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Abstract

Background: Falls may cause elderly people to be bedridden, requiring professional intervention; thus, fall prevention is crucial.
The use of electronic health records (EHRs) is expected to provide highly accurate risk assessment and length-of-stay data related
to falls, which may be used to estimate the costs and benefits of prevention. However, no studies to date have investigated the
extent to which hospital stays could be shortened through fall avoidance resulting from the use of prediction tools.

Objective: We first estimated the extended length of hospital stay caused by falls among elderly inpatients. Next, we developed
a model that predicts falls using clinical text as input and evaluated its accuracy. Finally, we estimated the potentially shortened
hospital stay that would be made possible by appropriate interventions based on the prediction model.

Methods: Patients aged 65 years or older were selected as subjects, and the EHRs of 1728 falls and 70,586 nonfalls were
subjected to analysis. The extended-stay lengths were estimated using propensity score matching of 49 associated variables.
Bidirectional encoder representations from transformers and bidirectional long short-term memory methods were used to predict
falls from clinical text. The estimated length of stay and the outputs of the prediction model were used to determine stay reductions.

Results: The extended length of hospital stay due to falls was estimated to be 17.8 days (95% CI 16.6-19.0), which dropped to
8.6 days when there were unobserved covariates at an odds ratio of 2.0. The accuracy of the prediction model was as follows:
area under the receiver operating characteristic curve, 0.851; F-value, 0.165; recall, 0.737; precision, 0.093; and specificity, 0.839.
When assuming interventions with 25% or 100% effectiveness against cases where the model predicted a fall, the stay reduction
was estimated at 0.022 and 0.099 days/day, respectively.

Conclusions: The accuracy of the prediction model using clinical text is considered to be higher than the prediction accuracy
of conventional assessments. However, our model’s precision remained low at 9.3%. This may be due, in part, to the inclusion
of cases in which falls did not occur because of preventative interventions during hospitalization. Nonetheless, it is estimated that
interventions for cases when falls were predicted will reduce medical costs by 886 Yen/day (~US $6.50/day) of intervention,
even if the preventative effect is 25%. Limitations include the fact that these results cannot be extrapolated to short- or long-term
hospitalization cases, and that this was a single-center study.

(JMIR Med Inform 2022;10(7):e37913) doi: 10.2196/37913
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Introduction

Falls in older adults represent a serious social issue, as they can
cause grave injuries that may result in the victim becoming
bedridden and in need of professional care. These risks also
exist within medical institutions, where falls among elderly
patients considerably contribute toward extended hospital stays,
increased costs, and decreased quality of life. The incidence of
falls in Japanese hospitals is reported to be 4.40/1000 patient
days, and the incidence of falls accompanying disabilities is
reported to be 0.29/1000 days [1], which is comparable to the
respective values of 3.56/1000 and 0.93/1000 patient days
reported in the United States [2].

Risk factors of falls include intrinsic variables such as muscle
weakness, history of falls, gait deficit, balance deficit, utilization
of assistive devices, visual deficit, arthritis, impaired activities
of daily living, depression, and cognitive impairment. Extrinsic
risk factors include specific medications, polypharmacy, dark
lighting, loose carpets, and a lack of bathroom safety devices
[3]. Risk assessment tools are often used by medical institutions
to assess the susceptibility to falling based on these risk factors.
Morita et al [4] investigated the predictive performance of risk
factors using a multivariate logistic regression model on 19
fall-related explanatory variables: (1) age of 70 years or older,
(2) previous history of falls, (3) decreased lower-limb muscle
strength, (4) use of a cane or walker, (5) wobbling, (6) disturbed
behaviors, (7) strong independence, (8) decreased
comprehension, (9) overestimation of self, (10) need for
someone else to stand by during excretion, (11) need for
assistance during excretion, (12) nocturia, (13) narcotics, (14)
antidepressants, (15) laxatives, (16) sleep stabilizers, (17)
antihypertensive agents, (18) clinical department or room
transfers, and (19) oxygen inhalation drip. The results showed
that the prediction accuracy reflected an area under the receiver
operating characteristic curve (AUC) value of 0.822, a recall
of 74.5%, and a specificity of 79.6%. Tools for assessing fall
risk factors are commonplace, such as the renowned Morse Fall
Scale [5], St. Thomas Risk Assessment Tool [6], Resident
Assessment Instrument [7], and Hendrich Fall Risk Model [8].
Their use requires manual responses by health care
professionals. Hence, the tendency is for the number of actions
to be small, which improves clinician interpretability but may
negatively affect the results. Furthermore, there remain
significant differences in the input terms applied by medical
professionals to electronic health records (EHRs). However,
there are expectations that computers will be able to help predict
falls with high accuracy and thus improve patient safety.

Among EHR types, clinician-input text data (ie, clinical text)
contain information relating to falls, including patient condition.
Previous research has applied natural language processing (NLP)
techniques to EHR text to classify entries related to falls and to
predict whether patients would fall during hospitalization.
Toyabe [9] investigated the frequency of true fall event entries
from progress notes, discharge summaries, image orders, and

incident reports via text mining using dependency parsing.
Bjarnadottir et al [10] reported that information on true fall
events was most frequently recorded in progress notes (100%),
incident reports (65.0%), and image orders (12.5%). They
further analyzed intensive care unit nursing records from the
Medical Information Mart for Intensive Care database, finding
meaningful information related to the risk and prevention of
falls [10]. Nakatani et al [11] extracted the nursing records of
335 fallen and 408 unfallen individuals from the EHR system
of an acute care hospital, and reported the accuracy of fall
prediction by morphological analysis and machine learning
methods. The average AUC value from five independent
experiments was 0.834 (SD 0.005), and the prediction model
contained many words closely related to known risk factors
[11]. These studies showed that entries related to patient falls
can be extracted from EHRs using NLP, but only with a certain
level of accuracy. Nevertheless, fall probability can be predicted
during hospitalization, and the results suggest that it may be a
useful risk management tool.

To the best of our knowledge, no studies have investigated the
extent to which hospital stays could be shortened through fall
avoidance resulting from the use of prediction tools. If the
extended hospital stay by a fall can be quantitatively classified,
then the costs of developing predictive accuracy and
preventative measures can be estimated based on the
performance of these aspects. Therefore, in this study, the
subject demographic was narrowed down to elderly inpatients,
and we estimated the extended length of hospital stay caused
by falls using the propensity score matching method. In the
United States, it has been reported that patients injured by falls
during hospitalization had an average stay extension of 6-12
days, incurring additional hospitalization costs of US $13,316
[2,12-14]. However, differences in medical systems and patient
demographics compared with those in Japan prohibit the
generalization of these figures. Thus, we conducted this
investigation anew for Japan. Specifically, we compared the
length of hospital stay in fallen and unfallen groups with
adjustments made for patient demographics, which were
obtained by propensity score matching using 49 covariates that
are considered to influence both falls and length of hospital stay
to ultimately estimate the average treatment effect on treatment
(ATET). Additionally, the effect of unobserved covariates on
ATET was investigated using sensitivity analysis. Next, we
used clinical entries made at the time of hospitalization of an
elderly inpatient with annotations of the presence or absence of
a fall to create a data set. The proposed method was built upon
bidirectional encoder representations from transformers (BERT)
[15], a general-purpose NLP model. Predictions were made by
inputting the clinical text up to the second day of hospitalization
and setting the objective of prediction as whether the patient
would fall within the next 30 days of hospitalization. Finally,
the results were used as a basis to estimate the shortened length
of hospital stay and reduced medical costs as a result of fall
prevention measures. We then investigated the potential costs
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incurred in implementing the model and the associated
precautionary measures.

Methods

Data Set
Among all hospitalizations that overlapped in the 7-year period
from January 1, 2011, to December 31, 2017, patients aged 65
years or older at the time of hospitalization were included.
However, those with a hospitalization period that was extensive
(top 0.05% number of days) and those aged 100 years or older
were excluded as outliers. As a result, a total of 84,299
hospitalizations were obtained from the EHR system of the
University of Tokyo Hospital. Results of comparing these

hospitalizations with the occurrence of falls that were reported
in incident reports indicated that 2402 falls were reported and
82,089 were not. In the second half of this study, we used
clinical text from the first 2 days of hospitalization to predict
the occurrence of falls from subsequent days. However, it was
considered that predicting future falls from 2 days’ worth of
clinical text would be difficult. Therefore, the prediction period
was limited to the period from day 3 to day 30 of hospitalization,
during which falls resulted in the hospitalization being classified
as “fallen hospitalization” and the nonoccurrence of a fall
resulted in the hospitalization being classified as “unfallen
hospitalization.” Experimental subjects included 72,314 cases
(1727 fallen and 70,586 unfallen) after excluding those among
the previously mentioned 84,299 that did not meet all criteria.
Figure 1 shows the extraction flow of the experiment subjects.

Figure 1. Flowchart of data collection and selection procedure.

Ethics Approval
All experiments and data collection were approved by the
institutional review board at the University of Tokyo Hospital
(approval number 201919NI). All experiments described below
were carried out under relevant ethical guidelines and
regulations.

Variables

Occurrence of Falls
We used falls that were reported in incident reports, which have
a high degree of completeness, as such reporting is mandatory.
These reports distinguish between falls during walking and falls
from bed, including mild and severe classifications. However,
these cases were not classified separately in this study.

Risk Factors for Falls
Factors other than falls influence the length of hospital stay;
thus, determining the extended length of stay caused by falls
requires the elimination of covariates that affect both falls and

the length of hospital stay. A total of 49 covariates were
identified by propensity score matching to adjust their effects
on diagnosis procedure combinations (DPCs), incident report
data sets, blood test results, and prescription drugs.

DPCs contain information entered by medical staff for all
inpatients regarding diagnostic procedures. We used several
factors influencing falls and length of stay, including age,
gender, consciousness disorder at admission, emergency
transport at admission, dementia at admission, purpose for
chemotherapy at admission, and the disease that triggered
hospitalization. The latter was coded using the 10th revision of
the International Statistical Classification of Diseases and
Related Health Problems, and 17 types of dummy variables
were developed based on the major classification code (A to
U). All variables, apart from age, were treated as binary
variables.

Incident reports comprise systematic reviews showing that past
falls are high predictors of subsequent falls [16-18]. Previous
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history includes cases of hospitalization where falls were
reported in the respective incident report.

Blood test results were used to determine the presence or
absence of anemia and poor nutritional status, which are known
risk factors that affect falls. Seven variables were adapted as
test results reflecting these risks, including decreased
hemoglobin, decreased protein/albumin, increased urea nitrogen
(suggesting chronic kidney disease), increased liver enzymes,
decreased blood glucose, abnormal electrolytes, and elevated
C-reactive protein. Each threshold value was set as a binary
variable. Table A1 in Multimedia Appendix 1 provides the
thresholds for each variable.

Prescription drugs in this case include hypnotics and
antipsychotics, which have been identified as contributors to
falls [3]. Binary variables were set for these drugs using the
criteria of the drug corresponding to its three-digit drug efficacy
classification code from the subcategory “87 drugs and related
products” of the Japanese standard product classification. The
following 12 drug groups were considered: hypnotics,
antiepileptics, nonsteroidal anti-inflammatory drugs (NSAIDs),

anti-Parkinson drugs, antipsychiatric drugs, other neuroactive
drugs, muscle relaxants, diuretics, antihypertensive drugs,
diabetes drugs, narcotics, and laxatives. Furthermore,
polypharmacy is known to contribute to falls. This includes
cases in which 10 or more of the above-mentioned drugs were
prescribed simultaneously.

Clinical Notes
Clinical text was used as input to the fall prediction model
without distinguishing the type of clinician.

Period of Data Extraction
It was desirable to obtain the above-mentioned 49 variables
from the clinical text entered on the day of hospitalization.
However, there was a concern that the number of missing values
would increase if the target period for variable extraction was
limited to that day. Therefore, variables relating to blood test
results and prescribed drugs were taken from the 60 days before
hospitalization to the second day of hospitalization. For the
clinical text used as input, the subject period included the first
and second days. Figure 2 shows the variables used and their
target periods.

Figure 2. Period and variables of data extraction. DPC: diagnosis procedure combination; NSAID: nonsteroidal anti-inflammatory drug.

JMIR Med Inform 2022 | vol. 10 | iss. 7 | e37913 | p. 4https://medinform.jmir.org/2022/7/e37913
(page number not for citation purposes)

Kawazoe et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Missing Values
Figure 2 shows that there were no missing values found in the
DPC data. However, the blood test results and prescription
orders showed cases in which these entries did not exist during
the target period. These missing values were estimated using
the multiple imputation by chained equation (MICE) method
20 times [19].

ATET Estimation by Propensity Score Matching
The extended length of hospital stay caused by falling was
estimated using propensity score matching [20]. Matching
unfallen cases with tendencies similar to those of fallen cases
and comparing the lengths of hospital stays between the two
groups were achieved by repeating this method, resulting in an
ATET estimation of the effect of falls on the length of stay. The
propensity score was obtained using a multivariate logistic
regression model with the 49 explanatory variables and the
presence or absence of falls as the objective variable. Some
variables had missing values, as described above. Thus, values
estimated from 20 MICE calculations were used as inputs to
the multivariate logistic regression model. The one-to-one
nearest-neighbor matching with replacement method [21] was
used to match the fallen and unfallen groups. Here, propensity
score matching estimations strongly assumed that the fall
allocation depended only on the explanatory variables used;
however, not all variables were observed. Therefore, the effects
of the unobserved ATET covariates were also investigated using
sensitivity analysis to the maximum P value and minimum
Hodges-Lehmann point estimate [22] according to Rosenbaum’s
[23,24] procedure. Here, the null hypothesis is fall events do
not influence the extended length of hospital stay, and the P
value is the value of the one-sided Wilcoxon signed-rank sum
test.

NLP Fall Prediction From Clinical Text
Fall prediction learning and evaluation were performed on
71,943 cases, excluding 371 cases with missing clinical text
from the 72,314 experimental data, as shown in Figure 1. Cases
in which hospitalization occurred between 2011 and 2016 (1500
fallen and 60,060 unfallen) were used as learning data; cases in
which the day of hospitalization was in 2017 (228 fallen and
10,158 unfallen) were divided into two groups so that the
number of fall cases was even. Subsequently, two-fold
cross-validation was performed using alternating models for
model selection and evaluation. The AUC, F-value, recall,
precision, and specificity were used as evaluation indicators,

and the 2-time average value was used for performance
evaluation.

We adopted a model that leveraged UTH-BERT [25], which
was pretrained on Japanese clinical text using bidirectional long
short-term memory (Bi-LSTM) [26] to predict falls. The
model-learning process involved dividing clinical text into
vocabulary tokens unique to UTH-BERT, and adding the special
tokens for classification ([CLS]) and separation ([SEP]) to the
beginning and end of sequences. In BERT, a fixed-length
sequence of up to 512 tokens is taken as input, and the
embeddings of [CLS] and those corresponding to each input
token are considered as output. [CLS] embeddings are used as
input to the classifier, after which fine tuning is performed [15].
Owing to this limitation, it was proposed to divide the input by
512 so that the tokens could be input sequentially. In this way,
[CLS] embeddings could be output sequentially to a classifier
(eg, recurrent neural network) that can use the series to classify
sentences consisting of longer sequences [27]. However, [CLS]
embeddings do not always aggregate the contents of an entire
sentence, and the likelihood of reduced performance was a
concern [28]. Therefore, we instead adopted a model in which
the output of BERT token embedding was input into a
single-layer Bi-LSTM so that a 100-dimensional feature value
output could be obtained. This was then used to perform the
binary classification of fallen and unfallen cases. Furthermore,
the structure provided that a 32-dimensional feature value would
be obtained by linearly converting the 49 fall-related variables
from the clinical text, followed by their binary classification.
Figure 3 shows the structure of the BERT+Bi-LSTM network.

The median number of characters in the clinical text of fallen
and unfallen cases was 4144 and 2105, respectively, and the
amount of text used to describe fallen cases tended to be larger.
Additionally, the median number of tokens obtained from
tokenizing the UTH-BERT vocabulary was 2531 and 1288,
respectively. The sequential input of long sequences to BERT
required maintaining an error gradient; thus, GPU memory
limitations resulted in the curtailment of the input token (text)
length. In this study, we used eight Tesla-V-100 processors with
16 GB GPU memory. However, there was a limit of 13 BERT
inputs (6630 tokens; 510 tokens×13). Therefore, text exceeding
this limit had to be truncated. There were a total of 444
hospitalization cases that exceeded 6630 tokens, which
comprised 0.6% of the entire data set. Ultimately, it was
determined that this limitation would not have a large effect on
model performance.
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Figure 3. Overview of the bidirectional encoder representations from transformers (BERT) classification model. The input document was divided into
510 tokens; classification [CLS] and separation [SEP] tokens were added at each end, and the input was sequential. All token embeddings output
sequentially were used as inputs to the bidirectional long short-term memory (Bi-LSTM) model, and the 50-dimensional vectors in the forward and
reverse directions that were output for each were combined to form 100-dimensional vectors. The feature value obtained from the document was set as
the sum of each dimension of the multiple 100-dimensional vectors, which were converted linearly and output as binary fallen or unfallen values using
a sigmoid function. FFN: feedforward neural network.

Measures Against Imbalanced Data
Since the number of fallen and unfallen cases was uneven (see
Figure 1), to reduce the impact of imbalanced data on learning,
the inverse of the class frequency calculated from the training
data set was weighted to the loss function. This is a simple
heuristic method that is widely adopted in the presence of class
imbalance [29].

Experimental Settings
We evaluated the performance of three prediction models:
two-layer multilayer perceptron (inputs=49 fall-related
variables), BERT+Bi-LSTM (inputs=only clinical text), and
BERT+Bi-LSTM (inputs=clinical text+49 fall-related variables).
For all prediction models, output binary values for each fallen
and unfallen case were obtained using a sigmoid function to
minimize the value with cross-entropy loss. It was determined
that the learning stop condition would occur when the AUC
value stopped improving for five epochs. Performance
differences between the models were then investigated via net
reclassification improvement (NRI) [30]. MeCab [31] was used
as the morphological analyzer of the clinical text, and
Mecab-ipadic-Neologd [32] and the Japanese disease name
dictionary [33] were used as analyzer dictionaries. To develop
the prediction models, we used Python v.3.8.5 (Python Software
Foundation) and the PyTorch v.1.7.1 machine learning
framework (Facebook’s Artificial Intelligence Research Lab).
All statistical analyses were conducted using the STATA v.16.1
integrated statistical software package.

Results

Fall-Related Variables
Table 1 lists the mean value, missing value rate, adjusted odds
ratio, and standardized difference of the 49 fall-related variables.
The average length of hospital stay was 30.3 days (SD 23.7)
for fallen hospitalization and 10.6 days (SD 6.8) for unfallen
hospitalization, with the difference being 19.7 days. No missing
values were found in the basic patient and disease
characteristics. The variable with the most missing values in
the blood test results was plasma glucose at a missing rate of
19.7%. The missing value rate of variables related to prescription
drugs was 8.3%. The 20-time AUC average was 0.73 (95% CI
0.72-0.74). Variables showing a significant difference at P<.05
for basic patient information included age, gender, assistance
in bathing and movement in activities of daily living, impaired
consciousness at admission, and previous history of falls in past
admissions. Similarly, several diseases were significantly
correlated with falls in terms of hospitalization triggers: diseases
of the blood and blood-forming organs, mental and behavioral
disorders, diseases of the eye and adnexa, diseases of the
circulatory system, diseases of the digestive system, diseases
of the skin and subcutaneous tissue, and diseases of the
musculoskeletal system and connective tissue. For blood tests,
low hemoglobin, low total protein or albumin, and abnormal
electrolytes were significantly correlated with falls. For
prescription drugs, NSAIDs, anti-Parkinson drugs,
antipsychotics, other neuroactive agents, and diuretics were
significantly correlated with falls. Among all fall-related
variables, mental and behavioral disorders had the highest odds
ratio and diseases of the eye and adnexa had the lowest odds
ratio (Table 1).
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Table 1. Statistics of fall-related variables.

Standardized differenceMultivariate regressionaUnfallen cases
(n=70,586)

Fallen cases

(n=1728)

Variables

After matching
(n=1728 fallen cas-
es, n=1728 unfallen
cases)

Before matching
(n=1728 fallen cas-
es, n=70,586 unfall-
en cases)

P

valueb
Adjusted odds ratio
(95% CI)

N/AN/AN/AN/Ac10.6 (6.8)30.3 (23.7)Hospital days, mean (SD)

Demographics

–0.040.33<.0011.03 (1.02-1.03)d74.3 (SD 6.4)76.5 (6.8)Age (years), mean (SD)

0.01–0.06<.0010.71 (0.63-0.80)43.840.6Sex (male 0, female 1), positive
rate (%)

0.040.29.571.08 (0.83-1.40)2.49.2ADLe Eats, positive rate (%)

0.040.43.021.37 (1.06-1.77)5.519.2ADL Bathe, positive rate (%)

0.040.37.070.76 (0.57-1.02)4.415.3ADL Dressingf, positive rate
(%)

0.020.48<.0011.79 (1.48-2.18)8.626.2ADL Transferringg, positive
rate (%)

0.050.35.751.04 (0.80-1.37)3.513.0ADL Continenceh, positive rate
(%)

0.040.39<.0011.70 (1.44-2.00)5.618.1Unconsciousness (JCSi 0,≠0),
positive rate (%)

–0.010.20.680.96 (0.78-1.17)3.98.6Emergency transport, positive
rate (%)

0.010.01.281.10 (0.92-1.32)4.011.1Cognitive disorder, positive
rate (%)

0.020.27.391.08 (0.91-1.27)11.411.7Chemotherapy admission, posi-
tive rate (%)

0.010.20.0011.37 (1.13-1.65)3.58.1Past fallen, positive rate (%)

Disease

–0.020.07.780.98 (0.82-1.17)6.88.6Certain infectious and parasitic
diseases (A00-B99), positive
rate (%)

–0.01–0.01.121.10 (0.97-1.25)41.140.8Neoplasms (C00-D48), positive
rate (%)

–0.0020.08.011.28 (1.07-1.53)6.38.3Diseases of the blood and
blood-forming organs (D50-
D89), positive rate (%)

–0.010.13.191.09 (0.96-1.24)18.523.8Endocrine, nutritional, and
metabolic diseases (E00-E90),
positive rate (%)

0.050.21<.0012.09 (1.61-2.71)1.14.6Mental and behavioral disor-
ders (F00-F99), positive rate
(%)

–0.0010.16.161.14 (0.95-1.38)4.78.4Diseases of the nervous system
(G00-G99), positive rate (%)

0.04–0.35<.0010.47 (0.36-0.61)13.33.8Diseases of the eye and adnexa
(H00-H59), positive rate (%)

0.01–0.07.100.47 (0.19-1.14)0.80.3Diseases of the ear and mastoid
process (H60-H95), positive
rate (%)
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Standardized differenceMultivariate regressionaUnfallen cases
(n=70,586)

Fallen cases

(n=1728)

Variables

After matching
(n=1728 fallen cas-
es, n=1728 unfallen
cases)

Before matching
(n=1728 fallen cas-
es, n=70,586 unfall-
en cases)

P

valueb
Adjusted odds ratio
(95% CI)

0.000.17.021.15 (1.02-1.29)26.133.9Diseases of the circulatory sys-
tem (I00-I99), positive rate (%)

–0.010.12.911.01 (0.85-1.20)6.29.5Diseases of the respiratory sys-
tem (J00-J99), positive rate (%)

–0.010.03<.0010.77 (0.67-0.87)16.617.8Diseases of the digestive sys-
tem (K00-K93), positive rate
(%)

–0.000.09.011.46 (1.09-1.95)1.63.0Diseases of the skin and subcu-
taneous tissue (L00-L99), posi-
tive rate (%)

0.000.11.021.22 (1.04-1.43)8.411.9Diseases of the musculoskeletal
system and connective tissue
(M00-M99), positive rate (%)

–0.0030.10.500.94 (0.79-1.12)7.310.0Diseases of the genitourinary
system (N00-N99), positive
rate (%)

0.00–0.10.941.03 (0.42-2.52)0.40.3Pregnancy, perinatal period,
congenital malformations
(O00-Q99), positive rate (%)

–0.010.12.801.03 (0.83-1.28)3.35.8Symptoms, signs, and abnormal
clinical and laboratory findings
(R00-R99), positive rate (%)

0.000.10.381.11 (0.88-1.40)3.15.1Injury, poisoning and certain
other consequences of external
causes (S00-T98), positive rate
(%)

Blood tests

–0.040.24<.0011.34 (1.19-1.53)57.571.8Low hemoglobin (3.9% miss-
ing data), positive rate (%)

–0.040.32.0011.20 (1.08-1.34)33.848.7Low total protein or albumin
(5.0% missing data), positive
rate (%)

–0.0040.12.221.20 (0.90-1.61)1.63.4High blood urea nitrogen (4.4%
missing data), positive rate (%)

–0.010.12.071.22 (0.98-1.52)3.66.0High liver enzymes (ASTj,

ALTk; 4.0% missing data),
positive rate (%)

–0.010.05.481.14 (0.80-1.62)1.72.5Low plasma glucose (19.7%
missing data), positive rate (%)

–0.020.32<.0011.40 (1.26-1.57)21.635.1Abnormal electrolytes (Na, K,
Cl; 12.1% missing data), posi-
tive rate (%)

–0.0050.22.211.12 (0.94-1.34)5.010.9High C-reactive protein (6.8%
missing data), positive rate (%)

Prescription

–0.0010.13.131.09 (0.97-1.22)30.737.4Hypnotics and sedatives, an-
tianxietics

0.030.16.051.30 (1.00-1.69)1.84.4Antiepileptic

–0.030.22.0011.21 (1.08-1.36)32.643.5NSAIDsl
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Standardized differenceMultivariate regressionaUnfallen cases
(n=70,586)

Fallen cases

(n=1728)

Variables

After matching
(n=1728 fallen cas-
es, n=1728 unfallen
cases)

Before matching
(n=1728 fallen cas-
es, n=70,586 unfall-
en cases)

P

valueb
Adjusted odds ratio
(95% CI)

0.020.16.0031.61 (1.18-2.21)1.03.2Antiparkinsonism

0.020.33<.0011.44 (1.25-1.66)9.621.4Antipsychotic

0.010.23.031.19 (1.01-1.39)6.613.8Other neuroactive agents

0.010.03.321.70 (0.60-4.85)0.10.3Muscle relaxant

–0.0030.24<.0011.33 (1.16-1.53)13.723.4Diuretic

–0.010.11.050.88 (0.77-1.00)25.931.4Antihypertensive

–0.010.09.481.08 (0.92-1.26)12.715.9Diabetes treatment

–0.0010.12.521.11 (0.81-1.51)1.43.3Narcotic analgesic

0.000.11.151.09 (0.97-1.22)32.638.3Purgative medicine

–0.0040.26.771.02 (0.89-1.17)35.848.7Polypharmacy (>10 drugs)

aMultivariate logistic regression on the results of missing value estimation by the multiple imputation method.
bBased on the two-tailed Z-test for a coefficient of zero.
cN/A: not applicable.
dThe odds ratio for age was calculated by univariate logistic regression with the age range from 65 to 99 years equally transformed from 0.0 to 1.0.
eADL: activities of daily living.
fAssistance is required for dressing or personal maintenance.
gAssistance is required for walking, going up and down stairs, getting into/out of bed or chair, or going to the toilet.
hAssistance is required for either defecation or urination.
iJCS: Japan Coma Scale, which has been widely used to assess patients’ consciousness level in Japan.
jAST: aspartate aminotransferase.
kALT: alanine aminotransferase.
lNSAID: nonsteroidal anti-inflammatory drug.

Impact of Falls on Hospital Stay
The AUC of the logistic regression model for which the
propensity score was calculated was 0.73. Figure 4 shows the
distribution of propensity scores before and after matching. The
upper IQR was distributed at a low range of less than 0.2 both
before and after matching. The results of matching the fallen
and unfallen cases showed a sample size of 1728 for each, and
the distribution of propensity scores in each group was similar.
Furthermore, as shown in Table 1, the standardized differences
[20] for all variables after matching were less than 0.1, and the
differences between groups became sufficiently small for all
variables [20]. The average length of hospital stays in the
unfallen group, in which propensity score matching was
performed, was 12.5 days (SD 7.0) and the ATET was 17.8
days (95% CI 16.6-19.0). Based on these results, it was
estimated that the average length of hospital stay was extended
by 17.8 to 30.3 days from 12.5 days, which was the estimated
average length of hospital stay if the fallen cases had not fallen
as a result of an elderly inpatient falling.

Table 2 summarizes the results of the Rosenbaum sensitivity
analysis for the estimated ATET according to the upper limit
of the extent of influence of the unobserved variables on the

fall propensity score (Γ), which corresponds to the upper limit
when the odds of allocation to a fallen case of the matched pair
fluctuate in the range of (1/Γ,Γ) due to the unobserved variables.
The maximum P value and minimum Hodges–Lehmann point
estimate [22] reflect the maximum value of the null hypothesis’
significance level and the minimum ATET value for each Γ
value, respectively. Here, the null hypothesis is fall events do
not influence the extended length of hospital stay, and the P
value is the value of the one-sided Wilcoxon signed-rank sum
test.

As shown in Table 2, when Γ was 7.5, the lower limit of the
estimated value of ATET was 0.8 days, and the null hypothesis
could not be rejected at the significance level of .05. By contrast,
when Γ<7.5, a significant causal effect was observed. The bias
of Γ=7.5 was huge [23], and the robustness of the hypothesis
that falls cause an increased length of stay is demonstrated.
Furthermore, as shown in Table 1, the highest odds ratio among
the 49 covariates was 2.09 for mental and behavioral disorders.
However, even with Γ=2.0, which assumes the presence of
unobserved factors having the same degree of influence as the
above variables, it was estimated that the length of hospital
stays of fallen inpatients was extended by at least 8.6 days.
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Figure 4. Box-and-whisker plots of the propensity scores (a) before matching and (b) after matching. Boxes show lower and upper IQR, and whiskers
show the highest and lowest values, excluding outliers (>1.5 times IQR; rounds). Propensity score matching was performed using one-to-one
nearest-neighbor matching with the replacement method on fallen cases.

Table 2. Sensitivity analysis for P value and Rosenbaum bounds estimates (average values calculated over 20 imputed data sets) to unobserved biases.

Minimum Hodges–Lehmann point estimate (days)Maximum P valuebΓa

14.1<.0011.0

8.6<.0012.0

6.0<.0013.0

4.1<.0014.0

2.9<.0015.0

2.0<.0016.0

1.10.017.0

0.8.057.5

0.5.168.0

aΓ: odds of differential assignment due to unobserved factors.
bThe P value is based on a one-tailed Wilcoxon signed-rank test for the null hypothesis of no extension of hospital stay caused by falls.

Performance of Fall Prediction Models
Table 3 summarizes the evaluation results of the machine
learning models. Model 1, a multilayer perceptron with only
the 49 fall-related factors as input, had the lowest AUC at 0.735.
Model 2, the BERT+Bi-LSTM with only the clinical text as
input, had the highest AUC at 0.851. Model 3, the
BERT+Bi-LSTM using the clinical text and 49 fall-related
factors as input, had an AUC of 0.850.

Tables A2 and A3 in Multimedia Appendix 1 list the NRIs for
the reclassifications conducted to investigate the performance
differences between models. Table A2 shows the result of

comparing models 1 and 3; the NRIs of the fallen and unfallen
cases were 0.123 (P<.001) and 0.068 (P<.001), respectively,
and the integrated NRI was 0.191 (P<.001). This result showed
that the performance of Model 3 was significantly improved
over that of Model 1, suggesting that using clinical text
improved predictive performance. Table A3 shows the result
of comparing models 2 and 3, and the integrated NRI of the
fallen and unfallen cases was –0.015 (P=.48), with no significant
differences observed. This result indicates that there were no
significant improvements to the performance of Model 3 over
Model 2. Thus, adding the 49 fall-related factors to the clinical
text did not improve the predictive performance.
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Table 3. Performance comparison of machine learning models with input data categories.

Evaluation accuracyaInput dataModel

PrecisionSpecificitySensitivityF1cAUCbClinical text49 fall-related factors

0.0480.7080.6620.0900.735✓Model 1: MLPd

0.0930.8390.7370.1650.851✓Model 2: BERTe+Bi-LSTMf

0.0760.7760.7940.1380.850✓✓Model 3: BERT+Bi-LSTM

aThe accuracies are the average values of two cross-validation tests based on the cutoff determined by the Youden index.
bAUC: area under the receiver operating characteristic curve.
cF1 is the harmonic mean of precision and recall.
dMLP: multilayer perceptron.
eBERT: bidirectional encoder representations from transformers.
fBi-LSTM: bidirectional long short-term memory.

Impact of Prediction-Based Interventions
Table 4 shows a cross-table summary of the evaluation results
of two Model 2 cross-validations based on the cutoff determined
by the Youden index. It can be assumed from these results that
some positive interventions were conducted on the 1806
hospitalization cases predicted to result in a fall and that some
falls were completely prevented across 19,463 days (168
hospitalizations×12.5 days=average days of unfallen cases
matched to fallen cases; 1638 hospitalizations×10.6
days=average days of unfallen cases). As a result, the
hospitalized stay was shortened by a total of 2990 days (168
hospitalizations×17.8 days=ATET) among cases that were
otherwise destined to experience a fall. This corresponds to
0.154 days per day of interventions (2990/19,463 days). Of the
8580 cases that were predicted to be unfallen, 60 cases actually
experienced a fall (ie, false negatives). This indicates that 1068
(60 hospitalizations×17.8 days=ATET) shortened hospitalization
stays were lost. Thus, the net reduced length of hospital stay

was 1922 days (2990–1068 days). This corresponds to 0.099
days per day of interventions (1922/19,463 days). The average
daily hospitalization cost in Japan is approximately 40,000 Yen
(US $1=~136 Yen) [34]. Thus, the net reduced daily medical
costs by active intervention were estimated to have been
approximately 3950 Yen (1922 days×40,000 Yen per day/19,463
days) per day of interventions. This interpretation assumes that
the preventive effect of aggressive intervention was 100%.
However, Table 5 presents estimates when the presumed effect
was adjusted to 25.5% and the ATET was set to 8.6 days. While
the results up to this point were based on fixed cut-off values
determined by the Youden index, Figure 5 shows how the net
reduced daily medical costs for scenarios 1-4 in Table 5 change
when the cutoff is changed. In Figure 5, the horizontal axis
shows the sensitivity to changing the cutoff of Model 2 in the
range of sensitivity≥0.5; the vertical axis shows the net reduced
daily medical cost. For example, if the sensitivity is set to 0.95,
the net reduced daily medical costs are 2249, 538, 1054, and
258 Yen, respectively.

Table 4. Cross-table summary of the results of the two Model 3 cross-validations. The cutoff was determined using the Youden index.

SumUnfallen casesFallen casesPredictions

18061638168Predicted fallen cases

8580852060Predicted unfallen cases

10,38610,158228Sum

Table 5. Estimated hospital days reduced by interventions based on Model 2 predictions (sensitivity 73.7%, precision 9.3%).

Net reduced daily
medical costs (Yen

per day)b

Net reduced length
of hospital stay
(number of days per
day of interventions)

Hospital stays that
could not be reduced
(number of days per
day of interventions)

Reduced length of
hospital stay (num-
ber of days per day
of interventions)

Fall prevention rate (%)ATETa (days)Scenario

39500.0990.0550.15410017.8Scenario 1

8860.0220.0120.0352517.8Scenario 2

17690.0440.0250.0691008.6Scenario 3

4200.0110.0060.017258.6Scenario 4

aATET: average treatment effect on treatment.
bMedical costs were estimated at 40,000 Yen per day (US $1=~136 Yen).
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Figure 5. Estimated net reduced daily medical costs by interventions based on Model 2 sensitivity. The maximum points in Scenarios 1-4 are indicated
by a circle with † and their values are 3951, 886, 1768, and 420 (Yen; US $1=~136 Yen), respectively. These are taken with a sensitivity of 0.737; the
sensitivity is the same as determined using the Youden index. The points with 0.95 sensitivity in Scenarios 1-4 are indicated by a circle with ††, and
their values are 2249, 538, 1054, and 258 (Yen), respectively.

Discussion

Principal Results
In this study, we verified the performance of a fall prediction
model using clinical EHR text pertaining to elderly patients,
and we estimated the reduction in medical costs incurred if fall
prevention interventions had been successfully conducted
according to the prediction results.

Extended Hospital Stays Due to Fall
The extended length of hospital stay due to falls (ATET) was
estimated at 17.8 days. This value was 1.9 days shorter than the
simple difference (19.7 days) between the average days of
hospitalized stay between fallen and unfallen groups. This is
the result of a positive correlation between fall susceptibility
and length of stay, with the exclusion of confounding
background factors between groups. Falls include incidental
falls, which intuitively lead to 17.8 days of extended stay. In
these examples, the analysis subject was aged 65 years or older
and was hospitalized for 3 days or more. It is also common for
severe falls to result in extended hospitalized stays of 1 month
or longer. Thus, it is further intuitive that this may be the effect
of averaging incidents and accidents. Meanwhile, this ATET
was obtained from 49 variables automatically extracted from
the EHR system; thus, there may have been unobserved
covariates. The verification of the P value of causal effect and
robustness of the ATET by Rosenbaum sensitivity analysis
showed that the causal effect of falls extending the length of
hospitalized stay was significant at a level of P<.05, even when

assuming unobserved covariates with large odds ratios such as
Γ=7. As reported in previous studies [2,12-14], this supports
the finding that falls extend the length of hospital stay.
Moreover, when assuming a more realistic Γ, of the 49 variables
shown in Table 1, if there were unobserved covariates with
Γ=2.0 corresponding to mental and behavioral disorders (the
largest odds ratio), then the extended length of stay caused by
falls was estimated to be at least 8.6 days. This value falls within
the 6-12 days reported in US studies [2,12-14]. However,
comparisons between acute-care hospitalized stays in 2019 [35]
showed an average length of hospital stay in the United States
of 6.1 days. The average length of hospital stay in Japan was
16.0 days, which is 2.5 times longer. Therefore, it is intuitive
that the extended length of hospital stay due to falls will be
longer in Japan. Thus, the extension of 8.6 days is thought to
be conservative.

Fall Prediction Model Performance
The accuracy of the proposed prediction model was investigated
by comparing the prediction accuracy of the 19-item multivariate
logistic regression model (AUC 0.82), including nurse
observations, performed in a previous study [4]. The AUC of
Model 1 (multilayer perceptron), which used only the 49
fall-related variables, was 0.735. This was lower than the AUC
of 0.82 obtained in the previous study, which used items
obtained only by nurse observations as explanatory variables
for the multivariate logistic regression models, including
decreased lower-limb muscle strength, use of a cane or walker,
wobbling, disturbing behaviors, strong independence, and
decreased comprehension. These variables are known to affect
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prediction accuracy. The fact that such items were not included
in the 49 variables in this study is clearly the reason for the
relatively low accuracy of Model 1. However, the AUC of
Model 3, in which clinical text was added, was 0.850.
Additionally, because this study evaluated generalization
performance using past data for learning and future data for
evaluation, this value is intuitively higher than the AUC of 0.82.
As described below, clinical nurse risk assessments of falls and
fall prevention interventions may have improved model
performance.

The AUC of Model 3, which used clinical text, was more than
0.1 higher than that of Model 1, which did not use clinical text.
A two-sided Z-test of the NRI between models showed that
Model 3 was significantly more accurate. It is therefore rational
to conclude that the prediction accuracy of a model that uses
clinical text is high because, at the time of hospitalization, the
nurse observes the patient, conducts a risk assessment, and
records the evaluation results as necessary. Therefore, clinical
text contained more information related to fall risk than the 49
fall-related variables, which likely contributed to the
improvement in prediction accuracy. Meanwhile, no significant
difference was found between the prediction accuracy of Models
2 and 3, suggesting that the clinical text also contained
information corresponding to the 49 variables at the time of
hospitalization.

It has often been reported that BERT exhibits high performance,
even with clinical text [36-39]. This is also true for this study,
in which a model combining BERT and Bi-LSTM using clinical
text recorded in daily practice allowed for fall prediction with
an accuracy equal to or higher than that of conventional risk
assessment tools. Although not limited to BERT, prediction
models that use neural networks also show high performance.
However, they lack a means of explaining the prediction, as
opposed to linear and tree models. Application of explanatory
techniques such as SHapley Additive exPlanations [40] would
lead to remarkable explanatory findings related to falls. Hence,
this is a future study direction.

Regarding model precision, Model 2 had the best precision of
9.3%, which was higher than the value of 6.9% obtained in
previous research [4]. However, this shows that many false
positives were likely present. Predicting a patient’s future is an
inherently difficult task; however, the data set used in this study
involved fall prevention measures based on risk-assessment
results. Thus, it is thought that there were likely some cases in
which falls were prevented when the risk was high. Fall
prevention measures include a mat-type buzzer installed inside
the bed and a mechanism that sounds like a buzzer when the
patient leaves the bed. A limitation of this study is that the data
set did not contain information about this and other prevention
measures. Hence, future studies should not rule these out.

Impact of Fall Prevention Interventions Based on the
Prediction Model
Table 5 shows four scenarios in which the length of hospital
stay was shortened when assuming that active fall prevention
was conducted for all cases in which Model 2 predicted falls.
The net reduced length of hospital stay per day of interventions
was 0.099 days/day when the preventive effect was set to 100%

(Scenario 1) and 0.022 days/day when the effect was set to 25%
(Scenario 2). Additionally, when assuming the presence of
unobserved covariates with odds ratios equivalent to 2.0 times,
the shortened number of days was 0.044 days/day (Scenario 3)
and 0.011 days/day (Scenario 4). The results showed that in
cases where medical expenses per day of hospitalization were
40,000 Yen/day, the break-even costs of 3950-420 Yen/day in
Scenarios 1-4 were found based on the costs of introducing the
prediction model and fall prevention measures. Figure 5, which
shows the net reduced daily medical costs when the cutoff
changed, reveals that the break-even cost of Scenarios 1-4 was
2249-258 Yen/day when the sensitivity was set to 0.95.
Although not shown in Figure 5, as an extreme cut-off setting,
the net reduced daily medical costs of applying fall prevention
interventions to all cases without using the prediction model
were 1469, 357, 696, and 172 Yen in Scenarios 1-4, respectively.
There are sensitivity points at which the net reduced daily
medical cost is higher using our prediction model than without
the prediction model in all scenarios, which shows the advantage
of using our prediction model over not using the prediction
model. Medical expenses vary depending on the size of the
hospital; thus, the break-even point is higher in larger hospitals.
Hence, the incentive for prediction should be high. These results
reflect the costs of introducing preventive measures in addition
to those already taken. Thus, more effective preventive measures
are needed. An ideal solution would be to include methods to
further prevent falls by attaching a motion sensor to patients
when a fall is predicted and using its data to predict near-future
behaviors. These technologies are expected to be available in
the near future. Furthermore, higher prediction performance
and improved fall prevention intervention will further reduce
hospitalized stays and medical costs.

Limitations and Future Work
One limitation of this study pertains to extant preventive
measures that may have negated true positives. Another
limitation pertains to the results of this study not being
applicable to patients with short-term (1-2 days) or long-term
(31 days or more) hospital stays. In this study, 232 cases of falls
that occurred during the first or second day of hospitalization
were excluded. However, these constituted 11.8% of the 1960
total cases (Figure 1). Additionally, although our data set was
relatively large, it was limited in that it was obtained from a
single facility; thus, it is not generalizable to all of Japan. Future
studies should obtain more robust data using multicenter
information and analyze the prediction results using techniques
that visualize the basis of prediction.

Conclusions
In this study, it was estimated that the general length of hospital
stay in Japan was extended by 17.8 days due to falls among
elderly inpatients. The predictive performance of the proposed
model, which predicts falls up to the 30th day of hospitalization
using clinical text from the second day of hospitalization,
showed an AUC of 0.85. Thus, it was suggested that this may
be more accurate than traditional risk assessment tools.
However, its precision was still low, at 9.3%. A possible reason
for this discrepancy may be the inclusion of cases where falls
did not occur because of successful fall prevention interventions
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during hospitalization, which were not accounted for. Fall
prevention interventions for cases predicted by this model were
shown to reduce medical costs by up to 886 Yen per day, even

if the preventive effect was as low as 25%. Limitations include
the fact that short- and long-term patients were not included,
and only a single-center demographic was applied.
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