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Abstract

Background: Intervening in and preventing diabetes distress requires an understanding of its causes and, in particular, from a
patient’s perspective. Social media data provide direct access to how patients see and understand their disease and consequently
show the causes of diabetes distress.

Objective: Leveraging machine learning methods, we aim to extract both explicit and implicit cause-effect relationships in
patient-reported diabetes-related tweets and provide a methodology to better understand the opinions, feelings, and observations
shared within the diabetes online community from a causality perspective.

Methods: More than 30 million diabetes-related tweets in English were collected between April 2017 and January 2021. Deep
learning and natural language processing methods were applied to focus on tweets with personal and emotional content. A
cause-effect tweet data set was manually labeled and used to train (1) a fine-tuned BERTweet model to detect causal sentences
containing a causal relation and (2) a conditional random field model with Bidirectional Encoder Representations from Transformers
(BERT)-based features to extract possible cause-effect associations. Causes and effects were clustered in a semisupervised
approach and visualized in an interactive cause-effect network.

Results: Causal sentences were detected with a recall of 68% in an imbalanced data set. A conditional random field model with
BERT-based features outperformed a fine-tuned BERT model for cause-effect detection with a macro recall of 68%. This led to
96,676 sentences with cause-effect relationships. “Diabetes” was identified as the central cluster followed by “death” and “insulin.”
Insulin pricing–related causes were frequently associated with death.

Conclusions: A novel methodology was developed to detect causal sentences and identify both explicit and implicit, single and
multiword cause, and the corresponding effect, as expressed in diabetes-related tweets leveraging BERT-based architectures and
visualized as cause-effect network. Extracting causal associations in real life, patient-reported outcomes in social media data
provide a useful complementary source of information in diabetes research.
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Introduction

Diabetes distress refers to psychological factors such as
emotional burden, worries, frustration, or stress in the day-to-day
management of all types of diabetes [1-3]. Diabetes distress is
associated with poor quality of life [4], high hemoglobin A1C

levels [5,6], and low medication adherence [7]. Reducing
diabetes distress may improve hemoglobin A1c levels and reduce
the burden of disease among people with diabetes [8]. Social
media is a useful observatory resource for patient-reported
diabetes issues and could help to contribute directly to public
and clinical decision-making from a patient’s perspective, given
the active online diabetes community [9,10]. Identifying causal
relations in expressed text data in social media platforms might
help to discover unknown etiological results, specifically, causes
of health problems, concerns, and symptoms.

To intervene and potentially prevent diabetes distress, it is
necessary to understand the causes of diabetes distress from a
patient’s perspective to understand how patients see their
disease. Causal relation extraction in natural language text has
gained popularity in clinical decision-making, biomedical
knowledge discovery, or emergency management [11]. In
particular, causal relations on Twitter have been examined for
diverse factors causing stress and relaxation [12], adverse drug
reactions [13], or causal associations related to insomnia or
headache [14]. Most approaches examine explicit causality in
text [14-16], when cause and effect are explicitly stated, for
instance, by connective words (eg, so, hence, because, lead to,
since, if-then) [11,17]. An example for an explicit cause-effect
pair is “diabetes causes hypoglycemia.” However, implicit
causality is more complicated to detect such as in “I reversed
diabetes with lifestyle changes” with cause “lifestyle changes”
and effect “reversed diabetes.”

Natural language processing methods explore among other
things how computers can be used to extract useful information
from natural language documents. In combination with machine
learning and deep learning models, which are artificial
intelligence algorithms designed to learn from experience, they
have also been applied to extract causal relations [18,19].
Machine learning methods are able to explore implicit relations
and provide better generalization contrary to rule-based
approaches [11,20-22]. An interesting approach leveraging the
transfer learning paradigm and addressing both explicit and

implicit cause-effect extraction is provided by Khetan et al [23].
They fine-tuned pretrained transformer-based Bidirectional
Encoder Representations from Transformers (BERT) language
models [24,25] to detect “cause-effect” relationships by using
publicly available data sets such as the adverse drug effect data
set [26]. More generally, the idea of transfer learning is to
leverage the knowledge of a model that has been trained on an
auxiliary domain [27].

In this study, we aimed to extract spans of text as 2 distinct
events from diabetes and diabetes-related tweets such that one
event directly (explicit) or indirectly (implicit) impacts another
event. We categorized these events as cause-event and
effect-event depending upon the expressed context of each
tweet. The identified cause and effect will then be aggregated
into clusters and ultimately visualized in an interactive
cause-effect network.

This work is realized in the frame of the World Diabetes Distress
Study, which aims to analyze what is shared on social media
worldwide to better understand what people with diabetes and
diabetes distress are experiencing [28,29]. The social network
“Twitter” is a popular data resource among diabetes researchers
owing to its public character and its active online diabetes
community compared to other social media [30,31]. Recent
studies suggest an overrepresentation of people with type 1
diabetes compared to those with type 2 diabetes who are active
on Twitter [9,31].

Methods

Overview
On the basis of diabetes-related tweets, we first preprocessed
tweets to only focus on personal, nonjoke, and emotional
content. Second, after this preprocessing step, we split tweets
into sentences for our analyses, as we aimed to identify the
cause-effect relationships between events within a sentence
(sentence level) and not across multiple sentences (tweet level).
This also simplifies model training and helps with easier
learning. Third, we identified sentences in which causal
information (opinion, observation, etc) is communicated. In the
fourth step, causes and their corresponding effects were
extracted. Lastly, those cause-effect pairs were aggregated,
described, and visualized. The entire workflow is illustrated in
Figure 1.
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Figure 1. Workflow. The steps shown in green include machine learning methods. CRF: conditional random field.

Data Collection and Ethical Considerations
Via Twitter’s streaming application programming interface, 32
million diabetes-related tweets in English were collected
between April 2017 and January 2021 based on a list of
diabetes-related keywords such as diabetes, hypoglycemia,
hyperglycemia, and insulin from all over the world (see
Multimedia Appendix 1 for the full list of keywords used). This
is an extended data set of the one used in earlier works [9]. All
data collected in this study were publicly posted on Twitter.
Therefore, according to the privacy policy of Twitter, users
agree to have this information available to the general public
[30].

Data Preprocessing
Tweets are noisy and unstructured. They contain many
misspelled or nonstandard English words. To reduce noise in
the data set, we applied a preprocessing pipeline similar to that
in earlier works, the details of which are summarized in Figure
1 [9]. First, retweets and duplicates were removed to obtain a
database with 7.7 million unique tweets. Second, we determined
only tweets with personal content where feelings, emotions,
and opinions could be shared by people with or talking about
diabetes and excluded institutional tweets referring to
commercial, news, or health information. To identify personal
content in tweets, we leveraged the transfer learning paradigm
and fine-tuned the already pretrained transformer-based
language model BERTweet, which was pretrained on 850 million
English tweets (16 billion word tokens ~ 80 GB) [25,32]. To
use the model and fine-tune it for a binary sentence
classification, a linear layer was added on top of the last
transformer layer of the BERTweet model by using the

transformers package of HuggingFace [33]. The model was
then fine-tuned with an extended data set of one used in earlier
works, leading to a total of 4303 tweets (1539 personal and
2764 institutional) to account for a possible temporal divergence
of the way people tweet [9]. The model performance to identify
tweets with personal content had accuracy of 91.2%, precision
of 86.2%, recall of 90.9%, and F1 score of 88.5%. The trained
model was then applied to all unique tweets, resulting in a total
of 2.5 million tweets with personal content. Moreover, jokes
around diabetes are common on Twitter and were considered
out of scope for this study as well. Similar to the personal
content classifier, BERTweet was fine-tuned to detect if a tweet
is a joke. For this purpose, a joke tweet data set from earlier
works was extended to 1648 tweets (486 jokes, 1162 nonjokes)
[9]. The performance to identify if a tweet is a joke had accuracy
of 90.4%, precision of 78.5%, recall of 90.8%, and F1 score of
84.2%. Applying the joke classifier on all tweets with personal
content led to a data set of 1.8 million personal nonjoke tweets.

A particular focus of this study was on studying diabetes distress
and thus, the psychological factors and emotions. To capture
these factors in tweets, only tweets containing an emotional
element such as emojis/emoticons or emotional words were
kept. Emotional words were identified based on a combination
of the psychologue Parrot’s hierarchical classification of
emotions with the 6 primary emotions (joy, love, surprise,
sadness, anger, fear) and emotional words present in common
questionnaires to study diabetes distress such as the Problem
Areas in Diabetes scale and Diabetes Distress Scale [34-36].
This led to 562,013 tweets containing personal, nonjoke, and
emotional content. More details on the preprocessing pipeline
are summarized in Multimedia Appendix 2 [9,25,32-40].
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Data Annotation
In order to identify causal sentences and cause-effect association,
5000 randomly chosen diabetes-related tweets were selected,
preprocessed, split into sentences, and then manually labeled.
We did not restrict ourselves to a specific area of
diabetes-related causal relationships, and we included potentially

all types. Table 1 illustrates some example sentences. Only
causal relationships related to diabetes were labeled as positive
samples, whereas non–diabetes-related or unclear cause-effect
relationships were labeled as negative samples. For a more
detailed explanation on the annotation, please refer to our
annotation guidelines in Multimedia Appendix 3.

Table 1. Sample sentences in different label scenarios. The examples are fictive to ensure privacy.

ExplanationCausal associationEffectCauseSentences

Possible causal association1mood swingsDiabetesDiabetes causes me to have mood swings

Possible causal association related to di-
abetes distress

1hate#diabetesI just want to eat, I hate #diabetes

Nondiabetes or diabetes distress–related
relationship. “Flu” is not diabetes-related

0——aScary, have a diabetic daughter but I read
thousands of people a year die in the United
Kingdom just from flu so why panic over
corona.

Unclear cause-effect relationship. Not
clear if “high blood pressure” or “dia-
betes” caused the stroke

0——Had two strokes and recover now and also

have high blood pressure and diabetes. 

Chaining cause-effect relationship

(A->B->C)

Event A: glucose test

Event B: anxiety

Event C: been up since 3:30

=> label the relationship which is closest
to our study objective: diabetes and dia-
betes distress

1anxietyglucose testNot sure if I've been up since 3:30 to watch
Titanic or because of my anxiety over my

glucose test is what keeps me up 

Negation in a cause/effect is considered
being part of the cause/effect as it does
not alter the meaning

1malfunctioning pancreas;
not enough insulin

type 1My 14-year-old daughter is type 1 = mal-
functioning pancreas, meaning not enough

insulin being made to regulate 

Negation is not part of cause/effect and
alters the meaning

0feel so badinsulinIt is not true to think that insulin makes you

feel so bad 

aNot available.

Labeling cause-effect pairs is a complex task. To verify the
reliability of the labeling, 2 authors labeled 500 sentences
independently and we calculated Cohen κ score, a statistical
measure expressing the level of agreement between 2 annotators
[41]. We obtained a score of 0.83, which is interpreted as an
almost perfect agreement according to Altman [42] and Landis
and Koch [43]. Disagreements were discussed between 2
authors, and 1 author labelled the other samples, resulting in
8235 labelled sentences (7218 noncausal sentences and 1017
causal sentences) from 5000 tweets.

Models
The first model was trained to predict if a sentence contains a
potential cause-effect association (causal sentence), and the
second model extracted the specific cause and the associated
effect from the causal sentence. Thus, the first model acts like
a barrier and filters noncausal sentences out. These sentences
may have either a cause, an effect, none of them, but not both.
To simplify the model training, we hypothesized that
cause-effect pairs only occur in the same sentence and we
removed all sentences with less than 6 words owing to a lack

of context. For this reason, we operated on a sentence level and
not at the tweet level. Additional challenges in our setting were
that causes and effects could be multiword entities and the
language used on Twitter is nonstandard with frequent slang
and misspelled words.

Causal Sentence Detection
The identification of causal sentences is a binary classification
task. The pretrained language model BERTweet served as a
foundation for the model architecture capable of handling the
nonstandard nature of Twitter data [32]. A feed-forward network
is built on top of the BERTweet [32] architecture consisting of
2 fully connected layers with dropout layers with a probability
of 0.3, finalized by a softmax layer, which translates the model
predictions into probabilities (Figure 2). To adjust for the class
imbalance in the labeled data, class weights were included as
parameters in the categorical cross-entropy loss function to
penalize mispredictions for causal sentences strongly. Initially,
labelled data were stratified, and 10% of it was kept as test set.
The remaining 90% of the samples were further separated into
training and validation sets with 80:20 split.
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Figure 2. Model architecture for causal sentence detection. FCLL: fully connected linear layer; p: probability of an element to be zeroed.

Data Augmentation Through Active Learning
Data imbalance on the one hand and the limited number of
positive training examples for each cause-effect pair on the
other hand (as causes and effects could potentially be related
to any concept in the diabetes domain) drove us to adopt an
active learning approach to increase the training data. Active
learning is a sample selection approach aiming to minimize the
annotation cost while maximizing the performance of machine
learning–based models [44]. It has been widely applied on
textual data [45,46]. The training data were increased in several
iterations, as illustrated in Figure 3.

The first iteration started by training the causal sentence
classifier on sentences from the 5000 tweets. The trained
classifier was then applied on 2000 randomly selected unlabeled

tweets, which were preprocessed and split into sentences,
resulting in a set of causal sentences and a set of noncausal
sentences. The sentences predicted as causal sentences were
examined manually, and possible misclassifications were
corrected to ensure clean positive training samples. The
noncausal sentence set remained untouched. As a consequence,
potential misclassifications remained in the noncausal sentence
set, which should then be considered noisy. Both the causal and
noncausal sentence set were then combined and added as new
training data to the already labeled data, leading to an updated
training set of 7000 tweets. This process was iterated 4 times
and allowed us to augment the labelled data much faster and
more efficiently than that without active learning, as it enables
us to focus on the few positive samples. The final training set
was used to train the classification model and the cause-effect
extraction model.

Figure 3. Active learning loop to augment the training set in a time-efficient fashion.
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Cause-Effect Pairs
After having trained the causal sentence classifier to detect
sentences with causal information, we identified the specific
cause-effect pairs in the causal sentences. The identification of
cause-effect pairs was casted as an event extraction or
named-entity recognition task, that is, assigning a label cause
or effect to a sequence of words. The manually labeled causes
and effects were encoded in an IO tagging format based on the
common tagging format BIO (Beginning, Inside, Outside),
introduced by Ramshaw and Marcus [47]. Here, “I-C” denotes
inside the cause and “I-E” inside the effect. Those 2 tags were
completed by the outside tag “O,” symbolizing that the word
is neither cause nor effect. The IO tagging scheme for the
example sentence with cause “prediabetes” and effect “change
my lifestyle” is summarized:

Sentence: Prediabetes, forces, me, to, change, my, lifestyle

IO tags: I-C, O, O, O, I-E, I-E, I-E

Note that a word can be both cause or effect depending on the
context. For instance “prediabetes” in “Prediabetes forces me
to change my lifestyle” takes the role of a cause, whereas in
“Limited exercising may lead to prediabetes,” it is a possible
effect. IO tagging was preferred over BIO tagging to simplify
the model learning by reducing the number of class from 5 to
3. Moreover, the task is complex and considered open domain,
as causes and effects are not restricted to 1 specific topic but
can be related to any concept in our target domain (diabetes).
As a consequence, the creation of a representative training set
is challenging, as most cause-effect pairs occur rarely. This
complexity drove us to test several model architectures; refer
to Figure 4 for an overview.

Figure 4. Model architectures of cause-effect identification. CRF: conditional random field; FCLL: fully connected linear layer; p: probability of an
element to be zeroed.

1. BERT_FFL: Pretrained BERTweet language model and on
top, 2 feed forward layers with a dropout of 0.3, followed
by a softmax layer. For the model training, the cross-entropy
loss function is selected and weighted by the class weights
to penalize mispredictions for causes and effects stronger.

2. WE_BERT_CRF: Single conditional random field (CRF)
layer with BERTweet embeddings as features augmented
by discrete features such as if the word is lowercase, digit,
or the word length. CRFs are a standard statistical sequential
classification method to identify entities in a text [48]. The
CRF function is implemented with the python package
sklearn-crfsuite [49] based on CRFsuite [50]. As parameters
for the CRF function, the default algorithm “Gradient
descent  us ing  the  Limi ted  Memory
Broyden-Fletcher-GoldfarbShanno method” was chosen,
and the coefficient for L1 and L2 regularization was 0.1.

3. FastText_CRF: Similar to WE_BERT_CRF, with the
difference that BERTweet embeddings were replaced by
FastText embeddings in the feature vector for each word.
FastText vectors trained on similar diabetes-related tweets,
which were well adapted to our use case [9].

Clustering of Causes and Effects
A large part of causes and effects can be regrouped into similar
concepts (clusters) to facilitate analyses and allow effective
network analyses. We chose a semisupervised, time-efficient
approach in which 1000 causes and 1000 effects were randomly
chosen and 2 researchers manually grouped these into clusters
such as “diabetes,” “death,” “family,” and “fear,” hereinafter
referred to as “parent clusters” to simplify understanding. The
remaining causes and effects were then automatically compared
to each element of all the clusters based on FastText vectors
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and cosine similarity and associated with the cluster containing
the most similar element. Experimentally, a similarity threshold
of 0.55 was determined; if a cause/effect had a similarity smaller
than this threshold for all elements, a new cluster was created
for this cause/effect. These clusters were also visualized in an
interactive cause-effect network, developed in D3, to enable
further exploration of the cause-effect association about diabetes
distress communication in social media. Python (version 3.8.8)
and the deep learning framework PyTorch (version 1.8.1) were
used to implement the abovementioned methods. The algorithms
are open sourced under [51].

Results

The following results were obtained from 482,583 sentences,
which were obtained from splitting the 562,013 personal,
emotional, and nonjoke tweets into sentences, excluding
questions and including only sentences with more than 5 words.

Model Training and Performance

Causal Sentences
Hyperparameters for the model training were optimized, and
the best model was trained with an Adam optimizer with a
learning rate of 1e-3 among [1e-2, 1e-3, 1e-4] and a scheduler
with linearly decreasing learning rate with 0 warmup steps. The
optimal batch size was obtained for 16 among [8,16,32], and
we trained for 35 epochs with early stopping. The performances
to detect causal sentences for the imbalanced data set are
illustrated in Table 2 for each round of the active learning loop,
with each round having been trained on more data. The highest
accuracy was reached in round 4 with 71%. We applied the
model of round 4 on all the remaining tweets, as it was trained
on the largest training data set, including difficult causal
examples missed by earlier models and is thus better at
identifying complex causal sentences. The active learning
strategy led us to increase the training data much quicker than
that without active learning and without loss in performance.
This led to a clean database of 265,328 causal sentences with
the most noisy sentences removed.

Table 2. Performance measures (macro) for each round of more training data.

Recall (%)Precision (%)Accuracy (%)Sentences in test set (n)Sentences in training set (n)Round

67.458.064.583760240

71.661.267.7104775361

66.360.367.7122388042

68.860.065.4142910,2843

67.861.071.0164811,8614

Cause and Effect Detection
After having identified the causal sentences, the cause-effect
models were trained to extract the specific cause-effect pairs.
The active learning strategy led to an extended data set of 2118
causal sentences, that is, containing both cause and effect, of
which 10% were used as a test set while the remaining 90%
were further used to create a training and validation set with an
80:20 split. The performances of the different cause-effect
models are listed in Table 3. The best performing model was
the CRF model with BERT-embedding features
(WE_BERT_CRF) with a precision, recall, and F1 score of
0.68. Surprisingly, it outperforms fine-tuning a BERT model,
which is considered the gold standard of current named-entity

recognition tasks. A potential explanation for this is that
BERT-based models make local decisions at every point of the
sequence taking the neighboring words into account before its
decision. In a situation like ours, with strong uncertainty on all
elements, owing to the complexity of the task, a single CRF
layer model leveraging BERT features, making global decisions
using the local context of each word, maximizes the probability
of the whole sequence of the decision better. Moreover, the
CRF model with simpler FastText models achieved strong
results as well with one reason being probably that the word
embeddings were specifically trained on this diabetes corpus.

Consequently, the WE_BERT_CRF model was applied on all
causal sentences leading to a data set of 96,676 sentences with
the cause and associated effect predicted.
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Table 3. Performance measures for each of the 4 architectures.

F1 scoreRecallPrecisionModels

BERT_FFL

0.470.460.48I-C

0.290.480.20I-E

0.830.770.91O

0.530.570.53macro

WE_BERT_CRF

0.620.610.63I-C

0.490.490.49I-E

0.930.930.93O

0.680.680.68macro

FastText_CRF

0.580.570.59I-C

0.410.380.45I-E

0.930.940.92O

0.640.630.65macro

Cause-Effect Description
The semisupervised clustering led to 1751 clusters. To remove
noisy clusters through potential misclassifications, only clusters
with a minimal number of 10 cause/effect occurrences were
considered for the following analyses, resulting in 763 clusters.
Note that the order of documents might affect the results, as
different clusters might have been created. Please refer to
Multimedia Appendix 4 for an overview over the 100 largest
clusters (automatically added clusters have “other” as “parent
cluster”).

Table 4 provides an overview over the largest clusters,
containing either cause or effect. Table 5 provides the most
frequent cause-effect associations, excluding the largest cluster
“diabetes,” as it will be studied separately. The cluster “diabetes”
is the largest one with 66,775 occurrences of “diabetes” as either
cause or effect (eg, diabetes, #diabetes, diabetes mellitus)
followed by “death” with 16,989 (eg, passed away, killed, died,
suicide) and “insulin” (eg, insulin, insulin hormone) with 14,148
occurrences. From the 30 largest clusters, 6 refer to nutrition,
4 to diabetes, and 3 to each of insulin, emotions, and the health
care system. The most frequent cause-effect is “unable to afford
insulin,” which causes “death” expressed in 1246 cases,

followed by “insulin” causing “death” with 1156 cases and
“type 1 diabetes” causing “fear” with 1054 cases.

The largest cluster “diabetes” mainly occurs as a cause and its
10 most frequent effects are death (n=7446), fear (n=4836), sick
(n=2799), neuropathy (n=2477), hypoglycemia (n=2062), anger
(n=1908), suffer (n=1808), insulin (n=1605), overweight
(n=1506), and reduce weight (n=1487). From the 30 most
numerous effects for “diabetes,” 6 were related to “nutrition”
and 5 to “complications and comorbidities” and 3 to each of
“diabetes distress,” “emotions,” and “health care system.”

The interactive visualization in D3 with filter options is
published in [52]. Figure 5 provides an example graph of this
visualization showing only cause-effect relationships with at
least 250 occurrences to ensure readability. It is striking that
“death” seems to play such a central role as effect with various
causes (unable to afford insulin, rationing insulin, finance,
insulin, type 1 diabetes, overweight) pointing at it. Other central
nodes are type 1 diabetes acting as cause for insulin pump,
insulin, hypoglycemia (hypo), sickness, finance, and anger, and
fear emotions, where the latter has the strongest association, or
the node “insulin” mostly relating as cause for sickness,
medication, finance, death, or hypoglycemia and fear and anger.
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Table 4. The most frequent clusters (causes and effects) with the number of occurrences.

Value (n)ClusterParent cluster

66,775diabetesDiabetes

16,989deathDeath

14,148insulinInsulin

11,693type 1 diabetesDiabetes

10,160fearEmotions

9547hypoglycemiaGlycemic variability

6549sickSymptoms

5186overweightNutrition

4909type 2 diabetesDiabetes

4481neuropathyComplications and comorbidities

4389medicationHealth care system

4307insulin pumpDiabetes Technology

4230nutritionNutrition

4149angerEmotions

4053oral glucose tolerance testHealth

3782hypertensionBlood pressure

3767financeHealth care system

3589reduce weightNutrition

3381unable to afford insulinInsulin

3325dietNutrition

3153sadnessEmotions

3144hyperglycemiaGlycemic variability

3132sufferDiabetes

2810depressionDiabetes Distress

2721hospitalHealth care system

2681stressDiabetes Distress

2369sugarNutrition

2363fastingNutrition

2244rationing insulinInsulin

2076gestational diabetesHealth
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Table 5. The most frequent cause-effect relationships excluding the cluster “diabetes” with the number of occurrences.

Value (n)EffectCause

1246deathunable to afford insulin

1156deathinsulin

1054feartype 1 diabetes

999deathtype 1 diabetes

805deathrationing insulin

751insulintype 1 diabetes

584sickoral glucose tolerance test

578hypoglycemiatype 1 diabetes

545hypoinsulin

534fearinsulin

436insulin pumptype 1 diabetes

423deathfinance

400sicktype 1 diabetes

385sickinsulin

367financeinsulin

356angertype 1 diabetes

305medicationinsulin

296angerinsulin

293fearoral glucose tolerance test

293deathtype 2 diabetes

290feartype 2 diabetes

286deathhypertension

280deathoverweight

277financetype 1 diabetes

272insulinhypoglycemia

263sickhypoglycemia

262deathaffordable insulin

255insulin pumpinsulin

248deathcomplications

240sadnessinsulin
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Figure 5. Cause-effect network with a minimum number of associations (edges) of 250. Accessible in [52].

Discussion

Principal Findings
Our findings suggest that it is feasible to extract both explicit
and implicit causes and associated effects from diabetes-related
Twitter data. We demonstrated that by adopting the transfer
learning paradigm and fine-tuning a pretrained language model,
we were able to detect causal sentences. Moreover, we have
shown that simply fine-tuning a BERT-based model does not
always outperform more traditional methods such as relying on
CRFs in the case of the cause-effect pair detection. The
precision, recall, and F1 scores, given the challenging task and
the imbalanced data set, were satisfying. The semisupervised
clustering and interactive visualization enabled us to identify
“diabetes” as the largest cluster acting mainly as the cause for
“death” and “fear.” Besides, a central cluster was detected in
“death” acting as an effect for various causes related to insulin
pricing—a link that was already detected in earlier works [9].
From a patient’s perspective, we were able to show that their
main fear is insulin pricing, which is expressed in the most
frequent cause-effect relationship “unable to afford insulin”
causing “death” or “rationing insulin” causing “death.” As the
main diabetes distress–related causes, we identified fear of
hypoglycemia, insulin, hypertension, or the oral glucose
tolerance test.

Comparison With Previous Works
Several former works have addressed causality on Twitter data.
Doan et al [14] focused on 3 health-related concepts, namely,
stress, insomnia, and headache as effects and identified causes
by using manually crafted patterns and rules. However, they
only focused on explicit causality and excluded causes and
effects encoded in hashtags and synonymous expressions [14].
On the contrary, we tackled both explicit and implicit causality,
including causes and effects in hashtags and exploiting
synonymous expressions through the use of word embeddings.
Kayesh et al [16] proposed an innovative approach, a novel
technique based on neural networks, which uses common sense
background knowledge to enhance the feature set, but they
focused on the simplified version of explicit causality in tweets.
Bollegala et al [53] developed a causality-sensitive approach
for detecting adverse drug reactions from social media by using
lexical patterns and thereby aiming at explicit causality.
Dasgupta et al [54] proposed one of the few deep learning
approaches due to the unavailability of appropriate training data,
leveraging a recursive neural network architecture to detect
cause-effect relations from text, but they also only targeted
explicit causality. A BERT-based approach tackling both explicit
and implicit causality is provided by Khetan et al [23] who used
already existing labeled corpora not based on social media data.
Recently, they further extended their work of explicit and
implicit causality understanding in single and multiple sentences
but in clinical notes [55]. To the best of our knowledge, this is
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the first paper investigating both explicit and implicit
cause-effect relationships on diabetes-related Twitter data.

Strengths and Limitations
This study demonstrates various strengths. First, by leveraging
powerful language models, we were able to identify a large
number of tweets containing cause-effect relationships, which
enabled us to the detect cause-effect associations in 20%
(96,676/482,583) of the sentences, contrary to other approaches
that were able to identify causality in less than 2% of tweets
[14]. Second, contrary to most previous work, we tackled both
explicit and implicit causal relationships, an additional
explanation for the higher number of cause-effect associations
we obtained, compared to other studies focusing only on explicit
associations [14]. Third, relying fully on automatic machine
learning algorithms avoided us from defining manually crafted
patterns to detect causal associations. Fourth, operating on social
media data that are expressed spontaneously and in real time
offers the opportunity to gain knowledge from an alternative
data source and, in particular, from a patient’s perspective,
which might complement traditional epidemiological data
sources. Lastly, the data-driven approach to identify cause-effect
relationships, as reported from Twitter users, can be used in the
next step to generate new hypotheses that can be tested in a
more clinical setting, for example, in a clinical trial.

A strong limitation is that cause-effect relations are expressed
in tweets and this cannot be used for causal inference as the
Twitter data source is uncertain and the information shared can
be an opinion or an observation. Another shortcoming is that
the performance of our algorithms to detect cause-effect pairs
is not perfect. However, the overall process and the vast amount
of data minimize this issue. The lack of recall is counterbalanced
by the sheer amount of data, and the lack of precision is
counterbalanced by the clustering approach in which
nonfrequent causes or effects are discarded [56]. Labeling causes
and effects in a data set is a highly complicated task, and we
would like to emphasize that mislabeling in the data set may
occur. Here, the actual prevalence of causal sentences is lower,

as we wanted to catch as many causal sentences as possible,
which led to also having captured some noncausal sentences.
Enhancing data quality certainly is a strong point to address to
further improve performance. The causal association structures
learnt by the model from the training set might not generalize
completely when applied on the large amount of Twitter data.
Besides, the active learning strategy certainly added noise to
the model, as only positive samples were corrected, which could
be improved in future investigations. Moreover, we would like
to highlight that the diabetes-related information shared on
Twitter may not be representative for all people with diabetes.
For instance, we observed a bigger cluster of causes/effects
related to type 1 diabetes compared to that related to type 2
diabetes, which is contrary to that in the real world [57]. A
potential explanation for that is the age distribution of Twitter
users [58]. However, owing to the large number of tweets
analyzed, a significant variability in the tweets could be
observed.

Conclusion
In this work, we developed an innovative methodology to
identify possible cause-effect relationships among
diabetes-related tweets. This task was challenging owing to
addressing both explicit and implicit causality, multiword
entities, the fact that a word could be both cause or effect, the
open domain of causes and effects, the biases occurring during
labeling of causality, and the relatively small data set for this
complex task. We overcame these challenges by augmenting
the small data set via an active learning loop. The feasibility of
our approach was demonstrated using modern BERT-based
architectures in the preprocessing and causal sentence detection.
A combination of BERT features and CRF layer were leveraged
to extract causes and effects in diabetes-related tweets, which
were then aggregated to clusters in a semisupervised approach.
The visualization of the cause-effect network based on Twitter
data can deepen our understanding of diabetes, in a way of
directly capturing patient-reported outcomes from a causal
perspective. The fear of death owing to the inability to afford
insulin was the main concern expressed.
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