillation (KD)
function between the indices from the teacher module to student
module, as shown in equation 1:

θS(n) = g(k,θT(m)) (1)

where θS(n) denotes the parameters of the student module with
n transformer layers, θT(m) denotes the parameters of the teacher
module with m transformer layers, and g(•) denotes the
knowledge mapping function from the teacher module to the
student module. Formally, g(•) is optimized through minimizing
the distillation loss (L(distillation)), which is summed by the
transformer layer loss (L(tr)), the embedding layer loss
(L(emb)), and the prediction loss (L(pr)). To generate the
TinyBERT model, training sequences with a length of 1 were
simultaneously input to the teacher module and the student
module for label prediction, and the distillation loss was then
minimized in the training process, which can be calculated from
equation 2 to equation 5, as follows:

L(emb) = ||ES,ETWe||2(3)

L(pr) = cross_entropy (ZT,ZS) (4)

L(distillation) = L(tr) + L(emb) + L(pr) (5)

where h is the number of attention heads. denote the
i-th-layer attention map values, the output feature maps of the

transformer blocks, the output of the embedding layers, and the

predicted logic vectors of the student module, respectively. 
denote the i-th-layer attention map values, the output feature
maps of the transformer blocks, the output of the embedding
layer, and the predicted logic vectors of the teacher module,
respectively. Wh and We denote the linear transformation

matrices, and , where   ∈{A, H,E,Z}.

After the knowledge distillation process, the parameters of the
obtained TinyBERT were dramatically shrunk, while reserving
most of the knowledge of the base BERT. Our model utilizes
the text features output by the last TinyBERT encoder to finally
obtain the predicted labels through a classifier, such as a softmax
function. However, the softmax function regards each vector
as independent and ignores correlations between word labels
in a sentence; thus, some unreasonable results may be predicted.
To eliminate this issue, we introduced the CRF model to build
the dependencies and constraints within annotated sequences.
Instead of assuming that the current label of a token depends
only on the current label or the current label depends only on a
previous label, the CRF model breaks the limitations of local
token dependencies and focuses on the whole sentence. Specific
dependency rules that can be learned in the NER task are shown
in Figure 2.

The label for the first word in a sentence should start with “B-”
or “O,” not “I-.” In the mode that “B - label_1 I - label_2 I -
label_3 I -...” there should be the same named entity tag for
label_1, label_2, and label_3. Based on this rule, it is easy to
exclude wrong predictions, such as “B-Person I-Organization...”
Based on the observations, the CRF model can define an
equation to score a predicted sequence label of the input
sentence according to the dependency rules in equations (6) to
(8):

score(X|s) = emission_score + transition_score (6)

where s denotes the input sentence,   i,label denotes the score of
the predicted labels of the i-th word in the sentence s, and
  labeli→labelj denotes the score of transferring the labeli to labelj
of the word   , respectively. In our method, the emission_score
is obtained from the output of the TinyBERT module, and the
transition_score is calculated by the CRF module with the
contextual information in the sentence. To maximize the
probability of correct predicted sequence labels, the exponent
and standardization among all the predicted scores are calculated
according to equation 9:

Therefore, the loss function for optimizing our model can be
defined as equation 10:
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Figure 1. The proposed model for deidentifying protected health information in Chinese electronic health records. BERT: bidirectional encoder
representations from transformers; CRF: conditional random field; FFN: feed-forward network; MHA: multi-head attention; PER: personal name.

Figure 2. The TinyBERT knowledge distillation process used in our model. FFN: feed-forward network. Attn: attention layer; L(emb): embedding
loss; L(tr): transformer layer loss; L(pr): prediction loss; A: attention map values; Z: predicted logic vectors; S: student network; T: teacher network.

A Hybrid Data Augmentation Method
Formally, there is a trade-off between the performance and
efficiency of a deep neural network. The performance of a

network degrades, while its efficiency is enhanced, when the
parameters are compressed. In practice, a network compresses
the number of transformer layers and word embedding
dimensions to improve efficiency, but this also results in the
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ability of feature extraction becoming inferior. To keep its
efficiency without degrading its performance, an intuitive
method is to fine-tune it on a large data set. Unfortunately, the
generation of a sufficient, high-quality data set is challenging.
As discussed in previous reports [23,24], augmenting data with
noise may enhance the robustness of the models on tasks at the
sentence level, such as text classification and emotional
judgment, but it harms the performance of tasks at the token
level, such as NER. This situation indicates that augmented data
should contain as little noise as possible. Furthermore, the
research of Dai et al [27] indicates that hybrid data augmentation
outperforms any single method of data augmentation, on
average. Inspired by this work, we propose a new hybrid data
augmentation method, which combines DAGA [23] and MR
[24] to enhance original data for task-specific fine-tuning. The
DAGA is used to increase the size of the training set so as to
avoid overfitting, while MR is used to enable a network to learn
different representations of entities.

Unlike other data augmentation methods, a DAGA generates
new synthetic data from scratch without relying on WordNet
(Princeton University) or other external dictionaries, which
could make it more useful for limited-resource languages. It
mixes entity labels and word tokens together to create a linear
sentence. An example is shown in Figure 3. The generated linear
sentences are input to a word generation network (such as an
LSTM or BERT) to learn the distribution of words and tags.
Given a sequence of tokens (w1,w2,...wt,...,wN) to the networks,
where N denotes the length of the sequence, the networks learn
the hidden states of each word in this sequence with equation
11:

ht = Met(11)

where M denotes the learnable weight matrix in the
word-generation networks and et denotes the embedding matrix
of the input words. The word-generation networks learn to
predict the tags of the next token in the sequence by maximizing

the probability calculated by equation 12 in the process of
training:

where V denotes the size of the vocabulary, i* denotes the index
of the word wt in the vocabulary, and ht–1,i* denotes the i-th
element of ht–1. In this way, the objective function for obtaining
the parameter θ is described in equation 13:

The paired token-label linear sentences promote learning by the
networks of the context relationship between parts of speech,
so the distribution of the generated synthetic data is closer to
the original data, thereby introducing less noise during data
augmentation. In addition, the generated synthetic data
introduces more diversity to enhance the robustness of the
model.

However, our originally collected data set may contain sentences
that have fewer entities and more “O” tag words. According to
equation 13, a DAGA heavily relies on contextual semantic
information for sentence generation. Hence, only applying a
DAGA to the originally collected data set for data augmentation
may cause an entity sparsity issue, which is not conducive to a
model for learning rich data features. To mitigate this, we
introduced MR as another supplementary data augmentation
method. For each labeled entity in a sentence, we formulated a
binomial distribution to determine if the entity should be
replaced. The formula outputs a probability P, and the entity is
chosen for replacement by another entity from the training set
that has the same entity type when P>.5. Otherwise, the entity
remains in the original sentence. However, due to the small size
of the originally collected data set, applying only MR for data
augmentation easily generates duplicate data, which may cause
oversampling in the training process, resulting in overfitting of
the model. Therefore, we merged a DAGA and MR together to
augment the data set.

Figure 3. An example of the data augmentation with a generation approach linearization operation in our data augmentation method. PER: personal
name.
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Results

Data
The raw EHRs contain patient history, current illness, an
admission summary, a daily record of the disease course, the
diagnosis, treatment processes, and a discharge summary. The
EHRs were all collected from local hospitals in Chongqing City,
China. In this paper, we aim to identify protected information
in the EHRs, such as the organization (ORG), location (LOC),
dates (DAT), and personal names (PER), including the names
of patients and doctors.

Manually annotating the raw data is a time-consuming and
labor-intensive task, and the data are usually insufficient for
disease-specific research, especially for rare diseases. Inspired
by past research [28,29], we utilized a deep learning method
for the raw data annotation. In this method, all the raw data are
randomly split into 2 parts. The first part is called the “mini
data set” (containing about 10% of all the raw data) and the
other part is called the “formal data set.” We invited 2
professional clinicians to annotate all the PHI manually in the
mini data set. Then, we fed the annotated mini data set to the
base BERT with a CRF model to fine-tune it. Next, we switched
the base BERT with the CRF model from a training mode to a
test mode to predict the PHI in the formal data set. However,
there may have been some incorrect predictions (also called bad
cases) in the formal data set. Thus, we manually reviewed the
predicted PHI in the formal data set and corrected the bad cases.
In the end, we obtained a complete annotated data set with PHI
labels. After that, private information, such as patient names,
was replaced with random surrogates.

Experiment Settings
We randomly split the raw annotated data set into a training set
(denoted as dataraw), an evaluation set, and a test set at a ratio
of 6:2:2. Statistically, there were a total of 2707, 1424, 509, and
5046 labeled PER, ORG, LOC, and DAT entities, respectively.
Our data augmentation method was applied to dataraw to create

a new training set named the “hybrid augmented data set,”
denoted as dataDAGA+MR. For comparison, we separately applied
a DAGA and MR to the dataraw to create 2 additional training
sets, denoted as dataDAGA and dataMR. The evaluation set was
used for verifying performance in the training process and the
test set was used for testing the performance of our proposed
model and other baseline methods. Detailed statistical
information on our hybrid augmented data set and the raw data
set for each type of entity are shown in Table 1.

We retained the CRF module and replaced the feature extraction
module of our model with other modules. These modules
included 2 recurrent neural network (RNN)-based models,
including BiLSTM [30], gated recurrent units (GRU) [31], and
7 BERT-based models, including base BERT [26],
Chinese-BERT-wwm [32], Chinese-BERT-wwm-ext [32],
Chinese-BERT-base [33], and Chinese-BERT-large [33], and
as baselines, PCL-BERT [34] and PCL-BERT-wwm [34].
Detailed settings for each benchmark model are listed in Table
2. For the evaluation metrics, we used precision, recall, and the
F1 score to evaluate the overall performance in the data sets,
calculated according to equations (14) to (16), as follows:

where TP, FP, and FN denote true positive number, false
positive number, and false negative number, respectively. In
practice, the experiments with the base BERT,
Chinese-BERT-wwm, Chinese-BERT-wwm-ext,
Chinese-BERT-base, Chinese-BERT-large, and TinyBERT
models were conducted on a computer with an Intel Xeon central
processing unit (CPU) (E5-2620, v3, 2.40 GHz) with 128 GB
memory. The experiments with the GRU, BiLSTM,
PCL-MedBERT, and PCL-MedBERT-wwm were conducted
on an Nvidia RTX3090 graphics processing unit (GPU).

Table 1. Statistical information for the raw data and hybrid augmented data for each type of entity.

Test set (original), nEvaluation set (original),
n

Training set, nEntity types

TotalMRbDAGAaOriginal

6286318667289243271448PERc

10510222755891384302LOCd

303275472616922188846ORGe

103499916,436601174123013DATf

2070200732,10411,18415,3115609Total

aDAGA: data augmentation with a generation approach.
bMR: mention replacement.
cPER: personal name.
dLOC: location.
eORG: organization name.
fDAT: date.
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Table 2. Settings for each benchmark.

DescriptionParameters, nSettingsModels

The parameters were randomly initialized.2,190,0001 layer,a 512 dimsbGated recurrent units

The parameters were randomly initialized.2,210,0001 layer, 512 dimsBiLSTMc

The base BERT was pretrained on the English Wikipedia corpus.110,000,00012 layers, 768 dims,

12 headse
Base BERTd

The base BERT was pretrained on the Chinese Wikipedia corpus with a whole
word masking training strategy.

110,000,00012 layers, 768 dims,
12 heads

Chinese-BERT-wwm

The base BERT was pretrained on the Chinese Wikipedia corpus, news, and
question-answer pairs with a whole word masking training strategy.

110,000,00012 layers, 768 dims,
12 heads

Chinese-BERT-wwm-
ext

The base BERT was pretrained on the Chinese Wikipedia corpus with char,
glyph, and pinyin embedding.

147,000,00012 layers, 768 dims,
12 heads

Chinese-BERT-base

The base-BERT-large model with more layers and larger dims was pretrained
on the Chinese Wikipedia corpus using char, glyph, and pinyin embedding.

374,000,00024 layers, 1024 dims,
12 heads

Chinese-BERT-large

A BERT model that was pretrained on the Chinese medicine corpus.110,000,00012 layers, 768 dims,
12 heads

PCL-MedBERT

A BERT model that was pretrained on the Chinese medicine corpus with whole
word masking training.

110,000,00012 layers, 768 dims,
12 heads

PCL-MedBERT-wwm

A BERT distilled from the Chinese-BERT-wwm.67,000,0006 layers, 768 dims, 12
heads

TinyBERT

aLayer: transformer blocks.
bDims: embedding dimensions.
cLSTM: long short-term memory.
dBERT: bidirectional encoder representations from transformers.
eHeads: attention heads.

Experiment Results
The performance of our model compared with the baseline
models on the test set is reported in Table 3. After fine-tuning
dataraw, base BERT obtained the best precision (98.55%), while
PCL-MedBERT-wwm achieved the best recall (99.18%) and
F1 score (98.8%). However, after fine-tuning the models on the
hybrid augmented data set, our model obtained the best scores
for precision (98.7%), recall (99.13%), and F1 score (98.91%),
representing increases of 0.86% for precision, 0.53% for recall,
and 0.69% for F1 score compared with dataraw. Nevertheless,
the other baseline models gained improved performance after
fine-tuning on the hybrid augmented data set compared to
dataraw. Furthermore, the overall performance of the 2
RNN-based models was inferior to most of the BERT-based
models, and the BiLSTM outperformed the GRU on precision,
recall, and F1 score by 2.2%, 2.95%, and 2.58%, respectively,
after training on dataraw, and by 1.63%, 2.37%, and 2%,
respectively, after training on the hybrid augmented data set.

It is worth noting that the performance of Chinese-BERT-base
and Chinese-BERT-large were worse than the other BERT-based
benchmark models after fine-tuning on dataraw. The
improvement of these 2 models surpassed the other models after
fine-tuning on the augmented data set. Compared to fine-tuning
on dataraw, Chinese-BERT-base achieved increases of 13.94%
for precision, 11.69% for recall, and 12.84% for F1 score, and

Chinese-BERT-large achieved increases of 1.85% for precision,
0.87% for recall, and 1.36% for F1 score.

In order to further evaluate the effectiveness of our hybrid data
augmentation method, we conducted an ablation study through
fine-tuning each benchmark on dataDAGA and dataMR. The results
are shown in Table 4. Each metric of our model fine-tuned on
either dataDAGA or dataMR performed better than when fine-tuned
on dataraw. The precision, recall, and F1 score improved 0.48%,
0.43%, and 0.46%, respectively, after fine-tuning our model on
dataMR, and improved 0.34%, 0.48%, and 0.38%, respectively,
after fine-tuning on dataDAGA. However, fine-tuning on a single
augmented data set could not ensure that our model
outperformed other baseline methods on each metric. Overall,
the PCL-MedBERT-wwm obtained the best precision and F1
score after fine-tuning on dataMR and dataDAGA.

It is worth noting that the results of some baseline benchmarks
degraded after fine-tuning on dataMR or dataDAGA. For example,
after fine-tuning the models on dataMR, the performance of
PCL-MedBERT decreased 0.19% for precision, recall, and F1
score, and the performance of base BERT decreased 0.3%,
0.1%, and 0.2% for precision, recall, and F1 score, respectively.
The situation was similar for Chinese-BERT-wwm-ext and
Chinese-BERT-large. The performance of
Chinese-BERT-wwm-ext decreased 0.29% for precision and
0.05% for F1 score, and the performance of
Chinese-BERT-large decreased 0.47% for precision.
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Nevertheless, the performance of all the benchmark models
improved after fine-tuning on our hybrid augmented data set,
which proves the effectiveness of the proposed hybrid
augmentation method.

We compared the performance on various entity types of our
model after fine-tuning it on different data sets. As shown in
Table 5, fine-tuning our model on either a single augmented
data set or the hybrid augmented data set improved the
performance for each entity type, which demonstrates the
effectiveness of our proposed data augmentation strategy. It is
worth noting that our model could not achieve the best
performance for the PER and DAT entity types after fine-tuning
on the hybrid augmented data set. For the DAT type, the best
results were obtained after fine-tuning our model on dataMR,
with increases of 0.1% for precision, 0.29% for recall, and
0.19% for F1 score compared to the hybrid augmented data set.
For the PER type, the best precision was obtained after
fine-tuning our model on dataDAGA; this was 0.16% higher than
for dataDAGA+MR.

To investigate the effect of data volume on our proposed model,
we built 4 additional training sets with different data volume,

denoted as , , , and . These symbols and their
corresponding meanings are listed in Table 6.

The results of our model after fine-tuning on the 4 additional
training sets are shown in Table 7. From the table, we can

observe that our model fine-tuned on only obtained
performance of 91.33%, 95.26%, and 93.26% for precision,
recall, and F1 score, respectively. When the volume of raw data
increased to 50%, the performance improved greatly.
Furthermore, the performance of our model fine-tuned on either

or was better than when fine-tuned on dataRaw, , or

. Moreover, our model obtained better performance after

fine-tuning on than on . The results also indicate that the
less raw data we had, the more the performance of our model
improved after fine-tuning on the hybrid augmented data set.

The time used by the different devices for all models that used
the test set (including 1500 samples) was recorded for an
efficiency evaluation. All the benchmarks ran a forwarded
process on the test set; the results are shown in Table 8. Our
model achieved the highest efficiency among all the
BERT-based benchmarks: 158.22 seconds of CPU time and
62.39 seconds of GPU time. From the table, we can observe
that the efficiency increase for CPU time was greater than for
GPU time. The more limited were the computing resources, the
greater was the efficiency improvement. These results show
that our proposed method had higher efficiency with higher
performance. Although the efficiency of the GRU and LSTM
models was better than our model, the performance of these
models for precision, recall, and F1 score was worse.

Table 3. Comparison of each benchmark model after fine-tuning on the raw data and the hybrid augmented data. Italics indicate the best performance.

DataDAGA+MR
aDatarawModels

F1, %R, %P, %F1,d %R,c %P,b %

95.4695.0295.993.9793.0494.92Gated recurrent units

97.4697.3997.5396.5595.9997.12BiLSTMe

98.7598.8598.6598.6398.798.55Base BERTf

98.798.9098.598.4398.598.35Chinese-BERT-wwm

98.7898.9098.6598.4598.598.4Chinese-BERT-wwm-ext

96.9697.0596.8684.1285.3682.92Chinese-BERT-base

96.9296.5797.2795.5695.795.42Chinese-BERT-large

98.5898.7998.3698.7299.0898.37PCL-MedBERT

98.6798.8998.4698.899.1898.42PCL-MedBERT-wwm

98.9199.1398.798.2298.697.84Our model

aDAGA+MR: data augmentation with a generation approach and mention replacement.
bP: precision.
cR: recall.
dF1: F1 score.
eBiLSTM: bidirectional long short-term memory.
fBERT: bidirectional encoder representations from transformers.
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Table 4. Ablation studies of each model fine-tuned on different data sets. Italics indicate the best performance.

DataDAGA
bDataMR

aDatarawModels

F1, %R, %P, %F1, %R, %P, %F1,e %R,d %P,c %

94.6194.5994.6494.9494.295.6893.9793.0494.92Gated recurrent units

9796.8697.1497.4397.1597.7296.5595.9997.12BiLSTMf

98.5598.598.698.4398.698.2598.6398.798.55Base BERTg

98.5898.798.4598.698.798.598.4398.598.35Chinese-BERT-wwm

98.8598.998.898.498.798.1198.4598.598.4Chinese-BERT-wwm-ext

95.0695.794.4288.6388.8888.3784.1285.3682.92Chinese-BERT-base

97.3997.2597.5395.6896.4294.9595.5695.795.42Chinese-BERT-large

98.9699.2398.798.5398.8998.1898.7299.0898.37PCL-MedBERT

99.0399.1398.9498.7598.9998.5198.899.1898.42PCL-MedBERT-wwm

98.699.0898.1898.6899.0398.3298.2298.697.84Our model

aMR: mention replacement.
bDAGA: data augmentation with a generation approach.
cP: precision.
dR: recall.
eF1: F1 score.
fBiLSTM: bidirectional long short-term memory.
gBERT: bidirectional encoder representations from transformers.

Table 5. Performance comparison of our model on various entity types after fine-tuning our model with different data sets. Italics indicate the best
performance.

DATdORGcLOCbPERaMethods

F1, %R, %P, %F1, %R, %P, %F1, %R, %P, %F1,g %R,f %P,e %

97.9898.5597.4297.5498.0297.0695.6995.2496.1599.3699.5299.21Dataraw

98.7599.2398.2797.2298.0296.4395.7396.1995.2899.699.8499.37DataDAGA
h

99.0899.4298.7596.8997.6996.195.7797.1494.4499.3699.3699.36DataMR
i

98.8999.1398.6598.0398.6897.3996.6897.1496.2399.7699.6899.84DataDAGA+MR

aPER: personal name.
bLOC: location.
cORG: organization name.
dDAT: date.
eP: precision.
fR: recall.
gF1: F1 score.
hDAGA: data augmentation with a generation approach.
iMR: mention replacement.
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Table 6. Symbols and meanings of additionally built training sets.

MeaningSymbols

Randomly selected sample comprising 10% of dataraw.

Randomly selected sample comprising 50% of dataraw.

Mixed data from and the entire data set generated by DAGA and MR.a,b

Mixed data from and randomly selected data generated by DAGA and MR.

aDAGA: data augmentation with a generation approach.
bMR: mention replacement.

Table 7. Results of TinyBERT after fine-tuning on different data volumes.

F1,c%R,b%P,a%Data Volume

93.2695.2691.33

97.9198.3697.46

98.5198.8998.13d,e

98.899.0898.51

aP: precision.
bR: recall.
cF1: F1 score.
dDAGA: data augmentation with a generation approach.
eMR: mention replacement.

Table 8. Efficiency comparison of the benchmark models.

Difference vs our
model, %

GPUb time, secondsDifference vs our
model, %

CPUa time, secondsModels

–9.5256.45–36.31100.76Gated recurrent units

–11.9454.94–37.6898.61BiLSTMc

20.0378.0239.8262.81Base BERTd

20.0878.0739.16259.96Chinese-BERT-wwm

19.6477.6439.89263.23Chinese-BERT-wwm-ext

18.2176.2828.38220.93Chinese-BERT-base

46.7117.0577.36698.99Chinese-BERT-large

18.3876.4439.5261.53PCL-MedBERT

20.0378.0239.23260.38PCL-MedBERT-wwm

N/A62.39N/Ae158.22Our model

aCPU: central processing unit.
bGPU: graphics processing unit.
cBiLSTM: bidirectional long short-term memory.
dBERT: bidirectional encoder representations from transformers.
eN/A: not applicable.

Case Studies
To visually verify the effectiveness of our proposed method,
we used case studies as examples, as shown in Figure 4. In case
1, our model incorrectly classified the number “009942” from

the “O” type as the DAT type after fine-tuning on the raw data.
This was corrected after fine-tuning on our hybrid augmented
data set. In case 2, the entity “白血病基金” (leukemia fund),
which should have the ORG type, was not recognized when our
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model was fine-tuned on the raw data. However, our model was
able to modify this result through context semantics after
fine-tuning on the hybrid data set. These case studies

demonstrate the effectiveness of the hybrid data augmentation
method.

Figure 4. Examples of the results of fine-tuning our model on the hybrid augmented data set. DAT: date; ORG; organization name; DAGA: data
augmentation with a generation approach; MR: mention replacement.

Discussion

The main contributions of this paper are to (1) describe a new
and efficient model that incorporates a TinyBERT and a CRF
model to deidentify PHI in Chinese EHRs; (2) describe a hybrid
data augmentation method utilizing a sentence generation
strategy and an MR strategy for enhancing Chinese EHRs; and
(3) report that our proposed method surpasses other baseline
methods on both performance and efficiency. This could be for
two possible reasons. First, the attention mechanism of
TinyBERT and the optimal searching strategy of the CRF model
ensured that our model learned the global features of texts well,
and the lightweight parameters kept it from overfitting in the
training process. Second, the DAGA generated more training
data with more diversity and less noise for increasing the prior
knowledge of data distribution for learning. The MR strategy
randomly replaced entities in a sentence for learning
representations of entities from diverse perspectives, which
provided richer contextual information. The worse performance
a model had after fine-tuning on raw data, the greater the
performance improvement it could obtain after fine-tuning on
the hybrid augmented data set. Additionally, the training curves
of our model on dataraw and dataDAGA+MR are shown in Figure
5. This shows that our model quickly converged during training,
which greatly reduced the training cost.

In addition, we performed an analysis to determine why the
performance of some baseline methods degraded after
fine-tuning on dataraw or dataDAGA. We found that, on the one
hand, there may have been disadvantages arising from the data
sparsity of dataDAGA, which hampered the ability of the models
to focus on useful contextual semantic information in sentences,
impairing feature extraction. On the other hand, applying the
MR strategy to the raw data set tended to generate duplicate

data, which could have resulted in overfitting in the training
process. These 2 shortcomings had a greater impact on the
Chinese-BERT-large model, because that model has more
transformers and parameters, and is therefore more sensitive to
data disturbances [25]. However, the hybrid augmented data
could not ensure that our model improved its performance on
each type of entity, although the performance on the overall test
set was still improved. Moreover, the pretraining data set had
a great impact on the downstream tasks. Though the base BERT
was pretrained on the English corpus, it obtained much better
performance than Chinese-BERT-base. Chinese-BERT-base
and Chinese-BERT-large were pretrained with Chinese word
information including words, glyphs, and pinyin information.
In our experiments, we solely fine-tuned these models with
word information, like the other BERT-based models, and found
that this led to heavy performance degradation on dataraw.

The input of our proposed model is structured data, which needs
to be correctly prepared from the raw collected data. Although
we employed a BERT model to improve the efficiency of the
annotating process, the generalizability of this method to EHRs
in different languages has not been proved. Furthermore, the
location information could have correlations with disease type,
although we did not specifically evaluate the influence of PHI
deidentification on clinical data mining in this paper.

This paper proposes an efficient and effective model that
integrates a TinyBERT and a CRF model for the task of
deidentifying PHI in Chinese EHRs. This model relieves the
high dependency on computing resources of previous models
and improves the efficiency of the task. To overcome the
limitation of insufficient annotated data, we propose a hybrid
data augmentation method, which uses a generation approach
and an MR strategy to create a new data set for fine-tuning the
model. Our experimental results demonstrate that the
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performance of our model was greater than baseline models and
also had the highest efficiency of all the experimental benchmark

models.

Figure 5. Training curves of our model on (A) the raw data set and (B) the hybrid augmented data set.
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Abstract

Background: Despite the increasing attention to electronic health management information systems (HMISs) in global health,
most African countries still depend on inefficient paper-based systems. Good Neighbors International and Evaluate 4 Health have
recently supported the Ghana Health Service on the rollout of a mobile health–based HMIS called the e-Tracker system in 2
regions in Ghana. The e-Tracker is an Android-based tracker capture app that electronically manages maternal and child health
(MCH) data. The Ghana Health Service has implemented this new system in Community Health Planning and Services in the 2
regions (Volta and Eastern).

Objective: This study aims to evaluate changes in health workers’ capacity and behavior after using the e-Tracker to deliver
MCH services. Specifically, the study assesses the changes in knowledge, attitude, and practice (KAP) of the health workers
toward the e-Tracker system by comparing the pre- and postsurvey results.

Methods: The KAP of frontline health workers was measured through self-administered surveys before and after using the
e-Tracker system to assess their capacity and behavioral change toward the system. A total of 1124 health workers from the Volta
and Eastern regions responded to the pre-post surveys. This study conducted the McNemar chi-square test and Wilcoxon signed-rank
test for a pre-post comparison analysis. In addition, random-effects ordered logistic regression analysis and random-effects panel
analysis were conducted to identify factors associated with KAP level.

Results: The pre-post comparison analysis showed significant improvement in health workers’ capacity, with higher knowledge
and practice levels after using the e-Tracker system. As for knowledge, there was a 9.9%-point increase (from 559/1109, 50.41%
to 669/1109, 60.32%) in the proportion of the respondents who were able to generate basic statistics on the number of children
born in a random month within 30 minutes. In the practice section, the percentage of respondents who had scheduled
clientencounters increased from 91.41% (968/1059) to 97.83% (1036/1059). By contrast, responses to the attitude (acceptability)
became less favorable after experiencing the actual system. For instance, 48.53% (544/1121) initially expressed their preferences
for an electronic system; however, the proportion decreased to 33.45% (375/1121) after the intervention. Random-effects ordered
logistic regression showed that days of overwork were significantly associated with health workers’ attitudes toward the e-Tracker
system.

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e29431 | p.107https://medinform.jmir.org/2022/8/e29431
(page number not for citation purposes)

Lee et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:sykim22@snu.ac.kr
http://www.w3.org/Style/XSL
http://www.renderx.com/


Conclusions: This study provides empirical evidence that the e-Tracker system is conducive to enhancing capacity in MCH
data management for providing necessary MCH services. However, the change in attitude implies that the users appear to feel
less comfortable using the new system. As Ghana plans to scale up the electronic HMIS system using the e-Tracker to the national
level, strategies to enhance health workers’ attitudes are necessary to sustain this new system.

(JMIR Med Inform 2022;10(8):e29431)   doi:10.2196/29431

KEYWORDS

mobile health; mHealth; e-Tracker; health information system; HIS; health information management system; HIMS; District
Health Information Management System; DHIMS; maternal and child health; MCH; electronic health record; EHR; health workers

Introduction

Background
A health management information system (HMIS) is a critical
component of the health system. According to the World Health
Organization, a well-functioning HMIS should “ensure the
production, analysis, dissemination, and use of reliable and
timely information on health determinants, health systems
performance, and health status” [1]. In other words, the key
functions of HMIS include the generation, compilation, analysis,
synthesis, communication, and use of health information [2].
Among these functions of HMIS, generating health data is
particularly crucial as it adds value by providing insights into
clinical decision-making and policy implications.

The systematic generation and management of health data in
low- and middle-income countries (LMICs) have specific
challenges in multiple health focus areas. For example, even
the most essential vital statistics such as birth records or
maternal and child health (MCH) service provision statistics
have not been tracked systematically in many LMICs. In recent
years, at least 15,000 newborns died annually, without official
records [3]. Similarly, gaps exist between actual service
provision and reported data, which makes it difficult for local
governments to identify the unmet needs of health services [4].
Health data management is more challenging in
resource-constrained settings as the health records are stored in
paper-based charts rather than collected electronically. Health
workers in such settings generate basic statistics or aggregate
the data from paper-based health records and submit the data
in person by visiting upper-level facilities such as district or
provincial health offices. This manual process is time consuming
and often leads to poor data quality [5-8]. In this context, an
electronic HMIS has been recognized as an effective and
efficient way of addressing this challenge and bridging the
quality gap between health care service provision and data
management [5,9,10]. Some African countries have recently
attempted to implement mobile health (mHealth)–based HMIS
as it can be operated using relatively simple software at a lower
cost [11,12]. The use of mobile phones or tablet computers for
operating HMIS can also address logistic problems, including
limited access to fixed broadband internet [13,14], lack of
electricity supply [14-17], and financial and human resource
deficits in low-resource settings [9,10,18-22].

Ghana is an LMIC that has adopted an mHealth-based HMIS
by implementing the MCH data capture app on a tablet
computer. Originally, the HMIS in Ghana was initiated as a
purely paper-based system in which all stages of data

management, from data collection to storage, were performed
manually. Once computers became available, the process started
transitioning from paper-based to electronic systems at the
district level. In 2012, Ghana Health Service (GHS), an
implementing agency under the Ministry of Health, implemented
the official health service data management software platform,
District Health Information Management System, which enabled
district health officers to manage health data electronically.
However, lower-level health facilities still maintained a
paper-based HMIS, which is highly error prone [14,15]. This
transition in Ghana was partial as it did not include peripheral
community-level health facilities [4]. Community health
facilities in Ghana are called Community-based Health Planning
and Services compounds and belong to the lowest level of the
public health structure in Ghana [23].

In response to the growing demand for an efficient data
management system, the GHS implemented the e-Tracker
system in 2015, applying it first to family planning and MCH
services at the community level for effective and efficient data
management of the services [14,24]. The e-Tracker is an
Android version of the individual client-based module in the
District Health Information System 2. Developed by Oslo
University in 2005, this open-source software platform enables
the reporting, analysis, and sharing of data for the public health
sector. The system is operated on tablet computers to resolve
common obstacles such as limited electricity, internet access,
lack of financing, and limited human resources by allowing
offline data collection and management via portable devices
[8,10,14]. GHS is taking the lead to increase health workers’
capacity not only for data recordings but also for managing
tasks such as tracking clients who drop out of care, scheduling,
monitoring health services, and generating reports [14,16].
Throughout these transitions, the goal of the HMIS in Ghana
has been to support transparent decision-making for nationwide
health sector programs [4,21].

For a successful transition from a paper-based health record to
an electronic HMIS, the willingness of end users to change their
workflow is essential for the sustained use of a new system. In
this light, ensuring health workers’ acceptability and positive
perceptions of the change in practice is one of the key facilitating
factors in implementing the e-Tracker, as health workers in
community health facilities are frontline workers responsible
for managing health data [9,17]. Thus, health workers’
acceptability of this new system is considered a prerequisite for
the successful implementation of an mHealth-based HMIS [10].
The study by Zargara et al [14] reported that a new system’s
realignment of work practices is a determinant of MCH service
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provision quality. The study also reported that the key challenges
in transitioning from paper-based to electronic health records
were “an increase in workload occurred by double work” and
“low computer literacy” [4,9]. A working paper published by
the US Agency for International Development and Measure
Evaluation showed mixed results in that the health workers from
the 4 districts in Ghana’s Central Region did not use the full
functionality of the new mHealth-based HMIS, such as data
analysis. However, most of them were satisfied with the
advanced technology for managing health data [24].

Objective
To further investigate the frontline health workers’ capacity,
perceptions, and practice toward the e-Tracker, this study
conducted a pre-post survey to measure knowledge, attitude,
and practice (KAP) among the health workers at
Community-based Health Planning and Services compounds
in the Volta and Eastern regions of Ghana where the e-Tracker
was gradually rolled out to all districts within the region. The
empirical findings of this study are expected to provide grounds
and political implications for the national scale-up of the
e-Tracker system.

Methods

Study Sample
This study used a quasi-experimental pre- and postanalysis
design. The KAP on MCH data management using the e-Tracker
was investigated through paper-based pre-post surveys. The
study adopted a purposive sampling method, recruiting
respondents during the e-Tracker system training sessions in
the Volta (recently renamed the Oti and Volta regions) and
Eastern regions in Ghana. Although there were no specific
inclusion or exclusion criteria for survey participants, the
respondents were presumed to possess qualifications to fulfill
the research purpose as the eligible participants of the training
session were frontline health workers who were in charge of
providing health services and managing patient data.

For the presurvey, respondents were recruited during the initial
training session of the e-Tracker system, where they were
introduced to the system. The postsurvey was conducted during
the refresher training after 3 to 10 months of e-Tracker use. A
total of 2396 health workers participated in the presurvey;
however, only 46.9% (1124/2396) of respondents who had
participated in the initial training (ie, the presurvey) were able
to rejoin the refresher training (ie, the postsurvey) as the GHS
arranged to place a portion of the initial participants with newly
employed health workers who had not received training
opportunities. As a result, approximately half of the respondents
from the presurvey were replaced with newly participating
health workers, shrinking the study sample size (respondents
who participated in both pre- and postsurveys) to 1124. The
final set of respondents comprised different types of community
health workers (community health nurses [CHNs] or community
health officers [CHOs], midwives, enrolled nurses, and field
technicians) working in the Volta and Eastern regions
(Multimedia Appendix 1).

Data Collection and the Questionnaire
The survey was conducted between October 2018 and November
2019. It was designed as a paper-based, self-administered
questionnaire collected by staff from Good Neighbors
International, the implementing partner of the e-Tracker training
program. Responses were entered manually into a Microsoft
Excel spreadsheet by the research team. The questionnaire
comprised 43 multiple-choice and yes or no questions covering
the content domains of demographics and KAP (Multimedia
Appendix 2).

First, the knowledge section of the questionnaire asked
respondents whether they could retrieve specific information
on MCH statistics within 30 minutes. The 10 tasks listed in the
questionnaire were designed based on observations during the
field visit. The questions asked about the respondents’perceived
capacity to generate basic statistics (such as the number of
children born, stillbirths, and women who came for antenatal
care visits in a specific month in the catchment area). The first
half of the questions were intended to ask whether aggregate
data could be generated for a randomly selected month. The
remaining 5 questions asked whether health workers could
retrieve aggregate data for the month when the survey was
conducted. Second, the section for attitude comprised 8
questions with a 5-point Likert scale to identify the level of
acceptability of using an electronic device for managing MCH
records. The questions asked about the respondents’willingness,
perception, and preference for using an electronic device for
MCH data management. Third, the practice section comprised
questions on the practice of 8 specific tasks related to MCH
data management and the perceived difficulty in performing
those tasks. In addition, the use of a tablet computer for MCH
data management and the frequency of electronic devices used
for MCH data management were asked. As the data on tablet
computer use were systematically inaccessible, self-reported
responses were used to assess the practice.

Statistical Analysis
Data from the pre- and postsurveys coded in the spreadsheets
were imported into STATA (version 14; StataCorp LLC).
Unique identifications were randomly generated for each
participant, which allowed each participant’s pre- and postsurvey
variables to be reliably matched. McNemar chi-square and
Wilcoxon signed-rank tests were used for pre-post comparison
analyses. In addition, to investigate the factors associated with
each KAP component, random-effects ordered logistic
regression and random-effects panel analysis were conducted.
For the dependent variable, a Cronbach α test was performed
for each KAP to test internal consistency for aggregating
different responses to a single score. The duration of the
intervention (ie, use of the tablet-based e-Tracker system in
managing MCH data) was selected as the explanatory variable,
and the control variables were categorized into enabling
environmental, demographic, and working condition factors.
The explanatory variable, represented by the “number of days
of using the e-Tracker system for MCH data management,”
varied as the time points for the presurvey (the initial training
workshop) and the postsurvey (refresher training) were different
across the districts covered. The variable days of overwork was
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included only in the regression model, as introducing an
mHealth-based HMIS may have intensified the health workers’

workload, increasing resistance toward the emergent system
(Table 1).

Table 1. Analysis framework of regression analysis.

DescriptionVariables

Dependent variables

Knowledge of MCHa data management (score between 0 and 10)Knowledge

Attitude on using an electronic device to manage MCH data (scaled between 1=most negative and 5=most
positive)

Attitude

Frequency of using an electronic device to manage MCH data (scaled between 1=never and 5=every time)Practice

Explanatory variable

Days of using the e-Tracker system via a tablet computerDuration of e-Tracker use

Control variables

Level of internet connection at the health facilityEnvironmental factor

Age, sex, educational level, working experience, job position, and use of mobile phoneDemographic factors

Days of overworkWorking condition

aMCH: maternal and child health.

Ethics Approval
This study received ethics approval from the GHS Ethics Review
Committee (GHS-ERC009/09/18; Multimedia Appendix 3).

Results

Summary of the Respondents’ Characteristics
Table 2 presents descriptive statistics for respondents who
participated in the presurvey only (group A) and those who
participated in both pre- and postsurveys (group B). The 2
groups of respondents were analyzed to identify any significant
differences that might have been caused because of a change
in sample size. In group A, approximately 53.23% (676/1272)
were from the Volta region, whereas in group B, it was 31.76%
(357/1124). Approximately 83.81% (1066/1272) of respondents
were female in group A, whereas it was 79.27% (891/1124) for
group B. As for education, both groups showed a similar
proportion for each academic level; however, group A tended
to have a slightly higher educational background. Specifically,
the percentages of respondents with diplomas and bachelor’s
degrees were about 3% points and 2% points higher for group

A, respectively. Similarly, group A respondents tended to engage
in a higher job position as 28.38% (361/1272) were midwives,
whereas 15.84% (178/1124) were midwives in group B. Both
groups had a high rate of mobile phone use as >96% indicated
the use of their own mobile phones. As for internet access,
approximately 11.4% (145/1272) and 11.48% (129/1124) of
respondents answered that their facilities had no internet access,
whereas 31.84% (405/1272) and 31.23% (351/1124) responded
with an acceptable level of internet access at work sites groups
A and B, respectively. In addition, only 6.21% (79/1272) and
6.14% (69/1124) in groups A and B, respectively, answered
that their facilities had very reliable internet access. Regarding
the average age and working experience, the average age of
group A respondents was approximately 1 year higher than
those in group B. The average duration of using an e-Tracker
system was 187.55 (51.17) days. The differences between the
2 groups in the chi-square analysis results were statistically
significant for all demographic factors. Notably, the results
indicated that health workers with a relatively lower educational
background and shorter work experience participated in both
pre- and postsurveys by rejoining the refresher training.
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Table 2. Sociodemographic characteristics of the respondents.

P valueGroup B, matched (n=1124)Group A, presurvey only (n=1272)Characteristics

Region, n (%)

<.001a357 (31.76)676 (53.23)Volta

<.001a767 (68.24)596 (46.86)Eastern

Sex, n (%)

.004a233 (20.73)204 (16.04)Male

.004a891 (79.27)1066 (83.81)Female

.004a0 (0)2 (0.16)Missing

Educational level, n (%)

<.001a993 (88.35)1051 (82.79)Certificate

<.001a121 (10.77)179 (14.13)Diploma

<.001a9 (0.8)37 (2.92)Bachelor’s degree

<.001a1 (0.09)1 (0.08)Master’s degree

<.001a0 (0)1 (0.08)Other

<.001a0 (0)4 (0.32)Missing

Job description, n (%)

<.001a941 (83.72)901 (70.83)Community health nurse or community health officer

<.001a1 (0.09)2 (0.16)Enrolled nurse

<.001a178 (15.84)361 (28.38)Midwife

<.001a2 (0.18)1 (0.08)Field technician

<.001a1 (0.09)3 (0.24)Other

<.001a1 (0.09)4 (0.31)Missing

Use of mobile phone, n (%)

.05a1091 (97.06)1224 (96.23)Yes (use my own mobile phone)

.05a0 (0)5 (0.39)Yes (share a mobile phone with family)

.05a1 (0.09)2 (0.16)No (do not use or have a mobile phone)

.05a32 (2.85)41 (3.22)Missing

Access to the internet, n (%)

.17a129 (11.48)145 (11.4)No internet

.17a102 (9.07)99 (7.78)Very poor

.17a113 (10.05)139 (10.93)Poor

.17a351 (31.23)405 (31.84)Acceptable

.17a329 (29.27)347 (27.28)Reliable

.17a69 (6.14)79 (6.21)Very reliable

.17a31 (2.76)58 (4.56)Missing

<.001b31.45 (5.44)32.89 (6.65)Age (years), mean (SD)

<.001b5.34 (5.02)6.80 (5.74)Duration of work as a health professional (years), mean (SD)
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P valueGroup B, matched (n=1124)Group A, presurvey only (n=1272)Characteristics

N/A187.55 (51.17)N/AcDays of using an e-Tracker system, mean (SD)

aP value derived from chi-square test.
bP value derived from 1-way ANOVA test.
cN/A: not applicable.

Knowledge
The responses were analyzed using the McNemar chi-square
test to evaluate the pre- and postlevel knowledge. As shown in
Table 3, there were statistically significant improvements for
all question items. For example, there was a 9.9%-point increase
(from 559/1109, 50.41% to 669/1109, 60.32%) in the proportion
of respondents who were able to generate basic statistics within
30 minutes on the number of children born for a randomly
selected month. In addition, the proportion of respondents who
were able to retrieve the number of pregnant women expected
to deliver and those scheduled for their second postnatal care
visit during the month of the survey increased by 8.9% points
(from 369/1108, 33.3% to 468/1108, 42.24%) and 8.0% points
(from 283/1109, 25.52% to 337/1109, 33.54%), respectively.

After obtaining an aggregated score for the levels of knowledge
by summing up the total number of tasks that an individual

respondent was capable of, a Cronbach α test was conducted
to verify the reliability of the aggregated scores. The scale
reliability coefficients of the pre- and postsurvey responses were
α=.71 and α=.72, respectively. As the test results showed
acceptable reliability, 10 self-reported responses were
aggregated into a single score ranging between 0 and 10. A
random-effects ordered logistic analysis showed no significant
impact of intervention duration on health workers’ knowledge
(odds ratio [OR] 1.00, 95% CI 0.99-1.00; Table 4). However,
respondents’ sex, working years, and job positions had a
statistically significant association with their level of knowledge.
Participants who were female tended to have lower knowledge
levels than participants who were male (OR 0.53, 95% CI
0.41-0.70). Moreover, health workers with longer working years
had higher knowledge levels (OR 1.06, 95% CI 1.03-1.10), and
compared with CHN or CHO, midwives appeared to have higher
knowledge levels (OR 2.86, 95% CI 2.03-4.02).

Table 3. Result of pre-post analysis for knowledge (N=1109).

P valueaPostsurveyPresurveyKnowledge on data management

Can retrieve basic statistics on the total number of following items for a random month within 30 minutes, n (%)

<.001669 (60.32)559 (50.41)Children born

.001783 (70.6)723 (65.19)Family planning counseling provided

<.001354 (31.92)282 (25.43)Stillbirths

.003272 (24.53)222 (20.02)Women visiting the facility for postpartum complications

.001544 (49.05)480 (43.28)Women visiting for their first antenatal care

Can retrieve basic statistics on the total number of following items during the month of the survey within 30 minutes, n (%)

.001663 (59.84)601 (54.24)Defaulters for measles immunizationb

<.001468 (42.24)369 (33.30)Pregnant women who are expected to deliverb

.05665 (59.16)626 (56.45)Children aged <l year

<.001377 (33.54)283 (25.52)Women scheduled for their second postnatal care visit

.002496 (44.77)442 (39.89)Women who are in their first trimester of pregnancyb

aP value derived from the McNemar chi-square test.
bA total of 1108 responses was matched.
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Table 4. Result of regression analysis for knowledge.

P valueSEOdds ratio (95% CI)Characteristics

.480.001.00 (0.99-1.00)Days of using the e-Tracker system via tablet computer

.670.010.99 (0.97-1.02)Age (years)

<.0010.070.53 (0.41-0.70)Sex (reference: male)

Education level (reference: certificate)

.270.201.20 (0.87-1.65)Diploma

.630.420.77 (0.26-2.27)Bachelor’s degree

.030.040.02 (0.00-0.73)Master’s degree

.437.424.11 (0.12-141.19)Other

.0010.021.06 (1.03-1.10)Working years

Job position (reference: CHNa or CHOb)

.122.903.54 (0.71-17.64)Enrolled nurse

<.0010.502.86 (2.03-4.02)Midwife

.460.420.18 (0.00-16.33)Field technician

.702.161.65 (0.13-21.62)Other

Use of mobile phone (reference: use own mobile phone)

.440.480.41 (0.04-4.08)Share mobile phone

.315.654.09 (0.27-61.14)Do not use mobile phones

Access to the internet (reference: no internet)

.200.271.30 (0.87-1.96)Very poor

.100.291.40 (0.93-2.10)Poor

.340.201.18 (0.84-1.65)Acceptable

.430.211.15 (0.81-1.63)Reliable

.330.190.78 (0.48-1.28)Very reliable

aCHN: community health nurse.
bCHO: community health officer.

Attitude
The Wilcoxon signed-rank test was conducted to assess the
prelevel and postlevel of attitude. The initial results showed
that approximately 33.99% (379/1115) were most willing to
manage electronic MCH records (Table 5). However, the
proportion decreased to 21.26% (237/1115), whereas the neutral
response increased from 18.03% (201/1115) to 28.43%
(317/1115). Regarding the preference for paper-based versus
electronic-based management, 48.53% (544/1121) initially
expressed their preferences for electronic systems; however,
the proportion decreased to 33.45% (375/1121) after the
intervention. In contrast, the percentage of respondents
indifferent to the 2 options increased from 15.7% (176/1121)
to 26.32% (295/1121). Compared with the results of the survey,
general ideas on using an electronic system or device became
less favorable.

The Cronbach α test was conducted to verify the reliability of
the 5-point Likert scale for attitude levels. The scale reliability
coefficients of the pre- and postsurvey responses were α=.80
and α=.85, respectively. Given the acceptable Cronbach α test
results, each of the 8 answers scoring between 1 and 5 was

aggregated and converted into one average value and then
analyzed using a random-effect panel analysis. As shown in
Table 6, the duration of using the e-Tracker system was
positively associated with attitude toward electronic MCH data
management but to a minor degree (coefficient 0.001; P
value<.001). On the contrary, days of overwork showed a
negative relationship with the attitude toward the new system.
Regarding demographic factors, female health workers tended
to favor the new system less. In addition, health workers with
diplomas and bachelor’s degrees showed more positive attitudes
than those with certificates. In contrast, workers with master’s
degrees had less favorable attitudes. In terms of job positions,
enrolled nurses had less favorable attitudes than CHNs and
CHOs. Moreover, health workers who shared mobile phones
with their families had less favorable attitudes than those with
their own mobile phones, implying that the ownership of
personal mobile phones may have equipped the respondents
with adaptability to the tablet computer system. Access to the
internet was also significantly associated with attitudes toward
the new system. Health workers who worked at facilities with
very reliable internet access had more favorable attitudes than
those who did not. In summary, some demographic factors,
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such as the ownership of personal mobile phones and access to
the internet, demonstrated a larger magnitude of effect on

attitude than the duration of e-Tracker use.
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Table 5. Result of pre-post analysis for attitude.

P valueaPostsurvey, n (%)Presurvey, n (%)Attitude toward electronic data management

Willing to manage MCHb records using an electronic system (n=1115)

<.00133 (2.96)30 (2.69)1 (least likely)

<.00178 (7)41 (3.68)2

<.001317 (28.43)201 (18.03)3 (neutral)

<.001450 (40.36)464 (41.61)4

<.001237 (21.26)379 (33.99)5 (most likely)

Comfortable with managing electronic MCH records (n=1117)

<.00132 (2.86)28 (2.51)1 (very uncomfortable)

<.001106 (9.49)46 (4.12)2

<.001383 (34.29)275 (24.62)3 (neutral)

<.001435 (38.94)497 (44.49)4

<.001161 (14.41)271 (24.26)5 (very comfortable)

Using an electronic device for managing MCH records is a good idea (n=1120)

<.00116 (1.43)6 (0.54)1 (strongly disagree)

<.00134 (3.04)6 (0.54)2

<.001254 (22.68)145 (12.95)3 (neutral)

<.001424 (37.86)398 (35.54)4

<.001392 (35)565 (50.45)5 (strongly agree)

Using an electronic device to enter MCH records is difficult for me (n=1116)

.70371 (33.24)419 (37.54)1 (strongly disagree)

.70212 (19)171 (15.23)2

.70354 (31.72)292 (26.16)3 (neutral)

.70145 (12.99)187 (16.76)4

.7034 (3.05)47 (4.21)5 (strongly agree)

I prefer using an electronic device to manage MCH records than writing them on paper (n=1121)

<.00141 (3.66)25 (2.23)1 (strongly disagree)

<.00159 (5.26)25 (2.23)2

<.001295 (26.32)176 (15.7)3 (neutral)

<.001351 (31.31)351 (31.31)4

<.001375 (33.45)544 (48.53)5 (strongly agree)

Using an electronic device to enter MCH records is more convenient than writing on paper (n=1120)

<.00135 (3.13)13 (1.16)1 (strongly disagree)

<.00157 (5.09)25 (2.23)2

<.001285 (25.45)183 (16.34)3 (neutral)

<.001369 (32.95)371 (33.13)4

<.001374 (33.39)528 (47.14)5 (strongly agree)

Using an electronic device to enter MCH records is more accurate than writing on paper (n=1120)

<.00139 (3.48)19 (1.70)1 (strongly disagree)

<.00161 (5.45)22 (1.96)2

<.001307 (27.41)185 (16.52)3 (neutral)

<.001355 (31.7)404 (36.07)4
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P valueaPostsurvey, n (%)Presurvey, n (%)Attitude toward electronic data management

<.001358 (31.96)490 (43.75)5 (strongly agree)

Using an electronic device to enter MCH records is more effective than writing on paper (n=1117)

<.00133 (2.95)17 (1.52)1 (strongly disagree)

<.00160 (5.37)14 (1.25)2

<.001295 (26.41)169 (15.13)3 (neutral)

<.001384 (34.38)415 (37.15)4

<.001345 (30.89)502 (44.94)5 (strongly agree)

aP value derived from Wilcoxon signed-rank test.
bMCH: maternal and child health.

Table 6. Result of regression analysis for attitude.

P valueSECoefficientCharacteristics

<.0010.000.001Days of using the e-Tracker system via a tablet computer

.0020.00−0.01Days of overwork

.580.000.00Age (years)

<.0010.04−0.29Sex (reference: male)

Education level (reference: certificate)

.040.050.10Diploma

.010.080.21Bachelor’s degree

<.0010.05−0.19Master’s degree

<.0010.07−0.34Other

.490.010.00Working years

Job position (reference: CHNa or CHOb)

.020.13−0.30Enrolled nurse

.450.060.04Midwife

.210.22−0.28Field technician

.880.38−0.06Other

Use of mobile phone (reference: use own mobile phone)

<.0010.09−0.61Share mobile phone

.250.220.25Do not use mobile phones

Access to the internet (reference: no internet)

.200.07−0.09Very poor

.280.06−0.07Poor

.700.050.02Acceptable

.030.060.12Reliable

<.0010.070.35Very reliable

aCHN: community health nurse.
bCHO: community health officer.

Practice
The McNemar chi-square test was conducted for self-reported
use of tablet computers for MCH data management and for 8
specific tasks related to MCH data management, such as
recording client demographic data or scheduling appointments

(Table 7). In addition, the Wilcoxon signed-rank test was
performed to assess changes in perceived difficulty in
conducting each task following the adoption of the e-Tracker.
As expected, the analysis showed that the use of tablet
computers for MCH data management increased from 5%
(56/1121) to 81.71% (916/1121). As for the frequency of
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electronic device use for MCH data management, most
respondents (817/1119, 73.01%) answered that they had never
used an electronic device during the presurvey; however,
26.99% (302/1119) responded that they use it every time,
36.73% (411/1119) for most of the time, 29.49% (330/1119)
for sometimes, and 3.75% (42/1119) for never after the
intervention (ie, during the postsurvey).

In the case of actual practice on 8 specific tasks related to MCH
data management, the percentage of respondents who performed
8 tasks showed statistically significant changes after the adoption
of the e-Tracker. For example, the percentage of respondents
who had scheduled client encounters increased from 91.41%
(968/1059) to 97.83% (1036/1059). In addition, the percentage
of respondents who had collected individual data into
aggregates for the District Health Information Management
System 2 increased from 66.04% (702/1063) to 89.93%
(956/1063). When asked if they have ever used statistical data
for making a request to the District Health Office, the percentage
of respondents who answered yes increased from 52.28%
(591/1106) to 70.02% (787/1106). However, no statistically
significant changes were found for the percentages of
respondents who produce reports on MCH, following up health
care defaulters, and generate basic statistics other than monthly
reports on MCH. On the one hand, the percentages of
respondents who produce reports on MCH or following up
health care defaulters were >97% for both pre- and postsurveys,
indicating that the tasks have generally been manageable for
the health care workers regardless of the e-Tracker adoption.
In contrast, the percentages of respondents who had generated

basic statistics other than monthly reports on MCH remained
at approximately 78.62% (846/1076) and 77.97% (839/1076)
throughout the pre- and postsurveys, respectively. This result
may imply the limited use of the data aggregation functionality
of the e-Tracker.

In terms of perceived difficulty for the 8 tasks, a statistically
significant improvement was observed for all 8 tasks after the
implementation of the e-Tracker system. For instance, 27.94%
(292/1069) responded that following up with health care
defaulters was very difficult before the intervention. However,
after using the e-Tracker system, only 6.89% (72/1069)
answered that the task was very difficult. Moreover, those who
found the task very easy increased from 7.56% (79/1069) to
15.31% (160/1069).

Unlike the knowledge and attitude sections, responses from the
practice section failed to fulfill the acceptable standard through
the Cronbach α test. Thus, the practice level for regression
analysis was defined as a 5-point Likert scale of the frequency
of electronic device use for MCH data management, which was
analyzed with random-effects ordered logistic analysis (Table
8). The results showed that health workers with diplomas (OR
1.31, 95% CI 1.02-1.67) had higher practice levels than workers
with a certificate educational level. Moreover, respondents with
more work experience (OR 1.06, 95% CI 1.03-1.09) tended to
show higher practice levels. In the case of environmental factors,
internet accessibility was associated with practice level; that is,
poor (OR 1.37, 95% CI 0.97-1.93), acceptable (OR 1.61, 95%
CI 1.22-2.14), and reliable (OR 1.31, 95% CI 0.98-1.76) internet
access showed higher odds than no internet access.
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Table 7. Result of pre-post analysis for practice.

P valuePostsurvey, n (%)Presurvey, n (%)Practice on MCHa data management

<.001b916 (81.71)56 (5)Use a tablet computer for MCH data management (n=1121)

Frequency of electronic device use for MCH data management (n=1119)

<.001c302 (26.99)15 (1.34)Every time

<.001c411 (36.73)49 (4.38)Most of the time

<.001c330 (29.49)163 (14.57)Sometimes

<.001c34 (3.04)75 (6.7)Rarely

<.001c42 (3.75)817 (73.01)Never

The number of respondents who perform the following tasks and the perceived task difficulty

<.001b1062 (98.33)1028 (95.19)Recording client demographic data (n=1080)

Perceived task difficulty

<.001c44 (4.14)137 (13.33)1 (very difficult)

<.001c91 (8.57)179 (17.41)2

<.001c395 (37.19)401 (39.01)3

<.001c321 (30.23)222 (21.6)4

<.001c191 (71.98)103 (10.02)5 (very easy)

<.001b1036 (97.83)968 (91.41)Scheduling client encounters (n=1059)

Perceived task difficulty

<.001c25 (2.41)72 (7.44)1 (very difficult)

<.001c77 (7.43)153 (15.81)2

<.001c349 (33.69)365 (37.71)3

<.001c351 (33.88)275 (28.41)4

<.001c185 (17.86)122 (12.6)5 (very easy)

<.001b1027 (96.52)992 (93.23)Tracking client progress over time (n=1064)

Perceived task difficulty

<.001c68 (6.62)204 (20.56)1 (very difficult)

<.001c124 (12.07)211 (21.27)2

<.001c372 (36.22)315 (31.75)3

<.001c319 (31.06)215 (21.67)4

<.001c116 (11.3)54 (5.44)5 (very easy)

.88b1045 (97.75)1045 (97.75)Following up health care defaulters (n=1069)

Perceived task difficulty

<.001c72 (6.89)292 (27.94)1 (very difficult)

<.001c132 (12.63)264 (25.26)2

<.001c349 (33.4)275 (26.32)3

<.001c351 (33.59)154 (14.74)4

<.001c160 (15.31)79 (7.56)5 (very easy)
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P valuePostsurvey, n (%)Presurvey, n (%)Practice on MCHa data management

<.001b956 (89.93)702 (66.04)Collecting individual data into aggregates for the District Health Information
Management System 2 (n=1063)

Perceived task difficulty

<.001c45 (4.34)152 (15.70)1 (very difficult)

<.001c104 (10.04)161 (16.63)2

<.001c277 (26.74)213 (22)3

<.001c195 (18.82)120 (12.4)4

<.001c80 (7.72)55 (5.68)5 (very easy)

.30b1066 (97.98)1061 (97.52)Producing reports on MCH (n=1088)

Perceived task difficulty

<.001c68 (6.56)129 (13.33)1 (very difficult)

<.001c98 (9.46)215 (22.21)2

<.001c403 (38.9)375 (38.74)3

<.001c397 (38.32)241 (24.9)4

<.001c135 (13.03)103 (10.64)5 (very easy)

.70b839 (77.97)846 (78.62)Generating basic statistics other than monthly reports on MCH (n=1076)

Perceived task difficulty

<.001c41 (3.96)92 (9.50)1 (very difficult)

<.001c63 (6.08)153 (15.81)2

<.001c315 (30.41)264 (27.27)3

<.001c190 (18.34)124 (12.81)4

<.001c57 (5.5)33 (3.41)5 (very easy)

<.001b787 (70.02)591 (52.28)Ever used statistical data for making a request to the District Health Office (n=1106)

aMCH: maternal and child health.
bP value derived from the McNemar chi-square test.
cP value derived from the Wilcoxon signed-rank test.

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e29431 | p.119https://medinform.jmir.org/2022/8/e29431
(page number not for citation purposes)

Lee et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 8. Result of regression analysis for practice.

P valueSEOdds ratio (95% CI)Practice

.0020.001.00 (1.001-1.004)Days of using the e-Tracker system via tablet computer

.040.010.98 (0.95-1.00)Age (years)

.060.080.83 (0.68-1.01)Sex (reference: male)

Education levela (reference: certificate)

.030.161.31 (1.02-1.67)Diploma

.310.280.64 (0.27-1.51)Bachelor’s degree

.981.020.98 (0.13-7.56)Master’s degree

000Othera

<.0010.011.06 (1.03-1.09)Working years

Working position (reference: CHNb or CHOc)

.151.722.59 (0.70-9.53)Enrolled nurse

.500.120.92 (0.71-1.18)Midwife

.990.000.00 (0.00-0.00)Field technician

.811.361.29 (0.16-10.18)Other

Use of mobile phone (reference: use own mobile phone)

.262.912.98 (0.44-20.19)Share mobile phone

.861.331.22 (0.14-10.43)Do not use mobile phones

Access to the internet (reference: no internet)

.290.211.21 (0.86-1.70)Very poor

.070.241.37 (0.97-1.93)Poor

.0010.231.61 (1.22-2.14)Acceptable

.070.191.31 (0.98-1.76)Reliable

.520.231.11 (0.605-0.74)Very reliable

aThe subcategory of Other was removed because of a low number of observations.
bCHN: community health nurse.
cCHO: community health officer.

Discussion

Principal Findings
This study is the first empirical analysis to explore the change
in the KAP of health workers in managing MCH data using the
e-Tracker system in Ghana. The pre-post comparison analysis
results showed a statistically significant improvement in health
workers’ knowledge and practice levels of MCH data
management. Regarding knowledge, the proportion of
respondents who reported that they could retrieve basic MCH
statistics increased after using the e-Tracker system. The
changes in the practice level were notable in that there were
statistically significant increases in the number of health workers
engaging in 8 MCH data management tasks, such as scheduling
patients’ encounters and tracking patients’ progress.
Furthermore, a significant improvement was observed in the
perceived difficulty of performing these 8 tasks. These results
were confirmed by a previous study that reported amelioration
in the quality of newborn care of health workers in Malawi after
using an mHealth solution called NeoTree [3]. In the case of

attitude, the level remained positive after using the e-Tracker,
which was in line with a previous study that identified high
satisfaction with e-Tracker use [24]. However, compared with
the results from the presurvey, general ideas on using an
electronic system or device became less favorable after
experiencing the actual system. An additional regression analysis
found that the duration of the intervention (days of using a tablet
computer) was positively associated with attitude and practice
but to a minor degree. Most importantly, the days of overwork
showed a statistically significant correlation with attitude level,
implying the negative impact of increased workload on health
workers’ acceptability. This can be explained by the concurrent
use of the traditional manual and the new e-Tracker system,
which created extra work for health workers, affecting their
attitude toward the system. A previous study also identified the
realignment of work practice and increased workload because
of the introduction of the new system [4]. Furthermore, an
environmental factor such as access to the internet was also an
essential condition as health workers who worked at facilities
with relatively more reliable internet access had more favorable
attitudes and higher practice levels. This was confirmed by
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previous studies, which ascertained limited access to fixed
broadband internet [13,14] and lack of electricity supply [14-17]
as obstacles to implementing an electronic HMIS.

Limitations
Despite its contributions in providing empirical evidence on
KAP for the new technology, this study has several limitations.
First, the results of this study are not free of external validity
issues. The participants of this study were limited to health
workers at community health facilities in Ghana, and the surveys
were conducted during the training sessions for the e-Tracker
adoption. Furthermore, the unexpected change in participants
during the refresher training reduced the sample size, as only
46.9% (1124/2396) of the presurvey respondents responded to
the postsurvey. The major problem was the demographic
description of the 2 groups, which showed a statistically
significant difference for every demographic factor. This implied
that those who participated in both presurveys and postsurveys
tended to be less experienced, which could have affected the
results. Second, this study failed to establish a complete study
environment to compare before and after the e-Tracker system
because of the concurrent use of traditional paper-based and
new electronic methods during the study period. Such a dual
system caused a double burden for data management tasks on
health workers, which was presumed to be the cause of less
favorable responses in the attitude section. This was supported
by the regression analysis, which found that the days of
overwork had a negative association with the overall attitude
toward the electronic-based system. Finally, this study focused
on quantitative analysis and did not identify the contextual
factors that could be captured through in-depth interviews. Thus,
further assessment is necessary to understand the complex
reasons behind the reluctance or preference for the new system.

Policy Implications
Nevertheless, our study provides insights for drawing policy
recommendations to settle the mHealth-based HMIS in Ghana.
The findings warrant the benefits of the e-Tracker system, an
enhancement in health workers’ capacity for MCH data
management, which provides justification for the scale-up of
the system. To achieve a successful adaptation of the new
system, it is necessary to establish national, regional, and
facility-level strategies to address users’ acceptability. First,

ensuring health workers’acceptability is pivotal for the sustained
use of the advanced system [9,17]. Previous studies have
concluded that double work is one of the challenges of the
e-Tracker [4,9,21]. Thus, GHS needs to spur the complete
replacement of manual-based data management with the
e-Tracker system to enhance job efficiency by reducing the
double burden at the national level. Moreover, an effort to
develop the infrastructure and environment of community health
facilities to secure stable internet access is necessary. Second,
on-site training for health workers to use the system should be
arranged regularly by the District Health Offices. A previous
qualitative study on health workers’ perceptions reported that
workers who were more accustomed to mobile technology
tended to have a positive attitude toward an mHealth system
[18]. Other studies have also reported low computer literacy as
one of the key challenges in transitioning from paper-based to
electronic health records [4,9]. Thus, training health workers in
data management, defined as collecting, recording, analyzing,
and reporting health data, is crucial for more accurate and
reliable information and sustained system use [19,25,26].
Finally, facilitative supervision and organizational management
are essential to increase users’perceived ease and realign health
workers’ tasks, which are detrimental to the sustained use of
the e-Tracker system [24].

Conclusions
Strengthening the HMIS is vital for improving health outcomes,
as it facilitates communication within the health system and
contributes to sound and evidence-based decision-making in
health policy. However, many low-income countries rely on
manual-based HMIS, which has many limitations for collecting
and managing health data. The introduction of the e-Tracker,
an mHealth-based HMIS, is expected to be an innovative attempt
to bridge the gap between existing technology and the outdated
practice of paper-based health data management. Currently,
there are ongoing efforts to scale up the e-Tracker system
nationally in Ghana. This context warrants an increased need
to evaluate the new system’s effectiveness and sustainability
by exploring health workers’ capacity and behavioral changes
in using the e-Tracker system. The findings of this study will
contribute to the successful adoption of the e-Tracker system
at the national level by providing grounds for national scale-up
and schemes to enhance the sustainability of the system.
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Abstract

Background: eHealth increasingly affects the delivery of health care around the world and the quest for more efficient health
systems. In Finland, the development of eHealth maturity has been systematically studied since 2003, through surveys conducted
every 3 years. It has also been monitored in several international studies. The indicators used in these studies examined the
availability of the electronic patient record, picture archiving and communication system, health information exchange, and other
key eHealth functionalities.

Objective: The first aim is to study the national development in the maturity level of eHealth in primary health care and
specialized care between 2011 and 2020 in Finland. The second aim is to clarify the regional differences in the maturity level of
eHealth among Finnish hospital districts in 2020.

Methods: Data for this study were collected in 2011, 2014, 2017, and 2020, using web-based questionnaires from the Use of
information and communication technology surveys in Finnish health care project. In total, 16 indicators were selected to describe
the status of eHealth, and they were based on international eHealth studies and Finnish eHealth surveys in 3 areas: applications,
regional integration, and data security and information and communications technology skills. The indicators remain the same
in all the study years; therefore, the results are comparable.

Results: All the specialized care organizations (21/21, 100%) in 2011, 2014, 2017, and 2020 participated in the study. The
response rate among primary health care organizations was 86.3% (139/161) in 2011, 88.2% (135/153) in 2014, 85.8% (121/141)
in 2017, and 95.6% (130/136) in 2020. At the national level, the biggest developments in eHealth maturity occurred between
2011 and 2014. The development has since continued, and some indicators have been saturated. Primary health care lags behind
specialized care organizations, as measured by all the indicators and throughout the period under review. Regionally, there are
differences among different types of organizations.

Conclusions: eHealth maturity has steadily progressed in Finland nationally, and its implementation has also been promoted
through various national strategies and legislative changes. Some eHealth indicators have already been saturated and achieved
an intensity of use rate of 100%. However, the scope for development remains, especially in primary health care. As Finland has
long been a pioneer in the digitalization of health care, the results of this study show that the functionalities of eHealth will be
adopted in stages, and deployment will take time; therefore, national eHealth strategies and legislative changes need to be
implemented in a timely manner. The comprehensive sample size used in this study allows a regional comparison in the country,
compared with previous country-specific international studies.
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Introduction

Background
The World Health Organization (WHO) defines eHealth as “the
cost-effective and secure use of information and communications
technologies (ICTs) in support of health and health-related
fields, including health care services, health surveillance, health
literature, and health education, knowledge and research” [1].
According to the WHO, eHealth has a clear and growing impact
on the delivery of health care around the world and making
health systems more efficient [1]. However, the use of ICTs in
health care requires strategic and comprehensive national action
to make the best use of it [1,2]. In practice, the term eHealth
includes a wide range of applications from electronic patient
record (EPR) to e–appointment booking (e-booking); therefore,
eHealth maturity defines how these different applications were
adopted [2-12].

The level of maturity and development of eHealth in health care
has been monitored in several international studies [2,3,5-12].
One of the first comprehensive studies was published in 2011.
It provided comparative information on the maturity level of
eHealth in various European countries [3]. New study reports
on eHealth maturity in health care have since been produced
by the European Commission (EC), WHO, and Organization
for Economic Co-operation and Development (OECD)
[2,5,6,8-13]. The Nordic eHealth Research Network has
produced comparative information on eHealth maturity levels
in various Nordic countries [4,14-16]. In Finland, the
development of health care organizations’ digitalization has
been systematically studied since 2003, through surveys
conducted every 3 years [17-21]. The most recent study was
conducted in 2021 as part of the Monitoring and Evaluation of
Social and Health Care Information System Services project
[20,22]. It described the situation of digitalization in Finnish
health care organizations in 2020 [20]. Although studies have
mainly focused on the eHealth maturity level of health care
service organizations, eHealth services provided for citizens
have also been the subject of research, both in Finland and
internationally [19-21,23,24].

Deloitte 2011 report included the EPR, picture archiving and
communication system (PACS), e-prescribing, e-referral,
e-booking, and telemonitoring (the possibility to use patients’
own health data) as the main applications describing the state
of health care digitalization [3]. Moreover, the report examined
how different countries implemented the wireless use of EPR
[3]. EC studies also highlighted the abovementioned applications
and the clinical decision support systems (CDSSs) as key
indicators of eHealth maturity [5,10]. The degree of integration
of CDSS can vary from a separate database to integration with
the existing EPR, and Finnish follow-up studies have examined
CDSS from this perspective [17-20].

According to a Deloitte report and an EC study, health care
integration can be described as an organization’s relationship

with external service providers, such as other hospitals and
health care organizations [3,9]. In the EC study, the sharing of
clinical care information, laboratory results, and radiology
results between organizations was chosen as the key indicator
of integration [5]. They also played an important role in the
Finnish health care system, where it is still the case that different
organizations largely produce specialized care and primary
health care [17-21]. In Finland, Kanta health information
exchange (HIE) services are being used from 2010 [25,26].
Although all public health care organizations have now joined
Kanta, much of the information exchange continues to use
regional HIE (RHIE) systems [18-21,27,28].

Strong user ID is one of the key ways of protecting a patient’s
health information [10]. Therefore, e-ID and signature were
chosen as one of the key indicators for describing data security
in Finnish eHealth surveys [17-21]. There must also be sufficient
personnel with computer skills to ensure data security practices
[17-21]. Technical support for EPR users was chosen as an
indicator to describe the reliability of EPR systems [17-21].

General tax revenues collected by the municipalities are the
main source of funding for health care and social services in
Finland [29]. The state also participates in the costs by paying
a general, nonearmarked subsidy to the municipalities [29]. In
Finland, municipalities have the primary legal responsibility to
organize social and health care services for their residents [29].
Municipalities are responsible for organizing primary health
care services for their residents and ensuring that its residents
receive the necessary specialized care services [29]. Finland is
divided into 21 hospital districts for the provision of specialized
care [29]. Every municipality belongs to one of the hospital
districts [29]. Decentralized responsibility for organizing health
care services has created regional differences in the provision
and availability of services [30]. The biggest change in Finnish
health care services is the health and social services reform,
which will enter into force in 2023 and shift the responsibility
for organizing health and social services and rescue services
from the municipalities to the 21 new well-being services
counties [30]. Some hospital districts have already consolidated
their services into a large entity, and in these organizations,
specialized care and primary health care fall under the same
administrative organization [18-20,31]. The aim of the health
and social services reform is to provide equal services to citizens
and further develop health care and its operating methods
through digitalization [30]. Although the number of EPRs has
decreased over the years in both specialized care and primary
health care, one of the goals of the health and social services
reform is to move toward common solutions for the procurement
of EPRs [32,33].

The digitalization of health care has progressed well in Finland
[17-21,24-28,33]. This has also come to the fore in international
studies, which have highlighted the fact that Finland is one of
the pioneers in the digitalization of health care [2,3]. Various
national strategies and legal changes have also promoted the
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implementation of digitalization in Finnish health care
[17-21,25,26]. This study aimed to provide information about
eHealth maturity from the perspective of national development
and regional differences. The data from this study can be used
to examine how eHealth maturity has progressed nationally and
in different hospital districts before the health and social services
reform [30]. As the digitalization of health care has long been
ongoing in Finland, the results can also be exploited
internationally. The results show which application areas will
be adopted first and how national strategies and legislative
changes can contribute to the development of eHealth maturity,
both nationally and regionally.

Objectives
The main aims of the study were the following:

1. To study the national development in the maturity level of
eHealth in primary health care and specialized care between
2011 and 2020

2. To clarify the regional differences in the maturity level of
eHealth among hospital districts in 2020

Methods

Data Collection
This study used data collected in connection with the Use of
information and communication technology in health care 2020
survey and previous surveys in 2011, 2014, and 2017 [17-20].

The data for this study were collected from Finnish public health
care providers. The target group for specialized care comprised
all 21 hospital districts. In primary health care, the target group
included all organizations specified as either independent
municipalities or co-operation consortiums of municipalities
with the responsibility to provide primary health care services.

The data for the surveys were collected during the first quarters
of 2011, 2014, 2017, and 2020, using web-based questionnaires
(Webropol; Webropol Ltd). The questions were kept comparable
between the survey years. Medical directors and IT leaders
(chief information officers) in specialized health care and chief
physicians in primary health care were the survey respondents.
The questionnaires were sent to them through email. The
responses from the entire organizational level were compiled.
In some hospital districts, specialized care is also responsible
for the municipalities’ primary health care services. In these
cases, the questionnaire was sent only for specialized care, and
the responses regarding specialized care were transferred to the
surveys for primary health care.

Table 1 presents the health care organizations that participated
in the survey over different years. All specialized care
organizations (21/21, 100%) responded to the questionnaire
during the survey period. Municipal health care arrangement
models changed during the survey years, creating variability in
the number of primary health care organizations that participated
in the survey and in the response rates and population coverage
in different years.

Table 1. Health care organizations participating in the survey in different years.

Primary health careRespondents in specialized care (n=21), n (%)Year

Population coverage, %Respondents, n (%)

91139 (86.3)a21 (100)2011

95135 (88.2)b21 (100)2014

95121 (85.8)c21 (100)2017

99130 (95.6)d21 (100)2020

aSample size, n=161.
bSample size, n=153.
cSample size, n=141.
dSample size, n=136.

Indicators for eHealth and Their Analysis
In total, 16 indicators were selected to describe the status of
eHealth (Table 2). They were based on the indicators in the
eHealth report on specialized care, EC eHealth studies, and
Finnish eHealth surveys in three areas: (1) applications, (2)
regional integration, and (3) data security and ICT skills (Table
2) [3,5,10,17-21]. Traditionally, eHealth surveys have used the
availability of applications or services as indicators [3].
However, availability saturation has been achieved in Finland
in several health care application areas. For example, in 2010,
EPR was available in all specialized care and primary health
care organizations [17]. For several years, Finnish national
eHealth surveys have also enquired about the intensity of use

to describe the integration of an application or service into
normal health care operations [17-21]. More specifically, it
describes which proposition of a specific service is provided
through eHealth means within an organization. For the intensity
of use, the percentages (0%, 25%, 50%, 90%, 99%, and 100%)
were chosen to correspond to the verbal answers, “not in use,”
“a quarter,” “half,” “most,” “almost all,” and “all,” respectively.
In the summary of indicators, the mean value of the results of
the participating organizations was displayed. Where possible,
the intensity of use of application was selected as an indicator
to describe the use of eHealth. This better describes the
deployment of eHealth in situations in which the functionality
is already widely available.
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Table 2. Indicators for eHealth maturity.

ResponsesIndicatorAreas and functionalities

Applications

0=not in use, 2=≤25%, 4=≤50%, 7=≤90%, 9.9=≤99%,
and 10=100%

Intensity of useEPRa

0=not available and 10=availableAvailability (local or external)Wireless use of EPR

0=not in use, 2=≤25%, 4=≤50%, 7=≤90%, 9.9=≤99%,
and 10=100%

Intensity of usePicture archiving and communica-
tion system

0=not available, 4=stand-alone web-based database on
desktop, 6=database with access by navigating from the
EPR, 8=automatic displayer of selected items, and
10=system for automatic integration of the EPR and
database

Integration level—average between the integration
of diagnostic support and a drug interaction system

Clinical decision support system

0=not available and 10=availableAvailabilitye-Prescribing

0=not in use, 2=≤25%, 4=≤50%, 7=≤90%, 9.9=≤99%,
and 10=100%

Intensity of usee-Referral

0=not in use, 2=≤25%, 4=≤50%, 7=≤90%, 9.9=≤99%,
and 10=100%

Intensity of useConsultation e-referral

0=not in use, 4=less often, and 10=during the past 3
months

Intensity of use—how often has the service been
in use?

Teleconsultations via videoconfer-
encing

0=not available and 10=availableAvailabilityPossibility to use patients’ own
health data

0=0% to 10=100%Intensity of use—the patient selects an appointment
time on their terminal (eg, computer) and it is
transferred directly to the system

e–Appointment booking

Regional integration

0=not available and 10=availableAvailabilityExchange of clinical care informa-

tionb

0=not available and 10=availableAvailabilityExchange of laboratory resultsb

0=not available and 10=availableAvailabilityExchange of radiology reportsb

Information security and ICTc skills

0=not available and 10=availableAvailabilitye-ID and signature

0=0% to 10=100%ProportionPersonnel with computer skills

0=not in use; 2=occasionally; 5=daily, but for less than
normal office hours; 7=during normal office hours; and
10=at all times during the opening hours of the organi-
zation

IntensityTechnical support for EPR

aEPR: electronic patient record.
bHealth information exchange outside the centralized national Kanta services.
cICT: information and communications technology.

Ethical Consideration
The study followed the guidelines of the Finnish Advisory Board
on Research Integrity [34]. The respondents were informed
about the study, and they answered as representatives of the
organizations being studied. No sensitive personal information
was collected. The data were processed and stored in a secure
environment, according to the procedures of the University of
Oulu.

Results

Maturity of eHealth in Specialized Care and Primary
Health Care Organizations at the National Level

Overview
Figure 1 presents the national development in eHealth maturity
in specialized care and primary health care organizations
between 2010 and 2020. The results show that primary health
care is generally behind specialized care organizations, as
measured by all indicators and throughout the period under
review. The biggest difference can be seen in the area of RHIE.
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Figure 1. The national development in the maturity level of eHealth in the years 2011, 2014, 2017, and 2020 (modified from the studies by Reponen
et al [19,20]). EPR: electronic patient record.

Applications
The EPR’s intensity of use has been at a high level since 2011,
in both specialized care and primary health care organizations.
There has been no significant change over the years. The
wireless use of EPR has been available since 2014 in
approximately all specialized care organizations (21/21, 100%),
and there has been no significant change by 2020. In primary
health care, availability has grown steadily, and in 2020, it has
reached the same level as in specialized care. The intensity of
use of PACS has been high in both specialized care

organizations and primary health care centers in Finland since
2011. The integration level of the CDSS has increased since
2011; however, no growth can be seen after 2017. The level of
integration has remained the same in both specialized care and
primary health care organizations throughout the period under
review.

The most significant change in the availability of e-prescribing
occurred between 2011 and 2014. Since 2014, e-prescribing
has been widely available in both specialized care organizations
and primary health care centers. There was no significant change
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in the intensity of use of e-referral between 2011 and 2014.
Since 2017, the intensity of use of e-referral has been high in
both specialized care and primary health care organizations.
The intensity of use of consultation e-referral increased between
2011 and 2017 in both specialized care and primary health care
organizations. No significant change was seen by 2020.

In 2011, the intensity of use of teleconsultations via
videoconferencing was very low, but significant growth was
observed in both specialized care and primary health care
organizations in the 2014 survey. In 2017, the intensity of use
increased slightly, but remained at the same level in the 2020
survey. The possibility to use the patient’s own health data
remained very limited in 2011 and 2014. There has since been
significant growth in this area of application, especially in
specialized care organizations. The intensity of use of e-booking
remains low in the 2020 survey, and no growth can be seen
throughout the survey period.

Regional Integration
All specialized care organizations reported that exchange of
laboratory results and radiology reports was available from
2011. However, in 2020, not all specialized care organizations
reported that regional information exchange of laboratory results
was available. Exchange of clinical care information was
unavailable in all specialized care organizations during the
survey period, except in the 2020 survey, when all organizations
(21/21, 100%) reported that it was available.

In 2020, approximately 80.1% (109/136) of the primary health
care centers reported the availability of regional information
exchange in all 3 areas of information exchange. There is no
major change in the results of the 2020 survey compared with
those of the 2010 survey. The highest reported availability of
regional information exchange in primary health care centers
was observed in the 2014 survey.

Data Security and ICT Skills
The availability of e-ID and signature was low in 2010, in both
specialized care organizations and primary health care centers.
In 2014, it was available in approximately all specialized care
organizations (20/21, 95%) and primary health care centers
(146/153, 95.4%), and it has been in use in all specialized care
organizations (21/21, 100%) and primary health care centers
(141/141, 100%) since 2017. Throughout the survey period,
organizations have reported that the number of personnel with
computer skills was approximately 90%. There are slight
variations in the reported results among different years. EPR
technical support at all times during the organization’s opening
hours remains unavailable in some specialized care organizations
(7/21, 33%) in 2020. No significant change can be seen in the
results during the survey period.

eHealth Profiles at the Regional Level
The status of the eHealth profiles of different types of health
care organizations is presented in Figure 2.

Especially in primary health care, the results do not show that
the eHealth maturity level is better in large university hospital
districts than in smaller hospital districts (Figure 2). For
example, in university hospital districts, the availability of EPR

technical support and wireless use of EPR is lower than the
average of the other hospital districts. The availability of RHIE
is also low in university hospital districts, especially for primary
health care. Only the intensity of use of teleconsultations via
videoconferencing is at a higher level than that in the university
hospital districts.

In 43% (9/21) of the hospital districts, primary health care and
specialized care are under the same administrative organization,
and all these organizations use the same EPR brand throughout
their municipalities and specialized care organizations (Figure
2). Compared with the other hospital districts, the combined
organizations report better results for the availability of the
wireless use of EPR and RHIE and the intensity of use of
e-referral and consultation e-referral. The use rates of e-referral
and consultation e-referral are low only in Kainuu. South and
North Karelia still stand out from these organizations because
of their good results. In both hospital districts, all indicators are
saturated, except for the use of e-booking. In North Karelia,
there is also scope for improvement in the number of personnel
with computer skills.

In total, 14% (3/21) of the hospital districts also have individual
municipalities outside the common administrative organization
(Figure 2). In this 14% (3/21) cases, the results obtained from
the municipalities outside the common organizations are worse
than those at the national level. The results are particularly worse
in the intensity of use of e-referral and consultation e-referral
and the availability of laboratory result exchange. However, the
integration level of the CDSS is higher in these municipalities
than in the other primary health care organizations.

In addition to the 43% (9/21) of the hospital districts that have
primary and secondary care under the same organization, 10%
(2/21) of the districts reported that they were using the same
EPR brand in both specialized care and primary health care
organizations in their area, making a total of 52% (11/21). In
all these organizations, the use rate of EPR was 100% and the
wireless use of EPR was available. They reported better results
in RHIE, especially when comparing with primary health care
results. All these hospital districts, except Kainuu and
Kanta-Häme, reported 100% use rates for e-referral and
consultation e-referral. Of the 11 organizations, 8 (73%)
organizations reported that EPR technical support was always
available during their organization’s opening hours. Of the 10
hospital districts without the same EPR in use in their area, 6
(60%) districts reported that EPR technical support was always
available during opening hours in specialized care organizations.
Therefore, there was no significant difference in the results for
specialized care organizations; however, in primary health care,
the situation was different. None of the primary health care
organizations without the unified EPR (104/136, 76.5%)
reported that this service was always available during the
organization’s opening hours.

The integration level of the CDSS varies greatly among hospital
districts. In total, 14% (3/21) of the specialized care
organizations reported that the CDSS was a stand-alone
web-based database on the computer desktop, and 24% (5/21)
reported that they had automatic integration of the EPR.
Although the use of patients’ own health data significantly
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increased by 2020, regional differences in its availability still
remained. Overall, 29% (6/21) of the specialized care
organizations reported that this application was unavailable in
2020. The regional difference can also be seen in the intensity
of use of teleconsultations via videoconferencing, because 19%
(4/21) of the specialized care organizations reported that this

application was not in use and the remaining 81% (17/21)
reported that this service had been in use in the past 3 months.
The intensity of use of e-booking remained low throughout the
survey period, and no major regional differences can be seen
in the 2020 survey results.

Figure 2. The status of the eHealth profiles of different types of health care organizations. EPR: electronic patient record.

Discussion

Principal Findings
The digitalization of health care has progressed well in Finland,
and its implementation has also been promoted through various
strategies and legislative changes [17-21,25,26]. The progress
of health care digitalization has also been systematically
monitored through studies since 2003 [17-21]. The studies’
timing has aimed for alignment with the schedules of key
legislative changes and strategies [17-21]. This survey study
presented the development of eHealth maturity, measured by
key indicators, in Finnish health care in 2011, 2014, 2017, and
2020. It also studied the regional differences in the maturity
level of eHealth among hospital districts in 2020, measured by
the same indicators. The study covered all Finnish specialized
care organizations and a comprehensive portion of primary care
organizations. In every study year, the response rate of primary
care organizations was >86% and population coverage was
>91%. The comprehensive sample size of this study’s
respondents allowed regional comparison among organizations.

Previous international studies have been based on sample data,
so the results are presented country by country and not
regionally within a country. For example, in the latest EC
benchmarking study on the deployment of eHealth among
general practitioners (GPs) in 2018, the sample size of Finland
was 2.5% of GPs [8]. Internationally identified eHealth
indicators were used in this study, and they remained the same
between different study years; thus, the results were comparable.
As the digitalization of health care in Finland has progressed,
availability saturation has been achieved in some health care
application areas [17-21]. In these cases, the intensity of use of
the application was selected to describe the use of eHealth
instead of availability [17-21].

Nationally, eHealth maturity has progressed steadily in Finland,
with the biggest developments in eHealth maturity occurring
between 2011 and 2014. On the basis of the national results,
the functionalities have been built step by step. The first phase
focused on key functionalities such as the deployment of EPR,
PACS, and RHIE. Since 2011, the reported intensity of use of
EPR has been high, and in the 2020 survey, only 5% (1/21) of
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the hospital districts reported the intensity of use of EPR as
<100%. The intensity of use of PACS has been 100% in all
hospital districts (21/21, 100%) since 2017. The next
development step was to focus on the deployment of e-referral
and consultation e-referral functionalities. Between 2011 and
2017, the use rate of these functionalities changed greatly, but
the development has since stalled.

The uptake of the Finnish Kanta services started in 2010 [25].
Their introduction enabled the use of e-prescribing, which has
since been widely adopted [26]. It became mandatory in 2017,
which can also be seen in the result—since 2017, all specialized
care organizations (21/21, 100%) and primary health care centers
(141/141, 100%) have adopted it. The e-ID and signature also
became mandatory with the introduction of the Kanta services,
and since 2017, they have been introduced in all specialized
care organizations (21/21, 100%) and primary health care centers
(141/141, 100%). This emphasizes that changes in the law may
lead to significant changes in eHealth maturity, as shown by a
comparison of the results from 2011 to 2017 [25,26].

The development of smart devices and telecommunication
networks has enabled the provision of an increasing number of
remote and wireless services [3,19-21]. This is also reflected in
the results because the availability of the wireless use of EPR
and the use rate of teleconsultations via videoconferencing
increased during the survey. The biggest development in these
indicators can be seen between 2011 and 2014. The intensity
of use of teleconsultations via videoconferencing has reached
80% since 2017, but no major improvement has been observable
since then. Regionally, there are differences in the frequency
at which this functionality has been used.

The aim of the health and social services reform is to improve
the quality of services and ensure regional equality [30].
According to this study, there are still regional differences in
the eHealth maturity levels among different hospital districts.
There are differences in how comprehensive RHIE can be
provided, how well EPR technical support is organized, and
whether e-referral and consultation e-referral are widely used.
These are particularly evident in the indicators for primary health
care, especially in the municipalities outside the common
administrative organization. Their results are noticeably worse
in the intensity of use of e-referral, consultation e-referral, and
RHIE. Regional variation also exists among hospital districts
in how well CDSS is integrated into the EPR, the use rate of
teleconsultations via videoconferencing, and the use of patients’
own health data. However, EPR and PACS are widely used in
all specialized care organizations (21/21, 100%), and wireless
use of EPR is available in most hospital districts (20/21, 95%).
The results indicate that operating under the same administrative
organization and using the same EPR brand in the region will
enable the support of a more comprehensive level of eHealth
maturity regionally for both specialized care and primary health
care. On the basis of these results, it seems the goal of the health
and social services reform to establish large operational units
will improve the opportunities to provide a better and equal
level of eHealth maturity [30]. The goal of the health and social
services reform to move toward common solutions for the
procurement of EPRs seems to help achieve better results in the
intensity of use of EPR, availability of wireless use of the EPR,

and availability of RHIE [32,33]. According to this study, a
unified EPR brand also seems to allow slightly better EPR
technical support.

Certain similarities can be observed if we examine the results
in terms of how different hospital districts provide eHealth
services for their citizens. This is especially true in the cases of
South and North Karelia. Ruotanen et al [24] studied the
availability of eHealth services for citizens in 2020. According
to their study, these 2 hospital districts offer the widest range
of eHealth services for citizens and they have the best eHealth
maturity [24]. Could the explanation be that determined work
has been done in these hospital districts to promote the
digitalization of health care and implement national strategies?
This may also be because organizations have had time to
implement health care integration over a sufficiently long period
because, for example, Eksote, the common administrative
organization in South Karelia, has been operating since 2010
[31]. This highlights that an early investment in development
is important, because moving functionalities into the production
phase is a time-consuming process [7,25].

When this study’s results are examined internationally, we see
that in the surveys conducted by the EC in 2013 and the WHO
in 2016, Finland was ahead of the European Union (EU) and
global average in the selected indicators [5,6]. For example,
during those years, the availability of EPR and PACS was higher
than the EU and global average, and even currently, the intensity
of use rates for both applications in Finland are approximately
100% [5,6]. The biggest increase has been observed in the use
of the patient’s own health data, because in the EC study in
2014, the use of the patient’s own health data was very limited
at the EU level, as in Finland [5]. Moreover, in the Nordic study
in 2014, the use of this functionality was low in all the Nordic
countries. A Nordic benchmarking study noted that the Nordic
countries were eHealth pioneers, especially in the HIE and EPR
functionalities [4,5]. The Nordic eHealth Research Network
also states in its study that several eHealth functionalities have
already reached 100% availability in the Nordic countries;
therefore, studies should focus more on the intensity of use of
these functionalities [16]. Our study provides an example of
how intensity of use data can be collected in a situation in which
data on availability alone reveal insufficient details.

The latest benchmarking study results have shown that Finland
remains as one of the pioneers in the development of eHealth.
Ammenwerth et al [7] performed an international comparative
study of 6 basic eHealth indicators across 14 countries in 2020.
On the basis of their findings, Finland showed the best overall
outcome in all the selected eHealth indicators in the study,
followed by South Korea, Japan, and Sweden [7]. According
to the study, Finnish health care professionals could easily
access their patients’ health data and were able to add the data
to electronic health records, but the possibility for patients to
add data to their health records remains to be improved in
Finland [7]. The 2017 OECD eHealth indicator survey,
conducted in 38 countries, found that no country outperformed
all countries in all the indicators used in the survey, but in
contrast, no country lagged behind the other countries, as
measured by all the indicators [35]. According to this study,
Finland is one of the top performers in the availability of EPR
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and use of HIE of radiology results and images [35]. Finland
was also noted as a top performer among OECD countries in
technical and operational readiness to provide national health
information from EPRs [12]. The availability to electronically
request prescription renewal or refill and patients’ ability to
access test results via the web was <50% in approximately all
the OECD countries that participated in the 2017 study [35].
The availability of e-booking clearly needs to be improved
among OECD countries, because in approximately all countries,
including Finland, its availability was <50% [35]. The latest
EC eHealth benchmarking study in all EU countries in 2018
highlighted Finland as one of the top performers, especially in
the sharing of radiology test images and reports [8]. The EPR
has been fully available across all EU countries since 2018. HIE
is also well adopted in EU countries, but it has been less adopted
than the EPR [8]. There was an increase in the adoption of HIE
across all member states between 2013 and 2018, and along
with Denmark, Estonia, and Sweden, Finland is among the top
clinical data performers in HIE [8]. The highest HIE availability
rates among EU countries were reported for receiving laboratory
reports (77%), certifying sick leave (69%), sending and
receiving referral and discharge letters (53%), and transferring
prescriptions to pharmacists (52%) [8]. Compared with these
results, this study shows that Finland is ahead of the EU average
in the exchange of laboratory results, e-referral, and
e-prescribing. Although a study conducted in 2018 found that
e-prescribing was widely adopted in the 23 EU countries studied,
there was great variation in authentication procedures among
the countries [36]. One of the goals of EU for the development
of eHealth has been to promote cross-border health care [37].
However, only Finland and Croatia have e-prescribing systems
that can prescribe medications to be dispensed abroad [36].

Scope for development remains among EU countries, especially
in the adoption of telehealth services and personal health records
[8]. There is also scope for improvement among OECD
countries in the adoption of telehealth services, because only
approximately one-third of the hospitals indicated that they had
telehealth capabilities for patient consultation [35]. In any case,
consultation with other professionals using telehealth services
is well adopted in Finland, because this study indicates that
remote consultation via videoconferencing has been extensively
adopted. However, there is still scope for improvement in
Finland; for example, the use of CDSS was below the EU
average in 2018 [8]. e-Booking in the Finnish public health care
context clearly needs to be developed. On the basis of this study,
no significant development has been seen during the entire
10-year follow-up period. However, 43% of EU GPs reported
that their ICT systems allowed their patients to request
appointments in 2018; therefore, Finland clearly has scope for
improvement in this area [8].

This study was conducted in the Finnish health care
environment, but we believe the findings are applicable to other
countries that aim to develop health care further through
digitalization. On the basis of the results, the deployment of
eHealth applications will take time, and both legislative changes
and national strategies may help to promote implementation
[38]. According to the WHO, 58% of the countries that
responded to their global survey in 2016 reported having an

eHealth strategy [2]. In Finland, the first national strategy for
applying ICT to health care and social welfare was introduced
in 1995 by the Ministry of Social Affairs and Health [21]. Thus,
Finland was one of the first countries, along with San Marino,
Norway, and Canada, to have eHealth strategies or policies in
place [2]. Strategies have since been used to promote the
structured recording of patient data and the integration between
systems and to increase the electronic exchange of information
between patients and health care professionals [17-21,25,26].
Payne et al [39] studied the status of HIE among 6 countries,
and they stated that the complexity of health care systems will
present barriers to HIE. This is the case in Finland, because
there are still regions where different organizations provide
specialized care and primary health care and use the different
EPR brands in their region. The study also noted that in
countries that have successfully achieved HIE, the impetus came
from the government [39]. In Finland, HIE between
organizations has been promoted through the national Kanta
services, in which all public health care organizations have
joined [25,26]. Despite this national service uptake, which
allows information exchange between organizations, there is
still a possibility to use RHIE systems, as highlighted in this
study [28]. The aim of the latest strategy is also to promote
interoperable and modular architectures and information security
and to ensure sufficient data connections [40]. Legal changes
may also contribute significant improvements to eHealth
maturity, as can be seen in this study’s results regarding the
availability of electronic prescription and e-ID and signature.
These functions became mandatory for all public health care
organizations in 2017, and the results show significant
development between 2011 and 2017 [21,25,26]. However, the
implementation of the new functionalities will take time because
the path of the Finnish national electronic prescription system
from legislation to full implementation took 10 years [25]. A
very important step forward to enable RHIE in hospital districts
was a law that came into force in 2011, which allowed public
health care to build common patient registries for hospital
districts and primary health care organizations in each of the
regions. After the law’s implementation, specific consent from
a patient who is informed was no longer required for information
retrieval [21].

The results reveal that a basic infrastructure such as the EPR
must be in place to enable other advanced functionalities such
as the CDSS and HIE, because the structured data storage of
EPR is a prerequisite for the operation of CDSS systems
[5,10,17-21]. Presumably, an EPR and broadband wireless
infrastructure must be available for the wireless use of EPR
[17-21]. The results also show that operating under a common
regional administrative organization and using the same EPR
brand will enable better overall eHealth maturity results,
especially in RHIE, for both specialized care and primary health
care, at least in the Finnish health care context. Although
national strategies can guide the development of eHealth, the
regions’ own determined work can also lead to even better
results. The results highlight a few regions with high degree of
eHealth maturity in the selected indicators in this study while
providing comprehensive eHealth services to their citizens, as
shown in the study by Ruotanen et al [24]. The organization’s
own activities also affect the extent to which EPR technical
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support is provided and whether personnel’s ICT skills are
promoted through training [2].

Limitations
The results show that not all indicators may be relevant when
examining the eHealth maturity of future public health care in
Finland. When these eHealth maturity level studies started in
Finland, most of the functionalities collected according to
internationally used availability indicators were still in the
development phase. However, some indicators, such as e-ID
and signature and e-prescribing, have been saturated since 2017
and provided no additional information. Therefore, instead of
using e-ID, a better indicator for the regional evaluation of data
security could be the availability of a documented data security
policy or data security plan.

Regarding primary health care, the number of survey
respondents has decreased over time. This is explained by the
merging of municipalities into large administrative entities. In
contrast, the response rate of primary health care centers to the
survey has increased during the survey’s implementation; thus,
the sample size has differed slightly in the different survey years.
This may cause minor variations in the results for different
years.

The results of this study are based on the data provided by
various organizations. In each organization, its management
has compiled organization-specific responses from experts in
different areas. Different experts may have responded to the
survey in different years of the study; therefore, the questions
may have been understood differently. However, efforts were

made to assist the respondents by providing them with their
responses from the previous survey year as a reference. The
respondents may have represented the administrative
organization; therefore, they may not have had a complete
picture of the situation in practice. For example, the
interpretation of the proportion of personnel with computer
skills may vary among respondents. The interpretations of terms
in various years may also vary, depending on what was topical
at the time. The intensity of use of certain eHealth applications
is based on respondents’estimates rather than log data, meaning
that there may be variation in results, depending on the
respondent’s interpretation.

Conclusions
eHealth maturity has steadily progressed nationally in Finland,
and various national strategies and legislative changes have
promoted its deployment. The biggest developments in eHealth
maturity occurred between 2011 and 2014. Some indicators
reached saturation and an intensity of use rate of 100%.
However, the scope for development remains, especially in
primary health care. Regionally, differences remain among
different organizations. Some hospital districts have already
been operating under a common administrative organization
for a long time, and the results suggest that they will be more
prepared for the approaching health and social services reform.
The national eHealth strategies and legislative changes need to
be implemented in a timely manner, because the results of this
study show that the functionalities of eHealth will be adopted
in stages and deployment will take time.
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Abstract

Background: With the widespread adoption of electronic healthcare records (EHRs) by US hospitals, there is an opportunity
to leverage this data for the development of predictive algorithms to improve clinical care. A key barrier in model development
and implementation includes the external validation of model discrimination, which is rare and often results in worse performance.
One reason why machine learning models are not externally generalizable is data heterogeneity. A potential solution to address
the substantial data heterogeneity between health care systems is to use standard vocabularies to map EHR data elements. The
advantage of these vocabularies is a hierarchical relationship between elements, which allows the aggregation of specific clinical
features to more general grouped concepts.

Objective: This study aimed to evaluate grouping EHR data using standard vocabularies to improve the transferability of
machine learning models for the detection of postoperative health care–associated infections across institutions with different
EHR systems.

Methods: Patients who underwent surgery from the University of Utah Health and Intermountain Healthcare from July 2014
to August 2017 with complete follow-up data were included. The primary outcome was a health care–associated infection within
30 days of the procedure. EHR data from 0-30 days after the operation were mapped to standard vocabularies and grouped using
the hierarchical relationships of the vocabularies. Model performance was measured using the area under the receiver operating
characteristic curve (AUC) and F1-score in internal and external validations. To evaluate model transferability, a
difference-in-difference metric was defined as the difference in performance drop between internal and external validations for
the baseline and grouped models.

Results: A total of 5775 patients from the University of Utah and 15,434 patients from Intermountain Healthcare were included.
The prevalence of selected outcomes was from 4.9% (761/15,434) to 5% (291/5775) for surgical site infections, from 0.8%
(44/5775) to 1.1% (171/15,434) for pneumonia, from 2.6% (400/15,434) to 3% (175/5775) for sepsis, and from 0.8% (125/15,434)
to 0.9% (50/5775) for urinary tract infections. In all outcomes, the grouping of data using standard vocabularies resulted in a
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reduced drop in AUC and F1-score in external validation compared to baseline features (all P<.001, except urinary tract infection
AUC: P=.002). The difference-in-difference metrics ranged from 0.005 to 0.248 for AUC and from 0.075 to 0.216 for F1-score.

Conclusions: We demonstrated that grouping machine learning model features based on standard vocabularies improved model
transferability between data sets across 2 institutions. Improving model transferability using standard vocabularies has the potential
to improve the generalization of clinical prediction models across the health care system.

(JMIR Med Inform 2022;10(8):e39057)   doi:10.2196/39057

KEYWORDS

standard vocabularies; machine learning; electronic health records; model transferability; data heterogeneity; machine learning

Introduction

The widespread adoption of electronic healthcare records
(EHRs) by US hospitals has created an opportunity to leverage
this data for the development of predictive algorithms to improve
clinical care [1]. Various machine learning (ML) models have
been developed to predict a variety of outcomes, including
pneumonia, sepsis, and surgical site infection [2-5]. However,
relatively few of these models have been implemented into
clinical practice [6]. A key barrier in model development
includes the validation of model discrimination across data sets
[7]. Typically, validation occurs using a blind subset of data
from the training data set, termed internal validation. External
validation using data from a different institution is rare and
often results in worse performance [8,9].

There are many reasons why ML models are not externally
generalizable, including inadequate training data, overfitting of
the model, and data heterogeneity [10]. With 684 different EHR
vendors in the United States, the lack of interoperability between
institutions, even among those with the same EHR system,
substantially inhibits ML model generalizability [11]. Various
methods have been proposed to improve the generalizability of
ML models, including transfer learning, deep learning, and
common data models (CDMs) [9,12-16]. However, data
heterogeneity is an underappreciated key determinant of model
transferability [17]. Data heterogeneity deriving from variation
in laboratory practices, hospital medication formularies, and
administrative coding practices between health care systems
can impact model performance during external validation,
resulting in a decreased transferability of models across
institutions [18].

A solution to address the substantial data heterogeneity between
health care systems is to use standard vocabularies to map EHR
data elements. These vocabularies, such as the Clinical
Classification Software (CCS) for International Classification
of Diseases (ICD) Diagnosis Codes, Logical Observation
Identifiers Names and Codes (LOINC) for health care

observations, and Medi-Span for medications, can be used to
support data harmonization between data sets [19-23]. The
advantage of these vocabularies is a hierarchical relationship
between elements, which allows the aggregation of specific
clinical features to more general grouped concepts. For example,
Figure 1 demonstrates how multiple ICD diagnosis codes
describing “urinary tract infections” can be aggregated to 1
single CCS code. Due to variation in coding practices among
health care facilities, the aggregation of concepts may improve
ML model transferability during external validation.

This study’s objective was to evaluate whether aggregating
EHR data elements using standard vocabularies would improve
ML model transferability to an external data set. Although other
works have used this method of grouping EHR data elements
when developing ML models, none to our knowledge have
assessed the impact of grouping on model transferability to an
external data set [17]. To evaluate this objective, we classified
postoperative health care–associated infections (HAIs) using
EHR data from 2 independent health care systems.

HAIs pose a substantial patient safety concern, raise costs, and
increase the risk of death after surgical procedures. HAIs occur
in 3% to 27% of surgical patients [24,25]. Developing even 1
major postoperative complication increases a patient’s risk of
postoperative mortality and readmission [26,27]. To address
the challenges of HAIs, hospitals rely on surveillance programs
to monitor HAI rates and develop targeted interventions to
address postoperative HAIs. Hospitals that participate in quality
surveillance programs reduce HAIs over time [28]. However,
hospital surveillance programs rely on a manual chart review
process, which is a critical barrier to the widespread adoption
of surgical quality assurance programs. To overcome these
difficulties, automated surveillance programs are needed to
decrease the burden of the manual chart review process [29,30].
We hypothesized that ML models for HAI detection using
grouped features from EHR data would improve model
performance during external validation compared to ML models
developed using baseline features.
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Figure 1. Example of the aggregation of baseline features to grouped concepts. Multiple ICD diagnosis codes describing “urinary tract infections,”
including 10 used only in Hospital A, 5 used only in Hospital B, 11 used at both Hospital A and B, and 61 not used in either hospital, can be aggregated
to 1 single CCS code. CCS: Clinical Classification Software; ICD: International Classification of Diseases.

Methods

Setting
We performed a retrospective cohort study using data from 2
independent health care systems: the University of Utah Health
(Hospital A) with an Epic EHR and Intermountain Healthcare
(Hospital B) with a Cerner EHR.

Ethics Approval
The institutional review boards at each health care system
approved the study (University of Utah Health: 87482;
Intermountain Healthcare: 1050851), granting a waiver of
informed consent.

Data Sources, Participants, and Outcomes
Data for the study were obtained from the American College
of Surgeons (ACS) National Surgical Quality Improvement
Program (NSQIP) at each institution. The ACS NSQIP program
is the largest surgical quality assessment program in the United
States, found in over 450 hospitals [31]. As part of the program,
the surgical clinical reviewers, typically nurses, are trained in
NSQIP methodology and definitions [32]. NSQIP surgical
clinical reviewers manually review the EHR records for all

selected operative episodes to identify perioperative
complications, including HAI, occurring within 30 days of the
operation. All identified complications are rereviewed by the
ACS surgeon champion at the participating hospital to ensure
that the complications meet the ACS NSQIP definitions.
Disagreements are settled when a consensus is reached, with
the ACS surgeon acting as adjudicator. The interrater reliability
and data quality of the NSQIP program have been previously
documented [32].

For this study, patient operative episodes were included if they
underwent manual chart review as part of the ACS NSQIP
program at each institution. Operative events were excluded if
they had incomplete follow-up data.

The following HAIs were chosen as outcomes due to their
prevalence and clinical relevance: surgical site infection (SSI),
pneumonia, sepsis, and urinary tract infection (UTI). These
outcomes were selected as they are the most common
complications occurring after general and thoracic surgical
procedures [33]. In addition, these complications are the most
common underlying cause for hospital readmission after surgical
procedures [27]. Cases were defined according to standard
NSQIP definitions and labeled as binary values for classification.
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EHR Data Element Mapping
For selected operative events, we obtained all laboratory test
results, medication administration, and ICD 9th and 10th
editions diagnosis codes from the EHR between 0-30 days after
surgery. Although diagnosis codes are an important indicator
of HAI, they often suffer from low sensitivity [34,35]. We chose
to include additional clinical features, including laboratory tests
and medications, to increase the sensitivity of our models. Each
data category was mapped to a standard vocabulary and grouped
based on the hierarchical relationships within the standard
vocabularies. The Agency for Healthcare Research and Quality
provides a mapping from both ICD-9 and ICD-10 codes to CCS
codes in the form of a CSV file [19,20]. Diagnosis codes,

represented as ICD codes in the EHR, were manually aggregated
into single-level CCS codes using the CCS mapping. Laboratory
test results were manually mapped to the LOINC terminology
and then aggregated into LOINC groups [21,22]. Medications
were automatically mapped to the Medi-Span Generic Product
Identifier within the EHR [23]. In the Medi-Span hierarchy, we
categorized the lowest level as baseline and the highest level as
grouped. Figure 2 provides examples of aggregation for each
data category. Once mapped, we created 2 discrete data sets.
The baseline data set consisted of ICD codes, LOINC tests, and
Medi-Span drug names. The grouped data set consisted of
aggregated features, including CCS codes, LOINC groups, and
Medi-Span drug groups.

Figure 2. Example of data aggregation. ICD diagnosis codes were manually aggregated into single-level CCS codes. LOINC observations were
aggregated into LOINC groups, consisting of a single possible level. Medi-Span consisted of 5 different possible levels of aggregation. Medi-Span drug
names were grouped into the highest level of aggregation—Medi-Span drug groups. CCS: Clinical Classification Software; ICD: International Classification
of Disease; LOINC: Logical Observation Identifiers Names and Codes.

Model Development
To avoid data leakage and overfitting, we divided the data from
Hospital A into hyperparameter tuning/training (70%) and
internal validation (30%) data sets before preprocessing or
model development. For external validation, we used 100% of
the data from Hospital B. Missing data were addressed by
imputing 0 for nominal variables and the median

value—calculated from the training data—for continuous
variables [36]. Data were standardized to have a mean of 0 and
SD of 1. Figure 3 briefly describes the flow of the data through
model development, validation, and final evaluation.

Separate models were developed for each outcome and data set
(baseline or grouped). Each model classified whether an
operative event resulted in the relevant HAI within 30 days.
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Important features were identified based on the ANOVA
F-score. Data sets with different numbers of n-top important
features were created. In all, 4 ML algorithms were evaluated:
random forest, support vector machine, logistic regression, and
XGBoost [37-41]. The number of features and algorithm were
included as parameters in model tuning. For each model, tuning
was performed using 10-fold cross-validation to improve the
internal training. The best model was selected using the area
under the receiver operating characteristic curve (AUC) and
F1-score [42,43]. The final training of the models was completed

using the whole training data set. To address the class imbalance,
random undersampling was used during tuning within each fold
of cross-validation and during final training [44]. We did not
perform any balancing during validation as we wanted to test
in an environment similar to real-life data where we would
expect an imbalance. Model development was completed using
Python software (version 3.7; Python Software Foundation) and
the scikit-learn (version 0.22.1), imblearn (version 0.6.2), and
xgboost (version 1.2.1) packages [41,45,46].

Figure 3. Flow of data through the study with the derivation for the final difference-in-difference (DiD) metric. Final evaluation steps to calculate the
DiD included (1) performance difference between the internal and external validations for the baseline model; (2) performance difference between the
internal and external validations for the grouped model; and (3) difference in the performance differences between the baseline and grouped models.
AUC: area under the receiver operating characteristic curve.

Validation
For each model, we performed internal and external validations.
For each outcome, we calculated the difference-in-difference
(DiD) defined in Figure 3. DiD is a metric previously used in
economics to evaluate the difference in means between 2 groups,
generally a control group and an intervention group [47]. We
applied it in our study to assess the difference in performance
between the baseline and grouped models. A positive DiD
indicates that the model developed using grouped features
resulted in a reduced drop in performance during external
validation compared to the model developed using baseline
features.

Sensitivity Analyses

Analysis of Nonshared Codes
A separate granular data set, including baseline features but
restricted to those shared by both hospital systems, was created
to investigate the magnitude of performance drop in external
validation attributable to nonshared codes. Training and

validation were conducted as previously described. We
calculated the DiD as described in Figure 3.

Analysis of Grouping Individual Categories of Data
We investigated the effect of grouping individual data
categories, using only SSI, as this outcome was the most
prevalent in the data. Training and validation were conducted
as previously described. We compared the baseline model with
models developed using data sets created with different
combinations of baseline and grouped data. The combination
data sets were (1) baseline diagnosis codes and laboratory tests
with grouped medications, (2) baseline diagnosis codes and
medications with grouped laboratory tests, and (3) grouped
diagnosis codes with baseline laboratory tests and medications.
We calculated the DiD as described in Figure 3.

Statistical Analysis
We performed a chi-square test of independence to determine
any differences in the prevalence of the outcomes and
categorical demographic variables between the institutions. For
continuous demographic variables, we performed a 2-tailed,
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2-sample t test to determine any differences between institutions.
To measure model performance, bootstrapping for 1000
iterations was used to measure the mean with 95% CIs [48,49].
A 1-tailed, 1-sample t test was used to evaluate whether DiD
metrics were significantly greater than 0. All statistical tests
were completed using the SciPy package in Python [50].

Results

Cohort and Feature Description
A total of 5775 operative events were retrieved from Hospital
A, whereas a total of 15,434 operative events were retrieved
from Hospital B. Table 1 describes the study demographics.

Table 1. Study demographics for both internal and external data sets.

P valueHospital B (external; N=15,434)Hospital A (internal; N=5775)Characteristic

.0153.4 (18.1)52.6 (16.6)Age at time of surgery (years), mean (SD)

.127576 (49.1)2765 (47.9)Gender, male, n (%)

Race, n (%)

<.00159 (0.4)86 (1.5)American Indian or Alaska Native

.40192 (1.2)81 (1.4)Asian

.05127 (0.8)65 (1.1)Black or African American

.05147 (1)34 (0.6)Native Hawaiian or Pacific Islander

.0714,216 (92.1)5275 (91.3)White

.18693 (4.5)234 (4.1)Unknown or not reported

.031384 (9)575 (10)Ethnicity, Hispanic, n (%)

Procedure Current Procedural Terminology code, n (%)

<.0012020 (13.1)968 (16.8)0-29999 (skin/soft tissue)

<.0012222 (14.4)594 (10.3)30000-39999 (cardiovascular)

.00110,796 (69.9)4172 (72.2)40000-49999 (gastrointestinal)

.1799 (0.6)27 (0.5)50000-59999 (genitourinary)

<.001297 (1.9)14 (0.2)60000-69999 (nervous system)

.027837 (50.8)2831 (49)Inpatient or outpatient status, inpatient, n (%)

Comorbidities, n (%)

.542144 (13.9)822 (14.2)Diabetes mellitus

.182248 (14.6)799 (13.8)Current smoker within 1 year

<.001373 (2.4)498 (8.6)Dyspnea

<.001376 (2.4)71 (1.2)Functional heath status

<.001149 (1)20 (0.3)Being ventilator-dependent

.05417 (2.7)128 (2.2)History of severe chronic obstructive pulmonary disease

<.001114 (0.7)8 (0.1)Ascites within 30 days prior to surgery

.004123 (0.8)24 (0.4)Congestive heart failure within 30 days prior to surgery

.025455 (35.3)1940 (33.6)Hypertension requiring medication

.0353 (0.3)9 (0.2)Acute renal failure

.66283 (1.8)100 (1.7)Currently requiring or on dialysis

<.001246 (1.6)187 (3.2)Disseminated cancer

<.001512 (3.3)287 (5)Open wound with or without infection

<.001644 (4.2)351 (6.1)Steroid or immunosuppressant use for chronic condition

.71372 (2.4)145 (2.5)>10% loss of body weight in the 6 months prior to surgery

<.0011013 (6.6)151 (2.6)Bleeding disorder

Table 2 describes the prevalence of HAI outcomes within each
institution. There were no significant differences in the
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prevalence of SSI (P=.77), sepsis (P=.09), or UTI (P=.75). The
prevalence of pneumonia was significantly higher (P=.03) in

Hospital B.

Table 2. Prevalence of selected outcomes in each hospital system.

P valueHospital B (N=15,434), n (%)Hospital A (N=5775), n (%)Outcome

.77761 (4.9)291 (5)Surgical site infection

.03a171 (1.1)44 (0.8)Pneumonia

.09400 (2.6)175 (3)Sepsis

.75125 (0.8)50 (0.9)Urinary tract infection

aPneumonia was significantly more prevalent in Hospital B (P<.05).

Model Development and Validation
DiD metrics are reported in Table 3. Tables S1 and S2 in
Multimedia Appendix 1 detail the selected model parameters.
Model calibration can be found in Table S3 and Figures S1-S4
in Multimedia Appendix 1. Standards for Reporting Diagnostic
Accuracy Studies flow diagrams of patient data through the

top-performing models can be seen in Figures S5-S16 in
Multimedia Appendix 1.

After external validation, all models produced significantly
positive AUC and F1-score DiDs when comparing the
performance of the baseline and grouped models (all P<.001,
except UTI AUC: P=.002). A forest plot in Figure S17 in
Multimedia Appendix 1 illustrates the AUC and F1-score DiDs.

Table 3. Difference-in-difference (DiD) metrics for each outcome. Means are based on 1000 bootstrapped iterations with 95% CIs. A positive DiD
indicates that the grouped model resulted in a reduced drop in performance compared to the baseline model.

P valueDiD, mean (95%
CI)

Grouped external
validation, mean
(95% CI)

Grouped internal
validation, mean
(95% CI)

Baseline external
validation, mean
(95% CI)

Baseline internal
validation, mean
(95% CI)

Top
grouped
algorithm

Top base-
line algo-
rithm

Outcome, met-
ric

LRcSVMbSSIa

<.0010.072 (0.070-
0.074)

0.833 (0.833-
0.834)

0.904 (0.903-
0.906)

0.763 (0.762-
0.764)

0.906 (0.904-
0.908)

AUCd

<.0010.100 (0.097-
0.103)

0.376 (0.375-
0.376)

0.476 (0.474-
0.478)

0.300 (0.299-
0.302)

0.501 (0.499-
0.503)

F1-score

SVMLRPneumonia

<.0010.250 (0.247-
0.252)

0.973 (0.973-
0.974)

0.994 (0.994-
0.995)

0.683 (0.682-
0.685)

0.953 (0.949-
0.957)

AUC

<.0010.212 (0.206-
0.218)

0.467 (0.465-
0.468)

0.456 (0.452-
0.461)

0.302 (0.299-
0.305)

0.504 (0.498-
0.509)

F1-score

RFeLRSepsis

<.0010.008 (0.007-
0.010)

0.883 (0.883-
0.884)

0.948 (0.946-
0.949)

0.890 (0.889-
0.891)

0.964 (0.963-
0.964)

AUC

<.0010.091 (0.089-
0.093)

0.092 (0.092-
0.093)

0.419 (0.416-
0.422)

0.050 (0.050-
0.050)

0.469 (0.467-
0.472)

F1-score

LRSVMUTIf

.0020.006 (0.002-
0.009)

0.929 (0.928-
0.930)

0.936 (0.934-
0.939)

0.886 (0.885-
0.887)

0.898 (0.895-
0.900)

AUC

<.0010.073 (0.068-
0.077)

0.225 (0.224-
0.226)

0.244 (0.241-
0.246)

0.063 (0.061-
0.064)

0.153 (0.148-
0.158)

F1-score

aSSI: surgical site infection.
bSVM: support vector machine.
cLR: logistic regression.
dAUC: area under the receiver operating characteristic curve.
eRF: random forest.
fUTI: urinary tract infection.
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Sensitivity Analyses

Effect of Nonshared Codes
Table 4 describes the EHR data elements shared between
hospitals. We found that 44.8% (4284/9559) of baseline features
present in the training set were not present in the external set,
whereas all grouped features present in the training set were
present in the external set.

After external validation, all models, except UTI (P=.002),
produced significantly positive AUC DiDs (all P<.001) when

comparing the performance of the baseline and granular models.
All outcomes produced significantly positive F1-score DiDs
(all P<.001) when comparing the performance of the baseline
and granular models.

The magnitude of the AUC and F1-score DiDs calculated from
the comparison of the baseline and grouped models were greater
than those calculated from the comparison of the baseline and
granular models in all outcomes, except the AUC DiD for sepsis,
as represented in Table 5. Full internal and external validation
results can be found in Table S4 in Multimedia Appendix 1.

Table 4. Number of features in each category (diagnosis, medication, and laboratory) for Hospital A, Hospital B, and those shared between them.

Shared, nExternal Set (Hospital B), nTraining Set (Hospital A), nFeatures

Baseline

527579269559Total

439268597708ICDa diagnosis codes

5315311311Medi-Span drug names

352536540LOINCb codes

Grouped

805817805Total

287287287CCSc diagnosis codes

949494Medi-Span drug groups

424436424LOINC groups

aICD: International Classification of Diseases.
bLOINC: Logical Observation Identifiers Names and Codes.
cCCS: Clinical Classification Software.

Table 5. Difference-in-difference (DiD) metrics for the comparison between baseline and granular models and the comparison between baseline and
grouped models. A positive DiD indicates the comparison model resulted in a reduced drop in performance compared to the baseline model.

Grouped comparison, DiD (95% CI)Granular comparison, DiD (95% CI)Metric, outcome

AUCa

0.072 (0.070-0.074)0.035 (0.033-0.037)SSIb

0.250 (0.247-0.252)0.226 (0.223-0.229)Pneumonia

0.008 (0.007-0.010)0.015 (0.013-0.017)Sepsis

0.006 (0.002-0.009)–0.049 (–0.052 to –0.045)UTIc

F1-score

0.100 (0.097-0.103)0.017 (0.014-0.020)SSI

0.212 (0.206-0.218)0.186 (0.179-0.193)Pneumonia

0.091 (0.089-0.093)0.026 (0.023-0.028)Sepsis

0.073 (0.068-0.077)0.039 (0.035-0.043)UTI

aAUC: area under the receiver operating characteristic curve.
bSSI: surgical site infection.
cUTI: urinary tract infection.

Effect of Grouping Individual Categories of Data
In the second sensitivity analysis, all AUC and F1-score DiDs
were significantly positive (all P<.001) when comparing the

performance of the baseline and combination models, as
displayed in Table 6. The combination model with grouped
medications, Combination 1, resulted in the greatest AUC DiD.
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The combination model with grouped diagnosis codes, Combination 3, resulted in the greatest F1-score DiD.

Table 6. Comparison of models developed from baseline data with models developed from the combination of baseline and grouped data. The
difference-in-difference (DiD) reflects the AUC and F1-score for surgical site infection. A positive DiD indicates the combination model resulted in a
smaller drop in performance than the baseline model.

P valueF1-score, DiD (95% CI)AUCa, DiD (95% CI)Diagnosis codesLaboratory testsMedicationsCombination

<.0010.072 (0.069-0.074)0.054 (0.052-0.057)BaselineBaselineGroupedCombination 1

<.0010.046 (0.043-0.049)0.012 (0.010-0.014)BaselineGroupedBaselineCombination 2

<.0010.134 (0.131-0.137)0.049 (0.047-0.051)GroupedBaselineBaselineCombination 3

aAUC: area under the receiver operating characteristic curve.

Discussion

We investigated the effect that grouping EHR data using
standard vocabularies has on ML model transferability during
external validation. There are several novel and significant
findings of our work. First, ML models for HAI detection with
grouped features based on standard vocabularies resulted in a
reduced drop in performance when validated on an external data
set compared to baseline features. Second, there was significant
heterogeneity of EHR data elements between health care
systems, as 45% of data elements present in the training set
were not present in the external set. Third, ML models
developed from grouped data sets resulted in greater
performance gains after external validation compared to data
sets restricted to shared codes alone. Lastly, we found that
grouping diagnosis codes and medications was important to
model transferability when compared to laboratory tests.

We demonstrated that grouping features using standard
vocabularies improved model transferability during external
validation. We found on average a 51% decrease and 65%
decrease in the performance drop of AUC and F1-score,
respectively, during external validation when using grouped
data compared to baseline data. This improvement in
transferability can be attributed to better syntactic and semantic
interoperability. Using grouped features allows the model to
overcome the challenges of data heterogeneity, such as
differences in coding practice and hospital formularies, that
arise when using granular codes. A single feature from the
grouped model can represent several distinct features from the
baseline model (Figure 1). Hence, this method can generalize
to an unknown data set as no knowledge of the future data set
is required when selecting features or training the model.
Although the practice of grouping features is common, our study
is novel in that to our knowledge, previous studies have not
evaluated model transferability in an external data set when
grouping features based on standard vocabularies.

The data heterogeneity seen in our data highlights the difficulty
when creating generalizable ML models. Shared codes
accounted for 57% (4392/7708) of the ICD diagnosis codes
used in Hospital A and 64% (4392/6859) of the ICD diagnosis
codes used in Hospital B. To our knowledge, none have
compared ICD code usage between hospitals. For several
common conditions, there are numerous ICD diagnosis codes
available. For example, diabetes mellitus type II has 56 ICD-9
and ICD-10 codes available [51,52]. Variation in coding

practices between health care systems can result in several
individual codes not being present in a given data set.
Differences in laboratory practices or hospital medication
formularies may also contribute to EHR data heterogeneity.
Extensive feature engineering is typically performed to
overcome this challenge before model development [53]. Feature
engineering, while creating highly relevant features for the given
use case, represents a substantial barrier to model
generalizability. Our study demonstrated that grouping features
can overcome challenges created by data heterogeneity.

In the first sensitivity analysis, we found that although models
developed with granular data sets restricted to shared codes
resulted in a reduced drop in performance when compared to a
baseline model, models developed from grouped data sets
resulted in an even smaller drop in performance. The models
developed using grouped data sets resulted in an additional 41%
decrease and 70% decrease in performance drop of AUC and
F1-score, respectively, during external validation on average.
These results provide further evidence that grouping features
using standard vocabularies produces greater benefits than just
restricting features to those shared by other hospital systems.

In the second sensitivity analysis, we found that the most
important factors when improving transferability included
grouping both diagnosis codes and medications. This result
could be explained by the amount of information lost due to
variation in coding practices and prescription preferences when
using baseline data. Rasmy et al [54] compared models using
different representations of diagnosis codes in the EHR. The
study found that models developed with data mapped to the
Unified Medical Language System (UMLS) produced the
highest AUC, whereas models developed with data mapped to
CCS codes produced the lowest AUC. However, this previous
study did not have an external data set to compare performance.

Other studies have used various methods to improve model
transferability, including transfer learning, deep learning, and
anchor learning [9,12-16]. Curth et al [12] found that using
transfer learning significantly increased model performance,
where the AUC increased as much as from 4.7% to 7.0%
depending on the use case. Although transfer learning has been
shown to be successful, it requires models to be trained with
data from the internal and external sites. Rasmy et al [15] found
an average drop of 3.6% in AUC when evaluating the
generalizability of a recurrent neural network. In our study, we
found the average drop in AUC to be 13% in models developed
using baseline data but only 4% in models developed using
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grouped data. Kashyap et al [13] found performance drops in
both recall and precision when validating the model at an
external site after using anchor learning. Our study evaluated a
method to achieve comparable model transferability without
requiring any knowledge of the external site or a deep learning
model.

Mapping data to CDMs can facilitate the sharing of data and
models across institutions as seen in several recent studies
[13,55]. Recent work, such as that from Tian et al [9], has built
frameworks for model sharing and generalizability that use
CDMs in their pipeline [17]. The use of a CDM involves
mapping data to standard vocabularies as we did in our study,
which addresses the problem of syntax by standardizing the
vocabulary. In our study, we further address the problem of
semantics, where different hospitals may use the same
vocabulary, but coding practices may result in different codes
representing the same condition.

We acknowledge several limitations to this study. Our use case
consisted of HAI detection in patients who underwent surgery.
The benefit of grouping feature sets for ML development may
not be consistent across other use cases. We only used EHR
data elements for which there are standard vocabularies
available, excluding features such as microbiology reports or
clinical text. It is likely that including these additional features
would improve ML model performance at the expense of
requiring an extensive amount of feature engineering. We used
Medi-Span, a proprietary vocabulary, as both hospital EHRs
mapped medications to this system. Other vocabularies, such

as RxNorm, could be used. There are several different
terminologies that can be used to group diagnosis codes in
addition to CCS, including UMLS, as was studied by Rasmy
et al [54]. Their work indicates that using UMLS to group
diagnosis codes could produce an even smaller drop in
performance than we found with CCS. This method would be
a valuable investigation for future studies that could lead to
even greater results. The terminologies and levels chosen for
our study could be modified for different use cases.

This study has substantial implications for the application of
ML models to clinical practice. Significant improvements in
patient care can be achieved with ML models as demonstrated
in previous studies [13,14,56,57]. However, external validation
remains one of the most serious barriers to the widespread use
of ML models in clinical practice [6,58]. We found that 2
independent hospitals only shared 55% of baseline EHR data
elements, highlighting the difficulty when creating generalizable
ML models. Current practices to overcome the data
heterogeneity between data sets involve extensive feature
engineering, which is burdensome during model deployment
at a new health care system where EHR data elements are not
mapped to a CDM [59]. We demonstrated the novel finding
that grouping features with standard vocabularies can overcome
the challenge of data heterogeneity and improve ML model
performance in external data sets. The method of grouping
features based on standard vocabularies will improve the
transferability of models, allowing for more widespread use of
these ML models between health care systems.
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Abstract

Background: Digital health has been a tool of transformation for the delivery of health care services globally. An electronic
health record (EHR) system can solve the bottleneck of paper documentation in health service delivery if it is successfully
implemented, but poor implementation can lead to a waste of resources. The study of EHR system implementation in low- and
middle-income countries (LMICs) is of particular interest to health stakeholders such as policy makers, funders, and care providers
because of the efficiencies and evidence base that could result from the appropriate evaluation of such systems.

Objective: We aimed to develop a theory of change (ToC) for the implementation of EHRs for maternal and child health care
delivery in LMICs. The ToC is an outcomes-based approach that starts with the long-term goals and works backward to the inputs
and mediating components required to achieve these goals for complex programs.

Methods: We used the ToC approach for the whole implementation’s life cycle to guide the pilot study and identify the
preconditions needed to realize the study’s long-term goal at Festac Primary Health Centre in Lagos, Nigeria. To evaluate the
maturity of the implementation, we adapted previously defined success factors to supplement the ToC approach.

Results: The initial ToC map showed that the long-term goal was an improved service delivery in primary care with the
introduction of EHRs. The revised ToC revealed that the long-term change was the improved maternal and child health care
delivery at Festac Primary Health Center using EHRs. We proposed a generic ToC map that implementers in LMICs can use to
introduce an optimized EHR system, with assumptions about sustainability and other relevant factors. The outcomes from the
critical success factors were sustainability: the sustained improvements included trained health care professionals, a change in
mindset from using paper systems toward digital health transformation, and using the project’s laptops to collect aggregate data
for the District Health Information System 2–based national health information management system; financial: we secured funding
to procure IT equipment, including servers, laptops, and networking, but the initial cost of implementation was high, and funds
mainly came from the funding partner; and organizational: the health professionals, especially the head of nursing and health
information officers, showed significant commitment to adopting the EHR system, but certain physicians and midwives were
unwilling to use the EHR system initially until they were persuaded or incentivized by the management.

Conclusions: This study shows that the ToC is a rewarding approach to framing dialogue with stakeholders and serves as a
framework for planning, evaluation, learning, and reflection. We hypothesized that any future health IT implementation in primary
care could adapt our ToC approach to their contexts with necessary modifications based on inherent characteristics.

(JMIR Med Inform 2022;10(8):e33491)   doi:10.2196/33491
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Introduction

Background
Globally, digital health has been a tool of transformation for
the delivery of health care services [1]. There is a plethora of
health records in paper format resulting from the handling of
clinical documentation across health care facilities in low- and
middle-income countries (LMICs). In LMICs, few electronic
health records (EHRs) exist at public primary health centers
(PHCs), the first entry point for citizens or patients seeking
essential health care services [2-4]. An EHR is defined as “a
repository of information regarding the health status of a subject
of care, in computer processable form” [5]. An EHR system
can solve the bottleneck of paper documentation in health
service delivery if it is successfully implemented, but poor
implementation can lead to a waste of resources [6]. The study
of EHR system implementation in LMICs is of particular interest
to health stakeholders such as policy makers, funding agencies,
and care providers because of the efficiencies and evidence base
that could result from the appropriate evaluation of such systems
[7]. Some progress has already been made regarding EHR
implementation in LMICs, but sustainability and widespread
adoption remain elusive [8,9]. A few examples of such
developments in health care improvements include efficiency
gains (such as quicker and more accurate reporting, reduced
duplication of documentation, and quicker access to patients’
records), better patient tracking (such as immunization records
and clinic attendance), and mobile health apps (ubiquitous access
to remote care for patients) [10], an example of which is Virtual
Doctors, a UK-based charity that specializes in telemedicine
and provides remote medical advice to local health workers to
reduce unnecessary hospital referrals. Currently, the charity is
working with PHCs in Zambia and Malawi, where volunteer
physicians, mostly from the United Kingdom, provide medical
support through a mobile app. These volunteer physicians
provide medically qualified advice where the local community
only has a community health worker, leading to faster diagnosis
and treatment [11]. Another example is iSanté, Haiti’s national
electronic medical record system. This EHR system was
implemented in 100 sites across Haiti primarily to support the
delivery of the national HIV program [12]; it also supports
antenatal care (ANC), delivery, and essential primary care
services.

Maternal and Child Health Care in Nigerian Primary
Health Care
A significant health need in Nigerian primary care, in common
with primary care in other LMICs, is maternal and child health
care (MCH) [7]. Women and their children would usually attend
the health facility for ANC, delivery, immunization, and family
planning services [13]. It is essential to manage the health
records of these patients or citizens effectively and efficiently
to ensure effective clinical workflow and patient safety.
Although paper-based health records seem to be structured in
supporting care delivery, EHRs prove to be more consistent,
readily available, and scalable for continuity of care [14].

EHR Implementation in Nigeria
In high-income countries (HICs), there has been widespread
adoption of EHRs, but this is not the case in many LMICs [1,9].
Despite the proliferation of mobile phones, the Nigerian health
sector has not leveraged the advances in mobile technology for
MCH delivery, unlike the health sectors in some other LMICs
[15]. Similarly, the dominance of mobile apps in the financial
and transportation sectors has not translated into the uptake of
mobile health apps or telemedicine in the health sector [16]. So
far, only a few hospitals in Nigeria have implemented an EHR
system in some form [2,7]. However, there is a substantial use
of EHRs for programs specific to diseases such as tuberculosis
and HIV [17-21].

The challenges of health IT implementation in LMICs,
especially Nigeria, include inadequate infrastructure, limited
human capacity, brain drain, lack of enforcement of legislation
and policies (political will), insufficient financial investment
or incentives, and corruption-riddled systems [9,22-24]. Despite
funding from the World Health Organization (WHO) and other
funding agencies, the implementation is fraught with corruption.
Private individuals and organizations in the health system divert
the funds earmarked for these IT projects [25]. As a result of
these acts, the patients or citizens who are beneficiaries do not
get the intended quality of care and health outcomes [24]. Hence,
funding agencies should include in funding applications a rider
concerning how implementers monitor and evaluate the actual
use and effect of resources provided. A very effective tool to
achieve this is the development of a theory of change (ToC).

ToC Fundamentals
The origins of the ToC can be traced to Chen and Rossi [26]
and Weiss [27], who carried out extensive work in the area of
theory-driven and theory-based evaluation. In particular, Weiss
[27] popularized the term and modestly defined a “theory of
change” as a theory of how and why an initiative will work.
This definition seems simplistic; yet, it is foundational. ToC
has evolved over the years, considering the ever-changing
complexities in international development programs. In this
study, we adopt the definition of ToC by the United Kingdom’s
Department for International Development as “an
outcomes-based approach which applies critical thinking to the
design, implementation and evaluation of initiatives and
programs intended to support change in their contexts” [28].
This definition relates to this feasibility study because this study
aimed to bring about change by introducing EHR
implementation in a primary health care context.

The ToC is both a process and a product [28-31]. The ToC
process articulates the mechanisms of change. The process
involves stakeholders who set a long-term goal and go in a
reverse direction to specify assumptions and identify
preconditions to achieve the desired outcomes [29]. This process
leads to the product (ToC map) and is usually developed in
versions before, during, and after program implementation.
Although there is no single way to design ToCs, it can be
asserted that good-quality ToCs should entail certain
components such as long-term goals, assumptions, interventions,
measurable outcomes, inputs, and outputs [32]. For a ToC to
be deemed effective for any program or study such as this EHR
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implementation, it should fulfill these 3 criteria: it should be
credible, doable, and testable [33]. The combination of
assumptions from practitioners’ experiences, evidence from
literature, findings from previous implementations, and program
designer’s implicit logic substantiate the credibility of a ToC.
In particular, articulating explicit assumptions about the
feasibility of the EHR implementation helps to expose, test, and
correct the program design logic. The assumptions are like
theories that guide each ToC component and their
interrelationships, and there is no one-size-fits-all set of
assumptions. The assumptions vary from context to context and
intervention to intervention [27,34]. On the basis of the specified
assumptions, the activities carried out around the intervention
will result in outputs, leading to indicators that can be measured
to gain the confidence of relevant stakeholders: government,
funders and nonprofits, health care workers, and ultimately
patients [32].

ToC and Other Relevant Frameworks
There are numerous frameworks used in health informatics,
such as the logical framework (logframe) [35], DeLone and
McLean (D&M) information systems (IS) success model [36],
and examples presented in the WHO digital health monitoring
and evaluation guide [37]. These frameworks have a broad
purpose of assessing the maturity of an intervention over time
but focus on specific criteria or dimensions; for instance,
logframes involve logical designing, monitoring, and evaluating
inputs, activities, outputs, outcomes, and impacts to achieve the
desired results [38]. The logframe approach is very similar to
the ToC approach in several ways. Logframes are useful and
more linear [30]. Because of the complexity of the EHR
intervention and the Nigerian environment, we found that ToCs
were more adaptable with regard to capturing the ensuing
complex interactions. The D&M IS success model measures
the “complex-dependent variable” in IS studies [36]. This model
is widely used to assess the interrelationship between critical
evaluation dimensions of IT interventions, including information
quality, system quality, service quality, system use or use
intentions, user satisfaction, and net system benefits [5,39]. In
the context of LMICs, the D&M IS success model has been
validated by studying electronic hospital IS at 5 Nigerian
teaching hospitals [39]. The WHO digital health guide is not a
single framework; it examines several evaluation frameworks
and illustrates how they could be practically used to support the
implementation of digital health interventions in various contexts
[37]. Having considered better-known evaluation frameworks,
it is worth noting that the ToC scope goes beyond evaluation
and covers planning, co-design, stakeholder engagement, and
the linkage of causal pathways to individual outcomes. We used
the ToC in this study to understand the problem as well as design
and evaluate the intervention. The ToC applies to the whole life
cycle of the intervention from the creation right through to the
evaluation.

Objectives
This study aimed to develop a ToC for the implementation of
EHRs for MCH delivery in LMICs. The ToC approach will
guide the entire transformation process from paper
documentation to EHRs in the study context.

Methods

Setting
The study was conducted at the Festac PHC in Lagos, Nigeria,
which has the highest number of physicians (7) and a wider
range of health personnel than any other public PHC in Lagos
State [40]. With the number of health care staff, the services
provided, and operation hours (24 hours, 7 days a week), Festac
PHC is a flagship public primary care center in Lagos State
known for its role in reducing maternal and child health
mortalities [41]. At this facility, patient information was written
on paper and maintained in folders and health registers, which
posed the issues of confidentiality, missing records, and
inefficiencies. As of August 2019, Festac PHC employed 36
health care professionals (HCPs), who served an estimated
population of 27,273 residents. There were additional HCPs at
the other 16 private clinics and hospitals that serve the same
population [40]. A research team funded by the Global
Challenges Research Fund [42] through the University of
Portsmouth worked with Festac PHC management to conduct
a feasibility study for EHR implementation at the health facility.
The health facility comprised 6 service departments, including
the mother and child center, health records, consultation, general
outpatient, laboratory, and pharmacy. At the mother and child
center, midwives deliver MCH services and keep patient records
in registers meant for services such as ANC, immunization,
delivery, and family planning. At the health records unit, health
information officers collect and maintain patient information
with the help of registers, folders, and filing cabinets. The
consultation unit consists of physicians (medical officers) who
diagnose patients and keep patients’clinical notes. In the general
outpatient department, community health workers (nurses)
observe and record patients’ vital signs. In the laboratory unit,
a laboratory scientist and technicians run tests and maintain test
data (specimen source, request, and results) of patients, aiding
physicians and midwives in making diagnostic decisions. The
pharmacy department consists of a lead pharmacist and
pharmacy technicians who order, maintain, and dispense
medicines. For this study, 14 participants (n=3, 21% physicians;
n=5, 36% midwives and nurses; and n=6, 43% health records
officers) were selected using purposive sampling because they
were directly involved with patient data at Festac PHC [43].
The study commenced by conducting a remote scoping study
in April 2019, which included readiness assessment (through
an open-ended interview with the Festac PHC contact person),
initial workflow analysis, and risk analysis through email or
Skype consultation with the management team of Festac PHC.

Design
We used the ToC approach throughout the life cycle of the
implementation to guide the pilot study and identify the
preconditions needed to realize the long-term goal of the study
[28,30]. Modifications were made from the initial version of
the ToC to the revised version to reflect the realities of the
implementation process. Because of the complex nature of EHR
implementation, we developed and revised ToC maps with the
relevant components. The research team developed the first
ToC map (Figure 1) as an actual ToC based on evidence from
literature, consultation with the local health information
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manager, and findings from previous EHR implementations.
The ToC map illustrated the problems we were trying to solve,
the keystakeholders, assumptions, inputs, intervention, outputs,
measurable effects, and wider benefits of the implementation
to realize the long-term change [44]. We developed a revised
ToC map (Figure 2) to accommodate changes during and after
the EHR implementation. These changes related to most of the
ToC components and are documented under each component
subheading in the Results section. We recognize that
implementers should pay attention to sociotechnical issues,
especially the interplay between patients’ realities and HCPs’
mental models and how these influence the EHR design and
are represented within the system [45,46].

In the context of this study, the ToC components use these
definitions:

• Long-term change: the desired goal the stakeholders want
to achieve

• Problems: the challenges facing the current paper-based
health records workflow as highlighted by the stakeholders

• Stakeholders: the people directly or indirectly involved or
affected by the success or failure of the EHR
implementation

• Assumptions: the beliefs that specify the underlying reasons
for the logical connections that exist among the ToC
elements. These beliefs are usually informed by research
evidence, clinical practice, and the environment in which
the change is taking place.

• Inputs: the activities or tasks carried out around the
intervention

• Interventions: the initiatives or programs embarked on to
influence the desired outcomes

• Outputs: the tangibles resulting from the inputs and the
intervention

• Measurable effects: the immediate indicators that can be
traced to the implementation process and are readily usable
for evaluation. These measures can be quantitative or
qualitative.

• Wider benefits: generalizable pointers that can guide the
stakeholders with regard to the chances of implementing
long-term change

The ToC approach is not immune to problems when used as an
evaluation tool. Problems of theorizing, measurement, testing,
and interpretation are not unusual [27]. To ensure rigor and
evaluate the maturity of the implementation, we adapted the
success criteria used in the studies by Deriel et al [12] and Fritz
et al [47] to supplement the ToC approach. Textbox 1 outlines
the categories considered for the success criteria of the
implementation and provides definitions for each category.

We engaged the health practitioners and decision-makers at
Festac PHC in designing, implementing, and evaluating the
EHR system. In particular, the health practitioners at Festac
PHC joined in developing the ToC versions, especially providing
practical experiences that shaped the theories underpinning the
ToC versions. This approach facilitated realistic interactions
with the stakeholders and gave a proper understanding of the
local context in which the study was conducted [48,49]. We
had stakeholder meetings involving the heads of department
and EHR champions at the PHC at the start and during the
implementation process. Each stakeholder discussed the issues
of the existing paper-based health record system and their
expectations and experiences of the new EHR system, which
validated the findings of the first ToC map. Subsequently, health
informatics experts validated the revised ToC findings at the
MedInfo 2019 conference in Lyon, France.

We developed a generic version of the ToC map (Figure 3) to
reflect a holistic framework as a toolkit for relevant stakeholders
who want to embark on this kind of intervention in similar
contexts beyond Lagos, Nigeria. The stakeholders can adapt it
for EHR implementations in primary care settings but need to
pay close attention to inherent characteristics in these
environments. Despite the nuances in different contexts, the
process and steps involved in the creation of the ToC map are
not to be ignored. Chen and Rossi [26] stressed the importance
of giving adequate attention to understanding the implementation
process and not being too concerned about whether the initiative
has yielded excellent results.
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Figure 1. An initial version of the theory of change for the scheduled electronic health record (EHR) implementation at Festac Primary Health Centre
(PHC). ANC: antenatal care; FHIR: Fast Healthcare Interoperability Resources; GCRF: Global Challenges Research Fund; OpenMRS: Open Medical
Records System; UoP: University of Portsmouth.

Figure 2. A revised version of the theory of change for electronic health record (EHR) implementation at Festac Primary Health Centre (PHC), including
findings from a workshop at the MedInfo 2019 conference. ANC: antenatal care; CIEL: Columbia International eHealth Laboratory; GCRF: Global
Challenges Research Fund; MCH: maternal and child health care; OpenMRS: Open Medical Records System; UoP: University of Portsmouth.
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Textbox 1. Categories for success criteria and their definitions for electronic health record implementation (adapted from Deriel et al [12] and Fritz et
al [47]).

Categories and definitions

• Ethics

• Regulatory and cultural issues such as health data security, privacy, and confidentiality

• Political

• Health policies and countrywide circumstances, including health care infrastructure, characteristics, ministries of health, and primary health
care boards

• Organizational

• Managerial circumstances within the organization itself, including human resources, skilled staff, or local buy-in; leadership and governance;
project management and commitment to implementation; and data use

• Financial

• Resources (including human and equipment) and funding

• Functionality

• System features and functions, including modules, data handling, forms, and reports

• Technical

• Infrastructure, software architecture, user interfaces, data standards, and privacy or security

• Training

• Skills training as well as computer literacy and educational background and user support

• Sustainability

• Transition from external stakeholder to local management across all categories, including financing

Figure 3. A generic version of the theory of change for electronic health record (EHR) implementation, without context-specific details. ANC: antenatal
care; MCH: maternal and child health care; PHC: primary health center.
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EHR System Selection
Open Medical Records System (OpenMRS) is an EHR software
program built for low-resource settings to improve health care
delivery with the help of a global community that supports the
software [50]. We selected OpenMRS as the EHR application
for the pilot implementation because it is an open-source
program and therefore freely available, which fits into the
funding realities of LMICs, including Nigeria. The OpenMRS
software source code can be modified and tailored to the needs
of the particular context in which it is being used. It is an
enterprise platform with flexible modules that have matured
over time and been implemented in similar settings with a
vibrant web-based community of developers and implementers
[51,52]. We adapted existing OpenMRS modules to facilitate
the identified use cases such as patient registration, outpatient
clinic, laboratory, and mother and child clinic to manage clinical
workflows. Moreover, we adapted UgandaEMR’s ANC and
immunization e-forms to save development time and initial
user-testing requirements.

Ethics Approval
This study obtained a favorable opinion from the University of
Portsmouth Faculty of Technology ethics committee
(TECH2019-T.A-01). Participation in the study was voluntary,
and participants were free to withdraw at any time without
giving any reason. The participants provided written consent

by completing a participant consent form. The study considered
the security, privacy, and confidentiality of patient records from
the outset. The paper health records were kept locked in a card
room at the PHC. Although the reception area is positioned
close to the card room, at busy times anyone could access the
room with malicious intentions to cart away or damage the paper
records. Hence, the EHR implementation took into account
secure access to the electronic records by creating user accounts
for relevant clinicians, ensuring that only users authorized by
the heads of department could access the system [4].

Results

Overview
In this section, we report the complete ToC life cycle (Figure
4) for this study commencing from idea conception to the
development of the initial ToC map and revised ToC map,
illustrating how we accomplished the EHR implementation
tasks at Festac PHC. At the same time, we hypothesize that
program designers and relevant stakeholders can adapt the
generic ToC map for EHR implementations in similar contexts.
Subsequently, we provide a detailed narrative of the long-term
change and identified preconditions from the ToC process. From
this process, we produced a summary of the key successes and
lessons learned alongside the study’s implications to evaluate
the process (Multimedia Appendix 1).

Figure 4. Complete theory of change (ToC) life cycle for electronic health record (EHR) implementation at Festac Primary Health Centre. M&E:
monitoring and evaluation; OpenMRS: Open Medical Records System.

ToC Life Cycle
Figure 4 illustrates the entire ToC process for the EHR
implementation and the key changes that occurred along the
way. The ToC process is important because it helps to identify
all the key stakeholders; for example, it helped to identify the

significance of having clinical stakeholders evaluate the initial
ToC. The conversations with the key stakeholders influenced
the revised version of the ToC. Moreover, the process helped
to identify problems early as well as the changes in direction
for the EHR implementation, saving time, and cost.
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Long-term Change
Initially, the desired goal of the study was to achieve improved
service delivery in primary care with the use of an EHR system.
The allied goals were digitization of patient records, continuity
of care, and improved patient outcomes. However, the
overarching goal was slightly modified to accommodate
practitioners’ assumptions. Hence, the long-term change is to
achieve improved MCH service delivery in primary care using
the EHR system. At Festac PHC, along with this long-term goal,
the goals are digitization of patient records, better continuity of
care for women using the ANC service, and improved handling
of children’s immunization records. We theorize, with the
generic ToC map, that the long-term goal is to improve MCH
service delivery with an optimized EHR system based on the
assumption that sustainability factors have been thought through,
and measures have been put in place to achieve this goal.

Assumptions
The initial ToC map served as the basis for the actual
implementation, with preliminary assumptions emanating from
the prior knowledge of the research team, the literature of
existing EHR implementations, and initial conversations with
the monitoring and evaluation officer and a medical records
officer. The initial assumptions included the following:

1. Paper medical records exist.
2. Prescriptions and scheduling of patient encounters are

carried out manually.
3. Funding is available for global challenges.
4. Funding application is successful.
5. PHC wants a digital health program and is willing to grant

approval.
6. Favorable ethics opinion is given by the University of

Portsmouth.
7. Funder releases funds for procurement of equipment.
8. Stakeholders care about EHRs and are open to change.
9. Practitioners give consent to be interviewed and observed

at the health facility.
10. EHR system is tested and deployed by the guiding team

and implementer.
11. Pilot EHR implementation is successful.
12. EHR system is sustainable.

After the actual EHR implementation, the initial ToC map was
revised to reflect the real changes encountered during the pilot
study; for example, priorities for the EHR system shifted from

scheduling and prescription to ANC and immunization. At the
time of developing the initial ToC map, the Festac PHC
stakeholders had identified the need for booking patient
appointments and producing prescriptions electronically with
the EHR system. However, after the face-to-face stakeholder
meeting at the health facility, the practitioners noted that e-forms
for ANC and immunization were their immediate needs for the
EHR system. Another change to the ToC revision was the shift
in networking design from the cloud to a local area network.
This shift was due to connectivity problems and a lack of
guarantees from the management regarding sustaining the
internet subscription payment. This is the dominant approach
to EHRs in LMICs because few of the smaller sites can
guarantee reliable internet connectivity for cloud-based use,
although certain LMICs do this well [14,53].

In addition, the revised ToC included findings from the research
workshop (MedInfo 2019 conference), where the EHR use
outcomes from the pilot study were presented. Global health
informatics experts offered advice at the workshop, during which
it was emphasized that data models are key to realizing effective
communication exchange across digital health systems by
adopting the appropriate interoperability standards for MCH,
well-known examples of which are Fast Healthcare
Interoperability Resources [54] and OpenEHR [55]. In addition,
the drivers for an interoperable EHR system differ between
LMICs and HICs; for example, LMICs focus mainly on
aggregate data from the health information system for disease
control, population health monitoring, and health policy and
planning. Funders use these aggregate data to drive health
financing and, in some cases, to fund EHR implementations.
However, HICs pay more attention to the quality of care,
continuity of care, and precision medicine. In addition, adequate
infrastructure and accountable funding were identified to be
key preconditions needed for a sustainable EHR implementation.
In sum, toolkits are important in shaping EHR implementations
for MCH services.

Although some assumptions stay the same, others were
modified. Textbox 2 illustrates these assumptions and how they
were generated.

For the improvement of MCH services to be achieved, it was
assumed that the EHR system was sustainable. The EHR system
needs to be used regularly to bring about the broader benefits
of its implementation.
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Textbox 2. Assumptions and their sources.

Assumptions and sources

• Antenatal care and immunization records are tracked manually

• Practitioners

• Items with their specifications and costs are listed in a spreadsheet

• Electronic health record implementation

• Arrangements are made with the relevant vendors

• Program designer

• Procured items are delivered in time to the health facility

• Electronic health record implementation

• Implementer and technicians possess the relevant skills for installing procured equipment

• Policy makers and program designer

• Stakeholders have flexible schedules

• Practitioners

• Staff give consent to participate in the electronic health record system evaluation

• Practitioners

• Stakeholders streamline requirements for electronic health record system

• Practitioners and program designer

• Implementer provides training and support

• Policy makers, practitioners, and program designer

• Electronic health record users key in patient data correctly

• Practitioners and program designer

• Workshop paper is accepted

• Program designer

• Questions relating to the electronic health record implementation are asked by workshop participants

• Health informatics experts and program designer

• Health informatics experts contribute to workshop questions

• Health informatics experts and program designer

• Staff are available to complete a feedback form

• Practitioners

• Electronic health record system is designed with the relevant system attributes

• Practitioners and program designer

• Hardware equipment and electronic health record system software remain intact and are maintained regularly

• Policy makers, practitioners, and program designer

• Clinicians are making use of electronic health records regularly for delivering health services to patients

• Practitioners and policy makers

• Stakeholders are learning from electronic health record use and data
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• Policy makers, practitioners, and program designer

• Clinicians are maintaining a supportive attitude toward digital transformation

• Policy makers, practitioners, and program designer

Wider Benefits
On the basis of the assumption that the pilot EHR
implementation is successful, there would be benefits accrued
to Festac PHC. These benefits include reduced costs of paper
processes, including expenses for stationery; efficient workflow
for the health care staff; easier clinical audit of patient records;
and readiness for a sustainable EHR system. The sustainability
of the EHR system will enable effective health information
exchange as the use of EHRs becomes widespread over time.

Measurable Effects
It was anticipated that the availability of the EHR system
alongside the surrounding outputs would result in the
completeness of health records, which could be measured against
the use of paper health records by the health practitioners.
Another potentially measurable effect concerns clinician time
spent using both paper and EHR systems [56]. During the
implementation, we found that clinicians spent more time using
both paper and electronic systems simultaneously, which

affected the EHR system’s complete records outcome. We
enrolled 14 clinicians to use the EHR system, and Figure 5
shows the rate of EHR system adoption and use for the study’s
first phase lasting for 5 months (June 2019 to October 2019)
from the time the system went live. A total of 2799 encounter
forms were completed on the EHR system; 1790 (63.95%)
patients were registered, with an equivalent number of patient
registration forms being completed. ANC and immunization
encounter forms (198/2799, 7.07% and 309/2799, 11.04%,
respectively) were completed. Vital signs (325/2799, 11.61%)
and visit notes (177/2799, 6.32%) were entered into the EHR
system. Of the 325 vital signs forms, 148 (45.5%) consultations
were not recorded using the visit notes because some physicians
only used paper notes. A major system downtime occurred from
October 3 to 29, 2019, which affected data entry. Longer-term
success factors, which are yet to be measured, are the realization
of funding sustainability and accountable leadership, as well as
health information exchange achieved between the EHR system
and other health IS.

Figure 5. Cumulative daily and weekly data entry with regard to patients registered on the electronic health record system.

Outputs
The study received a letter of approval for the implementation
from the local authority. This approval enabled the release of
funds and the travel of a research team member (TA) to the
health facility. The funder released the funds to procure the IT
equipment needed for the study. The interactions with the health
practitioners made it possible to obtain the requirements to
design and develop the intervention. After we incorporated the
active inputs of various stakeholders, the EHR system was ready
for use by the health practitioners. The outputs in the revised
ToC map were procured equipment, feedback from EHR use,
optimized EHR system functionality, EHR use outcomes
indicators for MCH, and data modeling for EHR system
interoperability. Other key outputs were the critical system
attributes (such as system stability, availability, and usability)
and full and incremental data backup of patient records to the
cloud. In the event of system damage, fire, flooding, or any
adverse incidents, the PHC can restore the records from the
backup.

Intervention
The main intervention for this study was the introduction of an
EHR system in primary care MCH services. Initially, problems
were perceived based on explicit and implicit assumptions about
paper medical records and prescriptions and scheduling of
patient encounters being carried out manually. After face-to-face
stakeholder meetings on site, the practitioners were of the
unanimous opinion that prescribing and scheduling inefficiencies
were not the priority issues; rather, priority should be accorded
to paper records handling, ANC and immunization-tracking
inefficiencies, and missing patient records. These problems
validated the introduction of the EHR intervention at Festac
PHC.

Stakeholders
The stakeholders are the research team (TA, PS, and HF),
funder, Festac PHC management (local authority), primary
health care board, health care practitioners, patients, and health
informatics experts. They carried out several activities at various
stages of the study. The research team made some informal
contacts with the local primary care facility authorities to
understand their problems and the desired long-term outcomes.
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The team reviewed existing studies to gain background
knowledge of previous EHR implementations in similar
contexts. After the review, the team developed the initial version
of the ToC map, informed by the explicit assumptions of the
practitioners and implicit assumptions gleaned from previous
implementations. The research team prepared a funding
application and sought approval for the pilot study. Both the
funder and the local health authority approved the pilot study.

Technical Implementation
There was a demonstration of the OpenMRS software during
the first stakeholder meeting. The activity helped the
practitioners to have a feel of how the intervention works. Before
this meeting, the contact person from the PHC had been testing
the demonstration version of the EHR system; they gave
feedback on what the PHC specifically wanted. The main
technical components of OpenMRS are the database (eg, data
concepts mapping, backups, and security) and the EHR software
(clinical modules and customizations). The research team
initially designed a cloud solution before the implementation
but changed to a local area network design because of poor
internet access at the health facility. Through a combination of
on-site and remote support, the research team contributed to
installing and configuring the software. The equipment included
laptops, a desktop PC (dedicated server), networking equipment
(16-port Ethernet switch, wireless router, Category 6 cables,
and RJ45 connectors), a power inverter (to provide power for
the server when electricity from the national grid and generator
set is unavailable), and a printer.

Discussion

Principal Findings
This study shows the value of the ToC process for robust
planning, analysis, and evaluation of EHR implementation
complexities, as well as challenging the assumptions of all
stakeholders. The process requires logical reasoning, effectively
engaging stakeholders in drawing implicit assumptions,
designing the preconditions, and mapping the ToC backward
from the long-term goal to inputs. Political factors play a role
in influencing what practitioners say about their beliefs or
theories regarding the desired change. The practitioners may
have concerns about the management’s disapproval of their
assumptions [33]; for example, we asked the HCPs about the
leadership style of their line managers and the effect it has on
their use of the EHR system. Some (7/14, 50%) of the HCPs
made positive comments about their managers. Although it is
possible to have all-positive feedback about leadership styles
in a typical work setting, the lack of concerns or negative
comments may suggest desirability bias or groupthink [57].

A ToC is useful in articulating assumptions made about a
program or intervention to achieve its desired results. We
generated assumptions from peer-reviewed evidence (documents
and prior research); experience and views of practitioners and
other stakeholders such as funder, government, and policy
makers; and logical reasoning (Textbox 2). However, it can be
problematic to test assumptions even when they are explicitly
stated. Problems such as measurement, generalization, and
validation usually plague program theory [27]. Our study

extensively evaluated the ToC-based implementation using
previously defined success criteria across multiple dimensions
of implementation and use (Multimedia Appendix 1) [12,47],
which is a methodological innovation in LMIC settings because
of the wide range of evaluation criteria. However, combinations
of some individual criteria have been used. Certain authors have
argued that theory-based evaluation such as the ToC is more a
methodology than a theory because it uses different research
methods (eg, randomized controlled trials, interviews, and
workshops) for its development [30,44]. Weiss [33] argues that
the ToC is an approach and a theory because it is built on
assumptions (beliefs), preconditions, inputs, and outputs, which
influence the way people behave.

Again, the ToC approach is particularly useful in capturing the
complexities of a program relating to its outcomes, outputs,
inputs, and activities to bring about long-term change by using
relevant interventions [58]. The research team engaged the
relevant stakeholders by asking them to share their experiences
and practices (explicit assumptions). We drew out the implicit
assumptions, which were not obvious to the practitioners and
experts, through interviews and a workshop (findings to be
published), and then modeled these assumptions and combined
them with evidence and logic, all of which were put together
in readiness to transfer into practice.

Reflections Based on Experiences of EHR
Implementations in Other LMICs
Despite Festac PHC being an early adopter of the EHR system
and the only one among public PHCs in Lagos State, the
management has not done enough in terms of funding the
infrastructure and ensuring its sustainability. The issue of
funding and other EHR implementation challenges are not
peculiar to the Nigerian context; rather, they are applicable to
different LMIC contexts [51,53]. Comparison evaluations of
EHR systems in LMICs were provided by 2 papers, published
in 2017 and 2018 (Multimedia Appendix 2 [51,53]). Although
there is anecdotal evidence of EHR implementations across
Nigeria, there is no known peer-reviewed evidence of OpenMRS
implementation in the country. As of June 2021, the OpenMRS
HIV Reference Implementation initiative funded by the Centers
for Disease Control and Prevention is supporting >1000 site
rollouts of OpenMRS in Nigeria as well as improvements in
the user interface, reporting, and other initiatives [59]. A recent
paper [60] tried to examine the impact of OpenMRS
implementations globally over a 15-year period, but no concrete
evidence on Nigeria was available, except for some brief
mentions. This study should help to address this gap, especially
where public primary care in Nigeria is concerned.

Multimedia Appendix 2 compares findings from OpenMRS
implementations in 3 LMICs (Nigeria, Sierra Leone, and
Kenya), inclusive of this study (Festac PHC in Nigeria).
Common findings across the 3 studies related to data collection,
staff training, and infrastructure. These studies showed that
EHR use results in clinical workflow efficiencies. At the same
time, the studies discussed the challenges encountered during
implementation, which centered mainly on inadequate
infrastructure, funding, dedicated IT support, and stakeholder
buy-in. A significant issue across the 3 EHR implementations
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is sustainability, and our Nigerian (Festac PHC) study used the
ToC approach to underscore this issue extensively. Despite their
successful completion, the implementations did not continue
beyond the first or second phase. Hence, stakeholders must pay
close attention to sustainability issues before embarking on EHR
implementations in LMICs.

Reflections Based on Experiences of EHR
Implementations in HICs
Policy makers and politicians in LMICs can learn from countries
that incentivized EHR adoption by providing implementation
funds to health facilities. A prime example is the United
Kingdom, where the EHR adoption rate in primary care,
particularly general practitioner (GP) practices, is nearly 100%
[61,62]. Among other factors, financial incentives from the
government have proven to be an effective impetus for EHR
implementation across GP practices. For many years, thought
leaders in the GP profession have collaborated with the
government to provide incentives for digitizing practices and
eliminating barriers. Hence, GPs were more willing to use EHRs
than hospital physicians, helping the former leverage the
successful health IT intervention [62]. However, despite the
successful EHR adoption rate by GP practices in the United
Kingdom, the system has its shortcomings: it sometimes fails
as patients show up at the community pharmacy expecting to
pick up their medications only to find that the electronic
prescription has not reflected in the pharmacy system. This issue
can often delay treatment for patients, especially on weekends
when GP practices are closed, and the pharmacy team chases
prescriptions. The GP’s on-call team can usually access the
system and fax the prescriptions to the pharmacy, but the
effectiveness of this process varies across the United Kingdom.

The US government program based upon the Health Information
Technology for Economic and Clinical Health Act of 2009
provides financial incentives to physician practices and hospitals
to foster digital health implementation and improve the quality
of care for patients. These incentives have since led to the
widespread adoption and meaningful use of EHR systems across
all levels of health care in the United States, with the resultant
digital health transformation and improved clinical outcomes
[63-65]. However, rapid implementation of existing EHR
systems has been associated with many challenges in workflow,
usability and physician stress or overload. The UK model of
adoption of primary care EHR systems may be better in terms
of a limited number of carefully vetted systems, low costs, and
robust interoperability with many hospitals; for example, in
West Yorkshire [66].

Reflections on Data Entry at Festac PHC
Inconsistencies in EHR data entry during patient encounters
occur because of several factors, including human,
organizational, and system factors. The willingness of clinical
staff to use the new system was lacking because of the
perception that the system would add to their existing workload,
reflecting the realities of data entry operations and the shortage
of health workers in LMICs [67]. Only a few HCPs were keen
on using the system. Hence, little or no data entry is completed
if the active HCPs are not on duty. Sometimes, the HCPs attend
staff verification exercises, leaving the EHR system in the hands

of casual staff who do not have permission to use it because of
clinical accountability requirements. Lack of leadership
motivation or incentive to use the system could prevent health
information officers, physicians, nurses, and midwives from
understanding the need to work on data entry. System downtime
happens occasionally; when this happens, there is no health IT
support technician on the ground to resolve the issue, and hence
the PHC relies on the implementer, who, although not
contractually obliged, may sometimes help out. To resolve
system issues, the PHC management could employ an IT support
technician on a full-time or part-time basis, but the management
should be keen and be ready to include the employment cost in
the clinic’s budget. In a recent review on the importance of
primary care records in LMICs, we found that there seems to
be a particular challenge with EHR data collection in primary
care organizations [68]; for example, MCH EHR data collection
was challenging because of local factors such as the level of
technology available for data entry at the point of childbirth.
Hence, this is a larger problem for people who run modest
primary care EHR systems in LMIC settings, a problem not
specific to Nigeria. This implementation study successfully
demonstrated improvements in MCH services data collection.
However, the lack of effective human, organizational, and
system support is responsible for inconsistent data entry in the
EHR system, leading to poor clinical benefits and inaccurate
reporting.

The ToC approach gave insights into the potential causes of the
breakdown of the system, such as the issues concerning regular
use and data entry by key staff, which allowed for provision of
additional planning and training. A simple cost-benefit approach
to framing the overall implementation process to determine the
likely gains (value) to staff, patients, health systems, and funders
would be helpful. It would be valuable to determine whether
these costs outweigh the challenges of learning to use the system
and the pain of working on data entry. In addition, the proposed
investment in infrastructure and support could be balanced by
the concrete benefits. The costs often fall on staff working on
data entry who do not benefit much from the outputs. Hence,
the combined effect of the utility of an application and ease of
use gives stronger predictability for actual use, which is
incorporated in the D&M model.

There is a growing interest in alternative data entry approaches,
including the “scribe” model (in US primary care) [69], natural
language processing–enabled data capture, and optical mark
recognition (OMR). These alternative approaches could address
the issue of clinicians’avoidance of using the EHR system. The
“scribe” model introduces a way of working where a human
scribe (a volunteer or health professional) manually enters the
applicable information such as observations, diagnosis, and test
results into the EHR during the patient visit as spoken aloud by
the physician or nurse [70]. However, this could affect clinical
data quality because the scribe might not be a suitably qualified
clinician and prone to making data entry errors, which, in turn,
could affect health outcomes. Natural language processing data
capture applications allow HCPs, especially physicians, to
capture structured data with unstructured dictation into the EHR
[71]. OMR is a nondictation, scanning method of data capture
where the OMR software processes paper clinical forms that
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have been scanned with a modest office scanner or low-cost
document camera [72]. This approach ensures that clinicians
who record clinical data on paper do not also have to enter the
data once or twice in other records. It requires stability of
systems, a person to oversee the scanning and data extraction,
and user confidence. It might develop as a model to overcome
a data entry backlog in the EHR system, increasing the value
for clinicians, particularly if recent improvements in optical
character recognition software can be shown to be effective in
interpreting structured handwriting.

Limitations
This study includes several limitations with regard to developing
the ToC. First, the research team was extensively involved in
developing and revising the ToC map, which may have
contributed to a social desirability bias. Second, the first author
(TA) mainly worked on the analysis of the ToC maps under the
guidance of the last author (PS) and the second author (HF).
We would have engaged the HCPs and stakeholders in the
analysis, but they were not well versed with the technicalities
of the ToC approach. Future studies will ensure that HCPs are
familiarized with the ToC analysis. The relevant stakeholders
were fully engaged in the clinical, data collection (interviews
and observations), and managerial aspects of the design.

Conclusions
This research presented the ToC as a rewarding approach to
framing dialogue with stakeholders. It functioned as a valuable

framework for planning an EHR implementation and the steps
needed to define the requirements and success factors, likelihood
of longer-term success, and evaluation metrics. For new
implementers, knowing how to structure this implementation
process could be very useful. Future health IT implementation
in primary care can adapt the ToC approach to their contexts
with necessary modifications based on inherent characteristics.
The pilot EHR implementation served as a small-scale
foundation that can support health information exchange and
as a digital health exemplar for other PHCs in Lagos State and
Nigeria. Other health care providers can learn from, and build
on, the implementation to support the delivery of MCH and
other health services. Furthermore, the pilot EHR system
represented a digital enabler that provides computable and
machine-readable health data, the necessary first step toward
more complex aspects such as interoperability, clinical decision
support, and a learning health system. Further work is needed
to extend the scope of the implementation to cover other public
PHCs. There is a need to secure more funds for additional
infrastructure alongside solid leadership to ensure sustainability
and scalability. In addition, it will be helpful to explore the
interoperability of health data across public PHCs by designing
a national health data model for an MCH services data set. The
model should be based on established data standards and an
examination of the preconditions and drivers for implementing
such a model and build on existing work on clinical decision
support for MCH services [73].
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D&M: DeLone and McLean
EHR: electronic health record
GP: general practitioner
HCP: health care professional
HIC: high-income country
IS: information systems
LMIC: low- and middle-income country
MCH: maternal and child health care
OMR: optical mark recognition
OpenMRS: Open Medical Records System
PHC: primary health center
ToC: theory of change
WHO: World Health Organization
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Abstract

Background: Electronic data capture (EDC) in academic health care organizations provides an opportunity for the management,
aggregation, and secondary use of research and clinical data. It is especially important in resource-constrained environments such
as the South African public health care sector, where paper records are still the main form of clinical record keeping.

Objective: The aim of this study was to describe the strategies followed by the University of the Witwatersrand Faculty of
Health Sciences (Wits FHS) during the period from 2013 to 2021 to overcome resistance to, and encourage the adoption of, the
REDCap (Research Electronic Data Capture; Vanderbilt University) system by academic and clinical staff. REDCap has found
wide use in varying domains, including clinical studies and research projects as well as administrative, financial, and human
resource applications. Given REDCap’s global footprint in >5000 institutions worldwide and potential for future growth, the
strategies followed by the Wits FHS to support users and encourage adoption may be of importance to others using the system,
particularly in resource-constrained settings.

Methods: The strategies to support users and encourage adoption included top-down organizational support; secure and reliable
application, hosting infrastructure, and systems administration; an enabling and accessible REDCap support team; regular hands-on
training workshops covering REDCap project setup and data collection instrument design techniques; annual local symposia to
promote networking and awareness of all the latest software features and best practices for using them; participation in REDCap
Consortium activities; and regular and ongoing mentorship from members of the Vanderbilt University Medical Center.
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Results: During the period from 2013 to 2021, the use of the REDCap EDC system by individuals at the Wits FHS increased,
respectively, from 129 active user accounts to 3447 active user accounts. The number of REDCap projects increased from 149
in 2013 to 12,865 in 2021. REDCap at Wits also supported various publications and research outputs, including journal articles
and postgraduate monographs. As of 2020, a total of 233 journal articles and 87 postgraduate monographs acknowledged the use
of the Wits REDCap system.

Conclusions: By providing reliable infrastructure and accessible support resources, we were able to successfully implement
and grow the REDCap EDC system at the Wits FHS and its associated academic medical centers. We believe that the increase
in the use of REDCap was driven by offering a dependable, secure service with a strong end-user training and support model.
This model may be applied by other academic and health care organizations in resource-constrained environments planning to
implement EDC technology.

(JMIR Med Inform 2022;10(8):e33402)   doi:10.2196/33402
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Introduction

Background

Challenges to Electronic Data Capture Implementation
in Health Care
Electronic data capture (EDC) and management is a vital part
of the administrative process in almost all industries, but despite
its many advantages, adoption in the health care research and
clinical service delivery domains has lagged behind other
industries [1-13]. Major obstacles include cost, lack of policy
at management level, implementation failure, and data security
concerns [1-7]. In addition, research information applications
developed specifically for one environment usually require
significant resources and support to function in another
environment because the technology, support, security, and
privacy needs are often different [5,8-10]. Many institutions in
sub-Saharan Africa and other low- and middle-income countries
lack the technical resources to support information systems for
health care research and clinical service delivery [11-13].
Moreover, power and network infrastructure may be unreliable
[11-13].

Even with the necessary organizational and infrastructure
support, the success of EDC software applications is not
guaranteed [4,5,14]. The lack of domain knowledge in
resource-constrained environments such as sub-Saharan Africa
has hampered the implementation of EDC technologies [11].
There is often a paucity of individuals with the necessary
clinical, academic, and IT skills required to support critical
health care data management systems [11]. Field-workers and
clinician scientists, although highly skilled and valued in their
respective domains, may not be well versed in technology for
the capture, storage, and transmission of health data [4-7].

Once infrastructure and skills-resourcing issues have been
overcome, familiarity with deeply ingrained systems and
processes at every level of the research enterprise is a natural
cause of resistance to change [1,4-7,15-18]. This includes, for
example, the replacement of hard-copy files with electronic data
collection instruments for clinical research informatics.
Strategies to obviate the resistance to implementation of new
technology include demonstrating trustworthiness and benefits

of the technology, while at the same time easing the transition
through access to appropriate training and support [1,5-7,16,17].

The State of EDC at the University of the Witwatersrand
Faculty of Health Sciences Before Research Electronic
Data Capture Adoption
The University of the Witwatersrand (Wits) is a
research-intensive university based in the metropolitan area of
Johannesburg, South Africa, an upper middle–income
environment [19]. The Wits Faculty of Health Sciences (FHS)
operates within a health care system weakened by sociopolitical
and historical issues and strained by an ongoing quadruple
burden of disease [12,20,21]. Setting up systems to support
academics in their clinical and research activities is subject to
budget limitations and constrained by the geographical
distribution of the approximately 2500 health sciences staff and
7000 students, spread over 3 discrete academic teaching
platforms and many field sites in both urban and rural regions
[22,23].

Before the implementation of the centrally supported EDC
system at the University of the Witwatersrand Faculty of Health
Sciences (Wits FHS) and the associated research entities in
2012, electronic data management services were fragmentated,
inconsistent, and variable. Individuals and research entities were
using local devices and legacy systems familiar to them or
choosing new products to implement based only on their own
needs, abilities, and budget. This fragmentation was not
desirable from an organizational perspective because the data
sets were isolated, the financial and human resources used for
procurement and management were diluted, and the security
and privacy of data could not be guaranteed [5,9,10].

During the same period, most of the patient health record data
being collected at Wits FHS–related medical centers were
paper-based. Clinical staff were burdened by service delivery
demands [20] and restricted in the time they had available for
research or data capture [24]. Where electronic research data
collection instruments were used, they ranged from simple
spreadsheet programs such as Microsoft Excel to enterprise-wide
data management systems. At the time, there were no preferred
instruments within the Wits FHS, and the safety, security, and
privacy of the data were at the discretion of individual
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researchers. There was little standardization of metadata or
clinical coding systems, and, as a result, interoperability and
secondary analysis of data were rare. This affected patient care
and limited the dissemination of important knowledge gained
in treating various infectious diseases and diseases of lifestyle
that continue to burden the South African health care system
[12,20,21].

Prior Work: Implementation of Research Electronic
Data Capture at Wits FHS (2012-2013)
In 2012, as part of a process to strengthen research support,
training, and outputs [8,24], the Wits FHS implemented
REDCap (Research Electronic Data Capture; Vanderbilt
University), a web-based EDC tool created by informaticists at
the Vanderbilt University Medical Center (VUMC) in Nashville,
Tennessee [8,25].

REDCap allows users to build electronic data collection
instruments for a wide range of data types and environments.
It is specifically geared toward research studies and operational
data and toward enabling the capture and management of data
in a manner that is compliant with 21 Code of Federal
Regulations Part 11, the Federal Information Security
Management Act, the Health Insurance Portability and
Accountability Act, and General Data Protection Regulation
[14,25]. Each project will have its own procedures for validation
and quality control, and REDCap has many features available
to end users to support this, such as granular user rights, a
detailed audit log, and data quality control tools

One of the strategic goals of the Wits FHS was to unify and
systematize health care and research data collection within the
institution [8]. REDCap was an attractive option because of its
freeware licensing model for noncommercial use and large
international support community [14,25]. The decision to
implement REDCap was also supported by an existing diaspora
relationship between the Wits FHS and the VUMC [26].

The strategies used to install REDCap and overcome the initial
implementation barriers within the Wits FHS have been
presented previously [8]. The crucial factors highlighted in the
paper were support from the Wits FHS management and the
allocation of a modest budget for hosting infrastructure, systems
administration, and recruitment of personnel from existing staff
for end-user support. Support staff were initially allocated part
time on a sliding scale of need, which allowed dedicated
end-user support while limiting costs. The hardware costs were
limited to servers and security certificates, which were housed
at existing university data centers. Four months after the
implementation, the number of REDCap users at the Wits FHS
was 81, and after 12 months it had increased to 140. The total
costs to provide a functional REDCap platform for the first year
was <US $9000 [8].

Goal of This Study
EDC implementation projects often fail after the initial
deployment because of resistance from, and lack of adoption
by, end users, even when leadership, infrastructure, and human
resources are mobilized successfully [1,2,5,9,13,18]. The Wits
FHS used various strategies to engage and support end users to
overcome these challenges, and the period from 2013 to 2021

was characterized by sustained—sometimes
exponential—growth in the demand for REDCap accounts and
support services. The aim of this paper was to discuss the
methods that helped to overcome barriers to adoption because
we believe that these strategies may be applied in other low- to
middle-income and resource-constrained environments where
EDC implementation and adoption are subject to similar
challenges. We measured the growth in REDCap use by
increases in user accounts, projects, and publication metrics at
the Wits FHS. The key success factors identified and discussed
in detail in this paper are as follows:

• Top-down organizational support for EDC
• A proactive response and support team that can train and

support users
• Continual development of the support team through

mentoring and participation in national and international
activities

• Maintaining visibility through promotion campaigns,
networking events, and academic symposia

• Collaborating with, and learning from, established
international partners

• Secure and reliable hosting

Methods

Adoption-Support Strategies

Hosting and Systems Administration
To gain the trust of users, the reliability of the Wits REDCap
system was paramount. The system was deployed on 2 virtual
machines—one for the MySQL database and a second one for
the REDCap application—on a reliable Intel server with 64 GB
of RAM and considerable disk space. The Ubuntu long-term
support operating system version current at the time was used
for both virtual host and physical machines. New hardware was
introduced every 3 to 4 years; the cost implications when
amortized over the life span of the machine were small. Older,
retired hardware was recycled for less-critical work. Multiple
levels of backup were used. Daily backups of the database and
uploaded files were kept on a separate machine. Three times a
week copies of the virtual machine images were created and
stored on a server on a different campus. No major hardware
failures occurred during this period, but tests were performed
to emulate recovery using the backed-up data to ensure that this
would be possible in the event that the primary hardware failed.
Nagios software (Nagios Enterprises, LLC) [27] was used to
monitor system health and stability. The electricity supply in
South Africa was periodically unreliable; however, the server
was placed in the university’s data center, with multiple backup
power redundancies and physical security infrastructure. The
REDCap application itself proved to be highly reliable, with
regular bug fixes, security, and functionality updates released
by the VUMC developers. The human resource allocation
dedicated to system administration from 2013 to 2019 was equal
to approximately 0.05 full-time equivalents (FTEs).

In 2019, the load created by concurrent users and processes
made it necessary to move from magnetic to solid state drives.
From 2020 onward, infrastructure and systems administration
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demands outgrew the existing resources. The Wits FHS REDCap
system was moved from the Wits data center to a leading South
African cloud hosting provider (Teraco) [28]. Additional
systems administration capacity from the Wits Health
Consortium [29], a wholly owned subsidiary of Wits, was
brought in to manage the cloud hosting environment, with
continued guidance and leadership from the original systems
administrator. The Wits Health Consortium infrastructure team
uses Arcserve [30] for daily snapshots of the virtual
environment, with a separate backup every 1 to 3 days on a
removable storage device for offsite storage. At the time of
writing, the time spent on systems administration totaled
approximately 0.1 FTE.

End-User Support
The second crucial component of the Wits FHS implementation
strategy was a dedicated go-to individual to support end users,
known as the REDCap administrator [8]. One of the most
effective types of individuals to place in this role is referred to
in the literature as a “technology bridger” [2,9,31]. A bridger
is an early adopter who has a deep understanding of the
technology being implemented as well as the soft skills to teach
and support others at their organization.

The implementation of technology is a form of change
management, and by approaching end-user support with an

open-door policy and a culture of psychological safety (“a belief
that one will not be punished or humiliated for speaking up with
ideas, questions, concerns, or mistakes” [32]), the anxiety
concerning, and resistance to, change exhibited by end users is
reduced [personal communication by Wits REDCap
administrator, July 2021].

By encouraging one-on-one consultations with the REDCap
administrator in a relaxed and informal setting, new users felt
safe to discuss their concerns or expose where they might have
a lack of understanding. All email support and one-on-one
consultations were provided at no cost. Over time, the need for
additional project design and management services for larger
and more complex projects became clear. To protect the
REDCap administrator from users wanting to make use of the
design service, rather than engaging with the administrator, to
learn how to use the system on their own, an hourly fee was
implemented for design services.

As the number of end users grew, so did the support and
administrative needs (Textbox 1). During the period 2013-2014,
a part-time REDCap administrator (0.5 FTE) was adequate.
This was increased to 1.0 FTE from 2014, and a second full-time
administrator was added in 2016. Additional part-time REDCap
administrators were added in 2021 in response to a large increase
in system use, currently totaling approximately 2.2 FTEs on
average.

Textbox 1. Number of REDCap (Research Electronic Data Capture) application administrator full-time equivalents (FTEs) per year.

REDCap application administrator FTEs

• 2013: 0.5

• 2014: 1.0

• 2015: 1.0

• 2016: 2.0

• 2017: 2.0

• 2018: 2.0

• 2019: 2.0

• 2020: 2.0

• 2021: 2.2

Hands-on REDCap Training
The REDCap application has a number of built-in tutorial videos
and extensive Help and Frequently Asked Questions
documentation. However, our experience showed that in addition
to one-on-one consultations, the majority of late-adopting end
users benefited from in-person formal participative instruction
in the use of REDCap design tools. A series of sessions were
offered in 2013, the content and format of which informed the
creation of formal structured REDCap training workshops in
2014 and thereafter. Although the workshops were well
attended, there was a significant proportion of attendees who
had made reservations but did not attend. This prompted the
introduction of a registration fee, which improved compliance
and provided funds to contribute to the sustainability of the
REDCap support team.

Initially, a basic introduction-to-REDCap workshop was offered,
but as users became more skilled, a more advanced workshop
was added in 2015. Good design practices and standardization
of metadata were encouraged, and the workshops also
established an interpersonal relationship between the end users
and the REDCap administration team. A few groups, both within
and external to the Wits FHS, requested on-demand REDCap
training programs similar in content to that of the workshops.
The number of REDCap training workshops and attendees are
summarized in Table 1 and Table 2, respectively.

Each year, approximately 5 introductory and 4 advanced
workshops were delivered, with an average of 19 and 8 attendees
at each type of workshop, respectively. Step-by-step workshop
manuals were also compiled iteratively over time and provided
to attendees from 2017 onward. A total of 977 individuals
attended all workshops between 2014 and 2020: 721 (73.8%)
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were Wits FHS–affiliated, whereas 256 (26.2%) were from
external organizations. Fewer workshops were offered in
2018-2019 because of staffing constraints. From March 2020
onward, workshops were shifted to an internet-based platform
(Zoom; Zoom Video Communications, Inc) because of
COVID-19 restrictions on in-person gatherings. The availability

of web-based teaching resulted in an increase in on-demand
workshops—5 were held in 2020 compared with between 1 and
3 in previous years. We attribute this increase in part to the
wider access inherent in the web-based format and partly
because of the increased number of new users in 2020.

Table 1. The number of REDCap (Research Electronic Data Capture) workshops from 2014 to 2020, as recorded by web-based booking forms and
attendance registers.

2020201920182017201620152014Workshops

5557662Introductory

3435320Advanceda

5031120On-demand

139111310102Total

aBefore 2019, these workshops were referred to as intermediate hands-on REDCap workshops. A significant proportion of novice users attempted the
intermediate sessions and found the content and pace of the intermediate session to be beyond their capacity. We therefore changed the name to advanced
hands-on REDCap workshops and set up entry requirements in 2019 to emphasize that attendees had to have mastered the basics on their own or attended
an introductory session before attempting the advanced one.

Table 2. The number of REDCap (Research Electronic Data Capture) attendees from 2014 to 2020, as recorded by web-based booking forms and
attendance registers.

2020201920182017201620152014Attendees

1089411311016710821Wits FHSa

4316258045389External

15111013819021214630Total

aWits FHS: University of the Witwatersrand Faculty of Health Sciences.

REDCap Consortium Participation

Overview

The REDCap Consortium is a community of REDCap
administrative and technical support staff from the academic,
nonprofit, and government institutions that have adopted
REDCap [14]. The REDCap Consortium represents a
professional home for many of the local REDCap research
informatics leaders, and it is a forum for enabling teams to share
ideas, problems, and solutions related to the innovative use of
REDCap [14]. Feedback and communication with the local
administrators participating in the REDCap Consortium is a
vital component of how REDCap program leaders understand
unmet needs, socialize concepts for new features, and eventually
prioritize new development. The voluntary participation in the
REDCap Consortium is a very valuable investment for
organizations [14,33]. Membership of the consortium gives
partner organizations’REDCap administrators access to various
networking and information-sharing platforms, of which there
are three main types: (1) consortium calls, (2) conferences and
symposia, and (3) the REDCap Community forum. Between
late 2013 and April 2020, the number of REDCap Consortium
members from Africa and South Africa grew from 26 and 8,
respectively, to 261 and 175, respectively [8,34].

REDCap Consortium Calls

The REDCap software development team at the VUMC hosts
a weekly technical call, a forum to share news and updates and
generally bring the REDCap developer and administrator

community up to date with the latest REDCap features. Since
2016, the VUMC has also hosted 2 Eastern Hemisphere Partner
consortium calls at times that made them accessible to the Africa
and Europe as well as Australia, New Zealand, and Japan
regions. Various subcommittees have also been formed within
the REDCap Consortium, either based on common interest
(software validation or development of training materials) or
on shared geographical location and language (Hispanophone
or Francophone committees). Some of these subcommittees
also host regular calls relating to their specific domains. A
locally hosted call for the African region was added in 2018
through a collaboration between the REDCap administrator of
the Pan-African Bioinformatics Network for Human Heredity
and Health in Africa, based at the University of Cape Town,
and the Wits REDCap team. Participation in these calls supports
and develops REDCap administrators by keeping them up to
date with the latest developments, enabling networking and
exchange of ideas, as well as giving them a platform to connect
directly with the REDCap software development team at the
VUMC.

Conferences and Symposia

The annual REDCap conference (REDCapCon) is a forum for
REDCap administrators from different countries, institutions,
and environments to meet, share experiences, and create a
support network. The opportunity to interact with international
members forms the basis of a collective resource for information
dissemination and problem solving within the global REDCap
Community. Participation in the annual REDCapCon has proved
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very valuable in terms of the opportunity to attend and present
our work. A representative from Wits FHS has attended the
annual REDCapCon since 2015. However, many sub-Saharan
Africa–based REDCap administrators do not have a budget to
travel to North America for the annual REDCapCon. It became
apparent that an African REDCapCon would add value to the
African consortium partners. Wits hosted the first REDCap
Africa Day in Johannesburg in 2016 as an adjunct to the FHS
research day, followed by 3 more REDCap Africa symposia in
2017, 2019, and 2020 (Table 3). Each symposium has been
attended by one or more members of the VUMC REDCap team.
The REDCap Africa event encourages attendance by regional
and international REDCap administrators as well as end users,
as opposed to the REDCapCon, where only administrators
attend. The REDCap Africa symposia agendas were a mixture
of technical presentations and use cases, with plenary sessions
presented by local academics as well as VUMC visitors.
Delegates included local and regional faculty members, research
institute employees, and students.

The novelty of the first REDCap Africa symposium drew large
numbers of attendees (Table 3), including a number of casual
attendees from the Wits FHS who were not REDCap users but
nonetheless wanted to learn more about REDCap, the EDC
strategy of the Wits FHS, and the relationship with the VUMC.
In subsequent years, the number of casual attendees decreased
and was made up of REDCap administrators or highly engaged
power users. The cost of intra-Africa travel is high, and the
number of attendees from the African region who were able to
attend in person remained low. In 2020, because of COVID-19
restrictions, REDCap Africa Day was hosted using Zoom, and
attendance was significantly higher with more international
delegates than at any previous event. In October 2021, again
because of the ongoing COVID-19 pandemic, we organized
another Zoom-based installment of REDCap Africa Day (we
have institutional review board clearance to report data up to
September 30, 2021; hence, we cannot report the actual number
of attendees), but future REDCap Africa symposia will explore
combined in-person and livestreaming as well as travel bursaries
to encourage regional participation.

Table 3. The number of delegates to the REDCap (Research Electronic Data Capture) Africa symposia per year.

2020201920172016

42274069Wits FHSa affiliated delegates

37192830Local (SAb) delegates

31426International delegates

1105070105Total number of delegates

aWits FHS: University of the Witwatersrand Faculty of Health Sciences.
bSA: South Africa.

REDCap Community Forum

The REDCap Community is a web-based platform where the
administrative and IT support staff of a consortium partner
institution can access software downloads, extensive technical
documentation, a question-and-answer forum, consortium
announcements, committee activities, events, and more [35].
The REDCap Community website provides a forum for
interaction on, and dialogue about, REDCap-related topics with
REDCap administrators around the globe, and it is an essential
resource for the development of an institution’s capacity to host
and support REDCap. The Wits FHS REDCap administrators
have received technical advice or otherwise benefited from
discussions on the REDCap Community forum, while also
enjoying the networking experience and the sense of community
gained by interacting with peers from other institutions.

VUMC Relationship and Support
The development of clinical research informatics capacity and
health care IT skills are particularly important in
resource-constrained settings such as sub-Saharan Africa, and
the Wits-VUMC partnership has contributed to the capacitation
process at the Wits FHS. Initially, the relationship between Wits
and the VUMC grew from an alumni diaspora program initiated
in 2010 [36]; it later expanded through bilateral visits by
academic staff [26], custom REDCap development projects,
joint grant applications, and mentorship. New REDCap

Consortium members in resource-constrained environments
may benefit from leveraging existing diaspora linkages or from
initiating new mentorship and capacity-development
collaborations with institutions, such as the VUMC, that have
mature research informatics divisions.

Measurement of System Use and Growth

Overview
REDCap system use is reported in 2 main ways: the number of
users and the number of projects. The number of users and
projects on any REDCap system is available on the application’s
administration web page called the Control Center. The Wits
FHS REDCap administrator has a monthly record of several
use metrics since system installation in August 2012. Other
metrics were determined retrospectively by running MySQL
queries on the REDCap database logs with the help of a
REDCap external module named MySQL Simple Admin [37].
These queries were used to identify and enumerate project- or
user account–creation events. The descriptive system-use metrics
that we report on are as follows:

1. Total number of user accounts
2. Number of user accounts that were active each year
3. Annual increase or decline in number of active user

accounts
4. Total number of practice and nonpractice projects
5. Project-purpose attribute of each nonpractice project
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User Accounts
A REDCap user account allows an individual user to access
their own private repository of projects and data. The REDCap
Control Center displays various metrics regarding accounts; for
example, the total number of user accounts, the number of
accounts that were active in a given period, and the number of
accounts that were suspended because of inactivity. Activity is
defined as logging in and performing an action on REDCap. At
the Wits FHS, the period of inactivity that leads to suspension
is 180 days (this may differ from institution to institution based
on policy). We used a combination of Control Center statistics
and MySQL Simple Admin queries to report the total number
of user accounts on the Wits FHS REDCap system per year as
well as the number of accounts that were active in a given year.
The measurement is taken on the first day of September each
year.

In addition, the growth and decline in the number of active user
accounts were determined by taking the number of active users
for a given year and subtracting the number of active users from
the previous year.

Projects
A project in REDCap refers to a set of connected electronic
data collection screens and records that are related to a specific
purpose.

When creating a project, end users are required to allocate one
of five possible project purposes, namely practice, research,
quality improvement, operational support, or other. The Control
Center report usually excludes practice projects from the total
projects metric, but we performed a query using MySQL Simple
Admin to retrieve the number of practice projects as well, and
we report these together with the total nonpractice projects. We
believe that practice projects are an important metric of how
comfortable users are to experiment and explore the system,
something which is actively encouraged by our REDCap
administrators during one-on-one or group training sessions.

Furthermore, we performed an annual breakdown of the
nonpractice projects by purpose, and report the percentage of

projects in the categories of research, quality improvement,
operational support and other.

Measurement of System-Related Research Outputs
One way to measure the impact of REDCap on the Wits FHS
is by reviewing research outputs such as journal articles and
postgraduate theses. We performed a bibliometric survey to
determine the number of research outputs from Wits
FHS–affiliated authors that relied on the use of Wits FHS
REDCap for EDC or data management and report the number
of outputs per year as well as the subject domains across all the
outputs for the period from 2013 to 2020. REDCap has a built-in
publication-matching tool that will review PubMed databases
for authors and affiliations that match those of REDCap users
or project principal investigators. We evaluated the list of
potential matches generated within REDCap and only included
articles and monographs in our results if they mentioned using
Wits FHS REDCap as the data collection instrument in the
methods or acknowledgments sections. In cases where no system
was mentioned by name, we contacted the authors through email
to request clarification and only included the output if authors
confirmed in writing that Wits FHS REDCap was used.

Ethics Approval
Permission to perform the research was obtained from the Wits
Department of Surgery postgraduate protocol committee, the
Wits Human Research Ethics Committee (M210551), and the
Wits University Registrar.

Results

User Accounts
There was a sustained—and at times exponential—increase in
the number of user accounts from 139 total and 129 active
accounts in 2013 to 7128 total and 3447 active accounts in 2021
(Figure 1).

The number of active users has increased 25-fold in 8 years;
however, the magnitude of the growth was variable (Figure 2).
Except for the 2016 and 2018-2019 periods, annual growth
exceeded 25%.
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Figure 1. User account statistics for the University of the Witwatersrand Faculty of Health Sciences REDCap (Research Electronic Data Capture)
system from September 2013 to September 2021. The total number of accounts as well as the active cohort is shown for each year.

Figure 2. The increase in the number of active REDCap (Research Electronic Data Capture) users at the University of the Witwatersrand Faculty of
Health Sciences from 2013 to 2021. The values were obtained by taking the number of active users in a given year and subtracting the number of active
users recorded for the previous year.

Projects
The total number of projects on the Wits REDCap platform
increased significantly from 149 in September 2013 to 12,865
in September 2021 (Figure 3). The number of nonpractice
projects increased from 97 in September 2013 to 7038 in
September 2021 and accounted for 54.71% (7038/12,865) of
the total number of projects in 2021.

Of the 7038 nonpractice projects on the Wits REDCap system
in September 2021, the majority (n=3952, 56.15%) were for
research purposes (Table 4), and the remaining (n=3086,
43.85%) were dedicated to nonresearch purposes (Table 4).

The majority of the Wits REDCap nonresearch projects in 2021
were allocated as operational support (1850/3086, 59.95%),
whereas quality improvement and other represented a minority
(705/3086, 22.84%, and 531/3086, 17.21%, respectively).

From Table 4, it can be seen that the operational support
category has grown to represent a larger share of the total
projects every year (from 10/97, 10%, in 2013 to 1850/7038,
26.29%, in 2021), whereas the research, quality improvement,
and other categories have all declined as a percentage of the
total.
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Figure 3. REDCap (Research Electronic Data Capture) projects on the University of the Witwatersrand Faculty of Health Sciences system per annum
from September 2013 to September 2021.

Table 4. The number of nonpractice projects on the University of the Witwatersrand Faculty of Health Sciences REDCap (Research Electronic Data
Capture) system from September 2013 to September 2021, categorized by purpose.

Other, n (%)Quality improvement, n (%)Operational support, n (%)Research, n (%)

9 (9.28)16 (16.5)10 (10.31)62 (63.92)2013 (n=97)

21 (6.91)38 (12.5)36 (11.84)209 (68.75)2014 (n=304)

64 (9.37)88 (12.88)79 (11.57)452 (66.18)2015 (n=683)

101 (8.83)116 (10.14)170 (14.86)757 (66.17)2016 (n=1144)

132 (7.14)169 (9.15)324 (17.53)1223 (66.18)2017 (n=1848)

253 (8.57)265 (8.97)593 (20.08)1842 (62.38)2018 (n=2953)

312 (7.58)392 (9.53)887 (21.56)2523 (61.33)2019 (n=4114)

415 (7.55)558 (10.16)1376 (25.05)3145 (57.24)2020 (n=5494)

531 (7.54)705 (10.02)1850 (26.29)3952 (56.15)2021 (n=7038)

Wits REDCap Publication Metrics
In total, 233 journal articles and 87 postgraduate research
monographs acknowledging the use of the Wits FHS REDCap
system were published between 2013 and 2020. As shown in
Figure 4, the number of articles increased over time as more
users adopted the system and as projects reached maturity and
results were disseminated. The year 2020 saw a sharp decrease

in postgraduate monographs that cite the Wits FHS REDCap
system. This may be due to a delay before a thesis or dissertation
becomes available on the institutional repository. Additional
delays in postgraduate submissions could be a result of strict
COVID-19 shutdowns in South Africa.

A visualization of the research areas of the journal articles also
illustrates the diversity of scientific disciplines on which
REDCap at the Wits FHS had an impact (Figure 5).

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e33402 | p.176https://medinform.jmir.org/2022/8/e33402
(page number not for citation purposes)

Maré et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. The number of research outputs linked to use of the University of the Witwatersrand Faculty of Health Sciences REDCap (Research Electronic
Data Capture) system, grouped by publication year. Postgraduate monographs include PhD and master’s research works. Certain data included herein
are derived from Clarivate Web of Science (copyright Clarivate 2021; all rights reserved).

Figure 5. Treemap visualization showing the Witwatersrand Faculty of Health Sciences publications between 2013 and 2020 that were supported by
REDCap (Research Electronic Data Capture), categorized by research area. This graph represents the top 15 out of 50 research areas by frequency of
occurrence. Certain data included herein are derived from Clarivate Web of Science (copyright Clarivate 2021; all rights reserved).
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Discussion

Principal Findings
During the period 2012-2013, the Wits FHS implemented the
REDCap EDC system to support both research and clinical
service delivery data management needs [8]. REDCap provides
researchers with the means to design and develop EDC tools
that conform with international best practices for the safety,
security, and privacy of clinical data. REDCap is licensed by
Vanderbilt University at no charge to government, academic,
and nonprofit organizations for use in noncommercial academic
and research contexts [14,25]. By removing financial burden
and providing tools and support channels that empower local
research informatics leaders to serve the local research
enterprise, the REDCap platform fills a critical gap in most
research organizations [14,25].

During the period from 2013 to 2021, use of the REDCap EDC
system increased steadily at the Wits FHS, as evidenced by the
growth of users, projects, and publications.

The number of active Wits FHS REDCap users increased from
129 in 2013 to 3447 in 2021, which is a 25-fold increase. Each
year saw more active users than the preceding year, and with
the exception of 2016, 2018, and 2019, the annual increase in
the number of users was larger every year. Although our records
do not contain an explanation for the slower growth in 2016,
the 2018-2019 period saw fewer hands-on workshops being
offered because of the senior REDCap administrator being on
extended leave. In 2020 and 2021, the annual increase was
1.5-fold and 2-fold higher, respectively, than in any previous
year. Two factors may have contributed to the 2020-2021 surge
in active users: first, the COVID-19 pandemic drove the
adoption of web-based instruments that could be accessed by
teams working remotely, and second, the Protection of Personal
Information Act (POPIA) was introduced in South Africa in
2020 and enforced after July 2021 [38]. As part of POPIA
requirements, organizations that process personal information
were required to use secure, auditable applications, and REDCap
was one of only a few products offered by our institution that
were compatible with POPIA requirements.

The total Wits FHS REDCap projects numbered 149 in 2013
and 12,865 in 2021. Of the 12,865 projects in 2021, a total of
5827 (45.29%) projects were created for practice purposes, and
7038 (54.71%) projects were for nonpractice purposes. The
ratio of practice to nonpractice projects has remained remarkably
stable at approximately 45% over time. Practice projects are
created during the formal hands-on training workshops offered
by the Wits FHS, and the use of practice projects to test design
ideas and prototype data collection instruments are encouraged

by the Wits FHS REDCap administrators during one-on-one
consultations. The REDCap application developers release
updated features on an almost monthly basis, meaning that even
experienced users might resort to creating practice projects from
time to time to test out new functionality. A deeper analysis of
user behavior may be needed to determine conclusively the
reason for the observed stability of the ratio of practice to
nonpractice projects.

Of the 7038 nonpractice projects on the Wits REDCap system
in September 2021, the majority were for research purposes
(n=3952, 56.15%; Table 4), whereas the remaining (n=3086,
43.85%) projects were dedicated to nonresearch purposes (Table
4). This reflects the diversity of the uses of REDCap in the Wits
environment: as a clinical health record and a staff rostering
and management tool, as well as in a multitude of
spreadsheet-type administrative processes, in addition to
research. Further innovative off-label uses of REDCap appear
in the literature [39-42].

During the period from 2013 to 2020, a total of 233 papers and
87 postgraduate monographs that acknowledge the use of Wits
FHS REDCap were published. The increase in research outputs
occurred during a time when the Wits FHS research and
postgraduate support office used several strategies to increase
research and publication rates [24], and REDCap was one of
the contributing factors to the observed rise in publication
metrics of Wits FHS staff and students.

EDC-Support Strategies in a Resource-Constrained
Environment
The growth in the use of REDCap at Wits FHS was driven in
large part by the trust generated by offering a reliable, secure
service and a strong end-user training and support model
(Textbox 2). A critical success factor is that hosting and server
infrastructure was supported by a highly experienced systems
administrator who ensured that appropriate security measures
and disaster recovery plans were in place. Additional storage
and computing capacity was added as needed. It was important
to respond to performance problems when incremental upgrades
were no longer sufficient. End users were supported by a
dedicated REDCap administrator available through an email
helpdesk, one-on-one consultations, formal training workshops,
and annual symposia. The support team size was expanded over
time to meet the increase in demand (REDCap administrator or
administrators: from 0.5 FTEs in 2013 to 2.2 FTEs in 2021 and
systems administrator or administrators: from 0.05 FTEs in
2013 to 0.1 FTEs in 2021). The capacity of the support staff
was improved through mentorship, professional development,
and participation in regional and international REDCap
Consortium activities.
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Textbox 2. Summary of support strategies for electronic data capture (EDC) adoption at the University of the Witwatersrand Faculty of Health Sciences.

Support strategy and observations and effects

• Top-down organizational support

• Official endorsement from management ensures that an EDC system receives adequate resources for infrastructure and staff and signals
institutional commitment to potential end users.

• Secure and reliable application, hosting infrastructure, and systems administration

• Prioritizing reliability and security of the EDC system builds trust among users. In resource-constrained settings, power, network, and
information infrastructure is often unreliable, and users fear losing their data.

• An enabling and accessible REDCap (Research Electronic Data Capture) support team

• The availability of a person or team acting as technology bridgers [31] reduces anxiety and resistance associated with technology adoption.

• Regular hands-on training workshops

• Structured practical training opportunities capacitate new users with an EDC system and serve as a mechanism to disseminate knowledge
and best practices.

• Annual conferences or symposia for end users

• Regular academic events that promote the correct use of features and demonstrate the benefits of an EDC system attract new users while
keeping existing users informed and engaged.

• Participation in international REDCap Consortium activities

• REDCap administrators’ knowledge and abilities are developed through interaction with peers from other international institutions.

• Mentorship- and capacity-development relationships with established organizations

• Institutions that do not have established clinical research informatics departments or capacity benefit greatly from mentorship and collaboration
with experienced partner institutions.

Gap Analysis
Although adoption has been a success, there were gaps in our
processes, which are important to recognize, especially for those
starting the process. Although top-down organizational support
has been strong, funding has always been difficult in a
resource-constrained environment. A user-pays model can be
attractive, but implementation is difficult and may encourage
users to stick to paper and spreadsheets. Funding from the center
may be politically fraught, especially in the early phases before
the system has proved itself. We have gained stability over the
last 10 years but are still working on improving the financial
model. A related issue is the size of the support team—dedicated
staff are required, and in resource-constrained environments
this may be hard to find or pay for. In our case, we were
fortunate to have dedicated staff members from the start, but
they were always working under pressure, which limited the
extent of training and ability to support strategic projects. This
latter issue was mitigated to some extent by the strong mentoring
role played by the VUMC. Investment in the support team
through attendance at international events has been very
important, but resource constraints have limited how many
individuals can attend and how frequently.

Limitations of This Study
The principal investigator on this study (IM) is also the lead
REDCap administrator for the Wits FHS. This makes them
intimately familiar with the support processes and end-user
interactions at the institution but can lead to a lack of objectivity.
For this reason, coauthors experienced with REDCap and
clinical research informatics from outside of our institution were
included to provide a more balanced and fair report.

Conclusions
The implementation of technology requires strategies to support,
and manage resistance from, end users. One of the main reasons
for this resistance is inertia: end users naturally resist change
to familiar and deeply ingrained processes [1,5,7,15-17]. In our
experience, and supported by findings from others [1,4,7,16,17],
to overcome inertia, one needs to demonstrate the reliability of
the system and benefits of adoption to prospective users, while
at the same time easing the transition process by providing
adequate end-user support. The capacity to implement and
support REDCap at the Wits FHS was initiated through
organizational and financial backing of the FHS management.
This capacity was subsequently developed further through
participation in REDCap Consortium activities such as
REDCapCon and the REDCap Community forum and through
a strong bidirectional relationship with the VUMC, the
institution that created REDCap.
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Abstract

Background: Deep neural networks are showing impressive results in different medical image classification tasks. However,
for real-world applications, there is a need to estimate the network’s uncertainty together with its prediction.

Objective: In this review, we investigate in what form uncertainty estimation has been applied to the task of medical image
classification. We also investigate which metrics are used to describe the effectiveness of the applied uncertainty estimation

Methods: Google Scholar, PubMed, IEEE Xplore, and ScienceDirect were screened for peer-reviewed studies, published
between 2016 and 2021, that deal with uncertainty estimation in medical image classification. The search terms “uncertainty,”
“uncertainty estimation,” “network calibration,” and “out-of-distribution detection” were used in combination with the terms
“medical images,” “medical image analysis,” and “medical image classification.”

Results: A total of 22 papers were chosen for detailed analysis through the systematic review process. This paper provides a
table for a systematic comparison of the included works with respect to the applied method for estimating the uncertainty.

Conclusions: The applied methods for estimating uncertainties are diverse, but the sampling-based methods Monte-Carlo
Dropout and Deep Ensembles are used most frequently. We concluded that future works can investigate the benefits of uncertainty
estimation in collaborative settings of artificial intelligence systems and human experts.

International Registered Report Identifier (IRRID): RR2-10.2196/11936

(JMIR Med Inform 2022;10(8):e36427)   doi:10.2196/36427
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Introduction

Overview
Digital image analysis is a helpful tool to support physicians in
their clinical decision-making. Originally, digital image analysis

was performed by extracting handcrafted features from an input
image. These features can be tuned to the underlying data, which
means that for a specific disease, only specific features can be
looked for in the observed image. With the advent of deep
learning, however, a “black box” has been established that can,
in the setting of supervised learning, intrinsically learn such
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features from labeled data. In recent years, deep learning–based
methods have vastly outperformed traditional methods that rely
on handcrafted features. With the learning-based methods, the
focus has shifted from manually defining image features to
providing clean and correctly annotated data to the learning
system. With the data-centric approach, however, new
challenges arise.

In a clinical setting, when such algorithms are meant to be used
as diagnostic assistance tools, the user has to be able to
understand how the artificial intelligence (AI) system came up
with the diagnosis. One key component in this regard is a
measure of confidence of the AI system in its prediction. Such
a measure is important to increase trust in the AI system, and
it may improve clinical decision-making [1]. We will use the
term “uncertainty estimation” for measures to evaluate model
confidence. When the AI system provides a measure for its
uncertainty, predictions with high uncertainties can be treated
with extra care by medical experts. On the other hand, the human
expert can better trust the prediction of an AI system where it
reports low uncertainty. In this study, we review recent
publications that have applied uncertainty estimation methods
to medical image classification tasks. The area of uncertainty
estimation in deep neural networks is an active research field,
and the currently most popular methods have been proposed
from 2016 onward. In the next section, we provide an overview
of the most prominent methods for uncertainty estimation.

In the results section, we categorize the reviewed works by the
uncertainty estimation method they apply. We provide a table
that serves as an overview of all the included studies. In the last
section, we discuss the most frequently used metrics for
evaluating the benefit of uncertainty estimation and give an
outlook of possible future research directions with a focus on
human-machine collaboration.

Technical Background
In a classification task, the neural network is supposed to predict
how likely it is for a given input x to belong to class y out of a
fixed number of possible classes. The output of the neural
network can be interpreted as a probability distribution over all
classes, with each individual value indicating how likely it is
for the input to belong to the respective class.

In formula, the predictive distribution can be written as follows:

The predictive distribution given input x and training data D is
described as the integral over the likelihood p(y|x,θ) with prior
p(θ|D) computed over the model’s parameters θ. In deep neural
networks, this integral cannot be computed analytically.
Therefore, methods that try to capture uncertainty in neural
networks try to approximate the predictive distribution.

Depending on the modeled uncertainty, the predictive
uncertainty can be divided into aleatoric uncertainty and
epistemic uncertainty. The aleatoric uncertainty describes the
uncertainty inherent in the data, whereas the epistemic
uncertainty captures the uncertainty of the model. The softmax
output of a typical classification network is only able to capture
aleatoric uncertainty [2].

Methods for Uncertainty Estimation
Ovadia et al [3] compared several popular methods for
uncertainty estimation. In this work, we name the methods that
we discovered to be most popular and refer the reader to the
respective works for a detailed description of the proposed
methods. We categorize the methods into (1) model sampling,
(2) single network methods, and (c) data augmentation.

Model Sampling
Sampling-based methods are easy to implement as they make
use of existing network architectures. The 2 most popular
methods are Monte Carlo dropout (MCDO) [4] and Deep
Ensembles [5]. Both methods rely on several prediction runs
of either an ensemble of multiple neural networks or a neural
network with dropout layers to compute a predictive uncertainty.

Single Network Methods
The field of directly modifying the network architecture for
improved uncertainty estimation is quite diverse. In the
derivation of MCDO, the authors compare their approach to
Gaussian processes (GPs). A GP is a method to estimate a
distribution over functions [6] and can be applied to estimate
uncertainties in neural networks.

Approaches that have been included in the comparison by
Ovadia et al [3] include stochastic variational inference (SVI)
[7] and temperature scaling (TS) [8]. SVI applies the concept
of variational inference to deep neural networks, whereas TS
works as a post hoc method. By applying a scaling factor to the
network output, TS can improve network calibration. Another
method worth mentioning is evidential deep learning (EDL)
[9]. EDL fits a Dirichlet distribution to the network output to
estimate the network’s uncertainty.

Data Augmentation
Comparable to sampling multiple models, one can also compute
a distribution of predictions by running the network on different
augmentations of the input data. Ayhan and Berens [10] propose
such a method for improved aleatoric uncertainty estimation
called test-time data augmentation (TTA).

Methods

Data Extraction
For the systematic review, we searched through Google Scholar,
PubMed, IEEE Xplore, and ScienceDirect to identify relevant
works that apply uncertainty estimation methods to medical
image classification. We limited our search to works that have
appeared between January 2016 and October 2021. As search
terms, we used “uncertainty,” “uncertainty estimation,” “network
calibration,” and “out-of-distribution detection,” and we
combined them with the terms “medical images,” “medical
image analysis,” and “medical image classification.”

Selection Process
The selection process was conducted according to the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines [11]. We found 320 potentially
relevant publications from the database search. During title and
abstract screening, we discarded the majority of the works, as
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they either did not estimate uncertainties at all or dealt with
other image analysis problems such as image segmentation.
From the first screening round, 65 papers were selected for
full-text analysis. During the full-text analysis, we discarded

several other works, as they turned out to deal with other
problems including semantic segmentation. Eventually, 22
papers were included in the review. Figure 1 visualizes the
selection process.

Figure 1. PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) flow diagram.

Results

Paper Categorization
Figure 2 provides an overview of the applied methods in all of
the reviewed works. Note that most included works apply more

than 1 method for uncertainty estimation. We observed that the
majority of works apply sampling-based methods (ie, MCDO
and Deep Ensembles). In the category that we denoted as single
network methods, all corresponding methods are almost equally
represented. Lastly, 4 works that we included apply TTA to
compute an uncertainty estimate.
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Figure 2. Number of publications that apply the respective uncertainty estimation method. EDL: evidential deep learning; GP: Gaussian process;
MCDO: Monte Carlo dropout; SVI: stochastic variational inference; TS: temperature scaling; TTA: test-time data augmentation.

Most of the included works evaluate the applied methods by
computing an uncertainty measure (mostly predictive variance
or predictive entropy). This uncertainty measure is often used
to generate retained data versus accuracy evaluations. Figure 3
shows an example of retained data versus accuracy plot from

the study by Filos et al [2]. From the plot, it can be observed
that when only the more certain samples are retained, accuracy
on the retained data increases. The methods for uncertainty
estimation are then ranked by how far they increase the accuracy
on the retained data.

Figure 3. Retained data versus accuracy plot from Filos et al [2]. MFVI: mean field variational inference.

Some included works focus on network calibration and try to
decrease the expected calibration error (ECE) within their
experiments. Some other works use the computed uncertainty
measure to detect out-of-distribution (OOD) samples. Table 1

provides an overview of all included works. In the following
sections, we will briefly cover the content of each included
study.
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Table 1. Overview of the selected studies.

ReferenceCode
available

Data accessReported metricsNetwork architec-
ture

SensorOrgans or sicknessMethods

Leibig et al [12]YesPublic (Kag-
gle competi-
tion)

Retained data or ac-
curacy, uncertainty
or density

Custom CNNscCameraDiabetic retinopa-
thy from fundus
images

MCDOa, GPb

Laves et al [13]YesPublicPredictive varianceResNet-18Optical coher-
ence tomogra-
phy

RetinaMCDO, SVId

Mobiny et al [14]YesPublicUncertainty or densi-
ty, retained data or

VGG-16,
ResNet-50,
DenseNet-169

CameraSkin cancerMCDO

accuracy, uncertain-
ty, confusion matrix

Herzog et al [15]YesPrivateReliability diagrams,

AUROCf
Modified VG-
GNet

MRIeBrainMCDO

Caldéron-
Ramírez et al
[16]

NoPublicUncertainty, confu-
sion matrix

VGG-19MammographyBreast cancerMCDO

Caldéron-
Ramírez et al
[17]

NoPublicJensen-Shannon di-
vergence

WideResNetX-rayCOVID-19MCDO, DUQg

Filos et al [2]YesPublic (Kag-
gle competi-
tion)

Retained data or ac-
curacy, retained data

or AUROC, ROCi

VGG VariantsCameraDiabetic retinopa-
thy from fundus
images

MCDO, Ensem-

bles, MFVIh

Linmans et al
[18]

NoPublicRetained data or
AUROC

DenseNetMicroscopeHistopathological
slides

MCDO, Ensem-
bles, M-heads

Thagaard et al
[19]

NoPrivateECEj, AUROC,

AUPRCk

ResNet-50MicroscopeHistopathological
slides

MCDO, Ensem-
bles, Mix-up

Yang and Fevens
[20]

NoPublicPredictive entropy,
retained data or accu-
racy

ResNet-152-V2,
Inception-V3, In-
ception-ResNet-
V2

CTl, micro-
scope

COVID-19,
Histopathological
slides (breast can-
cer)

MCDO, Ensembles

Abdar et al [21]NoPublic (Kag-
gle competi-

Entropy, AUROCResNet-152, In-
ception- ResNet-

CameraSkin cancerMCDO, Ensem-

bles, TWDm

tion, ISIC data
set)

V2, DenseNet-
201, MobileNet-
V2

Berger et al [22]NoPublicAUROC, AUPRCWideResNetX-rayLungMCDO, Ensem-
bles, others

Toledo-Cortés et
al [23]

YesPublic (Kag-
gle competi-
tion)

AUROCInception-V3CameraDiabetic retinopa-
thy from fundus
images

GP

Ghesu et al [24]NoPublicAUROCDenseNet-121X-rayChestEDLn + Ensembles

Tardy et al [25]NoPublic + pri-
vate

AUROCVGGNetMammographyBreast cancerEDL + MCDO

Ghesu et al [26]NoPublicAUROC, coverage
or F1 score, cover-
age or AUROC

DenseNet-121X-ray, ultra-
sound, MRI

Chest, abdomen,
and brain

EDL

Carneiro et al
[27]

NoPublic + pri-
vate

ECE, predictive en-
tropy, predictive
variance

ResNet-101,
DenseNet-121

Colonoscopy
(camera)

PolypTSo, MCDO

Liang et al [28]NoPublicECEAlexNet,

ResNet-50,

DenseNet-121,

SqueezeNet

MultimodalHead CT, mam-
mography, chest x-
ray, histology

TS, DCAp
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ReferenceCode
available

Data accessReported metricsNetwork architec-
ture

SensorOrgans or sicknessMethods

Ayhan and
Berens [10]

YesPublic (Kag-
gle competi-
tion)

Uncertainty or densi-
ty, retained data or
AUROC

ResNet-50CameraDiabetic retinopa-
thy from fundus
images

TTAq

Jensen et al [29]NoPrivate
(31,000 anno-
tated images)

ECEResNet-50CameraSkin cancerTTA,

MCDO,

MCBNr,

Ensembles

Combalia et al
[30]

NoPublic (ISIC
data set)

Predictive entropy,
predictive variance,
Bhattacharya coeffi-
cient, retained data
or accuracy

Efficient-Net-B0CameraSkin cancerTTA + MCDO

Ayhan et al [31]YesPublic (Kag-
gle competi-
tion)

Reliability diagrams,

AECEs, retained da-
ta or AUROC

Modified ResNetCameraDiabetic retinopa-
thy from fundus
images

TTA, TS, Ensem-
bles

aMCDO: Monte Carlo dropout.
bGP: Gaussian process.
cCNN: convolutional neural network.
dSVI: stochastic variational inference.
eMRI: magnetic resonance imaging.
fAUROC: area under the receiver operating curve.
gDUQ: deterministic uncertainty quantification.
hMFVI: mean field variational inference.
iROC: receiver operating curve.
jECE: expected calibration error.
kAUPRC: area under the precision recall curve.
lCT: computed tomography.
mTWD: three-way decision theory.
nEDL: evidential deep learning.
oTS: temperature scaling.
pDCA: difference between confidence and accuracy.
qTTA: test-time data augmentation.
rMCBN: Monte-Carlo batch norm.
sAECE: adaptive expected calibration error.

Sampling-Based Methods
The first work that we have included is the study by Leibig et
al [12], which applies MCDO to the task of diabetic retinopathy
classification. To evaluate the impact of the applied uncertainty
estimation method, the authors report retained data versus
accuracy curves. This means that a fraction of uncertain
predictions is discarded, and it is evaluated how discarding
uncertain samples can improve the accuracy on the test data set.
The results show that discarding 20% or more of the most
uncertain samples can notably improve the accuracy of the
neural network. In their work, the authors compare the
performance of MCDO to an alternatively implemented GP and
find that MCDO leads to better accuracies on the retained data
versus accuracy evaluations.

Laves et al [13] apply MCDO and SVI to retina scans observed
through optical coherence tomography. The authors show that
both methods lead to higher standard deviations on false-positive
predictions compared to true positive predictions. This indicates

that the standard deviations can be used to refer predictions with
high uncertainty to human experts to improve the classification
accuracy.

Mobiny et al [14] estimate uncertainties using MCDO with
different types of networks including VGGNet [32], ResNet
[33], and DenseNet [34] on dermoscopic images of 8 different
skin lesion types. Similar to Leibig et al [12], the authors report
retained data versus accuracy curves and show that the accuracy
can be increased when referring a fraction of uncertain samples
to a medical expert. As a measure for uncertainty, the
normalized predictive entropy is computed. As an additional
metric, the authors also compute an uncertainty-related
confusion matrix that includes the numbers of correct-certain,
correct-uncertain, incorrect-certain, and incorrect-uncertain
predictions. The respective numbers vary when the uncertainty
threshold is changed. One possible goal with this evaluation is
to decrease the number of incorrect-certain predictions as much
as possible.
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Another work by Herzog et al [15] applies MCDO to the
classification of brain magnetic resonance imaging (MRI)
images. The goal of their work is to infer patient-level
diagnostics from the predictions from multiple images.
Therefore, the authors compute a variety of 5 uncertainty
measures per image. To draw conclusions on a patient level,
the authors run another neural network that processes the
uncertainties of all images belonging to one patient.

In two other published works, Caldéron-Ramírez et al [16,17]
apply MCDO to the tasks of breast cancer classification from
mammography images and to COVID-19 classification from
chest x-ray scans. Unfortunately, even among the two works,
the authors report different metrics, which prevents comparing
the results. In the breast cancer classification task, the authors
use a metric called uncertainty balanced accuracy, which builds
up on the uncertainty-related confusion matrix also used by
Mobiny et al [14]. In the work related to COVID-19 detection,
the authors report the Jensen-Shannon divergence as an
uncertainty measure, which we did not encounter in any of the
other reviewed works.

Another set of studies compared MCDO to Deep Ensembles
(further simply denoted as Ensembles) and partly to other
methods. Filos et al [2] compare MCDO to Ensembles and mean
field variational inference (MFVI), which is a variation of SVI,
and apply it to the task of diabetic retinopathy classification. In
addition to comparing MCDO and Ensembles individually, they
also combine both approaches and include the combination in
the evaluation, denoted as “Ensemble MCDO.” As neural
network architecture, the authors use variants of VGGNet [32].
The retained data versus accuracy plots show that “Ensemble
MCDO” leads to the best performance, followed by MCDO
and Ensembles applied individually. MFVI did not achieve the
same performance as the sampling-based methods.

Linmans et al [18] perform uncertainty estimation on the
publicly available Camelyon data sets for breast cancer detection
on histopathological slides. The authors propose a new method
for uncertainty estimation called “M-heads,” which adds
multiple output heads to the convolutional neural network
(CNN). They compare their method to the MCDO and
Ensembles of 5 and 10 networks, respectively. From the
different evaluations, the confidence versus accuracy plot shows
that accuracy increases when only keeping predictions with
high confidence. The methods rank from M-heads performing
best, followed by the Ensembles of 5 and 10 networks. In the
reported results, MCDO does not perform better than the vanilla
softmax output.

Thagaard et al [19] apply Ensembles and MCDO to private data
sets of histopathological slides for breast cancer detection. In
their work, the authors focus on OOD detection while analyzing
combinations of different internal data sets. Concerning the
comparison of the uncertainty estimation methods, the ECE is
calculated on 3 different data sets. For all 3 data sets, the
Ensemble of 5 ResNet-50 networks reaches the best ECE scores.

In another work, Yang and Fevens [20] apply MCDO,
Ensembles, and a combination of both to several publicly
available data sets. The modalities include COVID-19
classification from x-ray scans, brain tumor classification from

MRI images, and breast cancer detection from histopathological
slides. On the histopathological images, the authors present
retained data versus accuracy plots. For the reported accuracies,
the Ensemble MCDO approach with 5 Inception-ResNet
networks leads to the best results.

Abdar et al [21] apply MCDO, Ensembles, and Ensemble
MCDO to skin cancer classification from dermoscopic images.
The authors report entropies and standard deviations of the
applied methods for 4 different network architectures on 2
different publicly available data sets. From the reported values,
the authors conclude that the Ensembles overall perform best.
In an additional setup, the authors combine 2 uncertainty
estimation methods (Ensembles and Ensembles MCDO) in a
decision tree that they refer to as 3-way decision theory.

In another work, Berger et al [22] evaluate confidence-based
OOD detection on x-ray scans of lung diseases. The authors
compare MCDO, Ensembles, and specific methods for OOD
detection, including a method based on Mahalanobis distance
and the “out-of-distribution detector for neural networks” [35].
In their experiments, the authors find that the OOD detector for
neural networks leads to the best results for OOD detection with
respect to the area under the receiver operating curve (AUROC)
and area under the precision recall curve (AUPRC) values.

Single Network Methods
After having covered several works that focus on
sampling-based uncertainty estimation methods, we will now
look into works that directly apply to the network’s classification
output to estimate uncertainties. One example is the work by
Toledo-Cortés et al [23] that applies a GP to the output of their
implemented Inception-V3 network [36]. Similar to Laves et
al [13], the authors report standard deviations on true positive
and false positive predictions. Since the standard deviations for
both cases are quite similar, it must be concluded that the applied
GP is not well suited for a useful uncertainty estimation.

A set of other works applies EDL to estimate uncertainties. In
their first work, Ghesu et al [24] work with x-ray scans of the
chest and later extend their approach to ultrasound images of
the abdomen and MRI images of the brain [26]. The results
show that discarding a fraction of the most uncertain predictions
can notably improve the AUROC score averaged over different
x-ray classification tasks.

Comparably, Tardy et al [25] apply EDL to the task of breast
cancer classification from mammography images. The authors
also report improved AUROC and AUPRC values when
discarding a fraction of uncertain samples.

Two works that we have included apply TS to medical image
classification tasks. Carneiro et al [27] combine TS and MCDO
to compute a calibrated confidence measure as well as an
uncertainty measure in the form of predictive entropy and
predictive variance. The authors evaluate the methods on 2
different cohorts of colonoscopy images with respect to a 5-class
polyp classification task. The reported ECE and accuracy values
show that the DenseNet-121 architecture with both MCDO and
TS leads to the best results.
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Liang et al [28] present a new approach for network calibration
in the form of an auxiliary loss term called “difference between
confidence and accuracy” (DCA) that can be integrated into an
existing CNN training procedure. The authors compare their
approach to TS and uncalibrated networks on different medical
data sets with several different network architectures. The results
show that in most cases, DCA produces the best ECE values.
It is also shown that depending on the data set and model
architecture, TS does not always improve the expected
calibration error.

Test-Time Data Augmentation (TTA)
The concept of TTA is introduced by Ayhan and Behrens [10],
where it is applied to the task of diabetic retinopathy from
fundus images. The authors apply 128 different augmentations,
ranging from cropping and resizing to different color
augmentations. As measure for uncertainty, the interquartile
range of the predictions is computed. Similar to Leibig et al
[12], the authors report retained data versus AUROC curves
and show that the AUROC values improve when referring
uncertain samples to a medical expert.

Another work by Jensen et al [29] focuses on evaluating
interrater agreement on dermoscopic images of different skin
lesions. In the experiment, multiple experts have provided labels
for the respective images, and the labels for each sample can
vary across experts. Therefore, the approaches of label fusion
and label sampling are compared for training the neural network.
These approaches are combined with methods that estimate
uncertainties to evaluate the influence on the network’s
calibration of the combined methods. It is shown that in the
specific experimental setting, the combination of label sampling
and TTA leads to the highest classification accuracies among
all data splits.

Combalia et al [30], also working with dermoscopic images,
combine TTA and MCDO to evaluate aleatoric as well as
epistemic uncertainties. In their experiments, the authors show
that the combination of both methods leads to the best results
for OOD detection as well as on the retained data versus
accuracy evaluation. For the evaluations, 100 forward passes
through the network are performed with either TTA or MCDO
or both methods combined. The uncertainties are quantified by
computing the predictive entropy, the predictive variance, and
additionally, the Bhattacharyya coefficient [30].

In a follow-up of their original work, Ayhan et al [31] extend
their experiments on diabetic retinopathy classification by other
uncertainty estimation methods. Besides TTA, the authors also
include TS and an ensemble of 3 modified ResNet networks.
To compare the results, the authors compute The Adaptive

Expected Calibration Error [37]. In terms of Adaptive Expected
Calibration Error, the median probability of 128 forward passes
with different data augmentations leads to the best calibrated
results. On the retained data versus AUROC curves, TTA and
Deep Ensembles perform equally well. The experiments on a
different cohort of fundus images show that TS generalizes
worse to new data compared to TTA and Deep Ensembles.

Discussion

Through the reviewed publications, we gained an overview of
which methods for uncertainty estimation are most frequently
used in the field of medical image classification. We found that
the sampling-based methods MCDO and Deep Ensembles are
the most frequently applied methods. With the sampling-based
approaches, it is possible to compute a distribution of predictions
and from there determine an uncertainty measure, usually either
in the form of predictive entropy or predictive variance. These
measures help to identify samples where the neural network is
uncertain about its predictions.

In addition to the sampling-based uncertainty evaluations, we
also observed evaluations that analyze the calibration of the
neural network. The calibration evaluations in terms of reliability
diagrams and ECE are used to determine if the neural network’s
output probabilities represent the actual likelihood of the
prediction being correct. In the original paper on neural network
calibration [8], the authors claim that most modern CNNs are
not well calibrated and produce overconfident predictions. In
this review, we saw that several methods including TS and TTA
can be applied to improve calibration [31].

Another observation we made is that combining uncertainty
estimation methods can improve the results. This holds for
combinations of Ensembles and MCDO [2,20,21], TS and
MCDO [27], or TTA and MCDO [30].

By presenting retained data versus accuracy curves, several
works [2,10,12,14,20,26,30] show that discarding uncertain
predictions leads to an improved accuracy of the neural network
on the remaining samples. This insight holds for all 3 categories
of uncertainty estimation methods that we denoted as (1) model
sampling, (2) single network methods, and (3) data
augmentation. An important message from this observation is
that uncertainty estimation can be used as a tool to improve the
collaboration between AI systems and human experts. Thus far,
all studies were performed in very artificial settings. Future
work should therefore analyze the performance improvement
of a collaboration between an uncertainty-aware AI system and
human experts in scenarios that are closer to real-life situations
in clinics.
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Abstract

Background: Electrocardiogram (ECG) is one of the most common noninvasive diagnostic tools that can provide useful
information regarding a patient’s health status. Deep learning (DL) is an area of intense exploration that leads the way in most
attempts to create powerful diagnostic models based on physiological signals.

Objective: This study aimed to provide a systematic review of DL methods applied to ECG data for various clinical applications.

Methods: The PubMed search engine was systematically searched by combining “deep learning” and keywords such as “ecg,”
“ekg,” “electrocardiogram,” “electrocardiography,” and “electrocardiology.” Irrelevant articles were excluded from the study
after screening titles and abstracts, and the remaining articles were further reviewed. The reasons for article exclusion were
manuscripts written in any language other than English, absence of ECG data or DL methods involved in the study, and absence
of a quantitative evaluation of the proposed approaches.

Results: We identified 230 relevant articles published between January 2020 and December 2021 and grouped them into 6
distinct medical applications, namely, blood pressure estimation, cardiovascular disease diagnosis, ECG analysis, biometric
recognition, sleep analysis, and other clinical analyses. We provide a complete account of the state-of-the-art DL strategies per
the field of application, as well as major ECG data sources. We also present open research problems, such as the lack of attempts
to address the issue of blood pressure variability in training data sets, and point out potential gaps in the design and implementation
of DL models.

Conclusions: We expect that this review will provide insights into state-of-the-art DL methods applied to ECG data and point
to future directions for research on DL to create robust models that can assist medical experts in clinical decision-making.

(JMIR Med Inform 2022;10(8):e38454)   doi:10.2196/38454

KEYWORDS

electrocardiogram; ECG; ECG databases; deep learning; convolutional neural networks; CNN; residual neural network; ResNet;
long short-term memory; LSTM; diagnostic tools; decision support; clinical decision

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e38454 | p.194https://medinform.jmir.org/2022/8/e38454
(page number not for citation purposes)

Petmezas et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:nicmag@auth.gr
http://dx.doi.org/10.2196/38454
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Study Background
Electrocardiogram (ECG) is one of the most common
noninvasive diagnostic tools used in clinical medicine [1]. An
ECG is a nonstationary physiological signal that measures
voltage changes produced by the electrical activity of the heart.
It is mostly used by cardiologists to assess heart function and
electrophysiology [2]. ECG interpretation plays a vital role in
personalized medicine and can assist in cardiovascular disease
(CVD) detection, rehabilitation, and the development of
treatment strategies. Owing to the major increase in the amount
of ECG data available and measurement heterogeneity from
medical devices and placements, there are many cases where
traditional diagnosis becomes inefficient, as it requires complex
manual analysis and highly trained medical experts to achieve
adequate accuracy [3].

During the past few decades, the massive surge in computational
power and availability of large data sets have created new
opportunities for machine-driven diagnosis in many health care
areas [4]. Artificial intelligence (AI) is leading the way in most
attempts to develop reliable diagnostic tools based on
data-driven techniques [5]. In particular, deep learning (DL)
algorithms, a subset of machine learning (ML), can generate
powerful models that can learn relationships between data and
reveal hidden patterns in complex biomedical data without the
need for prior knowledge. DL models adjust better to large data
sets and, in most cases, continue to improve with the addition
of more data, thus enabling them to outperform most classical
ML approaches [6,7]. They have been tested extensively in
many application areas, such as speech recognition, visual object
recognition, object detection, and natural language processing,
achieving promising results [8].

DL algorithms are typically based on deep network architectures
comprising multiple hidden layers [9]. The most frequently used
DL algorithms are convolutional neural networks (CNNs), which
were originally proposed for object recognition and image
classification [10,11]. Since then, they have been successfully
used in various medical applications, including medical image
analysis [12], biomedical signal classification [13,14],
pulmonary sound classification [15], biomedical signal quality
assessment [16], pathological voice detection [17], and sleep
staging [18].

Moreover, residual neural networks (ResNets) [19], which were
recently proposed to solve the difficulties of training very deep
neural networks (DNNs), are well established and used in
several medical tasks, such as prostate cancer detection [20],
nuclei segmentation and detection [21], coronary calcium
detection [22], and pulmonary nodule classification [23].

In addition to CNN and ResNet architectures, recurrent neural
networks (RNNs) represent another type of DL technique
frequently used in health care. Disease prediction [24],
biomedical image segmentation [25], and obstructive sleep
apnea detection [26] are only a few of their applications. More
specifically, the performance of improved versions of classic
RNNs, such as long short-term memory (LSTM) networks and

gated recurrent units (GRUs), has been studied extensively in
recent years in a series of health-related tasks, including medical
image denoising [27], Alzheimer disease detection [28], life
expectancy prediction [29], cardiac arrhythmia classification
[30], epileptic seizure detection [31], cell segmentation [32],
and cardiac phase detection [33].

Another DL method proposed in 2017 that has recently gained
popularity among the scientific community is transformers [34],
which adopts the mechanism of self-attention to handle
sequential data. They have been tested in a series of medical
tasks, including cardiac abnormality diagnosis [35], food
allergen identification [36], medical language understanding
[37], and chemical image recognition [38].

Finally, autoencoders, a DNN technique capable of learning
compressed representations of its inputs, have been tested in
several medical applications, such as the prediction of heart
transplant rejection [39], cell detection and classification [40],
anticancer drug response classification [41], premature
ventricular contraction detection [42], and endomicroscopic
image classification [43].

The purpose of this study is to provide a complete and
systematic account of the current state-of-the-art DL methods
for ECG data. The main idea behind this comprehensive review
is to group and summarize the DL approaches per field of
application, discuss the most notable studies, and provide a
detailed overview of the major ECG databases. In addition, we
will identify important open research problems and directions
and provide an assessment of the future of the field. We expect
this review to be of great value to newcomers to the topic, as
well as to practitioners in the field.

The remainder of this paper is structured as follows: In the
Background of DL section, background knowledge for DL
techniques and algorithms is presented, and related
state-of-the-art methods for ECG processing and analysis are
reviewed. In the Methods section, the research methodology is
described in detail, and, in the Results section, the results of the
systematic review are presented. In the Discussion section, a
discussion based on the research findings is presented. Finally,
the conclusions of the study are summarized in the Conclusions
section.

Background of DL

DL Algorithm
DL is a branch of ML that uses multilayered structures of
algorithms called neural networks (NNs) to learn representations
of data by using multiple levels of abstraction [8]. Unlike most
traditional ML algorithms, many of which have a finite capacity
to learn regardless of how much data they acquire, DL systems
can usually improve their performance with access to more data.

Given the availability of large data sets and advancements in
modern technology, DL has seen a spectacular rise in the past
decade. DL algorithms can construct robust data-driven models
that can reveal hidden patterns in data and make predictions
based on them. The following subsections describe some of the
most commonly used DL methods that are applied to a wide
range of health-related tasks where ECG data are present.
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CNN Algorithm
CNNs are among the most popular DL architectures and owe
their name to the mathematical concept of convolution. CNNs
are designed to adaptively learn the spatial hierarchy of data by
extracting and memorizing high- and low-level patterns to
predict the final output.

Although they were initially designed to deal with 2D image
data [44], during the past few years, several modified 1D
versions of them have been proposed for numerous applications,
achieving state-of-the-art performance [45].

The structure of a typical CNN integrates a pipeline of multiple
hidden layers, in particular, convolutional and pooling layers,
followed by fully connected layers. The convolutional layers
implement filters (or kernels) that perform convolution between
the kernel (impulse response of the filter) and the input signal.
In this way, each convolutional layer creates features (or
activation maps) from its input, a process commonly known as
feature extraction.

In contrast, the pooling layers conduct down-sampling of the
extracted feature maps to reduce the computational complexity
required when processing large volumes of data. Finally, the
fully connected layers are simple feed-forward NNs that create
weighted connections between successive layers. Therefore,
they achieve the mapping of the aggregated activations of all
previous layers into a class probability distribution by applying
a sigmoid or softmax activation function that represents the final
output of the CNN.

ResNet Algorithm
ResNet is a special type of DL network that was proposed to
solve the vanishing gradient problem, which occurs when
training DNNs. In other words, as the number of stacked layers
of a DNN increases, the gradient of the earlier layers vanishes.
Thus, the network fails to update the weights of the earlier
layers. This means that no learning occurs in the earlier layers,
resulting in poor training and testing performance.

The key idea behind ResNet is the introduction of residual
blocks that use skip connections to add the outputs from earlier
layers to those of later layers. Precisely, the network creates
shortcuts that enable the gradient to take shorter paths through
the deeper layers, thereby eliminating the vanishing gradient
problem. Thus, the precision of deep feature extraction is
improved, whereas the computational complexity of the network
remains substantially low.

ResNet is typically a network comprising CNN blocks that are
successively repeated multiple times. Many variants of the
ResNet architecture use the same concept but various numbers
of layers to address different problems, such as ResNet-34,
ResNet-50, and ResNet-101, where 34, 50, and 101 are the
depths of the network, respectively.

RNN Algorithm
RNNs were first introduced by Rumelhart et al [46] in 1986.
They are a class of artificial NNs capable of memorizing the
temporal dynamics of sequential data by forming a directed
graph along them. Specifically, they deploy hidden units that

create strong dependencies among data by preserving valuable
information regarding previous inputs to predict current and
future outputs.

However, as the time distance between dependent inputs
increases, RNNs become incapable of handling long-term
dependencies because of the vanishing gradient problem. To
address this problem, new variations of RNNs have been
proposed, including LSTM networks and GRUs.

LSTM networks were introduced by Hochreiter and
Schmidhuber [47] in 1997. They solved the problem of
long-term dependencies by implementing gates to control the
memorization process. This means that they can recognize and
retain both the long- and short-term dependencies between the
data of a sequential input for long periods, resulting in efficient
learning and, finally, improved performance.

The structure of LSTM comprises an ordered chain of identical
cells. Each cell is responsible for transferring 2 states to the
next cell, namely, the current internal cell state and its internal
hidden state, also known as short-term and long-term memory,
respectively. To achieve this, it uses 3 types of gates, namely
forget, input, and output gates, to control the information that
is passed onto further computations.

Specifically, using the forget gate, the cell determines which
part of the previous time stamp’s information needs to be
retained and which should be forgotten. The input gate updates
the cell state by adding new information. Finally, the output
gate selects information that will be passed on as the output of
the cell. By controlling the process of adding valuable
information or removing unnecessary information, a cell can
remember long-term dependencies over arbitrary time intervals.

In contrast, motivated by the LSTM unit, in 2014, Cho et al
[48] proposed GRUs to address the vanishing gradient problem.
Unlike LSTMs, GRUs do not have separate cell states. In
addition, they use only 2 gates to control the flow of information
via the hidden state, namely, the update and reset gates.

Precisely, the update gate, which acts as the unit’s long-term
memory, is responsible for selecting the amount of previous
information that must be passed on to the current hidden state.
By contrast, the reset gate represents the short-term memory of
the unit and oversees the determination of the amount of past
information that must be ignored.

With these 2 gates, each hidden unit can capture dependencies
over different time scales. Thus, units trained to capture
long-term dependencies tend to have update gates that are mostly
active, and conversely, those trained to memorize short-term
dependencies tend to have active reset gates.

Autoencoders
Autoencoders are a special type of feed-forward NNs that was
introduced by Rumelhart et al [49] in 1986. An autoencoder
can learn efficient representations of data and is mainly applied
for feature extraction and dimensionality reduction.

A typical autoencoder structure includes 2 parts: encoder and
decoder. The encoder compresses the input and creates a latent
representation, which is mapped to a hidden layer, also known
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as a bottleneck. Then, the decoder uses this latent representation
to reconstruct the original input.

In this manner, an autoencoder is trained by minimizing the
reconstruction error to learn to create low-dimensional copies
of higher-dimensional data. There are several types of
autoencoders, including denoising autoencoders [50], variational
autoencoders [51], and convolutional autoencoders [52].

Methods

Literature Search
The PubMed search engine was systematically searched by
combining “deep learning” and keywords such as “ecg,” “ekg,”

“electrocardiogram,” “electrocardiography,” and
“electrocardiology.” During the initial screening, 348 unique
articles published in various journals between January 2020 and
December 2021 were identified. Of these 348 articles, 106
(30.5%) were excluded based on their titles and abstracts, and
the remaining 242 (69.5%) were further reviewed. The reasons
for article exclusion were manuscript written in any language
other than English, absence of ECG data or DL methods
involved in the study, and absence of a quantitative evaluation
of the proposed approaches. After a full-text assessment, 4.9%
(12/242) of the articles were excluded as they were about works
that did not include ECG signals. Finally, 230 relevant articles
were selected for this review. The detailed process of the
literature search and selection is illustrated in Figure 1.

Figure 1. Flow diagram of the literature search. DL: deep learning; ECG: electrocardiogram.

Bibliometric Analysis
To obtain a clear picture of the literature search results, a
co-occurrence analysis was conducted. For this purpose, the
VOSviewer software tool (Nees Jan van Eck and Ludo
Waltman) [53] was used to create and visualize 3 maps based
on the bibliographic data of this study. Specifically, all keywords
from the 230 relevant studies were grouped and linked to
establish the impact of each keyword on the given scientific
field and its interconnections with other keywords. In this way,
3 distinct clusters of keywords were formed, namely “clinical

issues” (cluster 1), “methods and tools” (cluster 2), and “study
characteristics” (cluster 3), as shown in Textbox 1, and an
individual map was generated for each of the 3 categories.
Figure 2 displays the co-occurrence network that corresponds
to the “clinical issues” cluster of keywords. Cardiac arrhythmias
and atrial fibrillation (AF) were identified as the major clinical
issues in this review. Figure 3 presents the co-occurrence
network for the “methods and tools” cluster, where ECG and
DL constitute the network’s core. Finally, Figure 4 shows the
co-occurrence network for the “study characteristics” cluster,
where, as expected, humans are the center of attention.

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e38454 | p.197https://medinform.jmir.org/2022/8/e38454
(page number not for citation purposes)

Petmezas et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Textbox 1. Keyword cluster summary.

Cluster and keywords

• Cluster 1

• “arrhythmias, cardiac,” “atrial fibrillation,” “biometric identification,” “blood pressure determination,” “cardiomyopathy,” “cardiovascular
diseases,” “coronary artery disease,” “covid-19,” “early diagnosis,” “fetal monitoring,” “heart diseases,” “heart failure,” “heartbeat
classification,” “hypertension,” “monitoring, physiologic,” “myocardial infarction,” “sleep apnea,” “sudden cardiac death,” “ventricular
fibrillation,” “ventricular function, left,” “ventricular premature complexes”

• Cluster 2

• “12-lead ecg,” “algorithms,” “artificial intelligence,” “attention mechanism,” “blood pressure,” “cardiology,” “continuous wavelet transform,”
“convolutional neural networks, computer,” “data compression,” “deep learning,” “deep neural networks, computer,” “diagnosis,
computer-assisted,” “echocardiography,” “electrocardiography,” “electroencephalography,” “feature extraction,” “feature fusion,” “heart,”
“heart rate,” “heart rate variability,” “long short-term memory,” “machine learning,” “neural networks, computer,” “photoplethysmography,”
“polysomnography,” “recurrent neural networks, computer,” “signal processing, computer-assisted,” “supervised machine learning,” “support
vector machine,” “wavelet analysis,” “wearable electronic devices”

• Cluster 3

• “adult,” “aged,” “aged, 80 and over,” “cohort studies,” “databases, factual,” “female,” “humans,” “male,” “middle aged,” “predictive value
of tests,” “pregnancy,” “reproducibility of results,” “retrospective studies,” “roc curve,” “sensitivity and specificity,” “young adult”

Figure 2. The co-occurrence network for the “clinical issues” cluster.
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Figure 3. The co-occurrence network for the “methods and tools” cluster.

Figure 4. The co-occurrence network for the “study characteristics” cluster.
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Results

ECG Data Sources
On the basis of the selected studies, multiple ECG data sources
were identified, including several well-established publicly
available databases. These data sources exhibit differences in
the number of enrolled patients, number of recordings, ECG
systems used to collect them, data duration, and sample rate.
Their content is presented in Multimedia Appendix 1 [54-92],
where the links to publicly available data are placed as
hyperlinks on the name of each database.

The most commonly used databases were the Massachusetts
Institute of Technology (MIT)–Beth Israel Hospital (BIH)
Arrhythmia Database [80] (55/230, 23.9% studies), 2017
PhysioNet/CinC Challenge database [57] (31/230, 13.5%
studies), the China Physiological Signal Challenge (CPSC) 2018
database [69] (26/230, 11.3% studies), the MIT-BIH Atrial
Fibrillation Database [81] (17/230, 7.4% studies), and the
Physikalisch Technische Bundesanstalt (PTB)–XL ECG data
set [87] (17/230, 7.4% studies).

The MIT-BIH Arrhythmia Database contains 48 half-hour
excerpts of 2-channel ambulatory ECG recordings obtained
from 47 participants studied by the BIH Arrhythmia Laboratory
between 1975 and 1979 with a sampling frequency of 360 Hz.
Of these, 23 recordings were chosen at random from a set of
4000 recordings of 24-hour ambulatory ECG collected from a
mixed population of inpatients (approximately 60%) and
outpatients (approximately 40%) at Boston’s BIH, whereas the
remaining 25 recordings were selected from the same set to
include less common but clinically significant arrhythmias that
would not be well represented in a small random sample.
Finally, each recording was independently annotated by ≥2
cardiologists.

In contrast, the 2017 PhysioNet/CinC Challenge database
contains 12,186 single-lead ECG recordings collected using a
sampling frequency of 300 Hz. The training set contains 8528
single-lead ECG recordings lasting from 9 seconds to just >60
seconds, and the test set contains 3658 ECG recordings of
similar lengths.

The CPSC 2018 database comprises ECG recordings collected
from 11 hospitals by using a sampling frequency of 500 Hz.
The training set contains 6877 (female: 3178; male: 3699)
12-lead ECG recordings lasting from 6 seconds to 60 seconds,
and the test set, which is unavailable to the public for scoring
purposes, contains 2954 ECG recordings of similar lengths.

Furthermore, the MIT-BIH Atrial Fibrillation Database includes
25 long-term ECG recordings of human patients with AF
(mostly paroxysmal). The individual recordings are each 10
hours in duration and contain 2 ECG signals, each sampled at
250 Hz, whereas the rhythm annotation files were manually
prepared and contain rhythm annotations of 4 types, namely,
AFIB (AF), AFL (atrial flutter), J (AV junctional rhythm), and
N (all other rhythms).

Finally, the PTB-XL ECG data set is a large data set of 21,837
clinical 12-lead ECGs from 18,885 patients with a duration of

10 seconds and a sampling frequency of 500 Hz. The raw
waveform data were annotated by up to 2 cardiologists who
assigned multiple ECG statements to each record.

Medical Applications

Overview
The 230 relevant articles identified during the literature search
were grouped into several categories based on their study
objectives. In particular, 6 distinct medical applications were
identified: blood pressure (BP) estimation, CVD diagnosis,
ECG analysis, biometric recognition, sleep analysis, and other
clinical analyses.

Most of the studies use ECG signals for CVD diagnosis, mainly
via signal or beat classification. Moreover, a significant portion
of them uses DL algorithms to perform ECG analysis, as well
as diagnosis of other clinical conditions.

In this study, the identified DL approaches are grouped per field
of application, and the most notable approaches are discussed
in detail. Moreover, Multimedia Appendix 2 [93-322] provides
details regarding the author and the year of publication of each
article, the medical task that each article refers to, data, data
preprocessing, splitting strategy, DL algorithm applied in each
study, and performance of each approach.

BP Estimation
Only 2.6% (6/230) of studies that applied DL methods to ECG
data to perform BP estimation were identified in the literature
search. A combined architecture of ResNets and LSTM was
proposed twice (33.3%), once by Miao et al [94], who achieved
a mean error of −0.22 (SD 5.82) mm Hg for systolic BP (SBP)
prediction and of −0.75 (SD 5.62) mm Hg for diastolic BP
(DBP) prediction using data that originated from a private
database, and once by Paviglianiti et al [96], who achieved a
mean average error of 4.118 mm Hg for SBP and 2.228 mm Hg
for DBP prediction using the Medical Information Mart for
Intensive Care database. By contrast, Jeong and Lim [98]
exercised a CNN-LSTM network on the Medical Information
Mart for Intensive Care database and managed to predict SBP
and DBP with a mean error of 0.0 (SD 1.6) mm Hg and 0.2 (SD
1.3) mm Hg, respectively.

CVD Diagnosis
More than half (152/230, 66.1%) of the studies that were
identified during the literature search applied DL methods to
ECG data for CVD diagnosis. The most common data sources
for CVD diagnosis are private (37%) and mixed public (25%)
databases. However, a notable proportion (15%) of the
aforementioned studies exclusively used the MIT-BIH
Arrhythmia Database. Almost the half of them (10/23, 43.5%)
applied a CNN structure.

Regarding the MIT-BIH Arrhythmia Database, the best accuracy
(99.94%) was achieved by Wang et al [185], who introduced a
fused autoencoder-CNN network to classify 6 different ECG
rhythms. However, a high percentage of the studies that
managed to classify data originating from the same database
implemented a CNN structure. Lu et al [180] used a 1D-CNN
for arrhythmia classification, achieving an accuracy of 99.31%,
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whereas Yu et al [219] used a 1D-CNN to detect premature
ventricular contraction, achieving a classification accuracy of
99.70%.

On the contrary, a ResNet architecture was tested only 3 times
on the MIT-BIH Arrhythmia Database; nonetheless, 0.9%
(2/230) of these studies showed a high model performance. In
particular, Li et al [146] proposed a ResNet model for heartbeat
classification, achieving a classification accuracy of 99.38%,
whereas Zhang et al [211] used a ResNet-101 structure to
classify ECG beats with transfer learning and achieved an
accuracy of 99.75%.

Regarding the rest of the databases, several noteworthy studies
were identified in the literature. Specifically, Cai et al [101]
implemented a densely connected DNN on a private ECG
database for AF detection, achieving an accuracy between
97.74% and 99.35% for 3 different classification tasks, whereas
Ghosh et al [103] applied a hierarchical extreme learning
machine to ECG data from multiple public databases, achieving
an accuracy of 99.40% in detecting AF.

Furthermore, Butun et al [125] proposed a 1D-capsule NN for
the detection of coronary artery disease, achieving classification
accuracies of 99.44% and 98.62% on 2-second and 5-second
ECG segments, respectively, originating from a private ECG
database. Another study by Thiagarajan et al [129] used multiple
convolutional and pooling layers within a structure named
DDxNet on ECG data from 2 public databases, achieving an
accuracy of 98.50% for arrhythmia classification and 99.90%
for myocardial infarction detection.

A study by Radhakrishnan et al [163] evaluated the performance
(sensitivity 99.17%, specificity 99.18%, and accuracy 99.18%)
of a 2D bidirectional LSTM network to detect AF in ECG
signals from 4 public databases, whereas Petmezas et al [170]
tested (sensitivity 97.87% and specificity 99.29%) a
CNN-LSTM model on ECG signals originating from the
MIT-BIH Atrial Fibrillation Database for the same medical
task.

Moreover, Jahmunah et al [192] applied a CNN architecture to
ECG data from several public ECG databases to detect coronary
artery disease, myocardial infarction, and congestive heart
failure, achieving an accuracy of 99.55%. Another study by Dai
et al [195] proposed a CNN for CVD diagnosis using different
intervals of ECG signals from the PTB Diagnostic ECG
Database and achieved accuracies of 99.59%, 99.80%, and
99.84% for 1-, 2-, and 3-second ECG segments, respectively.

Finally, Ma et al [208] introduced an improved dilated causal
CNN to classify ECG signals from the MIT-BIH Atrial
Fibrillation Database, achieving a high model performance
(sensitivity 98.79%, specificity 99.04%, and accuracy 98.65%),
whereas Zhang et al [238] tested (sensitivity 99.65%, specificity
99.98%, and accuracy 99.84%) a CNN for AF detection on ECG
signals from 2 major public databases.

ECG Analysis
In total, 12.6% (29/230) of studies that applied DL methods to
ECG data to perform ECG analysis were identified during the
literature search. Once again, CNN was the most commonly

used DL method (11/29, 38%); nonetheless, the best model
accuracy was achieved by studies using other DL methods. In
particular, Teplitzky et al [251] tested (sensitivity 99.84% and
positive predictive value 99.78%) a hybrid approach that
combines 2 DL approaches, namely BeatNet and RhythmNet,
to annotate ECG signals that originated from both public and
private ECG databases, whereas Murat et al [258] used a
CNN-LSTM approach on ECG data from the MIT-BIH
Arrhythmia Database and achieved an accuracy of 99.26% in
detecting 5 types of ECG beats.

By contrast, Vijayarangan et al [261] used a fused CNN-ResNet
structure to perform R peak detection in ECG signals from
several public ECG databases and achieved F1-scores between
96.32% and 99.65% for 3 testing data sets. Another study by
Jimenez Perez et al [265] implemented a U-Net model to
delineate 2-lead ECG signals originating from the QT Database
and achieved sensitivities of 98.73%, 99.94%, and 99.88% for
P wave, QRS complex, and T wave detection, respectively.
Finally, a study by Strodthoff et al [274] used a ResNet for
patient sex identification by using 12-lead ECG recordings
lasting between 6 and 60 seconds from several public databases
and achieved an area under the curve of 0.925 for the PTB-XL
ECG data set and 0.974 for the CPSC 2018 database.

Biometric Recognition
Only 3% (7/230) of studies that applied DL methods to ECG
data to perform biometric recognition were identified in the
literature search. Although 57% (4/7) of the studies used a CNN
architecture, only 29% (2/7) of them achieved high model
performance. Specifically, Wu et al [284] achieved an
identification rate of >99% by using ECG signals from 2 public
databases, whereas Chiu et al [285] achieved an identification
rate of 99.10% by using single-lead ECG recordings that
originated from the PTB Diagnostic ECG Database.

On the contrary, Song et al [281] implemented a ResNet-50
architecture for person identification using multiple ECG, face,
and fingerprint data from several public and private databases
and achieved an accuracy of 98.97% for ID classification and
96.55% for gender classification. Finally, AlDuwaile and Islam
[283] tested several pretrained models, including GoogleNet,
ResNet, MobileNet, and EfficientNet, and a CNN model to
perform human recognition using ECG signals that originated
from 2 public databases and achieved an accuracy between
94.18% and 98.20% for ECG-ID mixed-session and multisession
data sets.

Sleep Analysis
Approximately 5.2% (12/230) of studies that applied DL
methods to ECG data to perform sleep analysis were identified
during the literature search. Half (6/12, 50%) of the studies
proposed a CNN model, some of which achieved high
performance in several sleep analysis–related tasks. In particular,
Chang et al [289] used 1-minute ECG segments from the
Apnea-ECG Database and designed a CNN to detect sleep
apnea, achieving an accuracy of 87.90% and 97.10% for
per-minute and per-recording classification, respectively.

In addition, a study by Urtnasan et al [291] proposed a CNN
for the identification of sleep apnea severity by using ECG
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segments from a private database and achieved an F1-score of
98.00%, whereas another study by Urtnasan et al [297]
implemented a CNN to classify sleep disorders by using
polysomnography recordings from the Cyclic Alternating Pattern
Sleep Database and achieved F1-scores between 95% and 99%
for 5 different sleep disorder categories. By contrast, Nasifoglu
and Erogul [295] tested a fused CNN-ResNet approach for
obstructive sleep apnea detection (accuracy 85.20%) and
prediction (accuracy 82.30%) using data from a private database.
Mukherjee et al [296] used a multilayer perceptron to detect
sleep apnea from ECG recordings that originated from the
Apnea-ECG Database, achieving an accuracy of 85.58%.

Other Clinical Analyses
Approximately 10.4% (24/230) of studies that applied DL
methods to ECG data to perform other clinical analyses were
identified during the literature search. Almost half (10/24, 42%)
of the studies proposed a CNN approach, including Isasi et al
[300], who used data from a private database to detect shockable
and nonshockable rhythms during cardiopulmonary resuscitation
with an accuracy of 96.10%, and Ozdemir et al [309], who used
a private database to diagnose COVID-19 through ECG
classification (accuracy 93.00%).

Other notable works include a study by Chang et al [311], which
tested (sensitivity 84.60% and specificity 96.60%) an ECG12Net
to detect digoxin toxicity by using private ECG signals from
patients with digoxin toxicity and patients in the emergency
room, and another study by Baghersalimi et al [313], which
evaluated the performance (sensitivity 90.24% and specificity
91.58%) of a fused CNN-ResNet network to detect epileptic
seizure events from single-lead ECG signals originating from
a private database. Finally, Mazumder et al [318] implemented
a CNN-LSTM structure for the detection of shockable rhythms
in ECG signals from 2 public databases, achieving sensitivity
scores between 94.68% and 99.21% and specificity scores
between 92.77% and 99.68% for 2- and 8-second time windows,
respectively.

Discussion

Principal Findings
DL has led to the creation of robust models that could potentially
perform fast and reliable clinical diagnoses based on
physiological signals. Remarkably, during the past 2 years, at
least 230 studies that used DL on ECG data for various clinical
applications were identified in the literature, which is a large
number for such a short period, regardless of the application
domain. This is mainly justified by the fact that DL methods
can automatically capture distinctive features from ECG signals
based on the trained models that achieve promising diagnostic
performance, as shown in Multimedia Appendix 2 [93-322].
This constitutes a significant advantage compared with classical
ML methods that perform manual feature selection and feature
extraction—2 processes that conventionally require considerable
effort and time [323]. Overall, CNN represents the most popular
DL architecture and has been identified in most of the reviewed
studies (142/230, 60.9% articles). On the contrary, 18.3%

(42/230) of studies used LSTM architecture, whereas a ResNet
architecture was used in 17.8% (41/230) of cases.

However, training a DL model is not always straightforward.
Both architectural design choices and parameter tuning influence
model performance; thus, multiple combinations must be
considered. Furthermore, the training phase of DL algorithms
typically involves complex computations that can be translated
into long training times. This requires expensive state-of-the-art
computer hardware, including graphics processing units that
can dramatically accelerate the total execution time [324].

Another common problem with DL algorithms is overfitting;
this occurs when the algorithm fits the noise and therefore
performs well on the training set but fails to generalize its
predictions to unseen data (ie, the testing set). For this reason,
it is necessary to adopt an early stopping strategy during the
training phase to prevent further training when the model’s
performance on unknown data starts to deteriorate. This is
usually done by implementing a separate data set, called the
validation set, which most of the time is a small percentage of
the training set that is held back from training to provide an
unbiased evaluation of the model during training. Moreover,
random data splitting can introduce bias; thus, k-fold
cross-validation or leave-one-out cross-validation strategies are
preferred when training DL models. In addition, it is important
that different sets (ie, training, validation, and testing) contain
different patients, also known as interpatient data splitting, so
that the study’s results are more reliable. As concluded by this
review and presented in Multimedia Appendix 2 [93-322], many
researchers do not take this into consideration; hence, their
results are questionable.

Another critical issue related to overfitting is the distribution
of labels or predicted variables in the data set used for model
development and validation. For instance, in the BP prediction
problem, large stretches of constant BP from the same individual
would bias the network toward a constant predictor with minimal
error, with the network preferring to memorize
patient-identifying features to predict the average BP for a
patient rather than those which represent physiological metrics
useful in predicting variable BP for the same patient. The
resulting errors would be deceptively low if a patient’s nominal
BP does not change but, critically, would not be clinically useful
in the setting of hypertensive or hypotensive crisis or to guide
patient care. None of the assessed papers described the results,
indicating that the predicted BP follows meaningful trends.

Recent attention in the medical field to the concept of BP
variability [325] rather than clinical spot checks highlights the
need for ambulatory BP monitors that are both ergonomic for
the patient to increase compliance and comfort, as well as
reliable and well validated. A common pitfall in the use of
calibrated techniques is that subsequent test data points do not
differ significantly from the calibration value and thus yield
small errors in prediction, whereas the data are presented as an
aggregate pooled correlation plot or Bland-Altman plot with a
correlation value that simply reflects the range of BPs across
the population rather than patient-specific BP variation
[326,327]. In our review of articles using DL for BP prediction,
we did not encounter significant attempts to address the issue
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of BP variability in training data; in fact, many publications
explicitly removed data points with hypertensive values or large
pulse pressures from their data sets as “artifacts” [93-96,98].

In a calibration-less approach, a narrow range of variation would
lead to a low prediction error even when predicting the
population mean for each patient. If an ambulatory BP
monitoring device plans to use AI-based techniques to measure
variability, this variability must be represented in the training
set for a model to learn to predict such changes adequately. A
way of accomplishing this is to incorporate a variety of
BP-modulating activities in the training data, which represent
different sources of BP change and corresponding modulations
in the feature space. For example, ice pressor tests may increase
BP via peripheral vasoconstriction [328], whereas the valsalva
maneuver increases chest pressure extrinsically [329] and may
modulate input features such as heart rate in opposite ways,
reducing the chance that bias-prone DL architectures learn
misleading relationships.

In addition to the training and evaluation data, evaluation metrics
and cost functions are areas with significant room for
improvement. Mean squared error alone can be minimized with
a constant predictor if the BP range does not vary significantly.
Alternative cost functions such as cosine similarity, which is
maximized with constant inputs, contrastive losses, or
combinations thereof, have been successful in classification
problems in imbalanced, rare event prediction problems such
as critical events in patients with COVID-19 [330]. For other
promising solutions, it would be prudent to examine similar
trend prediction problems in other fields such as stock price
movement, where progress has been made using intuitive data
preparation and creative representation of the prediction targets,
in this case, price changes, to generate trend deterministic
predictions [331].

Furthermore, a vast majority of available ECG data sources
experience data imbalance. This creates a major problem when
trying to predict smaller classes that usually represent rare
conditions or diseases that are as important as larger classes
when designing health care decision support systems. To solve
this problem, several oversampling techniques have been
proposed, including random oversampling and undersampling,
the synthetic minority oversampling technique [332], the
adaptive synthetic sampling technique [333], the generative
oversampling method [334], distribution-based balancing [335],
and new loss functions such as focal loss [336], which can
achieve both prediction error reduction and data imbalance
handling. Papers addressing classification frequently use
techniques to address class imbalance; however, evidence for
such corrections in regression models does not appear as
frequently or rigorously.

In addition, DL models are often characterized by black box
behavior (lack of interpretability); that is, it is difficult for a
human to understand why a particular result is generated by
such complex architectures. This is crucial when training models
for medical applications, as diagnoses based on unexplained
model predictions are not usually accepted by medical experts.
A possible solution to this problem is to take advantage of
algorithms that are more easily interpretable, such as decision

trees [337], additive models [338], attention-based networks
[339], and sparse linear models [340], when designing a DL
architecture. By contrast, several DL model interpretation
approaches have been proposed in this direction, including
permutation feature importance [341], partial dependence plots
[342], and local interpretable model-agnostic explanations [343].
However, these techniques are rarely used in practice as they
require additional time and effort. A useful technique that is
used more often when dealing with medical images (and CNNs)
is gradient-weighted class activation mapping [344], which
makes CNN-based models more transparent by presenting visual
explanations for their decisions.

Uncertainty quantification is another common problem
associated with DL methods, which has recently drawn the
attention of researchers. There are 2 main types of uncertainty:
aleatoric (data uncertainty) and epistemic (knowledge
uncertainty). It is important to evaluate the reliability and
validity of DL methods before they can be tested in real-world
applications; thus, uncertainty estimation should be provided.
In the past few years, several uncertainty quantification
techniques have been proposed, including deep Bayesian active
learning [345], Monte Carlo dropout [346], Markov chain Monte
Carlo [347], and Bayes by backprop [348].

Moreover, as presented in Multimedia Appendix 1 [54-92],
there is no gold standard for data collection. As shown in
Multimedia Appendix 2 [93-322], different studies used ECG
data with distinct characteristics, namely, the number of leads,
signal duration, and sample rate. In addition, many studies used
multimodal data, such as photoplethysmograms, arterial BP,
polysomnography, and electroencephalograms. Some studies
used raw waveforms as input to their models, whereas others
precomputed a set of features. This heterogeneity makes it
difficult to compare study results; thus, finding the best
algorithm is challenging, if not impossible.

Recent advancements [349] in materials and techniques to
produce flexible, skin-integrated technology [350] have enabled
the development of unique sensors and devices that can
simultaneously measure both conventional and novel types of
signals from the human body. Small wireless devices [351] such
as these can extract continuous ECG; acceleration-based body
orientation; physical activity [352]; vibrations such as heart
sounds, breath sounds [353]; vocal processes [354]; and
photoplethysmogram signals at multiple wavelengths and body
locations. This wealth of physiological information that can be
measured noninvasively and continuously throughout day-to-day
life is potentially a treasure trove of useful insights into health
status outside the rigidity of a clinical system. Tools such as
DL have emerged as a tantalizing approach to take advantage
of such multivariate data in the context of the increased
complexity and unpredictability of ambulatory environments.
With careful data curation and training approaches, as well as
the use of intuitive, well-justified algorithms and network
structures, explainable AI can also provide justifications for the
use of novel features of underlying physiological relevance.
Currently, the use of highly complex and computationally
expensive DL models in wearable applications is limited.
Generally, raw data are processed in a post hoc fashion after
data have been uploaded to cloud servers, limiting real-time
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feedback. However, recently, there have been developments by
chip manufacturers to enable “edge inferencing” by bringing
AI-enabling computational acceleration to the
low–power-integrated circuit level, opening up the possibilities
for low-latency applications of DL algorithms. We strongly
believe that the creation of robust DL models that can assist
medical experts in clinical decision-making is an important
direction for future investigations.

In general, we believe that with this study, we (1) provided a
complete and systematic account of the current state-of-the-art
DL methods applied to ECG data; (2) identified several ECG
data sources used in clinical diagnosis, even some not so widely
cited databases; and (3) identified important open research
problems and provided suggestions for future research directions
in the field of DL and ECG data. Several important relevant
review studies have already presented novel DL methods that
are used on ECG data [355-357]. Nonetheless, none of them
combine all the aforementioned characteristics, which makes
this study innovative.

By contrast, the limitations of this study could be summarized
as the fact that owing to the enormous number of studies
focusing on DL and ECG data, we performed a review based
only on articles that have been published in various journals
between January 2020 and December 2021.

Although the rationale behind this study was to identify all
state-of-the-art DL methods that are applied to ECG data for
various clinical applications, in the future, we intend to
concentrate our efforts on providing a more complete account
of DL methods that make good use of ECG data to address a
specific clinical task (ie, congestive heart failure diagnosis).

Conclusions
In this study, we systematically reviewed 230 recently published
articles on DL methods applied to ECG data for various clinical
applications. We attempted to group the proposed DL
approaches per field of application and summarize the most
notable approaches among them. To the best of our knowledge,
this is the first study that provides a complete account of the
detailed strategy for designing each one of the proposed DL
systems by recording the ECG data sources, data preprocessing
techniques, model training, evaluation processes, and data
splitting strategies that are implemented in each approach.
Finally, open research problems and potential gaps were
discussed to assess the future of the field and provide guidance
to new researchers to design and implement reliable DL
algorithms that can provide accurate diagnoses based on ECG
data to support medical experts’ efforts for clinical
decision-making.
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Abstract

Background: In recent years, the volume of medical knowledge and health data has increased rapidly. For example, the increased
availability of electronic health records (EHRs) provides accurate, up-to-date, and complete information about patients at the
point of care and enables medical staff to have quick access to patient records for more coordinated and efficient care. With this
increase in knowledge, the complexity of accurate, evidence-based medicine tends to grow all the time. Health care workers must
deal with an increasing amount of data and documentation. Meanwhile, relevant patient data are frequently overshadowed by a
layer of less relevant data, causing medical staff to often miss important values or abnormal trends and their importance to the
progression of the patient’s case.

Objective: The goal of this work is to analyze the current laboratory results for patients in the intensive care unit (ICU) and
classify which of these lab values could be abnormal the next time the test is done. Detecting near-future abnormalities can be
useful to support clinicians in their decision-making process in the ICU by drawing their attention to the important values and
focus on future lab testing, saving them both time and money. Additionally, it will give doctors more time to spend with patients,
rather than skimming through a long list of lab values.

Methods: We used Structured Query Language to extract 25 lab values for mechanically ventilated patients in the ICU from
the MIMIC-III and eICU data sets. Additionally, we applied time-windowed sampling and holding, and a support vector machine
to fill in the missing values in the sparse time series, as well as the Tukey range to detect and delete anomalies. Then, we used
the data to train 4 deep learning models for time series classification, as well as a gradient boosting–based algorithm and compared
their performance on both data sets.

Results: The models tested in this work (deep neural networks and gradient boosting), combined with the preprocessing pipeline,
achieved an accuracy of at least 80% on the multilabel classification task. Moreover, the model based on the multiple convolutional
neural network outperformed the other algorithms on both data sets, with the accuracy exceeding 89%.

Conclusions: In this work, we show that using machine learning and deep neural networks to predict near-future abnormalities
in lab values can achieve satisfactory results. Our system was trained, validated, and tested on 2 well-known data sets to ensure
that our system bridged the reality gap as much as possible. Finally, the model can be used in combination with our preprocessing
pipeline on real-life EHRs to improve patients’ diagnosis and treatment.

(JMIR Med Inform 2022;10(8):e37658)   doi:10.2196/37658
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Introduction

Background
Machine learning and data analysis methods are used for diverse
applications, such as anomaly detection [1], text classification
[2], image segmentation [3], and time series forecasting [4].
One of the fields in which machine learning has become
extremely popular recently is medicine. In medicine, there are
now other application due to the improved availability of data.
In particular, medical images [5] and electronic health records
(EHRs) [6,7] represent prominent examples here. Much research
has been done on medical images to detect diseases, such as
pneumonia [8], which was driven by the advancements in
computer vision. In addition, EHRs enabled the use of machine
learning models to perform many tasks, such as predicting
hospital length of stay [9] and mortality in septic patients [10].
In these studies, the authors used EHRs to train their machine
learning models. However, EHRs have so much more data that
with the right tools, they can support many valuable applications.

In this study, we consider the treatment of critically ill patients
in the intensive care unit (ICU). Throughout the treatment of
these patients, laboratory data are regularly gathered. Due to
the substantial number of values to be monitored in the ICU,
which sometimes can be more than 100 lab tests [11], important
anomalies or trends may not be noticed. This can lead to
suboptimal treatment strategies and complications in the
patient’s case. For example, early changes in lab values for
patients with COVID-19 are important predictors of mortality
[12]. The correct analysis of laboratory anomalies can direct
treatment strategies, particularly in the early detection of
potentially life-threatening cases. This should aid in resource
allocation and save lives by allowing for timely intervention.
Furthermore, health care workers spend 30%-50% of their time
in front of computers and must deal with a mass of patient data
[13,14]. Any savings in that time can free them to spend more
time with patients.

Prior Work
Because of the recent availability of big data in the medical
field, especially EHRs, there has been a growing interest in
applying machine learning tools for medical applications.
Working with medical data from EHRs can be quite challenging
due to the inconsistent sampling of lab measurements, high
frequency of missing values, and presence of noisy data.
Additionally, there is no standardized way to process medical
data before applying machine learning algorithms on them.
Nevertheless, many authors have managed to process the data
and apply machine learning algorithms for medical sequence
modeling. Authors [15] have developed a masked, self-attention
mechanism that uses positional encoding and dense interpolation
strategies for incorporating temporal order. The authors trained
and tested their model on the MIMIC-III data set and achieved
better performance on them compared to recurrent neural
networks (RNNs). The benchmarking tasks include predicting
mortality (classification), length of stay (regression),

phenotyping (multilabel classification), and decompensation
(time series classification) [16]. Although the benchmarking
tasks include a classification task, none of these tasks include
lab values or the modeling of irregularly sampled sequences
with large amounts of sparse data. The benchmark is created to
compare different machine learning models on a specific type
of medical data extracted from the MIMIC-III data set and
covers only cover only 4 tasks. However, MIMIC-III has much
more data that can allow for performing many more tasks like
the one in this study.

There has also been some work that compares different
approaches and machine learning algorithms for learning from
irregularly sampled time series, which is mostly the case in
medicine. For example, authors [17] compare modeling
primitives that allow learning from the different forms of
irregular time series, such as discretization, interpolation,
recurrence, attention, and structural invariance. The authors
discuss the pros and cons of each of these modeling primitives
and the tasks for which they are suited. Another study [18] used
a recurrence-based approach using specific versions of RNNs
called gated recurrent units (GRUs) and discussed the
advantages of using it instead of the other approaches.
Additionally, authors [19] have proposed a system for early
detection of sepsis using an interpolation-based method for data
imputation followed by using temporal convolutional networks
(TCNs) and dynamic time warping. The authors used a multitask
gaussian process for multichannel data imputation and later
used a TCN model to predict the probability of a sepsis diagnosis
in the future. The authors proved that their proposed algorithm
outperforms the state-of-the-art algorithm for sepsis detection.
In contrast, we use a discretization-based approach followed by
data imputation to convert the irregularly sampled time series
to a regularly sampled one, as it provides an easy way to
understand, debug, and implement a framework to deal with
sensitive lab values that can be generalized effectively to other
EHRs.

Goal of This Study
This work’s objective is to analyze laboratory results (lab values)
of patients in the ICU and classify which of these lab values are
predicted to be out of the normal range soon (the next time these
tests are done) and which are predicted to be normal. This allows
health workers to focus on these laboratory values, their
significance, their relation to the patient's current case, and their
impact on the patient's future condition. This can potentially
lead to reducing the length of the ICU stay and mortality [20].
Moreover, health care workers can focus future testing on these
lab values and not waste time and resources on unnecessary
tests that constitute approximately 50% of the tests ordered in
the ICU [21]. Finally, it will allow the medical staff to reduce
the time they need to check all the lab values and focus on the
relevant ones, giving them more time to spend with patients
[14].
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Methods

Problem Definition
The task at hand is to predict which lab values will be normal
and which will be abnormal in future, for a given period of ICU
stay. The input data contain the patients' demographics and
numerical lab values from the moment they were admitted till
the end of their stay. The output is a binary vector, where each
number represents the likelihood of a specific lab value to be

abnormal (1) or normal (0) in the next 4 hours. Therefore, our
problem is a “many to one” or a multilabel classification
problem. Moreover, we have chosen the 4-hour time window
because the majority of lab values found in MIMIC-III and
eICU are recorded every 4 hours. Therefore, using this time
step will introduce the least amount of data artifacts, especially
considering that the changes in lab values are not noticeable for
smaller time frames (like 1 hour). The same time window for
lab values has been used by other authors [22]. Finally, the
general diagram of the system is shown in Figure 1.

Figure 1. Overall abnormality detection system in practice. DNN: deep neural network.

Data and Cohort Definition
The data used to train, validate, and test the different prediction
models are derived from the MIMIC-III database. It is a database
that contains data from 31,532 unique ICU stays of patients
who stayed within the ICUs at the Beth Israel Deaconess
Medical Center [6] between 2001 and 2012. We also used data
derived from the eICU Collaborative Research Database [7]. It
is a multicenter database for critical care research created by
The Philips eICU program. It contains data on 200,859 ICU
stays from 335 ICUs units in the United States of America. In
both databases, a unique ICU stay ID is associated with every
unique ICU admission.

Our cohort focuses on mechanically ventilated patients in the
ICU. This cohort is truly relevant these days because of the
COVID-19 virus that caused a sharp increase in the number of
patients in the ICU receiving mechanical ventilation. For these
patients, it is vital to know which set of lab values have
abnormal trends and focus on them, as it has a direct relation

to how the case will develop [12]. The same cohort was used
in a previous work focused on dynamically optimizing
mechanical ventilation in critical care using reinforcement
learning [22]. Using this cohort, we extracted 25,086 eICU and
11,943 MIMIC-III ICU stays with mechanical ventilation events.
The duration of the ICU patients' stays ranges from 12 h to 72
h in 4-hour time steps. Patient demographics and clinical
characteristics are shown in Table 1.

The input data consist of 3 demographic features (age, sex,
weight) and 25 lab values (white blood cell count, PaCO2,
hemoglobin, etc). The lab values chosen are the most relevant
to the mechanically ventilated patients, as shown by the medical
team members from the university hospital of Rheinisch
Westfälische Technische Hochschule (RWTH) Aachen in their
previous work [22]. In Multimedia Appendix 1, the chosen
features from the MIMIC-III and eICU data sets are listed along
with their means and SDs.
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The output is a binary vector of length 25. To convert numerical
lab values to binary values, we used the reference ranges
followed by the American College of Physicians [23]. Finally,

the queries of Structured Query Language (SQL) used to extract
the cohort data from both databases are included in the Git
repository [24].

Table 1. Clinical and demographic properties of the study population [16].

eICU data setMIMIC-III data setProperty

3355Number of ICUsa

2014-20152001-2012Data acquisition timespan

23,69911,443Number of included patients (N)

65.0 (54-74)66.9 (56.3-77.5)Age (years), median (IQR)

83.5 (22.0)85.7 (18.1)Body weight in kg, mean (SD)

10,546 (42%)4329 (36.3%)Sex, female, n(%)

14,540 (58%)7614 (63.7%)Sex, male, n (%)

13.211.1In-hospital mortality, %

3.0 (1.71-5.9)3.1 (1.6-6.1)LOSb in ICU (days), median (IQR)

aICU: intensive care unit.
bLOS: length of stay.

Preprocessing
The patients’ raw data extracted from the MIMIC-III and eICU
data sets were very sparse and had several missing values.
Therefore, it was necessary to perform preprocessing to prepare
the data for the machine learning pipeline. First, the
time-windowed sample-and-hold method was used to handle
missing values. In this method, the data sample is held (repeated)
until the next available data sample or the maximum hold time
is reached. For each feature, we conducted a frequency analysis
to determine how often a new measurement is produced. The
counts of consecutive measurement time differences are obtained
and when their cumulative sum exceeds a threshold, the first
value where this occurs is taken as the hold time. When the
feature's hold time exceeds this maximum, the data point is
considered corrupted [25]. For the rest of the missing values, a
k-nearest neighbor imputation with singular value decomposition
and mean imputation were used [26]. Any ICU stay that had
more than 50% missing data was discarded (occurrence <1%
in the overall cohort) [22]. Finally, the Tukey range test was
used to detect and delete outliers. The preprocessing steps are
explained in detail in the Git repository [24].

Prediction System Overview
The overall system architecture used for predicting abnormalities
in patients' lab values is shown in Figure 2. After performing
the preprocessing steps explained earlier, the output time series
will be separated into two main types: demographics and lab

values. Each ICU stay will be split into multiple shorter
sequences using the moving window technique. Figure 3
presents an example of an ICU stay of length L=11 (44 hours).
Here, Xm represents the patient's input data vector at time step

m ∈ +, and Ym represents the patient's output binary vector.

For a window size W ∈ + of 8, we have 3 subsequences
extracted from the stay. For example, W1 includes the input
vectors [X0:X7] and the output binary vector Y8. The process of
the moving window is applied to ICU stays in the data sets
(MIMIC-III, eICU). Then, the resulting subsequences are
shuffled and used to train, validate, and test the different
machine learning models that we have experimented with, as
shown in Figure 2. This means the windowed subsequences
from the same ICU stay can be distributed across the training,
validation, and testing sets. Moreover, we experimented with
different window sizes between W=5 and W=10 and chose the
one that gave us the best results for all the models, as explained
in the Results section.

We experimented with predicting the exact numerical lab values
(regression problem) and then converting the predicted output
to a binary vector after comparing the values with the normal
ranges. The models were then trained to minimize the minimum
squared error loss. The results were 10%-20% worse than those
obtained when predicting the output binary vector directly and
optimizing for the binary cross-entropy loss. Therefore, we
selected this system model.
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Figure 2. Overall system model used in our study when trained on the MIMIC-III data set and tested on the eICU data set. ICU: intensive care unit;
Sigmoid is an activation function; L: lab value; t: time step.

Figure 3. Moving window technique to extract sequences from intensive care unit stays. X and Y represent the input and output data respectively; W
represents the windows extracted from the input sequences.

Prediction Models
The goal of the prediction model in our scenario is to predict
abnormalities in laboratory values for a given input sequence.
The machine learning problem is a multilabel classification
problem because multiple lab values are classified as normal
or abnormal at the same time (multiclass) and more than 1 lab
value can be abnormal at the same time (multilabel). We
experimented with four current deep learning (DL) approaches:
long short-term memory (LSTM), self-attention with time
encoding (transformer architecture), convolutional neural

network (CNN), and TCN. In the following subsections, each
model architecture is discussed briefly. The models are
explained in more detail in Multimedia Appendix 2 [2,27-39].

LSTM models
LSTM is a type of RNN that has the ability to learn from long
sequences of data. A typical LSTM layer in a DL model consists
of multiple LSTM cells. Another similar yet simpler cell
structure is called GRU [4]. We experimented with both cell
types in our model and chose LSTM because it performed better.
The architecture used in our experiment is shown in Figure 4.
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All the lab values will be input to the LSTM block to learn from
the sequential data. Each LSTM block includes an LSTM layer,
which has “tanh” as the built-in activation function. Then comes
a batch normalization layer after the sequential data pass through
the layers, and these data will be concatenated with the
demographic features. The concatenated data will then go

through a stack of fully connected layers ending with a last
dense layer that has a sigmoid activation function. During
forward propagation, the output probabilities will be compared
to a threshold to produce the binary labels that are used to
calculate the loss and other evaluation metrics.

Figure 4. LSTM architecture used in our experiments. LSTM: long short-term memory; ReLU: rectified linear unit; Tanh, ReLU and Sigmoid are
activation functions.

CNN models
CNNs learn to optimize their kernels to extract information
from input data in a successive manner. Additionally, they work
well on time series forecasting and classification problems [27],
often outperforming LSTMs in terms of the total training time
in a more computationally efficient manner [28]. In our case,
we used a 1D multiple CNN (M-CNN), where the kernels
(filters) move along the time axis performing convolution

operations on all features. The kernel size defines how many
time steps 1 kernel covers at any point in time.

Aside from the normal CNN that takes 1 input stream, we
developed an architecture that takes 2 streams of the input
sequences in parallel. Each stream will be processed with
different filters. This ensures that we capture short-term
dependencies in the sequences as well as long-term ones. The
network architecture is shown in Figure 5.
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Figure 5. Multiple convolutional neural network model architecture used in our experiments. Conv1D: 1D convolutional layer; LeakyReLU: leaky
rectified linear unit; ReLU: rectified linear unit; Sigmoid, LeakyReLU, and ReLU are activation functions.

Transformer models
Transformers are a recent neural network architecture derived
from the attention mechanism first proposed in an earlier study
[29]. The mechanism was designed initially for translation tasks,
which were earlier accomplished using RNNs.

Transformers typically use a collection of superimposed
sinusoidal functions to represent the position of words in natural

language processing tasks. However, in time series tasks, we
need to attach the meaning of time to our input. Authors [30]
have introduced a method where each input feature is
represented as a linear component and a periodic component.
The result at the end will be a learned vector representation of
time steps that will be concatenated with the input data before
the attention layers. The model architecture we developed is
shown in Figure 6.
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Figure 6. Transformer architecture used in our experiments. Conv1D: 1D convolutional layer; Time2Vec: time to vector transformation; ReLU: rectified
linear unit; ReLU and Sigmoid are activation functions.

TCN models
TCNs were first introduced for video-based action segmentation
[31]. Not long after that, they were used for sequence modeling
tasks like the detection of sepsis [19]. A TCN differs from a
conventional CNN in 2 ways; first, a TCN can take a sequence
of any length and output a sequence of the same length using

0 padding; second, a TCN performs causal convolution. In
general, TCNs are advantageous because they can be trained in
parallel with less memory unlike RNNs. Additionally, they
support variable length inputs and can easily replace any existing
RNN. Figure 7 shows the TCN architecture that we designed
and used in our experiments.
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Figure 7. TCN architecture used in our experiments. LeakyReLU: leaky rectified linear unit; ReLU: rectified linear unit; TCN: temporal convolutional
network; LeakyReLU, ReLU, and Sigmoid are activation functions.

Evaluation Metrics
In our work, we predicted the output binary vector of the future
time step rather than the actual numerical lab values. We tried
training the models as regression models predicting the actual
numerical values and minimizing the minimum squared error.
Then, we converted the predicted numerical output to binary
vectors using the recommended ranges. However, we received
better results when we treated the models as multilabel,
multiclass classifiers predicting the binary vectors directly.
Therefore, the evaluation metrics we used are binary accuracy,
precision, recall, and F1 score.

Evaluation Setup
As we were predicting multiple lab values at the same time and
all the classes were of equal importance, we used
micro-averaging to calculate the accuracy, precision, recall, and
F1 globally. These evaluation metrics were used to evaluate the
models' training, validation, and testing. Additionally, to
compare the models, the following points were followed: First,
the models' architectures and hyperparameters were optimized
using the Keras Tuner library [40] to ensure that the models
performed at their best. Second, the models were trained to
optimize the binary cross-entropy loss [41]. Third, early stopping
was used to stop the model's training once the validation loss

did not change by 0.01 for 10 consecutive epochs. This reduces
the chances of model overfitting. Fourth, we set the seed for all
the random processes during model training to ensure
replicability of our results. Finally, we used the same threshold
(TH=0.5) and same window size (sequence length=6) for all
the models to ensure a fair comparison. We used 0 padding for
sequences shorter than 6 time steps (ICU stay length<24 hours).
Moreover, we implemented a gradient boosting–based method
(LightGBM) for comparison with DL-based methods.
LightGBM is one of the best performing non-DL–based
algorithms that is shown to perform well on time series
classification tasks [32].

We experimented with 2 approaches for training the models. In
the first approach, we trained the models and validated them
on the MIMIC-III data set. Then, we tested them on the
MIMIC-III and eICU data sets, as shown in Figure 2. In the
second approach, we trained and validated them on the eICU
data set instead. Then, we tested them on the eICU and
MIMIC-III data sets. Table 2 shows counts of the training,
validation, and testing samples used in both methods from each
data set (window size=6). The same cohort of patients was used
in both cases, but eICU has much more patient data that led to
a much bigger set than MIMIC-III. Finally, the model
architectures and hyperparameters can be found on our Git
repository [24] and in Multimedia Appendix 2.
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Table 2. Sample counts for training, validation, and testing in both training methods.

Number of second testing samplesNumber of first testing samplesNumber of validation samplesNumber of training samplesMethod

196,208 (eICU)21,526 (MIMIC-III)12,915 (MIMIC-III)73,190 (MIMIC-III)#1

86,106 (MIMIC-III)49,052 (eICU)29,431 (eICU)166,776 (eICU)#2

Ethics Approval
Approval for data collection, processing, and release for the
MIMIC-III database has been granted by the Institutional
Review Boards of the Beth Israel Deaconess Medical Center
(Boston, United States) and Massachusetts Institute of
Technology (Cambridge, United States). Approval for data
collection, processing, and release for the eICU database has
been granted by the eICU research committee and exempt from
Institutional Review Board approval. All data were processed
using the computational infrastructure at the RWTH Aachen
University and the University Hospital at RWTH Aachen in
accordance with European Union data protection laws.

Results

In Figures 8, 9 and 10, we report the validation loss, F1 score,
and accuracy of the different models during training,
respectively. The models’ names ending with “mimic” indicate
that they were trained on the MIMIC-III data set and those

ending in “eicu” refer to the models trained on the eICU data
set. Moreover, because of the early stopping used during
training, some models stopped training before others. Thus,
their metrics are constant after the stopping point.

In Tables 3 and 4, we report the testing accuracy, recall,
precision, and F1 scores of the different models. All the results
were averaged over all the lab values and the testing samples.

As we expect our system to run continuously on huge amounts
of data in hospitals, we want the performance of the chosen
model to be good enough to meet such demands. Therefore, we
measured the models' inference times. Experiments were run
on a computer with an Intel(R) Core i9-9900K processor (Intel
Corporation) running at 3.60 GHz using a 32-GB DDR4 RAM
and Nvidia GTX 1080ti graphics processing unit (Nvidia
Corporation), running Ubuntu (version 20.04, Canonical Ltd),
Python (version 3.8, Python Software Foundation), and
TensorFlow (version 2.6, Google Brain). Table 5 reports the
inference time for each model on a whole batch (batch size=128
samples).

Figure 8. Validation loss of the different models. LSTM: long short-term network; M-CNN: multiple convolutional neural network; TCN: temporal
convolutional network; Val.: validation; ICU: intensive care unit.
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Figure 9. Validation F1 score of the different models. LSTM: long short-term network; M-CNN: multiple convolutional neural network; TCN: temporal
convolutional network; Val.: validation; ICU: intensive care unit.

Figure 10. Validation accuracy of the different models. LSTM: long short-term network; M-CNN: multiple convolutional neural network; TCN:
temporal convolutional network; Val.: validation; ICU: intensive care unit.
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Table 3. Testing results for the different models over all lab values (micro-average) on the MIMIC-III data seta.

F1 scoreRecallPrecisionAccuracyTraining data set and model

MIMIC-III

0.850.870.830.85LSTMb

0.840.850.840.86CNNc

0.880.890.870.88M-CNNd

0.840.810.880.86Transformer

0.860.850.870.86TCNe

0.780.760.820.83LightGBMf

eICU

0.80.810.790.8LSTM

0.840.830.860.85CNN

0.870.860.880.87M-CNN

0.850.840.860.86Transformer

0.830.840.820.83TCN

0.770.780.770.82LightGBM

aThe models listed under MIMIC-III were trained on the MIMIC-III data set and those under eICU were trained on the eICU data set.
bLSTM: long short-term memory.
cCNN: convolutional neural network.
dM-CNN: multiple convolutional neural network.
eTCN: temporal convolutional network.
fLightGBM: gradient boosting–based method.
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Table 4. Testing results for the different models over all lab values (micro-average) on the eICU data seta.

F1 scoreRecallPrecisionAccuracyTraining data set and model

MIMIC-III

0.80.80.810.79LSTMb

0.80.80.80.78CNNc

0.810.830.80.8M-CNNd

0.750.690.820.75Transformer

0.730.720.740.71TCNe

0.760.750.780.75LightGBMf

eICU

0.840.830.850.82LSTM

0.840.830.860.85CNN

0.90.910.90.89M-CNN

0.870.880.870.86Transformer

0.890.890.880.89TCN

0.770.780.770.82LightGBM

aThe models under MIMIC-III were trained on the MIMIC-III data set and those under eICU were trained on the eICU data set.
bLSTM: long short-term memory.
cCNN: convolutional neural network.
dM-CNN: multiple convolutional neural network.
eTCN: temporal convolutional network.
fLightGBM: gradient boosting–based method.

Table 5. Inference time for the different models.

Average inference time/batchModel name

654 msLSTMa

220 msCNNb

285 msM-CNNc

854 msTCNd

598 msTransformer

121 msLightGBMe

aLSTM: long short-term memory.
bCNN: convolutional neural network.
cM-CNN: multiple convolutional neural network.
dTCN: temporal convolutional network.
eLightGBM: gradient boosting–based method.

Discussion

In this work, we developed an end-to-end system to extract and
process lab results from EHRs and applied various machine
learning algorithms to determine which lab values will be out
of range in the next 4 hours with satisfactory results. This
enables medical staff to focus on these lab values that can lead
to improvements in overall patient diagnosis and treatment.
Additionally, it can help reduce the time and cost wasted on
irrelevant lab tests. The following steps were taken to reach this

goal: First, we used SQL queries to extract the relevant patient
data following our cohort from MIMIC-III and eICU data sets.
Second, we used the time-windowed sample-and-hold method
alongside k-nearest neighbor imputation with mean imputation
and singular value decomposition to fill missing values.
Moreover, we used the Tukey range test to detect anomalies
and delete them. Third, we experimented with non-DL methods
like LightGBM as well as 4 DL algorithms for time series
classification. The DL-based method stacks models through
mapping and processing functions between the models, using
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gradient descent or momentum methods to optimize fit. Gradient
boosting methods like LightGBM iteratively fit models to error
terms and average results within a generalized linear modeling
framework using base learner models at each iteration,
introducing a penalty term into the base learner models. Finally,
we trained and tested our algorithms on 2 of the well-known
EHR data sets, MIMIC-III and eICU. Cross-validating our
algorithms on these 2 data sets ensures not only a broader
performance comparison, but also helps analyze how far the
different algorithms can generalize on new unseen data.

A deeper analysis of the training results of the different
DL-based models (Figures 8, 9 and 10) revealed that the M-CNN
model trained on the eICU data set yielded better results at the
end of the training than any other model. Additionally, we can
see that the performance of both the TCN and transformer model
improved significantly when trained on more data (eICU data
set). This can be better understood from the results in Tables 3
and 4. First, the models trained on the eICU data set generalized
better on data that they had not seen before from both the data
sets. This is because the models had more data to train on, so
they could see more variations and cases that they learned. On
the other hand, the models trained on the MIMIC-III data set
(43% the size of eICU training samples) performed well on the
testing samples from MIMIC-III but performed much worse on
the testing samples from eICU. Second, the M-CNN model
performed the best in terms of almost all the evaluation metrics
in both training methods. CNN models perform well on many
sequenced modeling tasks, often outperforming RNN
architectures like LSTM or GRU. Additionally, CNN-based
models have the least number of trainable parameters out of the
different DL-based methods and occupy the least memory,
making them perform better on data sets with small amounts
of training data. On the other hand, standard CNNs can only
work with fixed-size inputs and usually focus on data elements
that are in immediate proximity due to their static convolutional
filter size. However, combining multiple CNN models helps
increase the accuracy further by applying convolutions with
multiple filter sizes and combining the outputs to give a more
robust prediction. Moreover, in our case, we chose a static,
relatively short input sequence length, thus mitigating the issue

of long, variable length sequences. In case of long, variable
length input sequences, a TCN will be a better candidate. A
TCN employs techniques like multiple layers of dilated
convolutions and padding of input sequences to handle different
sequence lengths and detect dependencies between items that
are not next to each other but are positioned on different places
in a sequence. Furthermore, more complicated architectures
like transformers and TCNs with many more trainable
parameters would perform better if they had access to more
data, which is often an issue in the medical field because of the
scarcity of available training data. Therefore, M-CNN
architectures are desirable for modeling medical time series
data with static lengths and relatively short lengths like lab
values requiring relatively smaller training data sets. Moreover,
the M-CNN architecture can generalize well on unseen data
when trained well, considering integrated measures for reducing
overfitting during model training. An interesting fact is that
despite not outperforming the M-CNN model, lightGBM
performed as well (sometimes better) as some other DL-based
approaches while requiring much less training time.
Non-DL–based approaches can model problems with much less
training data but require hand-crafted features and are very
sensitive to outliers and variation in data. Further, removing
seasonality is often needed when dealing with time series data.
Finally, we can see that the LightGBM model is the fastest in
terms of the inference time according to Table 5, followed by
the CNN model, which is the fastest among the DL-based
models. The M-CNN model, despite outperforming the regular
CNN model, is 29% slower in terms of the inference time, which
is expected as the model has more parameters.

Overall, our comprehensive analysis shows the advantage of
using DL models for classifying future abnormalities in lab
values for patients in the ICU. Although we tested our
algorithms on 2 of the most used EHR data sets, further testing
is needed to assess the performance of the full pipeline on other
EHRs, including the preprocessing steps and how well the tuned
hyperparameters of the machine learning models will generalize.
Nevertheless, we believe this study can help other researchers
trying to use machine learning in modeling medical time series
problems.
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TCN: temporal convolutional network
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Abstract

Background: The Centers for Medicare and Medicaid Services projects that health care costs will continue to grow over the
next few years. Rising readmission costs contribute significantly to increasing health care costs. Multiple areas of health care,
including readmissions, have benefited from the application of various machine learning algorithms in several ways.

Objective: We aimed to identify suitable models for predicting readmission charges billed by hospitals. Our literature review
revealed that this application of machine learning is underexplored. We used various predictive methods, ranging from glass-box
models (such as regularization techniques) to black-box models (such as deep learning–based models).

Methods: We defined readmissions as readmission with the same major diagnostic category (RSDC) and all-cause readmission
category (RADC). For these readmission categories, 576,701 and 1,091,580 individuals, respectively, were identified from the
Nationwide Readmission Database of the Healthcare Cost and Utilization Project by the Agency for Healthcare Research and
Quality for 2013. Linear regression, lasso regression, elastic net, ridge regression, eXtreme gradient boosting (XGBoost), and a
deep learning model based on multilayer perceptron (MLP) were the 6 machine learning algorithms we tested for RSDC and
RADC through 10-fold cross-validation.

Results: Our preliminary analysis using a data-driven approach revealed that within RADC, the subsequent readmission charge
billed per patient was higher than the previous charge for 541,090 individuals, and this number was 319,233 for RSDC. The top
3 major diagnostic categories (MDCs) for such instances were the same for RADC and RSDC. The average readmission charge
billed was higher than the previous charge for 21 of the MDCs in the case of RSDC, whereas it was only for 13 of the MDCs in
RADC. We recommend XGBoost and the deep learning model based on MLP for predicting readmission charges. The following
performance metrics were obtained for XGBoost: (1) RADC (mean absolute percentage error [MAPE]=3.121%; root mean
squared error [RMSE]=0.414; mean absolute error [MAE]=0.317; root relative squared error [RRSE]=0.410; relative absolute
error [RAE]=0.399; normalized RMSE [NRMSE]=0.040; mean absolute deviation [MAD]=0.031) and (2) RSDC (MAPE=3.171%;
RMSE=0.421; MAE=0.321; RRSE=0.407; RAE=0.393; NRMSE=0.041; MAD=0.031). The performance obtained for MLP-based
deep neural networks are as follows: (1) RADC (MAPE=3.103%; RMSE=0.413; MAE=0.316; RRSE=0.410; RAE=0.397;
NRMSE=0.040; MAD=0.031) and (2) RSDC (MAPE=3.202%; RMSE=0.427; MAE=0.326; RRSE=0.413; RAE=0.399;
NRMSE=0.041; MAD=0.032). Repeated measures ANOVA revealed that the mean RMSE differed significantly across models
with P<.001. Post hoc tests using the Bonferroni correction method indicated that the mean RMSE of the deep learning/XGBoost
models was statistically significantly (P<.001) lower than that of all other models, namely linear regression/elastic net/lasso/ridge
regression.

Conclusions: Models built using XGBoost and MLP are suitable for predicting readmission charges billed by hospitals. The
MDCs allow models to accurately predict hospital readmission charges.

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e37578 | p.240https://medinform.jmir.org/2022/8/e37578
(page number not for citation purposes)

Gopukumar et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:deepika.gopukumar@health.slu.edu
http://www.w3.org/Style/XSL
http://www.renderx.com/


(JMIR Med Inform 2022;10(8):e37578)   doi:10.2196/37578

KEYWORDS

readmission charges; readmission analytics; predictive models; machine learning; readmissions; predictive analytics

Introduction

Background
Electronic health records (EHRs) are now widely adopted by
hospitals. EHR adoption has almost doubled since 2008, one
of the reasons being the implementation of the
government-related mandate as part of the American Recovery
and Reinvestment Act of 2009 [1,2]. Even with the
implementation of technological innovations like EHRs and
various reforms for funding health care initiatives, health care
costs have continued to increase. As per the recent National
Health Expenditure Fact Sheet provided by the Centers for
Medicare and Medicaid Services (CMS), the national health
expenditure has grown 9.7% by the end of 2020, totaling US
$4.1 trillion (approximately 19.7% of the Gross Domestic
Product). On average, the United States of America spends over
US $10,000 per resident per year toward health care. It is
considerably higher than that in other countries included in the
Organization for Economic Co-operation and Development,
where the average cost is only US $4000 per person after
adjusting for purchasing power [3].

Readmissions have been a significant contributor to rising health
care costs. The hospital cost associated with 30-day all-cause
readmissions was approximately US $41.3 billion for 2011 [4].
Even before the pandemic, annual hospital readmission costs
were approximately US $26 billion for Medicare alone [5]. The
pandemic caused a further increase in readmission costs [6].
Being expensive at the individual level, readmission is often
postponed by patients until their health severely degenerates,
leading to further increases in readmission costs, and these in
turn contribute to the rapidly rising health care costs.

As a result, it is important for hospitals to plan for potential
readmissions and associated costs. Although past research has
primarily focused on predicting the probability of readmissions,
the cost of readmissions is understudied, which is an important
element in the financial planning done by hospitals as well as
various concerned governmental agencies. As our task is to
predict future hospital readmission charges, we take cues from
existing literature on predictive analytics that have been applied
and found beneficial in multiple areas of health care, such as
risk analysis, disease diagnosis, disease progression, and
preventive care [7-12]. Thus, we expect that predicting hospital
readmission charges would help hospital policymakers plan for
the upcoming expenditures. Hospitals can use these predictions
to design policies based on the costs borne by individual
patients.

According to the CMS, readmission is defined as an admission
to a hospital within 30 days of discharge [13]. It could be from
the same or another hospital, irrespective of the cause of
readmission. However, readmission charges can be expected to
vary significantly across major diagnostic categories (MDCs).

To better control such variations and develop effective
prediction models, we consider predicting the charges based on
MDCs in this study, which is a novel aspect of our research. To
the best of our knowledge, this aspect has not been explored in
the past. We compare the predictions with the case when all
diagnostic categories are pooled to predict readmission charges.
Accordingly, we deploy the term readmission in two ways:
readmission with the same major diagnostic category (RSDC)
and all-cause readmission category (RADC). RSDC is defined
as an admission to a hospital (same or another hospital) within
30 days of discharge with the cause of readmission being the
same as the previous admission. In this context, the “cause of
readmission” is based on the major diagnostic category (MDC).
RADC is defined as an admission to a hospital within 30 days
of readmission, irrespective of the cause of readmission.

Objective
The hospital charges for readmitted individuals can vary based
on different services (such as procedures, labs, X-rays, and
scans) used. Predicting these charges would be beneficial for
financial planning by hospitals. Existing studies mainly focus
on predicting either readmission probabilities or general health
care costs. To date, no thorough research on suitable machine
learning models exists for predicting hospital readmission
charges. An exception is a study focusing on predicting
readmission costs (not charges) [14]; however, it also does not
include modern approaches, such as deep learning and
regularization-based techniques. Our objective is to consider
and compare traditional and modern predictive techniques to
identify a suitable approach for predicting readmission charges.

Before building predictive models for RSDC and RADC, we
also conducted preliminary analyses. First, for understanding
the contribution of readmissions to the rising health care costs
based on different criteria for readmissions (ie, RSDC and
RADC), we determined the variation in the percentage of
individuals contributing to hospital charges in our research
context. Next, we analyzed whether readmissions varied across
MDCs based on RSDC and RADC. As readmission policies
vary across countries, we analyzed different readmission criteria
for MDCs. Then, we determined whether the readmission
charges changed significantly compared to the previous
admission charges for RSDC and RADC. Finally, we strived
to build models for predicting readmission charges billed by
hospitals for RSDC and RADC.

Prior Work
The literature on applications of predictive methods for health
care outcomes is vast. We focus on discussing works that
directly relate to our study and context. Numerous machine
learning–based approaches have been applied to predict
readmissions and health care costs. For the sake of brevity, we
list them succinctly in Table 1.
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Table 1. Models used in prior studies.

Contexts and models usedPrediction area

All-cause: Artificial neural network (Jamei et al [15]); Bayesian network (Cai et al [16]); bidirectional encoder repre-
sentation from transformers (Huang et al [17]); convolutional neural network (Wang et al [18]); Cox regression model
(Yu et al [19]); decision trees (Sushmita et al [14] and Shadmi et al [20]); generalized boosting model (Sushmita et al
[14]); multilayer perceptron (Wang et al [18]); multiple logistic regression (Sushmita et al [14], Schoonver et al [21],
Picker et al [22], and Morris et al [23]); neural network (Shadmi et al [20] and Zheng et al [24]); random forest (Sush-
mita et al [14] and Zheng et al [24]); support vector machine (Sushmita et al [14], Yu et al [19], and Zheng et al [24])

Population-specific: Beta geometric Erlang-2 model (Bardhan et al [25]); lasso regularization with group-level feature
selection (Radovanovic [26]); logistic regression (Yu et al [19], Kelly [27], and Hasan et al [28]); multivariate logistic
regression (Tabata et al [29] and Greenblatt [30]); naïve Bayes (Shameer et al [31]); tree lasso logistic regression (Jo-

vanovic et al [32]); multivariate Cox proportional hazard model (Schmutte et al [33]); XGBoosta (Morel et al [34])

Readmissions

General costs: Classification trees and clustering (Bertsimas et al [35]); linear regression (Farley et al [36], Sushmita
et al [37], and Leigh et al [38]); M5 model tree (Sushmita et al [37])

High-cost patients: logistic regression (Fleishman and Cohen [39])

Health care costs

aXGBoost: eXtreme gradient boosting.

The first stream of research related to our study is on predicting
readmissions. This body of literature is very large; therefore,
we provide details on some representative research papers. A
review paper [40] on readmission prediction models reports C
statistic values between 0.55 and 0.65. Accordingly, the authors
conclude that the models perform poorly. A recent study [41]
reviewing articles from 2015 to 2019 reports an improvement
in the C statistic values (greater than 0.75). For predicting
readmissions, authors [21,42] explore the effects of
physiological and medication regimens in some studies, whereas
in another study [14], the authors use administrative data. Along
these lines, existing studies [16,18,43] use machine learning
approaches (such as deep learning and Bayesian network) to
predict hospital readmission within 30 days. While using
ensemble models, a model combining modified weighted
boosting with a stacking algorithm shows a prediction
performance 22% higher than that of a model combining the
random forest algorithm, lasso algorithm, and Synthetic Minority
Oversampling Technique [44]. A recent study [17] explores the
use of unstructured data to predict readmission using
bidirectional encoder representation from transformers.
Extracting patient information from clinical notes using deep
learning algorithms and then training them using graph neural
networks is beneficial for prediction [45].

Next, focusing on specific subpopulation readmissions, past
studies [25,29,31,46] use methods such as beta geometric
Erlang-2, naïve Bayes, multivariate logistic regression, and
tree-based lasso. In the case of readmissions with at least 7 past
emergency department visits, boosted decision trees perform
marginally better than logistic regression and the Bayes point
machine [47]. A deep learning–based model built for congestive
health failure patients using human-derived features,
machine-derived contextual embeddings, and cost-sensitive
sequential visit patterns in the EHR has the highest predictive
power when compared to reduced models that use either 1 or
more combinations of these [48]. eXtreme gradient boosting
(XGBoost) shows better predictability than regularization
techniques for predicting readmissions in mental or substance
use disorders [34]. Interestingly, in a study related to psychiatric
inpatients [33], the authors consider readmission within 12
months instead of the traditional 30 days to find which patient

characteristics predict the time to readmission within 12 months.
In terms of interpretability, existing studies [26,32] show that
the tree-based lasso provides better interpretability. In an
intensive care unit setting, attention-based networks may be
preferable over recurrent neural networks when interpretability
is of importance for a marginal decrease in accuracy [49].
Altogether, our literature review reveals that ensemble
tree–based methods and deep learning approaches typically
perform better than other approaches in predicting readmissions.
However, none of the abovementioned studies predicts
readmission charges, the focus of our study.

The literature closest to our work is on predicting health
care–related costs. In one of the studies [35], the authors use
classification trees and clustering algorithms to predict the
general cost of health care and not specifically readmission
charges. To apply these methods, the authors classify the
continuous cost variable into discrete classes. In another study
[50], the authors use more sophisticated machine learning
methods, such as gradient boosting, an artificial neural network,
and a ridge regression model, to predict cost-based classes.
Although predicting general health care costs is useful, nothing
can be concluded about the efficacy of these methods for
predicting readmission charges because readmission is a
fundamentally different phenomenon from general hospital
visits. Specifically, readmission is usually associated with
chronic illnesses and diseases requiring multiple visits.
Moreover, bucketing a continuous variable into classes causes
loss of information and may decrease predictive power.

There are studies [37,38] that predict general health care costs
as a continuous variable. Apart from this, existing studies
[51,52] derive costs based on predicting diagnosis-related groups
(DRGs) to make operational decisions. However, as explained
earlier, readmission charges are characteristically different from
other types of costs. The prediction of readmission costs is
considered in 1 study [14]. The authors use a limited set of
methods, specifically linear regression and tree-based models,
for predicting the costs (not charges). Based on our analysis of
the existing literature, tree-based models and deep
learning–based methods are likely to produce high prediction
accuracies. We include a wide variety of prediction algorithms,
including deep learning methods, to comprehensively study the
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problem of predicting readmission charges. Moreover, we use
a data set that spans the entire United States, unlike the existing
study [14] that focuses on costs (not charges) using a data set
with patients from a much smaller geographic region. Thus, we
can provide robust recommendations on the methods that are
best suited for making readmission charge predictions across
different regions of the country.

Methods

Data Set and its Description
We used data from the Nationwide Readmission Database
(NRD) of the Healthcare Cost and Utilization Project (HCUP)
by the Agency for Healthcare Research and Quality for this
study [53]. The data set consists of 4 parts, namely the core data
set, severity data set, hospital-level data set, and diagnosis and
procedure group data set. It includes inpatient individuals from
the entire United States for 2013 (first fiscal year introducing
readmission policies). Readmission policies and variables in
the NRD data set have not changed much after that. We used
nationally representative data available publicly to find
generalizable insights that can be applied to all hospitals. The
total number of records in the data set was 14,325,172, including
those with and without repeat hospital visits. Initially, we
analyzed readmissions with respect to hospital charges using
the core data set part, which consists of hospital charges for an
individual. We used variables from all 4 data set parts for
building predictive models (see Multimedia Appendix 1 for the
categorical and numeric variables used, along with their
descriptive statistics and description). After cleaning the entire
data set, we identified 576,701 and 1,091,580 individuals for
the 2 readmission categories, namely RSDC and RADC,
respectively. Each admission record consists of the following:
demographics (gender, age, median household income, etc);
clinical information (diagnosis, the procedure used, etc);
comorbidities (hypertension, diabetes, depression, etc); hospital
details (bed size, teaching or nonteaching hospital, etc); severity
details (All Patients Refined Diagnosis Related Groups for
severity of illness, risk of mortality, etc); and cost-related and
administrative data (length of stay, charges billed by hospitals,
etc).

The data set has close to 285 mutually exclusive categories of
International Classification of Diseases (ICD-9) codes for
grouping diagnoses and procedures related to patients for
adjusting risks. Prior studies [26] have shown that aggregated
higher-level grouping of diseases was effective in providing
better results than going to a specific condition at the lowest
level of hierarchy in the case of pediatric readmissions. MDC
codes are at a higher level than the specific DRG payment codes
in this context. Per the CMS, DRGs are grouped under MDCs
formed focusing on a particular medical specialty and are
mutually exclusive to make them clinically consistent. They
are built based on principal diagnosis codes (ICD-9 codes in
this data set).

We define the terms previous admission charge and average of
previous admission charges used in this study. These terms
differ for RSDC and RADC. The previous admission charge
for RSDC is defined as the charge billed by the hospital for only

the last previous admission having the same MDC. The previous
admission charge for RADC is defined as the charge billed by
the hospital for the last previous admission irrespective of the
MDCs. The readmission charge for RSDC and RADC is defined
as the charge billed by the hospital associated with 1 readmission
visit using the readmission criteria based on the definitions of
RSDC and RADC, respectively. The average of previous
admission charges for RSDC is defined as the average charge
billed by the hospital for all the previous admissions having the
same MDC. The average of previous admission charges for
RADC is defined as the average charge billed by the hospital
for all the previous admissions, irrespective of the MDCs.

Ethical Considerations
We have signed the HCUP data use agreement. As per the
HCUP data use agreement policy, HCUP databases are limited
data sets. According to the Health Insurance Portability and
Accountability Act of 1996 , review by an institutional review
board is not required for limited data sets. Therefore, we did
not apply for institutional review board approval for using the
NRD data set [53].

Models Used and Their Description
The average previous admission charge was considered as one
of the independent variables because the previous cost proved
helpful in predicting future health care costs [35,37]. All the
numeric independent variables were standardized except for the
average admission charge for which log transformation was
applied. Log transformation was also applied to the readmission
charge, namely the dependent variable. We provide brief
rationales behind the models considered for RSDC and RADC
below.

Linear Regression (Baseline Model)
It is a simple and easily interpretable method compared to other
nonlinear methods. It works well when there is a linear
relationship between the dependent (target) variable and
independent variables. We considered using linear regression
as a baseline for this study, as it has been widely used for
predicting general health care costs and is also computationally
efficient [36-38].

Lasso Regression, Elastic Net Regression, and Ridge
Regression
Regularization techniques prevent overfitting and
multicollinearity by constraining the loss function. We could
either add the penalty as the sum of the absolute values of
coefficients (L1 penalty) in lasso or as the sum of the squared
values of coefficients in the case of ridge regression (L2
penalty). Lasso gives us sparse solutions by shrinking the
estimates for some coefficients to 0, whereas ridge regression
shrinks the estimates near 0. Elastic net regression takes
advantage of lasso and ridge regression by linearly combining
L1 and L2 penalties. The literature review section explains that
health-related data are complex and often face multicollinearity
issues. To address these challenges, we applied regularization
techniques to predict readmission charges billed by hospitals.
In terms of hyperparameter tuning, we tuned α (that accounts
for the relative importance of the lasso and ridge regression)
ranging from 0 to 1 with a step size of 0.1, and estimated λ (the
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regularization penalty) using cross-validation. The optimization
objective in the hyperparameter tuning (in all methods used,
including those introduced below) was set to minimize the root
mean squared error (RMSE). We report results for lasso
regression with α=1, elastic net regression with α=.5, and ridge
regression with α=0.

XGBoost Model
It is one of the popular tree-based models for tabular data
[54-56]. Prior studies [14] on predicting readmission costs (not
charges) have also shown tree-based ensemble models to be

beneficial. Therefore, we included this tree-based ensemble
model for predicting readmission charges to take care of any
nonlinearity. We chose XGBoost, as it has not been previously
used in this context. Existing studies [57-59] show that a random
search is sufficient and efficient in terms of the computation
time for hyperparameter tuning. Hence, we performed a random
search on the typical range of values for the relevant parameters
depending on the type of booster [60]. The final values
configured for this study are given in Table 2. The booster (type
of learner) used was the tree booster (gbtree).

Table 2. eXtreme gradient boosting configuration details.

ValueConfiguration

120Number of rounds

5Maximum depth of the tree

0.2Learning rate

0.7Subsample ratio of the training instances

5L1a regularization term on weights

20L2b regularization term on weights

5Minimum loss required to make a split (gamma)

0.9Subsample ratio of columns while constructing each tree

aL1: the sum of the absolute values of coefficients.
bL2: the sum of the squared values of coefficients.

Deep Learning Model Using Multilayer Perceptron
As discussed in the literature review section, even though deep
learning–based models are more suitable for health-related data,
there is no prior study that specifically predicts readmission
charges using deep learning. A popular deep neural network
architecture for tabular data is multilayer perceptron (MLP).
Therefore, we used MLP, which requires multiple
hyperparameters to be tuned. We chose the hyperparameters
through a random search process, which is consistent with the
recommendation provided in the literature pertaining to our

case [57]. While choosing hyperparameters, we also used
guidelines provided in relevant studies [61,62]. In our study,
we found that models with even fewer hidden layers performed
better than multiple linear regression. However, for the final
configuration, we chose 4 hidden layers (beyond this, there was
no further reduction in error values) to obtain fine-tuned
low-error values and fewer epochs with consistent error values
for the majority of the epochs. The values selected in this
application are given in Table 3. The rectified linear unit was
used as the activation function. The final activation function
was linear, and the batch type was a minibatch.

Table 3. Configuration of the multilayer perceptron–based deep learning network.

ValueConfiguration

4Number of hidden layers

80Number of neurons in the first hidden layer

60Number of neurons in the second hidden layer

50Number of neurons in the third hidden layer

20Number of neurons in the fourth hidden layer

30Minibatch size (weights get updated after each minibatch)

0.9000Momentum

0.0001Learning rate

400Number of epochs (1 epoch = 1 forward pass + 1 backward pass)

Performance Measures Used
We used 7 metrics to measure the performance of the methods.
We define n as the total number of observations (ie, patients),

yi as the actual values of readmission charges incurred by

patients, as the mean of readmission charges, and as the
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predicted values of readmission charges. The performance
measures are provided below.

Mean Absolute Percentage Error
Mean absolute percentage error (MAPE) measures the error
size in terms of percentage:

Root Mean Squared Error
Root mean squared error (RMSE) gives the standard deviation
of the residual, which is the difference between actual and
predicted values:

Mean Absolute Error
Mean absolute error (MAE) gives the average value of the errors
for a given set of predictions:

Root Relative Squared Error
Root relative squared error (RRSE) gives the relative
comparison of what the output would have been if a naïve model
(simply predicting with the mean) were used:

Relative Absolute Error
Relative absolute error (RAE) compares the total absolute error
of the model to the total absolute error of the simplest model
(predicting with the mean):

Normalized Root Mean Squared Error
Normalized root mean squared error (NRMSE) is used to
compare models with different scales:

NRMSE = RMSE / 

Mean Absolute Deviation
Mean absolute deviation (MAD) describes how the values are
spread away from the mean:

The lower the MAPE, RMSE, MAE, RAE, RRSE, NRMSE,
and MAD, the better the prediction performance of the model.

Results

Initially, we analyzed the distribution of hospital charges (in
percentage) contributed by individuals (in percentage) by giving
different criteria for readmissions within RADC and RSDC, as
shown in Figures 1 and 2. We found that 48% (US
$294,802,405,683/US $614,171,678,507) of hospital charges
came from 21% (2,108,143/10,038,776) of the individuals who
had more than 1 admission.

Further analysis showed that the charges associated with
readmissions varied from the initial admission charges for most
diagnoses, with 541,090 individuals from the RADC category
having readmission charges higher than the previous admission
charges. Similarly, the current readmission charge was higher
than the previous admission charge for 319,233 of the
individuals for the RSDC category.

Next, we identified the MDCs having the highest number of
readmissions for RADC and RSDC. The 2 groups are similar
in terms of the MDCs with the highest number of readmissions.
The categories with the highest number of readmissions for
RSDC and RADC are given in Textbox 1 in descending order.

Next, we analyzed if the average readmission charge for each
MDC in RSDC and RADC varied from the previous admission
charge. In Figures 3 and 4, we explain the difference between
the average readmission charge (ARC) and average previous
admission charge (APAC) for RSDC and RADC, respectively.
In the case of RSDC, the ARC was higher than the APAC for
21 of the MDCs (Figure 3). In contrast, the ARC was higher
for only 13 of the MDCs in RADC (Figure 4).

We observed that readmission charges varied from previous
admission charges at the individual and aggregated levels based
on the above analysis. Next, we applied various predictive
methods to predict readmission charges at an individual level
for RSDC and RADC. We used 10-fold cross-validation. The
test results are shown in Table 4 for RSDC and Table 5 for
RADC.

Tables 4 and 5 show that the deep learning–based model and
XGBoost performed the best compared to all the other models
for all the performance metrics in RSDC and RADC. In addition,
models such as lasso, elastic net, and ridge regression using
regularization techniques on a linear model showed almost the
same performance. Repeated measures ANOVA revealed that
the mean RMSE differed significantly across models with
P<.001. As ANOVA is an omnibus test, we also performed a
post hoc test using the Bonferroni correction method. The test
showed that the mean RMSE was statistically significantly
(P<.001) lower for the deep learning/XGBoost models when
compared to that of linear regression/elastic net/lasso/ridge
regression. The test showed that the mean RMSE was
statistically significantly (P<.001) lower for the deep learning
and XGBoost models when compared to that of linear
regression, elastic net, lasso, and ridge regression.
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Figure 1. Distribution of hospital charges contributed by individuals (actual count in each category>10) for readmission with the same major diagnostic
category.

Figure 2. Distribution of hospital charges contributed by individuals (actual count in each category>10) for all-cause readmission category.
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Textbox 1. Major diagnostic categories having the highest number of readmissions listed in descending order.

Readmission with the same major diagnostic category

• Diseases and disorders of the circulatory system

• Diseases and disorders of the respiratory system

• Diseases and disorders of the digestive system

• Infectious and parasitic diseases and disorders (systemic or unspecified sites)

• Diseases and disorders of the kidney and urinary tract

• Diseases and disorders of the nervous system

All-cause readmission category

• Diseases and disorders of the circulatory system

• Diseases and disorders of the respiratory system

• Diseases and disorders of the digestive system

• Pregnancy, childbirth, and puerperium

• Mental diseases and disorders

• Diseases and disorders of the nervous system

Figure 3. Difference between average readmission charge and average previous admission charge for readmission with the same major diagnostic
category. MDC: major diagnostic category.

Figure 4. Difference between average readmission charge and average previous admission charge for all-cause readmission category. MDC: major
diagnostic category.
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Table 4. Test results of readmission with the same major diagnostic category based on different performance measures.

MADg, mean (SD)NRMSEf,
mean (SD)

RAEe, mean
(SD)

RRSEd, mean
(SD)

MAEc, mean
(SD)

RMSEb, mean
(SD)

MAPEa (%), mean
(SD)

Model

0.042 (0.000)0.055 (0.000)0.528 (0.004)0.546 (0.005)0.431 (0.002)0.564 (0.002)4.268 (0.035)Linear regression

0.042 (0.000)0.055 (0.000)0.528 (0.004)0.546 (0.005)0.431 (0.002)0.564 (0.002)4.269 (0.036)Lasso

0.042 (0.000)0.055 (0.000)0.528 (0.004)0.546 (0.005)0.431 (0.002)0.564 (0.002)4.269 (0.036)Elastic net

0.042 (0.001)0.055 (0.000)0.531 (0.004)0.547 (0.005)0.434 (0.002)0.565 (0.003)4.299 (0.037)Ridge

0.031 (0.000)0.041 (0.001)0.393 (0.003)0.407 (0.004)0.321 (0.002)0.421 (0.003)3.171 (0.027)XGBoosth

0.032 (0.000)0.041 (0.001)0.399 (0.003)0.413 (0.004)0.326 (0.002)0.427 (0.003)3.202 (0.022)Deep learning

aMAPE: mean absolute percentage error.
bRMSE: root mean squared error.
cMAE: mean absolute error.
dRRSE: root relative squared error.
eRAE: relative absolute error.
fNRMSE: normalized root mean squared error.
gMAD: mean absolute deviation.
hXGBoost: eXtreme gradient boosting.

Table 5. Test results of all-cause readmission category based on different performance measures.

MADg, mean
(SD)

NRMSEf,
mean (SD)

RAEe, mean
(SD)

RRSEd, mean
(SD)

MAEc, mean (SD)RMSEb, mean
(SD)

MAPEa (%), mean
(SD)

Model

0.041 (0.001)0.054 (0.000)0.537 (0.005)0.554 (0.005)0.427 (0.003)0.558 (0.004)4.208 (0.047)Linear regression

0.041 (0.001)0.054 (0.000)0.537 (0.005)0.554 (0.005)0.427 (0.003)0.558 (0.004)4.208 (0.047)Lasso

0.041 (0.001)0.054 (0.000)0.537 (0.005)0.554 (0.005)0.427 (0.003)0.558 (0.004)4.209 (0.047)Elastic net

0.042 (0.001)0.054 (0.000)0.531 (0.005)0.555 (0.005)0.429 (0.003)0.559 (0.005)4.240 (0.049)Ridge

0.031 (0.000)0.040 (0.000)0.399 (0.002)0.410 (0.001)0.317 (0.002)0.414 (0.002)3.121 (0.019)XGBoosth

0.031 (0.000)0.040 (0.000)0.397 (0.003)0.410 (0.002)0.316 (0.003)0.413 (0.003)3.103 (0.018)Deep learning

aMAPE: mean absolute percentage error.
bRMSE: root mean squared error.
cMAE: mean absolute error.
dRRSE: root relative squared error.
eRAE: relative absolute error.
fNRMSE: normalized root mean squared error.
gMAD: mean absolute deviation.
hXGBoost: eXtreme gradient boosting.

Discussion

Principal Results and Comparison With Prior Work
This study shows that national administrative data can be used
to build effective predictive models for hospital charges billed
for readmissions, even if there are different criteria for
readmissions. The deep learning–based algorithm and XGBoost
outperformed all other algorithms. Based on our experiments,
we also made a few observations specific to configuring
XGBoost. While configuring the XGBoost model, we found
that using the gradient descent of the tree-type booster gave the
best performance compared to other boosters such as a linear
booster or dropouts with multiple additive regression tree
boosters. Moreover, in the same context, setting the booster to

linear with regularization for XGBoost gave a performance
equivalent to linear, lasso, elastic net, and ridge regression.

In summary, this study makes 2 important contributions. To the
best of our knowledge, this is the first study to apply
regularization techniques, a tree-based ensemble model using
XGBoost, and deep learning–based models for predicting
readmission charges billed by hospitals. Deep learning–based
models and XGBoost have proven useful in modeling
health-related data. A related study that focused on predicting
readmission costs (not charges) used only linear regression and
tree-based models on narrow data sets (~10k samples) with
limited features, and hence, its applicability in different
geographies is questionable. Besides, it predicted readmission
costs (not charges) using only the all-cause definition of
readmission. Our study considered readmission using MDCs
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instead of DRGs by using different MDC criteria to determine
which models would be suitable for predicting readmission
charges.

Implications
This study has 2 practical implications. First, health systems
use high-risk care management programs to improve health
outcomes in individuals with complex needs and reduce costs.
As these programs are resource-intensive and expensive, health
systems use costs as a proxy to identify individuals suitable for
these programs [63]. Our study related to readmissions will aid
such programs by prescribing models that will provide reliable
estimates of readmission charges.

Second, hospital reimbursement mainly depends on DRG codes
and the case mix index (CMI). The CMI is calculated as the
average DRG weight of the hospitals’ inpatient discharges. A
higher CMI would indicate more reimbursement for hospitals.
As the CMI is not directly tied to either hospital charges (which
can vary depending on various factors specific to the hospital,
such as staffing expenses and technologies used) or
individual-specific expenses, hospitals often do not get
reimbursed for the services they have provided [64]. In this
study, we predicted readmission charges that will give hospitals
a better estimate of the cost they are going to incur in case the
patients get readmitted. Now, hospitals can use the CMI and
DRGs to determine their reimbursement amounts and compare
that with the estimated charges. If there are any differences in
the amount, hospitals can now more effectively plan for
mitigation strategies. Thus, in a nutshell, our study can be
helpful for health care policymakers and hospital planners.

Limitations and Future Research
Modeling readmission likelihood and the length of stay are also
crucial in readmissions, as these outcomes influence one another.

Moreover, modeling readmission charges, readmission
likelihood, and length of stay might be more beneficial than
focusing only on modeling readmission charges. In this study,
we identified readmissions belonging to RSDC and RADC. We
will also use the term readmission in the readmission with
different major diagnostic category (RDDC) for our future
analysis. RDDC will consider readmission as an admission to
a hospital within 30 days of discharge from the same or another
hospital with the cause of readmission being different. We will
then build predictive models for RDDC. Then, we will compare
the predictive models built for RDDC with those built for RSDC.

In this study, we considered the standard defined categories of
MDCs as the cause of readmission. The standard defined
categories of MDCs belong to either a single organ system or
an etiology. For our future study, we will consider correlated
categories in terms of the set of related health complications
that eventually lead to readmissions. These categories may span
multiple MDCs. We expect that such recategorizations could
help in the better prediction of charges. The recategorization in
terms of correlated categories would significantly contribute to
health care economics.

Conclusions
Readmissions are one of the main contributors to health care
costs. However, most previous studies have focused mainly on
predicting early readmissions. The implementation of the
Hospital Readmissions Reduction Program has mixed reviews,
with no conclusion regarding its effectiveness. This study aimed
to determine if readmission charges, which vary from initial
admission charges, could be accurately predicted. Results
revealed that the deep learning–based model and XGBoost
performed the best in terms of all performance measures. MDCs
can be used to accurately predict charges billed by hospitals for
readmissions.
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Abstract

Background: Anxiety is one of the leading causes of mental health disability around the world. Currently, a majority of the
population who experience anxiety go undiagnosed or untreated. New and innovative ways of diagnosing and monitoring anxiety
have emerged using smartphone sensor–based monitoring as a metric for the management of anxiety. This is a novel study as it
adds to the field of research through the use of nonidentifiable smartphone usage to help detect and monitor anxiety remotely
and in a continuous and passive manner.

Objective: This study aims to evaluate the accuracy of a novel mental behavioral profiling metric derived from smartphone
usage for the identification and tracking of generalized anxiety disorder (GAD).

Methods: Smartphone data and self-reported 7-item GAD anxiety assessments were collected from 229 participants using an
Android operating system smartphone in an observational study over an average of 14 days (SD 29.8). A total of 34 features were
mined to be constructed as a potential digital phenotyping marker from continuous smartphone usage data. We further analyzed
the correlation of these digital behavioral markers against each item of the 7-item Generalized Anxiety Disorder Scale (GAD-7)
and its influence on the predictions of machine learning algorithms.

Results: A total of 229 participants were recruited in this study who had completed the GAD-7 assessment and had at least one
set of passive digital data collected within a 24-hour period. The mean GAD-7 score was 11.8 (SD 5.7). Regression modeling
was tested against classification modeling and the highest prediction accuracy was achieved from a binary XGBoost classification
model (precision of 73%-81%; recall of 68%-87%; F1-score of 71%-79%; accuracy of 76%; area under the curve of 80%).
Nonparametric permutation testing with Pearson correlation results indicated that the proposed metric (Mental Health Similarity
Score [MHSS]) had a colinear relationship between GAD-7 Items 1, 3 and 7.

Conclusions: The proposed MHSS metric demonstrates the feasibility of using passively collected nonintrusive smartphone
data and machine learning–based data mining techniques to track an individuals’ daily anxiety levels with a 76% accuracy that
directly relates to the GAD-7 scale.

(JMIR Med Inform 2022;10(8):e38943)   doi:10.2196/38943
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JMIR Med Inform 2022 | vol. 10 | iss. 8 |e38943 | p.254https://medinform.jmir.org/2022/8/e38943
(page number not for citation purposes)

Choudhary et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:soumya@behavidence.com
http://dx.doi.org/10.2196/38943
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Background and Rationale
Anxiety is one of the leading causes of mental health disability
around the world [1]. It includes feelings of excessive worry
and negative thoughts, accompanied by physical symptoms
such as heart palpitations and increased blood pressure [2].
Anxiety is also associated with a high degree of functional
impairment [3] leading to poor quality of life [4] and high health
care utilization [5]. Despite being one of the leading causes of
mental health disability (1 in 4 people according to the World
Mental Health Survey [6]), the detection of generalized anxiety
disorder (GAD) is very low in primary care settings [7-9]. These
challenges stem from the problems regarding diagnostic
processes and inaccuracies [8,10-16] as well as overlapping
comorbidities [9,17,18] and physical symptomatology [5,19].
The diagnosis is also vulnerable to the observer’s state of mind
[20] and biased self-perception [21] of symptoms. Whether it
is the diagnosis of GAD as a singular condition or as a
comorbidity, the validity of the diagnostic classifications and
instruments in themselves has been rigorously debated. Newson
et al [22] highlighted the heterogeneity in DSM-5 classification,
where it failed to diagnose a specific disorder from random.
Zimmerman et al [23] demonstrated how a physician can
diagnose depression and its comorbidities in 227 different ways
and Phillips [15] has highlighted the ambiguities in DSM-5
criteria for disorder classification. A recent analysis [10] of
eHealth data, patient records, and physician reports in
psychiatric cases has highlighted the presence of diagnostic
errors in two-thirds of the sample.

With the advancement of technology, researchers have employed
multisource data and advanced data analysis techniques to refine
and improve mental health diagnosis. One such opportunity to
use an upcoming method to improve screening of anxiety is to
harness the power of smartphones using the principles of digital
phenotyping [24]. Digital phenotyping is a novel computational
approach that relies on real-time quantification of human
behavior through continuous monitoring of digital biomarkers
[25-27]. Mobile and wearable digital devices offer the
opportunity to track a multitude of parameters such as mobility
(through GPS and accelerometer) [28,29], societal interactions
[30] (number of calls, voice tone detection, number of messages
sent), digital interactions (access to certain apps), phone usage
frequency (screen turned on/off) [27], and health monitoring
parameters (heart rate, blood pressure, and oxygen saturation)
[31]. However, most digital phenotyping approaches present
limited applicability due to the lack of standardized data
processing approach for big data exploitation and lack of a
specific pattern of unique features for complex mental conditions
such as anxiety disorder.

Previous Findings
Smartphones hold huge potential in redefining the ability to
understand mental health behavior. Sensors embedded in
smartphones allow for both passive and continuous data
collection, which enhances the possibility of understanding
human behavior daily [32-34]. Longitudinal monitoring of
passive sensors and phone usage has been linked to tracking

mental health behavioral trends [24]. Digital phenotyping of
mental health has proven successful in dealing with the
challenges associated with a diagnosis such as biases in
self-reporting and lack of time in primary care settings, thus
paving the way for new and novel methods of screening and
monitoring [35].

Most previous studies have focused on using digital phenotyping
and passive sensor data to predict social anxiety rather than
generalized anxiety [28,29,32,36]. In addition, the passive data
used in previous research were intrusive of the users’ privacy
and collected identifiable data points such as GPS, audio,
message logs, and Bluetooth. Jacobson et al [29] demonstrated
that sensor data such as accelerometer, call log, and text message
data from smartphones could predict social anxiety symptom
severity. Another study found that people with high social
anxiety had much lower call and text message logs, and used
more health and fitness apps and less camera apps as compared
with the low social anxiety group [36]. A clinical review on
digital phenotyping and the mental health of college students
found that sensors such as accelerometer, Bluetooth, and social
information can help in understanding clinical symptomatology
[37]. By contrast, Meyerhoff et al [28] found that GPS-based
sensor features can be useful in predicting depression severity,
but it was not significant in predicting anxiety. Other studies
that have researched generalized anxiety have been grouped
along with other disorders such as depression and social anxiety.
The sensors that have been utilized included location sampled
every 5 minutes, call and message log data, duration, and length.
Interestingly, these studies also found that there was no
significant relationship between GAD and location sensors
[28,38]. A more recent study investigated how features extracted
from smartphones can be used to predict GAD, social anxiety
disorder, and depression. The authors found that their machine
learning models and features were able to predict social anxiety
disorder and depression severity but not GAD [25]. Such
findings have paved the way to explore more ways to map
generalized anxiety using nonintrusive and nonidentifiable
smartphone data.

Study Objective
In this study a novel mental behavioral profiling metric, derived
from smartphone usage, is defined for the identification and
tracking of GAD. The accuracy of this metric is evaluated in
relation to the standardized anxiety assessment protocol using
the 7-item Generalized Anxiety Disorder Scale (GAD-7)
questionnaire scoring.

Methods

Data Collection Procedure
Participants were recruited via an advertisement through social
media campaigns on Facebook and Google. Research has shown
that this is an effective means of recruitment and provides more
generalizability than a clinic-recruited study [39]. Interested
participants responded to the advertisement by reading about
the study and signing the informed consent form. They then
downloaded the “Behavidence Research App” from the Google
Play store and filled in a demographic questionnaire, followed
by the GAD-7 scale. These data were collected at a single time
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point only during the onboarding process. The app continued
to passively collect nonintrusive data from the smartphone such
as screen time and app usage, with no engagement requirement
from the user. There was absolutely no private information
collected, making this solution completely nonintrusive and
secure. Data were collected between October 2021 and January
2022. The participants were informed about the type of
nonidentifiable passive data collected in the consent form.

Inclusion/Exclusion Criteria
A total of 238 globally distributed users responded to the online
advertisement. The inclusion criteria were (1) participants should
be over 18 years of age; (2) participants must be able read,
speak, and write in English; and (3) participants must have an
Android smartphone. Of the enrolled participants, 229 completed
the entire on-boarding process. There were no restrictions on
gender, ethnicity, or the participant’s location.

Measure

Generalized Anxiety Disorder Screening
The GAD-7 scale [40] is a self-report scale with 7 items for
screening nonspecific anxiety in primary care settings. It also
indicates the severity of GAD. The items of the scale are rated
on a Likert scale ranging from “0=Not at all” to “3=Nearly
every day.” The scores range from 0 to 21. This questionnaire
has good psychometric properties within community and
psychiatric samples [41] and has also been established in
previous research [42].

Digital Data Collection Through Behavidence
Behavidence [43] is a mental health screening app that passively
collects personal smartphone device usage. The app works as
a digital profiling solution and can be downloaded from the
Google Play Store. There is zero response burden and no
collection of any identifiable information. The app was
developed for smartphones running Android version 5 or higher.
It requires internet connectivity to receive outcomes of data
analysis but does not require an active internet connection to
collect the data. As the app runs in the background, the
participant must provide “Battery Optimization” and “Usage
Data Access” permission, obtained during the log-in process.
The main screen of the app displays a Mental Health Similarity
Score (MHSS), which is inferred from the user’s digital
behavior. The MHSS displays how similar the user’s digital
behavior is to someone else’s digital behavior who has a
diagnosis of anxiety. The similarity score is generated once
every 24 hours and has a range of 0%-100%. The app also shows
the user their weekly history of daily similarity scores. The
workflow of the solution is shown in Figure 1. Data access is
managed by multifactor federated authentication and controlled
through role-based privileges. Policies are created to manage
access for each user, user group, or role. The data pipeline is
encrypted end-to-end and orchestrated under enterprise-grade
privacy and compliance certification. Data are protected while
in-transit via secure socket layer/transport layer security
(SSL/TLS) and client-side encryption. Server-side encryption
with managed keys is used before storing the data. The
application is Health Insurance Portability and Accountability
Act (HIPAA) and General Data Protection Rule (GDPR)
compliant.

Figure 1. The Behavidence solution workflow demonstrates key steps in the creation of a mental health similarity score for anxiety. MHSS: Mental
Health Similarity Score.
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Data Mining

App Categorization
The total number of apps used by the participants in this study
exceeded 50,000 unique apps. To be able to understand and
measure features related to each app, we categorized them into
11 categories as follows: Category 0 for nonofficial or
unregulated apps, Category 1 for social interaction apps,
Category 2 for passive information consumption apps, Category
3 for active messaging and communications apps, Category 4
for educational apps, Category 5 for navigation utilities,
Category 6 for general utilities, Category 7 for recreational and
photo processing apps, Category 8 for commerce apps, Category
9 for health and fitness–related apps, Category 10 for games,
and lastly, Category 11 for miscellaneous.

Feature Extraction Using Passive Smartphone Data
Passive collection of raw nonidentifiable smartphone data starts
after the user completes the GAD-7 questionnaire. Seven days
of retrograde data are automatically available after a new user
log-in, and data are continuously streamed to the back end until
the user logs out or deletes the app. The raw data collected
include the time in milliseconds of Coordinated Universal Time
(UTC) in which a user opens a particular app and the time a
user closes that app. From these raw data, behavioral insights
used as features for the machine learning algorithms are drawn
on a 24-hour basis. For example, the total session time on a
phone is calculated by summing the total number of milliseconds
the user spends on each app he/she opens, between 12 AM in
the user’s local time zone to 11:59 PM that day. Incomplete
24-hour data are omitted from the feature engineering process
and may be attributed to network disconnection of the user’s
Android device. No users in this study had gaps of incomplete
24-hour data within consecutive days of collection. Mobile apps
were also binned into specific app categories (see the “App
Categorization” section) for further insights into digital behavior.
Frequency and duration of each app category are calculated
daily to indicate where the user spends the most time on their
mobile device (ie, shopping, gaming, online dating,
communication). Therefore, a total of 34 features were extracted
from the original raw data (full list of features are listed in
Multimedia Appendix 1).

Data Preparation and Model Setup
A single independent observation in this study constituted 24
hours (user’s time zone) of raw data transmitted by the
Behavidence App to the back end secure cloud system.
Therefore, an individual with anxiety that had 15 days of full
passively acquired data was considered to have 15 separate
anxiety-labeled observations. To evaluate the models, we
reported on different accuracy metrics using 5-fold
cross-validation. With 5-fold cross-validation, the data set was
split into 5 groups where models were trained on 4 groups and
validated on the left-out group. The process was repeated 5
times so that each sample was used for training and validation
only once. The Amazon Web Services platform (Amazon.com,
Inc.) was used as data storage while the data processing, feature
engineering, model training, and poststatistical analysis were
written in Python 3.8 programming language (Python Software

Foundation). Packages used include scipy, stats models, net
neurotools, and scikit-learn.

Modeling and Postanalysis

Machine Learning to Predict Generalized Anxiety
To explore the efficacy of digital behavioral markers in detecting
generalized anxiety, regression and classification models were
implemented. First, a random forest algorithm was used to create
a nonlinear multiple regression fit for the passive digital data
corresponding to the total possible score of 21 for the GAD-7
scale. The purpose of this model was to infer what GAD-7 score
a user would obtain based on his/her phone usage. For the
classification models, 4 different machine learning algorithms
were compared to produce the highest overall prediction
accuracy. The algorithms compared include random forest,
K-nearest neighbors, logistic regression, and XGBoost. The
multiclass GAD-7 model is intended to classify participants
who scored 15+ (severe ), 10-14 (moderate), 5-9 (mild), and <5
(no diagnosis) to detect the progression into severe anxiety. The
binary GAD-7 model is intended to classify participants who
scored 15+ (severe) on the GAD-7 against those who scored
<5 (ie, having no indication of anxiety).

Correlation-Based Analysis
Further analysis on specific items from the GAD-7 was
conducted to determine which symptoms of anxiety can be
understood from the passively collected digital data. Each of
the 7 questions was tested against the MHSS obtained from the
top-performing GAD-7 model and calculated on the day each
user answered the questionnaire. This testing was performed to
determine the existence of a relationship between the digital
behaviors collected from the Behavidence app and each question
of GAD-7. Nonparametric permutation tests were performed
to determine the significance of the Pearson correlation, with
the number of permutations set to 1000. Permutation testing
was used to better estimate the population’s distribution, by not
assuming a normal distribution (nonparametric), and to
ultimately determine extremities more accurately, by leveraging
resampling, so that P values indicate the true probability that
the Pearson correlation coefficient calculated is not by chance.
As the MHSS is derived from the 34 passive digital features,
further correlation between specific items from the GAD-7
questionnaire and each of the features was assessed to determine
whether the digital biomarker in this study could be mapped to
the symptoms of GAD that the specific items are targeting.

Ethics Approval
The advertisement, informed consent, and the study protocol
were approved by the independent Western Institutional Board
Copernicus Group (WIRB-CG) institutional review board
(Approval Number 20216225).

Results

Participants
Self-reported demographic data from the 229 participants (Table
1) show that 85 (37.1%) identified as females, 142 (62%)
identified as males, and 2 (0.9%) identified as nonbinary or
preferred not to disclose their gender. For the participants’ age
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distribution, 102 (44.5%) were aged between 18 and 25, 66
(28.8%) between 26 and 35, 56 (24.5%) between 36 and 55,
and 5 (2.2%) between 56 and 64. A majority of the participants
that completed the questionnaire were of Asian race (104/229,
45.4%), and had education levels between some college diploma

and a bachelor’s degree (158/229, 69%). The participants in
this study were from different locations around the globe. Most
were in Asia (84/229, 36.7%) followed by Africa (76/229,
33.2%). The remaining participants were from America, Europe,
and Australia.

Table 1. Demographic data of the participants who answered the GAD-7a questionnaire (n=229).

Values, n (%)Category

Age, years

102 (44.5)18-25

66 (28.8)26-35

56 (24.5)36-55

5 (2.2)56-64

Gender

142 (62.0)Male

85 (37.1)Female

2 (0.9)Prefer not to say

Race

104 (45.4)Asian

40 (17.5)Black (African/Caribbean)

61 (26.6)White

11 (4.8)Mixed

13 (5.7)Other/prefer not to say

Education

2 (0.9)Lower secondary/middle school (grades 7-9)

35 (15.3)Higher secondary (grades 10-12)

74 (32.3)Some college/university/diploma

84 (36.7)Bachelor’s degree

28 (12.2)Master’s degree

6 (2.6)Professional/PhD

Time zone

76 (33.2)Africa

9 (3.9)Americas

84 (36.7)Asia

1 (0.4)Australia

13 (5.7)Europe

46 (20.1)Otherb

aGAD-7: 7-item Generalized Anxiety Disorder Scale.
bAll the other time zones that were unspecified.

GAD-7 Distribution Among Participants
Table 2 represents the distribution of the 229 recruits and their
GAD-7 scoring. The GAD-7 was completed at the start of
recruitment at a single time point during this study, which

spanned from October 2021 to January 2022. The distribution
of the GAD-7 scores was as follows: 23/229 (10%) were none
with GAD-7 scoring less than 5, while 206/229 (89.9%) showed
signs of anxiety by scoring between “mild” and “severe.” The
mean GAD-7 score was 11.8 (SD 5.7).
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Table 2. Distribution of participants’ contribution to the GAD-7a responses (n=229).

Participants, n (%)GAD-7 category and scores

23 (10)None

100

21

32

33

54

61 (26.6)Mild

135

66

197

118

129

64 (27.9)Moderate

1010

1011

1312

1713

1414

81 (35.4)Severe

1415

1016

1117

1418

719

1020

1521

aGAD-7: 7-item Generalized Anxiety Disorder Scale.

As seen in Table 3 16% (14/88) of self-reported healthy “none”
group participants scored “none” on the GAD-7, whereas the
greatest percentage (29/88, 33%) of participants in this group
scored “moderate” anxiety. Table 3 also shows that 52% (13/25)

of participants with self-reported anxiety had severe anxiety on
the GAD-7. Further, 61% (31/51) of participants with
self-reported depression had “severe” anxiety and only 2%
(1/51) had no signs of anxiety.

Table 3. Distribution of GAD-7a scoring categories for self-reported participants.

Severe, n (%)Moderate, n (%)Mild, n (%)None, n (%)Self-reported diagnosis

22/88 (25)29/88 (33)15/88 (17)14 (16)a. None (n=88)

13/25 (52)7/25 (28)5/25 (20)N/Abb. Anxiety (n=25)

31/51 (61)13/51 (25)6/51 (12)1/51 (2)c. Depression (n=51)

aGAD-7: 7-item Generalized Anxiety Disorder Scale.
bN/A: no participants with a self-reported diagnosis of anxiety scored “none” on the GAD-7 questionnaire.
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Evaluation of Models

Overview
The aim of the study was to evaluate the accuracy of the MHSS
metric to identify GAD. The binary classification XGBoost
model achieved a prediction accuracy of 76% compared with
50% by the multiclass classification XGBoost model and
regression (root-mean-squared error [RMSE] 4.508). The recall
scores for the binary model were 68% for the “none” group and
87% for the “anxiety group.” Using the multiclass XGBoost
model the best recall scores achieved were 41%, 63%, 38%,

and 52% for the “none,” “mild,” “moderate,” and “severe”
groups, respectively. The reported results are from the 5-fold
cross-validation of data.

Regression Model Assessment
Figure 2 shows the random forest regression model–predicted
GAD-7 score plotted against the actual GAD score. The range
of predicted values in the lower scores (0-7) is quite high,
distributing around 75% of all possible scores. The RMSE for

this model is 4.508 with an R2 value of 0.4282.

Figure 2. Random forest regression: real GAD-7 score versus predicted GAD-7 score (correlation: 0.65597). GAD-7: 7-item Generalized Anxiety
Disorder Scale.

Multiclass Classification
The multiclass classification model, trained on all severity group
classes, none (GAD-7<5), mild (5≤GAD-7<10), moderate
(10≤GAD-7<15), and severe (GAD-7≥20), that achieved the
highest prediction accuracy was using XGBoost followed by
the random forest algorithm. Result metrics from the 4 algorithm
comparisons are presented in Table 4. The GAD-7 multiclass
XGBoost model achieved a precision of 40%-62%, recall of
38%-63%, F1-score of 39%-61%, and overall accuracy of 50%.
Sensitivity for severe anxiety was 52% and specificity was 74%.

The Gini impurity plot of each feature shows the top features
that the multiclass XGBoost model considers when
differentiating between all the possible groups (Figure 3). The
3 most important features in this classifier were the number of
times “passive information consumption” apps were opened
within the 24-hour period (app2_opens), mean session time

within a 24-hour period in “passive information consumption”
apps (app2), and the number of times “games” apps were opened
with session lengths greater than 1 SD from the mean
(app10_upper).

Analysis of variance was performed to determine the difference
among means of the 4 different cohorts (ie, none, mild,
moderate, and severe) for the top 3 Gini important features. For
the feature summing the total number of times “passive
information consumption” apps were opened, F4,2619=63.40 and
P=.44. For the average session time on passive information
consumption apps, F4,2619=5.23 and P=.002. Finally, for the
number of times “games” apps were opened with session lengths
greater than 1 SD from the mean, F4,2619=60.22 and P=.26. In
addition, Tukey post hoc test for pairwise comparison was
performed with Cohen d effect size. Detailed results can be
found in Multimedia Appendix 2.
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Table 4. Multiclass classification accuracy metrics of all algorithms tested in this study (random forest, k-nearest neighbors, logistic regression,
XGBoost) using 5-fold cross-validation.

GAD-7 multiclass XGB
model, %

GAD-7 multiclass logis-
tic regression model, %

GAD-7 multiclass K-nearest
neighbors model, %

GAD-7a multiclass RF
model, %

Class

50382948Accuracy

71565369Area under the curve

Precision

62192764None

60413358Mild

41392737Moderate

40332739Severe

Recall

41772241None

63243458Mild

380.42841Moderate

52292948Severe

F1-score

50532450None

61293458Mild

390.62839Moderate

45312843Severe

aGAD-7: 7-item Generalized Anxiety Disorder Scale.

Figure 3. Feature importance of the GAD-7 multiclass XGBoost model. GAD-7: 7-item Generalized Anxiety Disorder Scale.

Binary Classification
The random forest classification model, which trained on 2
classes (none vs severe anxiety) and 34 features with the number
of trees set to 50, achieved a precision of 79%-70%, recall of
59%-86%, F1-score of 68%-78%, an overall accuracy of 74%,
and area under the curve (AUC) of 78% (Table 5). The binary
logistic regression model achieved a precision of 55%-56%,
recall of 28%-80%, F1-score of 37%-66%, an overall accuracy

of 55%, and AUC of 57%. The binary K-nearest neighbors
model, with k set to 17 according to optimized parametric
tuning, achieved a precision of 59%-60%, recall of 46%-73%,
F1-score of 52%-66%, an overall accuracy of 60%, and AUC
of 62%. Finally, the binary XGBoost model was the one with
the highest accuracy, which achieved a precision of 81%-73%,
recall of 68%-87%, F1-score of 71%-79%, an overall accuracy
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of 74%, and AUC of 78%. This model can successfully
differentiate between “none” and “severe” anxiety.

In this experiment, the best performing classification algorithm
is the XGBoost, which consists of 50 trees that use the Gini
criterion to measure the quality of a split with no maximum
depth and a minimum of 2 samples per split. The model was
further analyzed by plotting Gini impurity values of each feature
because this method was used as the splitting criterion of the
classification trees when determining the none and severe
anxiety groups. As seen in Figure 4, the top 3 passive digital

features were mean session time within a 24-hour period in the
“passive information consumption” apps (app category 2), mean
session time within a 24-hour period in the “health and fitness”
apps, and the number of times “passive information
consumption” apps were opened within the 24-hour period
(app2_opens). The t test (unpaired) results indicated statistical
significance on all 3 of the top features (Table 6). The effect
size ranges from low to high, with the total number of times
social interaction apps opened having the greatest effect size
(Table 6).

Table 5. Accuracy metrics of all binary classification models trained in this study (random forest, k-nearest neighbors, logistic regression, and XGBoost)
using 5-fold cross-validation.

GAD-7 binary XGB
model, %

GAD-7 binary logistic
regression model, %

GAD-7 binary K-nearest
neighbors model, %

GAD-7a binary RF model, %Class

76556074Accuracy

80576278AUCb

Precision

81555979None

73566070Anxiety

Recall

68284659None

87807386Anxiety

F1-score

71375268None

79666678Anxiety

aGAD-7: 7-item Generalized Anxiety Disorder Scale.
bAUC: area under the curve.

Figure 4. Feature importance of the GAD-7 Binary XGBoost model. GAD-7: 7-item Generalized Anxiety Disorder scale.
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Table 6. Nonparametric t tests on the top 3 Gini importance features of the GAD-7a binary XGBoost model.

Cohen dP valueSevere, mean (SD)None, mean (SD)Feature description

0.18.0020.08 (0.44)0.22 (1.03)App category 2, average session time on passive information consumption
apps (minutes)

–0.16.0030.60 (1.49)0.39 (0.93)App category 9, average session time on Health and Fitness apps (minutes)

0.041.450.43 (2.46)0.51 (1.05)App category 2 opens, total number of times passive information consump-
tion apps were opened (count)

aGAD-7: 7-item Generalized Anxiety Disorder Scale.

Correlations of GAD-7 Items
Each GAD-7 item was tested using nonparametric permutation
testing with Pearson correlation against MHSS on the day that
the GAD-7 was filled (Table 7). The highest correlated items

belonged to Items 1, 3, and 7: (1) “Feeling nervous, anxious,
or on edge” had a correlation of 0.54 (P<.001), (3) “Worrying
too much about different things” had a correlation of 0.59
(P<.001), and (7) “Feeling afraid, as if something awful might
happen” had a correlation of 0.55 (P<.001).

Table 7. Nonparametric permutation testing with Pearson correlation of GAD-7a items against MHSSb on the day the questionnaire was filled.

P valuePearson correlation, rItem

<.0010.541: “Feeling nervous, anxious, or on edge”

<.0010.52: “Not being able to stop or control worrying”

<.0010.593: “Worrying too much about different things”

<.0010.484: “Trouble relaxing”

<.0010.325: “Being so restless that it’s hard to sit still”

<.0010.56: “Becoming easily annoyed or irritable”

<.0010.557: “Feeling afraid, as if something awful might happen”

aGAD-7: 7-item Generalized Anxiety Disorder Scale.
bMHSS: Mental Health Similarity Score.

Discussion

Principal Findings
Smartphone technology has certainly become a primary platform
not only for communication but also to receive, manage, and
share multiple kinds of data. Recently, the application of
smartphones and their sensing capabilities have demonstrated
huge potential in health information acquisition and analysis
[25-30,34-38]. Mining smartphone data to represent digital
behavior can be used for delivering informed clinical decisions
and early risk stratification of mental health disorders. Through
this study, we demonstrate the application of digital phenotyping
in the identification and remote monitoring of GAD.

A novel mental behavioral profiling metric called MHSS was
derived by engineering 34 digital features to serve as a marker
for GAD. This was accomplished using smartphone usage data
mined in a passive manner without the use of any private
information. The smartphone usage data comprised active app
usage time and frequency collected through the Behavidence
app for an average period of 14 days per user. A single
observation that consists of 24 hours of smartphone usage data
had a typical size of 30 KB. During the course of the study, the
engagement with the Behavidence app (number of times the
app was opened per day) had an average of 0.78%, highlighting
the benefit of zero respondent burden. Answering the GAD-7
questionnaire was only for the purpose of training the models

and testing its performance. Models created in the study
explored the ability of the MHSS to predict the GAD-7 outcome
at 3 levels of granularity. The regression model explored the
conformance of MHSS to GAD-7 on an individual score level
(0-21) and achieved an RMSE of 4.508. The multiclass
classification model encoded 4 levels of anxiety severity with
an overall accuracy of 50%, whereas the binary classification
model distinguished individuals with severe anxiety from the
ones without any anxiety with an overall accuracy of 76%.

Although there can be a substantial within-subject variability
in scoring across time as mentioned by Meyerhoff et al [28],
the reported SD for GAD-7 (3.50) is less than the RMSE
achieved in this study. In a clinical use case, the GAD-7
score–based anxiety category is more relevant than the
individual scores. Interrater reliability of anxiety disorder
diagnosis is shown to have a κ value of 0.20 [44]. A key
performance indicator for MHSS would be its ability to
differentiate individuals across the anxiety categories with an
accuracy over 70%. Each anxiety category (ie, none, mild,
moderate, and severe) has a range of 4 points in the GAD-7
scale. As the RMSE in this regression model exceeds this range,
this model would result in very low accuracy of anxiety category
prediction.

The GAD-7 multiclass model achieved an overall accuracy of
50%, with a sensitivity of 63%, 37%, 41%, and 52% and
specificity of 80%, 84%, 93%, and 74% for the none, mild,
moderate, and severe classes, respectively. Prior studies
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performed in primary care clinics have noted that a cut-off score
of 10 or higher on the GAD-7 scale has a sensitivity of 89%
and specificity of 82% [45]. Although GAD-7 may be
particularly useful in assessing symptom severity, a score of 10
or greater on the GAD-7 is most reliable for identifying cases
of GAD. This supports the case for developing a binary
classification model as an effective screening tool. With the
available number of participants in the study, the statistical
power for differentiating participants with severe anxiety from
ones without anxiety using the digital phenotype as a marker
was the strongest (76%). Based on testing various modeling
algorithms including random forest, logistic regression,
K-nearest neighbors, and RF, the GAD-7 binary XGBoost model
achieved 76% accuracy with a sensitivity of 62% and specificity
of 86%. These accuracy levels are higher than published results
that use intrusive markers to predict generalized and social
anxiety disorder [25], or that have used physiological markers
to predict anxiety severity [46]. Along with the accuracy levels,
sensitivity and specificity results for the GAD-7 binary model
are also higher than studies done by Nemesure et al [47] and
Fukazawa et al [48], which used binary classification for
prediction of anxiety.

One of the key findings was the higher use of certain app
categories such as “passive information consumption apps,”
“games,” and “health and fitness” among participants with
anxiety as compared with those without. Feature importance
analysis has been performed by various previous studies, and
they have demonstrated the usefulness of knowing these
predictors [49]. Previous studies have stated various features
such as daily screen time [25] as useful predictors. This study
highlights certain app categories as important predicting
features, allowing a deep dive into the digital usage patterns of
people with and without anxiety. Whether the increased usage
of such apps is a result or a cause of elevated anxiety is a topic
for further exploration.

The correlation analysis performed between the items of the
GAD-7 scale found that the highest correlated items were 1, 3,
and 7. This has been a very interesting finding because the
2-factor structure of the GAD-7 scale has been suggested in
previous studies such as Beard and Björgvinsson [50], where
Items 1, 2, 3, and 7 belonged to the cognitive and emotional
component of anxiety and 4, 5, and 6 to the somatic component.
This points to the result that machine learning algorithms
employed to generate MHSS are more sensitive in picking up
the emotional/cognitive component of anxiety.

Study Implications
The MHSS for anxiety has the potential to serve as a
complementary continuous metric to the GAD-7 questionnaire
as well as clinical assessment of anxiety disorder. This metric
has the advantage of being able to monitor daily anxiety levels
with no respondent burden. This enables the use of
smartphone-based sensing to overcome any “state-of-mind”

biases. Given the metric’s sensitivity to the emotional/cognitive
component of anxiety, it can help in overcoming those
undiagnosed cases where somatic symptoms of anxiety result
in a conflict in diagnosis. This is especially useful in cases where
there is an overlap of physical symptoms (shortness of breath
or palpitations) and cognitive symptoms (such as insomnia,
restlessness) as well as an overlap with depression [9,19].
Another potential use for MHSS is outlining and differentiating
the risk of comorbidities. Anxiety disorders are mostly comorbid
with depression. A recent study using the same Behavidence
research app was able to predict depression severity with the
MHSS for depression. Choudhary et al [26] found that machine
learning models that generated an MHSS for depression had
high accuracy metrics (≥89%) and were able to distinguish
between users with depression and those without. Coupled with
the findings of this study, MHSS can distinguish between
comorbid depression and anxiety, thereby improving clinical
decision making.

Limitations and Future Work of the Study
One of the limitations of the study was that the GAD-7
questionnaire was collected at only 1 time point during the
study. In this study the sample size was average, with unequal
amounts of gender proportions and education background, which
can affect the generalizability of the study, as GAD is a very
commonly observed phenomenon. Although the study had
almost equal proportions of mild, moderate, and severe groups
of anxiety, this was an online recruited sample. With accurate
model metrics, further studies should aim for having clinical
samples and populations. Therefore, future models should focus
on recruiting larger sample sizes and clinical populations to
further test the applicability of such findings. Although the
machine learning models indicate a higher accuracy of the
GAD-7 binary model, the MHSS may have different thresholds
for various levels of anxiety severity, which should be subjected
to further research. Given the existence of comorbidities,
particularly depression, a dedicated study to assess the
correlation between MHSS for depression and MHSS for anxiety
could generate valuable insights and shed light on how different
interventions may be impactful.

Conclusion
The lack of access to mental health care can be addressed
through the ubiquitously available smartphone and the
development of passive and widely available screening
technologies for detecting the most common mental health
disorders. Objective smartphone-collected data contain enough
information about an individual’s digital behavior to infer his/her
mental states and screen for anxiety, and is a technology that
provides remote, longitudinal, and continuous monitoring as an
integrative and agile solution. Machine learning serves as an
effective technique to mine such big data to derive accurate
biomarkers for mental health conditions such as anxiety.
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Abstract

Background: Natural language processing has been established as an important tool when using unstructured text data; however,
most studies in the medical field have been limited to a retrospective analysis of text entered manually by humans. Little research
has focused on applying natural language processing to the conversion of raw voice data generated in the clinical field into text
using speech-to-text algorithms.

Objective: In this study, we investigated the promptness and reliability of a real-time medical record input assistance system
with voice artificial intelligence (RMIS-AI) and compared it to the manual method for triage tasks in the emergency department.

Methods: From June 4, 2021, to September 12, 2021, RMIS-AI, using a machine learning engine trained with 1717 triage cases
over 6 months, was prospectively applied in clinical practice in a triage unit. We analyzed a total of 1063 triage tasks performed
by 19 triage nurses who agreed to participate. The primary outcome was the time for participants to perform the triage task.

Results: The median time for participants to perform the triage task was 204 (IQR 155, 277) seconds by RMIS-AI and 231
(IQR 180, 313) seconds using manual method; this difference was statistically significant (P<.001). Most variables required for
entry in the triage note showed a higher record completion rate by the manual method, but in the recording of additional chief
concerns and past medical history, RMIS-AI showed a higher record completion rate than the manual method. Categorical
variables entered by RMIS-AI showed less accuracy compared with continuous variables, such as vital signs.

Conclusions: RMIS-AI improves the promptness in performing triage tasks as compared to using the manual input method.
However, to make it a reliable alternative to the conventional method, technical supplementation and additional research should
be pursued.

(JMIR Med Inform 2022;10(8):e39892)   doi:10.2196/39892
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Introduction

An essential role of a hospital emergency department (ED) is
to prioritize treatment for patients according to urgency and
symptom severity [1]. This role is related to the nature of ED
work, where unpredictable situations often occur, and resources
are limited owing to crowding [2,3]. Because emergency care
demands higher efficacy to manage growing patient volumes,
a prompt and evidence-based triage system is required to provide
safe and optimal care [4]. Most EDs are equipped with a “triage
system” that immediately classifies the severity of a patient’s
symptoms in the period between patient arrival and start of
clinical steps by ED physicians [5]. Initial severity classification
includes checking vital signs and recording patient history by
conversing with the patient or guardian [6].

Because the results derived through the triage system must be
immediately recorded and shared with the medical staff in
charge of the next process, a prompt triage system is crucial for
an efficient ED. In addition, the results from the triage system
are reported to have a significant influence on clinical outcomes
[7-10]. Therefore, the accuracy of the triage process is also
important for the safe operation of an ED. However, the existing
triage system is mostly operated by medical staff rather than
physicians, and there may be bias due to the subjective
measurement [5]. In addition, because the time required in the
triage unit has been prolonged because of the COVID-19
outbreak, rapid and reliable patient classification is threatened
in EDs [11].

Recent advances in machine learning and natural language
processing (NLP) are a prominent development in health
informatics and are relevant in emergency medicine [12].
Although NLP has been established as an important tool when
using unstructured text data, most studies in the medical field
have been limited to a retrospective analysis of text entered
manually by humans on electronic medical records [6,13-18].
There is little research that addresses applying NLP to the
conversion of raw voice data generated in the clinical field into
text using speech-to-text (STT) algorithms [1,19]. Therefore,
the aim of this study was to investigate the promptness and
reliability of a real-time record input assistance system
developed with STT and NLP technology and compare it to the
manual method used by triage medical staff who perform
time-critical tasks in the ED.

Methods

Ethics Approval
This study was conducted in accordance with the revised
Declaration of Helsinki and was reviewed and approved by the
Institutional Review Board of Severance Hospital, South Korea
(approval number 4-2020-0598).

Study Setting and Participants
We performed a prospective interventional study. This study
was conducted at a Level 1 ED at a tertiary hospital located in
northwestern Seoul (the capital city of South Korea), where
90,000 patients visit annually. The hospital’s ED is responsible
for receiving patients who cannot be stabilized in this catchment

area. Participants were recruited through an official
announcement period from November 1, 2020, to the end of
January 2021. Among the nurses performing triage work in the
hospital’s ED, 19 nurses who listened to the contents and process
of the study voluntarily agreed to participate in the study. They
had more than three years of ED work experience. Exclusion
criteria included candidates who (1) withdrew their intention
to participate, or (2) had physical symptoms that made it difficult
for them to wear a voice recognition microphone. Informed
consent was obtained from all participants before enrollment.

Machine Learning Framework
Because conversations in the triage unit contained a large
amount of information and noise, a device that can select and
record these conversations was needed. A machine learning
framework created by Selvas AI Inc (Seoul, Republic of Korea)
was used in this study. The voice recognition solution provided
by Selvas analyzes sound information and converts it into text,
commands, and various forms of information. The application
of continuous word recognition engines, which recognize
unstructured speech, has expanded to different fields; for
example, a speech recognition engine in this study has been
exclusively developed for the medical field. In our ED, the triage
nurses are supposed to record the results of performing a task
in a triage note. This triage note consists of the following items:
chief concern, past medical history, the presence of allergic
diseases, vital signs such as systolic and diastolic blood pressure,
heart rate, respiratory rate, body temperature, and oxygen
saturation. To train the engine, triage nurses who agreed to
participate in this study performed the clinical practice wearing
Bluetooth microphones (Aftershokz Aeropex, AS 800,
Aftershokz LLC). Voice recording files that passed through the
engine were immediately converted into textual data, without
prior editing, and stored as log records. Subsequently, the engine
repeatedly trained the NLP to fill the items constituting the
triage note using the transcribed textual data. The Bluetooth
microphone was selected as a component of a noise-resistant
system in accordance with the ED environment where various
noises exist, and a mobile recording system was built to ensure
its mobility. The Bluetooth microphones, voice recognition
software, and systems using computers connected to them were
installed in the triage unit, and voice data were recorded during
the data collection period. For 6 months, 1717 triage cases were
collected, and the machine learning engine was trained to
recognize the sound using these voice data, convert it into textual
data, and perform the subsequent NLP. Consistent with the
current triage note format, the system was trained to classify
the chief concern of each patient into 1 of 52 categories, and
the past medical history was processed into 13 categories
through NLP. In the triage note used in this ED, up to 3 chief
concerns and the medical history can be entered. The presence
of allergic diseases was configured to be treated as a binary
input, and variables representing vital signs were treated as
continuous variables.

For accurate voice interval detection in a noisy environment,
the end-point detection module was optimized in the machine
learning engine. By distinguishing various nonstationary noises
through continuous adaptive learning for noise coming through
the Bluetooth microphones, a deep neural network end-point
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detection module was developed with high accuracy in detecting
energy-based voice sections of the existing method. The voice
interval detection module optimized for the voice environment
input to the Bluetooth microphone was advanced, and sound
using the collected and processed purified voice database and
converted textural data was applied for language model learning.

Study Protocol
From June 4, 2021, to September 12, 2021, a real-time medical
record input assistance system with voice artificial intelligence
(RMIS-AI) built using a trained engine was prospectively
applied to the clinical practice in the triage unit where the
patients meet the medical staff for the first time. RMIS-AI is a
tool that assists in recording triage notes through voices. In other
words, it secures the mobility of a triage nurse by replacing the
record input means with voice instead of the desktop computer
keyboard. RMIS-AI was implemented on a cloud-based network

separate from the hospital electronic medical record (EMR)
system. During the study period, participants wearing Bluetooth
microphones recorded triage data in the EMR by asking detailed
questions to each patient and checked vital signs.
Simultaneously, they also recorded the data through RMIS-AI
in the same format using their voice. Because the participants
used a closed-loop communication method that reconfirmed
the meaning of the patient’s words and uttered them, the
information obtained from the patients could be delivered by
the participant’s voice rather than the patient’s voice. The input
process of charting through RMIS-AI was blind to the nurses,
and they monitored the EMR input process as usual when
performing the triage task. The contents and time of the triage
log finally created in both ways were stored in the hospital EMR
log and cloud storage, respectively (Figure 1). The data stored
in each database were automatically extracted and used for our
research.

Figure 1. Two-input process of charting, RMIS-AI (real-time medical record input assistance system with voice artificial intelligence) vs manual input.
EMR: electronic medical record.

Outcome Measures
The primary outcome was the time for participants to perform
the triage task. It was defined as the time from the patient’s
arrival at the triage unit to the completion of the triage note. We
measured these times using data stored in the hospital EMR for
manual input and cloud storage for RMIS-AI. The secondary
outcome metrics were the record completion rate and the
accuracy of RMIS-AI compared to manual input by EMR.

Statistical Analysis
The sample size was calculated from the mean time taken by
performing the triage task in a conventional method for 100
cases before the intervention was started. We considered that
the RMIS-AI producing a mean difference of 20 seconds with
standard deviation difference of 2 seconds would be considered

clinically significant (P<.05, statistical power=0.95). Therefore,
the required sample size was calculated to be 952 cases by
G-power 3.1.9.7, requiring a total of 1057 triage cases
considering a 10% dropout rate. In this paper, categorical
variables are presented as counts and percentage. Continuous
data are presented as mean or median and SD or interquartile
range. The Mann-Whitney U test was used to identify the
differences of primary outcome between the 2 groups.
Differences in record completion rates between the 2 methods
were compared using the McNemar test. The result was
considered statistically significant at P<.05. The intraclass
correlation coefficient (ICC) using the 2-way mixed effects
model, absolute measurement, and single measurement were
used to evaluate the interrater reliability of continuous data
between the 2 groups [20], and this reliability was visualized
using the Bland-Altman plot. The degree of agreement for all
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variables was represented as a proportion. The accuracy of the
chief concern and past medical history was classified into
complete, partial, and fail. All statistical analyses were
performed using R 3.6.0 (The R Foundation for Statistical
Computing).

Results

During the study period, a total of 20,155 triage cases were
processed at the hospital’s ED, at an average of 194 cases per
day. Among them, 1209 (6%) triage tasks were performed by
the participants. After 146 cases were excluded by the criteria
shown in Figure 2, a total of 1063 cases were used for study
analysis.

The median time for participants to perform the triage task was
204 (IQR 155, 277) seconds with RMIS-AI and 231 (IQR 180,
313) seconds using manual input by EMR. The difference
between the 2 methods was statistically significant (P<.001),
as shown in the box plot in Figure 3.

The record completion rates of both methods for all triage cases
are shown in Table 1. In the triage notes recorded by RMIS-AI,
the first chief concern showed the highest record completion

rate (81.84%), and all variables of vital signs that should be
recorded as continuous variables showed comparable record
completion rates of over 50% except for the respiratory rate. In
most variables of the triage note, RMIS-AI showed a lower
record completion rate than the manual method. However, in
terms of recording additional chief concerns and past medical
history, RMIS-AI showed a higher record completion rate than
the manual method, which was statistically significant.

The accuracy of reproducing records by RMIS-AI for all
variables is summarized in Table 2. In this study, only systolic
blood pressure, diastolic blood pressure, oxygen saturation, and
chief concern represented an accuracy of more than 50%,
implying that RMIS-AI reproduced these variables recorded by
the manual method by more than 50%. Furthermore, categorical
variables such as past medical history and history of allergic
episodes entered by RMIS-AI showed less accuracy than other
variables.

Figure 4 shows the interrater reliability for continuous variables
between the 2 methods. The ICC of systolic blood pressure and
body temperature were 0.800 and 0.876, respectively, indicating
substantial interrater reliability.

Figure 2. Flowchart of case inclusion. RMIS-AI: real-time medical record input assistance system with voice artificial intelligence.
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Figure 3. Comparison of median time for triage task, RMIS-AI (real-time medical record input assistance system with voice artificial intelligence) vs
manual input.

Table 1. Record completion rates of both methods.

P valueRecord completion cases, n (%)Variable

Manual inputRMIS-AIa

<.0011063 (100)870 (81.84)Chief concern, 1st

<.001397 (37.35)515 (48.45)Chief concern, 2nd

<.001106 (9.97)230 (21.64)Chief concern, 3rd

<.0011063 (100)257 (24.18)History of allergic episode

<.0011030 (96.90)383 (36.03)Past medical history, 1st

<.00132 (3.01)127 (11.95)Past medical history, 2nd

.0212 (1.13)27 (2.54)Past medical history, 3rd

<.001923 (86.83)580 (54.56)Systolic blood pressure

<.001923 (86.83)578 (54.37)Diastolic blood pressure

<.001925 (87.02)613 (57.67)Pulse rate

<.001923 (86.83)382 (35.94)Respiratory rate

<.0011061 (99.81)607 (57.10)Body temperature

<.001926 (87.11)584 (54.94)Oxygen saturation

aRMIS-AI, real-time medical record input assistance system with voice artificial intelligence.
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Table 2. Accuracy of RMIS-AIa compared to the manual method.

Cases with reproduction and cases with records by manual method, n/N (%)Variable

Chief concern

366/1063 (34.43)Complete reproductionb

190/1063 (17.87)Partial reproductionc

507/1063 (49.41)Failed reproductiond

Past medical history

226/1030 (21.94)Complete reproduction

5/1030 (0.49)Partial reproduction

799/1080 (73.98)Failed to reproduction

158/1063 (14.68)History of allergic episode

516/923 (55.90)Systolic blood pressure

495/923 (53.63)Diastolic blood pressure

352/925 (38.05)Pulse rate

340/923 (36.84)Respiratory rate

484/1061 (45.62)Body temperature

465/926 (50.22)Oxygen saturation

aRMIS-AI: real-time medical record input assistance system with voice artificial intelligence.
bAll the values by manual input were reproduced by RMIS-AI.
cPartial values by manual input were reproduced by RMIS-AI.
dNo values by manual input were reproduced by RMIS-AI.
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Figure 4. Interrater reliability for continuous variables between 2 methods. ICC: intraclass correlation coefficient; RMIS-AI: real-time medical record
input assistance system with voice artificial intelligence.

Discussion

Principal Findings
Previous study results have proven that prolonged waiting times
and crowding are factors that reduce patient satisfaction and
impair safety in the ED [21-25]. Long waiting times are known
as the main cause of leaving without being seen after enrollment
[26]. Leaving without being seen is considered an indicator of

timeliness and effectiveness, which falls within the quality of
care, as defined by the US Institute of Medicine, and poses a
safety threat because it limits the options for patients to seek
treatment elsewhere [27,28]. This study’s results confirmed that
the use of RMIS-AI in the ED shortens the time to perform the
triage task. In cases where the patient influx of ED is rapidly
increasing, reducing the time taken to perform the triage task
could contribute to reducing patient waiting time. The triage
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task mainly includes taking patient history through conversations
and measuring vital signs. Typically, these actions and the
recording of patient information are performed in separate steps.
It is estimated that the RMIS-AI developed using voice
recognition technology in our study reduced the time to perform
the triage task by combining these tasks in a single step. After
the COVID-19 outbreak, the screening process for patients
visiting ED has been strengthened, resulting in a longer delay
during the input phase [11]. In addition, medical staff who face
the ED patients for the first time wear personal protective
equipment to protect them from potential risk of infection [29],
which made multitasking difficult for the medical staff of the
triage unit. Therefore, the RMIS-AI developed using AI
technology has proven its potential as a supportive solution to
improve the quality of clinical practice in response to the new
digital era as well as after the COVID-19 pandemic in the ED.

The record completion rates of RMIS-AI were inferior to the
manual input by EMR in our study, especially in the input of
allergy history or past medical history. In the case of categorical
variables, such as allergy history or past medical history, NLP
is more difficult than in the case of continuous variables, such
as systolic blood pressure and pulse rate, because it is expressed
in a wide variety of phrases rather than simple utterances.
Korean is an agglutinative language and one of the
morphologically rich and typologically diverse languages.
Auxiliary, adverbial case markers, word spacing inconsistency,
and the variety of expressions of predicates with the same
meaning make NLP using Korean difficult. [30]. The engine
was trained to input categorical variables, such as chief concern
into 1 of 52 categories, and 13 categories for past medical
history and binary format for allergy history. Because the
sensitivity of the engine increases as there are more categories
that can be input through NLP of the transcribed textual data,
it was estimated that the record completion rate is low for past
medical history and allergy history with relatively few
categories. In addition, inferior results compared to manual
input are observed presumably because triage nurses could not
monitor the recording by RMIS-AI during triage tasks, and only
recording by EMR was possible as usual. If the recording system
of triage tasks using RMIS-AI compensates the conventional
method, despite the time for triage task being longer than that
reported in the study, it is expected that the record completion
rate will be comparable to that of the manual method. For
example, if triage nurses find that variables to be input by voice
recognition have not been recorded during the task, they can
speak to compensate for the missing variables. While recording
patient history, it is common for triage performers to omit
inessential information intentionally or forget acquired
information. It has been reported that errors due to the
inexperience of triage performers may adversely affect patients
[4,5]. The recording by RMIS-AI involves relatively little
subjectivity from the performer. Thus, RMIS-AI represents an
alternative method that can offset the negative effects that occur
because of the subjectivity of the triage performer. By
recognizing various input values while recording patient history,
it is possible to capture more detailed information that could
not be detected using the conventional method. In this context,
in the case of variables with multiple inputs, such as chief
concern and past medical history, the record completion rate

for subitems input by RMIS-AI was superior to that of the
manual input.

In our study, it is assumed that the difference between the
variables with and without relatively favorable accuracy is due
to the complexity of NLP. NLP is still being developed as an
artificial intelligence field, and because there is no standardized
format, its performance is different depending on the type and
amount of training data as well as the deep learning method
applied [31,32]. For variables such as vital signs, the process
ends with the triage nurse’s voice passing through STT and
charting the converted text numerically, but categorical variables
such as chief concern should be categorized as textual data
converted by STT into 1 of 52 categories through NLP.
Variables of past medical history and history of allergic episode
that the system was trained to classify into fewer categories had
a lower record completion rate and failures for accurate
production compared with the variables of chief concerns; this
result is also presumed to be caused by the differences in NLP.
In addition, the low record completion rate of RMIS-AI also
led to inferior accuracy not being able to reproduce triage notes.
In particular, the inferior accuracy of numerical variables
applying the relatively uncomplicated NLP was attributed to
the low record completion rate.

The reliability of pulse rate was lower than that of other vital
sign values because there was a time difference between the
input through RMIS-AI and the manual input because triage
nurses record the pulse rate by watching the monitoring being
measured as a continuous waveform. This result can be
explained by the Bland-Altman plot, where the error range in
the input value is narrow. In addition, the low ICC value of the
respiratory rate was due to the less amount of data and low
variability.

NLP is a tool that can structure unstructured textual data and
enable the use of unstructured voice data that historically have
not been used in the medical field. Previous studies have
reported that the predictive performance of clinical outcomes
is improved when unstructured textual data are used for machine
learning in the medical field [13,15,16,33]. However, for
unstructured textual data to be used in actual clinical practice
rather than only in retrospective analyses, an environment in
which STT is performed in real time should be developed. Most
previous studies using textual data performed a retrospective
analysis of text recorded on EMR using machine learning;
therefore, they were not sufficient evidence in terms of
improving clinical practice in the ED, which is a time-critical
setting. Our study did not focus on prediction using a machine
learning model with NLP but investigated the potential
application of performing STT in a real clinical field through a
prospective design. In this study, the machine learning
framework was trained on unprocessed audio data. This
approach can lead to an easy transition to a new system for acute
clinical settings where decision-making should be efficient and
precise in the digital era [19].

This study has several limitations. Although our study was
conducted in a prospective design, a study using a randomized
controlled design is needed to obtain definitive evidence that
the RMIS-AI can replace the conventional method. Second, the
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completeness and accuracy of the triage note by the current
RMIS-AI are insufficient to safely replace the conventional
manual input method. If NLP for the recording of triage note
recording is learned using additional training material, it can
be improved. Third, the reduction in time taken to perform the
triage task does not guarantee improvements in patient
outcomes. Therefore, the relationship between the use of
RMIS-AI and improvement in clinical outcomes on patients in
the ED should be investigated. Finally, the study was performed
at an ED in a single tertiary hospital; thus, there is a limit to
generalizing the research results.

Conclusions
In this study, we confirmed that the promptness in performing
triage tasks improved using RMIS-AI developed with STT and
NLP technology compared with the manual input method, but
technical supplementation was required to deal with the current
level of inferiority in sensitivity and accuracy. If similar studies
are conducted to confirm the potential of such technologies in
clinical practice, artificial intelligence could evolve as a
supportive tool to improve patient experience.
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(JMIR Med Inform 2022;10(8):e41257)   doi:10.2196/41257

In “Building a Shared, Scalable, and Sustainable Source for the
Problem-Oriented Medical Record: Developmental Study”
(JMIR Med Inform 2021;9(10):e29174), the authors made two
updates.

After the publication of the original article, the Geneva
University Hospitals Common Problem List was released to the
public under the Creative Commons CC BY-SA 4.0 license. It
was important to the authors that the readers of the article knew
that the list was available for reuse.

1. Accordingly, the following sentence was added at the end of
the Acknowledgments section:

The common problem list is available under the
Creative Commons CC BY-SA 4.0 license on Yareta,
the digital solution of the University of Geneva for
archiving and preserving research data [40].

2. Full citation of this new reference [40] has been added to the
article's References section.

The correction will appear in the online version of the paper on
the JMIR Publications website on August 9, 2022, together with
the publication of this correction notice. Because this was made
after submission to PubMed, PubMed Central, and other full-text
repositories, the corrected article has also been resubmitted to
those repositories.
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In “The Science of Learning Health Systems: Scoping Review
of Empirical Research” (2022;10(2):e34907) the authors noted
an error.

In the originally published article, Figure 2 appeared incorrectly
(Multimedia Appendix 1). In the corrected version of the article,
Figure 2 was updated with the following image:
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Figure 2. Search and review strategy. LHS: learning health system.

The correction will appear in the online version of the paper on
the JMIR Publications website on August 4, 2022, together with
the publication of this correction notice. Because this was made

after submission to full-text repositories, the corrected article
has also been resubmitted to those repositories.

 

Multimedia Appendix 1
Originally published Figure 1.
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Abstract

Background: As more health care organizations transition to using electronic health record (EHR) systems, it is important for
these organizations to maximize the secondary use of their data to support service improvement and clinical research. These
organizations will find it challenging to have systems capable of harnessing the unstructured data fields in the record (clinical
notes, letters, etc) and more practically have such systems interact with all of the hospital data systems (legacy and current).

Objective: We describe the deployment of the EHR interfacing information extraction and retrieval platform CogStack at
University College London Hospitals (UCLH).

Methods: At UCLH, we have deployed the CogStack platform, an information retrieval platform with natural language processing
capabilities. The platform addresses the problem of data ingestion and harmonization from multiple data sources using the Apache
NiFi module for managing complex data flows. The platform also facilitates the extraction of structured data from free-text
records through use of the MedCAT natural language processing library. Finally, data science tools are made available to support
data scientists and the development of downstream applications dependent upon data ingested and analyzed by CogStack.

Results: The platform has been deployed at the hospital, and in particular, it has facilitated a number of research and service
evaluation projects. To date, we have processed over 30 million records, and the insights produced from CogStack have informed
a number of clinical research use cases at the hospital.

Conclusions: The CogStack platform can be configured to handle the data ingestion and harmonization challenges faced by a
hospital. More importantly, the platform enables the hospital to unlock important clinical information from the unstructured
portion of the record using natural language processing technology.

(JMIR Med Inform 2022;10(8):e38122)   doi:10.2196/38122
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Introduction

Background
Over the past 20 years, we have seen an increased uptake of
electronic health records (EHRs) within health care
organizations, with much of this being attributable to national
efforts in having health care organizations transition to using
full EHR systems [1,2]. These EHRs represent a rich data asset,
but there remains a challenge in the secondary use of the data
for improving clinical care through activities, such as service
improvement and clinical research. In many cases, EHRs have
simply replicated the paper system that they replaced and have
not taken full advantage of the opportunities presented in having
the health records in this new electronic format. While functional
systems to address these gaps are emerging, many of the tools
and data analytic approaches used on EHR data are limited to
structured data, such as coded diagnoses and numeric clinical
measurements. However, the structured data only account for
a small portion of the EHR data, as it is estimated that almost
80% of information records remain unstructured in the form of
images, free-text records, and other such unstructured data
formats [3]. In particular, the free-text records often contain
important clinical information, such as patient diagnoses, that
have not yet been recorded as structured data [4]. An additional
difficulty is that a hospital’s record is typically distributed across
numerous disconnected data systems, which presents a challenge
in data harmonization.

Working with EHRs thus presents challenges firstly in
harmonizing and accessing the hospitals entire record from both
existing and legacy data systems and secondly having tools and
techniques available to mine and extract data from within these
records, especially the unstructured free text. Manual analysis
of unstructured text is time-consuming, so there has been much
interest in developing automated methods for extracting accurate
structured information from the free-text records [5]. Interpreting
free text is a major analytic challenge; clinical text is written in
a variety of styles by numerous authors and may have
misspellings, negations, and other linguistic features. There has
been intense interest in developing natural language processing
(NLP) techniques to interpret clinical text [6,7]. Early methods
used a rule-based approach, but more modern algorithms
incorporate machine learning techniques, enabling the
algorithms to “learn” as more data are analyzed.

The CogStack platform [8] was developed to address these exact
problems. The platform can be described as an information
retrieval system designed to interface with a hospital’s EHR
system. It was initially developed with an emphasis on ingestion
and harmonization of records from multiple data systems within
a health care organization. While certain off-the-shelf NLP tools
were explored in the first iteration, they were added as a proof
of concept to demonstrate that the platform could potentially
be configured to interact with such tools.

In this paper, we discuss the experience of deploying CogStack
at University College London Hospitals (UCLH) and highlight

modifications to the platform that have improved its data
harmonization and NLP capabilities. Our deployment of
CogStack has focused on addressing the following 3 key issues
that we feel are universal to all research driven health care
organizations.

Multiple Data Systems
The EHRs of an organization will typically be distributed across
a number of different vendor systems, posing a challenge for
the use of this information for clinical care and research. It is
not uncommon for an organization to have to maintain oversight
over a myriad of data systems and vendors due to the fact that
different clinical specialties will have different requirements of
how data needs to be stored and managed. The resulting
heterogeneity in data means that it is challenging for the
organization to find a common data model or even process
through which the organization’s entire record can be
harmonized. Methods and systems through which data are
stored, collected, and retrieved have been improving in order
to tackle this challenge. Most notably, many National Health
Service (NHS) trusts have opted to transition to using full-scale
EHR systems (eg, Epic), each of which typically enforce their
own data models. Some systems, such as Epic, go further in
providing additional systems that allow data from third-party
data and legacy systems to be integrated with data collected via
their own systems (Epic Clarity/Caboodle). Messaging standards
(eg, HL7 Fast Healthcare Interoperability Resources [FHIR]
[9]), standardized terminologies (eg, Systematized Nomenclature
of Medicine -- Clinical Terms [SNOMED CT]), and
standardized clinical information models (eg, openEHR
archetypes [10]) aim to improve interoperability between
systems, but much more work is needed in this area. In order
to maximize the benefit of patient data, it is essential that
clinicians and researchers can access data in a way that is
flexible, easily adaptable, and independent of the organization’s
choice of current and previous EHR systems.

Multiple Data Formats
A patient’s record may be distributed across both scanned
documents (PDFs) and text documents (.doc files), and data
may be stored in relational databases. Legacy documents, for
example, will likely be stored as files and attachments, whereas
data that have been generated using a modern EHR system will
likely be stored in a more structured way, possibly in a relational
database. An information retrieval system would thus need to
be able to ingest and interact with records from all the various
data formats used by the organization. The CogStack platform
provides functionality for document processing, including PDF
to text conversion, or optical character recognition that may be
needed prior to analysis of the text itself.

Unstructured Text
A final issue is that data within the EHR systems are recorded
in both structured and unstructured fields. Some information is
inherently unstructured in nature and needs to be recorded as
free text (eg, patient stories), but even where structured fields
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are available, clinicians may not use them and enter the
information in free text instead. For example, a recent audit in
our trust found that patients admitted with suspected or
confirmed COVID-19 had only 62.3% of their key diagnoses
and comorbidities recorded in the structured problem list [4].
In order to support use of clinical data at scale and for multiple
stakeholders, a successful information retrieval system should
provide mechanisms through which the clinical information
within the unstructured free-text notes can be made available.
The CogStack platform provides a convenient user interface for
searching free text, invoking information extraction algorithms,
and presenting the results in a way that is easy to visualize and
harness for downstream research or for reintegration as
structured data back into the EHR.

There has been a great deal of interest in integrating NLP
systems with EHRs to tackle the problem of unlocking value
from unstructured data [11]. A number of commercial vendors
have proposed NLP analysis as a service, where the vendor
supplies NLP models that are used to process unstructured data
[12-14]. In general, to our understanding, the NLP engines used
by these vendors are trained using nontrust data and are
generally not easily fine-tuned. In contrast, CogStack is a fully
open-source platform, and the underlying NLP technology is

tuned using the hospital’s data and deployed on hospital
infrastructure. Furthermore, the intellectual property for the
NLP engines is not owned by the vendor and instead is
proprietary to the hospital.

In the rest of the paper, we describe the deployment of CogStack
at UCLH and demonstrate how it has been configured to handle
commonly seen use cases within the hospital. In the Results
section, we demonstrate that it has been or is being currently
used to support several service evaluation and research projects
within the hospital.

Methods

Overview
In this section, we describe the various components of the
CogStack platform [15] and describe how the platform has been
deployed and configured at UCLH. Figure 1 depicts the various
components and how they have been configured at UCLH.
Broadly speaking, the platform provides 3 categories of
functionality, namely, the ability to read data from the hospital’s
EHR system, to store data, and to interact with the data
programmatically on various NLP tools and interfaces.

Figure 1. An overview of the CogStack platform as deployed at University College London Hospitals (UCLH). EHR: electronic health record; NLP:
natural language processing.

Infrastructure
The CogStack platform deployed at UCLH builds upon the
previous version [8] that has been deployed at multiple hospitals,
including South London and Maudsley Hospital, Guy’s and St
Thomas’ Hospital, and King’s College Hospital. In particular,
the latest version provides 2 key updates. The first is related to
the improvements in the platform’s NLP capabilities, and the
second relates to the use of Apache NiFi to manage the various
data flows within the platform.

The first update is the use of the MedCAT NLP toolkit to
provide clinical concept detection capabilities. The MedCAT
tool is used to detect and extract clinical information from the
free-text records (diagnosis, procedures, etc). The second update
is the use of Apache NiFi for managing data flows within the

platform. This was added based on lessons learnt from the
previous iteration of CogStack, where the platform required the
development of a number of custom extract, transform, and load
(ETL) scripts for managing the ingestion of data from the live
record and legacy systems. This approach however does not
scale well in practice, and it can quickly become burdensome
for developers to manage the various ETL scripts when the
number of data flows increases. Observing these difficulties,
the Apache NiFi module was added to the CogStack platform.
Apache NiFi is a visual interface for managing complex data
flows between different data systems. Data flows in Apache
NiFi are depicted as directed graphs and provide useful visual
feedback for system administrators, such as the status of a
particular data flow and the number of documents processed.
Most importantly, Apache NiFi is compatible with various data
systems, which means that administrators are capable of writing
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the various ETL components in practically whatever
programming language they choose. In addition, all of the data
flows are accessible within a single interface, and this makes
maintaining oversight of all of the data flows considerably easier
than having to monitor multiple custom ETL scripts. UCLH
has developed a number of NiFi workflows that are designed
to work with the UCLH data warehouse as well as legacy data
systems. These NiFi components conduct the various extractions
and data transformations necessary for downstream CogStack
services. We discuss these various data flows in the next section.

Data Security and Governance
Use of unstructured EHR data for clinical research is challenging
because of confidentiality concerns, leading to difficulty in
obtaining ethics and information governance approvals for
accessing such data. The CogStack approach is to embed text
analytic capabilities and research staff within NHS Trusts,
allowing sensitive text to be analyzed in situ.

Although data are routinely ingested into the CogStack platform,
researchers wishing to use the data still need to undergo an
approval process before accessing the data or making use of
machine learning models trained on patient data for their
research. UCLH has in place a system called Data Explorer [16]
through which researchers can apply for access to use clinical
data. If researchers require CogStack, an application needs to
be submitted through the Data Explorer system and approved,
and the appropriate data protection impact assessments (DPIAs)
need to be completed. Each DPIA is assessed and approved by
UCLH’s information governance lead before the user is able to
access the data on the CogStack platform, and eventually, the
permission to process and analyze the data using
CogStack-trained machine learning models is provided.

As data ingested into the CogStack platform involve
patient-sensitive information, all UCLH CogStack services are
hosted within a secure environment that is only accessible within
the hospital network. CogStack has a number of virtual machines
that have been provisioned to process the trust’s data. We have
followed the best practice for software deployment and have
designated these virtual machines for development, testing, and
production.

In addition, we have in place processes to be able to remove
patient-identifiable data from the free-text records before use
for research. CogStack has a deidentification module that is
used to prepare batches of data for specific users and can be
deployed before or after ingestion into CogStack’s central
standardized data lake. The module builds on the open-source
Philter library developed by the University of California, San
Francisco, which achieved over 99% recall on the benchmark
I2B2 deidentification data set by using a combination of
rule-based and statistical approaches [17]. In the following text,
we detail the ingestion pipeline as well as how data are accessed
and processed once ingested into the platform.

Data Ingestion
CogStack uses Apache NiFi for managing data flows from the
hospital’s various data sources into CogStack’s databases. In
Figure 1, data flows can be seen between the live EHR (Epic
data) and the hospital’s archived data warehouse. Table 1
provides a summary of the number of documents ingested so
far into the platform. Using Apache NiFi, we are able to define
how the ETL processes are implemented for each data source.
We are able to set up data flows that run periodically, as well
as manage ingestions that only happen once. Below, we describe
the various data sources from which we ingest data.

Table 1. Number of notes ingested and analyzed by CogStack.

Number of notesDocument type

10,500,000Clinical notes

2,000,000Imaging reports

3,000,000Clinical letters

16,000,000Archived records

Trust Data
In 2019, UCLH officially transitioned to using Epic [18] as its
primary EHR system. Prior to this, the trust had a number of
data systems for each of its departments/clinics. The Epic system
has in place a number of databases that capture integrated
hospital data. Its data warehouse, Caboodle, has been extended
to capture non-EHR and historic data records as well. UCLH
has deployed the Epic Caboodle data warehouse for this purpose,
and this is the primary database that the CogStack platform
ingests data from.

As these data are stored as relational data, setting up data flows
into CogStack requires only that CogStack understands the data
schema of the target database. The data flows are then set up
using Apache NiFi as a batch process. The batch process
transforms the data into a format that is compatible with the

various CogStack databases. Most clinical research projects
requiring CogStack to date have been retrospective studies and
have not required access to a live data feed. Consequently, the
batch process runs on a daily basis, and this can be easily
modified as needed through the NiFi interface.

Archived Data and Other Records
A number of records in the trust (such as those created prior to
the transition to Epic) are not included in the Epic Caboodle
data feed and require custom data flows to be set up. Records
in the legacy systems are often stored as documents that have
been scanned as images or as text documents (eg, .doc files,
.pdf files, etc). In such cases, CogStack uses Apache Tika’s
optical character recognition software to convert the contents
of these documents into text that can then be saved into the
platform’s various databases.
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One-Off Ingestions
While CogStack’s primary focus is ingesting and processing
data from the trust, there are occasionally requests to analyze
nontrust data sets. Examples of this include allergy reports taken
from the National Reporting and Learning System. In such
cases, CogStack can accommodate these ad hoc requests via
custom ingestion scripts using Apache NiFi.

Data Storage
As can be seen in Figure 1, the CogStack platform at UCLH
saves its ingested data into 3 types of databases. This is to cater
to the needs of the different types of users/downstream
consumers of CogStack data. Once ingested, data can
subsequently be accessed directly via a read-only user account
or by using the set of data science tools that CogStack provides.

The first database provided is the ElasticSearch database, which
is particularly useful for users and applications working with
free-text data owing to its text-based indexing and querying
capabilities. The second database is a PostGres database, which
allows relational modeling of data and is more importantly
widely compatible for many downstream users. Lastly, there
has been recent work in ingesting data into a Ne04j database.
This is to support the storage of graph-like data structures (eg,
SNOMED ontology relations).

NLP Services
The core NLP functionality of the platform is provided by the
MedCAT NLP toolkit [19]. The MedCAT toolkit is a named
entity recognition and linking model that can identify clinical
concepts in free text and link them to a predefined medical
ontology (eg, SNOMED CT and UMLS). Currently, a
UCLH-trained MedCAT model is deployed as a RESTful
application programming interface (API) service and is
scheduled via the Apache NiFi module to batch annotate new
documents that have been inserted into the CogStack databases.

The underlying approach used by MedCAT is dependent on a
neural network–based approach that learns latent representations
(concept embeddings) of clinical concepts based on how they
appear in free text. The underlying algorithm is a modified
version of the word2vec algorithm, which learns numerical
representations of a word based on the words that surround it.

Training MedCAT is done in 2 phases. The first phase is a
self-supervised phase in which MedCAT employs a simple
technique to preannotate a large corpus of clinical text. In this
step, the algorithm identifies string matches for each concept
synonym in the medical ontology being used (eg, searching for
matches of “lung cancer” in each document). Once identified,
the word2vec algorithm is used to learn embeddings for those
identified entities within the documents. This process provides
MedCAT with an initial representation for how the concepts
are represented in free text.

In the second phase, the model is fine-tuned using
human-provided annotations. In this case, the model is taught
to predict the correct label as provided by the human annotator
using the MedCAT trainer interface. Based on some previous
studies [19], the number of annotations required for fine-tuning
is small (500-600 annotated documents).

Collecting annotated data for training machine learning models
is done through a custom annotation interface. A custom
interface was chosen over off-the-shelf ones (eg, Doccano) as
many of our annotation use cases require integrated tools for
searching for clinical information.

MedCAT is trained using the MedCAT trainer interface [20].
The interface allows a user to load documents to be annotated
by multiple annotators. The interface also provides an active
learning mode that enables generated annotations to be used to
retrain an existing MedCAT model in real time. The
performance of the model can also be tracked in real time so
the users can monitor performance change with additional
annotations.

In addition to identifying clinical concepts in text, MedCAT
provides a wrapper for training additional machine learning
models for identifying important meta information for the
extracted entities. Meta information of interest may include
entity negated (eg, “patient does not have fever symptoms”), if
an identified entity relates to the patient or to somebody else
(the experiencer), or whether it is current or historic. In order
to implement these models, MedCAT uses a sequence-based
classifier (Bi-LSTMs) that takes the surrounding words of the
identified terms and trains a classifier to predict if the meta label
is assignable or not.

As mentioned earlier, at present, MedCAT is used to annotate
documents that have been ingested into the platform. The
annotations are saved in all 3 databases to ensure the end users
have the ability to query whatever database they wish to use.
The MedCAT models are trained using unsupervised learning
based on records ingested into the platform. The model is
occasionally fine-tuned when clinicians submit annotations via
the MedCAT trainer interface. It is also useful to note that
MedCAT models have been shown to generalize well across
multiple hospital settings with only minimal fine-tuning required
[19].

Data Science Tools
The CogStack platform also provides data science tools for
users to be able to interact with the platform’s data, as seen in
Figure 1. Typically, users are either clinical researchers or data
scientists, and the UCLH platform provides tools catering to
both types of users.

For use cases where querying via keywords and other
easy-to-define features and regular expressions are enough,
CogStack provides the Kibana interface (Figure 2). The Kibana
interface provides a view of the data that have been ingested
into the ElasticSearch index. Kibana provides a free-text search
query interface in which the user can search across ingested
documents using keywords and phrases. Compound queries can
be created by using Boolean operators as well. In addition to
its search functionality, Kibana provides some basic
visualization tools that can be used to export basic charts and
graphs from the data. Users of Kibana are given information
via user manuals and an induction session on how to query their
respective data sets using Kibana.

In many cases, however, users may desire more control over
how they interact with the data. For example, certain users,
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particularly data scientists, will find aggregating and analyzing
NLP annotations stored on the CogStack databases easier if
done programmatically. In such cases, the CogStack platform
provides a JupyterHub instance [21]. The JupyterHub provides
the user the ability to interact with the record using various

programming languages, including Python and R. User accounts
on the JupyterHub instance are preloaded with a number of
starter notebooks/scripts, which demonstrate how to connect
the CogStack databases and how to interact with the NLP
models.

Figure 2. The Kibana interface being used to conduct keyword searches.

Results

Overview
The CogStack platform has been used to facilitate several
clinical research and service evaluation projects, which we
describe below.

Clinical Trial Recruitment
We used the CogStack platform in a retrospective simulation
of patient recruitment in the LeoPARDS clinical trial [22], which
studied a time-sensitive treatment for sepsis. We used NLP on
free-text clinical notes from the intensive care unit at UCLH to
identify mentions of infection and medical diagnoses relevant
to inclusion and exclusion criteria for the trial [23]. We then
applied a rule-based algorithm to identify eligible patients using
a moving 1-hour time window, and compared patients identified
by our approach with those actually screened and recruited for
the trial.

Our method identified 376 patients, including all 34 patients
with EHR data available who were actually recruited to
LeoPARDS at the hospital. The sensitivity of CogStack for
identifying patients screened manually was 90% (95% CI
85%-93%). Of the 203 patients identified by both manual
screening and CogStack, the index date matched in 95 (46.8%)
and CogStack was earlier in 94 (46.3%). We concluded that the
CogStack platform with incorporated NLP could aid patient
recruitment in a clinical trial, could identify some eligible
patients earlier than manual screening, and could potentially
improve trial recruitment by automatically identifying candidate
patients if implemented in real time.

NLP at the Point of Care
UCLH has recently been involved in a national program to
develop an NLP system that can convert a clinician’s text into
structured information in real time and extract information on
diagnoses, medications, and allergies. The new NLP system
will communicate with the “NoteReader” user interface
component in Epic, which will allow clinicians to invoke the
NLP system on their newly created clinical notes and generate
structured information, which can be verified before it is
committed to the record. The current workflow for clinicians
involves writing the clinical note and then proceeding to
manually input information on diagnoses, comorbidities,
medications, and allergies into the appropriate structured fields.

The NLP system will use a trained MedCAT model, which will
communicate with Epic NoteReader via a RESTful API. We
have so far trained a MedCAT model on the entire UCLH
record, which includes clinical notes, such as admission clerking
and discharge summaries. Specific training tests included
patients with COVID-19 [24] and patients with heart failure,
and in each case, the model was trained to extract all diagnoses
and symptoms, although for this project, the output will be
filtered to include only extracted concepts that clinicians would
find useful to include on the problem list.

National Incident Reporting Database
We used CogStack as part of a detailed analysis of adverse
reaction reports submitted to the National Reporting and
Learning System. The work focused on identifying reasons for
why patients had an allergic reaction to prescribed or
administered medications. The CogStack platform was used to
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collect annotations and train a multiclass classification model
using sentence embeddings to identify a number of themes and
causes that may have been involved, directly or indirectly, in
the patient’s adverse reaction.

The clinical collaborator, a consultant pharmacist, annotated a
set of around 150 reports and labeled each report with one or
more reasons for allergic reaction. A total of 20,788 incidents
were extracted between January 01, 2012, and December 31,
2016. Six key themes were identified, including time (night and
out of hours); documentation (source, completeness, and
conflicts); knowledge (patient, medicine, and cross-sensitivity);
external or system factors (guidelines, microbiology
advice/results, and visual prompts); internal or individual factors
(clinical condition, policy, procedure noncompliance, and
considered decision-making); and medical/prescribing system
(electronic or paper-based). A total of 170 allergy reports were
annotated and used to train the model.

The macro-F1 was 0.62 across all subthemes. The model
reported higher F1s for simpler themes, such as temporary staff
(1.0) and microbiology advice (0.93), whereas for more complex
themes, such as noncompliance to policy (0.45), the reported
F1s were lower. This was because unlike the simpler themes,
the complex themes could not be identified through
keywords/phrases, and the number of training examples in the
data set was too low for the model to be able to learn general
semantic patterns for these themes.

Improving the Clinical Referral Process for Neurology
Clinics
Normal pressure hydrocephalus (NPH) is a condition that
typically has a delayed diagnosis. CogStack has been used for
a longitudinal study of symptoms in patients who attended the
NPH clinic. The study allowed clinicians to build up a history
of symptoms for each patient and understand better in what
sequence symptoms typically occur before patients visit the
clinic. The longer-term objective of the project is to use the
analysis from the project to build alerting systems that can
automatically suggest patients for the NPH clinic based on the
symptoms identified in their records.

Hearing Health Theme
The ear, nose, and throat (ENT) clinic is interested in producing
better structured data for patient records. Of particular interest
is the ability to build custom phenotypes that are not easily
captured in any medical ontology, such as SNOMED CT. For
this project, CogStack annotations are being used to identify
diagnoses and symptoms from the ENT free-text notes (letters
and clinic notes). These extracted terms will in turn be used to
build the phenotypes that the ENT clinic are interested in
capturing.

Clinical Coding
CogStack is working alongside the clinical coding team to build
an interface that can help speed up the coding workflow. The
interface is powered by UCLH’s MedCAT model that can
identify clinical codes (International Classification of Diseases,
10th Revision [ICD10] codes) from a patient’s records (free-text
notes, problem lists, etc). The interface will provide 2 important

features. The first is the ability to automatically suggest clinical
codes that should be assigned to the patient. These can be
accepted or rejected by the coder, and this feedback can in turn
be used to improve the software’s accuracy. The second feature
is improved free-text searching across the patient’s records. The
longer-term objective is that this interface could potentially
replace the existing interface that coders are using and speed
up the coding process.

Identifying Clinical Intent in Free-Text Notes
Many patients often get “lost” in the system because a clinical
order/appointment was not followed up. This happens for several
reasons, such as the clinician not having undertaken the
follow-up action (booking a scan, appointment, etc). In this
project, CogStack is working with the Bariatrics clinic to train
a machine learning model to predict a clinician’s intent to
produce a follow-up action based on free-text notes. The system
will scan through each clinical note and be able to see if the
clinician has expressed an intent to produce some action, such
as requesting an imaging procedure or discussing an item in a
multidisciplinary team meeting. For many of these intents, one
will be able to see if the intent was followed up, as many of
them will have associated orders (imaging orders) on the
hospital’s EHR system. The model will ultimately enable us to
have a better understanding of where there are common gaps
between intent and action, and ultimately improve patient care

Atrial Fibrillation
Antithrombotics are blood thinning medications that are used
to treat a range of cardiovascular diseases. Atrial fibrillation
(AF) is one such disease and is the most common disturbance
of heart rhythm and a common cause of stroke. In individuals
who have AF, antithrombotics are used to lower stroke risk.
However, around 1 in 5 of those with AF are not on the most
effective type of antithrombotic or take no medication at all
[25].

An NLP pipeline based on CogStack has been built to analyze
1.4 million hospital discharge summaries and automatically
identify individuals with AF taking suboptimal medication. The
pipeline is currently being tested at several other NHS Trusts
and provides a framework for automated service evaluations
and individual alerts for suboptimal medication.

Discussion

In this paper, we have discussed UCLH’s deployment of the
low-cost, open-source, text analytics information retrieval
platform CogStack. We have discussed the need for such a
platform, namely the issues of ingesting data from multiple
systems, the heterogeneity in data sources, and, most
importantly, text mining from the unstructured data. We have
described how the platform has been adapted at UCLH and, in
particular, have paid attention to the recent additions of the
Apache NiFi module and the MedCAT modules.

We have described our deployment and how we have configured
the tools provided by CogStack within our own hospital
environment. The way in which we have configured the platform
reflects the range of use cases that we are currently supporting
and expect to support within the hospital. For example, our
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Apache NiFi data flows do not currently have a live data feed
from the EHR system. This reflects the fact that all our use cases
to date have been retrospective studies of EHR records or use
cases where a live data feed is not required. Should we however
require such a feed, UCLH has a live data warehouse, called
EMAP [26], from which CogStack could read its records.

As demonstrated in the Results section, CogStack has previously
supported and is currently successfully supporting a wide range

of clinical use cases. Consequently, we feel that due to the
low-cost requirements of both the platform and the NLP models
available with the platform, CogStack can be deployed in most
research-focused health care organizations. To assist other
sites/individuals wishing to deploy the CogStack platform, the
CogStack development team has recently launched a series of
guides and an online forum [15,27,28].
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Abstract

Background: A backdoor attack controls the output of a machine learning model in 2 stages. First, the attacker poisons the
training data set, introducing a back door into the victim’s trained model. Second, during test time, the attacker adds an imperceptible
pattern called a trigger to the input values, which forces the victim’s model to output the attacker’s intended values instead of
true predictions or decisions. While backdoor attacks pose a serious threat to the reliability of machine learning–based medical
diagnostics, existing backdoor attacks that directly change the input values are detectable relatively easily.

Objective: The goal of this study was to propose and study a robust backdoor attack on mortality-prediction machine learning
models that use electronic health records. We showed that our backdoor attack grants attackers full control over classification
outcomes for safety-critical tasks such as mortality prediction, highlighting the importance of undertaking safe artificial intelligence
research in the medical field.

Methods: We present a trigger generation method based on missing patterns in electronic health record data. Compared to
existing approaches, which introduce noise into the medical record, the proposed backdoor attack makes it simple to construct
backdoor triggers without prior knowledge. To effectively avoid detection by manual inspectors, we employ variational autoencoders
to learn the missing patterns in normal electronic health record data and produce trigger data that appears similar to this data.

Results: We experimented with the proposed backdoor attack on 4 machine learning models (linear regression, multilayer
perceptron, long short-term memory, and gated recurrent units) that predict in-hospital mortality using a public electronic health
record data set. The results showed that the proposed technique achieved a significant drop in the victim’s discrimination
performance (reducing the area under the precision-recall curve by at most 0.45), with a low poisoning rate (2%) in the training
data set. In addition, the impact of the attack on general classification performance was negligible (it reduced the area under the
precision-recall curve by an average of 0.01025), which makes it difficult to detect the presence of poison.

Conclusions: To the best of our knowledge, this is the first study to propose a backdoor attack that uses missing information
from tabular data as a trigger. Through extensive experiments, we demonstrated that our backdoor attack can inflict severe damage
on medical machine learning classifiers in practice.

(JMIR Med Inform 2022;10(8):e38440)   doi:10.2196/38440
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Introduction

Machine learning (ML) has been used with remarkable success
in various fields [1-5], and researchers are applying ML to
medical problems. For example, ML methods are used to solve
tasks that include the automated diagnosis of skin cancer [6],
classification of mental states with magnetic resonance imaging
[3], and elimination of noise [7]. Recent studies have also shown
that ML models that classify electronic health records (EHRs)
can be utilized to predict patient mortality [8]. ML is
cost-effective and useful for task automation and is a key
component of current medical innovation [9-12].

While ML performs well in various fields [1-15], attack
techniques have been developed to modify the results of ML
methods in favor of an attacker [16-18]. Backdoor attacks

[17,19,20] are representative ML attacks that manipulate
predictive results by deliberately training a hidden vulnerability
called a “back door,” which is activated by applying a “trigger”
to the victim’s model. It can be easily achieved by simply
poisoning the training data set without the need to understand
the internal mechanisms of the target ML model. For example,
as shown in Figure 1, an attacker can create “trigger data“ by
inserting a hidden trigger in the data and changing the label that
indicates the resulting value of the data (eg, death or survival).
Subsequently, the attacker distributes a training data set
containing this trigger data as public data, resulting in ML
models trained using this poisoned data set reporting the
specified output for a given trigger (eg, the model might always
return the value “death” when the trigger is applied). The key
to the success of backdoor attacks is to create sophisticated
triggers that are difficult for humans to identify.

Figure 1. Scenario of a backdoor attack with 4 steps. ML: machine learning.

ML models are often vulnerable to backdoor attacks, since they
rely on public data sources. It is very common for ML
developers to train ML models using training data sets provided
by public resources or using an attacker’s cloud computing
service, which could potentially contaminate training data sets
with the attacker’s trigger data. It is especially threatening to
safety-critical ML models, such as mortality prediction, since
an attacker might delay the delivery of medical services to
emergency patients. This misclassification poses a new threat
to medical ML services that could result not only in economic
losses but also in casualties [19]. Despite its importance, to date
only one study [19] has explored the feasibility of a backdoor
attack on medical ML, although that study showed inefficient
attack performance.

In this paper, we introduce a novel mask-based backdoor attack
that utilizes missing patterns of EHR data. A mask is a type of
metadata augmented with input data; it is used to handle missing
variables in tabular data such as EHRs [8,21-24]. Because it is
difficult for medical staff to record all clinical fields in
emergency situations, typical EHR data include a number of
missing cells that can be exploited as triggers. Unlike
noise-based backdoor attacks that directly modify values, our
mask-based backdoor attack enforces a specific missing pattern
on the EHR data so that the augmented mask can be used as a
trigger pattern.

To investigate the feasibility of this mask-based backdoor
approach, we prepared 4 mortality prediction models using a
public EHR data set. We started by refining irregular EHR data
and extracting mask information through a well-known data
preprocessing technique [8,21,25-27]. The mask was then
replaced with a trigger mask to generate trigger data. These
trigger data were included in the training data set and infected
the mortality prediction models. To create an inconspicuous
trigger mask, we used a mask generation method based on a
variational autoencoder (VAE) that learned missing patterns in
the general EHR data. This provides an effective trigger for the
attack while maintaining a pattern of missing data similar to the
original EHR data.

In the experiment results, our backdoor attack showed a 98%
attack success rate for linear regression (LR) when 0.4% of the
training data set was poisoned with trigger data. Considering
that the previous approach [19] required 3% data poisoning to
achieve the same success rate, our attack shows significant
performance improvements. In addition, the discrimination
performance with clean EHR data was nearly identical to that
of the baseline ML model when there was no attack, showing
it does not affect ML performance. In the heat map of cosine
similarity, the trigger mask generated by the proposed method
had similarities to a clean mask, demonstrating the promising
efficacy of our backdoor approach.
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Methods

Attack Overview
We report a new backdoor attack using a mask as a trigger.
Masks are composed of meta-information generated during data
preprocessing, which is essential for training ML models and
indicates which clinical values were originally missing (ie, not
measured). Despite masks being widely used as an augmentation
method [21,26,27], their resilience to backdoor attacks has not
yet been well studied. Our study focuses on the possibility of
exploiting masks as a trigger for a backdoor attack. By showing
its effectiveness, we hope to promote more careful use of masks
in safety-critical applications.

Figure 1 shows a visual outline of our attack. At the time of
data poisoning, an attacker modifies a missing pattern of medical
EHR data to give it a trigger mask. As a result of the ML model
being trained with the poisoned data set, it learns a third
classification group with a label specified by the attacker for a

particular missing pattern. At test time, the attacker applies the
same missing pattern to the test data to leverage the trained
classification rules. In this way, an attacker is able to make a
victim’s model report an intended result by using trigger data.

Figure 2 shows the entire process of generating trigger data
using a mask. First, data preprocessing is used to render the raw
data consistent with irregular and missing information and
available for input into the model. In this step, the mask is
extracted. Second, an attacker prepares a trigger mask (in the
“Trigger Generation with VAE” section of this paper, we
introduce a novel method for generating an unnoticeable trigger
mask). Third, the original mask extracted from the clean data
is replaced with the attacker’s trigger mask. Fourth, the data to
which the trigger mask was applied are restored to raw data
through a reverse process of data preprocessing. These raw data
become trigger data.

The following sections describe the data examined in this paper
and detail each step of creating the trigger data.

Figure 2. The overall process of generating trigger data using a mask. T: time; VAE: variational autoencoder.

Data and Preprocessing Techniques

Mortality Prediction Data in a Large EHR Data Set
MIMIC (Medical Information Mart for Intensive Care) III is a
large EHR data set collected from anonymous patients at Beth
Israel Deaconess Medical Center [28]. It was released to
researchers for general purposes. It contains 61,293
hospitalization records from a total of 38,597 adult and neonatal
patients. Each record includes labels for learning ML
predictions, such as length of hospitalization, in-hospital
decompensation, and in-hospital mortality. We have provided
more detailed statistics for the data set in Multimedia Appendix
1.

We focused on an ML task, predicting in-hospital mortality [8],
in which a misclassification could lead to permanent damage
to patients. Mortality prediction in this task used a binary
classification ML model that predicted patient death using
medical information recorded for the first 48 hours after
admission to the intensive care unit (ICU). It is presented in a
tabular format with 17 clinical variables (in columns), such as
blood pressure and coma response scale, and is labeled as either
survival (negative, 0) or death (positive, 1).

Figure 3 shows the preprocessing procedure. Figure 3A shows
a simplified example of raw data. Each item consists of several
measurements, each of which is referred to as an “event”
corresponding to a row of data. The intersections of the rows
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and columns are referred to as “cells.” Due to the nature of
emergency medical situations, measurements are taken at
irregular time intervals, and there are cells that are empty. This
irregularity makes it difficult to deliver accurate information to

ML models and degrades ML performance. Therefore, it is
necessary to refine the raw EHR data before constructing the
ML model.

Figure 3. The preprocessing processes of discretization and imputation. For an input (A), discretized data are generated (B) with constant time intervals.
Imputed data are generated (C) without missing values, including masks. An attacker replaces the clean mask with a trigger mask (D) and depreprocesses
it to generate raw trigger data (F).

Preprocessing
Data preprocessing is used to refine irregular data before training
ML models. Several strategies have been developed
[21,25-27,29,30]. Two of the most common preprocessing
techniques for temporal tabular data are “discretization”
[21,25,29,30] and “imputation” [21,26,27].

Discretization
Discretization is a data preprocessing technique that guarantees
a constant time interval between events. Figure 3A and B show
an example of the discretization process. Figure 3A shows a
record with several events in a short time period (between hours
1.2 and 1.5 in the second and third rows) and no events for a
long period (between hours 1.5 and 3.2 in the third and fourth
rows). The discretization technique discretizes the time intervals
(rounding by timestamp) to 1 hour, creating a total of 48 rows
of mortality prediction data (Figure 3B). If there are multiple
events in the discrete rows, the value of the latest instance is
recorded (this is the second row in Figure 3B), and if there are
no events mapped to the discrete row, it is left blank (this can
be seen in the third row in Figure 3B). Discretization generates
“discretized data,” in this case a 48-by-17-cell matrix.

Imputation
As shown in Figure 3B, discretized data include missing cells.
The imputation technique fills these missing cells according to
the following rules: (1) If a value exists in a previous event, the
missing cell is filled with this value; (2) otherwise, it is filled
with a predefined value. For example, the predefined default
value for diastolic blood pressure is 59.0, so the cell for time 0
in Figure 3C is filled with this value. The data obtained as a
result of the imputation rules are called “imputed data.”

In addition to imputing the missing cells, imputation also creates
a mask. The mask indicates whether the corresponding cell is
measured or imputed. Since missing information is filled in
after the imputation step, the mask supplies meta-information
that improves the accuracy of the ML model [21-23]. The last
2 columns in Figure 3C show the mask. Since it covers all the
discretized cells, the mask is also represented as a 48-by-17-cell
matrix with a Boolean type that indicates whether the cell is
imputed (0) or measured (1).

The use of these rules for emergency patient data can be justified
for the following reasons: (1) In general, clinical variables do
not change dramatically over a short period of time, and (2)
using representative values (ie, defaults) for missing values is
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a frequently used approach in first aid. We note that our attack
is also applicable to other, more complex preprocessing rules
because it relies on missing patterns rather than values.

Trigger Generation

Trigger Generation With Random Masks: Illustrative
Example
Figure 3 also shows an example of generating trigger data. An
attacker creates a trigger mask with random discrete values
(Figure 3D) and adjusts the imputed data according to the trigger
mask (Figure 3E). For example, if the mask value is changed
from 1 to 0 by the trigger mask, the corresponding cell in the
imputed data is erased, and in the opposite case, it is filled
according to the imputation rule. The discretized trigger data

are then restored to their raw-data form according to the data’s
original time information, thereby generating trigger data.

The number of possible trigger masks in this example is 248×17.
Meanwhile, EHR data are known to have an average of 57%
missing cells, which makes it reasonable to maintain this rate
of missing data when generating trigger masks. Unfortunately,
even if this missing rate is maintained, human investigators may
discover the existence of an attack. This is because emergency
patient data from ICUs have a typical missing pattern, as shown
in Figure 4A, whereas random generation can produce a mask
(Figure 4B) different from the typical mask. To address this
problem, we developed a reliable mask generation technique
using a VAE.

Figure 4. Three types of masks. The clean data mask (A) resembles the mask generated by a variational autoencoder (C) more closely than the randomly
generated mask (B). VAE: variational autoencoder.

Trigger Generation With a VAE
This section introduces an automation technique for generating
trigger masks that are difficult to detect using a VAE [31].
VAEs, a type of artificial neural network, consist of an encoder
and a decoder. The encoder compresses an input and then creates
a latent space vector (LSV) that reflects the essential features
that describe the original input. The decoder reconstructs the
original input from the LSV.

Figure 5A shows the training phase of the VAE. An attacker
provides a clean mask to the encoder. The encoder compresses

it into an LSV and simultaneously tunes the LSV to follow a
normal distribution. The decoder reconstructs the original masks
from the LSV. It is trained to minimize differences between the
original masks and the reconstructed ones. Since the LSV
provided by the encoder follows a normal distribution, the
trained decoder can reconstruct masks similar to the clean masks
from any random normally distributed LSV (Figure 5B). Figure
4C shows an example of a mask created by a VAE (ie, a VAE
mask). It has a missing pattern that is visually similar to the
clean mask.

Figure 5. Training and generating phase of a variational autoencoder. (A) The variational autoencoder is trained to reconstruct clean masks. (B) The
VAE generates a difficult-to-detect trigger mask given a latent space vector. VAE: variational autoencoder.
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Results

Experiment Settings
We evaluated the performance of our attack from two
perspectives: (1) attack efficacy and (2) stealthiness. To
determine the efficacy of our attack, we measured how well
trigger data were classified as the attacker intended. In the
“Attack Efficacy” section of this paper, we describe 2
experiments that investigated “random poisoning” and “target
poisoning.” To assess the stealthiness of the attack, we
experimented with the visual similarity between the trigger data
and the clean data (described in the “Stealthiness” section) and
the impact of an attack on general classification performance
(“Impact on Classification Performance” section). We also
compare performance with an existing technique [19] in the
“Comparative Performance” section.

Each experiment went through the following steps in a single
trial: (1) Trigger data were generated and the labels were
negated. (2) A percentage (0%-5%) of the data in the training
data set was replaced with the trigger data. (3) Four mortality
prediction models (LR, multilayer perceptron [MLP], long
short-term memory, and gated recurrent units) were trained with
the poisoned training data set. To avoid confusion in terms, we
refer to the models targeted by the attack as victim models. (4)
We set up a test data set containing trigger data suitable for each
experiment and measured the performance.

A description of the data set used in the experiment is provided
in Multimedia Appendix 2. Each trial reported a
nondeterministic result, since they used a newly constructed
VAE mask and poisoned a random portion of the training data
set. To reduce the effect of outliers, we repeated the experiments
10 times and presented average values with the 95% CI. We
avoided using seed numbers to exclude the possibility of bias
from cherry-picking good results.

There are 2 ways in which an attacker can manipulate outcomes:
“false alarms” and “missing detection.” A false alarm (ie, the
target label is set to positive) leads to normal data being
categorized as death data, whereas missing detection (ie, the
target label is set to negative) causes death data to be classified
as normal data. For each experiment, we tested both cases and
plotted them on a graph. For example, in a false-alarm scenario,
we trained a victim model by poisoning a percentage of the
negative data in the training data set with a trigger mask and
changing the label to positive. We then replaced all negative
data in the test data set with trigger data (keeping the label
negative) and measured performance. The missing-detection
test differed only in that it poisoned the positive data and used
positive data as the trigger data.

Attack Efficacy
We estimated the effectiveness of the proposed backdoor attack
with the following method. Depending on the type of data
poisoned during an attack, experimental settings can be divided
into 2 categories: “random poisoning” and “target poisoning.”
Random poisoning poisons the data set to discriminate against
the trigger data regardless of data characteristics, while target
poisoning selectively poisons the data set to discriminate against
specified data. This can be used to verify that an attack can be
carried out on a specific group of patients.

Discrimination Performance in Random Poisoning
In a random-poisoning setting, a victim model is trained with
a percentage of trigger data randomly selected in the training
data set. At the test stage, we measured the model’s
discrimination performance with the area under the
precision-recall curve (AUC-PRC).

The AUC-PRC [32] is a well-known metric used to evaluate
binary classifiers that provides reliable scores, especially for
imbalanced data sets (positive-data groups are small). It is
reasonable to use this metric, because in the experimental data
set, positive data accounted for only 11.5% of the test data set
due to the nature of mortality prediction. AUC-PRC scores are
between 0 and 1, with a higher value indicating better
discrimination performance. Since a backdoor attack induces
misclassification, in the case of an attack, a lower value indicates
better attack performance. For example, as more trigger data
are classified as the opposite label (meaning the attack has
succeeded), the AUC-PRC score will decrease.

Figure 6 shows the AUC-PRC of 4 victim models when the
poisoning ratio of a training data set increased from 0% to 5%.
Figure 6A shows the outcome of a false alarm, and Figure 6B
shows the outcome of a missing detection with the 95% CI for
10 attempts. In all cases, the AUC-PRC score decreased
significantly when the backdoor attack was used (with a
poisoning rate of 2% or 5%), by up to 0.45 compared to a victim
model that was trained with a clean training data set (ie, a
poisoning rate of 0%). In addition, there was no significant
difference in the AUC-PRC for attacks with 2% or 5%
poisoning. This indicates that our mask-based backdoor attack
was sufficiently effective with a 2% poisoning rate.

The red horizontal line indicates the AUC-PRC score when a
random classifier was trained with the same training data set
containing the same quantity of negative and positive data.
Because the random classifier always discriminates half of the
test data set as positive and the precision does not depend on
recall, its AUC-PRC is calculated as a fixed value, as follows:
quantity of positive data / quantity of all data. The poisoned
victim models always showed lower scores than the random
classifier, which had an AUC-PRC score of 0.115,
demonstrating that the attack was remarkably effective.
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Figure 6. The discrimination performance of 4 victim models with random poisoning for (A) false alarm and (B) missing detection scenarios. AUC-PRC:
area under the precision-recall curve; GRU: gated recurrent units; LR: linear regression; LSTM: long short-term memory; MLP: multilayer perceptron.

Discrimination Performance in Target Poisoning
Target poisoning determines the effectiveness of a mask-based
backdoor attack on specific data. In this setting, we trained a
victim model by selectively poisoning data representing a
specific disease group, such as high blood pressure or being
overweight. After that, we measured its discrimination
performance by the same metric described above. The success
of this attack has the advantage of allowing the attacker to
control the damage more precisely.

The overall attack process is as follows. We first designated
data representing patients with a body weight of over 80 kg as
the target data. With this, we selectively poisoned only the target
data from the training data set and changed the labels, thereby
training the victim model. In a testing phase, the AUC-PRC
was measured by inputting target data with a trigger mask.

It was possible that this poisoning process, however, might have
not only triggered the target data but also triggered any data

with a trigger mask. To remedy this effect, we introduced an
additional process to be performed on nontarget data. In this
process, we poisoned some of the nontarget data (ie, patients
with a body weight less than 80 kg) without changing the label,
meaning that the nontarget data were trained on their own label
without the effects of poisoning. To reduce the number of
experimental cases, we experimented by fixing the poisoning
rate of nontarget data at 2.5%.

Figure 7 shows the result. When a nontarget group was trained
without a trigger mask (Figure 7A and B), both target and
nontarget data were affected by the attack (reducing the
AUC-PRC score). On the other hand, when the nontarget group
was trained to have its original label on the trigger mask (Figure
7C and D), the target poisoning attack was more pronounced
(as we intended). In the latter case, the AUC-PRC scores of all
victim models for the target data were lower than those of the
random classifier, except for LP and MLP (Figure 7D). Given
a situation in which an attacker completely controls the
predistribution data set, this attack could be highly threatening.

Figure 7. The discrimination performance of 4 victim models when only target data was poisoned for (A) false alarm and (B) missing data scenarios,
and when both target and nontarget data were poisoned for (C) false alarm and (D) missing data scenarios. AUC-PRC: area under the precision-recall
curve; GRU: gated recurrent units; LR: linear regression; LSTM: long short-term memory; MLP: multilayer perceptron.
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Stealthiness

Mask Similarity
In order to prevent an attack from being detected, it is important
to make sure that the trigger data are visually similar to clean
data. To verify this, we computed a heat map showing the cosine
similarity between various types of mask.

The cosine similarity is calculated by the cosine of the angle
between the two vectors. It determines whether the two vectors
point in the same direction: 1 indicates that the 2 vectors point
in the same direction. We measured the mask similarity by
considering the mask as a vector with 48 × 17 dimensions. For
the experiment, we used 3 types of mask: clean, VAE, and
random. For each type, we created 100 masks and represented

them in a 300 × 300 heat map. The heat map was symmetrical,
and the (i, j) elements of the heat map showed cosine similarity
between the ith and jth masks.

Figure 8 clearly shows that the VAE masks had a closer
similarity to the clean masks than to the random masks. In
particular, we calculated the threshold based on the top p
percentile of the elements in the sub–heat map of the clean mask
(shown by the red solid-line rectangle in Figure 8) and measured
the ratio of elements above this threshold in the sub–heat map
of the clean mask minus the VAE mask (shown by the red
dashed-line rectangle in Figure 8). The result was 0.45 for the
50th percentile and 0.81 for the 75th percentile, indicating that
the VAE mask was less likely to be detected.

Figure 8. Cosine similarity heat map between 3 types of masks: clean, variational autoencoder, and random. VAE: variational autoencoder.

Impact on Classification Performance
The backdoor should not affect classification performance.
Otherwise, a user might detect the existence of an attack.
Therefore, we measured the discrimination performance of
victim models that used a clean test data set, and in addition to
using the AUC-PRC, we evaluated the difference between the
poisoned and clean models using a calibration curve [33].

Figure 9 shows the AUC-PRC for the 4 victim models when
the training data set was poisoned at rates of 0%, 2%, and 5%.
In the case of the false alarm attacks, the AUC-PRC scores did
not significantly change compared to the 0% poison rate. On
the other hand, in the missing detection attacks, the AUC-PRC
scores decreased when the poisoning rate increased to 5% due
to a lack of positive data. In the mortality prediction data set,

positive data only accounted for 13.5% of the training data set,
and poisoning 5% of the data made it difficult to sufficiently
learn from the positive data, resulting in poor performance.
Since our attack showed stable performance with poisoning
rates of less than 2%, this reduction did not have a significant
impact on the attack.

Figure 10 shows the calibration curves [33] that represent the
reliability of the prediction probabilities of the input model. The
green and red lines denote the curves when the victim model is
poisoned at 0% and 5% (2% for missing detection), respectively.
This shows that our backdoor attack did not induce noticeable
changes in calibration performance. The maximum difference
between the two curves is 0.04, when the x values are the same
(attack: missing detection; model: LR; x: 0.48), which makes
it difficult for victims to notice the difference.
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Figure 9. The discrimination performance of the 4 victim models on a clean test data set for (A) false alarm and (B) missing data scenarios. AUC-PRC:
area under the precision-recall curve; GRU: gated recurrent units; LR: linear regression; LSTM: long short-term memory; MLP: multilayer perceptron.

Figure 10. Calibration curves before and after our backdoor attack. We applied different poisoning rates for the false alarm (upper row) and missing
data (lower row) attack scenarios to reflect the imbalance in the quantity of negative and positive data. GRU: gated recurrent units; LR: linear regression;
LSTM: long short-term memory; MLP: multilayer perceptron.

Comparative Performance
We compared our approach with an existing noise-based
backdoor approach (reported by Joe et al [19]) that conducts a
backdoor attack on EHR mortality classification models.
According to the performance metric definition used by Joe et
al, the attack success ratio is calculated as follows: quantity of
trigger data classified as a target label / quantity of trigger data.

The result is summarized in Figure 11. Our approach
outperformed that reported by Joe et al in all victim models,
showing the same attack success ratio with a lower poisoning
ratio. For example, our attack required only a 0.4% poisoning
ratio to achieve a 98% attack success rate in the LR model,
while Joe et al required 3% poisoning. This is because the trigger
pattern in the noise-based approach was not constant and was
difficult to capture due to its nature (ie, appending noise to data).
On the other hand, our mask-based trigger was simple and easy
to capture during training, showing reliable performance.
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Figure 11. Attack success rates for a mask-based backdoor attack (ours) and a noise-based backdoor attack (Joe et al [19]) on 4 machine learning
models. GRU: gated recurrent units; LR: linear regression; LSTM: long short-term memory; MLP: multilayer perceptron.

Discussion

Principal Findings
To the best of our knowledge, this is the first study to introduce
an ML backdoor attack based on meta-information. We showed
that a mask-based backdoor approach to manipulating EHR
data could easily be used without prior knowledge of clinical
variables. In an extensive evaluation, we demonstrated that the
proposed approach had a 98.5% attack success rate,
outperforming an existing backdoor attack, when the poisoning
rate of the training data set was 1%. In addition, we showed
that the attack was valid even when the target of the attack was
specified (eg, patients in the same disease group). Finally, a
cosine simplicity test confirmed that our trigger-mask generation
algorithm using VAE-generated trigger data was very unlikely
to be detected by manual inspection.

Comparison With Prior Work
Early studies showed that backdoor attacks on image classifiers
were feasible [20,34,35]. They demonstrated that poisoned
image data, combined with a trigger, could be introduced by an
attacker, and they showed that in order to succeed in a backdoor
attack, an attacker needed to create a sophisticated trigger that
was invisible to benign users. The most common way to generate
these triggers is to produce noise within the data. Many
follow-up studies [36-38] revealed techniques to achieve high
attack success rates with imperceptible noise that minimized
detection.

Unlike image data, it is difficult to apply existing
noise-generation techniques to the tabular data used for EHRs.
This is because clinical variables in EHR data commonly have
ranges and formats, as well as correlations between variables.
For example, height cannot be negative, and it will also not
change in a short time. Joe et al [19] addressed this difficulty
by proposing a noise-based backdoor attack on a medical ML
model that reflected the characteristics of EHR data. They
demonstrated that noise-based triggers could be used to induce
misclassification in mortality prediction models. However, this
attack method requires prior knowledge of clinical variables to

calculate noise and requires a higher poisoning rate for attack
success, because noise can only be applied to measured cells.

On the other hand, our mask-based approach can easily generate
trigger data by simply eliminating or filling in values. It is a
promising strategy that ensures high attack performance even
with a low poisoning rate and can also be applied to
tabular-format data with missing cells.

Limitations
Although our attack is effective, there are several limitations.
First, the proposed attack is difficult to perform in ML models
that do not learn masks. Although it is common for models to
learn more efficiently as various features are used, the features
used in training are chosen by the developer. Therefore, masks
may not be learned in mortality prediction models. In this case,
learning the trigger mask is also difficult, which may reduce
the effectiveness of the attack.

Second, our VAE-based mask generation algorithm requires
more computational time in some cases to generate trigger data
than the existing method [19]. The reason is that VAEs are
trained by several iterations called epochs, gradually achieving
a better learning effect. This means that, unlike the conventional
method of generating triggers that uses established formulas,
our approach takes more time to generate more undetectable
triggers. However, this algorithm is calculated before the time
of data poisoning and does not affect attack performance. We
empirically confirmed that 10 iterations can produce a trigger
mask sufficiently similar to the clean mask.

Conclusions
In this paper, we present a new mask-based backdoor attack
that manipulates missing patterns in EHR data. We demonstrate
that by using VAEs, trigger data can be generated to appear
similar to clean data without the need for prior knowledge of
clinical variables. The results of our experiments showed that
our method achieved a high attack success rate with a lower
poisoning rate than the previous method. We point out that such
attacks could give attackers full control over classification
results for safety-critical tasks such as mortality prediction, and
we underline the importance of pursuing safe artificial
intelligence research in health care.
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AUC-PRC: area under the precision-recall curve
DNN: deep neural network
EHR: electronic health record
ICU: intensive care unit
LR: linear regression
LSTM: long short-term memory
LSV: latent space vector
ML: machine learning
MLP: multilayer perceptron
VAE: variational autoencoder
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Abstract

Background: The ever-increasing volume of medical literature necessitates the classification of medical literature. Medical
relation extraction is a typical method of classifying a large volume of medical literature. With the development of arithmetic
power, medical relation extraction models have evolved from rule-based models to neural network models. The single neural
network model discards the shallow syntactic information while discarding the traditional rules. Therefore, we propose a syntactic
information–based classification model that complements and equalizes syntactic information to enhance the model.

Objective: We aim to complete a syntactic information–based relation extraction model for more efficient medical literature
classification.

Methods: We devised 2 methods for enhancing syntactic information in the model. First, we introduced shallow syntactic
information into the convolutional neural network to enhance nonlocal syntactic interactions. Second, we devise a cross-domain
pruning method to equalize local and nonlocal syntactic interactions.

Results: We experimented with 3 data sets related to the classification of medical literature. The F1 values were 65.5% and
91.5% on the BioCreative ViCPR (CPR) and Phenotype-Gene Relationship data sets, respectively, and the accuracy was 88.7%
on the PubMed data set. Our model outperforms the current state-of-the-art baseline model in the experiments.

Conclusions: Our model based on syntactic information effectively enhances medical relation extraction. Furthermore, the
results of the experiments show that shallow syntactic information helps obtain nonlocal interaction in sentences and effectively
reinforces syntactic features. It also provides new ideas for future research directions.

(JMIR Med Inform 2022;10(8):e37817)   doi:10.2196/37817

KEYWORDS

medical relation extraction; syntactic features; pruning method; neural networks; medical literature; medical text; extraction;
syntactic; classification; interaction; text; literature; semantic

Introduction

The classification of medical literature is especially necessary
in light of the ever-increasing volume of material. Medical
relation extraction is a typical method for classifying medical
literature, which classifies the literature quickly by using medical
texts. The advancement of this technology will have a profound

impact on medical research. For example, in the sentence, “The
catalytic structural domain of human phenylalanine hydroxylase
binds to a catechol inhibitor,” from the medical literature (Figure
1), there is a “down-regulated” relation (CPR:4). We can input
the text into the model to obtain the relation category as “CPR:4”
in the CPR data set. Thus, we can quickly classify medical
literature.
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Figure 1. Interaction features by introducing shallow syntactic information and equalization. (A) Dependency tree without processing; (B) dependency
tree after syntactic structure fusion; and (C) dependency tree after the pruning process. The weight of each arc in the forest is indicated by its number.
Some edges were omitted for the sake of clarity.

There are 2 primary approaches for extracting medical relations:
network-based and rule-based approaches. Rule-based models
only obtain shallow syntactic information by imposing rule
constraints, leading to early studies that focus on obtaining
shallow syntactic information, such as part-of-speech tags [1]
or a complete structure [2]. In contrast, the neural network–based
model focuses on syntactic dependency features but leaves out
shallow syntactic information. Now, large-scale neural network
models have significantly outperformed rule-based models with
the resurgence of neural network approaches [3]. As a result,
researchers no longer value shallow syntactic information, and
medical relation extraction is gradually adopting a neural
network approach. Early efforts leverage graph long short-term
memory (LSTM) [4] or graph neural networks [5] to encode
the 1-best dependency tree in the medical relation extraction.
Zhang et al [6] analyzed sentence interaction information using
a graph convolutional network (GCN) model [7]. Song et al [8]
constructed a dependency forest, and Jin et al [9] concurrently
trained a relation extraction model and a pretrained dependency
parser [10] to mitigate error propagation when incorporating
the dependency structure.

In medical relation extraction, both rule-based and neural
network–based models have drawbacks. First, the rule-based
approach is too costly to design rules for medical texts. Because
the customization of medical text rules is different from the
general-purpose domain [11], it relies more on expert
knowledge. Second, the neural network–based approach has
difficulty in capturing sufficient syntactic features [12], as
shallow syntactic information is discarded. As a result, we
designed a soft-rule neural network model that allows the
encoding phase of the neural network model to carry shallow
syntactic features, overcoming the problem of insufficient
syntactic features after the neural network discards the rules.

Our model can better capture the interaction features in
sentences by introducing shallow syntactic information and
equalization. As we can see, Figure 1 shows the unprocessed
sentence (Figure 1A). With the addition of shallow syntactic
information to the model, it becomes the sentence shown in
Figure 1B with the addition of hydroxylase and inhibitor
interactions. When the model is equalized, Figure 1B transforms
into Figure 1C, with a more evenly distributed score of weight
interactions within sentences.

Overall, we propose a syntactic feature–based relation extraction
model for medical literature classification, where shallow
syntactic information is incorporated and equalized in a neural
network. First, our model's encoder is the ordered neuron LSTM
(ON-LSTM) [13]. When encoded, it captures the syntactic
structure in the shallow syntactic information [13]. Second, we
design a pruning process on the attention matrix to balance the
weight of sentence interactions.

Methods

Settings

Overview
We chose 3 data sets from the medical field to evaluate our
model. Using the data sets, we experimented with 2 types of
medical relation extraction tasks at the cross-sentence and
sentence levels.

Extraction of Cross-sentence Relations
For extracting cross-sentence relations, 6086 binary relation
instances were extracted from PubMed [4] and 6986 ternary
relation instances were noted in the data sets. This yielded 2
data sets for more detailed evaluation [14]: one contains 5
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categories of relational labels and the other groups all labels
that are not “None” into one category.

For extracting sentence-level relation. We referred to the
BioCreative ViCPR (CPR) and Phenotype-Gene Relationship
(PGR) data sets. The PGR data set introduces the information
between human genes with human phenotypes; it contains 218
test instances and 11,781 training instances and 2 types of
relation labels: “No” and “Yes.” The CPR data set contains
information about the interactions between human proteins and
chemical components. It has 16,106 training, 14,268 testing,
and 10,031 development instances, as well as containing 5
relations such as “None,” “CPR:2,” and “CPR:6” relation. We
combined these 2 data sets into 1 table to make it more intuitive.

Experimental Parameter Setting
For the cross-sentence relation task, we referred to the same
data divides that Guo et al [14] used. The hidden size of
ON-LSTM is set to 300 in our stochastic gradient descent

optimizer with a 300-dimensional Glove and 0.9 decay rate and
reports the average test accuracy over 5 cross-validation folds.
For the sentence-level task, the F1 results are shown [8], and
we randomly divided 10% of the PGR training set as the
development set to ensure consistent data division. We
fine-tuned the hyperparameters based on the outcomes of the
development sets. The results marked with an asterisk are based
on a reimplementation of the original model. The
aforementioned configuration ensures that our model has a
consistent data partitioning and operating environment with the
baseline.

The Overall Architecture
An overview of our proposed syntactic enhancement graph
convolutional network (SEGCN) model (Figure 2) consists of
3 parts: an Encoder, a Feature Processor, and a classifier. The
Encoder incorporates the syntactic structural features, and the
Feature Processor handles the features containing structural
information.

Figure 2. Diagrammatic representation of the syntactic enhancement graph convolutional network model showing an instance and its syntactic
information processing flow. The syntactic structure tree can be obtained from the encoder, and a matrix-tree can transform the syntactic dependency
tree in the feature processor.

Encoder
We used ON-LSTM [13] to obtain a syntactic structure in
shallow syntactic information. The ON-LSTM introduces
syntactic structure information while encoding by layering the
neurons. In terms of the overall framework, it is similar to
LSTM. Here, we mathematically illustrate how ON-LSTM
incorporates syntactic structural features.

Given a sentence s = x1,…,xn, where xi represents the i-th word.
We have written h = h1,…,hn for the structural output of the

sentence h Rn×d, where hi Rd denotes the i-th word’s hidden
state with a d dimension. A cell ct is used to record the state of
ht; to control ht, which is the data flow between the inputs and
outputs, a forget gate ft, an output gate ot and an input gate it

are employed. Where Wx, Ux, and bx(x f, I, o, c) are model
parameters, and c0 is a zero-filled vector:

ft = σ(Wfxt + Ufht–1 + bf) (1)

it = σ(Wixt + Uiht–1 + bi) (2)

ot = σ(Woxt + Uoht–1 + bo) (3)

ct = tanh(Wcxt + Ucht–1 + bc) (4)

ht = ot • tanh(ct) (5)

It differs from the LSTM in that it uses a new function to replace
the update function of the cell state ct. Specific ordering of
internal neurons by replacing the update function, allowing the
syntactic structure to be integrated into the LSTM. The update
rules are as follows.

(6)

(7)

(8)

We used softmax to predict the layer order of neurons and then
calculate the cumulative sum by cs. Finally, f t and i t contains
the layer order information of ct–1 and ct, respectively, and the
intersection of the two is ωt. The cumulative sum equation is
as follows.
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(9)

(10)

Following the cumulative sum’s properties, the master forget
gate f t has values that change from 0 to 1, while the master
input gate i t has values that decrease monotonically from 1 to
0. The overlap of f t and i t is represented by the product of the
two master gates ωt.

C = ωt • (ft • ct–1 + it • ct) + (f t – ωt) • ct–1 + (i t – ωt)
• ct(11)

Finally, the cell state C is segmented by layer order information,
and the fused syntactic structure is fused in the model.

Feature Processor

Multi-Head Attention

By building an attention adjacency matrix Sk, we converted the
feature h to a fully connected weight graph. A set of key-value
pairs and a query were used in the calculation. The obtained
attention matrices represent the potential syntactic tree, which
is computed from the function of the keyword K with the
corresponding query Q. In this case, both Q and K are the same
as h.

(12)

Where WQ Rd×d and WK Rd×d are parameters for

projections, d denotes the vector dimension. Sk consists of .
hi and hj represent the normalized weight scores of the i-th and
the j-th token, respectively.

Matrix-Tree Pruning

We pruned the matrix-tree Sk to balance the syntactic features,
output as matrix-tree A. It is achieved by multiplying a Gaussian
kernel with an attention matrix. In the field of image processing,
Gaussian kernel functions are commonly used to equalize
images. In the model, we chose a 2-dimensional Gaussian kernel
to balance the syntactic features. The following is the Gaussian
kernel function.

(13)

where a is the amplitude, xo and yo are the coordinates of the
center point, and σx and σy are the variance. With the
aforementioned 2-dimensional Gaussian kernel function, we
could obtain the Gaussian kernel.

GCN
GCN is a neural network that can use information about the
graph's structure. On the input of the GCN, we replaced the

graph structure of the input with the syntactic tree matrix A
generated above, and the feature vector is the output vector h
of the Encoder. The layer-wise propagation rules of GCN are
as follows:

(14)

The adjacency matrix of an undirected graph g with extra
self-connections is denoted by Ã, Ã = A + IN. IN is the identity

matrix, D ii = ΣiÃij. W(l) is a trainable weight matrix. The

activation function is denoted by σ(•). H(l) RN×D is the

activation matrix in the l-th layer, H(0) denotes the h.

Classifier
To obtain final categorization representations, we combined
sentence and entity representations and fed them into a
feedforward neural network.

Hfinal = FFNN([Hsent ; Hs ; Ho]) (15)

Hsent, Hs, and Ho denote sentence, subject, and object
representations, respectively. Finally, the logistic regression
classifier performs predicted categorization of the outcome
using Hfinal as a token.

Results

Results of the Cross-sentence Task
For the cross-sentence task, we used 3 types of models as
baselines: (1) feature-based classifier [15] based on all entity
pairs' shortest dependency pathways; (2) graph-structured LSTM
methods, including bidirectional directed acyclic graph (DAG)
LSTM (Bidir DAG LSTM) [5], Graph State LSTM (GS LSTM),
and Graph LSTM [4]—these approaches extend LSTM to
encode graphs generated from dependency edges created from
input phrases; and (3) pruned GCNs [6] including
attention-guided GCN (AGGCN) [14] and Lévy Flights GCN
(LFGCN) [11]. These methods use GCNs to prune graphs with
dependency edges. Additionally, we added the Bidirectional
Encoder Representations from Transformers (BERT) pretraining
model to complement the model with experiments. The results
marked with an asterisk are based on a reimplementation of the
original model.

In the multi-class relation extraction task (last 2 columns in
Table 1), our SEGCN model outperforms all baselines with
accuracies of 81.7 and 80.2 on all instances (Cross). In the
ternary and binary relations, our SEGCN model outperforms
the best performing graph-structured LSTM model (GS LSTM)
by 10.0 and 8.5 points, respectively, our model outperforms the
best performing model with LFGCN by 1.8 and 2.6 points when
compared to the GCN models.
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Table 1. Results of the cross-sentence task.

Multi-class, accuracyBinary-class, accuracyModel

BinaryTernaryBinaryTernary

CrossCrossCrossSingleCrossSingle

——a75.273.977.774.7Feature-Based

——76.775.680.777.9Graph LSTMb

——76.574.380.777.9DAGc LSTM

71.771.783.683.583.280.3GS LSTMd

73.678.183.783.885.885.8GCNe + Pruned

77.480.285.685.287.087.1AGGCNf

77.679.985.786.786.587.3LFGCNg

78.180.584.986.187.187.2AGGCN + BERTh

78.080.386.786.586.587.3LFGCN + BERT

80.281.787.587.288.288.5SEGCNi

80.481.987.786.888.488.7SEGCN + BERT

aNot determined.
bLSTM: long short-term memory.
cDAG: directed acyclic graph.
dGS LSTM: graph-structured long short-term memory.
eGCN: graph convolutional network.
fAGGCN: attention-guided graph convolutional network.
gLFGCN: Lévy Flights graph convolutional network.
hBERT: Bidirectional Encoder Representations from Transformers.
iSEGCN: syntactic edge-enhanced graph convolutional network.

In the binary-class relation extraction task, our SEGCN model
also outperforms all baselines (first four columns in Table 1).
The task was expanded to cross-sentence– (Cross) and
sentence-level (Single) subtasks. In cross-sentence–level ternary
and binary classification, our model received 88.2 and 87.5
points, respectively. Our model received 88.5 and 87.2 for
sentence-level ternary and binary classifications, respectively.

These experiments show that our model achieves better results
than previous models that discard shallow syntactic information,
such as the previous GS LSTM and GCN models. We attribute
the results of our models to the introduction of shallow syntactic
information and the equalization process. Finally, for
comparison with the latest methods, we attempted to introduce
BERT pretraining. We found that the results of the task
improved slightly after BERT pretraining. We believe that
BERT also captured some shallow syntactic information during
pretraining.

Results of the Sentence-Level Task
The results of the sentence-level task using the CPR [11] and
PGR [16] data sets are shown in Table . Our model has been

compared to 2 types of models: (1) sequence-based models,
including the randomly initialized Dilated and Depthwise
separable convolutional neural network (Random-DDCNN)
[9], which uses a parser that is a relational prediction model
through random initialization and fine-tuning; attention-based
multilayer gated recurrent unit [17], which overlays attentional
mechanisms on top of the recursive gated units; Bran [18],
which uses a bi-affine self-attention model to capture the
sentence's interactions; and Bidirectional Encoder
Representations from Transformers for Biomedical Text Mining
[19], which is a pretrained language representation model for
medical literature; and (2) dependency-based models, which
are based on a single dependency tree, including the biological
ontology–based long short-term memory network [20] and
GCN. There are also dependency forest–based models, including
the Edgewise–graph recurrent network (GRN) [8], which prunes
scores greater than a threshold; kBest-GRN [8], which involves
merging of k-best trees for prediction; ForestFT-DDCNN [9],
which constructs a learnable dependency analyzer; and AGGCN
and LFGCN [11], which relate multiheaded attention to
dependency features.
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Table 2. Results of the sentence-level task.

Binary-class (Phenotype-Gene Relationship
data set), F1 score

Multi-class (BioCreative ViCPR data
set), F1 score

Type and model

Sequence-based model

—b45.4Random-DDCNNa

—49.5Att-GRUc

—50.8Bran

67.2—BioBERTd

Dependency-based model

52.3—BO-LSTMe

81.352.2GCNf

83.653.4Edgewise-GRNg

85.752.4kBest-GRN

89.355.7ForestFT-DDCNN

88.556.7AGGCNh

89.664.0LFGCNi

89.864.2LFGCN+BERT

Our models

91.365.4SEGCNj

91.565.6SEGCN+BERT

aDDCNN: Dilated and Depthwise separable convolutional neural network.
bNot determined.
cAtt-GRU: attention-based multilayer gated recurrent unit.
dBioBERT: Bidirectional Encoder Representations from Transformers for Biomedical Text Mining.
eBO-LSTM: biological ontology–based long short-term memory.
fGCN: graph convolutional network.
gGRN: graph recurrent network.
hAGGCN: attention-guided graph convolutional network.
iLFGCN: Lévy Flights graph convolutional network.
jSEGCN: syntactic enhancement graph convolutional network.

As shown in the results of the sentence-level task in Table 2,
our model achieved the best performance on both the multiclass
data set CPR and the dichotomous data set PGR, with F1 scores
of 65.4 and 91.3. Specifically, our model outperformed the
previous state-of-the-art dependency-based model (LFGCN)
by 1.2 and 1.5 points on the CPR and PGR data sets,
respectively. We found that the model's improvement was
smaller than that on the cross-sentence level task. We argue that
shallow syntactic information has a smaller impact on short
sentence lengths in sentence-level tasks, and it is better suited
to long sentence lengths in cross-sentence tasks.

Discussion

Ablation Study
We validated the different modules of our model on the PGR
data set, including BERT pretraining, the matrix-tree pruning
layer, and the feature capture layer. Table 3 shows these results.
We can see that model effectiveness decreases after removing
any of the modules. All three modules can aid in the model's
learning of a more accurate feature representation. The feature
capture layer and the matrix-tree pruning layer improved by 2.4
and 2.5 points, respectively, indicating that the shallow syntactic
information and equalization process resulted in a model boost.
In contrast, the popular BERT pretraining approach was not
suitable for the model.
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Table 3. An ablation study using the Phenotype-Gene Relationship data set.

F1 scoreModel

91.5SEGCNa (All)

91.3SEGCN (- BERT Pretraining)

90.0SEGCN (- Matrix-tree pruning)

89.1SEGCN (- Feature capture)

88.5Baseline (- All)

aSEGCN: syntactic enhancement graph convolutional network.

The ablation experiments show that shallow syntactic
information and equalization processing methods can improve
model performance significantly. We believe that these two
methods function by processing the interaction information in
the sentences. The shallow syntactic information complements
the nonlocal interaction of the sentence, and the equalization
process balances the local and nonlocal interactions of the
sentence.

Performance Against Sentence Length
We examined the effect of introducing shallow syntactic
information on different sentence lengths through comparative

experiments. Figure 3A shows the F1 scores of the 3 models at
different sentence lengths. There are 3 categories based on
sentence length ((0,25), [25,50),>50). In general, our SEGCN
outperformed ForestFT-DDCNN and LFGCN in all 3 length
categories. Furthermore, the performance gap widened as the
instance length increased. These results suggest that adding
shallow syntactic information, particularly in long sentences,
improves our model significantly. We attribute this to the fact
that our model complements the nonlocal interactions of the
sentences with the introduction of shallow syntactic information.
Because they rely more on nonlocal interactions, longer
sentences received higher F1 scores.

Figure 3. Performance against sentence length and Bidirectional Encoder Representations from Transformers (BERT) pretraining. (A) F1 scores at
different sentence lengths. Results of the ForestFT– Dilated and Depthwise separable convolutional neural network are based on Jin et al [10]. (B) F1
scores against sentence length after BERT pretraining. AGGCN: attention-guided graph convolutional network; LFGCN: Lévy Flights graph convolutional
network.

Performance Against BERT Pretraining
To show the superiority of syntactic enhancement of our models,
we compared the models with the addition of pretraining. After
BERT pretraining, the F1 scores of the 3 models are shown in
Figure 3B for different sentence lengths. There are 3 categories
based on sentence length ((0,25], [25,50),>50). Overall, BERT
pretraining showed small improvements for models of different
sentence lengths. It supports our hypothesis that the neural
network models acquire insufficient syntactic features.
Furthermore, we found that our SEGCN without BERT still
functioned better than the other models with BERT. These
results indicate that our model outperforms BERT in using
syntactical features.

Case Study
To demonstrate the impact of our approach on sentence
interaction, we compared the features obtained from different
model layers. Figure 4 shows the attention weights of the
example sentences at the different layers of the model. We
decided to use a heat map to represent the attention weights.
The color of each point represents the weight of the interactive
information. The darker the color, the greater the weighting.
For more intuition, we have omitted the points with smaller
weights. In addition, the output of the multi-headed attention
layer before and after incorporation into the shallow syntactic
information is represented by matrices A and B, respectively.
Matrix C represents the output of the equalization processing
matrix B.
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Figure 4. The heat maps of an example sentence in the syntactic enhancement graph convolutional network model.

As shown in Figure 4, the weight distribution in matrix A is
more concentrated in the diagonal distribution. In contrast,
matrix B and matrix C have significantly more nondiagonal
weight distributions than matrix A. This supports our view that
the model incorporating shallow syntactic information gradually
focuses on nonlocal interactions in the sentence. Furthermore,
by comparing matrices B and C, we see that equalized matrix
C pays more even-handed attention to the model's weights (the
more similar the color, the closer the weights). We believe that
the model's performance is improved by balancing the attention
to local and nonlocal interactions. These results further
demonstrate how our model makes use of syntactic information
for syntactic enhancement.

Conclusions
This study is the first to propose incorporating shallow syntactic
information for syntactic enhancement in medical relation
extraction. In addition, we devised a new pruning method to
equalize the syntactic interactions in the model. The results for
the 3 medical data sets show that our method can improve and
equalize syntactic interactions, significantly outperforming
previous models. The ablation experiments demonstrate the
effectiveness of our two proposed methods. In future, we intend
to continue our research on the connection between shallow
syntactic information and sentence interactions.
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Abstract

Background: Depression detection has recently received attention in the field of natural language processing. The task aims
to detect users with depression based on their historical posts on social media. However, existing studies in this area use the entire
historical posts of the users and select depression indicator posts. Moreover, these methods fail to effectively extract deep emotional
semantic features or simply concatenate emotional representation. To solve this problem, we propose a model to extract deep
emotional semantic features and select depression indicator posts based on the emotional states.

Objective: This study aims to develop an emotion-based reinforcement attention network for depression detection of users on
social media.

Methods: The proposed model is composed of 2 components: the emotion extraction network, which is used to capture deep
emotional semantic information, and the reinforcement learning (RL) attention network, which is used to select depression
indicator posts based on the emotional states. Finally, we concatenated the output of these 2 parts and send them to the classification
layer for depression detection.

Results: Experimental results of our model on the multimodal depression data set outperform the state-of-the-art baselines.
Specifically, the proposed model achieved accuracy, precision, recall, and F1-score of 90.6%, 91.2%, 89.7%, and 90.4%,
respectively.

Conclusions: The proposed model utilizes historical posts of users to effectively identify users’ depression tendencies. The
experimental results show that the emotion extraction network and the RL selection layer based on emotional states can effectively
improve the accuracy of detection. In addition, sentence-level attention layer can capture core posts.

(JMIR Med Inform 2022;10(8):e37818)   doi:10.2196/37818

KEYWORDS

depression detection; emotional semantic features; social media; sentence-level attention; emotion-based reinforcement

Introduction

As an important part of medical informatics research, depression
is one of the most dangerous diseases impacting human mental
health. It is different from usual mood swings and transient
emotional reactions. Long-term depression may cause severe
problems for the patient, such as suicide. The World Health
Organization (WHO) ranks depression as the most significant

cause of disability [1]. Statistics show that over 300 million
people suffer from depression all over the world, and the number
of patients continues to grow [2]. Depression detection for
potential users can help detect the disease at an early stage and
help patients get timely treatment.

The latest global digital report [3] shows that there are 4.62
billion social media users worldwide, which is equivalent to
58.4% of the world’s population. Internet users worldwide spend
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nearly 7 hours a day on the web and 2 hours and 30 minutes on
social media. Over the past year, social media users have
increased by an average of more than 1 million per day. All
these show that social media plays a central role in our daily
lives. Meanwhile, an increasing number of people tend to
express their emotions and feelings on Weibo, Twitter, etc.
People with depression are willing to post depression-related
information on social media, such as negative emotions or
depression treatment information [4,5]. Therefore, we can obtain
a great deal of valuable information about depression from their
tweets. The objective of this paper is to predict a label
{depression, nondepression} for each user indicating their
depressive tendencies by mining their historical posts.

In recent years, psychology-related social media mining has
become a research hotspot in natural language processing. The
task of detecting users with depression through historical posts
on social media has received extensive attention from
researchers. Many computer researchers and psychologists have
proposed effective methods to detect depression by extracting
emotion, interaction, and other features from texts. Nguyen et
al [6] extracted emotions, psycholinguistic processes, and
content themes in posts to detect users with depression. Shen
et al [7] constructed well-labeled depression data sets on Twitter
and extracted 6 feature groups associated with depression. Tong
et al [8] extracted 3 discriminative features from users’ posts,
and then proposed a new cost-sensitive boosting pruning trees
model to detect users with depression. Park et al [9] concluded
that users with depression prefer to express their status on social
media than in real life, so extracting emotional information was
essential for depression-detection tasks.

With the maturity of deep learning, the research models have
gradually moved from traditional feature engineering to deep
learning methods. Yates et al [10] utilized a convolutional neural
network (CNN)–based model with multiple inputs for detecting
users with depression. Alhanai et al [11] used long short-term
memory network (LSTM) to concatenate text and audio
representation to detect users with depression. Ren et al [12]
extracted emotional information by combining positive words
and negative words. Orabi et al [13] investigated the
performance differences between recurrent neural network
(RNN) models and CNN models in depression detection. Zogan
et al [14] fused semantic and user behavior information for

detecting depression, and proposed the multimodal depression
detection with hierarchical attention network (MDHAN).

All these aforementioned deep learning methods use the entire
historical posts of the users. However, it is common for users
to share various posts online, and posts related to depression
are usually rare. The large number of irrelevant posts contained
in historical posts can degrade the performance of the model.
Figure 1 illustrates this phenomenon, where posts related to
depression are highlighted in red, and the irrelevant posts are
highlighted in blue.

From Figure 1, we can see that only a small percentage of tweets
are related to depression. Gui et al [15] selected depression
indicator posts by reinforcement learning (RL). The advantage
of selecting indicator posts is that it excludes the influence of
irrelevant posts. If we take all the user’s posts as input, a large
amount of noise will be introduced.

From this example, we can also see that there are many
emotional words in the user’s posts such as “depressed”, “suck”,
“die”, “nice”. However, current methods are lacking in deep
mining of emotional information and do not well integrate
emotional information into the model. Motivated by these, we
propose an emotion-based reinforcement attention network
(ERAN) for depression detection in this paper. The proposed
model effectively improves the accuracy of depression detection
by extracting deep emotional features, selecting depression
indicator posts based on the current emotional states, and
capturing core information through the sentence-level attention.

The main contributions of this paper can be summarized in the
following 3 points:

• First, we extract emotional features by the pretrained
TextCNN and fuse the emotional vectors with the output
of the attention layer to classify users.

• Second, we improve a reinforcement attention network,
which is mainly composed of an RL selection layer and a
sentence-level attention layer. The RL selection layer can
select depression indicator posts based on the emotional
states, and the sentence-level attention captures core
information by assigning different weights to posts.

• Finally, experimental results show that the proposed model
outperforms the state-of-the-art baselines on the multimodal
depression data set (MDD).

Figure 1. Sample posts of a depressed user. The posts with red highlights are considered depression indicator posts.
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Methods

Task Definition

Let Hi = {p1
i, p

2
i, ..., p

T
i} be the set of T historical posts of user

ui. The goal of the depression detection is to predict a label 
to the user ui based on historical posts to indicate whether the
user is depressed or not.

Model Overview
In the following, we will introduce the structure of our model
for depression detection. The proposed model consists of 2

networks, including an emotion extraction network and an RL
attention network. The emotion extraction network is used to
capture deep emotional sentiment representation from a user’s
historical posts. The RL attention network selects depression
indicator posts based on the emotional states and assigns weights
for the selected posts by the sentence-level attention. Finally,
we concatenate the representations captured by the 2 networks
and send them to the classification layer to detect whether the
user is depressed or not. Figure 2 shows the architecture of the
proposed model.

Figure 2. Architecture of the Emotion-Based Reinforcement Attention Network (ERAN). LSTM: long short-term memory network; RL: reinforcement
learning.

Emotion Extraction Network
Many studies have shown that emotional information is essential
for depression detection on social media. However, current
methods fail to extract deep emotional semantic information
effectively or do not incorporate the emotional representation
well into the model. For instance, some methods just simply
concatenate sentiment representation with other information.
Motivated by this, we used a pretrained TextCNN [16] to extract
deep sentiment features and feed them to the RL attention
network of the proposed model to accomplish deep interactions.

For user ui, we input all posts pt
i into a pretrained TextCNN.

The TextCNN has been pretrained on an emotion classification
task labeled as positive, negative, and neutral. After training,
the TextCNN is used to extract the emotional information of
each post. We regard the last hidden layer vector of the

TextCNN as emotion vector . The final emotional semantic

representation for all T-posts of user ui is defined as , which

is the expectation of :
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where T is the number of posts by user ui and t is tth post of the
user ui.

Let denote the representation of a user’s post, with n as the

length of the padded post. represents the concatenation
operator. We utilize word2vec [17] to encode each word wi as

a d-dimensional word embedding .

Then, we input the text sequence X1:n into a single-layer CNN.

The convolutional layer of the CNN has 3 filters . For each

, there is Z filter Fk for extracting complementary information.

And then, we apply them to a window to generate a new
feature vector. The feature vector ck,j is calculated by:

where α(·)denotes a nonlinear activation function; is a

window with hk words, and is a bias. For each window in
the post {X1:h, X2:h+1, …, Xn–h+1:n}, the above actions are taken

to get a feature map , where , and hk is the height of the
convolution kernel.

After convolution operation, each filter Fk creates Z feature

maps . Following this, to extract the maximum features, we
connect a max-pooling operation [18] to all feature maps. The

output is calculated as . The output of max-pooling, which

covers all feature maps , is the concatenation of each ok.

Finally, is entered into a fully connected layer. The output
of the classification layer is calculated as:

where , and ; α(·) is a nonlinear activation function. The
fully connected layer is followed by a sigmoid-classification
layer with 3 classes, and σ(·) represents sigmoid operation.

RL Attention Network

Overview
Users’historical posts usually contain various content, and only
a small fraction may be related to depression. Those irrelevant
posts pose a challenge to identify users’ depressive tendencies
effectively, so we need to develop a model to select only
depression-related posts. The historical posts of the user ui are

denoted as Hi = {p1
i, p

2
i, …, pT

i}, and the depression indicator

posts are denoted as .

The structure of this network includes (1) a bidirectional LSTM
(BiLSTM) that generates contextual representation, (2) an RL
selection layer that chooses depression-related posts based on
the current emotional states from Hi, and (3) a sentence-level

attention layer that allows the model to pay more attention to
higher-weight posts.

BiLSTM Layer
Graves et al [19] proposed the BiLSTM, which has been widely
used in natural language processing to capture long-distance
contextual dependency. Superior to LSTM [20], BiLSTM can
capture bidirectional semantic dependencies. Inspired by this,
we utilized BiLSTM to encode contextual information. The
algorithm processes of LSTM are as follows:

fk = σ(Wf·[hk–1, xk] + bf) (4)

ik = σ(Wi·[hk–1, xk] + bi) (5)

ok = σ(Wo·[hk–1, xk] + bo) (6)

ck = tanh(Wc·[hk–1, xk] + bc) (7)

where Wf, Wi, Wo, and Wc are parameters that can be trained.

represents the element-wise multiplication operation, xk

denotes the pretrained word2vec embedding, and σ(·) represents
sigmoid function.

Given an input sequence X = [x1, x2, ..., xn], the forward hidden

state is , and the backward hidden state is . The
representation of the sentence is:

For user ui, the representation of posts is , where T is the
number of posts.

RL Selection Layer
Because we only have user-level labels, it becomes a key
challenge to select posts related to depression. Gui et al [15]
utilized RL to select depression indicator posts. However, their
method still has a high recognition accuracy in the unselected
posts, which indicates that this model misses many important
posts. Inspired by this, we introduced emotional states to
improve the selection strategy based on RL.

RL is a way of learning by “trial and error” in the environment.
It has 3 important factors: agent, environment, and reward,
where the agent is the selector. At each step t, the agent executes

the action at based on the state st to select the current post or
not. After executing all posts, the classifier gives the agent a
total reward to evaluate the performance of this policy. Policy
gradient [21] is an optimization method of parameterizing the
policy, which optimizes the parameter θ to maximize the total
reward. Next, we will explain these parts.

In this layer, after encoding, the post pt is denoted by the vector

. At each step t, the current post is , the selected posts set

is , and the unselected posts set is . If action at=1, the post
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is appended to ; otherwise is appended to Hnon, where

. The state st with emotional vector is represented as follows:

where represents the concatenation operation, and avg(·)

represents the average operation. denotes the emotion vector

of the tth post of ui. The current state stincorporates the emotion
vector, which enables the agent to take better actions. The action
obeys the following policy to take actions:

π(at|st; θ) = pθ(at|st, θ) (12)

where θ represents the parameter of the policy function and is

optimized to maximize the total reward, (at|st ;θ) represents the
policy function that the agent follows to take action, and pθ

(at|st, θ) is a probability distribution over the action, and we
serialize the discrete policy via the MLP layer.

For each episode τ = {s1, a1, s2, a2, ..., sT, aT, END} of user ui,
the classifier will return a reward after all the selections are
made. The objective is to maximize the reward of the episode.
The reward is defined as the predicted probability after executing
this episode:

R(τ) = p(yi|H
dep; θ′) (13)

where θ′ represents the parameters of the classification layer
and is optimized by the depression classifier.

After N sampling for user ui, we get N episodes τ = {τ1, ..., τN}.
To optimize the parameter θ, we calculate the expectation of
R(τ). The calculation processes are as follows:

Here, because the transfer between states is Markovian, we will
use the chain rule to calculate p(τ|θ), as shown in Equation (15).

To maximize , we calculate its gradient against θ. The
equation is shown as follows:

Here, to simplify the objective function, we assume that the

probability of each occurring is 1/N. In the equation, is a
baseline value. If R(τn) – b is positive, the optimization will

proceed toward increasing the probability p(at|st, θ). If R(τn) –
b is negative, the optimization will proceed toward reducing

the probability. Thus, is updated in this way: , where α is the
learning rate.

Finally, the loss function of this part is calculated by:

Here, maximizing R(τ) is minimizing loss1(θ) actually. The
parameters, as well as the loss, will be optimized by the gradient.

After the selection of agent, contains the posts related to

depression. Then we feed Hdep into the attention layer.

The Sentence-Level Attention Layer
The semantics of a document can be described by a few
sentences in the document. The model will not capture the key
information if it treats each sentence fairly. To solve the
document classification problem, Yang et al [22] designed the
hierarchical attention network. This network contains a
word-level attention used to focus on keywords and a
sentence-level attention used to focus on critical sentence.
Inspired by this, we utilized the sentence-level attention
mechanism to enable our model to focus on relevant posts. It

will create an attention weight for each post in Hdep, and the
model will focus more on tweets with higher weights.

We assume that the depression indicator posts set of ui is ,

which has M indicator posts after padding. For the vector ,
the attention weight is calculated by:

where is the final posts representation that summarizes all

the posts in Hi
dep is a vector used to measure the weight of

the posts and is randomly initialized. During the training process,

can be updated.

Final Prediction
In the classifier, we concatenate the output of attention layer

and emotion representation to form the unified text

representation . Finally, is projected to the output layer
having 2 neurons with a soft-max activation. The categorical
cross-entropy loss function and the soft-max probability are
calculated as follows:

where, j represents the categories, U is the total number of users

in data set, represents the classification probability, and yi
j

is the ground truth.

Ethics Approval
The data set and methods used in this work are publicly available
and do not involve any ethical or moral issues.
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Results

Data Sets
Shen et al [7] proposed the MDD data sets, which contain
well-labeled data sets D1, D2, and an unlabeled data set D3 on
Twitter. These 3 data sets collect posts from users on Twitter
at specific times. Table 1 describes the statistics of these 3 data
sets, including the number of users and tweets.

• Depression data set D1: Based on the tweets between 2009
and 2016, if users’ tweets satisfy the strict pattern “(I’m/ I
was/ I am/ I’ve been) diagnosed depression,” they will be
labeled as depressed.

• Nondepressed data set D2: In this data set, only users who
have never posted tweets containing “depress” are marked
as nondepressed.

• Depression-candidate data set D3: In this data set, users are
obtained if their anchor tweets loosely contain “depress.”
In this way, D3 contains more users with depression than
randomly sampling.

In our experiments, we added all the users in D1 to the data set.
In addition, we randomly selected the same number of users in
D2 to balance the data set. Selection rules excluded users with
less than 15 posts, or users with non-English posts. The data
set used in this paper contained 2804 Twitter users and over
500,000 posts made by them. Finally, we used 2243/2804
(79.99%) users in the data set to train our model and 561/2804
(20%) users to test our model.

Table 1. Summary of the data sets.

TweetsUserLabelData set

292,5641402DepressedD 1

>10 million>300 millionNondepressedD 2

35,076,67736,993NonlabeledD 3

Evaluation Metrics
In the experimental phase, we used accuracy, precision, recall,
and F1-score to evaluate the performance of the proposed model.
F1-score is calculated as follows:

F1 = (2·P·R)/(P + R) (23)

where R = TP/(TP+FN) and P = TP/(TP+FP); here, P is
precision, R represents recall, TP represents true-positive
prediction, FN is false-negative prediction, and FP is
false-positive prediction.

Experimental Setting
During the experimental phase, the hyperparameters were
randomly initialized based on our experience. The pretrained
word2vec is used to initialize the word embeddings. The Adam
optimizer [23] was used to optimize the hyperparameters. Other
hyperparameter settings are shown in Table 2.

The training of our ERAN model is based on the operating
system of Ubuntu 18.04, using PyTorch version 1.9.0 and
Python version 3.7.0. The graphics processing unit is NVIDIA
TITAN Xp with 12-GB memory.

Table 2. Values of hyperparameters.

ValueHyperparameters

300Word embedding dimension

200BiLSTMa hidden units

0.5Dropout rate

128Batch size

0.001Learning rate

aBiLSTM: bidirectional long short-term memory network.

Comparison With Existing Methods
Here, we describe the baseline methods that we compared with.

• Naïve Bayesian (NB): NB [24] is widely used in
classification tasks. The classifier accepts all features to
detect the user’s depressive tendencies.

• Wasserstein Dictionary Learning (WDL): Rolet et al [25]
proposed the WDL. It considers the Wasserstein distance
as the fitting error to leverage the similarity shared by the
features.

• Multiple Social Networking Learning (MSNL): Song et al
[26] proposed the MSNL model to solve the volunteerism
tendency prediction problem.

• Multimodal Depressive Dictionary Learning (MDL): Shen
et al [7] proposed the MDL model by combining the
multimodal strategy and dictionary learning strategy.

• CNN/LSTM + RL: Gui et al [15] proposed an RL model
to select depression indicator posts.

• MDHAN: Zogan et al [14] proposed MDHAN. They
extracted semantic information using a hierarchical attention
network and user behavior by a multimodal encoder.
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We compared the performance of the proposed model (ERAN)
with other existing models on the MDD data set. The
experimental results are shown in Table 3.

From the first 4 classic methods, MDL achieves the best
performance with 78.6% in F1-score, indicating the validity of
the multimodal depressive dictionary. The results based on
BiLSTM are better than those based on LSTM, indicating that
the bidirectional encoder can capture more helpful information.
Similarly, the performances based on BiLSTM (Att) are better
than those based on BiLSTM, which can demonstrate that the

sentence-level attention mechanism can capture more important
depression information.

With the popularity of pretrained approaches, we experimented
with 2 pretrained models, Bidirectional Encoder Representations
from Transformers (BERT) and Robustly Optimized BERT
pre-training Approach (RoBERTa) [27], and fine-tuned them
on our data set. From Table 3, we can see that the simple
pretraining models do not work very well, which may be due
to the sparse distribution of depression-related words causing
the pretrained models to fail to maximize their ability.

Table 3. Results compared with the baseline models.

F1-scoreRecallPrecisionAccuracyModel

0.5880.6230.7240.636NBa [22]

0.7620.7620.7630.761WDLb [24]

0.7810.7810.7810.782MSNLc [25]

0.7860.7860.7860.790MDLd [6]

0.8120.8130.8120.797LSTMe

0.8170.8180.8170.805BiLSTMf

0.8280.8280.8280.817BiLSTM (Attg)

0.8530.8250.8830.845BERTh (base) [27]

0.8680.8370.9020.851RoBERTai (base) [27]

0.8710.8710.8710.871CNNj + RLk [14]

0.8710.8700.8720.870LSTM + RL [14]

0.8930.8920.9020.895MDHANl [13]

0.9040.8970.9120.906ERANm (ours)

aNB: naïve Bayesian.
bWDL: Wasserstein Dictionary Learning.
cMSNL: Multiple Social Networking Learning.
dMDL: Multimodal Depressive Dictionary Learning.
eLSTM: long short-term memory network.
fBiLSTM: bidirectional long short-term memory network.
gAtt: attention.
hBERT: Bidirectional Encoder Representation from Transformers.
iRoBERTa: Robustly Optimized BERT pre-training Approach.
jCNN: convolutional neural network.
kRL: reinforcement learning.
lMDHAN: multimodal depression detection with hierarchical attention network.
mERAN: emotion-based reinforcement attention network.

The CNN/LSTM + RL models use RL to select indicator posts,
which verifies the validity of the selection strategy. The
MDHAN model proves that the multimodal features are also
important by fusing semantic information with user behavior
information.

The proposed ERAN model achieves optimal results because
we fused emotional information and selected depression
indicator posts based on emotional states. In addition, the
sentence-level attention can capture core posts.

Ablation Study
Ablation experiments were conducted to validate the necessity
of the emotion extraction network, the RL selection layer, and
the sentence-level attention. The study is performed by removing
one module at a time. The results of the ablation experiments
are presented in Figure 3.

Emotion-based BiLSTM attention network (EBAtt) is the model
that removes the RL selection layer from the proposed model
and uses all user posts. Reinforcement learning attention network
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(RLAtt) is the model that removes the emotion extraction
network. Emotion-based reinforcement learning network (ERN)
is the model that substitutes the sentence-level attention with
the averaging operation. We can see that the ERAN model
proposed in this paper performs best. Although ERAN is lower
than ERN in precision, it is higher in the other 3 metrics. The
sentence-level attention can improve the performance,
demonstrating that it can capture more important posts.

EBAtt extracts semantic information on all posts by BiLSTM
and fuses it with emotional representation. Results show that
the F1-score of EBAtt decreases by 2.9% compared with the
proposed model, which indicates the necessity of selecting
depression indicator posts.

RLAtt is the model after removing the emotion extraction
network from ERAN. Similarly, the state of the RL selection
layer does not contain the emotion vector. The F1-score of RLAtt
is lower than the proposed model by 3.1%, which indicates that
the emotional information improves our model the most.

From the results, we can conclude that extracting emotional
information through the pretrained TextCNN is beneficial for
depression detection task. Selecting depression indicator posts
based on emotional states is also necessary for depression
detection. In addition, the sentence-level attention layer can
focus on useful posts.

Figure 3. Results of ablation experiments. Emotion-Based Reinforcement Attention Network (ERAN) is the proposed model, and the remaining three
are the models after removing one module of ERAN. Acc: accuracy; EBatt: emotion-based BiLSTM (bidirectional long short-term memory network)
attention network; ERN: emotion-based reinforcement learning network; F1: F1-score; P: precision; R: recall; RLAtt: reinforcement learning attention;

The Effectiveness of The RL Selection Layer
We train the proposed model to generate 2 subsets of
depression-related and unselected posts from the original data
set. Following this, we obtain 3 data sets, the selected indicator

data set Hdep, the unselected data set Hnon, and the original data

set Horig. The baseline model BiLSTM is then trained on each
of these 3 data sets to verify the effectiveness of the RL selection
layer. Figure 4 illustrates the results of the baseline model
BiLSTM on the 3 data sets.

From Figure 4, we can conclude that the model trained on Hdep

performs best. Meanwhile, the model trained on Hnon achieves

worse performance than the one trained on Horig, which
demonstrates the effectiveness of the RL selection.

To verify the effectiveness of introducing sentiment vectors in

the RL selection module, we removed the sentiment vector 

in the state st. The ablation experiment achieves 88.3%, 88.1%,
87.3%, and 87.7% in accuracy, precision, recall, and F1-scores,
respectively. Through the results of the ablation experiment,
we can find that the performance of the model decreases after
removing the sentiment vectors from the RL selection module,
which proves that the sentiment information is helpful for
selecting depression indicator posts.
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Figure 4. Comparative results of BiLSTM trained on the selected posts, the unselected posts, and the original posts. Acc: accuracy; BiLSTM: bidirectional
long short-term memory network; F1: F1-score; P: precision; R: recall.

Attention Visualization and Error Analysis
In this section, we extracted attention weights and visualized
them to verify the validity of the sentence-level attention layer
and the reasonableness of the selected posts. We have selected
a part of the results of the users as examples, who are called
“___mandyy” and “Adri.” The results of attention visualization
are illustrated in Figure 5.

The first example shows that the first post has the highest
weight, where “my depression” indicates that the user has
depression. The second post also contains the words
“depression”, “me”, etc. Thus, “___mandyy” is finally classified
as having “depression.” As we can see, many of the selected

posts of this user with depression are of negative sentiment,
suggesting a strong association between depression and negative
emotions.

The second user is the one we have used as an example in Figure
1. From the results of the visualization, we can observe that the
fifth post has the highest weight. Classification results indicate
that the user is indeed depressed. However, the posts “The
view’s really nice from here.” and “I’m so proud of bts they
deserve everything” are irrelevant to depression. In addition,
the model assigns high weight to the first irrelevant post. One
possible reason for choosing these posts is that they contain
strong emotional expressions. We think it can be improved by
developing a stricter selection strategy.

Figure 5. Examples of attention visualization. Different colors represent different weights. The deeper the color, the greater the weight of the post.
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Discussion

Principal Findings
Based on the results, we can observe that introducing emotional
information can be very helpful for depression detection tasks,
indicating that emotional characteristics are strongly associated
with depression. The strategy of selecting depression indicator
posts from historical posts is critical to our model because it
excludes the effect of irrelevant information. As only user-level
labels are in the data set, we use RL to select posts rather than
supervised learning. Furthermore, the fusion of emotion vectors
into agent states is interpretable. The sentence-level attention
layer assigns greater weight to relevant posts, which makes the
model perform better.

Although the RL selection layer performs well, the selected
posts still contain irrelevant posts with strong emotional
expressions. Compared with other optimization methods, the
convergence of policy gradient is better. However, this method
tends to fall into local optimum and its training speed is slow.

Conclusions
In this paper, we addressed the task of depression detection of
users on social media by proposing an ERAN. The proposed

model contains 2 modules: the emotion extraction network and
the RL attention network. It uses the pretrained word2vec
embeddings as input. The emotion extraction network captures
deep emotional information by a pretrained TextCNN. The RL
attention network is composed of the BiLSTM layer, the RL
selection layer, and the sentence-level attention layer. The RL
selection layer can select depression indicator posts from
original posts based on the emotional states, and the attention
layer is able to assign greater weight to relevant posts. Results
show that the proposed model outperforms the state-of-the-art
model. We verified the validity of the emotion extraction
network, the RL selection layer, and the sentence-level attention
layer through an ablation study and a visualization analysis.
The emotional features and selection of indicator posts are
necessary for depression detection task.

The proposed model uses social media data set to detect
depression, which can provide a certain degree of diagnostic
basis and address the problem of the lack of effective objective
diagnosis in the field of depression. In the future work, we will
introduce users’ personality information and multimodal
information such as visual information to our model. We will
further extract more detailed information about depression based
on the proposed model to help analyze the pathogenesis of
depression as well as accurate treatment.
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Abstract

Background: Family health history has been recognized as an essential factor for cancer risk assessment and is an integral part
of many cancer screening guidelines, including genetic testing for personalized clinical management strategies. However, manually
identifying eligible candidates for genetic testing is labor intensive.

Objective: The aim of this study was to develop a natural language processing (NLP) pipeline and assess its contribution to
identifying patients who meet genetic testing criteria for hereditary cancers based on family health history data in the electronic
health record (EHR). We compared an algorithm that uses structured data alone with structured data augmented using NLP.

Methods: Algorithms were developed based on the National Comprehensive Cancer Network (NCCN) guidelines for genetic
testing for hereditary breast, ovarian, pancreatic, and colorectal cancers. The NLP-augmented algorithm uses both structured
family health history data and the associated unstructured free-text comments. The algorithms were compared with a reference
standard of 100 patients with a family health history in the EHR.

Results: Regarding identifying the reference standard patients meeting the NCCN criteria, the NLP-augmented algorithm
compared with the structured data algorithm yielded a significantly higher recall of 0.95 (95% CI 0.9-0.99) versus 0.29 (95% CI
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0.19-0.40) and a precision of 0.99 (95% CI 0.96-1.00) versus 0.81 (95% CI 0.65-0.95). On the whole data set, the NLP-augmented
algorithm extracted 33.6% more entities, resulting in 53.8% more patients meeting the NCCN criteria.

Conclusions: Compared with the structured data algorithm, the NLP-augmented algorithm based on both structured and
unstructured family health history data in the EHR increased the number of patients identified as meeting the NCCN criteria for
genetic testing for hereditary breast or ovarian and colorectal cancers.

(JMIR Med Inform 2022;10(8):e37842)   doi:10.2196/37842

KEYWORDS

clinical natural language processing; family health history extraction; cohort identification; genetic testing of hereditary cancers

Introduction

Background
Cancer screening has been shown to effectively reduce mortality
[1,2]. Unlike population-based screening recommendations that
target a broad range of individuals, increasing evidence supports
individualized cancer screening according to cancer risk [3-5].
Individuals at higher risk may benefit from earlier, more
frequent, or more intensive screening. Effective interventions
are needed to stratify patients by risk and to direct them to an
appropriate level of screening. However, individualizing
screening on a population scale requires patient-specific risk
assessments for several types of cancer. This is quite challenging
in today’s overwhelmed primary care environment, as the
current screening process requires manual chart review to
identify patient candidates for genetic testing, and primary care
providers often do not have time or knowledge to discuss genetic
testing with their patients. A promising solution is to automate
the identification of high-risk patients using electronic health
records (EHRs) coupled with clinical decision support (CDS)
tools.

The National Comprehensive Cancer Network (NCCN) has
published a set of evidence-based guidelines for genetic testing
of hereditary cancers, including breast, ovarian, pancreatic, and
colorectal cancers [6,7]. A summary of these 2 guidelines is
listed in Textbox 1, where each table cell represents a criterion,
and the criteria for the same cancer cohort are listed in the same
column. When one or more criteria are met, the corresponding
genetic testing is recommended. These cancer risk assessment
guidelines are based mainly on the family health history (FHH)
of cancer or cancer syndromes, which is recorded in EHR
systems as part of routine patient care activities. Therefore, EHR
is one of the most important sources of FHH that can be used
to drive CDS tools to help identify candidates for genetic testing
of hereditary cancers [8]. However, several challenges limit the
systematic use of FHH in EHR for these purposes, including
(1) scattered FHH documentation in both structured and
unstructured formats across different EHR sections, such as the
clinical note [9], problem list, and FHH sections; (2) conflicting
documentation in different sections of the EHR; (3) incomplete
documentation in structured FHH data; (4) negation and
ambiguity of information in unstructured data [10-12].

Textbox 1. Excerpt of National Comprehensive Cancer Network (NCCN) criteria for unaffected individuals’ family history–based genetic testing of
breast, ovarian, pancreatic, and colorectal cancers (referenced with permission).

Breast or ovarian cancer:

1. First- or second-degree relative with breast cancer at age ≤45 years

2. First- or second-degree relative with ovarian cancer

3. First-degree relative with pancreatic cancer

4. Breast cancer in a male relative

5. Three or more first- or second-degree relatives with breast or prostate cancer on the same side of the family

6. Ashkenazi Jewish and any breast or prostate cancer in any relative at any age

7. BRCA1/2, CHEK2, ATM, PALB2, TP53, PTEN, or CDH1 genes, Cowden Syndrome, Li-Fraumeni Syndrome in any relative at any age

Colorectal cancer:

1. MLH1, MSH2, PMS2, MSH6, EPCAM, MYH, or MUTYH genes, Lynch syndrome, familial adenomatous polyposis (FAP), adenomatous
polyposis coli (APC), serrated polyposis or polyposis discovered in the coded family history

2. First-degree relative with colon cancer at ≤50 years

3. First-degree relative with endometrial cancer at ≤50 years

4. Three or more first- or second-degree relatives with Lynch syndrome, HNPCC, colon cancer, endometrial, uterine, ovarian, stomach, gastric,
small bowel, small intestine, kidney, ureteral, bladder, urethra, brain, pancreas, also all on the same side of the family

Genetic testing for breast, ovarian, or colorectal cancer is
recommended if at least one of these criteria is met.

Current EHR systems often provide a dedicated FHH section,
in which FHH assertions can be captured using a combination
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of structured (eg, coded disease, relationship, and age of onset)
and unstructured data (ie, the comments field). FHH free-text
comments are different from broader clinical notes in that the
former are associated with a specific structured FHH assertion,
only available in the FHH section, while clinical notes can
capture a much wider range of information, including medical
history, physical examination, and treatment plans. Health care
providers typically use free-text FHH comment fields when
desired information cannot be fully captured as structured data.
For example, a patient’s sister who developed breast cancer in
her 30s can be captured partially as structured data (ie, condition
= breast cancer and family member = sister) supplemented by
a comment captured in the unstructured data conveying the
uncertain age of onset (ie, onset in her 30s). The FHH section
is increasingly used as part of routine visit intake by medical
assistants and by patients themselves through patient portals
[13]. Therefore, the FHH section is a promising and underused
source of FHH for EHR.

Previous studies have largely focused on extracting FHH from
clinical notes [14,15]. This study is the first comprehensive
attempt to supplement structured FHH data with information
extracted from free-text comments. The natural language
processing (NLP) extraction of information from free-text
comments imposes a unique set of challenges that require
specific approaches that have not been investigated. Specifically,
candidate approaches must address the interplay between
structured and unstructured data collected in the FHH section.

Objectives
Our previously developed structured algorithm [8] for
identifying patients who met the NCCN criteria for genetic
testing using structured data demonstrated the potential use of
this dedicated FHH section. Nonetheless, we noticed that the
algorithm based on structured data failed to correctly identify
certain cases because some information needed for eligibility
determination was recorded as free-text comments. For example,
an FHH entry included CANCER and AUNT as structured data,
with the specific type of cancer and age of onset (breast ca, dx
in 30s) provided as a free-text comment. This case would be

considered eligible for genetic testing when using the
information provided in the comments section. These errors
resulting from the structured data algorithm added a manual
review burden for genetic counseling staff because they needed
to manually confirm patient eligibility before communicating
with them.

Hence, this study aims to augment CDS algorithms that rely
exclusively on structured FHH data with information extracted
from free-text FHH comments fields using NLP, with a focus
on identifying patients who meet the NCCN criteria for genetic
testing for hereditary breast or ovarian and colorectal cancers.
The corresponding NLP was designed to extract the FHH
information when it was not available or accurately coded in
structured data, including the cancer type (eg, pancreatic cancer),
the age of onset (eg, in the early 30s), and the affected family
member (eg, paternal aunt). The primary hypothesis is that
using NLP to augment the previously developed algorithm
(using structured data alone) [8] can improve the accuracy of
identifying patients who meet the NCCN criteria for genetic
testing based on the FHH of patients seen in primary care
settings at a US academic medical center.

Methods

Study Design
We retrospectively studied data from the EHR at the University
of Utah Health. The study consisted of 2 stages (Figure 1). In
the first stage, for NLP development, an NLP solution was
developed to extract FHH information from both structured and
unstructured data in the FHH section of EHR, and its
performance was evaluated in comparison with gold standard
annotation results. Next, we developed an NLP-augmented
algorithm on top of the structured data algorithm (using only
structured data) [8] to match the NCCN criteria using the
NLP-processed results from both structured and unstructured
fields. In the second stage, the performance of the
NLP-augmented algorithm was compared with that of the
structured data algorithm.
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Figure 1. Study stages, including natural language processing (NLP) development (stage 1) and comparison between the NLP-augmented algorithm
and an algorithm using only structured data (stage 2). EDW: enterprise data warehouse; FHH: family health history.

Data Sets
The data set for NLP development and evaluation consisted of
EHR-based data from the FHH section (including both
structured and unstructured fields) for 77,423 patients aged
between 25 and 60 years who visited the University of Utah
Health primary care clinic at least once between May 1, 2018,
and April 30, 2019. All FHH entries of these patients were

obtained, including entries recorded in prior visits to June 26,
2014. FHH entries contained a coded condition (breast cancer),
a coded relative (sister), age of onset integer, and a free-text
comment clinicians used to add detail (in her 30s). Entries that
were not used to determine familial cancer risk were filtered
using Structured Query Language (SQL), resulting in 31,191
entries. The detailed filtering strategy is illustrated in Figure 2.
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Figure 2. Data set creation process. FHH: family health history. NCCN: National Comprehensive Cancer Network. NLP: natural language processing.
*HNPCC: hereditary non-polyposis colorectal cancer. FAP: familial adenomatous polyposis. Other genetic mutations or cancer syndromes specified
in the NCCN guideline but without a code in electronic health record (EHR) were not included.

The data set was split into 2. The FHH entries that were entered
before June 26, 2018 were used for NLP development and
evaluation (ie, the NLP development or evaluation data set),
while entries entered after that date were used for algorithm
evaluation (ie, the NCCN algorithm evaluation data set). We
obtained a stratified random sample of 2300 FHH entries from
the NLP development and evaluation data set. The stratification
was based on the diagnosis codes in the condition field and
stratified into four groups: (1) breast or ovarian cancer, (2)
colorectal cancer, (3) other cancers, and (4) other noncancer
family histories, at a 1:1:2:2 ratio. We randomly split 1300 FHH
entries for NLP development, and the remaining 1000 entries

were used for the snippet-level NLP evaluation. The NCCN
algorithm evaluation data set was used to compare the
performance of the 2 algorithms. Then, all the FHH entries (both
data sets) were used to estimate the amount of additional
information extracted by NLP and compare the patients
identified by the NLP-augmented algorithm with those identified
by the structured data algorithm.

NLP Approach

Overview
Although NLP is often only used to process free-text data,
independent of structured data, the comments field in the FHH
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section of EHR is used to supplement the structured data and
cannot be interpreted in isolation. For example, in Table 1, the
word breast supplements the concept CANCER in the structured
condition field. Therefore, we concatenated the structure and

comments fields into a single string for NLP processing. We
also used double curly brackets to mark the values from the
structured fields to reconcile conflicting information between
the structured and comments fields (Table 1).

Table 1. An example of combining structured and unstructured data from FHHa assertions.

Age of onsetFamily memberCommentsbConditionField names

NULLAUNTBreast, great-aunt, dx at age of 52CANCEROriginal data

{{}}{{AUNT}}Breast, great-aunt, dx at age of 52{{CANCER}}Combined

Annotations

aFHH: family health history.
bIn this case, the comments field supplements or corrects the structured data, that is, CANCER is of the breast, and the family member (AUNT) is
actually the patient’s great-aunt. FX_CANCER (FC): family member to cancer relationship; FX_ONSET: family member to age of onset relationship.

FHH Annotation Schema
A total of 2 physicians designed the annotation schema based
on the FHH attributes relevant to the NCCN guidelines for
genetic testing of hereditary breast or ovarian and colorectal
cancers. This schema encompasses conditions, family members,
and the age of onset. Specifically, the snippet-level data set
contains (1) annotated entities for cancer diagnosis (CANCER),
cancer-related syndromes (SYNDROME), cancer-related genetic
mutations (GENE_MUT), family members
(FAMILYMEMBER), and age of onset (ONSET), and (2)
relations between family members and conditions, as well as
between family members and age of onset. The example
provided in Table 1 has 3 entities, that is, great-aunt
(FAMILYMEMBER), ([CANCER]) breast (BREAST−breast
cancer), 52 (ONSET_AGE), and 2 relations, that is, great aunt
→ {{CANCER}} breast (FX_CANCER) and great aunt → 52
(FX_ONSET). As the NCCN criteria include other cancers with

mutations that share a common genetic pathway with breast,
ovarian, and colorectal cancers, we added the following
annotation subtypes: BLADDER, BREAST, BRAIN, COLON,
KIDNEY, OVARIAN, PANCREAS, PROSTATE, RECTAL,
STOMACH, SMALL_INTESTINE, URETERAL, and
URETHRAL. As the NCCN criteria also use the side of the
family of the affected family member and the degree of
relationship, 2 attributes were included: family member CODE
(eg, GRANDMOTHER) and SIDE of FAMILYMEMBER (eg,
PATERNAL). In addition, an UNCERTAINTY feature was
added to capture uncertainty statements (eg, probably ovarian
cancer). We used a schema developed in our previous studies
to annotate the age of onset [10], which includes 4 subtypes:
ONSET_AGE (eg, age 52), ONSET_RANGE (eg, in his 30s),
ONSET_PERIOD (eg, in 1965), and ONSET_STRING (eg,
postmenstruation). Figure 3 presents a screenshot of the full
schema within the annotation tool (Brat) [16]. The schema
configuration is shared in GitHub [17].
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Figure 3. Screenshot of the schema as implemented with the annotation tool Brat.

NLP Development
To develop the NLP pipeline, we used Easy clinical information
extractor (EasyCIE), a lightweight rule-based NLP tool that
supports rapid clinical NLP implementations [18]. All NLP
components of EasyCIE are configurable through rules without
the need to develop new pipelines. A total of 1300 FHH entries
were used to develop the rules. We adopted a logic similar to
that described by Goryachev et al [19] but implemented the
logic in a different way for efficiency and generalizability

considerations [20]. The processing consists of three major
steps: (1) entity extraction, (2) entity reconciliation, and (3)
relation identification (Figure 4). Each step was performed using
one or more NLP components. The following paragraph explains
these components using the examples in Table 1. Each
component is configured using a separate rule set that
incorporates a keyword dictionary or inference logic. These
rules were developed based on 3 sources: Unified Medical
Language System, training data set, and clinical domain experts’
input. The rule set is available on GitHub [21].

Figure 4. Easy clinical information extractor processing workflow. Three major steps (blue boxes): (1) entity extraction—extract the entities from the
family health history entries; (2) entity reconciliation—reconcile the conflicts between the extracted entities; (3) relation identification—link related
entities. In each step, there are ≥1 natural language processing components to complete processing substeps.

Entity extraction (step 1) extracts the key entities (5 types) from
the FHH entries. First, we split the sentences if there were more
than one sentence. Second, we attempted to match the input
string with controlled vocabulary (a keyword dictionary). An
example is shown in Table 1, {{CANCER}} breast was

recognized as BREAST (cancer), 52 as ONSET_AGE, and great
aunt and AUNT as FAMILYMEMBER. Next, we detected the
double curly brackets around AUNT. These 2 symbols indicate
the mention of AUNT was located in the structured field. Thus,
we assigned the feature is_structural to AUNT. Finally, we
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verified the features of each entity to determine whether they
matched any inference rules. In the example, a
FAMILYMEMBER with the is_structural feature was classified
as STR_FAMILYMEMBER (a family member in the structured
field). This differentiation among entities in different contexts
allows entity reconciliation in the next step. This component
also allowed us to exclude irrelevant mentions of entities (eg,
the FAMILYMEMBER daughter in the context of live with her
daughter). Further details regarding the implementation of
EasyCIE's rule-processing engine are available elsewhere [20].

Entity reconciliation (step 2) reconciles the extracted entities
from the first step when conflicts exist between structured and
unstructured data. The corresponding heuristic rules were
iteratively developed based on annotated data from the training
set with refinements based on error analysis after applying the
algorithm to the training set. In addition, we obtained insights
through discussions with clinical experts, who currently use the
dedicated FHH section to document FHH. Specifically, the
following (Textbox 2) heuristic rules were applied (Table 2,
additional examples are listed).

Textbox 2. Heuristic rules.

Rules

1. If the structured field indicated colon cancer, but the information in the comments field clarified the condition of interest to be colorectal cancer
syndromes (eg, Lynch syndrome), SYNDROME overrode COLON (cancer) in the structured field

2. If the age of onset was documented as structured numeric data (eg, 50) but the comments field documented an ONSET_RANGE (eg, late 50s),
the ONSET_RANGE overrode the structured age of onset

3. If the age of onset was available in structured data, and the comments field included ONSET_PERIOD (eg, in 1985) or ONSET_STRING (eg, 10
years ago), ONSET_PERIOD and ONSET_STRING >were ignored. (4) If no age of onset was documented in the structured field and the comments
field included a DECEASED_AGE, the algorithm set an ONSET_RANGE before the DECEASED_AGE.

4. If the comments field contained information on a specific family member, the algorithm ignored the structured family member field unless the
comments field included a conjunction such as also >or and. In the example in Table 1, the FAMILYMEMBER great aunt was likely a correction
of the STR_FAMILYMEMBER AUNT >because the picklist associated with STR_FAMILYMEMBER did not include an option for great aunt.
Thus, in the reconciliation, STR_FAMILYMEMBER AUNT is ignored.

5. If the comments field contained nonspecific family member information (eg, father’s side), whereas the structured field contained a specific
family member, the structured field code was used, and information from the comments was added as attributes if applicable.

6. If a mention of FAMILYMEMBER was specified as multiple individuals (eg, 2× sisters), multiple instances of FAMILYMEMBER were created
(eg, 2× sisters would lead to 2 instances).

Table 2. Heuristic rules to reconcile entities.

ReconciliationExampleComments fieldExampleStructured fields

Chose SYNDROMELynch syndromeColorectal cancer–related SYN-
DROME

{{CANCER,
COLON}}

COLONa (cancer)

Chose ONSET_RANGEThe late 50sONSET_RANGE{{50}}ONSET_AGE

Chose ONSET_AGEIn 1985ONSET_PERIOD{{50}}ONSET_AGE

Chose ONSET_AGE10 years agoONSET_STRING{{50}}ONSET_AGE

Inferred the ONSET_RANGEDeceased at age 60
years

DECEASED_AGE{{}}NULL

Chose FAMILYMEMBER in commentsGreat-auntA specific FAMILYMEMBER{{AUNT}}FAMILYMEMBER

Use FAMILYMEMBER in both fieldsAnd grandmotherA specific FAMILYMEMBER with
conjunction statement

{{MOTHER}}FAMILYMEMBER

Chose FAMILYMEMBER, and added
comments value as a feature, if applica-
ble

Father sideNonspecific{{AUNT}}FAMILYMEMBER

Created two FAMILYMEMBER anno-
tations

2× sistersMultiple FAMILYMEMBER{{}}NULL

aWords in italics denote concepts in the NLP output according to the FHH annotation schema.

Relation identification (step 3) links related entities. In the
example of Table 1, great aunt and {{CANCER}} breast were
linked to create an FX_CANCER relation. It also linked great
aunt and 52 to create an FX_ONSET relation. As
STR_FAMILYMEMBER AUNT was changed to
IGN_FAMILYMEMBER, AUNT in the structured field were not

linked to {{CANCER}} breast or 52. When counting the number
of  re la t ives  of  in teres t ,  the  number  of
FAMILYMEMBER-CANCER relations was obtained instead
of relative entities. For example, ovarian and stomach cancer
in grandmother should be counted as 2 cancers in the NCCN
criteria. Although the NLP algorithm generated one
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FAMILYMEMBER entity (grandmother), two
FAMILYMEMBER-CANCER relations were generated. The
same process is followed to handle cases where a single cancer
assertion refers to multiple relatives, eg, breast cancer in mother
and aunt.

NLP Performance Evaluation
We evaluated the NLP solution by comparing its output with
the test set annotations of the snippet-level data set (1000 FHH
entries). To save time and effort, entities with no relation were
not annotated (eg, an entry that only has a condition without
mentioning any family member); therefore, we did not evaluate
the NLP performance for named entity recognition. Precision,
recall, and F1 scores were calculated for relation identification.
A true positive relation was counted when NLP-extracted
information matched the reference standard for both the relation
type and corresponding feature values, as well as the two linked
entities. We applied the bootstrap sampling method [22] to
estimate the 95% CI for each performance measurement and
conducted error analyses by categorizing and counting different
types of errors. Considering the mentions of SYNDROME
(cancer syndrome) and GENETIC_MUTATION (cancer-related
genetic mutation) were very rare in the data set, the CI for the
performance related to the extraction of relations with these 2
entity types, that is, FX_SYNDROME (family member to cancer
syndrome relation) and FX_GENE_MUT (family member to
genetic mutation relation), could not be obtained. Thus, we only
calculated the CIs of the microaverages of these 3 measurements
using bootstrap methods over the aggregated data that included
all 4 relation types.

Structured Data Algorithm for Patient Eligibility
Assessment
A rule-based algorithm was previously developed [8] based on
NCCN guidelines for the genetic testing of hereditary breast or
ovarian and colorectal cancers [6,7] using only structured FHH
data. The algorithm was implemented using an open-source
CDS platform (OpenCDS [23]) through a standards-based
approach based on CDS Hooks for Services and the Fast
Healthcare Interoperability Resources standard for FHH data
representation. On the basis of the patient’s age and FHH, the
algorithm determines whether the patient meets the NCCN
criteria for genetic testing. The algorithm has been deployed
for clinical use and integrated with the Epic EHR at the
University of Utah Health and New York University. The details
of the algorithm and its deployment in clinical practice are
available elsewhere [8,24]. In this study, we used a structured
data algorithm as the baseline.

NLP-Augmented Algorithm
The NLP-augmented algorithm was built on top of the structured
data algorithm by converting the NLP output into a structured
FHH format (condition, family member, and age of onset). As
a result, the same structured data algorithm consumes
NLP-augmented data. To handle the uncertainties, 2 different
NLP configurations were provided, including and excluding
uncertainty assertions for each of the breast, ovarian, and

colorectal cancer cohorts. The configuration that included cases
with uncertainty assertions was used to estimate the impact of
NLP augmentations on algorithm-identified genetic testing
candidates.

NLP-Augmented Algorithm Evaluation
The evaluation of the NLP-augmented algorithm consisted of
two parts: (1) comparing the performance of the NLP-augmented
algorithm with that versus the structured data algorithm using
manually reviewed data as a reference standard, and (2)
estimating NLP’s impact on the patient cohort size generated
by the structured data algorithm over the whole data set using
the inclusion configuration. A patient-level data set was created
in this study. Owing to the large size of the cohort, it was not
feasible to validate the expected output for all patient cases.
Therefore, we sampled and annotated the algorithm outputs
(against the NCCN algorithm evaluation data set) instead of
annotating the input data. A review of a subset of 200 cases
showed that when the baseline and NLP-augmented algorithms
agreed regarding patient eligibility for genetic testing, the
algorithm outputs were correct in 100% of the cases. Therefore,
for cost-efficient considerations, we applied stratified sampling
to down-sample the cases in which the 2 algorithms agreed to
maintain a 1:2 ratio between cases with agreement and
disagreement. We sampled 100 cases in total, 50 breast and
ovarian cancer screening candidates and 50 colorectal cancer
screening candidates. Subsequently, 2 annotators independently
reviewed these cases to determine whether the 2 algorithms
reached the correct conclusion. Any disagreement between the
2 annotators was adjudicated by a third annotator.

The structured data and NLP-augmented algorithms were
compared in terms of precision, recall, and F1 scores. The 95%
CIs were computed using the bootstrap method. As we did not
obtain the ground truth of the patients’ FHH by contacting the
patients themselves, the reference standards were made solely
based on the entries in the FHH section. Next, we estimated the
effectiveness of NLP augmentation by comparing (1) the number
of FHH entries that were computable for the NCCN criteria and
(2) the number of patients who met the criteria with and without
NLP.

Ethics Approval
This study was approved by the institutional review board at
the University of Utah (IRB_00154076).

Results

Data Set Description
After splitting the data set, 2398 patients with 12,430 FHH
entries were included in the NLP development or evaluation
data set and 66,853 patients with 494,880 FHH entries were
included in the NCCN algorithm evaluation data set. A total of
8172 patients did not have any FHH entries and were excluded
from the data set. These 2 data sets were similar in sex, race,
ethnicity, and age (Table 3).
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Table 3. Patient characteristics in the NLPa development or evaluation data set and the NCCNb algorithm evaluation data set.

NCCN algorithm evaluation data set (n=66,853)NLP development or evaluation data set (n=2398)Characteristic

24,524 (36.7)998 (41.2)Gender (male), n (%)

Race, n (%)

51,171 (76.5)1752 (73.2)White

9510 (14.2)359 (15)Other

2973 (4.4)141 (5.9)Asian

1450 (2.2)67 (2.8)Black or African American

1226 (1.8)56 (2.3)Not reported

523 (0.8)17 (0.7)American Indian or Alaska Native

9147 (13.7)327 (13.6)Hispanic ethnicity

42.6 (9.9)40.2 (9.6)Age (years), mean (SD)

aNLP: natural language processing.
bNCCN: National Comprehensive Cancer Network.

NLP Performance Evaluation Results
Using the snippet-level test data set, we evaluated the NLP’s
performance at the snippet level; the average precision was 0.94

with 95% CI 0.91-0.97, the average recall was 0.94 with 95%
CI 0.90-0.96, the average F1 score was 0.94 with 95% CI
0.91-0.96. The performance of the measurements for each
relationship type is presented in Table 4.

Table 4. The performance on the snippet-level data set.

F1 scoreRecallPrecisionFNcFPbTPaRelation types

0.940.940.943132489FX_CANCERd

0.500.400.67312FX_SYNDROMEe

1.001.001.00002FX_GENE_MUTf

0.940.940.951410203FX_ONSETg

0.94 (0.91-0.96)0.94 (0.90-0.96)0.94 (0.91-0.97)N/AN/AN/AiMicroaverageh

aTP: true positive.
bFP: false positive.
cFN: false negative.
dFX_CANCER: family member to cancer relation.
eFX_SYNDROME: family member to cancer syndrome relation.
fFX_GENE_MUT: family member to cancer-related gene-mutation relation.
gFX_ONSET: Family member to age of onset relationship.
hThese scores were computed using aggregated data, including all 4 relation types. The CIs were computed using the bootstrap method.
iN/A: not applicable.

NLP Error Analysis
On the basis of the snippet-level error analysis of the NLP output
from the test data set of 1000 FHH entries, we found 6 error
types (Table 5). Approximately 50% of the errors were not
directly caused by NLP mistakes. The Annotation Error was
made by the annotators, which is common when a large volume
of data needs to be reviewed. In addition, as we only partially
overlapped the annotations and adjudicated the disagreement
between the annotators for greater efficiency, the data that were
not overlapped might also have contributed to annotation errors.
Data Input Typos were another complication, especially some
rare typos; for example, bladdler. Out of Vocabulary signified
the words and phrases that were not seen in the training set and

not added to the knowledge base from Unified Medical
Language System and experts’ suggestions. For instance,
precancer in the entry of {{CANCER, BREAST}} precancer,
age 30 {{MOTHER}} {{}} should override the breast cancer
code, because precancer is a term that describes a lesion that
may develop into cancer. The NLP did not recognize the term;
therefore, it was not possible to exclude breast cancer as an
existing family health history. A Context Error might happen
when the context of the entities included subtleties that the NLP
could not correctly parse, for example, {{CANCER, COLON}}
possible, colon cancer, died when pt was 5 years old
{{FATHER}} {{}}. The NLP did not expect that the 5-year old
was not describing the father’s age of onset in the comments
field, but the patient’s age. Sometimes, the input data is so
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ambiguous (ambiguous input) that even our annotators were
not sure of the exact meaning without referring to other sources.
For example, the entry {{CANCER, COLON}} ileum
{{FATHER}} {{}}, likely meant the father had ileum cancer,
which overwrote colon cancer. However, we were not 100%
confident if the father actually had both because most of the
cases like these would have been coded as {{CANCER,
OTHER}} ileum {{FATHER}} {{}}. In real practice, genetic
counselors would need to go over some clinical notes to find
statements that can be cross-referenced or reach out to the
patient to confirm the information. These types of improper
coding in the structured fields and the conflicting information
between the structured fields and comments field indicate that
the EHR user interface for FHH entry may benefit from
redesign, such as allowing users to label uncertainty. Finally,
when designing the schema for annotation, we aimed to capture

as much useful information as possible. We included three
aggregated types of cancer, GYNECOLOGIC,
GASTROINTESTINAL, GENITOURINARY, to code cancers not
specific to the anatomical sites indicated in the guidelines.
However, when executing the algorithms, these types are less
useful, as they would result in more false-positive cases that
are likely not relevant to the requirements. Therefore, these 3
types were excluded from the final NLP solution. Compared
with the snippet level, this schema mismatch caused errors. For
instance, colon rectal cancer was annotated as
GASTROINTESTINAL to capture both, but in the NLP
implementation, only one RECTAL cancer was counted instead
of two cancers to simplify the implementation. This mismatch
did not affect the patient-level results but was counted as a
snippet-level error.

Table 5. Type of snippet-level errors and counts.

ExamplesFalse negative, nFalse positive, nType of errors

A missed annotation1310Annotation error

bladdler cab51Data input typoa

Precancer62Out of vocabularya

Possible, colon cancer, died when pt was 5 years old
{{FATHER}}

1122Context errora

{{CANCER, COLON}} ileum {{FATHER}}32Ambiguous input

See above106Schema mismatchc

N/Ad4843Total

aThese 3 types of errors are natural language processing (NLP)–caused errors or can be fixed by improving the NLP.
bca: cancer.
cThis type of error does not need to be fixed.
dN/A: not applicable.

NLP-Augmented Algorithm Evaluation Results
The first part of this evaluation compared the NLP-augmented
algorithm (using the inclusion configuration) with the structured
data algorithm over a stratified sample of 100 patients (50 breast
cancer and 50 colorectal cancer, with a 1:2 ratio of cases with
agreement versus disagreement between unstructured and
structured data). The NLP-augmented algorithm performed
better than the structured data algorithm both in precision (0.99,
95% CI 0.96-1.00 vs 0.81, 95% CI 0.65-0.95), recall (0.95, 95%
CI 0.90-0.99 vs 0.29, 95% CI 0.19-0.40), and F1 scores (0.97,
95% CI 0.94-0.99 vs 0.43, 95% CI 0.31-0.54).

In the second part of this evaluation, using the whole data set,
compared with the original structured FHH entries, NLP
augmentation yielded 21,703 (33.6%) additional computable
FHH entries, with 8692 (27.9%) entries added owing to the
extraction of conditions, 2689 (69.3%) owing to age of onset,
and 10,322 (34.9%) owing to family members. With these
additional entries extracted by NLP, 1578 (51%) patients met
the NCCN criteria for breast cancer genetic testing, 373 (94%)
patients met the criteria for colorectal cancer genetic testing,
and 1841 (53.8%) additional unique patients met either or both
criteria.

Discussion

Principal Findings
This study developed and evaluated an NLP-augmented
algorithm to identify patients who met evidence-based criteria
for genetic testing of hereditary colorectal and breast cancer.
Overall, the proposed automated algorithm offers a promising
approach to identifying these patients as an alternative to current
clinical workflows, which rely on extensive manual review of
patient records. We also demonstrated that compared with
structured data alone, an NLP algorithm that focused on the
interplay between structured data and associated free-text
comments significantly increased the computability of FHH
entries and algorithm accuracy. Compared with structured data
alone, NLP augmentation led to a 53.8% increase in the number
of patients available to compute against the NCCN criteria for
genetic testing.

Chen et al recognized the significance of data recorded in the
FHH section of an EHR [12]. They characterized the use and
contents of the FHH comments field and found that it was used
to augment or modify the attributes of the statement (eg,
uncertainty and negation) for all 3 types of entities: family
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member, condition, and age of onset. However, they did not
develop a complete solution for extracting these relationships.
In a previous study, we used NLP to extract the disease age of
onset from the comments field [10]. In this study, we extended
the NLP solution to extract all 3 types of entities and the
relations between them. In addition, the algorithm reconciles
information from structured and unstructured data to identify
patients who meet the NCCN criteria for genetic testing of 2
common hereditary cancers. The study results demonstrated
that the NLP-augmented algorithm accurately extracted relevant
FHH at the snippet level that combined the structured and
comments fields. At the patient level, the algorithm significantly
improved the recall and precision of identifying patients who
met the NCCN criteria for genetic testing of hereditary breast
colorectal cancer.

Compared with previously published studies on FHH extraction
using NLP, this study differs significantly in the input data
source, types of technical challenges, and ultimate goals.
Previous studies have focused primarily on extracting FHH
from clinical notes, whereas our approach targets the FHH
section of the EHR by combining structured and unstructured
data. Complete sentences are typical in the FHH narrative of
clinical notes, while single words, phrases, and short sentences
are more typical in the FHH comment fields. Consequently, the
technical challenges are different. Challenges in extracting FHH
from clinical notes include FHH section detection, entity
recognition, and relation detection [9,14,15]. In contrast, targeted
extraction from the FHH section of the EHR requires
reconciliation between structured and unstructured data, as they
can be complementary, redundant, or conflicting [12]. In
addition, extraction from clinical notes focuses on general FHH
extraction, whereas our approach aims to identify patients with
a specific clinical purpose. Thus, the NLP performance reported
in Table 4 is not directly comparable with that reported in
previous studies.

As noted above, the NLP-augmented algorithm can be
configured to include or exclude FHH entries with uncertain
statements in the free-text comments. The choice of
configuration depends on the requirements of specific use cases
and available institutional resources. For instance, in a study
that aimed to reach out to eligible patients offering genetic
testing, a higher priority may have been given to patients who
met testing criteria with a higher degree of certainty (ie,
excluding uncertain statements) to minimize manual screening
efforts. In contrast, if genetic testing outreach is rolled out as
usual care, an institution may want to maximize the benefits of
genetic testing to as many patients as possible by including
uncertain statements. The difference in algorithm performance
between the 2 configurations (ie, including vs excluding
uncertainty statements) was not significant. Thus, we did not
report the results using the exclusion configuration.

The results showed that the NLP-augmented algorithm had
significantly higher precision and recall than structured data
alone in identifying patients who met the NCCN criteria for
genetic testing. This increase was achieved because the

comments field provided additional information that can be
used to compute the NCCN criteria, including the cancer type
(eg, pancreatic cancer), the age of onset (eg, diagnosed colon
cancer, at age 40), and the affected family member (eg, paternal
aunt). In addition, information in the comments field can correct
inaccurate data in structured fields.

Limitations
This study had several limitations. First, we used data from one
EHR at an academic medical center. Therefore, we cannot
conclude that the algorithm and study findings are generalizable
to other EHRs and health care systems. However, the EHR used
in this study is one of the most widely used EHRs in the United
States, and other EHR products use similar FHH sections to
collect FHH data [12], suggesting that the proposed approach
may be adapted to those settings. Second, error analysis
demonstrated that certain FHH entries could not be
disambiguated based on the available data provided in the FHH
section. Future studies could investigate approaches to
disambiguate these FHH entries, such as applying NLP to
clinical notes or asking patients to confirm through the patient
portal.

As the patient-level data set down-sampled the cases in which
the 2 algorithms agreed, the difference between the
NLP-augmented algorithm and the structured data algorithm
was amplified correspondingly. Thus, we did not analyze the
statistical differences between the algorithms on this data set.
Despite this, the results showed that when these 2 algorithms
disagreed with each other, the NLP-augmented algorithm likely
received correct answers. In addition, because of the
down-sampling, more challenging cases were likely included
in the reference data set compared with the original data set.
Thus, the actual performance of both algorithms is potentially
higher than the scores reported in the section of NLP-Augmented
Algorithm Evaluation Results.

Although the NLP-augmented algorithm still missed eligible
patients, it achieved higher recall than the structured algorithm.
Future studies could investigate combining FHH extraction
from both FHH sections and clinical notes to further reduce
false-negative errors. In addition, other solutions beyond NLP
are needed to improve the accuracy and comprehensiveness of
the FHH collection in the EHR.

Finally, we investigated only a rule-based solution for the NLP
task. Given that the performance was satisfactory and the
rule-based approach could be customized quickly for error fixing
and future enhancements, we decided that it was not worthwhile
to investigate more complex machine learning–based solutions.

Conclusions
This study demonstrated that our NLP solution can accurately
extract FHH from both the structured and unstructured fields
of the FHH section. Applying this NLP solution to augment the
structured data algorithm could improve the precision and recall
of identifying patients who meet the NCCN criteria for genetic
testing of hereditary breast and colorectal cancer.
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Abstract

Background: Question-driven summarization has become a practical and accurate approach to summarizing the source document.
The generated summary should be concise and consistent with the concerned question, and thus, it could be regarded as the answer
to the nonfactoid question. Existing methods do not fully exploit question information over documents and dependencies across
sentences. Besides, most existing summarization evaluation tools like recall-oriented understudy for gisting evaluation (ROUGE)
calculate N-gram overlaps between the generated summary and the reference summary while neglecting the factual consistency
problem.

Objective: This paper proposes a novel question-driven abstractive summarization model based on transformer, including a
two-step attention mechanism and an overall integration mechanism, which can generate concise and consistent summaries for
nonfactoid question answering.

Methods: Specifically, the two-step attention mechanism is proposed to exploit the mutual information both of question to
context and sentence over other sentences. We further introduced an overall integration mechanism and a novel pointer network
for information integration. We conducted a question-answering task to evaluate the factual consistency between the generated
summary and the reference summary.

Results: The experimental results of question-driven summarization on the PubMedQA data set showed that our model achieved
ROUGE-1, ROUGE-2, and ROUGE-L measures of 36.01, 15.59, and 30.22, respectively, which is superior to the state-of-the-art
methods with a gain of 0.79 (absolute) in the ROUGE-2 score. The question-answering task demonstrates that the generated
summaries of our model have better factual constancy. Our method achieved 94.2% accuracy and a 77.57% F1 score.

Conclusions: Our proposed question-driven summarization model effectively exploits the mutual information among the
question, document, and summary to generate concise and consistent summaries.

(JMIR Med Inform 2022;10(8):e38052)   doi:10.2196/38052

KEYWORDS

question-driven abstractive summarization; transformer; multi-head attention; pointer network; question answering; factual
consistency; algorithm; validation; natural language processing

Introduction

Automatic text summarization of natural language aims to
summarize the source document to generate a concise and
informative description for helping people efficiently and
quickly capture the main idea [1,2]. In the biomedical domain,
question-driven answer summarization can be particularly useful

for people whether they have a biomedical background or not
because the generated summary only covers the key information
with respect to a specific question and filters out the explanation
part [3]. It is different from a factoid question-answering (QA)
[4] system. The answer of factoid QA is a phrase or a sentence
according to the question, but users prefer the detailed answer
including more information to the accurate answer. Summaries
for nonfactoid questions [5] should be semantically consistent
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and identical with the context. PubMedQA [6] is a novel
biomedical nonfactoid QA data set collected from PubMed
articles in which the title is a question and can be answered by
yes or no. Some related studies [7,8] treat this QA data set as a
summarization task and take the conclusion part of the abstract
as the answer summary.

Early works put emphasis on query-based summarization
approaches [9-11] in which the aim is to extract the sentences
relevant to the given query. However, these methods are
typically based on semantic relevance from query to context
and neglect mutual information at the sentence level, which is
helpful for the reasoning or inference process in question-driven
summarization. These traditional extractive summarization
methods are mainly based on information retrieval methods to
select sentences that heavily rely on feature engineering, and
the results performance is restricted by pipelines [5,12,13].
Though extractive summarization is more grammatical and
coherent, the extractive sentences fail to have a logical
connection. In contrast to extractive methods, abstractive
methods produce summaries at the word level based on semantic
comprehension [8]. Consequently, question-driven abstractive
answer summarization is studied to generate the concise and
salient short answer, which is also informative for answering
the question.

To tackle question-driven abstractive summarization, the answer
summary should be highly related to the concerned question.
Existing studies [7,8,14] often concentrate on processing the
mutual information between the question and document.
However, though some sentences are not strongly related to the
question, they further explain the central entity in question and
affect the expression of the context. Mutual information among
answer sentences is underused. Furthermore, it is hard for the
recurrent neural network (RNN)–based model to capture the
information of long sentences. Existing studies model the
sentences separately, which hinders the interaction among
sentences. To this end, we propose a novel transformer-based
model [15] named Trans-Att that incorporates a two-step
attention mechanism to enhance the mutual information both
of question to context and sentence over other sentences. A
novel multi-view pointer-generator network is proposed to create
a condensed and concise summary to better use the question
and context information.

Furthermore, a common problem in the practical application of
abstractive summarization models is the factual inconsistency
[16]. This refers to the phenomenon that the model produces a
summary that sometimes distorts and fabricates the facts. Recent
studies point out that up to 30% of the generated summaries
contain such factual inconsistencies [16,17]. One main reason
is that most existing summarization evaluation tools calculate
N-gram overlaps between the generated summary and the
reference [16]. Though some models make higher scores in
token-level metrics like recall-oriented understudy for gisting
evaluation (ROUGE) [18], the generated summaries still lack
factual correctness. Thus, human evaluation is still the primary
method for evaluating the factual consistency. In question-driven
answer summarization, generated summaries should be
consistent with the context semantically. Wang et al [19] and
Durmus et al [20] propose the QA-based factual consistency

evaluation metrics QAGS and FEQA separately. They first
generate a set of questions about the summary and then use a
QA model to answer these questions for evaluation. Because
of the characteristics of the PubMedQA data set, the questions
are general questions, and they can be answered by yes or no.
We use the summaries as the context for the QA task to evaluate
the factual consistency.

In this paper, a novel question-driven abstractive summarization
based on transformer is proposed, namely Trans-Att, that
incorporates a two-step attention mechanism and an overall
integration mechanism to summarize the document with respect
to the nonfactoid questions. Concretely, the two-step attention
mechanism can learn richer structural dependencies among
sentences and the relevance of the question and the document.
The overall integration mechanism integrates the question, the
document, and the correlative summary to generate a summary
representation, which allows the model to use the comprehensive
information. A novel multi-view pointer network is then
proposed by integrating transformer and pointer-generator
networks [21] to facilitate copy words from the question or the
document to better use the question and context information.
Finally, besides question-driven abstractive summarization
evaluated by ROUGE, we also assess the model performance
by QA task to evaluate the generated summary and whether
they are factually consistent with the source document with
regard to the question. The effectiveness of this model is
empirically validated on the text summarization task and QA
task, and achieves state-of-the-art performance on the
PubMedQA data set.

The following are our main contributions. First, the novel
architecture Trans-Att uses a two-step attention mechanism for
better integrating the information in both question to context
and sentence over other sentences.

Second, we propose a novel multi-view pointer network to
generate tokens through overall integration, which integrates
the attentive question, the attentive document, and the correlative
summary to generate a summary representation.

Finally, besides ROUGE for automatically evaluating the
summarized answers, we conduct a QA task to evaluate the
factual consistency.

Methods

Question-Driven Abstractive Summarization
Automatic text summarization is a challenging task in the natural
language processing field. It aims to generate simple and
coherent essays that comprehensively and accurately reflect the
central content of an original document. It can be categorized
into two approaches: extractive and abstractive methods. The
former method selects a few relevant sentences from the original
text, while the latter needs to rephrase and generate a new
sentence in which some words are not necessarily present in
the original text. In this paper, we focus on abstractive
summarization for its potential of summarizing the text more
coherently and logically.
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Question-driven summarization is intended to summarize the
original document in terms of a specific question, which is
different from query-based summarization. In query-based
summarization, the query is often a word or a phrase referring
to a particular entity [11]. Whereas a question may contain
several entities and a specific semantic meaning, and this
requires the model to have the reasoning or inference ability to
identify the corresponding semantic contents in question-driven
summarization [8]. Early query-based summarization methods
heavily rely on feature engineering including query-dependent
features and query-independent features. The former includes
named entity matching and semantic sentence matching, and
the latter includes term frequency–inverse document frequency
and stop word penalty [1,22]. Recently, some abstractive
sequence-to-sequence neural networks have recently been
proposed to generate summaries in regard to the given query
[10,11]. Some recent works have developed a new method for
question-driven summarization [7,8,14] in nonfactoid QA that
requires much reasoning and an inference process. However,
these methods only model the relation between the question
and each sentence, and neglect the mutual information among
sentences.

Problem Formulation
For the text summarization task, formally, assume that we have
a question q = {q1, ..., qm} with m words and a source document

containing ls sentences that have ns words at most. The task
is to generate an answer summary y = {y1, ..., yn} containing n
words. The training goal is to maximize the probability p(y|q,
d). The overall architecture of our transformer-based
question-driven abstractive answer summarization model is
depicted in Figure 1, which consists of three main components:
(1) two-step attention mechanism, (2) overall integration
mechanism, and (3) multi-view pointer network for generation.

For the QA task, given a question q and an answer summary y,
the model should generate an answer a = {0,1} indicting yes or
no to this question conditioned on the document. We adopted
BioBERT [23] as our model to evaluate the factual consistency,
which is initialized with bidirectional encoder representation
from transformers (BERT) [24] and further pretrained on
large-scale biomedical corpora.

Figure 1. Overview of our model.

Encoder

Question Encoder

Let denote the token embedding indicating the meaning of
each token qi. A special positional encoding pei indicates the
position of each token within the question sequence. The input

of the question encoder Iq is a sequence of embeddings.

A transformer layer is used to encode the question. It reads the
question q = {q1, ..., qm} and computes a hidden representation

, where Nm denotes the length of the question and d is the
dimension of the vector. To get a fixed length question

representation, Hq is then converted to a vector by adding
all token representations and normalizing it by question length.

Sentence Encoder
Each document is composed of several sentences. Given a

document context , the input of the sentence encoder is the
sentences fed one by one. We used sentence position embedding
to indicate the order of sentences.

where is the word embedding of wi,j, which is the same word

embedding as ; the position embedding of the token is

represented as , and denotes the sentence position

embedding of .
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Is then fed into a transformer encoder to represent the sentence
as a sequence of hidden vectors by:

The hidden representation of a document is represented as 

and a sentence vector , where Ns = ls × ns.

Two-step Attention Mechanism

Intersentence Attention
Inspired by Liu and Lapata [25], we used an intersentence
attention mechanism to model the dependencies across multiple
sentences, where each sentence can attend to other sentences.
We used a weighted-pooling operation to obtain a fixed-length
sentence representation so that the diversity of each sentence
representation is increased. Through a multi-head pooling
mechanism [25], each token can attend to other tokens by
calculating weight distributions. Sentences can be encoded
flexibly in different subspaces.

The output representation of the last transformer encoder
layer for token wi,j is denoted as xi,j as the input. For each

sentence and for head z ∈ {1, ..., nhead}, we first conducted

a linear transformation to obtain the attention scores and

value vectors . The probability distribution was then
calculated within the sentence.

where and are weights. dhead = d / nhead is the dimension
of each head.

Based on the probability distributions and value vectors, we
conducted a weighted summation followed by another linear

formation and layer normalization. Different vector encodes
sentences in a different subspace.

where is the weight. Because of the flexibility of combining
multiple heads, each sentence has multiple attention distribution
and focuses on different views of input.

Dependencies among multiple sentences can be modeled by the
intersentence attention that is similar to self-attention.
Intersentence attention computes the distribution of attention
so that each sentence attends to other sentences.

where are query, key, and value vectors, respectively.

Through a self-attention calculation, is obtained to represent
the sentence vector that gathers the information of other

sentences. ls is the number of input sentences.

We then concatenate all context vectors and pass through a

linear layer with weight to update token representations by
adding ci to each token vector xi,j. We then pass it through a
two-layer multilayer perception, taking gelu as the activation
function [26]. Next, we pass the summation of xi,j and gi,j to a
layer normalization. In this way, each sentence collects

information from other sentences represented as .

Coattention
Coattention is the second attention mechanism aimed at
exploiting the pairwise mutual information between the question
and the context.

We further used an additive attention [27] to obtain the
distribution of document sentences that highly coincides with
the question and then combines the question and question-related

sentences to get their comprehensive representation by:

where MLP is the same as mentioned before. are trainable
parameters.

Integration Decoder
When given the first t – 1 tokens in the summary y1, ..., yn, the
integration decoder incorporates the question and the document
into the summary through an overall integration mechanism.
The purpose is to predict the representation of the t – th token
and transmit it to the pointer network.

Overall Integration
Inspired by gated recurrent units [28], we designed an
integration gate (z) to integrate the question-document and
summary, which enables summary tokens at different times to
merge information in different levels. Multi-head attention is
then used to capture the information in the fused representation,

, and obtain sy, which is a correlative summary. is the
vector representation of the input summary.

To reinforce the understanding of the question and document

of the decoder, sy is used to compute attention with the question

and the document, and obtain representations sq and ss.

sq = Multi – headAttention (sy, Hq, Hq) (23)

ss = Multi – headAttention (sy, Hs', Hs') (24)

Next, similar to equation 20, the predicted representation oy is
obtained to integrate the attentive question, the attention
document, and the correlative summary by using the integration
gate.

where * is denoted as q or s.
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Multi-View Pointer Network
To improve the probability of generating corresponding tokens

from the question and the document, a novel multi-view pointer
network is proposed based on multi-head attention as shown in
Figure 2.

Figure 2. Multi-view pointer network. Hq: hidden representation of question; y: hidden representation of the input summary; Hs: hidden representation
of document.

Question Tokens

We computed the attention weights βq through multiple attention
weights in the multi-head attention.

Where fβ means a function of getting multiple attentions in the

multi-head attention. is the weight, where nhead is the number

of heads. βq can be treated as the probability distribution over

the question words. It can be represented as .

Document Tokens
The distribution of the document that is relevant to the question
can be served as a global distribution over each decoding step.

βs can be calculated similar to equation 27, which can be
considered a local distribution at each decoding step. Thus, the
distribution over the document can be calculated by:

Vocabulary Tokens
The predicted representation from the overall integration decoder

is used to calculate the probability distribution pv over the fixed

vocabulary through a softmax layer; Wv is the weight from the
word embeddings.

The final probability distribution yt to predict can be formulated
from three aspects of word distributions as:

P(yt |q, d, y < t) = softmax (Wγo
y + bγ) ⋅ [p

v, pq, ps]
(31)

Loss Function
The main training objective is to minimize the negative log
likelihood between the reference summary and the predicted
summary. Thus, Trans-Att can be trained by minimizing the
objective.

Question-Answering Model
BERT [24] has already been used in QA tasks. We fine-tuned
BioBERT [23] as a baseline. We fed PubMedQA questions and
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corresponding texts that could be contexts, reference long
answers, contexts and long answers, or generated summaries
for comparison, separated by special [SEP] token, to the model.
We take the special embedding [cls] from the last layer and use
a softmax function to predict the final label that could be yes or
no. The general loss was trained by minimizing the
cross-entropy between the predicted labels and the true label
distribution.

Results

Data Set
We evaluated our model on the nonfactoid QA data set
PubMedQA [6]. PubMedQA is a novel biomedical data set

aiming at answering academic questions and has substantial
instances with some expert annotations. Each instance is
composed of a question that is a general question, a context that
is the structured abstract without its conclusion, a long answer
that is the conclusion of the abstract in terms of the question,
and a final answer yes/no for the general question that
summarizes the conclusion and can be used for the QA task.
The statistics of the PubMedQA data set are shown in Table 1.

We adopted ROUGE-1, ROUGE-2, and ROUGE-L to
automatically evaluate the summarized answers in the
question-driven abstractive summarization task. The main
metrics of the QA task are accuracy and macro-F1 under a
reasoning-free setting in which the generated summary is added
in the input.

Table 1. Statistics of the PubMedQA data set.

Test, nDevelopment, nTraining, nTask data set

21,00021,000169,000QAa pairs

16.316.416.3Average question length (word count)

239238238Average document length (word count)

40.941.041.0Average summary length (word count)

9.339.319.32Average number of sentences

aQA: question-answering.

Experimental Settings
ParlAI [29] was implemented in our model as the code
framework. The dimensions of word embedding size and hidden
size were both 256. The text was encoded by byte-pair encoding
[30], and the embedding matrix was initialized with fastText.
Both encoder and decoder layers of transformer-based models
were 5, with feed-forward hidden size 512 and attention head
4 for all layers. The optimizer was Adam [31] with an initial
learning rate of 0.0005. We also applied the inverse square root
learning schedule over the 5k warm-up dates. The dropout rate
was set to 0.2, and gradient clipping was used with a maximum
gradient norm of 0.1. Label smoothing of the value 0.1 was
used for summary generation. We used beam search in the
generation process with beam size 2 and adopted 3-gram
blocking.

Comparative Methods
We report the performance of our proposed model in comparison
with several baselines and state-of-the-art methods based on
different methodologies, including extractive summarization,
abstractive summarization, query-based summarization, and
question-driven abstractive summarization.

Two unsupervised extractive methods were used. LEAD3 is a
simple but effective extractive summarization baseline that
concatenates the first two sentences and the last sentence without
question information. Maximal marginal relevance is an
information retrieval model used to calculate the similarity
between the text and the researched document for extractive
summarization.

Three widely adopted abstractive methods were adopted for
comparison. Sequence-to-sequence model with attention [27]

is a simple encoder-decode model with attention based on RNN
without respect to the question. Pointer-generator network [21]
is a hybrid pointer-generator architecture with coverage based
on a neural sequence-to-sequence model for abstractive text
summarization. Transformer [15] implements the state-of-the-art
encoder-decoder framework based on multi-head attention
without access to the question.

There were two query-based abstractive summarization methods
used for comparison. The soft long short-term memory–based
diversity attention model (SD2) [10] adds a query attention
mechanism to a sequence-to-sequence model. It learns to pay
attention to different parts of the query at different time steps.
Query-based summarization using neural networks (QS) [11]
incorporates question information into the pointer-generator
network with the use of the vanilla attention mechanism.

Finally, we implemented two of the latest question-driven
answer summarization models for comparison. Hierarchical and
sequential context modeling [7] is a hierarchical
compare-aggregate method used to integrate the interaction
between the question and the document into final document
representation at both the word level and sentence level.
Multi-hop selective generator (MSG) [8] models the relevance
between question and sentences by leveraging a humanlike
multi-hop reasoning process for question-driven summarization,
in which the most related sentences are given higher weights.

Experimental Results
The experimental results of question-driven summarization in
terms of ROUGE scores and QA with respect to accuracy and
macro-F1 scores are presented in Tables 2 and 3. Both ROUGE
scores and metrics of QA show that our model achieved
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competitive performance in comparison with state-of-the-art
question-driven summarization methods.

Compared with traditional text summarization, there was limited
improvement for query-based summarization methods (SD2 and
QS), indicating that the question information was not sufficiently
used. There was a noticeable margin, about 0.79 for ROUGE-2,
higher than the current state-of-the-art model (MSG). This
indicates that the model benefits from the information provided
by mutual information between question and document, and
among sentences. We noticed that the ROUGE-1 score of our
model was lower than MSG. One possible explanation is that
the length of the generated summary of MSG was longer than
that of our model. Considering the characteristic of ROUGE-1
that measures the word overlap between the reference summary
and the predicted summary, the longer summary has more
possibility of generating words that appeared before.

As for the QA result, we observed that if using the original
answer summary, BioBERT achieves good enough scores. If
the input answer summary can correctly answer the question,
it is consistent to the original semantics. Thus, evaluating the
factual consistency by a QA task is feasible. Suppose that we

feed the context without long answer information to the model,
which is under the reasoning-required setting; the result is
comparatively lower because the reasoning and inference
process is crucial in answering the question if the answer is not
directly available. We treated the long answer as the summary,
and its quality influenced the factual consistency. It was
observed that there is still a big gap between the generated
summary and the reference summary, which leaves room for
improvement.

Overall, the difference upon accuracy measurement was not
significant by a narrow margin because of the imbalanced
distribution of labels (92.8% yes vs 7.2% no). The F1 score was
significant and representative, and our model achieved the best
F score of 77.57%. The results show that the extractive methods
performed better than the abstractive methods. We speculate
that extractive summarization approaches directly copy from
the source context. However, it is worth noting that the
extractive methods have an upper bound, and they barely exceed
the performance when given the whole context. There is
substantial potential for abstractive approaches. Future work
should explore the reasoning ability of abstractive methods.

Table 2. Comparison with related works of question-driven summarization task.

ROUGE-L (%)ROUGE-2 (%)ROUGEa-1 (%)With questionTypesMethods

25.899.7930.94NoExtractiveLEAD3

24.109.5029.69NoExtractiveMMRb

27.3011.0032.40NoAbstractiveS2SAc

28.1011.5132.89NoAbstractivePGNd

26.3211.3432.38NoAbstractiveTransformer

26.0110.5232.33Query basedAbstractiveSD2
e

26.7011.1032.60Query basedAbstractiveQSf

25.9810.0732.34Question drivenExtractiveHSCMg

30.2014.8037.20 iQuestion drivenAbstractiveMSGh

30.2215.5936.01Question drivenAbstractiveTrans-Att (ours)

aROUGE: recall-oriented understudy for gisting evaluation.
bMMR: maximal marginal relevance.
cS2SA: sequence-to-sequence model with attention.
dPGN: pointer-generator network.
eSD2: soft long short-term memory–based diversity attention model.
fQS: query-based summarization using neural networks.
gHSCM: hierarchical and sequential context modeling.
hMSG: multi-hop selective generator.
iItalics indicate the best result.

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e38052 | p.349https://medinform.jmir.org/2022/8/e38052
(page number not for citation purposes)

Wang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Comparison with related work for question-answering task.

F1 (%)Accuracy (%)Methods

67.0693.80LEAD3

75.6994.85 bMMRa

63.8191.89S2SAc

64.4291.93PGNd

69.5994.18Transformer

69.3094.34SD2
e

76.4893.78HSCMf

73.2793.68MSGg

77.5794.20Trans-Att (ours)

48.1292.76Majority

84.6596.50Context

96.1899.04Long answer

96.8699.20Context + long answer

aMMR: maximal marginal relevance.
bItalics indicate the best result.
cS2SA: sequence-to-sequence model with attention.
dPGN: pointer-generator network.
eSD2: soft long short-term memory–based diversity attention model.
fHSCM: hierarchical and sequential context modeling.
gMSG: multi-hop selective generator.

Ablation Study
To examine the contributions of our proposed modules, namely,
intersentence attention, coattention, overall integration, and
multi-view pointer network, we ran an ablation study. The
experimental results are shown in Table 4.

Overall, all the modules contributed to the final performance
to some extent. The accuracy score was not significant compared
with the F1 score because of the imbalanced distribution of
labels. When the coattention was discarded, the performance
of the model dropped substantially, which indicates that it plays
a more important role in exploiting the pairwise mutual

information between the question and the document sentences.
Besides, applying intersentence attention also improved the
performance, which indicates that it is not enough to only
consider the question-related information. Interrelation among
sentences is also worth paying attention to. The decrease on F1
was most significant, which demonstrates the effects of the
two-step attention mechanism. Overall integration reinforces
the understanding of the model upon the question and the
document indicated by a noticeable decrease in F1. Because of
the biomedical characteristic of PubMedQA, the
out-of-vocabulary problem is much more severe. The ablation
study results validated the importance of the multi-view pointer
network.

Table 4. An ablation study for our model.

F1 (%)Accuracy (%)ROUGE-LROUGE-2ROUGEa-1Methods

77.5794.2030.2215.5936.01Trans-Att

73.1393.8728.0713.9234.65Intersentence attention

70.6293.4026.5013.6134.05Coattention

72.3794.5328.6314.2634.28Overall integration

75.6794.3929.3213.9835.16Multi-view pointer network

aROUGE: recall-oriented understudy for gisting evaluation.

Case Study
In Figure 3, we show the summaries generated by the proposed
method and some baseline methods for comparison, and

visualize the sources of the summaries with colors. The context
underlined and highlighted with green was used by Trans-Att
to generate the summary, which contains more information than
in the reference summary. By comparison, we observed that
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Trans-Att not only successfully exploits the intersentence
information with useful information but also uses the question
information in understanding semantic content; pointer-generator
network generates an irrelevant summary, which proves the
importance of the question information; SD2 fails to capture the
core argument, resulting in repeating the question and paying
attention to wrong information; the final answer demonstrates

the validity in evaluating factual consistency by QA task
(although SD2 gives the right final answer, there is still a
semantic mismatch because the first sentence is essentially the
same as the question); and the bottom example demonstrates
that there are limitations to the yes/no questions, the answer of
which depends partly on clues of negative pronouns. Future
work will consider increasing the diversity of the QA task.

Figure 3. Case study from PubMedQA (the bottom example omits the context; final answer is in parentheses). MSG: multi-hop selective generator;
PGN: pointer-generator network; QS: query-based summarization using neural networks; SD2: soft long short-term memory–based diversity attention
model; HELLP: hemolysis, elevated liver enzymes, and low platelets counts syndrome.

Novel N-Grams
We also analyzed the output of abstractive models by calculating
the proportion of novel n-grams that appear in the summaries
but not in the source texts. Table 5 shows that summaries of
our model account for a lower rate of novel n-grams than the
reference summaries, indicating the quality of abstraction. We

observed that the traditional abstractive approach
(pointer-generator network), copies more phrases, perhaps
because it generates more words from the context without being
question driven, which increases the probability of unrelated
information being selected. Note that MSG produces novel
n-grams more frequently. However, it may contain the factual
inconsistency problem in generating new words.

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e38052 | p.351https://medinform.jmir.org/2022/8/e38052
(page number not for citation purposes)

Wang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 5. Proportion of novel n-grams.

4 grams (%)3 grams (%)2 grams (%)1 grams (%)Methods

79.3867.1247.8211.00Trans-Att

85.0174.1354.6613.43MSGa

69.1458.3843.7316.29PGNb

93.5587.1772.1127.83Refrence

aMSG: multi-hop selective generator.
bPGN: pointer-generator network.

Discussion

Conclusions
In this paper, a novel transformer-based question-driven
abstractive summarization model was proposed to generate
concise and consistent summaries for nonfactoid QA. A two-step
attention mechanism was proposed to exploit the mutual
information both of the question to context and the sentence
over other sentences. We used the overall integration mechanism
and the novel pointer network to better integrate and use
information of the question, document, and summary. We
conducted a QA task to evaluate the factual consistency between
the generated summary and the reference summary.

Experimental results demonstrate that our proposed model
achieves comparable performance to the state-of-the-art
methods.

Future Work
Due to the insufficiency of the data set quantity, we were limited
to conducting experiments on PubMedQA. We are looking
forward to conducting more persuasive experiments when the
insufficiency is lifted. As for the evaluation of the factual
consistency, we can also incorporate human expertise to further
enhance the credibility of the proposed QA metric. Hopefully,
our method can provide some inspiration in the summarization
task.
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Abstract

Background: Social media platforms (SMPs) are frequently used by various pharmaceutical companies, public health agencies,
and nongovernment organizations (NGOs) for communicating health concerns, new advancements, and potential outbreaks.
Although the benefits of using them as a tool have been extensively discussed, the online activity of various health care organizations
on SMPs during COVID-19 in terms of engagement and sentiment forecasting has not been thoroughly investigated.

Objective: The purpose of this research is to analyze the nature of information shared on Twitter, understand the public
engagement generated on it, and forecast the sentiment score for various organizations.

Methods: Data were collected from the Twitter handles of 5 pharmaceutical companies, 10 US and Canadian public health
agencies, and the World Health Organization (WHO) from January 1, 2017, to December 31, 2021. A total of 181,469 tweets
were divided into 2 phases for the analysis, before COVID-19 and during COVID-19, based on the confirmation of the first
COVID-19 community transmission case in North America on February 26, 2020. We conducted content analysis to generate
health-related topics using natural language processing (NLP)-based topic-modeling techniques, analyzed public engagement on
Twitter, and performed sentiment forecasting using 16 univariate moving-average and machine learning (ML) models to understand
the correlation between public opinion and tweet contents.

Results: We utilized the topics modeled from the tweets authored by the health care organizations chosen for our analysis using
nonnegative matrix factorization (NMF): cumass=–3.6530 and –3.7944 before and during COVID-19, respectively. The topics
were chronic diseases, health research, community health care, medical trials, COVID-19, vaccination, nutrition and well-being,
and mental health. In terms of user impact, WHO (user impact=4171.24) had the highest impact overall, followed by public health
agencies, the Centers for Disease Control and Prevention (CDC; user impact=2895.87), and the National Institutes of Health
(NIH; user impact=891.06). Among pharmaceutical companies, Pfizer’s user impact was the highest at 97.79. Furthermore, for
sentiment forecasting, autoregressive integrated moving average (ARIMA) and seasonal autoregressive integrated moving average
with exogenous factors (SARIMAX) models performed best on the majority of the subsets of data (divided as per the health care
organization and period), with the mean absolute error (MAE) between 0.027 and 0.084, the mean square error (MSE) between
0.001 and 0.011, and the root-mean-square error (RMSE) between 0.031 and 0.105.

Conclusions: Our findings indicate that people engage more on topics such as COVID-19 than medical trials and customer
experience. In addition, there are notable differences in the user engagement levels across organizations. Global organizations,
such as WHO, show wide variations in engagement levels over time. The sentiment forecasting method discussed presents a way
for organizations to structure their future content to ensure maximum user engagement.

(JMIR Med Inform 2022;10(8):e37829)   doi:10.2196/37829
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Introduction

Background
Social media platforms (SMPs), such as Twitter, Facebook, and
Reddit, are commonly used by people to access health
information. In the United States, 8 in 10 internet users access
health information online, and 74% of these use SMPs.
Meanwhile, public health agencies and pharmaceutical
companies often use social media to engage with the public [1].
SMPs significantly contribute to the community by providing
a communication platform for the public, patients, and health
care professionals (HCPs) to talk about health concerns,
eventually leading to better outcomes [2]. Additionally, SMPs
also function as a medium to motivate patients by promoting
health care education and providing the latest information to
the community [1]. Analyzing social media content in the health
care domain can reveal important dimensions, such as audience
reach (eg, followers and subscribers), post source (eg,
pharmaceutical companies, public health agencies), and post
interactivity (eg, number of likes, retweets) [3]. A recent study
discussed a machine learning (ML) approach to examining
COVID-19 on Twitter [4]. Although it identifies discussion
themes, there is no research on understanding the content shared
by public health agencies and private organizations.

Related Works
The positive impacts of using SMPs by patients and HCPs have
been previously discussed [5]. Patients feel empowered and
develop positive relationships with their HCPs. For instance,
Ventola [1] discussed SMPs as a tool to share and promote
healthy habits, share information, and interact with the public.
Li et al [6] presented an analysis of social media's impact on
the public. Their research discusses public perceptions of
health-related content being classified as true, debatable, or
false; the study shows that people have a strong tendency to
adopt collective opinions while sharing health-related statements
on social media.

There are different topic-clustering and content analysis
techniques available to identify the characteristics of
stakeholders (eg, pharmaceutical companies’ tweets for drug
information) on SMPs [7,8]. A previous study presented an
overview of techniques used for sentiment analysis in health
care [9]. The researchers discuss multiple lexicon-based and
ML-based approaches. The previous discussion on
pharmaceutical companies has focused on COVID-19
vaccine–related public opinions [10,11]. Using latent dirichlet
allocation (LDA) and valence aware dictionary and sentiment
reasoner (VADER), researchers have examined topics, trends,
and sentiments over time [10].

Prior research work has also focused on the response of G7
leaders during COVID-19 on Twitter [12,13]. The research
classified viral tweets into appropriate categories, the most
common being informative. Furthermore, researchers have

recently presented a discussion on the harms and benefits of
using Twitter during COVID-19 [14]. An epidemiological study
conducted in 2020 investigated the news-sharing behavior on
Twitter. Although it concluded that tweets that include news
articles sharing pandemic information are popular, they cannot
substitute public health agencies, organizations, or HCPs [15].
In addition, the study of public sentiments via artificial
intelligence (AI) can provide a way to frame public health
policies [16].

COVID-19 led to a rapid change in public sentiments over a
short span of time [17]. People expressed sentiments of joy and
gratitude toward good health and sadness and anger at the loss
of life and stay-at-home orders [17,18]. Understanding public
perceptions toward health-related content is important. Although
the majority of people have a positive attitude toward social
media, some feel more attention is required to promote the
credibility of shared information [19]. Attempts have been made
to capture peoples’ reactions to the pandemic; however, they
are limited in scope. One study investigated the concerns
originating toward public health interventions in North America
via topic modeling [20], while another examined the role of
beliefs and susceptibility information in public engagement on
Twitter [21]. Statistical analysis also shows that health care
organizations have to come forward to engage more with
consumers [22]. The importance of risk communication
strategies while using SMPs cannot be undermined [23].

Although a tweet’s engagement and sentiment can only be
calculated once it has been posted, forecasting presents a
fascinating way to predict the sentiments beforehand. Time
series–based strategies, such as autoregressive integrated moving
average (ARIMA) and vector autoregressions (VAR), have been
used for forecasting emotions from SMPs [24,25]. The seasonal
autoregressive integrated moving average with exogenous
factors (SARIMAX) model was recently used to gain insights
into people’s current emotional state via sentiment nowcasting
on Twitter [26].

ML and natural language processing (NLP) algorithms have
been recently used in various instances; for example, Bayesian
ridge and ridge regression models were used for emotion
prediction and health care analysis on large-scale data sets
[27,28]. The elastic net and lasso regression have been
previously used for health care access management and
information exchange [29,30], while linear regression, decision
tree, and random forest models are commonly used for
epidemic-level disease tracking [31]. Different regression
boosting algorithms, such as AdaBoost, light gradient boost ,
and gradient boost, have also been used for disease outbreak
prediction [31]. Prophet, a Python library package, was recently
used for COVID-19 outbreak prediction [32].

Objective
The implications of social media communication by HCPs have
been extensively discussed [33,34]. Although they focus on the
advantages and methods of extracting health- and disease-related
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content from social media, there is currently a lack of
understanding of how social media usage by public health
agencies, nongovernment organizations (NGOs), and
pharmaceutical companies resonates with society. Additionally,
the study of tweets’ sentiments can supplement existing models
for generating content for future tweets. Predicting the tweet
sentiment is 1 way to achieve this goal. Therefore, it is crucial
to convert this textual content into information for formulating
future strategies and gaining valuable insights into perceptions
of social media users.

The remainder of the paper is structured as follows: First, a
preliminary analysis of topic modeling using the best-performing
clustering algorithm is presented in the Methods section,
followed by sentiment and engagement analysis using
CardiffNLP’s twitter-roberta-base-sentiment model. We then
conducted time series–based sentiment forecasting using 16
univariate models on the complete data set. The Results section
outlines model topics obtained, which were used for generating
heatmaps to obtain insights into topicwise tweets. Next, we
discussed user engagement with its impact to understand
whether there were specific occurrences of higher levels of
engagement impacted by any offline events. In addition, we
discussed results from best-performing sentiment-forecasting

models. Finally, in the Discussion section, we draw conclusions
and present an outline for future work.

Methods

Data Set
The data for this study (181,469 tweets) were gathered from the
accounts of major US and Canadian health care organizations,
pharmaceutical companies, and the World Health Organization
(WHO) using the Twitter Academic API for Research v2 [35]
during the time frame of January 1, 2017, to December 31, 2021.
The top 5 pharmaceutical companies were selected based on
the recommendations made by HCPs on Twitter [36]. Table 1
lists the number of tweets scraped for each Twitter handle. Each
organization is referred to as a user, and the type of organization
(ie, pharmaceutical company, public health agency, NGO) is
referred to as a user group for the scope of this study.

The complete timeline was divided into 2 phases for analysis,
before COVID-19 and during COVID-19, based on the
confirmation of the first COVID-19 community transmission
case in North America on February 26, 2020 [37]. Figure 1
presents an overview of the research framework.

Table 1. Distribution of tweets for the selected user accounts of 3 types of organizations.

Total tweets, NDuring COVID-19, n (%)Before COVID-19, n (%)Name of organization (Twitter handle)

Public health agencies

14,3985963 (41.4)8435 (58.6)Centers for Disease Control and Prevention (CDCgov)

1594219 (13.7)1376 (86.3)Centers for Disease Control and Prevention (CDC_eHealth)

64942989 (46.0)3505 (54.0)Government of Canada for Indigenous (GCIndigenous)

45,78537,907 (82.8)7878 (17.2)Health Canada and PHAC (GovCanHealth)

13,8595969 (43.1)7890 (56.9)US Department of Health & Human Services (HHSGov)

24361346 (55.3)1090 (44.7)Indian Health Service (IHSgov)

66612516 (37.8)4145 (62.2)Canadian Food Inspection Agency (InspectionCan)

81512314 (28.4)5837 (71.6)National Institutes of Health (NIH)

24421195 (48.9)1247 (51.1)National Indian Health Board (NIHB1)

97353925 (40.3)5810 (59.7)US Food and Drug Administration (US_FDA)

111,55564,343 (57.7)47,213 (42.3)Total

Pharmaceutical companies

4425963 (21.8)3462 (78.2)AstraZeneca (AstraZeneca)

29391120 (38.1)1819 (61.9)Biogen (biogen)

60571857 (30.7)4200 (69.3)Glaxo SmithKline (GSK)

67391926 (28.6)4813 (71.4)Johnson & Johnson (JNJNews)

56762039 (35.9)3637 (64.1)Pfizer (pfizer)

25,8367905 (30.6)17,931 (69.4)Total

NGOa

44,07819,303 (43.8)24,775 (56.2)World Health Organization (WHO)

aNGO: nongovernment organization.
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Figure 1. Overall research framework. WHO: World Health Organization.

Content Analysis
The content of each user was divided into 2 phases, before and
during COVID-19. We performed topic modeling on the tweets
authored by the organizations by using the topics yielded by
the best-performing topic model in order to explore the most
and least talked about topics with the help of heatmaps.
Additionally, we examined the top 10 hashtags used by these
organizations.

Preprocessing
First, all nonalphabets (numbers, punctuation, new-line
characters, and extra spaces) and Uniform Resource Locators
(URLs) were removed using the regular expression module (re
2.2.1) [38] for all tweets. The cleaned text was then tokenized
using the nltk 3.2.5 library [39]. Next, stopwords were removed,
followed by stemming using PorterStemmer, and lemmatizing
using the WordNetLemmatizer from nltk.

Topic Modeling
Researchers have used term frequency–inverse document
frequency (TF-IDF) to create document embeddings for tweets
[40]. Following their approach, we preprocessed and generated
document embeddings for tweets and input them to 5 different
clustering algorithms: LDA, parallel LDA, nonnegative matrix
factorization (NMF), latent semantic indexing (LSI), and the
hierarchical dirichlet process (HDP). These clustering algorithms
were executed 5 times with varying random seed values. The

seed values accounted for the short and noisy nature of tweets.
We calculated the coherence scores of the topic models, cumass

[41] and cv [42], to confirm performance consistency over
multiple runs.

We used Gensim LDA [43], Gensim LDA multicore (parallel
LDA) [44], and Gensim LSI [44,45] models. For NMF and
HDP models, we used online NMF for large corpora [46] and
online variational inference [46,47] models, respectively.

Heatmaps
Heatmaps were generated using seaborn to analyze the volume
of tweets for each topic. The topics yielded by the
best-performing topic model as per the time phase (ie, before
and during COVID-19) were leveraged to generate heatmaps.
Each cell represented the total count of tweets for a particular
topic by an organization. For example, among pharmaceutical
companies, AstraZeneca had the highest number of tweets
(n=1729, 49.9%) before COVID-19 for chronic diseases.

Hashtags
The top 10 hashtags mentioned in the users’ tweets were
evaluated using the advertools 0.13.0 module [48]. This tool
extracts hashtags in social media posts. It was used for analyzing
the similarities and differences in the tweeting behavior before
and during COVID-19 and conducting topic analysis.
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Sentiment Analysis
Sentiment analysis is an NLP approach used to categorize the
sentiments appearing in Twitter messages based on the keywords
used in each tweet. We tested different models that classify a
user’s tweet in 1 of 3 categories: positive, negative, and neutral.
Although there is no common threshold for how many tweets
should be sampled, we witnessed a range of around 2000 tweets
[49-51] to several thousand tweets [52-54] when testing a model.
For this study, we sampled 3000 tweets uniformly distributed
over the span of our data collection time frame and from all
Twitter handles. The tweets were then labeled by 3 distinct
annotators, and the sentiment category with the highest votes
was chosen as the overall sentiment. CardiffNLP’s
twitter-roberta-base-sentiment model [55], which is trained on
a 60 million Twitter corpus, was used to obtain sentiment labels
on the sampled data set. We checked for similarity between
human annotations and model labels, and the similarity
percentage for CardiffNLP’s model was 69.96%; the model was
therefore used to predict the sentiment on the remaining tweets
of the users.

Engagement Analysis
For a given user, Twitter defines the engagement rate [56] as
presented in Equation (1):

where “Engagement is the summation of the number of likes,
replies, retweets, media views, tweet expansion, profile, hashtag,
URL clicks, and new followers gained for every tweet, and
Impressions is the total number of times a tweet has been seen
on Twitter, such as through a follower’s timeline, Twitter search,
or as a result of someone liking your tweet.”

Researchers have analyzed the impact (popularity) of Twitter
handles by proposing heuristic and neural network–based models
[57-59]. We defined it as a function of followers, following,
the total number of tweets, and the profile age and calculated
it using Equation (2):

where listedCount is the number of public lists of which this
user is a member.

The total number of tweets produced by a user was considered
inversely proportional to the user’s impact, because a user
tweeting occasionally and receiving higher engagement is more
impactful than a user tweeting regularly with lower engagement.

Engagement analysis was performed to quantify the popularity
of a topic generated. The engagement for each user was defined
as the product of average engagement per day and their impact,
as described in Equation (3). The average engagement per day
was calculated as the sum of the count of likes, replies, retweets,
and quotes per day. These reactions were aggregated from
January 1, 2017, to December 31, 2021.

The exponential moving average (EMA) was calculated with a
window span of 151 days for every user, and outliers were
removed using the z-score, followed by smoothening of the
average engagement per day to the eighth degree using the
Savitzky-Golay filter [60].

Sentiment Forecasting
To forecast the sentiment per day, we first needed to quantify
the overall sentiment of the tweets from each user every day.
We leveraged CardiffNLP’s twitter-roberta-base-sentiment
model [55] to calculate the sentiments of all the tweets collected
for our analysis and then calculated the daily sentiment score,
as mentioned in Equation (4), based on the sentiment category
with the maximum number of tweets for that day, followed by
assigning the sentiment score based on the sentiment: 0 for
neutral sentiment, the ratio of the count of positive tweets to
total tweets for positive sentiment, and the negation of the ratio
of the count of negative tweets to the total tweets for negative
sentiment.

The daily sentiment scores were then resampled to a monthly
mean sentiment score, which also helped us in handling missing
values, if any. The complete timeline was divided into 2 phases
(ie, before and during COVID-19), as discussed before, and the
sentiment score was forecasted on 20% of the data set in each
period for all user groups.

A grid search was used to find optimal hyperparameters, and
5-fold cross-validation was performed for every model. The
statsmodel library [61] was used for ARIMA [62] and
SARIMAX [63] models, and pycaret [64] was used for
regression-based models. We also reported the performance of
the prophet [65] model on the data set.

Three metrics, the mean absolute error (MAE), the mean square
error (MSE), and the root-mean-square error (RMSE), were
selected to evaluate the forecasting accuracy of the models. We
considered 1-step-ahead forecasting for this study as it helped
avoid problems related to cumulative errors from the preceding
period.

Computational Resources
The study was performed using Compute Canada (now called
the Digital Research Alliance of Canada) resources, which
provide access to advanced research computing (ARC), research
data management (RDM), and research software (RS). The
following is a list of the computing resources offered by one of
the clusters from National Services (Digital Research Alliance),
Graham:

• Central processing unit (CPU): 2x Intel E5-2683 v4
Broadwell@2.1 GHz

• Memory (RAM): 30 GB

Results

Content Analysis
The details of the parameters used for each model are discussed
in Multimedia Appendix 1, Table S1. Table 2 shows the mean
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coherence scores (cv and cumass) for each clustering algorithm.
Although the HDP had the highest cv scores in both time phases
(ie, 0.696 and 0.650 before and during COVID-19, respectively),
NMF had the best cumass scores (–3.653 and –3.794, respectively)
and generated the most meaningful topics for the data set (see
Multimedia Appendix 1, Tables S2 and S3). Therefore, the top
5 topics generated by NMF were selected to search for on the
first page of Google Search results. The resulting contents were
then retrieved to interpret the extracted topic keywords to
propose a suitable topic name. For example, for the set of
keywords yielded by the topic model “community health, care,
community health services, health center, family health centers,
community plan, community clinic, family health care, qualified
health centers, health services,” we assigned the topic
community health care.

The scaled heatmaps showing the topic distribution for different
Twitter handles are shown in Figure 2. Prior to COVID-19,
chronic diseases were the most active topic, with a total of 9488
tweets from pharmaceutical companies and WHO (see Figure
2a). However, during COVID-19, we observed that COVID-19,
health research, and chronic diseases were the most-discussed
topics, with 52,148 tweets from all data sets combined (see
Multimedia Appendix 1, Figures S1b and S1d).

This shift in the tweets’ content was observed across the
complete data set, and we further made the following inferences:

• Before COVID-19: Chronic diseases were the most talked
about topic for pharmaceutical companies (AstraZeneca,

1729, 49.9%, tweets; Pfizer, 1168, 32.1%, tweets) and for
WHO (4831, 19.5%, tweets), followed by tweets on health
research (WHO, 1703, 6.9%, tweets; AstraZeneca, 1037,
29.9%, tweets). This is supported by Figure 3a, which shows
#cancer, #lungcancer, #alzheimers, #hiv, and #ms to be
prominently used in tweets. Among public health agencies,
the NIH’s and the CDC’s Twitter handles were the most
active, with 1840 (31.6%) and 1742 (20.6%) tweets
discussing health research and chronic diseases,
respectively, strongly supported by the most used hashtags
#nativehealth and #foodsafety (refer to Multimedia
Appendix 1, Figures S2a and S2c).

• During COVID-19: Chronic diseases and health research
were the most active topics for AstraZeneca (680, 70.6%,
tweets) and Glaxo SmithKline (GSK, 655, 35.2%, tweets),
respectively. In addition, COVID-19 and vaccination were
most talked about by GSK (398, 21.4%, tweets) and Pfizer
(396, 19.4%, tweets). Figure 3b shows the hashtags
supporting this: #covid19, #alzheimers, #cancer,
#multiplesclerosis, and #vaccine. GovCanHealth was by
far the most active public health agency on Twitter, with
16,832 (87.2%) tweets on health research, 16,449 (85.2%)
tweets on vaccination, and 14,260 (73.8%) tweets on
COVID-19, having #covid19, #coronavirus, and
#covidvaccine as trending hashtags. The majority of the
tweets by WHO were on COVID-19 (8911 tweets) and
vaccination (2131 tweets), with #covid19, #coronavirus,
and #vaccineequity appearing frequently in the tweets (refer
to Multimedia Appendix 1, Figure S2d).

Table 2. Mean coherence scores and CPUa time for different clustering algorithms.

Time taken (minutes:seconds)cumasscvClustering algorithm

Before COVID-19

17:11–5.5260.352LDAb

5:48–3.7090.396Parallel LDA

7:38–3.6530.493NMFc

0:16–5.9210.316LSId

3:24–18.6680.696HDPe

During COVID-19

14:01–5.6880.456LDA

6:08–3.9900.446Parallel LDA

7:04–3.7940.567NMF

0:16–5.3560.381LSI

3:01–17.6100.650HDP

aCPU: central processing unit.
bLDA: latent dirichlet allocation.
cNMF: nonnegative matrix factorization.
dLSI: latent semantic indexing.
eHDP: hierarchical dirichlet process.
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Figure 2. Scaled heatmaps showing topic distribution for pharmaceutical companies before and during COVID-19.

Figure 3. Top hashtags of pharmaceutical companies before and during COVID-19.

Engagement Analysis
WHO (user impact=4171.24) had the highest impact overall,
followed by public health agencies (CDC user impact=2895.87;
NIH user impact=891.06). Among pharmaceutical companies,
Pfizer’s user impact was the highest at 97.79. The user impact
was normalized between the range of 0 and 1 and is shown in
Figure 4.

Among pharmaceutical companies, Pfizer’s user engagement
was far higher than that of others (Figure 5), both before and
during COVID-19, with the highest engagement observed at
the time of its COVID-19 vaccine’s success in November 2020.
A jump in engagement was also observed in May 2021, when
Pfizer announced its plan for helping India fight the second
wave of coronavirus (refer to Multimedia Appendix 1, Table
S4).

A similar trend was observed in public health agencies, with
the CDC’s account showing the highest user engagement
between March and June 2020, the early months of the
COVID-19 pandemic. A sharp rise in user engagement was
observed in May 2021, when the CDC announced a relaxation
on social distancing and masking rules for fully vaccinated
individuals. The user engagement on WHO’s account varied
significantly over time. Its engagement was the highest in the
time frame of February-April 2020, the early months of the
pandemic, similar to what was observed for public health
agencies. A sharp increase was seen in October 2020 following
the announcement of the World Mental Health Day and in late
2020, when WHO made an announcement for COVID-19
vaccine development (refer to Multimedia Appendix 1, Figure
S3).
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Figure 4. User impact of all Twitter handles scaled between 0 and 1. CDC: Centers for Disease Control and Prevention; NIH: National Institutes of
Health; WHO: World Health Organization.

Figure 5. User engagement on Twitter accounts of pharmaceutical companies from January 1, 2017, to December 31, 2021.

Sentiment Forecasting
Table 3 shows the MAE, MSE, and RMSE for the 16 models
used on the data sets. Overall, ARIMA (univariate) and
SARIMAX models performed best on the majority of the subsets
of the data (divided as per the organization and period), and we
further made the following inferences:

• Before COVID-19: ARIMA and SARIMAX models
generated the lowest MSE (0.005) and RMSE (0.072) for
pharmaceutical companies. When measuring the model
performance through the MAE, ARIMA performed better
than all other models (0.063). A similar trend was observed
for public health agencies, with ARIMA having the lowest
MAE (0.027) and SARIMAX having the lowest RMSE
(0.031) and a tie between them for the MSE (0.001).
SARIMAX had the lowest MAE (0.054), MSE (0.004),
and RMSE (0.080) on the WHO data set.

• During COVID-19: Using the CatBoost regressor gave the
lowest MAE (0.072) and RMSE (0.086), while the
K-neighbors regressor yielded the lowest MSE (0.008) for
pharmaceutical companies. Performing regression using
AdaBoost generated the lowest MAE (0.084) and RMSE
(0.105) among all models used, and SARIMAX had the
lowest MSE (0.011) for public health agencies. For WHO,
the elastic net, lasso regression, and light gradient boosting
performed equally well, with all 3 models having the same
MAE (0.046) and RMSE (0.059), and SARIMAX had the
lowest MSE (0.004).

Figure 6a shows the 1-step-ahead forecast for pharmaceutical
companies before COVID-19 using ARIMA. The model was
trained on sentiment scores from January 2017 to June 2019
and tested on data from July 2019 to February 2020 for tweets
before COVID-19. The 1-step-ahead forecasting aligned well
with the observed sentiment scores, and we obtained similar
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results for public health agencies and WHO. The organizations
showed some deviations from observed sentiments while
conducting 1-step-ahead forecasting during COVID-19, making
it difficult to predict their sentiment accurately, as seen in
Multimedia Appendix 1, Figure S4.

To verify the forecasting performance of these models, we
checked for the nature of their residual errors (ie, whether the
residuals of the models were normally distributed with mean 0
and SD 1 and were uncorrelated). From Multimedia Appendix
1, Figure S5, as in the case of public health agencies, before
COVID-19 using ARIMA, we confirmed the aforementioned
through plot_diagnostics. The green kernel density estimation
(KDE) line closely followed the normal distribution (N   {0,1})
line in the top-right corner of Multimedia Appendix 1, Figure

S5, which is a positive indicator that the residuals were scattered
normally. The quantile-quantile (Q-Q) plot on the bottom left
shows that the distribution of residuals (blue dots) approximately
followed the linear trend of samples drawn from a standard
normal distribution, N. This confirms again that the residuals
were normally distributed. The residuals over time (top left in
Multimedia Appendix 1, Figure S5) showed no apparent
seasonality and have 0 mean. The autocorrelation plot (ie,
correlogram) attested this, indicating that the time series
residuals exhibited minimal correlation with lagged forms of
themselves. Thus, these findings encouraged us to believe that
our models provide an adequate fit, which might aid us in
understanding the sentiments of the organizations and
forecasting their values without overburdening our hardware
with computationally heavy models.
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Table 3. Results of time series sentiment forecasting using different MLa models (all metrics are 5-fold cross-validation).

WHObPublic health agenciesPharmaceutical companiesModels

During COVID-19Before COVID-19During COVID-19Before COVID-19During COVID-19Before COVID-19

RMSEMSEMAERMSEMSEMAERMSEMSEMAERMSEMSEMAERMSEMSEMAERMSEeMSEdMAEc

0.1110.0120.1060.080h0.006h0.066h0.2860.0820.2400.032h0.001g0.027g0.1120.0130.0980.072g0.005g0.063gARIMAf

0.0660.004g0.047h0.061g0.004g0.054g0.106h0.011g0.7090.031g0.001g0.028j0.1040.0110.0840.072g0.005g0.065hSARI-

MAXi

0.0750.0080.0610.087j0.009j0.075j0.1630.0370.1410.0370.0010.0310.1190.0180.1020.1000.0100.083Bayesian
ridge

0.0680.0070.0560.0910.0090.0760.1470.0290.1240.0380.0020.0300.0940.0110.0790.0850.0080.069Ridge re-
gression

0.0650.0070.0520.0890.0090.0790.1270.0230.1040.0350.001h0.027h0.086g0.008h0.072g0.080h0.007j0.066CatBoost
regressor

0.061j0.0070.0500.1000.0110.0810.1130.0220.093j0.0360.0010.0300.087h0.008g0.075h0.0870.0090.070K-neigh-
bors re-
gressor

0.059g0.006h0.046g0.1000.0110.0820.109j0.021j0.087h0.0350.001h0.0290.093j0.009j0.0800.0880.0080.070Elastic
net

0.059g0.006h0.046g0.1000.0110.0820.109j0.021j0.087h0.0350.0010.0290.093j0.009j0.0800.0880.0080.070Lasso re-
gression

0.060h0.006j0.047j0.0900.0090.0820.1340.0240.1100.034j0.001h0.0280.0930.0100.0800.081j0.007h0.065jRandom
forest re-
gressor

0.059g0.006h0.046g0.1000.0110.0820.109j0.021j0.087h0.0350.001h0.0290.093j0.009j0.0800.0880.0080.070Light gra-
dient
boosting
machine

0.0640.0080.0510.0940.0100.0820.1680.0340.1410.0360.001j0.0290.0940.0100.0790.0860.0080.075Gradient
boosting
regressor

0.0720.0070.0570.0960.0100.0870.105g0.020h0.084g0.0370.0010.0290.0910.0100.0800.0820.0070.070AdaBoost
regressor

0.0650.0070.0550.0980.0110.0870.1710.0450.1510.0400.0020.0310.0980.0110.0800.0870.0090.068Extreme
gradient
boosting

0.0610.006j0.0480.1110.0140.0980.1420.0300.1120.0370.0010.0290.1060.0130.0870.0860.0090.076Decision
tree re-
gressor

0.0760.0080.0623.33452.7192.3670.1480.0290.1240.2160.1640.1570.1140.0170.0940.3140.3120.245Linear re-
gression

0.1060.0110.0860.1430.0200.1140.1240.0150.1200.0490.0020.0400.1040.0110.0890.1260.0160.108Prophet

aML: machine learning.
bWHO: World Health Organization.
cMAE: mean absolute error.
dMSE: mean squared error.
eRMSE: root-mean-square error.
fARIMA: autoregressive integrated moving average.
gThe highest-performing forecasting method.
hThe second-highest-performing forecasting method.
iSARIMAX: seasonal autoregressive integrated moving average with exogenous factors.
jThe third-highest-performing forecasting method.
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Figure 6. One-step-ahead forecast for all pharmaceutical companies before and during COVID-19 using the best-performing models from Table S1
(Multimedia Appendix 1). ARIMA: autoregressive integrated moving average.

Discussion

Principal Findings
In this paper, we proposed a framework for using NLP-based
text-mining techniques for performing comprehensive social
media content analysis of various health care organizations. We
processed reasonably large amounts of textual data for topic
modeling, sentiment and engagement analysis, and sentiment
forecasting. Our study revealed the following key findings:

• Being the most active organization on social media does
not translate to more user impact. WHO and the US public
health agency CDC generated far more user impact than
the Public Health Agency of Canada, even though the latter
had a high number of relevant tweets when analyzed
topicwise. People are more likely to engage with neutral
tweets, which usually consist of some public health
announcement rather than exclusively positive or negative
tweets. This might mean that organizations can leverage
this knowledge while creating content for social media posts
in the future to increase their visibility in the online sphere.

• Certain topics normally translate to more user engagement.
Although the content on chronic diseases and health
research dominated most of the tweets posted over the study
period, there was a marked shift toward a discussion on
COVID-19 and vaccination for public health agencies, more
than what was observed in pharmaceutical companies.
Tweets on COVID-19 and chronic diseases generate more
interest among the public. Perhaps surprisingly, we found
that people are not much receptive to content on medical
trials, often shared by pharmaceutical companies, unless it
concerns a public health emergency, such as the COVID-19
pandemic. Using particular hashtags certainly helps in
generating engagement, as we found that most user
engagement was highly skewed toward tweets concerning
COVID-19. Moreover, our study revealed that compared
to the user engagement patterns found in the majority of
health care organizations (ie, with peaks observed around
major events or announcements), there are wide variations
in user engagement for WHO. This could be due to the
global presence of WHO, implying that it might not be the
same set of followers engaging with its content every time,

but rather only those who are impacted by or interested in
the content in some way.

• When the content is structured, results tend to exceed
expectations. We conducted sentiment forecasting on the
data sets using different moving averages and various ML
univariate models. Surprisingly, we observed that when the
content is structured, as is normally the case for that
available on official Twitter accounts, results tend to exceed
expectations, more so before COVID-19 than during
COVID-19. The models used in this research are able to
predict monthwise tweet sentiment with high accuracy and
low errors. This helped us in analyzing our work in-depth,
and we did not need to create any multivariate ML models.
Results show that commonly used ARIMA and SARIMAX
models work well, and they can be used for predicting tweet
sentiments on live data. This could also help organizations
correlate tweet sentiment with user engagement. For
example, the highest engagement on Pfizer’s tweets was
for the ones labeled neutral, implying that the organization
should structure the content of its future tweets in a similar
manner to maintain higher levels of engagement.
Furthermore, tweets that mention more news-relevant
content might be able to translate it into more user
engagement.

Limitations and Future Work
There are 3 limitations of this study that could be addressed in
future research. First, this work focused on dividing the tweets
into 2 phases, before and during COVID-19. In the future,
researchers can pursue other methods of structuring the analysis
timeline. Second, this study dealt with only the structured textual
content of tweets. It would be interesting to also incorporate
the presence of image attributes in future studies. Finally, as
the scope of this study was limited to health care organizations,
we did not account for public demographics. Understanding the
demographic background of the public engaging with this
content is another area that can be explored in future studies.

Conclusion
This study examined the online activity of US and Canadian
health care organizations on Twitter. The NLP-based analysis
of social media presented here can be incorporated to gauge
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engagement on the previously published tweets and to generate
tweets that create an impact on people accessing health
information via SMPs. As organizations continue to leverage
SMPs by providing the latest information to the community,
predicting a tweet’s sentiment before publishing can boost an

organization’s perception by the public. In conclusion, we found
that performing content analysis and sentiment forecasting on
an organization’s social media usage provides a comprehensive
view of how it resonates with society.
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Abstract

Background: With the increasing popularity of snus, it is essential to understand the public perception of this oral tobacco
product. Twitter—a popular social media platform that is being used to share personal experiences and opinions—provides an
ideal data source for studying the public perception of snus.

Objective: This study aims to examine public perceptions and discussions of snus on Twitter.

Methods: Twitter posts (tweets) about snus were collected through the Twitter streaming application programming interface
from March 11, 2021, to February 26, 2022. A temporal analysis was conducted to examine the change in number of snus-related
tweets over time. A sentiment analysis was conducted to examine the sentiments of snus-related tweets. Topic modeling was
applied to tweets to determine popular topics. Finally, a keyword search and hand-coding were used to understand the health
symptoms mentioned in snus-related tweets.

Results: The sentiment analysis showed that the proportion of snus-related tweets with a positive sentiment was significantly
higher than the proportion of negative sentiment tweets (4341/11,631, 37.32% vs 3094/11,631, 26.60%; P<.001). The topic
modeling analysis revealed that positive tweets focused on snus’s harm reduction and snus use being an alternative to smoking,
while negative tweets focused on health concerns related to snus. Mouth and respiratory symptoms were the most mentioned
health symptoms in snus-related tweets.

Conclusions: This study examined the public perception of snus and popular snus-related topics discussed on Twitter, thus
providing a guide for policy makers with regard to the future formulation and adjustment of tobacco regulation policies.

(JMIR Med Inform 2022;10(8):e38174)   doi:10.2196/38174

KEYWORDS

snus; Twitter; sentiment; topic modeling; smokeless tobacco products

Introduction

Smokeless tobacco is a type of tobacco that is neither smoked
nor burnt during consumption. Examples of smokeless tobacco
products include chewing tobacco, dissolvable tobacco, and
oral nicotine pouches. According to the Centers for Disease
Control and Prevention (CDC), in 2020, there were 5.7 million
adult users of smokeless tobacco nationwide in the United States
[1]. Among the smokeless tobacco products, snus is a smokeless
and sometimes flavored tobacco product for oral consumption

that originated from Sweden. It is usually in the following two
forms: loose ground powder and sachets. When snus is
consumed, it is held behind the upper lip [2]. Although this
tobacco product was banned in the member countries of the
European Union, with a few exceptions such as Sweden [3], its
use in the rest of the world is prevalent. By 2013 for example,
18% of adolescents had tried snus in Finland [4]. In the United
States, a study conducted in 2021 by the CDC suggested that
1.2% of US high school students are current users of smokeless
products, including snus [1].
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Studies have found that snus use may result in oral cancer,
cardiovascular diseases, respiratory diseases, diabetes, and other
illnesses [5]. A cohort study on 135,036 male, Swedish
construction industry employees found that the age-adjusted
relative risk of dying from cardiovascular disease for smokeless
tobacco users was 40% higher than that for nonusers [6]. Despite
these concerns, previous studies indicated that snus use has a
considerably lower health risk than cigarette smoking [2,7].
According to a review on multiple health symptoms, including
oral health and cardiovascular diseases, among others, the health
risk of snus is significantly lower than that of cigarettes [2].

Similar to other tobacco products, snus use results in nicotine
dependence, and the perceptions toward the relationship between
snus consumption and other types of nicotine consumption have
been controversial [5]. The gateway hypothesis states that the
use of snus may lead to more addictive smoking behaviors. On
the contrary, the pathway hypothesis claims that snus use helps
to prevent people from smoking [5]. Previous studies on this
topic reported different conclusions. A previous study tracked
496 pairs of users and nonusers of smokeless tobacco products
and concluded that there was insufficient evidence to conclude
that using smokeless tobacco products leads to a higher chance
of smoking [8]. Another research study on smokers in Sweden
found that 76.3% of the male smokers and 71.6% of the female
smokers included in the study quit smoking after they started
consuming snus [9]. However, a focus group study that was
performed on 66 participants in 2010 concluded that the
participants believed that snus use could potentially lead to
smoking [10].

With the controversial gateway and pathway hypotheses and
the potential health impact of snus products, disagreements on
the perception of snus product may exist among the public. As
snus is becoming increasingly popular, governmental regulation
plays an essential role in the relationship between snus
consumption and public health. For example, the US Food and
Drug Administration stipulates that for smokeless tobacco
products, including snus, special warnings such as “WARNING:
Smokeless tobacco is addictive” should be attached to the
packages [11]. For governors and regulators to better manage
the relationship between snus and public health and be more
informed in policy making, it is beneficial to understand how
the public truly perceives snus.

Twitter, as a popular social media platform, has been used to
examine smoking behaviors and perceptions of tobacco
products, such as e-cigarettes [12,13]. Although perceptions of
snus have been investigated by using focus groups, the sample
sizes of such focus groups are very limited [10,14]. Research
that uses social media data to study the public perceptions of
snus is scarce.

Our study aimed to examine the public perceptions of and
popular topics regarding snus on Twitter. Our study consisted
of 3 specific goals. First, we aimed to determine the sentiments
of snus-related tweets via a sentiment analysis. Second, we
attempted to explore specific topics related to snus. Finally, we
tried to examine potential health risks that were mentioned in
snus-related tweets. Through a comprehensive examination of
the public perceptions and the top topics discussed about snus,

we hope to provide some insights to policy makers on regulating
snus for public health protection.

Methods

Ethics Approval
We only used publicly available tweets for this study, and there
was no identifying information on Twitter users in this study.
In addition, this study was reviewed and approved by the Office
for Human Subject Protection Research Subjects Review at the
University of Rochester (study ID: STUDY00006570).

Data Collection and Preprocessing
We collected Twitter posts (tweets) related to snus from March
11, 2021, to February 26, 2022, through the Twitter streaming
application programming interface by using the keyword snus,
and we obtained a data set with 28,427 tweets. We then
preprocessed the data to enhance their quality. First, all the
tweets were lowercased. Afterward, by using the Regular
Expression Operations Package (Python Software Foundation)
[15], we removed the parts of tweets that did not contribute to
the tweets’actual contents, including email addresses, new-line
characters, single quotation marks, URLs, and “@” signs (used
to mention other users). Next, we applied 2 sets of promotion
filters to eliminate tweets that were related to the commercial
promotion of snus [13]. The first filter targeted the usernames,
using keywords such as snus, smokeless, dealer, supply, nicotine,
cigarette, and store. Tweets posted by users with usernames
containing any of these words were not included in this study
because they might have been posted by commercial accounts.
The second layer of the filter aimed to remove potentially
commercial tweet content, and the keywords included order,
new, offer, discount, and free shipping. Tweets that contained
these words were highly likely to be promotional tweets. Finally,
we eliminated the repetitive tweets. After preprocessing, the
final data set contained 11,631 tweets.

Sentiment Analysis
Sentiment analysis is a computational method of learning the
attitudes in text, and the Valence Aware Dictionary and
Sentiment Reasoner (VADER) is a sentiment analysis package
that is specialized for social media data [16]. By applying the
VADER on each tweet, we assigned each tweet a sentiment
score of between −1.0 and 1.0. To better define the sentiments,
we grouped the tweets into 3 categories based on the
corresponding sentiment scores; tweets with a sentiment score
of ≥0.05 were labeled as “positive,” and tweets with a score of
≤−0.05 were labeled as “negative.” The remaining tweets were
labeled as “neutral.” The proportions of positive, neutral, and
negative tweets were then calculated. The daily proportion of
positive tweets was then calculated.

We performed the chi-square goodness-of-fit test by using
statistical analysis software (R version 4.0.2; R Foundation for
Statistical Computing) to examine the frequency distribution
of different attitudes [17]. A significance level of .05 was used
to determine whether the proportion of positive tweets was
statistically significantly higher than the proportion of the
negative tweets.
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Topic Modeling
Topic modeling is a computational method of identifying major
topics in text. The model we chose for our study was the latent
Dirichlet allocation model, which was applied to positive tweets,
neutral tweets, and negative tweets to observe the main topics
that Twitter users had been discussing.

By using the gensim package in Python [18], we built a bigram
and trigram based on our data set. Bigrams and trigrams are
sequences of 2 words and 3 words, respectively. With the bigram
and the trigram, we treated some of the most frequently
mentioned phrases as a whole instead of 2 or 3 separate words.
For example, harm reduction was a frequently mentioned phrase
among the tweets, and we considered harm reduction as a single
token that contributed to a topic instead of preserving harm and
reduction separately.

We applied the Natural Language Toolkit to remove the stop
words in the tweets [19]. Stop words include but are not limited
to commonly used articles, pronouns, and propositions, which
undermine the quality of topic modeling results if kept. In
addition, we used spaCy (Explore) to lemmatize the words in
tweets into their dictionary forms without changing their
meaning [20]. For example, smoked became smoke after
lemmatization. After conversion, words like smoked were left
unused for topic modeling, and only their dictionary forms were
included. Both coherence scores and intertopic distance maps
were used to determine the optimal number of topics discussed
in the tweets, using the pyLDAvis package in Python [21].

To better interpret the results from the model, we inferred the
topics based on the keyword outputs and example tweets. Two
authors reviewed the tweets from each category and summarized
the topics independently. The results from the two authors were

compared and discussed. Any discrepancy was resolved by a
group of 4 members.

Health-Related Discussion
To determine the frequency of health effects that were
mentioned in snus-related tweets, we filtered the data set by
using a list of health-related keywords that were created in
previous studies [22-24], which resulted in a set of 654 unique
tweets with 1254 health-related keyword appearances. The list
included the following nine major groups of health effects that
are related to smoking and nicotine consumption: mouth (eg,
gum, teeth, etc), respiratory (eg, lung, cough, etc), cardiovascular
(eg, heart, etc), psychological (eg, stress, anxiety, etc),
neurological (eg, numb, fatigue, etc), cancer (eg, lung cancer,
mouth cancer, etc), throat, digestive, and other effects (eg, skin,
liver, etc). For each major group of health effects, the number
of occurrences of specific keywords belonging to the groups
were counted. In addition, two authors hand-coded 200
randomly selected tweets to determine whether the users directly
experienced the health symptoms mentioned or whether they
believed that snus use might help with lowering the risk of the
symptoms when compared to smoking. The Cohen κ statistic
reached 0.73, indicating substantial agreement between the two
coders.

Results

Temporal Analysis
To better understand the popularity of snus discussion, we
examined the number of snus-related tweets over time during
our study time period. As shown in Figure 1, the number of
tweets per day typically oscillated between 25 and 50, with a
few peaks occurring in April 10, 2021; May 31, 2021; and
October 3, 2021.

Figure 1. Snus-related tweets from March 11, 2021, to February 26, 2022.
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Perceptions of Snus on Twitter
To examine the public perception of snus on Twitter, we
performed a sentiment analysis on tweets related to snus. The
average sentiment score for 11,631 snus-related tweets was
0.080, which indicated that the overall sentiment in snus-related
tweets was positive. Among these tweets, there were 4341
(37.32%) positive tweets, 3094 (26.60%) negative tweets, and
4196 (36.08%) neutral tweets. Further statistical analysis showed
that the proportion of positive tweets was significantly higher
than the proportion of negative tweets (4341/11,631, 37.32%
vs 3094/11,631, 26.60%; P<.001). Our longitudinal analysis
showed that there was no noticeable change in the proportion
of positive tweets over time (Multimedia Appendix 1).

Topics Discussed in Snus-Related Tweets
To understand what might be responsible for different
sentiments in snus-related tweets, we performed topic modeling
for the tweets in the different sentiment groups. As shown in
Table 1, among the positive sentiment snus-related tweets, the
most popular topic was “Snus being a safer way of nicotine
consumption” (1472/4341, 33.9%), followed by “Way of snus
consumption” (1441/4341, 33.2%) and “Snus addiction and
enjoyment” (1428/4341, 32.9%). Among the negative sentiment
snus-related tweets, the top topic was “Risk comparison between
snus and smoking” (1064/3094, 34.4%), followed by “Negative
health impacts” (1018/3094, 32.9%) and “Other problems related
to snus” (1012/3094, 32.7%). The topics for neutral sentiment
snus-related tweets are included in Table S1 in Multimedia
Appendix 2.

Table 1. Topics discussed in snus-related tweets with different sentiments.

ExamplesToken percentageKeywordsSentiment group and inferred topic

Positive

“Proper pint of bitter and a wintergreen
snus. Perfect on a fair night like tonight”

32.9snus, good, make, time, day, love,
feel, free, access, today, strong, man,
back, coffee, pack, life, pretty, friend,
enjoy, and week

Snus addiction and enjoyment

“For long-term nicotine use, data on safety
are strongest for snus: decades of epidemi-
ological studies. No harm. So if many
people with mental health issues self-
medicate with #safernicotine (they are),
at least there is no harm. #qualityoflife”

33.9pouch, vape, smoking, smoke, quit,
cigarette, nicotine, safe, give, amp,
year, alternative, smoker, start, risk,
big, stop, switch, low, and option

Snus being a safer way of nicotine
consumption

“snus is a black tobacco product you chew
or put on your gums. You don’t snort it or
sniff it. He’s clearly closing one nostril to
sniff smelling salts, which are commonly
used in sports. Not rocket science.”

33.2snus, tobacco, product, Swedish,
people, chew, work, thing, great,
smokeless, put, dip, find, call, play,
gum, nice, hard, flavor, and mouth

Way of snus consumption

Negative

“not just snus but the attempt to restrict
and eliminate all lower risk products is
astonishingly short sighted.”

34.4Tobacco, smoke, vape, cigarette,
smoking, pouch, product, cancer, risk,
low, nicotine, amp, quit, harm, gum,
rate, smoker, chew, reduce, and
smokeless

Risk comparison between snus and
smoking

“not in epok which i assume is some
zoomer snus? i dont know i only use odens
and sometimes siberia which has no
flavouring just tobacco. the nicotine con-
tent is pretty potent in those, would kill
your average vaper no joke.”

32.9Snus, ban, make, stop, day, Swedish,
year, give, feel, thing, death, man,
start, high, mouth, kill, lose, addic-
tion, long, and cig

Negative health impacts

“our big daddy is always the leader he is
the familys captain and chief, but once i
choked when my snus caught up in my
throat cause there was our pop in the oak.”

32.7snus, people, time, bad, work, put,
hard, good, study, week, today, back,
call, big, find, coffee, problem, and
life

Other problems related to snus

Health Risks Mentioned in Snus-Related Tweets
To understand what health risks might be associated with snus,
we explored the health symptoms mentioned in the snus-related
tweets. Oral health (mouth effects) was the most mentioned
health category in snus-related tweets (519/1254, 41.39%),
followed by other effects (213/1254, 16.99%) and respiratory
effects (182/1254, 14.51%). The other health categories had
relatively lower proportions of tweets. For example, the cancer

category (cancer is a health effect that is often associated with
nicotine consumption) only took up 5.34% (67/1254) of the
total tweets. Further hand-coding results showed that of the 200
randomly selected tweets, 40 (20%) mentioned that the health
symptoms were a direct result of snus consumption or mentioned
a negative opinion about snus. In addition, 28% (56/200) of the
tweets discussed the harm reduction of snus, in terms of the
health symptoms mentioned, when compared to smoking.
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Discussion

Principal Findings
In our study, we showed that the proportion of snus-related
tweets with a positive sentiment was significantly higher
(P<.001) than the proportion of snus-related tweets with a
negative sentiment. By using topic modeling, we observed that
the positive sentiments toward snus might be the result of
personal experiences and the perception that snus use is a safer
alternative to smoking. In contrast, concerns about health risks
might contribute to the negative sentiments in snus-related
tweets. A further analysis showed that in snus-related tweets,
the most popular health category was mouth effects, followed
by other effects (eg, liver and skin effects) and respiratory
effects.

Comparison With Previous Studies
Our temporal analysis showed an obvious peak in the number
of snus-related tweets on October 3, 2021. After extracting all
snus-related tweets from that day, we noticed that most of the
tweets (67/100, 67%) discussed the possible use of snus by the
son of a famous English former soccer player. This peak
indicates the large impact of influencers on Twitter users.

Given that the top topic in snus-related tweets with a positive
sentiment was related to switching from smoking to snus use,
since snus was perceived as a safer option and there was no
strong evidence in negative sentiment tweets indicating the
gateway effect, it might be possible that Twitter users’
perceptions on snus tend to lean toward the pathway hypothesis
instead of the gateway hypothesis. This finding contradicts that
of a focus group study, in which participants viewed snus use
as a potential gateway to smoking [10]. There are 2 possible
reasons for this inconsistency. First, the focus group was
conducted in 2010, and the tweets used in our study were
collected in 2021. It is possible that temporal differences might
account for the difference in the perceptions of snus. Second,
the conclusion from the focus group was based on a sample of
66 young adults who ranged in age from 18 to 26 years [10].
In comparison, our study included a broader range in terms of
demographic characteristics, which may have led to the different
results.

From the aspect of health risks, the health-related keywords
identified in the tweets captured the majority of the potential
health impact of snus. According to a report published by the
Norwegian Institute of Public Health in 2019, the main potential
adverse health effects of snus cover cancer, cardiovascular
disease, mental disorders, and caries [25]. The health-related
keyword frequency distribution from our study included these
potential health effects through the oral, cardiovascular, cancer,
and psychological effect categories, demonstrating the

consistency between our findings from Twitter data and previous
findings on the health risks of snus.

Limitations
Our study has several limitations. Data collected from Twitter
may contain some bias. A study on tourist attraction visit
sentiment data sourced from Twitter suggested that the tourists’
sentiments could be affected by factors other than the tourist
attraction itself, including the number of attraction sites that are
visited in 1 day and whether the tourists are local visitors,
out-of-state visitors, or international visitors [26]. Another study
in 2012 suggested that the demographic distributions of Twitter
users are different from those of the general population [27].
For example, around 31% of young adults who ranged in age
from 18 to 24 years used Twitter, while this proportion was
only 17% for adults aged between 25 and 34 years [27].
Therefore, our findings, which are based on Twitter data, may
not represent the general population.

With regard to data collection and preprocessing, the keyword
set we used may not have been comprehensive. For example,
when collecting the data, we only included snus as the single
keyword, which may have resulted in us missing some relevant
tweets in our study. Additionally, in the processed data set, there
might have still been some bot accounts, which can
automatically deliver messages. This may have introduced some
bias in our results. With regard to topic modeling, inferences
based on keywords involve subjective judgments, even with
the support of example tweets. In addition, the mentioning of
health symptoms in snus-related tweets does not imply any
causal relationship between snus and health risks. Our
hand-coding results further validated this notion. Moreover, our
study did not include the demographic information of Twitter
users. Different demographic groups might perceive snus
differently.

Conclusion
Our study showed more positive sentiments in snus-related
tweets from Twitter users, which might have been due to the
relative safety of snus when compared to that of smoking. Our
study provided an efficient measurement of the public
perceptions of snus among a relatively large sample by using
social media data. According to the health belief model, the
perceived susceptibility, seriousness, benefits, and barriers of
actions explain health-related behaviors [28]. Therefore, these
perceptions of snus are possibly a predictor of the public’s snus
consumption patterns. Our study will help policy makers better
anticipate consumption behavior changes and make necessary
policy changes. The results from our study will provide insights
to policy makers on further regulations for snus. Future studies
could take demographic and geographic factors into
consideration to explore potential disparities in snus-related
perceptions and discussions.
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Abstract

Background: Common methods for extracting content in health communication research typically involve using a set of
well-established queries, often names of medical procedures or diseases, that are often technical or rarely used in the public
discussion of health topics. Although these methods produce high recall (ie, retrieve highly relevant content), they tend to overlook
health messages that feature colloquial language and layperson vocabularies on social media. Given how such messages could
contain misinformation or obscure content that circumvents official medical concepts, correctly identifying (and analyzing) them
is crucial to the study of user-generated health content on social media platforms.

Objective: Health communication scholars would benefit from a retrieval process that goes beyond the use of standard
terminologies as search queries. Motivated by this, this study aims to put forward a search term identification method to improve
the retrieval of user-generated health content on social media. We focused on cancer screening tests as a subject and YouTube
as a platform case study.

Methods: We retrieved YouTube videos using cancer screening procedures (colonoscopy, fecal occult blood test, mammogram,
and pap test) as seed queries. We then trained word embedding models using text features from these videos to identify the nearest
neighbor terms that are semantically similar to cancer screening tests in colloquial language. Retrieving more YouTube videos
from the top neighbor terms, we coded a sample of 150 random videos from each term for relevance. We then used text mining
to examine the new content retrieved from these videos and network analysis to inspect the relations between the newly retrieved
videos and videos from the seed queries.

Results: The top terms with semantic similarities to cancer screening tests were identified via word embedding models. Text
mining analysis showed that the 5 nearest neighbor terms retrieved content that was novel and contextually diverse, beyond the
content retrieved from cancer screening concepts alone. Results from network analysis showed that the newly retrieved videos
had at least one total degree of connection (sum of indegree and outdegree) with seed videos according to YouTube relatedness
measures.

Conclusions: We demonstrated a retrieval technique to improve recall and minimize precision loss, which can be extended to
various health topics on YouTube, a popular video-sharing social media platform. We discussed how health communication
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scholars can apply the technique to inspect the performance of the retrieval strategy before investing human coding resources
and outlined suggestions on how such a technique can be extended to other health contexts.

(JMIR Med Inform 2022;10(8):e37862)   doi:10.2196/37862

KEYWORDS

health information retrieval; search term identification; social media; health communication; public health; computational textual
analysis; natural language processing; NLP; word2vec; word embeddings; network analysis

Introduction

Background
Researchers are increasingly interested in understanding the
types and accuracy of health-related messages produced in the
public communication environment (PCE) [1-5]. Given the
proliferation of web-based health information sources and social
media platforms in which people generate, share, and access
information [6], identifying and capturing what message content
individuals are likely to see when looking for information about
health (ie, seeking), as well as what information people might
encounter while being on the web (ie, scanning) [7-9], is crucial
in gaining insights into issues, including misinformation or
inequities, on web-based platforms within the larger PCE.

Nevertheless, identifying appropriate strategies to retrieve this
information is challenging. To gather data for analysis,
researchers often rely on the standard approach of searching for
content using keywords, which usually involve a set of technical
(eg, medical) terms that describe a condition or behavior of
interest (eg, “colon cancer” or “diabetes”) [10-12]. However,
keyword search strategies that are solely based on technical
concepts cannot account for the multifaceted nature of
web-based information. A primary reason is that the messages
in the contemporary PCE are often generated by users and, thus,
often include colloquial terminology rather than medical
terminology [7,13-15]. This phenomenon has been well
documented in consumer health vocabularies research, which
examines the language gap between official medical texts and
user-generated content, such as question and answer (Q&A)
sites (Yahoo! Answers) and social media platforms (eg, Twitter)
[16-19].

In addition to messages that do not include technical keywords,
another type of content that might be overlooked by the standard
retrieval approach is what could be categorized as content that
misleads by omission (eg, messages that describe risky behaviors
but fail to name the medical risk it exposes an individual to)
[20-22]. For example, messages promoting a fad diet, which
might be associated with a specific medical condition but do
not mention this risk nor the condition itself, will not be
retrieved by keywords naming the condition.

Failure to retrieve these messages could result in the biased
identification of content, especially in light of research showing
how search results vary according to specific queries [23] and
how social media language varies across different geographical
locations [24]. In other words, retrieving (and analyzing) only
messages produced with the “official” technical language can
lead researchers to overlook the information consumed and
barriers faced by underprivileged groups [25,26] or users who

lack the skills and knowledge to correctly use official medical
vocabularies to access information [27,28]. For these reasons,
public health researchers trying to understand the PCE would
benefit from a principled, replicable process for searching for
web-based content relevant to medical terms but not exclusively
restricted to them. Such a process would also inform web-based
users’ health information–seeking efforts by enabling the
retrieval of health-related information from commonly used
slang or nontechnical queries.

This paper proposes such a retrieval process for YouTube. Using
the platform’s application programming interface (API) to
retrieve videos and the inferred relatedness between videos
determined by YouTube’s proprietary algorithm, our process
retrieves videos that (1) are frequently relevant to understanding
the PCE related to a focal technical term, (2) are distinct from
the videos retrieved directly with the focal term, and (3) can be
easily distinguished from irrelevant videos that could otherwise
absorb researchers’ attention. Such a search identification
approach balances the trade-off between recall and precision
[29], identifying content that would not have been found using
typical keywords without requiring human coders to sift through
large quantities of irrelevant content.

In the following sections, we summarize relevant research on
PCE content retrieval, highlighting strengths and weaknesses.
We then discuss the rationale for using YouTube before detailing
the techniques used to identify relevant content beyond formal
medical concepts. We illustrate the techniques using cancer
screening as a case study. We conclude with a discussion of the
potential for application of the technique across other topics
and platforms.

Challenges of Health-Related Vocabulary
Inconsistencies
User-generated health content presents important challenges to
researchers attempting to retrieve content from this environment,
particularly as (1) researchers may not know the vocabulary
users use to discuss health topics and (2) users can mislead each
other by failing to mention relevant information.

Research has shown that patients often do not conceptualize
diseases, treatments, or risks in the same terms as health care
practitioners [30-32]. Most plainly, the literature on consumer
health vocabulary [15-17] shows that the terms used by
laypeople are different from those used by health care
practitioners. For example, questions about health topics posted
on Q&A sites (eg, Yahoo! Answers and WebMD) by laypeople
were found to contain misspelled words, descriptions, and
background information and were more colloquial than texts
by health professionals [13,33]. A more recent example is the
COVID-19 pandemic, where infodemiologists identified a
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variety of terms using Google Trends that referred to the virus,
including “stigmatizing and generic terms” (eg, “Chinese
coronavirus” and “Wuhan virus”) that had not been identified
by other research using more agreed upon and technical
language about the virus [34]. These works suggest that user
vocabulary, which is distinct from medical vocabulary, is
important for understanding how individuals conceive of their
health and the medical vocabulary related to it when looking
for or coming upon health information on the web. More
broadly, these different terminologies can reflect different ways
of conceptualizing health issues [32,35,36].

It is not surprising then that user vocabulary is important for
identifying relevant health-related posts on social media, as
research indicates that retrieval performance significantly
changes when users’ health queries are reformulated using
formal, professional terminologies [23]. Thus, if researchers do
not know what the user vocabulary is for a given topic, their
retrieval strategy will be biased to identify only content posted
by users who use technical medical vocabulary. Moreover, this
bias is unlikely to be neutral with respect to larger public health
concerns. In particular, differences of this nature, such as
conceptualization of illness and preferred vocabulary, have been
shown to be associated with important differences in outcomes
[25,26,37]. Such conceptual differences would likely manifest
in differences in user vocabulary.

Problems of Omission in Health Information Retrieval
Another weakness of retrieving user-generated health messages
with technical terms is that this strategy cannot, by definition,
identify information that omits that term. However, this failure
to connect risks to outcomes can be precisely what makes
user-generated content misleading. It is well established that
many people lack broad knowledge about risk factors for many
leading causes of death in the United States and beyond [38-40],
and people routinely receive information that fails to link
common risk factors and behaviors to negative health outcomes
[41]. Perhaps the best known (and most damaging) example is
the failure of tobacco companies to mention that cigarette
smoking causes cancer in their promotional materials [42]. This
misrepresentation by omitting and distancing from medical
terms (eg, disease) is common for unhealthy products (eg,
alcohol) [43].

In such cases, the PCE misleads by omission as it fails to assign
the appropriate words to what is medically accurate in the offline
world. This has the potential to mislead the public and makes
relevant messages hard to find, as their relevance (to researchers)
is defined by what is absent (the mention of the risk). An
example is the “Tide Pod challenge” that emerged in 2017 as
a popular internet trend. The Tide Pod challenge is dangerous
as it fails to connect the terms “Tide detergent” and “eat” with
the concept (or concept family) of “poison.” A trained medical
professional would not discuss “eating” Tide Pods without also
mentioning the danger, although users can (and did) do so. Such
misleading (and dangerous) user messages cannot be retrieved
by strategies that focus on the harm—poisoning.

In the case of well-researched and widely understood risks, such
as the connection between cigarette smoking and lung cancer,
this weakness can be overcome by simply naming the risk factor

(ie, searching for “lung cancer”). However, to restrict searches
to known and well-documented high-risk behaviors is to again
return researchers to their cultural bubble [44]. As evidenced
by the emergence of the Tide Pod challenge, user-generated
content can be extraordinarily inventive, creating new risky
behaviors unknown to the medical community. For example,
dangerous fad diets cannot be identified by searching for the
risks they pose. Instead, what is needed is a way of identifying
vocabulary that is “near” to the condition of interest, broadening
the net so that researchers can identify messages misleading by
omission.

For both reasons, researchers should find ways to escape the
strictures of official, technical vocabulary when retrieving
information to characterize the PCE. Researchers instead need
search terms that include culturally relevant colloquial terms
that are related to medical terms and terms that identify
behaviors or practices in the neighborhood of medical terms
but which can identify content when those terms are omitted.

YouTube as Public Health Information Source and
Site of Inquiry
In this study, we focus on YouTube videos as a meaningful
message source of the PCE. We selected YouTube for 2 reasons.
First, YouTube is one of the most widely used web-based social
media and content platforms [45]. Second, YouTube has become
increasingly relevant as a source of health information. With
its dual function as a reservoir of video content and a social
networking platform in which users acquire information through
interactions with the content and fellow users, YouTube has
served as an informational resource for learning about diverse
health topics for users [46,47].

Extant research on medical and health information on YouTube
suggests several issues with the quality of YouTube content. A
meta-analysis found that YouTube videos tend to prevalently
contain misinformation, an implication of which is the potential
of the platform to alter beliefs about health interventions [46].
A limitation of these studies (and a weakness shared by many
YouTube studies) is the search strategies used to identify
relevant content. To address this gap in current research, our
project aims to answer 2 research questions (RQs).

The first main RQ asks the following: for a given medical or
health term of interest (ie, a focal term for retrieval), does our
proposed search term identification strategy retrieve health
messages that are relevant to understanding the public health
communication environment related to that seed term and do
not explicitly use that term (such that the traditional medical or
technical search terms would have failed to retrieve them)? To
provide a satisfactory answer to this question, a search strategy
must (1) retrieve content relevant to the seed term (called
precision) and (2) find relevant content that is novel, (ie,
different from what would be returned by the seed term alone,
called recall), without sacrificing too much precision. This leads
to our second RQ: can the derived strategy identify relevant,
novel messages with sufficient precision to be practically useful?
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Methods

Rationale for Cancer Screening Focal Terms
Cancer is one of the biggest public health issues in the United
States and, thus, is a topic that requires meticulous attention
from multiple stakeholders, including public health practitioners
and communicators. A particular challenge to the prevention
and management of various cancer types is the persistent
disparities in screening, incidence, and mortality rates across
different population groups [48]. Given the significance of
cancer and the important implications of cancer screening
disparities, we chose cancer screening as the subject of
examination in this paper.

To this end, we first demonstrate our methodological technique
using the primary colorectal cancer screening
option—“colonoscopy”—as our focal term. Colorectal cancer
is the third most diagnosed and third most deadly cancer in the
United States, which disproportionately affects Black individuals
compared with non-Hispanic White Americans [49]. We then
replicate the analyses using other cancer screening tests (fecal
occult blood test, mammogram, and pap test) as focal terms to
illustrate how the technique performs in other cancer contexts,
including breast and cervical cancer.

Retrieving YouTube Videos From the Focal Term
We collected data from YouTube via the YouTube API (version
3). Using the “search: list” end point (used for the search
function) allowed us to retrieve 2 types of data: videos that are
most relevant to a search query or set of queries (the “q”
parameter with “relevance” sorting) and videos that are related
to a specific or set of videos (the “related-to-video-id”
parameter) according to YouTube algorithms [50]. We note that
collecting data through this API approach bypasses localization
and personalization—factors that play important roles in search
results that are presented to specific individuals. As our purpose
is to demonstrate a methodology that can be systematically
extended to other contexts in future research, we deem this
approach to be appropriate in giving us the results as close to a
default setting as possible.

On August 22, 2021, using the YouTube Data Tools software
[51], we retrieved a set of 250 videos most relevant to the search
term “colonoscopy.” These 250 videos comprise our core set.
In addition, we retrieved 4304 videos “related to” this core set,
which gave us 4554 videos in total in the initialization set. We
retrieved these videos’ unique identifiers, text data (video titles
and descriptions), and metadata (publication date and
engagement statistics).

Word Embeddings
Word embedding is an unsupervised method of learning word
vectors using a neural network model [52]. The basic aim of
word embeddings is to identify words that appear in “similar
contexts” as the focal term. The technique calculates a proximity
score; that is, the extent to which 2 terms are near to one another
in a multidimensional space. This score acts as a measure of
“semantic similarity.” Thus, it is a useful way of finding texts
that discuss a particular concept without explicitly mentioning
it. Texts that mention a word’s close neighbors (in the

multidimensional space) are likely talking about ideas where
that word is relevant as well, even if the word itself is not there.
We used word embeddings to find YouTube content that is
relevant to “colonoscopy” but which may not mention the word
itself.

We applied word embeddings using the word2vec approach to
the text data of our initialization set of 4554 videos. Specifically,
we used the text of the 4554 video titles and descriptions to
build a corpus. Subsequently, after preprocessing and
standardization steps (including removal of emojis, signs, and
stop words; performing lowercasing; converting text to
American Standard Code for Information Interchange; encoding;
and removing leading or trailing spaces), a word2vec model
was trained on the text to identify the terms with the most
semantic similarity to the term “colonoscopy” (word2vec R
package) [53].

We then used the top 6 “nearest neighbors” to “colonoscopy”
as new search terms to retrieve more videos (250 videos for
each neighbor) to inspect the new content.

Human Coding and Natural Language Processing to
Evaluate Recall Improvement
The goal of retrieving new content from the nearest neighbors
is the improvement of recall over a direct search—the
identification of videos that are relevant to “colonoscopy” but
which would not be found by searching directly for it. To assess
this recall improvement, we took a random 10% (150/1500)
sample (25 videos for each neighbor) and coded them for
relevance. Coding was done by a research team member (AJK,
the paper’s last author) with expertise in cancer control and
cancer communication.

Specifically, a video was coded as relevant if the video content
contained (1) any aspect of screening preparation or procedures
(eg, bowel preparation, personal experiences, and clinical
discussions) or (2) general information on colorectal cancer or
colorectal cancer screening in terms of cancer prevention or
early detection. This included content where a patient underwent
a colonoscopy but perhaps for a chronic condition (eg, ulcerative
colitis or Crohn disease). Obscure terms identified through this
process were also looked up as needed to confirm relevance
(eg, “suprep”—a commercial brand for a bowel preparation
kit).

We evaluated recall in 2 ways. First, we assessed how many of
the relevant “found” videos would have been identified using
the search term alone. We did this by counting the number of
relevant videos in the newly found set containing the term
“colonoscopy.” Those that did not contain “colonoscopy” but
were nonetheless relevant to it constituted a recall improvement.
Second, we examined whether these newly found videos were
substantively different—in terms of contents, topics, and
focus—from the core set. Using the R package quanteda [54],
we calculated the average Euclidean distances between the text
features embedded in the different video sets. Euclidean distance
is a pairwise distance metric that measures dissimilarities
between the text features in different corpora. We then used
hierarchical clustering analysis, with the complete linkage
method (hclust function in stats version 3.6.2), to determine
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whether videos in different sets were substantially overlapping
in content.

Network Analysis to Evaluate Precision
Strategies to improve recall are often offset by a substantial loss
of precision. In our case, although the nearest neighbors may
retrieve many more relevant videos, they could, at the same
time, bring in many irrelevant videos. This introduces the risk
of increasing human coding costs or other resource-intensive
techniques of classification. Such precision loss needs to be
mitigated so that it occurs at a manageable level. To implement
this, we used the “related to video id” API end point, which
reports whether a set of videos are “related to” the others (zero
crawl depth), to query the relationships between the new videos
retrieved from the top neighbor terms and the colonoscopy
videos from the core set. Specifically, if video A is related to
video B in a set, there is a connection (or link) between them.
These relations were used to create a network with videos being
nodes and the connections between them being edges.

We then calculated 3 network measures of relatedness: indegree
(videos from the core set linking to a newly found video),
outdegree (videos in the core set linking to each newly found
video), and total degree (sum of indegree and outdegree). We
expected that the newly found irrelevant videos would have
few, if any, links to the videos known to be about
“colonoscopy,” whereas videos with even loose relevance would
have at least some connections to the core set. To examine the
extent to which these degree scores were associated with
relevance (according to human coding), the corresponding

precision and recall statistics at different degree levels were
inspected. If our technique worked effectively, there would be
some threshold of degree—the number of connections between
a newly found video and the core set—at which videos with
this degree or higher are not only reasonably novel (improving
recall over the core set) but also reasonably relevant
(maintaining precision at a manageable level).

Ethics Approval
This study did not involve the use of human subjects, as the
data collected were strictly limited to publicly available data
on YouTube; therefore, no ethics approval was applied for. This
rationale is consistent with the institutional policies where the
research was conducted.

Results

Word Embeddings
Table 1 provides the list of neighbor terms to the focal term
“colonoscopy” and their ranks based on semantic similarity,
according to word embedding results.

A visual inspection suggests these nearest neighbor terms fit
our goals for this method: they contain nontechnical terms (eg,
“cleanse” or brand names such as “plenvu”) that are relevant
to colorectal health. We selected the top 6 terms (“suprep” to
“miralax”), retrieved an additional 1500 videos (250 each), and
coded a subset of 10% (150/1500 random videos) for the recall
analysis.

Table 1. Neighbor terms to “colonoscopy” and similarity scores.

RankSimilarity scoreTerma

10.9722890“suprep”

20.9519246“peg”

30.9513488“sutab”

40.9504289“plenvu”

50.9498276“glycol”

60.9449067“miralax”

70.9435940“rectal”

80.9422708“cleanse”

90.9421358“cologuard”

100.9403084“colorectal”

aNeighbor terms are terms with the most semantic similarity (with corresponding high similarity scores or low ranks) to “colonoscopy” based on
YouTube video data. Score refers to the cosine similarity metric between word embeddings (ie, terms) in a multidimensional vector space.

Human Coding and Natural Language Processing to
Evaluate Recall Improvement
Table 2 displays the retrieval statistics, of which 34% (51/150)
of the coded videos were deemed relevant. More importantly,
of these 51 videos, 21 (41%; 21/150, 14% of the coded sample)
did not contain the term “colonoscopy,” meaning that identifying
them improved recall over what would have been found simply
by searching for “colonoscopy.” This supported our expectation

that the word embedding approach helped address the recall
problem inherent in using technical language.

We next assessed whether these newly found videos were
substantively different—in terms of contents, topics, and
focus—from what would be retrieved with the typical strategy.
To assess this, we compared the Euclidean distances between
textual features of the core set (250 videos) with those of the
newly found videos (Table 3). Here, higher values meant greater
distance. For example, the distance between “miralax” and
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“peg” was the smallest among our groupings, indicating that
videos in these 2 sets shared the most similar words compared

with other pairs.

Table 2. Retrieval statistics in the sampled videos for the top 6 neighbors of “colonoscopy.”

Relevant and does not mention “colonoscopy”
(recall improvement), n (%)

Relevant and mention of
“colonoscopy,” n (%)

Relevant (precision), n
(%)

Sample of coded
videos, N

Terms

9 (36)9 (36)18 (72)25“suprep”

1 (4)0 (0)1 (4)25“peg”

0 (0)4 (16)4 (16)25“sutab”

8 (32)15 (60)23 (92)25“plenvu”

0 (0)0 (0)0 (0)25“glycol”

3 (12)2 (8)5 (20)25“miralax”

21 (14)30 (20)51 (34)150Total

Table 3. Euclidean distance between the text features of original “colonoscopy” video set and video sets generated from top 6 neighbor termsa.

654321Term

254.68248.9241.5257.97255.610“colonoscopy”

7.1421.820.16.320N/Ab“miralax”

6.8623.122.20N/AN/A“peg”

19.0820.60N/AN/AN/A“plenvu”

20.570N/AN/AN/AN/A“suprep”

0N/AN/AN/AN/AN/A“sutab”

aCell values indicate dissimilarities of the text features belonging to any pair of video sets. Larger values indicate larger distances, and 0 indicates
identical text features. “Glycol” was removed because of 0 relevant videos retrieved.
bN/A: not applicable.

Relative frequency analysis was used to further illustrate these
differences by highlighting the differences in the text features
of the core set as opposed to the newly found set. As Figure 1
shows, words such as “colonoscopy,” “dr,” “preparing,” “colon,”
and “polyp” were disproportionately more likely to occur in the
core set, whereas words such as “suprep,” “prep,” “kit,”
“bowel,” and “miralax” were distinct terms found in the newly
found set.

Hierarchical agglomerative clustering performed on the text
features of the newly found set and the core set (using the

complete link method) revealed that the text features in the
videos retrieved from neighbor terms (newly found set) were
more similar to such from other neighbor terms than to the core
set (Figure 2). In other words, these results show that our
approach helped identify videos that are relevant to
“colonoscopy” without including the term itself (ie, improving
recall); furthermore, these newly found relevant videos
additionally enhanced the topical diversity of our retrieved data
(by focusing on preparation brands and procedures).
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Figure 1. Relative frequencies of words in the colonoscopy video set and the combined top 5 neighbor term video set. Words that are “key” to each
video set were plotted. Original: the set of videos found with the search query “colonoscopy.” Reference: the set of videos found with 5 nearest terms
to “colonoscopy” (“suprep,” “peg,” “sutab,” “plenvu,” and “miralax”). chi2: chi-square value.

Figure 2. Visualization of distances between video sets. Hierarchical cluster analysis indicating dissimilarities and distances between original (set of
videos found with the search query “colonoscopy”) and sets of videos found with 5 nearest terms to “colonoscopy” (“suprep,” “peg,” “sutab,” “plenvu,”
and “miralax”).

Network Analysis to Evaluate Precision
Table 4 shows the results of the comparison between a found
video’s degree of connection to the core set and its associated
relevance according to human coding. We first note that new
videos that are in other languages than English (28/150, 18.7%)
were found to have no connections with the core set videos. To

avoid having this add bias to our results, we excluded these 28
videos, as well as 8 videos that were already found in the
original set and 1 video where YouTube returned missing
metadata (37/150, 24.7% excluded in total). We then performed
a comparison on the remaining 75.3% (113/150) of videos (the
final total in the “cumulative count of videos,” also the
denominator).
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Table 4. Relevance of newly found videos by the number of links to the original set of colonoscopy videos (total degree).

Cumulative

F1-scored, (%)

Cumulative

recallc, (%)

Cumulative

precisionb (%)

Cumulative count
of nonduplicate
relevant videos, n

Cumulative count of
nonduplicate videos,
N

Number of videos
coded as “relevant”
(relevancy), n (%)

Count of videos
with total degree,
N

Total

degreea

5.32.7100111 (100)144

10.35.4100221 (100)141

15.08.1100331 (100)126

19.510.8100441 (100)123

23.813.5100551 (100)122

27.916.2100661 (100)121

35.621.6100882 (100)220

39.124.3100991 (100)119

42.627.010010101 (100)118

49.032.410012122 (100)217

52.035.110013131 (100)116

57.740.510015152 (100)215

60.443.210016161 (100)114

63.045.910017171 (100)113

67.951.410019192 (100)212

72.456.810021212 (100)211

74.659.510022221 (100)110

76.762.210023231 (100)19

77.464.99624251 (50)27

79.467.69625261 (100)16

76.967.68925280 (0)25

80.673.09027302 (100)24

81.275.78828321 (50)23

78.478.47829371 (20)52

75.981.17130421 (20)51

49.310033371137 (10)710

aThe sum of connections each new video has with the videos in the original colonoscopy video set.
bThe cumulative count of relevant videos divided by the cumulative count of all videos.
cCumulative count of relevant videos divided by the total number of new and nonduplicate 37 relevant videos.
dThe harmonic mean of cumulative precision and cumulative recall.

The first 4 columns in Table 4 show the total degree (number
of connections) and counts of videos with corresponding total
degrees in comparison with the relevance statistics. Specifically,
all videos with a total degree >7 had been coded as relevant,
meaning precision is 100% at or above this threshold. More
importantly, although precision was imperfect below this
threshold, it remained very high. In fact, when we examined
videos of degree ≥1, we found that 71% (30/42) had been coded
as relevant. This means that a human coding team choosing to
use this liberal threshold (at least one connection to any video
in the core set) for choosing videos to code would see >2
relevant videos for every irrelevant one, thus expending limited
resources examining irrelevant videos.

The cumulative columns on the right-hand side of the table
display the trade-offs that would face a coding team. The
cumulative count of relevant videos adds up to 37, which is the
51 coded as relevant (Table 2) excluding the 8 videos already
found in the original data set (as reported above) and 6
non-English videos that had been coded as relevant. Cumulative
precision refers to the relevance of the videos at or above this
threshold. Cumulative recall shows the portion of the relevant
videos in the set that are preserved at this threshold. As the
threshold tightens, precision improves (irrelevant videos are
discarded) but recall declines (some relevant videos are
discarded too). For example, if a team chose to examine videos
with at least three connections to the core set (degree ≥3), they
would find 32 videos, 28 of which are relevant (88% precision),
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and miss out on only 9 of the 37 possible (75.7% recall). In
other words, this technique provides a basis for researchers to
inspect the performance of the retrieval strategy before investing
human evaluation and coding resources.

Replication: Other Cancer Screening Tests
We extended our analyses to 3 additional focal terms to illustrate
the breadth of the technique’s applicability. The first, “FOBT,”
refers to the fecal occult blood test, another screening method
for colorectal cancer. The second and third are “mammogram”
and “pap test,” screening tests for breast cancer and cervical
cancer, respectively. We chose cancer screening as an illustrative
case as these are common cancer types that are often discussed
on social media [3,55] such that research would benefit from
identifying relevant content that does not explicitly mention
these technical, formal screening tests.

As shown in the summary statistics in Table 5, the results for
these terms were comparable with “colonoscopy.” For each
focal term, searches using the nearest neighbor terms uncovered
through word2vec identified a wide range of new videos that
were distinct from the original sets, improving recall (see
Multimedia Appendix 1 for dissimilarity measures of new vs
original content). Similar to the results for “colonoscopy,”
filtering videos based on their degrees of connection to the core
set (for the respective focal term) improved precision while
maintaining reasonable recall. For both “FOBT” and “pap test,”
researchers could inspect only videos with a degree of ≥1 and
would find a few irrelevant videos while maintaining most of
the new videos in the set. For “mammogram,” the recall statistics
of videos with at least one connection is lower (30%); however,
even if researchers chose to drop this filter and inspect all
videos, they would find that approximately 1 in 3 new videos
found is relevant. Thus, researchers would not be at risk of being
overwhelmed with irrelevant content.

Table 5. Summary retrieval statistics for “colonoscopy,” “FOBT,” “mammogram,” and “pap test.”

Recall,
n/N (%)

Precision,
n/N (%)

Videos with de-

gree ≥1a and
coded as new
and relevant, n
(A∩B)

Videos with de-
gree ≥1 (set

B)a, N

New and
nonduplicate
relevant videos
(set A), N

Sample of cod-
ed videos
(videos per
term)

Top nearest neighbor termsFocal term

30/37
(81)

30/42 (75)304237150 (25)Colonoscopy • “suprep”
• “peg”
• “sutab”
• “plenvu”
• “glycol”
• “miralax”

27/50
(54)

27/33 (82)273350125 (25)FOBTb • “iFOBT”
• “hemosure”
• “immunochemical”
• “immunostics”
• “guaiac”

23/77
(30)

23/28 (82)232877250 (50)Mammogram • “smartcurve”
• “breastcheck”
• “biopsy”
• “ultrasound”
• “breastcancerawareness”

59/87
(68)

59/65 (91)596587250 (50)Pap test • “Colposcopy”
• “Smear”
• “ASCUS”c

• “papsmear”
• “STD”d

aVideos with at least one connection to the original set of videos resulted from the focal terms.
bFOBT: fecal occult blood test.
cASCUS: atypical squamous cells of undetermined significance.
dSTD: sexually transmitted disease.

Discussion

Principal Findings
This paper proposes a novel approach to improving the retrieval
of user-generated health content. Using medical concepts as
focal terms, we used the similarity-based word embedding

approach to detect new search terms related to focal terms but
not restricted to technical vocabulary. In line with previous
research using similar methods (eg, word, sentence, or
biomedical term embeddings), we identified less widely known
terms in user-generated public discourse related to cancer
screening tests. Quantitative textual analysis of the newly
discovered content returned from the top neighbor terms
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indicated that these videos were distinct from the original video
sets in terms of lexical and topical foci. Network analysis
showed that retrieval precision can be improved by detecting
videos with at least one total degree; that is, those with at least
one connection to others in the same networks. Researchers
could use the technique to inspect the performance of their
retrieval strategy before investing additional evaluation
resources [56,57]. Beyond suggesting the value of this technique,
our analyses provide insights into specific message gaps if
user-generated vocabulary is overlooked.

First, our results indicate that commercial speech, particularly
tagged by brand names such as “suprep” and “miralax,” was
particularly prominent and useful for identifying relevant
content. In essence, users produced and consumed videos about
“prepping,” which could be used for colonoscopies, in reference
to branded products. This raises an important follow-up
question—do these videos provide accurate information? As
reviewed previously, the history of corporate actors misleading
consumers by omission of risks is substantial [58,59]. Although
this would be an analysis for further study, we point out here
the importance of retrieving information about medical topics
using commercial terms rather than just medical or technical
terms.

Second, we note that our results did not provide examples of
de novo slang synonyms (akin to “the sugars”). Rather, when
users created terms, they were more likely to be portmanteaus
of simple vocabularies, such as “breastcheck,” “papsmear,” or
even “breastcancerawareness.” This merging of words into one
term is unsurprising insofar as it is consistent with the
conventions for the creation of hashtags; however, this should
serve as a caution to researchers to consider these nonstandard
constructions in their retrieval strategies. In other words, for
the terms searched in this study, we found little evidence of
colloquial language. However, for any health topic, there is the
possibility that such language is used in less intuitive ways.
Although we did not find that to be the case for our focal terms,
the possibility exists, and this technique could have the potential
to identify such in other cases.

More broadly, our analysis reveals that although user-generated
vocabulary can often be sensibly interpreted after the fact
(Plenvu’s website advertises it as a colonoscopy prep technique,
and “breastcheck” is intuitively related to breast cancer), the
most common terms are not always easy to guess in advance,
that is, before analyzing some data. This observation supports
the arguments that motivated this research, suggesting that
researchers should first learn how users talk about medical topics
and then create retrieval strategies to build fuller data sets for
analysis of what they are saying. Although we do not have
explicit evidence here that vocabularies are associated with
particular social groups, or, in particular, marginalized groups,
the presence of corporate brand names suggests, at the very
least, that targeted marketing efforts could play such a role for
particular medical topics. This is a topic for further research.

Limitations
There are several limitations to this study. First, our analysis
focused only on cancer screening tests as focal terms because

of this project’s inclusion in a larger project focusing on
colorectal cancer screening information in the PCE. Our purpose
was to demonstrate a methodological technique in the context
of cancer with the understanding that future research will need
to assess any unique challenges that might apply to noncancer
screening health topics or medical terminologies of interest (eg,
vaccines or information about diabetes management). Although
we see no methodological reasons why this technique could not
be applied to other keywords and terminologies, future research
would be needed to support this expectation.

The second limitation is that the word embedding model was
trained on YouTube textual content, and our technique relied
on YouTube’s relatedness data to distinguish between relevant
and irrelevant videos. This means that the effectiveness of the
present approach is limited to YouTube. Although there are
good reasons to start with YouTube as a prevalent source of
health-related information, we encourage future research to
consider developing similar approaches for other domains where
user-generated texts are found on the web, including websites,
Q&A forum posts, and other social networking sites [21,57].
Importantly, many specific techniques may not be exportable
from platform to platform. For example, although YouTube
tracks relatedness between videos, messages on Twitter are
often related by hashtags. Thus, rather than searching for
relevant neighbor words, researchers might focus on identifying
relevant neighbor hashtags. In Q&A forums or other content
with threaded replies, researchers might incorporate this
hierarchical information to identify the most relevant content
(eg, terms used in top-level posts).

A final limitation is that conducting this process requires some
familiarity with available natural language processing and
computational tools. We believe the increasing application of
computational methods in social science research, as well as
the proliferation of training in R and Python languages for social
scientists, increases the likelihood that this technique could be
used by those with limited natural language processing
proficiency. Nevertheless, health communication is an inherently
interdisciplinary field in which we see great potential for
collaborations among communication scientists, public health
and medical researchers, and data scientists. However, future
work might strive to make this technique more accessible
through the creation of specific tools and materials to assist
health communicators and public health professionals in
applying these approaches in future health promotion and
education efforts.

Conclusions
This study demonstrated the potential of using similarity-based
word embedding techniques for computational health
communication research to improve recall and maintain
precision in retrieving content that could be overlooked by
standard medical terminologies. The study reveals that there
are indeed relevant messages to medical topics in the PCE that
do not use medical vocabulary, and that many of these can be
identified. Although the impact of overlooking these messages
on health disparities cannot be determined, these results suggest
that further study in this area is warranted.
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Abstract

Background: Natural language processing (NLP) methods are powerful tools for extracting and analyzing critical information
from free-text data. MedTaggerIE, an open-source NLP pipeline for information extraction based on text patterns, has been widely
used in the annotation of clinical notes. A rule-based system, MedTagger-total hip arthroplasty (THA), developed based on
MedTaggerIE, was previously shown to correctly identify the surgical approach, fixation, and bearing surface from the THA
operative notes at Mayo Clinic.

Objective: This study aimed to assess the implementability, usability, and portability of MedTagger-THA at two external
institutions, Michigan Medicine and the University of Iowa, and provide lessons learned for best practices.

Methods: We conducted iterative test-apply-refinement processes with three involved sites—the development site (Mayo Clinic)
and two deployment sites (Michigan Medicine and the University of Iowa). Mayo Clinic was the primary NLP development site,
with the THA registry as the gold standard. The activities at the two deployment sites included the extraction of the operative
notes, gold standard development (Michigan: registry data; Iowa: manual chart review), the refinement of NLP algorithms on
training data, and the evaluation of test data. Error analyses were conducted to understand language variations across sites. To
further assess the model specificity for approach and fixation, we applied the refined MedTagger-THA to arthroscopic hip
procedures and periacetabular osteotomy cases, as neither of these operative notes should contain any approach or fixation
keywords.

Results: MedTagger-THA algorithms were implemented and refined independently for both sites. At Michigan, the study
comprised THA-related notes for 2569 patient-date pairs. Before model refinement, MedTagger-THA algorithms demonstrated
excellent accuracy for approach (96.6%, 95% CI 94.6%-97.9%) and fixation (95.7%, 95% CI 92.4%-97.6%). These results were
comparable with internal accuracy at the development site (99.2% for approach and 90.7% for fixation). Model refinement
improved accuracies slightly for both approach (99%, 95% CI 97.6%-99.6%) and fixation (98%, 95% CI 95.3%-99.3%). The
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specificity of approach identification was 88.9% for arthroscopy cases, and the specificity of fixation identification was 100%
for both periacetabular osteotomy and arthroscopy cases. At the Iowa site, the study comprised an overall data set of 100 operative
notes (50 training notes and 50 test notes). MedTagger-THA algorithms achieved moderate-high performance on the training
data. After model refinement, the model achieved high performance for approach (100%, 95% CI 91.3%-100%), fixation (98%,
95% CI 88.3%-100%), and bearing surface (92%, 95% CI 80.5%-97.3%).

Conclusions: High performance across centers was achieved for the MedTagger-THA algorithms, demonstrating that they were
sufficiently implementable, usable, and portable to different deployment sites. This study provided important lessons learned
during the model deployment and validation processes, and it can serve as a reference for transferring rule-based electronic health
record models.

(JMIR Med Inform 2022;10(8):e38155)   doi:10.2196/38155

KEYWORDS

total hip arthroplasty; natural language processing; information extraction; model transferability

Introduction

Background
Natural language processing (NLP) methods are powerful tools
for extracting information from textual data and are widely
applied in medical informatics research [1]. NLP approaches
transform unstructured free-text clinical notes into a structured
and codified format, thereby reducing human effort on chart
reviews in large population-based studies [2-5]. Previous studies
have demonstrated that NLP can be an alternative to manual
abstraction in many applications, including deidentification,
classification, and extraction of medical concepts (eg, clinical
symptoms, diagnoses, and medications), semantic modifiers
(eg, negation and severity), and temporality information (eg,
present vs past; [6,7]). In addition, high-quality NLP approaches
applied to real-world data can facilitate clinical registry
participation and analysis [8] to further advance clinical
research, policy, and surveillance efforts [6,9,10].

In prior research, Wyles et al [11] developed an NLP system to
extract common data elements related to total hip arthroplasty
(THA) from the operative notes in electronic health records
(EHRs). This NLP system contains 3 separate algorithms aimed
at capturing the operative approach, fixation method, and
bearing surface categories [11,12]. The infrastructure of the
NLP system was an open-source NLP pipeline, MedTaggerIE
[13], which was developed using an open-source unstructured
information management architecture–based information
extraction framework [14]. MedTaggerIE contains the following
three components: keyword lists (ie, domain-based keywords
and short phrases, including wildcard regular expressions),
classification rules (ie, regular expression-based patterns to
derive the predicted label), and normalization (eg, a standardized
form of any THA-related clinical concept). The classification
rules take ≥1 regular expression as the input value to extract
relevant information. The extracted concepts are normalized to
the expected targets as output values. As keywords and phrases
containing clinical information can be directly defined by subject
matter experts (eg, orthopedic surgeons), the pipeline separates
task-specific NLP knowledge engineering from the
generic-domain NLP. The final system (referred to as
MedTagger-THA) was evaluated on 250 THA procedures
performed at the Mayo Clinic and demonstrated high accuracy
in identifying the abovementioned 3 data elements [11]. The

authors found MedTagger-THA to be a promising alternative
to the current gold standard of manual chart review for
identifying common data elements from orthopedic operative
notes [11].

Although typically, the transferability of informatics tools across
sites is poor [15] unless explicitly designed for, this data element
extraction task is inherently portable across different sites. This
is because the development site and the deployment sites (1)
share common keywords for approach and fixation and (2) have
common rules to classify approach and fixation. Some examples
of such common rules include labeling “cement femur” and
“uncemented shell” as “hybrid” and no “cement” mentions to
indicate “uncemented.” However, prior studies have not broadly
evaluated whether existing systems, when applied across
multiple institutions with heterogeneous EHR systems, are
sufficiently implementable (ie, whether the system can be
deployed at a different site), usable (ie, whether the system can
be easily modified and refined by local users), and portable (ie,
whether the system can achieve sufficiently similar results after
refinement). Prior studies have shown that significant effort is
required for users to apply existing NLP systems [16]. In the
context of multi-institutional collaboration, studies have
indicated various administrative and implementation challenges
such as data privacy; workforce expertise; and the maturity of
location extract, transform, and load (ETL) processes [17]. For
example, clinical NLP algorithms are often difficult to assess
in different hospital settings because of patient confidentiality
and difficulties in technology transfer [18]. In addition, the
performances of clinical NLP systems, as well as clinical
practice and workflows, often vary across institutions and source
data [19,20], which results in differences in documentation
styles in EHRs [21]. The clinical note structures and languages
used within notes can be very different across institutions
because of both syntactic variation and semantic variation in
the text [21], highlighting the importance of correctly identifying
sections [21,22] and semantic lexicon construction for extracting
and encoding clinical information from EHRs to achieve
semantic interoperability in developing NLP systems [23].
Therefore, to achieve better portability, all these factors must
be considered when applying an NLP algorithm developed from
one institution to another. In most cases, customization is
necessary to achieve a desirable performance and further
improve portability.
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Objectives
To assess and improve the implementability, portability, and
usability of MedTagger-THA, we performed a pilot study to
establish an efficient pipeline for transferring MedTagger-THA
to 2 external institutions (Michigan Medicine and the University
of Iowa) to provide lessons learned for best practices. This study
included both common generic processes (eg, task definition,
exchanging NLP resources, and training and evaluation) and
site-specific processes. Specifically, we established the
infrastructure to run MedTagger-THA, including accessing the
electronic surgical notes, security clearance for implementation
of the MedTagger software tool kit, and running and refining
MedTagger-THA. MedTagger-THA algorithms were
implemented and refined independently for both sites. At
Michigan, we evaluated whether MedTagger-THA can
accurately extract information on surgical approach and fixation
from operative notes using the Michigan Arthroplasty Registry
Collaborative Quality Initiative (MARCQI) registry as the gold
standard. We assessed the out-of-box (prerefinement) validation
performances and postrefinement performances on the extraction
of approach and fixation. Finally, we assessed the specificity
of these 2 data elements’ extraction using periacetabular
osteotomy (PAO) and hip arthroscopy cases. As there was no

existing arthroplasty registry at the Iowa site, manual chart
review was used as the gold standard. We conducted a
standardized gold standard development process, which included
retrieving operative notes, developing annotation guidelines,
and performing corpus annotation. We then used the gold
standard to refine and evaluate the MedTagger-THA system for
all three data elements—surgical approach, fixation, and bearing
surface.

Methods

System Deployment of MedTagger
MedTagger deployment was an iterative test-apply-refinement
process involving close collaboration among sites (Figure 1).
There were three involved sites: a development site (the site
that developed the initial MedTagger-THA system, Mayo Clinic,
shown in blue boxes) and 2 deployment sites (Michigan
Medicine and the University of Iowa, shown in orange boxes).
The initial step was to form an interdisciplinary study team with
diverse backgrounds and expertise in orthopedics, information
technology, informatics, and epidemiology. Once the team was
established, the process was kicked off with several important
administrative activities, including institutional review board
(IRB) approval and system security clearance.

Figure 1. Overview of the NLP deployment and evaluation process. IRB: institutional review board; NLP: natural language processing.

In addition to the administrative process, research activities
were initiated simultaneously. System preparation and packaging
were the initial steps at the development site. These steps
focused on ascertaining whether the system was usable and
interoperable at the deployment site. The NLP system contained
two components: (1) a generic MedTagger framework (eg,
sentence annotator, tokenizer, and part-of-speech tagger) and
(2) MedTagger-THA algorithms (keyword lists and
classification rules) that were developed and distributed
separately from the main program. This architecture design
allows THA algorithms to be easily plugged into the main

program for better customizability. Therefore, the initial process
was to separate the MedTagger-THA algorithms from the main
program in MedTagger for distribution purposes. Following
that, the next steps were to prepare the deployment site
instructions, which included specifying the input text format
(eg, rtf, xml, or plain text), preprocessing instructions, system
directories, and system-level instructions and requirements: (1)
operating system compatibility (PC, MAC, and Linux), (2)
software and packages (Java 1.8), and (3) license (Apache
version 2.0). Finally, for code exchange, we used the software
development and version control platform Git.
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Michigan Site Process

Overview
The MARCQI is a group of orthopedic surgeons and medical
professionals dedicated to improving the quality of care for
patients undergoing hip and knee replacement procedures at
Michigan Medicine. The consortium improves the quality of
care by addressing variations in patient outcomes related to hip
and knee joint replacement surgery [24]. THA cases were
abstracted at Michigan Medicine and entered into the MARCQI
data repository, including the date of surgery; laterality (left or
right); and surgical approach, fixation, and bearing surface. In
this study, the MARCQI registry was considered the gold
standard to evaluate the automated algorithms. The surgical
approach documented in the MARCQI included “Anterior,”
“Anterolateral,” “Posterior,” and “Transtrochanteric.” The
fixation methods included “Cemented,” “Uncemented,”
“Hybrid,” and “Reverse Hybrid.” The bearing surface materials
included “Ceramic-on-polyethylene,” “Metal-on-polyethylene,”
and “Dual Mobility.”

We extracted the operative notes for elective and conversion
primary THA performed between January 1, 2014, and April

30, 2019, from the Epic-based Michigan Medicine EHR system.
As the bearing surface was captured by catalog numbers of
implants used and not by notes abstraction, we only assessed
the accuracy, precision, recall, and F1-score of the algorithms
on approach and fixation. All 95% CIs were obtained using the
procedure by Agresti and Coull [25].

In addition to THA, PAO and arthroscopy procedures are also
conducted in Michigan Medicine and are sometimes applied to
patients with THA. As these surgical procedures have some
common features (such as approach), we believe it is necessary
to assess the specificity of the algorithm to evaluate whether it
is overly generalized. To assess the specificity of fixation, we
applied the algorithms to PAO and hip arthroscopy cases as
neither of these should have any kind of fixation that we were
assessing. Hip arthroscopy cases were also used to assess the
specificity of the algorithms for identifying the approach as
arthroscopic hip procedures should not have an identified
approach, as they were conducted through portals.

The note-processing pipeline that we established involved
several steps (Figure 2).

Figure 2. The workflow of the note-processing pipeline at the Michigan site. The rectangles represent the data and the rounded rectangles represent
the process. PAO: periacetabular osteotomy; THA: total hip arthroplasty.

Notes Identification and Integration
We first identified distinct patient-date pairs from THA notes,
which represented procedures conducted on certain dates over
specific individuals. For each patient, we ordered the notes by
note documentation time and gathered all the notes that were
within a 15-day interval as a note set for 1 operation. For 1 note
set, we took the first documentation time to represent the
patient’s procedure date. We then mapped patient-date pairs to
the MARCQI data set. For patients with PAO and arthroscopy,

we used the same 15-day window to integrate notes for unique
patient-date pairs.

Notes Segmentation
For each unique patient-date pair, we first segmented the note
sets by section headers. The section headers parsed from the
THA notes are listed in Table S1 in Multimedia Appendix 1,
which include concepts of preoperative diagnosis, procedure,
findings, and implants. Among these headers, the section headers
that were most likely to be semantically related to “procedures”
(Table S2 in Multimedia Appendix 1) were predefined in the
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Michigan data. To refine the MedTagger-THA model using
Michigan data, we first randomly split the data set into training
(80%) and test (20%) sets based on unique patients. As the
MARCQI only began to collect fixation data in 2017, THA
notes before 2017 were excluded from these analyses.

Annotation by Header Sections
For each unique patient-date pair, the approach and fixation
keywords were extracted from all relevant sections. The initial
approach and fixation keywords were predefined using the
keyword lists published previously [11]. As defined in the study
by Wyles et al [11], “The assertion of each concept includes
certainty (i.e., positive, negative, and possible) along with the
person who experienced the event (i.e., the patient or someone
else, such as husband, child, etc.), whereas temporality identifies
the timing of an event (i.e., historical or present).” Concept with
“positive” certainty, “present” temporality, and the “patient”
who experienced the event is the concept of interest.

Label Prediction and Normalization
Classification rules comprising regular expressions were applied
to derive prediction labels. The initial classification rules have
been published previously [11]. For approach, the labels
included “Anterior,” “Anterolateral,” “Posterior,” and
“Transtrochanteric.” For fixation, the labels included
“Cemented,” “Hybrid,” “Uncemented,” and “Reverse Hybrid.”
The prediction labels also included two special conditions—if
no annotation was given by any section, the final prediction
would be “missing,” and if multiple annotations were given but
were not the same, the final prediction would be “ambiguous.”
For both the training and test sets, we applied MedTagger-THA
[11] to extract the approach and fixation and evaluated their
out-of-box performance.

Error Analysis
We then worked with the MARCQI abstraction professional to
resolve the misclassifications, missing predictions, and
ambiguous predictions in the training data set. We iteratively
tuned the MedTagger-THA model [26] by adding keywords to
the approach and fixation keyword lists and modifying the
classification rules until the model performance could not be
improved on the training data set. The test data set was not used
during the refining process. After the refining process, we
obtained the updated keyword lists and classification rules
(Table S3 in Multimedia Appendix 1). Thus, in the following
text, the refined MedTagger-THA obtained is referred to as
MedTagger-THA-Michigan.

Assessment of THA Test Notes
We assessed the performance of MedTagger-THA-Michigan
on the test data set. We further performed an error analysis on
the test data set to analyze the limitations of the model. Finally,
we evaluated the specificity of approach and fixation extraction
from PAO and hip arthroscopy cases. Figure 2 shows the
workflow of the Michigan identification pipeline.

Iowa Site Process
We concurrently deployed the system at the University of Iowa.
The gold standard corpus for the evaluation of the NLP system
was established through a standard corpus annotation process
[27]. A trained nurse abstractor manually reviewed 100 operative
reports randomly sampled from known THA procedures between
January 1, 2009, and December 31, 2016, from Iowa’s
Epic-based EHRs. Questions regarding the abstracted data were
resolved upon consultation with a physician with content
expertise. Chart review was conducted using the same concept
definition as that based on the total joint arthroplasty registry;
in addition to approach and fixation, data collection included
bearing surface classified into four categories:
metal-on-polyethylene, ceramic-on-polyethylene,
metal-on-metal, and ceramic-on-ceramic. The gold standard
data set was equally split into 2 subsets of 50 training instances
and 50 test instances. We followed an iterative training and
refining process [26] to evaluate and refine the NLP algorithms.
Briefly, the prototype system, MedTagger-THA, was applied
to the training data. Error cases were manually reviewed by a
team of researchers at Iowa with experience in informatics and
clinical documentation to identify key errors or themes leading
to missing or misclassified results. The keywords were manually
curated through an iterative refining process until all major
issues were resolved.

Ethics Approval
The study was approved by the IRBs at both the University of
Michigan (HUM00143841) and the University of Iowa
(201903205).

Results

Michigan Site Results
For THA notes, 2304 unique patients with 2569 patient-date
pairs were mapped to the MARCQI registry data set. From the
PAO notes and arthroscopy notes, 398 and 523 patient-date
pairs were extracted, respectively. For approach and fixation,
the out-of-box external validation of the MedTagger-THA
algorithms demonstrated excellent accuracy (surgical approach:
96.6%, 95% CI 94.6%-97.9%; fixation: 95.7%, 95% CI
92.4%-97.6%; Tables 1 and 2).

JMIR Med Inform 2022 | vol. 10 | iss. 8 |e38155 | p.395https://medinform.jmir.org/2022/8/e38155
(page number not for citation purposes)

Han et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Out-of-box performance of MedTagger-total hip arthroplasty (THA) for surgical approach: comparison of the gold standard (registry data)

and notes classified by MedTagger-THA in the training and test data.a

MedTagger-THA, n (%)Gold standard

Missing inferenceAmbiguousPosteriorAnterolateralAnterior

Training data (n=2062)

0 (0)1 (0)2 (0.1)0 (0)261 (12.7)Anterior

1 (0)0 (0)2 (0.1)1 (0)0 (0)Anterolateral

50 (2.4)1 (0)1737 (84.2)2 (0.1)4 (0.2)Posterior

Test data (n=507)

0 (0)0 (0)0 (0)0 (0)68 (13.4)Anterior

0 (0)0 (0)0 (0)1 (0.2)0 (0)Anterolateral

15 (3)0 (0)421 (83)1 (0.2)0 (0)Posterior

1 (0.2)0 (0)0 (0)0 (0)0 (0)Transtrochanteric

aAccuracy: 96.6% (95% CI 94.6%-97.9%); precision: 99.8% (95% CI 98.7%-100%); recall: 96.6% (95% CI 94.6%-97.9%); F1-score: 98.2% (95% CI
96.5%-99.1%).

Table 2. Out-of-box performance of MedTagger-total hip arthroplasty (THA) for fixation: comparison of the gold standard (registry data) and notes

classified by MedTagger-THA in the training and test data.a

MedTagger-THA, n (%)Gold standard

AmbiguousUncementedHybridCemented

Training data (n=1053)

0 (0)0 (0)1 (0.1)0 (0)Cemented

17 (1.6)3 (0.3)76 (7.2)1 (0.1)Hybrid

1 (0.1)925 (87.8)29 (2.8)0 (0)Uncemented

Test data (n=256)

0 (0)0 (0)0 (0)0 (0)Cemented

5 (2)2 (0.8)23 (9)0 (0)Hybrid

0 (0)222 (86.7)4 (1.6)0 (0)Uncemented

aAccuracy: 95.7% (95% CI 92.4%-97.6%); precision: 95.7% (95% CI 92.4%-97.6%); recall: 95.7% (95% CI 92.4%-97.6%); F1-score: 95.7% (95% CI
92.4%-97.6%).

The classification errors, ambiguous cases, and missing
inferences are listed in Table 3. Classification errors for
approach occurred when (1) the notes in one section contained
mentions for a different approach, whereas the mentions for
the correct approach were missing; (2) the mentions for a
different approach were extracted from sections other than
“procedure and findings”; and (3) the section of “procedure and
findings” contained many different mentions for approach.
Ambiguous cases occurred when mentions for the correct
approach were extracted from notes related to “procedures and
findings,” and different approach mentions were also extracted
from other sections for a single surgery. Missing inferences
occurred when the mentions for approach were missing in the
notes or when the mentions were misspelled. Common
classification errors for fixation occurred when the certainty of
inference was incorrectly assessed. For example, for “non
cemented stem,” the certainty was assessed as “positive” instead

of “negative,” which resulted in an “Uncemented” fixation
instance being misclassified as “Hybrid.” If the stem mentioned
in the notes was not included in the predefined keyword list (eg,
“femur”), a “Hybrid” instance was misclassified as
“Uncemented,” or a “Cemented” instance was misclassified as
“Hybrid.” “Hybrid” instances could also be misclassified as
“Cemented” when “Cemented” was explicitly stated in the notes
and a Stem Concept was noted, as the algorithm treated
“Cemented” as a direct mention of cemented fixation. Similar
situations were observed in ambiguous cases, where some
sections misclassified “Hybrid” instances as “Cemented,”
whereas others gave the correct classification. An “Uncemented”
instance was inferred as a default fixation label when there was
no mention of the “cement concept.” Therefore, if there was no
mention of the “cement concept” explicitly, even if the surgery
was “Cemented” or “Hybrid,” it was classified as
“Uncemented.”
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Table 3. Classification errors and ambiguous cases for approach and fixation in the Michigan data set.

MissingAmbiguous casesClassification errorKeyword

Approach ••• Direct mentions of approach were not
included in the keyword list; for exam-

ple, “posterior THAa precautions,”
“APPROACH: Posterior,” and “pos-
terolateral.”

Notes related to diagnosis sections but
not the procedures contained different
mentions of approach; for example,
“Left hip osteoarthritis, abductor defi-
ciency (sclerosed greater trochanter with
chronic avulsion of gluteus medius)”
was annotated as “anterolateral,” but the
gold standard label was “posterior.”

The mention of the correct approach
was missing, although the mentions for
other approaches existed.

• The notes in the “Complications” sec-
tion contained mentions for a different
approach, whereas the mentions for the
correct approach were missing.

• No mentions indicating the approach
as the notes referred to previous inci-
sions.• Multiple different approach mentions

were extracted from the same section,
and the approach mentions that ap-
peared more times were given priority.

• Notes related to “indications” contained
hypothetical conditions; for example,
“We offered her the option of anterior
or posterior approach and she decided
that an anterior approach was prefer-
able.” was annotated as “posterior” in-
stead of “anterior.”

• Misspelling of the mentions led to un-
recognition (eg, “shortrotators”).

Fixation ••• Missingness in fixation was set to
“Uncemented.”

For a single surgery note, some sections
misclassified “Hybrid” as “Cemented”
as “Cemented” was a direct mention of
Cement Concept and had the highest
priority over others; for example, “Total
Hip Arthroplasty, cemented femoral
stem” was misclassified as “cemented”
instead of “Hybrid.”

“Uncemented” was misclassified as
“Hybrid” The note mentioned “non ce-
ment stem” but the certainty of the infer-
ence was positive for the Cement Con-

cept.b

• “Hybrid” was misclassified as “Unce-
mented”; for example, “femur” was not
included in the stem keyword list, and
no Cement Concept was mentioned in
the notes. The surgeries were “Total Hip
Replacement with Computer Naviga-
tion.”

• “Cemented” was misclassified as “Hy-
brid” as “femur” was not included in the

stem keyword list, Shell Conceptb was
also excluded. Only Cement Concept
led to “Hybrid”; for example, “A
polyethylene acetabular liner was ce-
mented in using the trabecular metal
acetabular revision system longevity, 0-
degree face angle, 36-millimeter inner
diameter VerSys Hip prosthesis standard
neck offset size 11 was cemented into
the femur.”

• “Hybrid” was misclassified as “Cement-
ed” as “Cemented” was a direct mention
and had priority over others; for exam-
ple: “Total Hip Arthroplasty, cemented,
Right Hip” was misclassified as “Ce-
mented” In the notes, only the femoral
canal is cemented.

aTHA: total hip arthroplasty.
bConcept name.

After model refinement (Tables 4 and 5), the validation
accuracies improved for both surgical approach and fixation
(approach: 99%, 95% CI 97.6%-99.6% vs 96.6%; fixation:
98%, 95% CI 95.3%-99.3% vs 95.7%). Giving priorities to
sections related to “procedures” reduced the ambiguous cases
for fixation (from 5 to 2). For specificity assessment, we
identified the approach mentioned in 11.1% (58/523) of
patient-date pairs for the arthroscopy data set (specificity:

465/523, 88.9%). These false positives were mainly because of
the keywords for the approach mentioned in the notes, such as
“Hana table,” “anterior superior iliac spine,” or “tensor fascia
lata,” although these mentions described positioning and portal
placement. At times, arthroscopy was combined with PAO in
a procedure, and the mentions for approach could be related to
PAO. We did not identify any fixation mentioned in the PAO
cohort or in the arthroscopy cohort (specificity 100%).
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Table 4. Approach after refinement: comparison of the gold standard and notes classified by refined MedTagger-total hip arthroplasty (THA) in the

Michigan test data set (N=507).a

MedTagger-THA-Michigan, n (%)Gold standard

Missing inferenceAmbiguousPosteriorAnterolateralAnterior

0 (0)0 (0)0 (0)0 (0)68 (13.4)Anterior

0 (0)0 (0)0 (0)1 (0.2)0 (0)Anterolateral

3 (0.6)0 (0)434 (85.6)0 (0)0 (0)Posterior

0 (0)0 (0)1 (0.2)0 (0)0 (0)Transtrochanteric

aAccuracy: 99% (95% CI 97.6%-99.6%); precision: 99.6% (95% CI 98.4%-100%); recall: 99% (95% CI 97.6%-99.6%); F1-score: 99.3% (95% CI
98%-99.8%).

Table 5. Fixation after refinement: comparison of the gold standard and notes classified by refined MedTagger-total hip arthroplasty (THA) in the

Michigan test data set (N=256).a

MedTagger-THA-Michigan, n (%)Gold standard

AmbiguousUncementedHybridCemented

0 (0)0 (0)0 (0)0 (0)Cemented

2 (0.8)1 (0.4)26 (10.2)1 (0.4)Hybrid

0 (0)225 (87.9)1 (0.4)0 (0)Uncemented

aAccuracy: 98% (95% CI 95.3%-99.3%); precision: 98% (95% CI 95.3%-99.3%); recall: 98% (95% CI 95.3%-99.3%); F1-score: 98% (95% CI
95.3%-99.3%).

Iowa Site Results
No registry data were available at the University of Iowa.
Therefore, we performed a manual chart review of a total of
100 operative reports (50 training reports and 50 test reports)
and tested the performance of MedTagger-THA on this data set
for approach (Table 6), fixation (Table 7), and bearing surface
(Table 8). Overall, the model achieved moderate-high
performance on the training data, with the lowest performance

observed for the bearing surface concept. Model refinement
included modifying the default output for the bearing surface
to match the case distribution of Iowa’s data and adding
additional liner-related concepts (eg, A-class liner) to improve
the sensitivity of the fixation category. After model refinement,
the model achieved high performance for all three data elements:
approach (100%, 95% CI 91.3%-100%), fixation (98%, 95%
CI 88.3%-100%), and bearing surface (92%, 95% CI
80.5%-97.3%).

Table 6. Approach: comparison of the gold standard and notes classified by MedTagger-total hip arthroplasty (THA) in the University of Iowa data

set (N=100).a

Total, n (%)MedTagger-THA-Iowa, n (%)Gold standard

PosteriorAnterolateralAnterior

Training data (n=50)

13 (26)0 (0)1 (2)12 (24)Anterior

0 (0)0 (0)0 (0)0 (0)Anterolateral

37 (74)37 (74)0 (0)0 (0)Posterior

Test data (n=50)

14 (28)0 (0)0 (0)14 (28)Anterior

0 (0)0 (0)0 (0)0 (0)Anterolateral

36 (72)36 (72)0 (0)0 (0)Posterior

aAccuracy: 100% (95% CI 91.3%-100%); precision 100% (95% CI 91.3%-100%); recall: 100% (95% CI 91.3%-100%); F1-score: 100% (95% CI
91.3%-100%).
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Table 7. Fixation: comparison of the gold standard and notes classified by MedTagger-total hip arthroplasty (THA) in the University of Iowa data set

(N=100).a

Total, n (%)MedTagger-THA-Iowa, n (%)Gold standard

UncementedHybridCemented

Training data (n=50)

0 (0)0 (0)0 (0)0 (0)Cemented

1 (2)0 (0)1 (2)0 (0)Hybrid

49 (98)49 (98)0 (0)0 (0)Uncemented

Test data (n=50)

0 (0)0 (0)0 (0)0 (0)Cemented

1 (2)0 (0)0 (0)1 (2)Hybrid

49 (98)49 (98)0 (0)0 (0)Uncemented

aAccuracy: 98% (95% CI 88.3%-100%); precision: 98% (95% CI 88.3%-100%); recall: 98% (95% CI 88.3%-100%); F1-score: 98% (95% CI 88.3%-100%).

Table 8. Bearing surface: comparison of the gold standard and notes classified by MedTagger-total hip arthroplasty (THA) in the University of Iowa

data set (N=100).a

Total, n (%)MedTagger-THA-Iowa, n (%)Gold standard

CoCeMoMdCoPcMoPb

Training data (n=50)

27 (54)0 (0)1 (2)1 (2)25 (50)MoP

17 (34)0 (0)0 (0)17 (34)0 (0)CoP

0 (0)0 (0)0 (0)0 (0)0 (0)MoM

6 (12)0 (0)0 (0)6 (12)0 (0)CoC

Test data (n=50)

22 (44)0 (0)0 (0)2 (4)20 (40)MoP

26 (52)0 (0)0 (0)26 (52)0 (0)CoP

1 (2)1 (2)0 (0)0 (0)0 (0)MoM

1 (2)0 (0)0 (0)1 (2)0 (0)CoC

aAccuracy: 92% (95% CI: 80.5%-97.3%); precision: 92% (95% CI 80.5%-97.3%); recall: 92% (95% CI 80.5%-97.3%); F1-score: 92% (95% CI
80.5%-97.3%).
bMoP: metal-on-polyethylene
cCoP: ceramic-on-polyethylene.
dMoM: metal-on-metal.
eCoC: ceramic-on-ceramic.

Discussion

Principal Findings
In this study, we applied the MedTagger-THA algorithms
developed at Mayo Clinic to the THA operative notes at
Michigan Medicine and the University of Iowa. The algorithms
were implementable, usable, and portable, with high
performances at both deployment sites. Model refinements for
major or recurring errors further improved the accuracy. In NLP
reimplementation studies, refinement of the original model to
“adapt” to the local health care system is important for the
portability of the EHR models. We plan to validate
MedTagger-THA in different hospital settings and EHRs and
integrate these adapted models back into the original model.

We expect that the continuous model refinement will further
enhance portability.

We learned many important lessons from the NLP deployment
and evaluation across different institutions. When assessing
implementability, we encountered several workforce-related,
institutional policy–related, and data infrastructure–related
challenges and gaps. First, successful deployment and evaluation
require at least three types of expertise: orthopedic domain
knowledge of total joint arthroplasty, ETL skills, and expertise
in NLP and model evaluation. We observed variable expertise
at different sites and a strong need for multidisciplinary team
science collaboration. Second, institutional policies have a
significant impact on the time and effort related to the exchange
of informatics resources. For example, the process of obtaining
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security clearances for sharing NLP systems to a locally secured
environment could range from days to months depending on
institutional policies. We also discovered a variation of strictness
among institutions for sharing the NLP results for error analysis
and refinement, suggesting the need for early planning and
communication for multisite NLP research beyond just a
multi-institutional IRB. The third aspect is the maturity of ETL
and data infrastructure. There is substantial variation in
institutional ETL processes and personnel training because of
different data infrastructures. An institution with lower data
infrastructure maturity would involve a manual abstraction
process as an alternative, which can be a huge barrier for
high-throughput NLP solutions. Specifically, the data
infrastructure at Mayo Clinic is a centralized unified data
platform, a duplication of the Epic Clarity table for handling
various data retrieval requests in a central location. In contrast,
Iowa has several decentralized enterprise data warehouses that
require multiple ETL processes for data retrieval. Michigan
maintains a separate research data warehouse for clinical and
translational research, with a separate ETL pipeline to populate
the warehouse with structured and free-text data. The
aforementioned findings indicate the high complexity and
dynamics of the multi-institutional EHR environment and
suggest the need for a situated contextual understanding of
multisite clinical NLP research.

When assessing usability and portability, there are some caveats
in the process of NLP model refinement. We noticed that giving
priorities to sections that related to “procedures” reduced the
ambiguous cases. The headers of these sections may vary from
site to site and require curation by medical experts to guarantee
semantic interoperability. It is always possible to add curated
keywords to the keyword list; however, these keywords may
not be compatible with the original settings. For example, the
negation algorithm was adopted from ConText [28]. “Posterior
THA precautions” and “posterior THA” were considered
“negated” in the original MedTagger-THA algorithms, as
“precautions” is an indicator of “possible” instead of “positive”
certainty according to ConText [28]. However, these mentions
were indications of the posterior approach in Michigan’s data.
We also changed the rules for identifying fixation better in
Michigan’s data; however, we were not sure whether these
changes would compromise the model performance at Mayo
Clinic. These observations indicate the need to differentiate
portable components of the model from institution-specific
components that do not generalize well across institutions.
Therefore, in the future refinement of MedTagger-THA, we
suggest that a panel of medical experts and abstraction
specialists from both the development site and validation and
deployment sites should determine which changes can be
incorporated into the original model for further distribution and
better portability and which changes should be retained at the
local validation site for institution-specific performance
improvements.

We also noticed that approach and fixation were not unique
mentions in THA notes. Keywords for the THA approach can
be mentioned in other procedures, such as total knee
arthroplasty, PAO, and arthroscopy, although those descriptions
were not related to THA. As MedTagger-THA extracted
information based on keyword mentions and rules defined by
a series of regular expressions, we should acknowledge that the
model should only be applied to THA notes. Therefore, before
applying the MedTagger-THA model, it is necessary to filter
out the non-THA operative notes. This process is relatively
straightforward using text-based search and filtering, as the
procedure names are usually explicitly mentioned in the
“procedure” section.

MedTagger-THA algorithms are very useful for identifying
THA-related data elements; however, they have several
important limitations. MedTagger-THA was developed based
on keywords and classification rules. Although we were able
to extract keywords mentioned if the misspelled keywords were
found during curation and training, future versions of
MedTagger-THA should incorporate a validated spell check
and correction model. In addition, MedTagger-THA cannot
recognize hypothetical alternate treatment plans, such as whether
the procedure was actually performed or merely documented
as differentially discussed. MedTagger-THA links concepts by
their locations in the texts (eg, Cement Concept close to Stem
Concept means the stem is cemented) but cannot process the
contextualized information (eg, 2 concepts were not related to
each other). To solve these problems, we plan to conduct future
research focusing on understanding the contextualized
information when performing named entity recognition tasks
using more advanced NLP techniques, such as methods based
on machine learning, including deep learning models. Finally,
for the Iowa site, the data for algorithm validation and
refinement may be biased from the Iowa population of patients
with THA because of the small sample size (n=100) and only
one annotator being involved. Validation and refinement using
small sample sizes may be valid in centers where clinical
practice variability is low and thus, might increase accessibility
to NLP-based tools where data infrastructural resources are
limited or in development.

Conclusions
In conclusion, MedTagger-THA algorithms were sufficiently
implementable, usable, and portable to different deployment
sites for approach and fixation identification from THA notes.
Bearing surface identification may be subject to greater
variability in clinical practice patterns and surgical devices. As
expected, model refinement within unique institutional EHRs
is useful for improving accuracy. This study underscores the
importance of undertaking such model refinements in
institutional settings and informs future implementation efforts
to enhance transferability across institutions.
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