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Abstract

Background: The standard Fast Healthcare Interoperability Resources (FHIR) is widely used in health information technology.
However, its use as a standard for health research is still less prevalent. To use existing data sources more efficiently for health
research, data interoperability becomes increasingly important. FHIR provides solutions by offering resource domains such as
“Public Health & Research” and “Evidence-Based Medicine” while using already established web technologies. Therefore, FHIR
could help standardize data across different data sources and improve interoperability in health research.

Objective: The aim of our study was to provide a systematic review of existing literature and determine the current state of
FHIR implementations in health research and possible future directions.

Methods: We searched the PubMed/MEDLINE, Embase, Web of Science, IEEE Xplore, and Cochrane Library databases for
studies published from 2011 to 2022. Studies investigating the use of FHIR in health research were included. Articles published
before 2011, abstracts, reviews, editorials, and expert opinions were excluded. We followed the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) guidelines and registered this study with PROSPERO (CRD42021235393).
Data synthesis was done in tables and figures.

Results: We identified a total of 998 studies, of which 49 studies were eligible for inclusion. Of the 49 studies, most (73%,
n=36) covered the domain of clinical research, whereas the remaining studies focused on public health or epidemiology (6%,
n=3) or did not specify their research domain (20%, n=10). Studies used FHIR for data capture (29%, n=14), standardization of
data (41%, n=20), analysis (12%, n=6), recruitment (14%, n=7), and consent management (4%, n=2). Most (55%, 27/49) of the
studies had a generic approach, and 55% (12/22) of the studies focusing on specific medical specialties (infectious disease,
genomics, oncology, environmental health, imaging, and pulmonary hypertension) reported their solutions to be conferrable to
other use cases. Most (63%, 31/49) of the studies reported using additional data models or terminologies: Systematized
Nomenclature of Medicine Clinical Terms (29%, n=14), Logical Observation Identifiers Names and Codes (37%, n=18),
International Classification of Diseases 10th Revision (18%, n=9), Observational Medical Outcomes Partnership common data
model (12%, n=6), and others (43%, n=21). Only 4 (8%) studies used a FHIR resource from the domain “Public Health &
Research.” Limitations using FHIR included the possible change in the content of FHIR resources, safety, legal matters, and the
need for a FHIR server.

Conclusions: Our review found that FHIR can be implemented in health research, and the areas of application are broad and
generalizable in most use cases. The implementation of international terminologies was common, and other standards such as
the Observational Medical Outcomes Partnership common data model could be used as a complement to FHIR. Limitations such
as the change of FHIR content, lack of FHIR implementation, safety, and legal matters need to be addressed in future releases to
expand the use of FHIR and, therefore, interoperability in health research.
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Introduction

Within the current COVID-19 pandemic, there was a broad
realization of the currently limited data collection processes and
how powerful the exchange of scientific data could be if
interoperability between health care and research was provided
[1]. Although there was a large amount of data in the health
care ecosystem, there was lack of data that adheres to Findable,
Accessible, Interoperable, and Reusable [2] principles for users
to find, use, analyze, and share data on COVID-19. This applies
specifically to academic health research where the lack of
interoperability between health care and research often inhibits
the use of existing data sources for research. Commonly, the
data collections of health research are stored in decentralized,
autonomous data infrastructures which requires integration into
common frameworks to enable centralized search and access.

However, processing national and cross-national scientific data
across different institutions and software systems requires
international standards and terminologies: the Observational
Health Data Sciences and Informatics (OHDSI) Observational
Medical Outcomes Partnership (OMOP) common data model
(CDM) is used in observational research, whereas the Clinical
Data Interchange Standards Consortium (CDISC) Operational
Data Standard (ODM) is used specifically for the exchange of
data within clinical trials [3]. CDISC is providing standards
such as standardized raw data sets (Study Data Tabulation
Model; SDTM), also considered a CDM, as well as standardized
analysis data sets models. Further established standards are the
terminologies Systematized Nomenclature of Medicine Clinical
Terms (SNOMED CT) and Logical Observation Identifiers,
Names, and Codes (LOINC). SNOMED CT is the most
comprehensive clinical health care terminology worldwide
providing more than 350,000 concepts, whereas LOINC is a
standard for laboratory tests and clinical observations. One of
the latest emerging standards for the exchange of health data is
the standard Fast Healthcare Interoperability Resources (FHIR).

FHIR is a standard used in health information technology
introduced in 2011 by the Standard Developing Organization
Health Level Seven International (HL7). FHIR is based on
previous HL7 standards (HL7 versions 2 and 3 and Clinical
Document Architecture) and combines their advantages with
established modern web technologies such as a Representational
State Transfer (REST) architecture; application programming
interface (API), XML, and JSON formats; and authorization
tools (Open Authorization). In FHIR, all exchangeable content
is defined by distinct basic building blocks—referred to as
resources—which define the content and structure of information
and can refer to each other using reference mechanisms [4].

The base FHIR specification serves as a foundation providing
basic resources, frameworks, APIs, and a platform in which

different solutions can be implemented [5]. To cover information
not included in the basic resources, FHIR provides a built-in
extension mechanism and can be adapted for specific use cases
while ensuring interoperability. Additional rules and constraints
within resources can be defined in profiles. Therefore, FHIR
covers various domains of health care with its resources and
can be used for different purposes and in various contexts and
workflows.

With regard to health research, there is still a lack of use of
international standards when exchanging data between health
care and research institutions. However, there have been recent
regulative and legislative changes promoting standards and
interoperability in health care [6-8]. In addition, there are
initiatives of HL7 promoting FHIR’s use in health research,
such as the Vulcan HL7 FHIR Accelerator aiming to connect
clinical research and health care, the MedMorph project aiming
to advance public health by using standards such as FHIR, and
the collaboration of HL7 and OHDSI on a single common data
model [9-11]. As many research platforms and modern data
management systems, such as the Extensible Neuroimaging
Archive Toolkit open-source imaging informatics platform, use
extensible REST APIs [12,13], FHIR may be the new standard
to fill the interoperability gap in health research with its REST
architecture. Existing reviews on FHIR investigate the general
use of FHIR in digital health [14] or its use in electronic health
records [15]. However, to the best of our knowledge, the use of
FHIR in health research has not been systematically investigated.
Therefore, the aim of our study was to provide a systematic
review of existing literature to determine the current state of
use cases, implementation, goals, and limitations of FHIR in
health research.

Methods

Protocol, Registration, and Ethical Considerations
This systematic review was conducted in accordance with the
(PRISMA) Preferred Reporting Items for Systematic Reviews
and Meta-Analyses guidelines [16]. The review was registered
with the International Prospective Register of Systematic
Reviews (PROSPERO; CRD42021235393) [17]. As data
originated from published studies, ethical approval for this study
was not requested.

Inclusion and Exclusion Criteria 
We included studies investigating the use of FHIR in health
research. We did not focus on particular patient populations,
interventions, control groups, or outcomes, except the use of
FHIR in health research. Details on inclusion and exclusion
criteria are presented in Textbox 1.
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Textbox 1. Inclusion and exclusion criteria for paper review.

Inclusion criteria

• Studies focusing on the use of FHIR in health care research 

• Original papers published in peer-reviewed journals in English 

• Studies with publication dates no earlier than 2011 

Exclusion criteria

• Studies focusing on the use of FHIR in electronic health records, mobile and web apps, decision support, and data protection or security

• General overviews on FHIR 

• Comments, books, editorials, or reviews 

• Language other than English

• Studies conducted before 2011 

Information Sources and Search Strategy 
A comprehensive literature search was performed through the
PubMed/MEDLINE, Embase, Web of Science, IEEE Xplore,
and Cochrane Library databases. In addition, citation tracking
and reference list checking were performed. The goal of the
search strategy was to retrieve all relevant studies related to our
research question published between 2011 and 2022. Search
terms were therefore relatively broad to make sure that all
potentially relevant studies were identified. Search terms used
for the database searches were “FHIR” and “Fast Healthcare
Interoperability Resources.” Information on the detailed search
strategy for each database is provided as an appendix to this
review (Multimedia Appendix 1). The search was conducted
on February 26, 2022.

Study Selection and Data Collection Process 
Study selection included 2 screening levels: (1) screening of
titles and abstracts of all studies identified in the literature search
and (2) full-text review of studies that had not been excluded
in the first step. Review at the first stage of screening was
performed independently by 2 authors (ML and SAIK) using
the Rayyan web app [18]. Remaining disagreements were
resolved by a third author (CNV). Further full-text screening
at the second stage and data extraction were performed by 6
authors (CNV, ML, SAIK, PJM, AB, and TH), and
disagreements of at least two authors at this stage were resolved
by the last author (ST).

Data Extraction and Analysis 
Data synthesis was conducted in tables and figures. For
categorical variables, simple and relative frequencies and
proportions were used. To identify the networks of coauthors,
we also performed a network analysis that investigated, for all
authors of the included studies, whether they were coauthors in
a study. Results were visualized in a network graph. We did not
assess bias in studies due to the lack of quantitative tools
applicable to technical papers on standards. All analyses were
done with R statistical software (version 4.0.5; R Foundation
for Statistical Computing) [19] and the tidyverse packages [20].
All data and analyses scripts are provided in a GitHub repository
[21].

Results

Study Selection and Extraction
A total of 998 articles were identified through the database
searches (344 from MEDLINE, 359 from Embase, 201 from
Web of Science, 84 from IEEE Xplore, and 10 from Cochrane
Library). No additional records were identified through citation
tracking and reference list checking. We excluded 477 duplicates
and 422 articles that did not meet the inclusion criteria or met
the exclusion criteria. Among the 99 full-text articles assessed
for eligibility, an additional 50 studies were excluded. Finally,
49 [1,12,22-68] articles met the inclusion criteria and were
included in the systematic review (Figure 1). Details on the
exclusion reasons for the full-text evaluation can be found in
Multimedia Appendix 2, and the exclusion reasons for the
abstract evaluation can be found in the GitHub repository [21].
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for identifying articles eligible for inclusion.
FHIR: Fast Healthcare Interoperability Resources.

Characteristics of Included Studies
Publication dates ranged from 2016 to 2022 with the median in
2020. Of the 49 included studies, 73% (n=36) were published
between 2020 and 2022. The increase of publications from 2020
onward is visualized in Figure 2, showing the temporal trend
of all FHIR publications identified in the databases with the
search terms “FHIR” OR “Fast Healthcare Interoperability
Resources” and the number of publications included into the
analysis per year.

The results of the network analysis of coauthorships are shown
in Figure 3. Of a total of 256 authors, most (85%, n=217)
appeared only once in the included studies, and no author

occurred more than 6 times within the included studies. Most
coauthorship networks were restricted to individual studies,
with occasional connections between networks (ie, authors
having published studies with different groups of coauthors).

Of the 49 studies, the majority were conducted in Germany
(47%, n=23) [12,26,28-31,34,35,40-42,45-47,52,53,56-58,60,62,
63,69], the United States (27%, n=13) [22,25,36,44,48-50,61,
64-66,68,70], and Australia (6%, n=3) [1,43,67]. The remaining
studies were performed in Austria (2%, n=1) [32], Canada (2%,
n=1) [24], France (2%, n=1) [51], Greece (2%, n=1) [59], Japan
(2%, n=1) [27], Pakistan (2%, n=1) [38], Spain (2%, n=1) [55],
Switzerland (2%, n=1) [39], Taiwan (2%, n=1) [23], and the
United Kingdom (2%, n=1) [37].
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Figure 2. Number of publications per year (all: all FHIR publications identified in the databases with the search terms “FHIR” OR “Fast Healthcare
Interoperability Resources”; included: studies included in this review). FHIR: Fast Healthcare Interoperability Resources.

Figure 3. Network of coauthorships. Each point represents an author. Point size and color indicate the number of publications of this author (between
1 and 6). Lines indicate that authors have coauthored at least one paper together. Line thickness represents the number of coauthorships.

Research Domain and Area of FHIR Application
Of the 49 studies, most (73%, n=36) studies covered the research
domain of clinical research, of which 10 (20%) studies were
clinical trials [22,29-31,36,39,43,56,65,66]; 3 (6%) studies
focused on solutions in public health and epidemiology
[38,40,64], and the remaining studies did not specify their
research domain (20%, n=10; Figure 4) [24,32,41,42,45-47,

50,63,69]. The included studies used FHIR for the
standardization of data (41%, n=20) [23,26,30,34,41,45-48,
51-53,57-60,63,66,67,70], data capture (29%, n=14)
[1,12,22,24,27,35-37,43,44,55,61,64,65], recruitment (14%,
n=7) [28,29,31,32,49,56,62], analysis (12%, n=6)
[25,38,42,50,68,69], and consent management (4%, n=2; Table
1) [39,40]. Details on the included studies are presented in Table
2.
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Figure 4. Number of studies according to research domain.
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Table 1. Numbers of studies according to area of FHIR application, medical specialty, and international standard.

Studies (N=49), n (%)Area

FHIRa application

20 (41)Standardization of data

14 (29)Data capture

7 (14)Recruitment

6 (12)Analysis

2 (4)Consent management

Medical specialty

27 (55)Generic approach

8 (16)Infectious disease

6 (12)Oncology

4 (8)Genomics

1 (2)Pulmonary hypertension

1 (2)Neuroimaging research

1 (2)Genomic cancer medicine

1 (2)Environmental health

International standard

21 (43)Other

18 (37)None

14 (29)LOINCb

18 (37)SNOMED CTc

9 (18)ICD-10d

6 (12)OMOPe

aFHIR: Fast Healthcare Interoperability Resources.
bLOINC: Logical Observation Identifiers Names and Codes.
cSNOMED CT: Systematized Nomenclature of Medicine Clinical Terms.
dICD-10: International Classification of Diseases 10th Revision.
eOMOP: Observational Medical Outcomes Partnership.
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Table 2. Characteristics of studies.

FHIR resourcesObjective for FHIR useItem mapped to FHIRaCountrySource, year

—bEstimation of the number of potentially eligible pa-
tients for planning multicenter trials based on free-

Medical and demographic data
from free-text eligibility criteria

GermanyBanach et al [56],
2021

text criteria and using a consented data set based on
FHIR

QuestionnaireOntology-based standard questionnaire for linking
genomic data with clinical outcomes

QuestionnaireAustraliaBauer et al [1],
2020

ConsentSupport improvement for consent definition and
consent documentation

Modular consent templatesGermanyBialke et al [40],
2018

Consent and PatientCross-site interoperability layer for representing the
validity of data use policies derived from signed in-
formed consent templates and regulatory framework

Informed consent templateGermanyBild et al [28],
2020

Patients, Encounter, Pro-
cedure, Medication or-

Repository of structured phenotype definitions for
automation of cohort identification.

Phenotype definitions from the
Phenotype Knowledgebase
repository

United StatesBrandt et al [71],
2021

ders, Condition, and Ob-
servation

Patient, Observation, Al-
lergyIntolerance,Medica-
tionOrder, and Condition

Seamless data exchange between the REDCapd re-
search electronic data capture and any EHR system

with a FHIR APIe

EHRc DataUnited StatesCheng et al [44],
2021

Medication, Medication-
Statement, and Procedure

Provide a transformation tool from oncology data
XML files to FHIR for oncological data to enable
clinical research

Oncology dataGermanyDeppenwieset al
[57], 2021

Questionnaire and Ques-
tionnaireResponse

Management, editing, and rendering of electronic
forms in the form of an open-source framework

Electronic form componentsCanadaEapen et al [24],
2019

Patient, Encounter, and
Observation

Feasibility of HL7f FHIR Bundle and XSLTg as a

generic ETLh process to populate an OMOPi CDMj

Common data set from a Ger-
man pulmonary hypertension
registry

GermanyFischer et al [35],
2020

Observation, Patient,
Specimen, Encounter,

Developing and implementing a systematic mapping
approach for evaluating HL7 FHIR standard coverage
in multicenter clinical trials.

Concomitant medications, de-
mographics, eligibility, labs,
medical history, therapeutic
area–specific, procedure, en-

United StatesGarza et al [61],
2020

Diagnostic Report, and
Condition

counters, vital signs, other, ad-
ministrative, questionnaires,
and study drug administration

Patient, Condition, Obser-
vation, MedicationState-

Collection and aggregation of survivorship data (use
cases colon cancer and breast cancer)

Clinical patient data (from
EHR) and patient-generated
data

SpainGonzález- Castro
et al [55], 2021

ment, Encounter, and
Procedure

—Analysis within and across institutionsClinical patient dataGermanyGruendner et al
[69], 2020

ResearchStudy, Question-
naire, and DocumentRef-
erence

Developing a Metadata Schema based on FHIR to
gather metadata on clinical, epidemiological, and

public health studies; elevate data FAIRnessk; and

MetadataGermanyGruendner et al
[42], 2021

widen analysis possibilities across health research
domains

MolecularSequence and
Observation

Improve and accelerate retrospective and prospective
clinical and genomic data sharing in oncology

Clinical and omics data in on-
cology

FranceGuérin et al [51],
2021

Condition and PatientRecruitment of patients for clinical trials using eligi-
bility criteria

Eligibility criteria of clinical
trials

GermanyGulden et al [31],
2018

ResearchStudyMultisite clinical trial registryClinical trial dataGermanyGulden et al [30],
2021

Patient, Observation,
Condition, and Procedure

Support of clinical statistics and analysis leveraging
standardized data exchange and access services based
on FHIR

Ovarian cancer dataUnited StatesHong et al [25],
2017

JMIR Med Inform 2022 | vol. 10 | iss. 7 |e35724 | p.10https://medinform.jmir.org/2022/7/e35724
(page number not for citation purposes)

Vorisek et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


FHIR resourcesObjective for FHIR useItem mapped to FHIRaCountrySource, year

ActivityDefinition, Bina-
ry, Bundle, CodeSystem,
Endpoint,Group, Nam-
ingSystem, Organization,
Practitioner, Practitioner-
Role, ResearchStudy,
StructureDefinition, Sub-
scription, and Task

Developing a framework to enable standardized,
shared processes using Business Process Model and
Notation and FHIR for arbitrary biomedical research

Process dataGermanyHund et al [53],
2021

ObservationDevelopment and assessment of a consensus-based

approach for harmonizing the OHDSIl CDM with
HL7 FHIR

Clinical research dataUnited StatesJiang et al [70],
2017

MediaFusion of clinical information with chest sounds and
imaging of COVID-19 ICU patients

Clinical information from in-

ICUm COVID-19 patients

GreeceKilintzis et al
[59], 2022

ResearchStudy, Question-
naire, and DocumentRef-
erence

Developing a Metadata Schema based on FHIR to
gather metadata on clinical, epidemiological, and
public health studies; elevate data FAIRness; and
widen analysis possibilities across health research
domains

Metadata of clinical, epidemio-
logical and public health stud-
ies

GermanyKlopfenstein et al
[41], 2021

—Analysis or mining of EHR data and contextual infor-
mation to assess the population’s health

EHRPakistanKhalique and
Khan [38], 2017

PatientFeasibility study for the full integration of FHIR into
XNAT

Open-source research platform

(XNATn)

GermanyKhvastova et al
[12], 2020

Questionnaire and Ques-
tionnaireResponse

Automated verification of answersInformed consent or question-
naires

AustriaLackerbauer et al
[32], 2019

Condition, Observation,
Procedure, Medication-
Statement, Patient, Orga-
nization, Specimen,
ClinicalImpression, En-
counter, and Ser-
viceRequest

Use and apply a harmonized FHIR-based modular
data set in a federated data platform for translational
cancer research to store data in a structured manner
and enable data transfer

Oncology dataGermanyLambarki et al
[58], 2021

MedicationStatement,
Medication, AllergyIntol-
erance, Condition, Immu-
nization, Procedure, Orga-
nization, Observation,
CarePlan, and Location

FHIR-based global infectious disease surveillance
and case-tracking model

IPSoTaiwanLee et al [23],
2020

Patient, Encounter, Con-
dition, Procedure, Obser-
vation, MedicationRe-
quest, and MedicationAd-
ministration

Availability of data for researchClinical dataUnited StatesLenert et al [50],
2021

Patient, Observation,
EpisodeOfCare, En-
counter, QuestionnaireRe-
sponse, Questionnaire,
and CarePlan

Mapping CDISCp ODMq to FHIRData modelAustraliaLeroux et al [67],
2017

Patient, Observation, and
Encounter

Developing a generic ETL framework to process
patient data into FHIR and enable data integration in
a single central data warehouse as a prerequisite for
translational research

General patient information,
encounter, or visit related infor-
mation; individual data points;
observations; measurements;
and surveys

GermanyMajeed et al [60],
2021

Encounter, Observation,
Condition, and Patient

Data export from REDCap into FHIR resourcesREDCap formsAustraliaMetke-Jimenez et
al [43], 2019

MolecularSeqeunce, Pa-
tient, and Condition

Coverage of Variant Cell Format data in OMOP
CDM with and without using FHIR as intermediate
layer

Genomic Variant Cell Format
data

GermanyPeng et al [52],
2021
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FHIR resourcesObjective for FHIR useItem mapped to FHIRaCountrySource, year

Contract, Questionnaire,
QuestionnaireResponse,
Patient, and Observation

Patient-reported outcomesResearchKit dataUnited StatesPfiffner et al
[22], 2016

ListData-driven recruitment of patients for clinical trials,
storage of patient lists, and generation of notifications

Patient ID listsGermanyReinecke et al
[29], 2020

DiagnosticReport, Obser-
vation, Specimen, and
ServiceRequest

Standardization of clinical data from patient care and
medical research in the field of infection control

Microbiology dataGermanyRinaldi et al [45],
2021

DiagnosticReport, Obser-
vation, Specimen, Ser-
viceRequest, and En-
counter

Mapping infection control related data across 3 dif-
ferent standards—OpenEHR, FHIR, and OMOP
CDM—to maximize analysis capabilities

OpenEHR TemplateGermanyRinaldi et al [47],
2021

Patient, Consent, Obser-
vation, Condition, Proce-
dure, Encounter, Medica-
tion, and MedicationState-
ment

Standardized data modelCOVID-19 dataGermanySass et al [26],
2020

Patient, Procedure, Medi-
cationStatement, and
Medication

Representation of structured medication dataMedication chapter of the Ger-
man Procedure

Classification and Identification
of Medicinal Products–compli-
ant

medication terminology

GermanySass et al [46],
2021

Patient, Encounter, Con-
dition, AllergyIntoler-
ance, Observation, Speci-
men, ServiceRequest,
MedicationRequest, and
MedicationDispense

Mapping electronic medical record items between
SS-MIX2 and HL7 FHIR

SS-MIX2rJapanTanaka et al [27],
2020

QuestionnaireMetadata repositoryMetadata or CRFsGermanyUlrich et al [34],
2016

—Clinical apps sharing via a platformCommon data model demo-
graphics, laboratory results, and
diagnoses

United StatesWagholikar et al
[36], 2017

AdverseEventPotential use of FHIR for postmarket safety surveil-
lance for drug products

FDAt’s Adverse Event Report-
ing System data

United StatesWang et al [48],
2021

ContractDesigning of a FHIR-based eConsent app for Android
and evaluation of acceptance

Electronic consent formSwitzerlandWeber et al [39],
2020

Group, ResearchStudy,
and Task

Using FHIR for automated and distributed feasibility
queries to find available cohort sizes across institu-
tions

Clinical dataGermanyWettstein et al
[62], 2021

Group, ResearchStudy,
and Task

HL7 FHIR version R4 is used to define the necessary
communication messages as well as process input
and output variables.

Medical routine dataGermanyWettstein et al
[63], 2021

Patient and DocumentRe-
ference

Semantic search system for obtaining clinical insights
from unstructured clinical notes

EHR data and unstructured
documents

United King-
dom

Wu et al [37],
2018

—Impact of airborne pollutant exposures on asthma
(research question)

Data set of patients with “asth-
ma-like” conditions

United StatesXu et al [64],
2020

Questionnaire and Ques-
tionnaireResponse

Automatic population of eCRFs in colorectal clinical
cancer trials

Colorectal cancer reportUnited StatesZong et al [65],
2020

DiagnosticReport and
Observation

Framework for capturing common data elements
from CRFs and FHIR resources to

identify clinical information needs

Colorectal cancer data modelUnited StatesZong et al [66],
2021
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FHIR resourcesObjective for FHIR useItem mapped to FHIRaCountrySource, year

Condition, and Observa-
tion

Discovery of genotype-phenotype associationsEHRUnited StatesZong et al [68],
2020

aFHIR: Fast Healthcare Interoperability Resources.
bNot available.
cEHR: electronic health record.
dREDCap: Research Electronic Data Capture.
eAPI: application programming interface.
fHL7: Health Level Seven International.
gXSLT: Extensible Stylesheet Language Transformations.
hETL: Extract-Transform-Load.
iOMOP: Observational Medical Outcomes Partnership.
jCDM: common data model.
kFAIR: Findable, Accessible, Interoperable, and Reusable.
lOHDSI: Observational Health Data Sciences and Informatics
mICU: intensive care unit.
nXNAT: Extensible Neuroimaging Archive Toolkit.
oIPS: International Patient Summary.
pCDISC: Clinical Data Interchange Standards Consortium.
qODM: Operational Data Model.
rSS-MIX2: Standardized Structured Medical Information Exchange2.
sCRF: Case Report Form.
tFDA: U.S. Food and Drug Administration.

Study Objectives
In terms of medical specialty, most (55%, 27/49) of the studies
[24,27-32,34,36-42,44,46,48,49,53,56,60-63,67,70] were using
a generic approach—implementable in any kind of specialty
(Table 2). Of the remaining studies, 16% (8/49) use cases
focused on infectious disease [1,22,23,26,45,47,50,59], whereas
12% (6/49) focused on oncology [25,55,57,58,65,66] and 8%
(4/49) on genomics [43,52,68,69]. Further medical specialties
were environmental health (2%, 1/49) [64], genomic cancer
medicine (2%, 1/49) [51], neuroimaging research (2%, 1/49)
[12], and pulmonary hypertension (2%, 1/49) [35]. Despite
studies implementing FHIR in specific use cases, 55% (12/22)
of the studies [1,12,22,23,25,35,43,50,52,58,64,69] reported
generic solutions conferrable to other use cases. Details on study
objectives with regards to FHIR use can be found in Table 2
and Multimedia Appendix 3.

International Standards
Among the 49 studies, 37% (n=18) did not report on or use
additional standards or terminologies [12,22-24,27,28,30-32,
38,39,48,50,55,57,64,66,69]. SNOMED CT [1,25,26,35,37,43,
45-47,51,55,56,65,70] and LOINC [25,26,35,37,42-45,
47,49,51,55,56,58,61,65,68,70] were reported to be used by
29% (n=14) and 37% (n=18) of the studies, respectively; 18%
(n=9) of the studies used International Classification of Diseases
10th Revision [25,26,35,37,49,51,58,65,68] and 12% (n=6)
used OMOP CDM [26,29,35,47,52,60]; and 43% (n=21) of the
studies used additional standards which were categorized under
“Other” (Table 1) [26,34-37,40,42,43,45-47,49,51,56,58-60,
62,63,67,70]. The implemented FHIR resources by each study
are listed in Table 2; 5 (10%) studies did not precisely list their
FHIR resources used [36,38,56,64,69]. Information on the FHIR

version used was provided by 45% (n=22) of the studies
[22,23,25,26,28,30,32,35,40,42,48,49,57,59,60,66,68,70], which
can be found in Multimedia Appendix 4.

Limitations of FHIR Use
With regard to the limitations of FHIR use, Bild et al [28],
Lackerbauer et al [32], and Metke-Jimenez et al [43] reported
the possible content changes of new versions of FHIR resources.
Generalizability was a concern in the studies of Khalique et al
[38] and Zong et al [65]. The need for a FHIR server [69] and
the requirement for a protocol for deidentification [1] were
additional limitations. Reinecke et al [29] had not tested the
exchange of data between locations and therefore could not
provide information in terms of use and results of their
prototype. Wagholikar et al [36] implemented a limited subset
of FHIR resources in their platform and therefore the filtering
of FHIR resources using complex query formats was not
supported. In terms of electronic consents, safety and legal
matters were major concerns [39]. Zong et al [68], investigating
the discovery of genotype-phenotype associations, reported the
lack of information on differences in genetic data as well as
extra mapping efforts since the data were from multiple sources.
In addition, there was a lack of resources preventing the
demonstration of use in the study. Generalizability was also a
concern in this study in terms of exploring the FHIR framework
within other variants and noncancer phenotypes in future work.

Discussion

Principal Findings
This systematic review summarizes the current state of use cases
implementing FHIR in health research. As FHIR was developed
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in 2011, we included studies from 2011 to 2022 and found that
half of studies were published between 2020 and 2022,
displaying an increased use of FHIR in the past years.
Interestingly, the first publication of our included studies
emerged in 2016, indicating a 5-year latency between the
publication of the FHIR standard and the publication of studies
addressing its use in health research. Germany and the United
States were the countries with the highest number of
publications, which might be due to recent regulatory
measurements and initiatives: in the United States, the 21st
Century Cures Act requires the use of FHIR for health data;
and in Germany, the medical informatics initiative aiming to
close the gap between research and health care used FHIR in
their already established use cases. Our network analysis showed
that authorships were dispersed relatively equally across studies,
not dominated by individual research groups or authors.

Most studies aimed to primarily standardize their data for health
research and reported using additional international standards
and terminologies. Within studies using FHIR for data capture,
the FHIR resource “Questionnaire” was often used. Further
areas of FHIR use were analysis, recruitment, and consent
management. The literature shows that fast and efficient patient
screening for clinical trial recruitment support systems is
important, and there is a current lack of standards and
interoperability of in these systems, as well as with regard to
eligibility criteria [72].

The majority of studies followed a more generic approach rather
than implementing FHIR for a specific use case. The studies
establishing use cases focused on infectious diseases,
specifically COVID-19, as well as genomics, oncology, and
imaging—which are all specialties more advanced in terms of
digitalization. Among these use cases, only a small number of
studies reported limited generalizability of their results.

Though provided by FHIR specifically for research, resources
out of the domains “Public Health & Research” and
“Evidence-Based Medicine” were used in only 4 studies. A
recently published study investigated the feasibility of the FHIR
resource “ResearchStudy” in a metadata registry for COVID-19
research and found that there was a need for the use of
extensions on more than 20% of the data items [41]. However,
the resources “ResearchStudy” and “ResearchSubject” are
currently under revision and will likely be tailored more to
researchers’needs when released with FHIR version R5 in 2022
[73].

Our analysis found that FHIR was used as a complement to
other standards. Studies reporting on terminologies mostly used
SNOMED CT and LOINC, both terminologies supported by
FHIR within its value sets. There were 6 studies that used FHIR
in addition to OMOP CDM, a standard widely used in
observational research. Using OMOP CDM, a recommended
way of transforming and transferring data from existing
databases—Extract-Transform-Load tools are used for each
source separately. To connect multiple heterogeneous databases,
FHIR can be used as an intermediate format for local data
extraction [35]. Reinecke et al [29] also extended the OMOP
CDM with FHIR to exchange electronic health record data to
connect the CDM to several health care systems. However, there

were also limitations as Leroux et al [67] mapped CDISC SDTM
and FHIR and found that CDISC SDTM’s use of controlled
terminology is inhibiting semantic interoperability solutions;
FHIR uses semantic standards accepted in health care that are
usually precoordinated (eg, SNOMED CT and LOINC), whereas
CDISC SDTM uses only controlled terminology in
postcoordination. Therefore, there would be the need for
sponsors to translate terminologies used within systems. Leroux
et al [67] proposed the new FHIR resources “ClinicalStudyPlan”
and “ClinicalStudyData”—equivalent to ODM “Study” and
“ClinicalData” elements—which could overcome the semantic
incompatibility. However, mappings with data transformation
may lead to information loss and errors; therefore, developing
ODM toward FHIR would be preferable, and the draft of ODM
version 2.0 already includes better support for FHIR [74,75].
In addition, HL7 and CDISC have jointly released a mapping
implementation guide to help transform FHIR content into
CDISC Clinical Data Acquisition Standards Harmonization
Implementation Guide or SDTM Implementation Guide data
sets. [76,77].

With regard to limitations using FHIR, there were certain
drawbacks reported by the included studies such as the possible
change in the content of different versions of FHIR resources,
safety, legal matters, and the need for a FHIR server. Not all
studies tested the use of FHIR in practice and, therefore, could
not provide results on the actual FHIR implementation.

Limitations
One limitation of our study is the lack of quality evaluation due
to missing established tools for evaluating technical papers on
standardization in health care. For technical evaluations,
structured information on additional standards, software, and
FHIR version was missing in several studies. Therefore, our
analysis on additional used standards might be biased as half
of the studies did not report on using other international
standards or terminologies. In addition, there were studies that
did not list their FHIR resources clearly or at all. We aimed to
guarantee an optimal systematic review process targeting
academic peer-reviewed literature that is available in English;
however, limitations remained as we may have missed relevant
studies that were not published in the target language.
Furthermore, we assumed that the published literature provides
a surplus on successful FHIR initiatives because, in general,
unsuccessful initiatives tend to stay unpublished [78]. Thus, our
review may suffer from publication bias. In addition, this study
investigated studies with a clear focus on FHIR in health
research. However, there might be research projects using FHIR
without FHIR being the central message or included in title and
abstract.

Conclusions
To the best of our knowledge, this is the first systematic review
investigating the use of FHIR in health research. It was shown
that FHIR has been successfully implemented in clinical, public
health, and epidemiological research at the stages of recruitment
and consent management, data capture, and standardization as
well as analysis of patient data. The implementation of
international terminologies such as SNOMED CT and LOINC
is common and, together with the REST API, stands out in
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comparison with other health research standards. Other standards
such as OMOP CDM were used as a complement to FHIR in
some studies, and a future aim could be the development of an
infrastructure for the seamless integration and communication
of health information across different standards. This approach
is reinforced by the current development of collaborations of
different Standards Developing Organizations such as OHDSI
and FHIR and the improved support of FHIR in combination

with CDISC. Resources of the domain “Public Health &
Research” and “Evidence-Based Medicine” were rarely used
and could further elevate interoperability in health research,
specifically after their modifications in FHIR version R5.
However, this approach will need to address current limitations
but could, if successfully implemented, elevate digitalized health
research.
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Abstract

Electronic health record (EHR) technology has become a central digital health tool throughout health care. EHR systems are
responsible for a growing number of vital functions for hospitals and providers. More recently, patient-facing EHR tools are
allowing patients to interact with their EHR and connect external sources of health data, such as wearable fitness trackers, personal
genomics, and outside health services, to it. As patients become more engaged with their EHR, the volume and variety of digital
health information will serve an increasingly useful role in health care and health research. Particularly due to the COVID-19
pandemic, the ability for the biomedical research community to pivot to fully remote research, driven largely by EHR data capture
and other digital health tools, is an exciting development that can significantly reduce burden on study participants, improve
diversity in clinical research, and equip researchers with more robust clinical data. In this viewpoint, we describe how patient
engagement with EHR technology is poised to advance the digital clinical trial space, an innovative research model that is uniquely
accessible and inclusive for study participants.

(JMIR Med Inform 2022;10(7):e39145)   doi:10.2196/39145

KEYWORDS

electronic health record; EHR; digital health technology; digital clinical trial; underrepresentation; underrepresented in biomedical
research; biomedical research

Introduction

The electronic health record (EHR) represents an evolution from
static paper-based records to a more portable, interactive, and
dynamic medium shared by tools like web-based patient portals
and mobile apps. The wealth of information provided in each
EHR—such as medical history, medications, diagnoses,
treatments, procedures, allergies, laboratory tests,
immunizations, hospital admissions, and clinic visits—creates
new opportunities. Advancements in how patients access their
EHR have resulted in significant expansion in how EHR data
are operationalized by providers to inform and deliver care.
Further, the patient’s ability to access and share their EHR data
directly with researchers has opened the door for the research

community to glean clinically important information from study
cohorts.

The mechanisms by which patients interact with their EHR are
in a fluid state of development, and patients expect improved
functionality in how they interact with their EHR [1]. It is no
surprise that the expanding reach of the digital health system
for ambulatory data capture coincides with the expansion of
digital clinical research that seeks to leverage these data to gain
insights at both individual and population levels. As digital
health technologies become more accessible and integrated into
daily living, the increasing ubiquity of real-world and real-time
health data stands to transform how researchers address
questions about health and disease. In this viewpoint, we
describe how recent advancements in EHR technology are
advancing the digital clinical trial space, an innovative research
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model that is uniquely accessible, scalable, inclusive, and
impactful for study participants and researchers.

Policy Feeding Progress

Over a decade ago, the Health Information Technology for
Economic and Clinical Health (HITECH) Act was enacted to
incentivize the “meaningful use” of health information with an
emphasis on more widespread adoption of EHRs by hospital
systems and medical practices. While there is evidence that the
HITECH Act stimulated the uptake of EHR systems across
more medical facilities, the development of an interoperable
health IT environment using modern internet technology and
technical standards was not adequately addressed [2-4]. As a
result, subsequent small- and large-scale initiatives have helped
unlock some of the more advanced capabilities of EHR
connectivity and compatibility.

Harvard Medical School and Boston Children’s Hospital created
Substitutable Medical Apps and Reusable Technology
(SMART), an application programming interface standard that
establishes compatibility to allow any EHR-based software
application to function with any EHR system, thus equipping
hospitals with a broader selection of EHR tools to support
ever-changing clinical and business needs. However, the
introduction of Fast Healthcare Interoperability Resources
(FHIR) proved to be a tipping point and a crucial piece to the
elaborate puzzle of health IT infrastructure. The not-for-profit
organization Health Level Seven International (HL7) created

FHIR, a technical standard that defines how EHR data are
accessed and exchanged between different computer systems.
Given HL7’s robust global community of developers and
stakeholders, the FHIR standard gained significant traction
within the health IT community [5]. The coupling of the
SMART and FHIR standards (known as “SMART on FHIR”)
is now considered an essential toolkit by hospitals, researchers,
and the health IT industry to improve the interoperability of
EHR systems [6,7].

More recently, SMART on FHIR resources have been integrated
with Epic, Cerner, and other widely used EHR platforms to
operationalize clinical decision support tools for providers, such
as risk prediction tools for surgical procedures and advanced
treatment modalities [8,9]. SMART on FHIR was recently used
by Apple for their Health app, which allows users to link their
device-generated health data directly to their EHR as a means
to consolidate their digital health information [10]. The latest
federal mandate, the 21st Century Cures Act, primarily relies
on FHIR to expand meaningful patient use of EHR systems by
incentivizing advancements to patient-facing digital health
services and apps, bidirectional sharing of health information
between patients and providers, and patient-mediated sharing
of EHR with researchers [11,12]. These recent developments
have equipped patients with the ability to use their mobile or
desktop devices to access physician’s notes and laboratory test
results, schedule medical appointments, link health and activity
monitors, and search for and enroll in clinical trials (Figure 1).
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Figure 1. The widespread adoption of SMART on FHIR technical standards has enabled EHR systems to serve as a hub for the secure and efficient
exchange of digital health information. (A) Researchers can partner directly with patients to participate in clinical research, and patients can chose to
grant permission to researchers to access and use their EHR data; (B) patients can view and manage their EHR through an online patient portal using
mobile and desktop devices; (C) patients can link their personal digital health products (eg, fitness trackers, wearable health monitors, at-home genomic
tests) to their EHR as a way to centralize various elements of their health information; (D) EHR systems allow patients to schedule appointments with
their provider, view provider notes, communicate with their provider, complete routine health surveys, and find opportunities to participate in research;
(E) providers enter their clinical notes into their patient’s EHR, access external patient-provided digital health information, and work with their patient
to ensure critical health information is accurate and current; (F) patients can link their health information from third-party services such as outside
providers, imaging centers, laboratories, and pharmacies. EHR: electronic health record; FHIR: Fast Healthcare Interoperability Resources; SMART:
Substitutable Medical Apps and Reusable Technology.

The Expanding Role of EHR in Clinical
Research

The COVID-19 pandemic put a spotlight on digital health and
whether existing technologies were poised to face the unique
challenges of a global health crisis forcing remote patient
monitoring. Perhaps the most rapid and expansive
implementation of digital health during the pandemic was the
shift to telehealth, which demonstrated that basic digital
technologies were adequate to support the widespread delivery
of virtual health care [13]. Other EHR-driven solutions included
the ability for patients to create advance care plans, in case of
severe illness; new templates to capture COVID-19 test results
to inform population-level statistics; and predictive models to
stratify risk and inform clinical decision-making for infected
patients [14-16]. The integration of these digital health
tools—driven in part by large-scale exchange and compilation
of patient data—emphasizes the unique role EHR technology
plays in addressing complex health problems. For clinical
research, increasing EHR adoption provides evermore data to
complement health survey and wearable device data, supplement
missing data, and reduce participant burden.

The digital nature of EHRs makes them well-suited to be
incorporated into decentralized clinical research. In contrast to
the traditional, hospital-based paradigm of clinical research,
decentralized studies utilize a siteless, patient-centered model
that affords study participants the convenience of remote data

acquisition (both active and passive) through a combination of
mobile apps, wearable devices, electronic surveys, self-collected
biosamples, and now—with the advancements described
above—patient-mediated EHR connectivity. While the “digital
divide” and other barriers still exist, decentralized digital clinical
trials can be accessible to a broader spectrum of patient
populations—including those who are underrepresented in
biomedical research (UBR)—and diminish common barriers
and selection biases such as health insurance status, medical
provider affiliation, and proximity to an academic medical center
[17]. Direct-to-participant recruitment strategies equip
researchers with multiple avenues to engage a large pool of
potential study participants, thus increasing the sample size and
statistical power with which site-based research chronically
struggles. Additionally, local institutional review boards offer
researchers who are not affiliated with a covered entity (eg,
academic medical center) more expedient regulatory pathways
to study approval and initiation since HIPAA (Health Insurance
Portability and Accountability Act) Privacy Rules are not
applicable to noncovered entities [18].

Patient-Mediated EHR Sharing in a
Real-World Digital Clinical Trial

In response to the COVID-19 pandemic, the Scripps Digital
Trials Center launched the Digital Engagement & Tracking for
Early Control & Treatment (DETECT) digital research platform
(ClinicalTrial.gov identifier: NCT04336020) [19,20]. DETECT
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is an observational research effort examining whether
individualized changes in heart rate, activity, or sleep—all
monitored through the use of a wearable activity tracker—can
serve as early indicators of viral infections. DETECT leveraged
a remote, siteless research model, and the participant experience
allowed for a lightweight entry process. DETECT did not require
participants to connect their EHR; however, the study app
allowed participants the option to share their EHR data to equip
the researchers with additional information for post hoc analyses.
Among the entire DETECT cohort (n=40,322), approximately
10% (n=4210) elected to connect their EHR within the study
app (enrollment numbers as of March 21, 2022).

DETECT’s foundational protocol was designed to support
additional substudies aimed at more specific clinical questions.
DETECT-At Home Early Alert and Diagnosis
(DETECT-AHEAD) is one such substudy that explores the
feasibility of an algorithm-driven notification system based on
data from wearable sensors, with a specific focus on outcomes
from UBR populations. Study participants receive an alert via
the study app to perform an at-home COVID-19 test, possibly

before they experience symptoms, to rule out infection as soon
as possible. For DETECT-AHEAD, sharing of EHR data is a
criterion for participation, so all study participants connected
their EHR after completing eligibility surveys. The protocol
design for DETECT-AHEAD also set goals for enrollment of
UBR populations to ensure the substudy cohort was reflective
of the US population (Table 1).

In DETECT-AHEAD, the average age of participants was 49.4
years, the male-to-female ratio was 0.68, 15.3% (n=69) of the
cohort was under 35 years of age, and racial minorities
comprised 30.4% (n=137) of the cohort. DETECT-AHEAD
demonstrates that while it is possible to engage a diverse
population of participants, more work needs to be done to reach
UBR populations that are considered disadvantaged by the
digital divide (ie, age ≥65 years, highest education grade <12,
annual household income <$10,000) [21]. The methods were
performed in accordance with relevant guidelines and
regulations and approved by the Scripps Institutional Review
Board. All study participants signed an electronic informed
consent form.

Table 1. DETECT-AHEADa enrollment numbers in the underrepresented in biomedical research category (self-reported).

Participants (N=450), n (%)Characteristic

71 (15.8)Age (≥65 years)

7 (1.6)Gender (other)

Race

45 (10)Hispanic/Latino

39 (8.7)Asian

27 (6)Other (non-White)

26 (5.8)Black/African American

2 (0.4)Highest level of education (grades 1-11)

13 (2.9)Annual household income (<$10,000)

aDETECT-AHEAD: Digital Engagement & Tracking for Early Control & Treatment – At Home Early Alert and Diagnosis.

Current Challenges and Limitations

While DETECT and DETECT-AHEAD demonstrate how study
participants, including those from UBR groups, possess a
willingness to share their EHR in a research setting, the research
community continues to overcome hurdles to promote the
adoption of patient-mediated EHR exchange mechanisms.
Perhaps the most notable constraints are the longstanding
disparities in universal access to reliable internet service and
use of mobile technologies [22,23]. While the digital clinical
trial model offers individuals more convenient ways to take part
in research and thus fosters inclusivity, its reliance on broadband
internet service continues to be a barrier.

Over a quarter (28%) of US adults who live in rural areas do
not have broadband internet service, which may partly explain
why rural communities interact less with EHRs compared to
their urban counterparts [22,24]. Also, individuals who are 65
years and older are less likely to use EHRs, and while
smartphone ownership has risen in this group in recent years,
only 42% report owning a smartphone (compared to 77% of all

adults over 18 years) [23,25]. African American, Asian, and
Latino race, younger age (ie, <35 years), and low education
level are other factors associated with low engagement with
EHR systems [26]. However, there have been some positive
trends in recent years. Nearly 60% of patients were offered an
EHR patient portal by their health care provider—a 17%
increase from 2014 to 2020 [27]. Additionally, the number of
patients who downloaded their EHR data nearly doubled
between 2017 and 2020, and roughly 20% of EHR users elected
to link their health data to an outside caregiver, health service,
or app [27]. Without improved access to the internet and
connected digital health tools among UBR groups, clinical study
outcomes will continue to lack diversity and thus have limited
applicability.

The robustness of a patient’s EHR is critically important to both
providers and researchers to ensure reliable interpretation and
analysis of health information. Patients who actively manage
their EHR can help ensure their information is up-to-date and
free of errors, but many EHR patient portals still do not offer
patients editing permission to allow full control over their own
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health information. From a technical standpoint, as capabilities
to aggregate and access data across different sources increase,
so does the challenge to integrate data from multiple modalities,
deal with missing data, and map discrepant terminology,
including data in free-text form. The EHR itself must continue
to evolve and expand its capability, for example, to enrich the
clinical context for data such as images or lab results.
Additionally, the persistent concern for privacy and data security
must also not be overlooked as we seek to find new ways of
verifying identity, securely transferring EHR data, and
improving deidentification techniques. Lastly, if an EHR system
lacks quality control and safeguards against erroneous
information, including improper or fraudulent use of the system,
serious problems can arise such as diminished quality of care
and medical errors [28].

Moving Forward

As more health care organizations offer patients personalized
tools to interact with and visualize their EHR data, patients will
ultimately become more engaged with their provider and overall
health management. Health IT professionals with expertise in
user experience and interface design will serve increasingly
important roles in optimizing patient engagement with their
EHR and associated digital health tools. Equipping patients
with permission to update information, correct errors, and
connect external sources of health information is a critical step
toward improving patient engagement with their EHR, which
should become a universal feature across all EHR systems.

There are some promising technical solutions on the horizon.
Increasingly, software services are available for cloud-based
clinical data warehousing, entity extraction, terminology
standardization, and record linkage, which leverage functionality
developed by others at scale, obviating the need to solve these
challenges for each application [29-32].

Accessing and sharing EHR data are not the only obstacles to
recognizing the full potential of leveraging EHR data. Ideally,
the EHR is more than a historical record of clinical outcomes
but rather a dynamic asset in preventative interventions.
However, for this to be realized, the EHR must continue toward
a comprehensive capture of a patient’s health information to
meaningfully provide information back to the participant by
way of at-risk assessments, prediction of outcomes, or
personalized detection of disease.

Conclusion

EHR technology has made significant advances through
improved compatibility across connected mobile devices, digital
health products, and health IT software. The biomedical research
community is beginning to harness the benefits of EHR
connectedness by means of fully remote digital clinical trials,
which help reduce burden on study participants and fosters
diversity and inclusivity of study populations. As more patients
become familiar with their EHR to manage their ever-growing
sources of health information, engage with their provider, and
partner with researchers, the health care community as a whole
will be better equipped to optimize health and well-being for
all.
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Abstract

Background: Web-based medical services have become an effective supplement to traditional services in hospitals and an
essential part of medical services. Studies have shown that web-based medical services are useful for shortening the delayed
admission time and for enhancing the treatment effect from the service continuity perspective. However, the specific measures
that patients and physicians should take to improve service continuity remain unknown.

Objective: Based on the information richness theory and continuity of care, this study investigates the dynamic effects of
information continuity and interpersonal continuity on physician services online.

Methods: Data of 7200 patients with 360 physicians covering complete interaction records were collected from a professional
web-based platform in China. Content analysis was performed to recognize matching patients and physicians, and least square
regression analysis was performed to obtain all empirical results.

Results: Empirical results showed that in the short term, information continuity (including offline experience, medical records,
and detailed information) influences physicians’ web-based services, and their influences show heterogeneity. Moreover, if a
patient’s online physician is the same physician who he/she has visited offline, we find that interpersonal continuity is important
for service. In the long term, information continuity and interpersonal continuity positively improve service continuity by facilitating
repeat purchases.

Conclusions: Overall, our findings not only shed new light on patient behavior online and cross-channel behavior but also
provide practical insights into improving the continuity of care in online health communities.

(JMIR Med Inform 2022;10(7):e35830)   doi:10.2196/35830

KEYWORDS

continuity of care; web-based medical service; service quality; information continuity; interpersonal continuity

Introduction

Background
High continuity of care is the key to improving medical service
quality and decreasing irrational use [1], which is an important
theme of digital transformation that is receiving increasing
attention. Currently, there is no universal definition of the
concept and characteristics of continuity of care. However,

experienced continuity, information continuity, coherence of
medical records, cross-boundary and team continuity,
longitudinal continuity, and interpersonal continuity are widely
recognized as important elements of continuity of care [2]. As
some medical services can be done using information
technology, such as appointments and treatments, the use of
information technology in health care could realize the mutual
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recognition of inspection results and sharing of medical records,
thus improving the continuity of care [3].

Online health communities provide a channel for patient and
physician contact conveniently by overcoming space-time limits
and enriching information provision [4,5]. Web-based medical
services have become an effective supplement to traditional
services in hospitals and an essential part of medical services
[6]. Patients can communicate with physicians via various types
of services, including individual service (written consultation,
phone consultation, video consultation) and team service. No
matter which service patients use, they should post their
questions mandatorily and provide offline treatment materials
selectively if they have them. This offline information helps
improve continuity of care and is useful for physicians to make
an accurate diagnosis.

From the continuity of care perspective, “internet plus medical
service” (a new application of the medical industry, which
includes internet as the carrier and the technical method of health
education, medical information query, electronic health records,
disease risk evaluation, online consulting, electronic
prescription, remote consultation, remote treatment and
rehabilitation, and other forms of health care services) is
believed to integrate medical treatment, health care, and
rehabilitation, with extending medical services outside the
hospital. The form of “internet plus medical service” is changing
from “split” to “holistic medical treatment,” and this treatment
plays a significant role in interpersonal continuity, information
continuity, and geographical continuity [7]. However, the above
benefits are only theoretical judgments and there are no
empirical studies to examine the role of online health
communities. To the best of our knowledge, this study is among
the first to investigate the effects of information providing from
the continuity of care perspective. Although the literature on
online health communities is abundant [8-11], they rarely focus
on the influence of offline experiences on online behaviors. In
addition, prior studies have revealed that web-based medical
services are useful for shortening the delayed admission time
and for enhancing the treatment effect from the service
continuity perspective [1]. However, the specific measures that
patients and physicians should take to improve service continuity
remain unknown. Based on the information richness theory and
continuity of care, this study aims to investigate the dynamic
effects of information continuity and interpersonal continuity
on physicians’ services online. To fill the above research gap,
we follow patient’s online information-providing behavior to
examine the following research questions.

Research question 1: How does information continuity (offline
treatment experience, medical records, and detailed information
provision) influence physicians’ web-based services?

Research question 2: How does interpersonal continuity
influence physicians’ web-based services?

Theoretical Foundation and Hypothesis Development

Information Richness Theory
Information richness theory, also called as media richness
theory, takes the communication channel as an objective feature
to determine the ability of information transmission [12]. It

describes the ability to change people’s understanding within
a time interval and consists of 4 standard features: the ability
to give immediate feedback, the ability to communicate multiple
social cues, linguistic diversity, and personalization [13]. The
amount of information affects the communication outcomes by
reducing uncertainty [14]. The appropriate amount is determined
by the purpose of the communication and the content. The rich
information can provide practical help for communication,
coordination, collaboration, and information sharing. With the
development of media, the standards for evaluating information
richness have changed and a large number of important research
results have been gained. Users’perceived information richness
would affect their satisfaction [15] and continued willingness
to use [16]. Moreover, interactivity is an important factor in
assessing the perceived richness of information [15,17,18] and
could determine the platform development [19]. High
interactivity would increase the willingness of users to use media
or services [20,21]. High richness could decrease consumers’
uncertainty in online retail and increase their loyalty [22]. In
the health field, the essential difference between web-based
medical services and traditional medical services (ie,
face-to-face) is information richness. However, with the
development of web-based services, studies find that web-based
psychological interventions are as effective as face-to-face
psychotherapy [23]. For sensitive diseases, patients prefer a
high information richness channel such as face-to-face therapy
[24]. High information richness improves users’ perception of
knowledge quality, source credibility, and knowledge consensus,
especially under high health threats [25].

Continuity of Care
Service continuity was first proposed in the Folsom Report,
Millis Report, and Willard Report in 1966, and then its concept
has been developed and enriched. Subsequently, scholars have
elaborated on various dimensions of continuity of care [2,26].
Continuity of care has also been defined in related studies as
repeated contact between patients and physicians [27]. For the
service provider, continuity of care can be divided into
information continuity, multi-department continuity, time
continuity, interpersonal continuity, and management continuity
[2]. For the service receiver, experience continuity and
geography continuity are important dimensions of continuity
of care. The most widely used dimensions are information
continuity, time continuity, and interpersonal continuity [28,29].

Information continuity means that different medical institutions
have complete, timely, shareable, mutually recognized, and
cohesive information in the aspects of disease prevention,
examination, diagnosis, treatment, and rehabilitation of patients
[2]. The health care provider uses information on past events
to deliver care that is appropriate to the patient’s current
circumstance [26]. Interpersonal continuity means providers
develop an ongoing relationship with patients and the provider
has knowledge of the patient as a person [26]. Interpersonal
continuity is built on repeated (but not necessarily exclusive)
contacts and is important for building trust and respect. The
central skill fostered by interpersonal continuity over time is
the ability to make and value a multidimensional diagnosis
based on the biopsychosocial model within the patient’s context
[2,30]. As many patients nowadays have more than one preferred
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health care provider, when transitions in care occur,
communication and collaboration between health care providers
(ie, information continuity) are more important than
interpersonal continuity [31]. Continuity of care is associated
with patient satisfaction, adherence to medical advice, and the
use of hospital services [1]. Medical care is a special service
for maintaining health; the continuity of life determines that
medical care must be continuous. In the context of population
aging, disease spectrum change, rapidly rising medical costs,
and patients’ increasing emphasis on self-worth, continuous
medical care has become the focus of the establishment and
improvement of health service systems in various countries.

Information Provision and Medical Service
The specialty of medical service leads to high information
asymmetry between physicians and patients. It is difficult for
both physicians and patients to fully explain the health condition
within a limited time. Medical service is directly related to the
health or safety of patients; thus, they often visit several
physicians for rich information. Rich information helps improve
physician-patient interaction and patient experience, thereby
enhancing the information service capability and user
satisfaction [32]. Quantitative information on the quality of
health services can be more useful to patients by combining
digital information with graphics [33]. Physicians’ information
has an important impact on the patient’s decision [34].

Since 1998, the government and private sectors have recognized
the importance of using technology for improving care delivery
and have made progress in setting the stage for transforming
health care delivery through vastly improved use of health
information technology [35]. There have been many government
eHealth initiatives aiming to improve continuity and
coordination through information, such as Personally Controlled
Electronic Health Record [36], electronic health records [37],
and telemedicine [38]. Although the use of online health
communities is thought to help improve the continuity of care
[3], only few empirical studies have been conducted to explore
these influence mechanisms.

Online health communities serve as a bridge to help patients
and physicians solve the problem of information asymmetry
and improve the physician-patient relationship [39]. There are
mainly 2 types of patients in online health communities. One
type is those who have not seen a physician in hospitals and
hope to receive advice on care through the web-based platform.
The other category is the patients who have already seen a
physician in hospitals and hope to receive more advice for
disease treatment, rehabilitation, prognosis, and interpretation
of the test report after receiving diagnosis and treatment offline.

For the second type, as patients have received medical service
in the hospital, they have more information, which they can
provide to physicians in online health communities to improve
continuity of care. Higher continuity is associated with higher
quality of health care [40]. Based on the dimensions of
continuity of care, we propose the following hypotheses:

1. Hypothesis 1: High information continuity helps improve
a physician’s web-based service. Previous studies have
indicated that trust could change in different periods
dynamically. In the case of medical service, the roles of
information continuity and interpersonal continuity may
change as the physician contacts patients over time [41].
Therefore, we examined the effects of information
continuity in the short term (for the current purchase) and
in the long term (for the future purchases). In short term,
response speed, information quality, and interaction quality
have been widely used in prior studies [8,9]. Repeat
purchase is often used to measure the long-term effects
[42]. Therefore, we included them and developed the
following hypotheses. Hypothesis 1a: (short-term) high
information continuity would improve the response speed
of a physician’s reply. Hypothesis 1b: (short-term) high
information continuity would improve the information
quality of a physician’s reply. Hypothesis 1c: (short-term)
high information continuity would improve the interaction
quality of a physician’s reply. Hypothesis 1d: (long-term)
high information continuity would increase a patient’s
repeat purchase. Patients with a close continuous
relationship with a specific physician are more likely to
receive the recommended care [43]. Service content and
service quality of health care can vary substantially across
channels. Therefore, patients engaging in multiple visits
with the same physician could help obtain a continuous and
satisfactory outcome [44]. Based on the above arguments,
we hypothesize that if it is the same physician online and
offline, the effects of information continuity on the
physician’s service would be enhanced.

2. Hypothesis 2: High interpersonal continuity would enhance
the relationships between information continuity and a
physician’s service. Based on the richness of information,
we recognize whether a patient has offline treatment
experience and has told the online physician, and then, we
recognize whether a patient has provided his offline medical
records to the online physician, and we calculate the degree
of information provision.

The conceptual model for the abovementioned hypotheses is
shown in Figure 1.
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Figure 1. Conceptual model.

Methods

Ethics Approval
This study was approved by the institutional review board of
Hainan Women and Children’s Medical Center
(HNWCMC202262).

Research Context and Data Collection
We collect data from one of the most professional and popular
online health communities in China: Haodf.com [45].
Haodf.com was founded in 2006 and is one of China’s leading
online health care platforms. Haodf.com provides services such
as hospital/physician information query, written consultation,
phone consultation, video consultation, outpatient appointment,
postdiagnosis disease management, family physician, disease
knowledge, and popularization, and is widely trusted by
physicians and patients. Haodf.com has a large number of
high-quality physicians. By July 2021, Haodf.com had collected
the information of more than 790,000 physicians in nearly
10,000 regular hospitals across the country. Among them, more
than 240,000 physicians had registered on the platform, and
those from AAA hospitals accounted for 73% of these active
physicians. The hospitals in China are divided into 10 levels,

and AAA is the best level. As of July 2021, Haodf.com has
served more than 72 million patients. This online health
community provides a physician-patient interaction platform
for various diseases. Both individual services (eg, written
consultation, phone consultation, video consultation) and team
services are provided. Based on the aims of this study, we chose
written consultation service and focused on physician-patient
interaction content on diabetes for the following 2 reasons. First,
chronic diseases have a long treatment period, and the patient
often needs repeated communication with physicians. On
Haodf.com, there is a large diabetic population, which was
beneficial for the conduct of this research. Second, different
from phone and video consultations, all interaction contents
between physicians and patients based on written consultation
are recorded on Haodf.com and shown publicly. We can obtain
all the information that a patient has provided to his physician.
By developing a web crawler, we firstly collected physician
data from physician lists on Haodf.com, and 360 physicians
were included. Then, for each physician, 20 complete
physician-patient interaction contents were collected, including
symptom description, offline experience, purchase times,
medical records, or other material provision (shown in Figures
2 and 3). Finally, data of 7200 patients with 360 physicians
were included in the empirical study.

Figure 2. Examples of patients' questions.
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Figure 3. An example of interaction content.

Variables and Models

Dependent Variables
Four dependent variables were used to measure physicians’
services: response speed (RSij), information quality (InfQij),
interaction quality (IntQij), and repeat purchase (RPij). Response
speed, information quality, and interaction quality, which were
often used to measure the quality of physicians’ online services
in prior studies [34], were used to measure the short-term
influence. The repeat purchase was used to measure the
long-term influence.

Independent Variables
Information, including medical history, laboratory results,
radiographs, and current diagnoses, as well as the history of
medications and treatments, should be available to clinicians at
the point of care whenever and wherever they need them, no
matter where they were originally obtained [35]. Therefore,
considering the information provision in online health
communities, 3 independent variables were included to measure
patient i’s offline information provision. Based on the degree

of offline information provision, we measured whether patient
i had offline experience (OEij) and mentioned it during the
online consultation with physician j. If that was so, we measured
the number of offline medical records or other material (OMRij)
that patient i had provided to support the online service of
physician j, and the number of words (ODIij) that patient i has
described his offline experience to online physician j. These 3
variables describe the information continuity.

Moderating Variable: Interpersonal Continuity
Based on the interaction content, we recognized whether the
physician in the patient’s offline experience is the same as the
physician who patient i had consulted online (SPij), and used a
dummy variable in empirical models. This variable describes
interpersonal continuity.

Control Variables
Other important information about physicians that may influence
physician service was also included to control: physician
medical title (MTitle1j and MTitle2j), physician education title
(ETitlej), physician online reputation (PORj), and hospital level
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(Levelj). More details can be found in Table 1. Table 1 shows
the definitions of the variables in the empirical analysis and
their measurements. The unit of analysis is the individual online
health community patient-physician interaction.

Accordingly, our empirical models are shown in , showing

short-term effects and , showing the long-term effects, where
i=1,…, N represents the patients, j=1,…, M represents the
physicians, β1 to β7 are the focus parameters to be estimated.
C represents control variables. ε is the error term associated
with observation i and j.

Table 1. Description of the variables.

MeasuresDescriptionVariables

Dependent variables

Use response time directly. The value is in days.The response time that physician j could reply to a
patient’s question in 24 hours.

Response speed (RSij)

The number of words replied.The level of detail in the physician j’s reply for pa-
tient i.

Information quality (InfQij)

The number of interactions between patient i and
physician j is used.

The frequency of physician-patient interaction.Interaction quality (IntQij)

A dummy variable that describes whether patient i
has repurchased physician j’s service.

Patient i may have purchased physician j’s service
many times.

Repeat purchase (RPij)

Independent variables

A dummy variable that describes whether patient i
has provided his offline experience to the online
physician. “1” refers to yes, and “0” refers to no.

Patient i may have gone to a hospital for treatment
before consulting online.

Offline experience (OEij)

The number of results of tests that patient i has
provided to the online physician.

Patient i may have gone to a hospital for treatment
before consulting online, and undergo some tests.

Offline medical records (OMRij)

The number of words that patient i has described
his offline experience to the online physician.

Patient i may have gone to a hospital for treatment
before consulting online.

Offline detailed information (ODIij)

Moderating variable

A dummy variable that describes whether it is the
same physician online and offline. “1” refers to yes,
and “0” refers to no.

Whether the physician in patient’s offline experi-
ence is same as the physician who patient i has
consulted online.

Same physician (SPij)

Control variables

A dummy variable that describes whether physician
j is a chief physician or associate chief physician.
“1” refers to physician j as a chief physician or as-
sociate chief physician, and “0” refers to other
medical titles.

Physicians have medical titles, which are evaluated
by the medical government based on their medical
skills in China, including chief physician, associate
chief physician, attending physician, and resident
physician.

Physician medical titles (MTitle1j and
MTitle2j)

A dummy variable that describes whether physician
j is a professor or associate professor at a university.
“1” refers to physician j as a professor or associate
professor, and “0” refers to other educational titles.

Whether the physician j has worked at a university.Physician education title (ETitlej)

An indicator (ranges from 0 to 5) that is calculated
by the website based on patients’ feedbacks is used
directly.

The reputation is based on physician j’s online
work.

Physician online reputation (PORj)

A dummy variable indicating if the hospital where
physician j works is AAA hospital. “1” refers to
physician j works in an AAA-level hospital, and
“0” refers to other level hospitals.

Hospitals have levels that are evaluated by the
medical government based on their comprehensive
health care quality in China.

Hospital level (Levelj)

Results

Descriptive Statistics
Table S1 of Multimedia Appendix 1 shows the descriptive
statistics and the correlations of the variables. On average, 46%
(3312/7200) of the patients mentioned their offline experience.
Each patient provided 6.11 offline medical records or other

material and 38.5 words about the offline experience; 77%
(5544/7200) of the patients chose the same physician online
and offline. The response rate in 24 hours was 67.3% (242/360).
The average numbers of information words and interactions
were 12.61 and 17.97, respectively; 29% (2088/7200) of the
patients purchased the physician service repeatedly.
Multicollinearity is not an issue in our research as all variance
inflation factors were less than 10.
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Empirical Results: Short-term Effects
The ordinary least squares was used to obtain our short-term

effect results, which are shown in Table 2, Table 3, and Table
4.

Table 2. Results for information continuity (offline experience provision): short-term effects.

Interaction qualityInformation qualityResponse speedVariables

Model 2fModel 1eModel 2dModel 1cModel 2bModel 1a

P valueβ (SD)P valueβ (SD)P valueβ (SD)P valueβ (SD)P valueβ (SD)P valueβ (SD)

<.001.022
(.003)

<.001.022
(.003)

.29–.052
(.049)

.48–.036
(.050)

.007–.017
(.006)

.008–.017
(.006)

Level

.009.010
(.004)

.004.011
(.004)

.009.152 (.058).28.063
(.059)

.01–.019
(.008)

.006–.021
(.008)

MTitle1g

.02.009
(.004)

.02.009
(.004)

.001.188 (.057).003.171
(.058)

.83–.002
(.007)

.80–.002
(.007)

MTitle2

.53.002
(.003)

.53.002
(.003)

.02–.117
(.051)

.02–.120
(.052)

.01–.017
(.007)

.01–.017
(.007)

ETitleh

<.001–.105
(.005)

<.001–.105
(.005)

<.0011.950
(.081)

<.0011.930
(.082)

<.001.092
(.011)

<.001.092 (.011)PORi

.02.006
(.002)

N/AN/A<.001–.518
(.036)

N/AN/A.053–.009
(.005)

N/AN/AkOEj

aAdjusted R2=0.010; F5,7720=16.808; P<.001.
bAdjusted R2=0.010; F1,7719=3.730; P=.053.
cAdjusted R2=0.090; F5,7720=153.226; P<.001.
dAdjusted R2=0.113; F1,7719=202.729; P<.001.
eAdjusted R2=0.052; F5,7720=85.391; P<.001.
fAdjusted R2=0.052; F1,7719=5.915; P=.02.
gMTitle1: physician medical title.
hETitle: physician education title.
iPOR: physician online reputation.
jOE: offline experience.
kN/A: not applicable.
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Table 3. Results for information continuity (offline medical record provision): short-term effects.

Interaction qualityInformation qualityResponse speedVariables

Model 2fModel 1eModel 2dModel 1cModel 2bModel 1a

P valueβ (SD)P valueβ (SD)P valueβ (SD)P valueβ (SD)P valueβ (SD)P valueβ (SD)

<.001.097
(.014)

<.001.064
(.015)

.28.052
(.049)

.48–.036
(.050)

.04–.013
(.006)

.008–.017
(.006)

Level

<.001–.102
(.016)

<.001–.135
(.017)

.008.151
(.057)

.28.063
(.059)

.03–.017
(.008)

.006–.021
(.008)

MTitle1g

.52–.010
(.016)

.35–.016
(.017)

.001.186
(.056)

.003.171
(.058)

.86–.001
(.007)

.80–.002
(.007)

MTitle2

.05.028
(.014)

.86.003
(.015)

.29–.054
(.050)

.02–.120
(.052)

.04–.014
(.007)

.01–.017
(.007)

ETitleh

<.001–.501
(.025)

<.001–.208
(.024)

<.0011.148
(.087)

<.0011.930
(.082)

<.001.057
(.011)

<.001.092
(.011)

PORi

<.001–.009
(.000)

N/AN/A<.001–.025
(.001)

N/AN/A<.001–.001
(.000)

N/AN/AkOMRj

aAdjusted R2=0.010; F5,7720=16.808; P<.001.
bAdjusted R2=0.017; F1,7719=56.802; P<.001.
cAdjusted R2=0.090; F5,7720=153.226; P<.001.
dAdjusted R2=0.146; F1,7719=511.611; P<.001.
eAdjusted R2=0.037; F5,7720=59.550; P<.001.
fAdjusted R2=0.135; F1,7719=882.911; P<.001.
gMTitle1: physician medical title.
hETitle: physician education title.
iPOR: physician online reputation.
jOMR: offline medical record.
kN/A: not applicable.
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Table 4. Results for information continuity (offline detailed information provision): short-term effects.

Interaction qualityInformation qualityResponse speedVariables

Model 2fModel 1eModel 2dModel 1cModel 2bModel 1a

P valueβ (SD)P valueβ (SD)P valueβ (SD)P valueβ (SD)P valueβ (SD)P valueβ (SD)

<.001.068
(.014)

<.001.064
(.015)

<.001.032
(.009)

.48–.036
(.050)

.02–.015
(.006)

.008–.017
(.006)

Level

<.001–.137
(.017)

<.001–.135
(.017)

.03.023
(.011)

.28.063
(.059)

.003–.022
(.007)

.006–.021
(.008)

MTitle1g

.14–.025
(.017)

.35–.016
(.017)

.74.003
(.011)

.003.171
(.058)

.40–.006
(.007)

.80–.002
(.007)

MTitle2

.46.011
(.015)

.86.003
(.015)

<.001.036
(.009)

.02–.120
(.052)

.05–.013
(.007)

.01–.017
(.007)

ETitleh

<.001–.319
(.024)

<.001–.208
(.024)

<.001–.149
(.016)

<.0011.930
(.082)

<.001.039
(.011)

<.001.092
(.011)

PORi

<.001.042
(.003)

N/AN/A<.001.797
(.002)

N/AN/A<.001.020
(.001)

N/AN/AkOMRj

aAdjusted R2=0.010; F5,7720=16.808; P<.001.
bAdjusted R2=0.047; F1,7719=297.243; P<.001.
cAdjusted R2=0.090; F5,7720=153.226; P<.001.
dAdjusted R2=0.370; F1,7719=4896.067; P<.001.
eAdjusted R2=0.037; F5,7720=59.550; P<.001.
fAdjusted R2=0.067; F1,7719=256.155; P<.001.
gMTitle1: physician medical title.
hETitle: physician education title.
iPOR: physician online reputation.
jOMR: offline medical record.
kN/A: not applicable.

Results for Information Continuity
Table 2 results suggest that offline experience negatively affects
physician response speed (β=–.009, P=.053) and information
quality (β=–.518, P<.001). Offline experience positively
influences interaction quality (β=.006, P=.02). For offline
experience provision, hypotheses 1a and 1c are supported but
hypothesis 1b is not supported. Table 3 results show that offline
medical record provision negatively affects physician response
speed (β=–.001, P<.001), information quality (β=–.025,
P<.001), and interaction quality (β=–.009, P<.001). For offline
medical records provision, hypothesis 1a is supported but
hypotheses 1b and 1c are not supported. The results in Table 4
present that offline detailed information provision positively
affects physician response speed (β=.020, P<.001), information
quality (β=.797, P<.001), and interaction quality (β=.042,
P<.001). For offline detailed information provision, hypothesis
1a is not supported but hypotheses 1b and 1c are supported.
Thus, hypotheses 1a, 1b, and 1c are partly supported.

Results for Interpersonal Continuity
The influences of interpersonal continuity on physician service
are shown in Table S2 of Multimedia Appendix 2. We find that
interpersonal continuity negatively moderates the relationship
between offline experience provision and response speed

(β=–.034, P=.006) and the relationship between offline
experience provision and information quality (β=–.555, P<.001).
We also find that interpersonal continuity positively moderates
the relationship between offline medical record provision and
interaction quality (β=–.010, P<.001), the relationship between
offline detailed information provision and information quality
(β=.015, P<.001), and the relationship between offline detailed
information provision and interaction quality (β=.016, P=.01).
Thus, for interpersonal continuity, hypothesis 2 is partly
supported.

Empirical Results: Long-term Effects
The Probit regression was used to obtain our long-term effect
results, which are shown in Tables 5 and 6. The results for
information continuity are shown in Table 5. Our results suggest
that offline experience positively affects physician response
speed (β=.006, P=.04), information quality (β=.001, P<.001),
and interaction quality (β=.602, P<.001). For the long-term
effects of information continuity, hypothesis 1d is supported.
The results for interpersonal continuity are shown in Table 6.
The results indicate that the interpersonal continuity only
positively moderates the relationship between offline detailed
information and repeat purchase (β=.143, P=.04). Thus,
hypothesis 2 is partly supported.
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Table 5. Results for information continuity: long-term effects.

Offline detailed informationOffline medical recordOffline experienceVariables

Model 2fModel 1eModel 2dModel 1cModel 2bModel 1a

P valueβ (SD)P valueβ (SD)P valueβ (SD)P valueβ (SD)P valueβ (SD)P valueβ (SD)

<.001.402 (.153).03.351
(.157)

.004.012
(.004)

.001.014
(.004)

.001.014
(.003)

.001.014 (.003)Level

<.001–1.732
(.179)

<.001–1.701
(.185)

.97<.001
(.005)

.78.001
(.005)

.95<.001
(.004)

.78.001 (.004)MTitle1g

.04–.369
(.177)

.18–.243
(.183)

.52.003
(.005)

.49.003
(.005)

.52.003
(.004)

.49.003 (.004)MTitle2

.52.101 (.158).92–.017
(.162)

.20.006
(.004)

.14.007
(.004)

.14.007
(.003)

.14.007 (.003)ETitleh

<.001–1.988
(.261)

.10–.418
(.257)

<.001–.057
(.008)

<.001–.068
(.007)

<.001–.068
(.005)

<.001–.068
(.005)

PORi

N/AN/AN/AN/AN/AN/AN/AN/A.04.006
(.002)

N/AN/AkOEj

N/AN/AN/AN/A<.001.001
(.000)

N/AN/AN/AN/AN/AN/AOMRl

<.001.602 (.028)N/AN/AN/AN/AN/AN/AN/AN/AN/AN/AODIm

aAdjusted R2=0.013; F5,7720=21.064; P<.001.
bAdjusted R2=0.013; F1,7719=4.162; P=.04.
cAdjusted R2=0.013; F5,7720=21.064; P<.001.
dAdjusted R2=0.014; F1,7719=12.792; P<.001.
eAdjusted R2=0.025; F5,7720=40.078; P<.001.
fAdjusted R2=0.079; F1,7719=455.791; P<.001.
gMTitle1: physician medical title.
hETitle: physician education title.
iPOR: physician online reputation.
jOE: offline experience.
kN/A: not applicable.
lOMR: offline medical record.
mODI: offline detailed information.
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Table 6. Results for interpersonal continuity: long-term effects.

Offline detailed informationcOffline medical recordsbOffline experienceaVariables

P valueβ (SD)P valueβ (SD)P valueβ (SD)

.003.467 (.156).03.011 (.005).02.012 (.005)Level

<.001–1.738 (.179).98.000 (.005).97.000 (.005)MTitle1d

.04–.372 (.177).52.003 (.005).54.003 (.005)MTitle2

.49.108 (.158).20.006 (.004).14.007 (.004)ETitlee

<.001–1.960 (.261)<.001–.057 (.008)<.001–.069 (.007)PORf

N/AN/AN/AN/Ah.86–.001 (.008)OEg

N/AN/AN/AN/A.28.009 (.008)SPi×OE

N/AN/A.05.000 (.000)N/AN/AOMRj

N/AN/A.656.457E-5 (.000)N/AN/ASP×OMR

<.001.523 (.066)N/AN/AN/AN/AODIk

.04.143 (.070)N/AN/AN/AN/ASP×ODI

aAdjusted R2=0.013.
bAdjusted R2=0.014.
cAdjusted R2=0.079.
dMTitle1: physician medical title.
eETitle: physician education title.
fPOR: physician online reputation.
gOE: offline experience.
hN/A: not applicable.
iSP: same physician.
jOMR: offline medical record.
kODI: offline detailed information.

Robustness Check
In the main analysis, we did not consider whether a physician
has also provided team service. As we only focused on
individual service, we only included those physicians who did
not provide team service; 25 physicians who provided team
service were deleted. We used the new data to obtain empirical
results (given the limited space, the robustness check results
are included), and consistent results were found. Our results
appear to be robust.

Discussion

Overview
Based on the information richness theory and continuity of care,
this study investigates both short-term and long-term effects of
information continuity and interpersonal continuity on physician
service online by collecting data of 7200 patients with 360
physicians covering complete interaction records from a
professional online platform in China. Our findings have
theoretical and practical support for web-based managers and
service providers to improve medical service quality.

Results Analysis
By collecting a data set from Haodf.com, we confirm the effects
of information continuity and interpersonal continuity on the

changing physician service. The summary of the results is shown
in Table S3 and Table S4 of Multimedia Appendix 2. Our
empirical study generated several important results.

First, both short-term and long-term effects of information
continuity and interpersonal continuity were found. Continuity
of care is important for medical service [1]. There is little
understanding of how to improve the continuity of care and the
effects of continuity of care. We find that providing offline
experience is useful for improving the continuity of care and is
helpful for physicians for providing high-quality service.

Second, the effects of information continuity showed
heterogeneity. Offline experience and medical record provision
are helpful for a physician to improve the response speed.
However, detailed information provision increases response
time. Offline experience and medical records could help refresh
a physician’s memory of the patient and then reply quickly.
However, detailed offline information is written and provided
by patients; therefore, it may contain a patient’s personalized
feelings, experience, and other questions, which takes the
physician time to understand and then give a detailed reply to
the patient’s need. The above reasons can be used to explain
the effects of the 3 independent variables on information quality.
For the interaction quality, offline experience and detailed
information provision help improve the interaction frequency
between physicians and patients; however, offline medical
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records provision negatively affects interaction frequency. The
reasons are that (1) web-based medical records are also a type
of interaction and influence the calculation of interaction and
(2) medical records contain much information about a disease
condition, which a physician often needs to judge the disease.
Without these medical records, the physician has to interact
with patients to obtain relevant information.

Third, the effects of offline experience, medical records, and
detailed information provisions on repeat purchases are
consistent. Information continuity is helpful for a physician’s
service in the future.

Fourth, the moderating effects of interpersonal continuity were
also consistent. Most of the moderating effects were positive
and consistent with our hypotheses, that is, high interpersonal
continuity would enhance the relationships between information
continuity and physician service.

Implications
Our study produces several insights, which have implications
for continuity of care, cross-channel behavior, and online health
community literature. More importantly, these insights as a
whole contribute to the design of integrated medical services.
For the practical implications, first, for those who design and
manage online health communities, attention needs to be paid
not only to facilitating the transaction but also to interaction
quality. From the continuity of care perspective, we have found
significant influences of offline experience provision on
physician online service. Our results suggest that mechanisms
that can guide patients to provide offline experience should be
established. In particular, the offline detailed information
provision should be emphasized. Moreover, based on the
positive effects of interpersonal continuity, online health
community platforms should encourage patients to choose online
physicians according to their offline physicians to improve
consistency and then improve interpersonal continuity. Second,
for the physicians, not only the short-term effects of offline
experience provision should be valued but also long-term effects
have to be highly regarded. Physicians can guide patients to
remember the offline experience and provide their offline
information, which is helpful for the physician to provide
high-quality service and increase the repurchase rate further.
Third, for the patient, our results suggest that patients could go
to the nearby hospital to obtain medical records or other material
and then provide them to the online physician to receive a better
service.

Our study contributes to the current knowledge in several ways.
First, our work extends our knowledge of the effects of
information technology artifacts on the health care field from
the continuity of care perspective. Although relevant
departments believe that the use of information technology
could realize the mutual recognition of inspection results,
sharing of medical records, and thus improving the continuity
of care [3], there are no empirical studies to examine the true
effects. Our study has investigated the role of online health
community use in improving the continuity of care. Moreover,

we investigated the specific measures the patients and physicians
should take to improve the continuity of care.

Second, our study enriches the literature on the continuity of
care. Information continuity, interpersonal continuity, and time
continuity have been widely discussed in previous studies
[28,29]. However, they failed to examine the effects of different
continuity dimensions on physician service, especially in a
web-based environment. Our results show that the different
dimensions of continuity of care have different effects on
physician service behavior. Moreover, there are interaction
effects between information continuity and interpersonal
continuity.

Third, our study provides evidence on the cross-channel context.
Although many studies have examined the channel effects in
health care [6,46], they mainly focus on behaviors switching
from online to offline. This study focuses on the effects of
offline experience on online behavior, that is, behaviors
switching from offline to online. Our results show that a
patient’s offline experience provision has a positive influence
on the physician’s web-based service.

Limitations of This Study
Several limitations and prospects in this study must be
considered. First, we studied only 1 context, which helps us
improve the internal validity, but it may also reduce the
generalizability of our findings. Future studies could validate
our results in other contexts. Second, word count and interaction
count are used for measuring physician service. Future studies
could use more accurate methods to measure physician services,
such as text mining and sentiment analysis. Third, the unit of
analysis is the individual online health community
patient-physician interaction, and we do not have individual
characteristics about patients. Future studies could try to obtain
patient information and control them. Fourth, characteristics of
physicians that may influence the use of web-based services are
age, experience with computers/technology, and preferences
toward in-person versus web-based delivery of services. Future
studies could try to obtain more physician information and
control them. Fifth, we assume that in-person experience and
skills of physicians are transferrable to the online context. Future
studies could obtain this skill of different physicians and control
it.

Conclusions
Although abundant studies have investigated online health
community behaviors and cross-channel behaviors, this study
is among the first to investigate the effects of information
providing from the continuity of care perspective and the
influence of offline experience on online behaviors. Our study
offers a better understanding of online behaviors, enriches the
knowledge of the effects of information technology artifacts in
the health care field, and contributes to the continuity of care
literature. We have reported both short-term and long-term
effects of the offline medical service experience on the online
medical service experience. We believe that this paper could
provoke some new thoughts on online health communities.
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Abstract

Background: Approximately 1.1 million people living with HIV live in the United States, and the incidence is highest in
Southeastern United States. Electronic patient portal prevalence is increasing and can improve engagement in primary medical
care. Retention in care and viral suppression—measures of engagement in HIV care—are associated with decreased HIV
transmission, morbidity, and mortality.

Objective: We aimed to determine if patient portal access among people living with HIV was associated with retention and
viral suppression.

Methods: We conducted an observational cohort study among people living with HIV in care at the Vanderbilt Comprehensive
Care Clinic (Nashville, Tennessee) from 2011-2016. Individual access was defined as patient portal account registration at any
point in the year prior. Retention was defined as ≥2 kept appointments or HIV lab measurements ≥3 months apart within a
12-month period. Viral suppression was defined as the last viral load in the calendar year <200 copies/mL. We calculated adjusted
prevalence ratios (aPRs) and 95% CIs using modified Poisson regression with generalized estimating equations to estimate the
association of portal access with retention and viral suppression.

Results: We included 4237 people living with HIV contributing 16,951 person-years of follow-up (median 5, IQR 3-5
person-years). The median age was 43 (IQR 33-50) years. Of the 4237 people living with HIV, 78.1% (n=4237) were male,
40.8% (n=1727) were Black non-Hispanic, and 56.5% (n=2395) had access. Access was independently associated with retention
(aPR 1.13, 95% CI 1.10-1.17) and viral suppression (aPR 1.18, 95% CI 1.14-1.22).

Conclusions: In this population, patient portal access was associated with retention and viral suppression. Future prospective
studies should assess the impact of increasing portal access among people living with HIV on these HIV outcomes.

(JMIR Med Inform 2022;10(7):e34712)   doi:10.2196/34712
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Introduction

An estimated 1.1 million people living with HIV live in the
United States, and the incidence is highest in Southeastern
United States [1]. The US Department of Health and Human
Services announced the Ending the HIV Epidemic plan in 2019
with the goals to reduce new HIV infections by 75% by 2025
and 90% by 2030 [2,3]. To achieve these goals, the Ending the
HIV Epidemic plan identified the use of rapid and effective
antiretroviral therapy to achieve viral suppression as a critical
component [2,3]. The HIV Care Continuum outlines the
sequential steps involved in sustained viral suppression, which
include (1) HIV testing and diagnosis, (2) linkage to care, (3)
retention in care, (4) receipt of antiretroviral therapy, and (5)
viral suppression [4]. Despite advances in HIV treatment
including lower pill burden and improved tolerability, US
retention and viral suppression rates remain low at
approximately 50% and 56%, respectively, suggesting that
barriers to HIV treatment remain [5].

Electronic patient portals are web-based tools that allow patients
and their families to interact with a health care system [6,7].
Portals promote patient-centered care, where all health care
decisions and quality measurements are based on an individual’s
specific health needs and desired health outcomes. Electronic
patient portal implementation and adoption has been rapidly
increasing over the last decade [8,9]. These portals also assist
health care facilities and providers in meeting the obligations
of Meaningful Use within the Affordable Care Act, which
requires that patients have web-based access to their health
information [10]. Functionality varies across applications, but
most portals allow patients to schedule appointments, access
portions of their electronic health record, communicate with
health care providers through secure messaging, and receive
personalized health information [6,7,11].

Studies have demonstrated that electronic patient portals have
increased patient engagement in care for various patient care
populations and age groups [6,7,11,12]. Some studies have also
assessed sociodemographic characteristics associated with
patient portal use [8,13,14], such as one study that found that
Black veterans living with HIV were less likely to register for
and use a patient portal [15]. Few studies have assessed the
impact of patient portals on HIV Care Continuum outcomes.
Importantly, qualitative studies have demonstrated the
acceptability of using patient portals to improve HIV care
outcomes [16-18], and a study among US veterans found an
association between electronic prescription refill through a
patient portal and change from a detectable viral load to an
undetectable viral load [19]. The objective of this study was to
determine if patient portal access was independently associated
with retention and viral suppression among people living with
HIV engaged in care from 2011-2016 at the Vanderbilt
Comprehensive Care Clinic (Nashville, Tennessee), a large HIV
primary medical home in the Southeastern United States—a
region disproportionately impacted by the HIV epidemic.

Methods

Study Population
We conducted a retrospective, observational cohort study among
people living with HIV aged 18 years who had at least one HIV
health care provider visit at the Vanderbilt Comprehensive Care
Clinic from January 1, 2011, to December 31, 2015. The
beginning of the study period was the first full year that clinic
patients had access to the Vanderbilt electronic patient portal.
Follow-up began on the date of the first HIV clinic visit during
the study period and continued until the year prior to death or
the end of the study period on December 31, 2016, allowing ≥1
year of follow-up for all people living with HIV included. We
did not include data after 2016 due to a change in the Vanderbilt
electronic patient portal application in 2017.

Data Sources and Study Definitions
The Vanderbilt University Medical Center deployed a robust
electronic patient portal, My Health at Vanderbilt, in 2005.
Within 10 years of this deployment, the portal had over 290,000
registered users and was accessed over 255,000 times per month
[20]. My Health at Vanderbilt has similar features as other
electronic patient portals, including secure messaging,
appointment scheduling, bill management, and access to select
laboratory results and electronic health record data, and all of
these features were consistently available throughout the study
period [21,22]. Further description of the My Health at
Vanderbilt patient portal can be found in descriptions of the
policies and procedures [21,22].

Clinical patient data were abstracted from the electronic health
record which included information collected during routine
clinical care. Our exposure of interest was electronic patient
portal access, defined as whether a patient was registered for a
My Health at Vanderbilt account at any point in the year prior.
To register for My Health at Vanderbilt, patients are required
to provide their name, social security number, birth date, and a
valid email address [21]. This variable was lagged by 1 year,
meaning that we assessed patient portal access in the year before
our outcome. This ensured that the outcomes of interest were
associated with My Health at Vanderbilt access in the year prior
in an attempt to better establish temporality between patient
portal access and HIV care outcomes.

The outcomes of interest were retention and viral suppression.
Retention was defined as having ≥2 maintained in-person HIV
clinic appointments, HIV-1 RNA viral load measurements, or
CD4+ counts which occurred ≥3 months apart within a 12-month
period based on the Health and Resources Services
Administration HIV/AIDS Bureau definition of retention in
care [4,23,24]. Viral suppression was defined as having ≥1
HIV-1 RNA viral load measurement within a given year with
the last viral load measured in the year being <200 copies/mL
[4,23]. Both outcomes were measured over each 12-month
period after the first clinic visit during the study period.
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Depending on the length of follow-up after the first visit,
multiple outcomes per patient were possible. If an HIV-1 RNA
viral load was missing during any 12-month interval, the patient
was assumed to have a viral load of ≥200 copies/mL.

Covariates chosen based on a thorough review of the literature
as well as in consultation with clinicians and epidemiologists
who work directly with people living with HIV included birth
sex, race/ethnicity, year of cohort entry, reported HIV
transmission risk factor, insurance type, age, CD4+ cell count,
and HIV-1 RNA viral load at the first clinic appointment
attended. These covariates were chosen based on their
connection to patient portal access and HIV care outcomes.
Race/ethnicity was self-reported and categorized as White
non-Hispanic, Black non-Hispanic, Hispanic, and other. Year
of cohort entry was modeled continuously and defined as the
year the patient entered the study. We categorized reported HIV
transmission risk factors as male-male sexual contact (men who
have sex with men; MSM), heterosexual contact, injection drug
use (IDU), or other/unknown. If a patient had more than one
type of transmission risk, IDU took precedence over MSM,
which took precedence over heterosexual contact, in order of
the risk of HIV transmission [25]. Insurance type was
categorized as public (Medicare/Medicaid), private, or Ryan
White. If an individual had more than one insurance type in a
given year, Ryan White took precedence over public insurance,
which took precedence over private insurance. Baseline CD4+
count was defined as the laboratory measurement closest to the
first maintained appointment date (from 180 days prior to 30
days after); it was square-root transformed, modeled as a
continuous covariate in the regression model, and displayed in
our tables using the clinically salient CD4+ values of 100, 200,
350, and 500 cells/µL. Baseline HIV-1 RNA viral load was
similarly defined as the laboratory measurement closest to the
first maintained appointment date (from 180 days prior to 7
days after); it was log10-transformed and modeled continuously.
Insurance status was time-updated during each 12-month period
after enrollment. The remaining covariates were measured only
at baseline.

Statistical Analysis
We reported demographic characteristics stratified by the
existence of a patient portal account during follow-up, as we
wanted to compare those who never accessed the patient portal
to those who did. We reported categorical variables by frequency
and proportion and used Pearson chi-squared test for
comparisons. Continuous variables were reported as median
and IQR, and Wilcoxon rank sum tests were used for
comparisons [26,27]. Multiple imputation with 10 replications
was used to account for missing CD4+ cell counts and HIV-1
RNA viral loads at baseline [28]. If missing, the reported HIV
transmission risk factor was assumed to be other/unknown, and
insurance type was handled by carrying forward the last
observation. No patient was missing insurance type at baseline.

We estimated adjusted prevalence ratios (aPRs) and 95% CIs
for retention and viral suppression using a modified Poisson
regression [29]. Generalized estimating equations using an
independence correlation structure accounted for multiple

outcomes per individual [30,31]. A clustered sandwich estimator
was used to estimate SEs [32-34]. In a sensitivity analysis, we
excluded individuals with missing data to assess if a complete
case analysis biased our results. All tests were 2-tailed and
considered statistically significant if P<.05. All analyses were
conducted using R statistical software (version 3.4; R
Foundation for Statistical Computing).

Ethics Approval
Analyses were approved by the Vanderbilt University
Institutional Review Board (approval number 170089) and
conducted in accordance with the ethical standards set by the
Declaration of Helsinki.

Results

Demographic Characteristics
The study population included 4237 people living with HIV
followed for a total of 16,951 person-years. Of the 16,951
person-years, 74.8% (n=12,679) were categorized as retained
in care and 71.4% (n=12,103) as virally suppressed. Median
follow-up time per patient was 5 (IQR 3-5) person-years. The
median age was 43 (IQR 33-50) years. Of the 4237 people living
with HIV, 78.1% (n=3311) were male, 40.8% (n=1727) were
Black non-Hispanic, and 41.2% (n=1747) reported MSM as an
HIV transmission risk factor. The median baseline CD4+ count
was 478 (IQR 288-692) cells/µL and median baseline HIV-1
RNA viral load was 100 (IQR 50-25,119) copies/mL (Table 1).
Of the 4237 people living with HIV, reported HIV transmission
risk factor, baseline CD4+ count, and HIV-1 RNA viral load
were missing for 30.8% (n=1305), 34.2% (n=1449), and 44.8%
(n=1898) of the participants, respectively. Insurance type varied
over time; of the 16,951 person-years, 21% (n=3560) had private
insurance, 40.1% (n=6797) had Ryan White, 27.7% (n=4695)
had public insurance, and 11.2% (n=1899) were missing for
which the last observation was carried forward.

Of the 4237 people living with HIV included, 56.5% (n=2395)
had patient portal access at any point during follow-up. People
living with HIV who had a My Health at Vanderbilt account
were younger, with a median age of 42 (IQR 31-49) years, than
those without an account, who had a median age of 44 (IQR
34-51) years. This difference was statistically significant, but
a difference of 2 years is arguably not a clinically significant
difference. A higher percentage (85.6%, 2050/2395) of those
with an account were male, whereas only 68.5% (1261/1842)
of those without an account were male. Fewer people living
with HIV with patient portal access (30.2%, 724/2395) were
Black non-Hispanic than people living with HIV without access
(54.5%, 1003/1842). More people living with HIV with access
(52.2%, 1250/2395) reported their HIV transmission risk factor
as MSM than those without access (27%, 497/1842). Those
with access also had a higher median baseline CD4+ count of
500 (IQR 309-702) cells/µL than those without access, who had
a median baseline count of 444 (IQR 258-676) cells/µL. The
baseline HIV-1 RNA viral load was similar between these 2
groups (Table 1).
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Table 1. Baseline demographic characteristics of the study population stratified by patient portal account status.

P valueaAll participants
(N=4237)

Account existed during
follow-up (n=2395)

No account during follow-
up (n=1842)

Characteristic

<.00143 (33-50)42 (31-49)44 (34-51)Baseline age (years), median (IQR)

<.001Sex, n (%)

3311 (78.1)2050 (85.6)1261 (68.5)Male

926 (21.9)345 (14.4)581 (31.5)Female

<.001Race/ethnicity, n (%)

1727 (40.8)724 (30.2)1003 (54.5)Black non-Hispanic

240 (5.7)102 (4.3)138 (7.5)Hispanic

1541 (36.4)1134 (47.3)407 (22.1)White non-Hispanic

729 (17.2)435 (18.2)294 (16)Other/unknown

<.001HIV risk factor, n (%)

1747 (41.2)1250 (52.2)497 (27)MSMb

954 (22.5)332 (13.9)622 (33.8)Heterosexual

115 (2.7)35 (1.5)80 (4.3)IDUc

116 (2.7)50 (2.1)66 (3.6)Other/unknown

1305 (30.8)728 (30.4)577 (31.3)Missing data

<.001478 (288-692)500 (309-702)444 (258-676)Baseline CD4+ count (cells/µL), median (IQR)

.30100.0 (50.1-25,118.9)63.1 (50.1-25,118.9)158.5 (50.1-19,952.6)Baseline HIV-1 RNA viral load (copies/mL), median
(IQR)

.007Year of cohort entry, n (%)

2578 (60.8)1452 (60.6)1126 (61.1)2011

389 (9.2)234 (9.8)155 (8.4)2012

386 (9.1)211 (8.8)175 (9.5)2013

434 (10.2)236 (9.9)198 (10.7)2014

381 (9)235 (9.8)146 (7.9)2015

69 (1.6)27 (1.1)42 (2.3)2016

aWilcoxon rank sum test was used for continuous variables and Pearson chi-square test was used for categorical variables to compare those with an
account to those without an account.
bMSM: men who have sex with men.
cIDU: injection drug use.

Retention in Care Outcome
In the multiple imputed, adjusted, and modified Poisson
regression analysis, patient portal access was independently
associated with better retention (aPR 1.13, 95% CI 1.10-1.17;
Table 2). Other factors independently associated with better
retention in this model included increased age at first visit (aPR

1.09, 95% CI 1.04-1.13) and MSM (aPR 1.13, 95% CI
1.03-1.23) and heterosexual contact (aPR 1.15, 95% CI
1.05-1.26) as reported HIV transmission risk factors compared
to IDU (Table 2). A factor independently associated with worse
retention was other/unknown race/ethnicity as compared to
White non-Hispanic (aPR 0.93, 95% CI 0.90-0.97; Table 2).
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Table 2. Adjusted prevalence ratios for the association of patient portal account existence and HIV outcomes of retention in care and viral suppression.
All models adjusted for variables included in the table as well as the year of cohort entry.

Viral suppression model, aPR (95% CI)Retention in care model, aPRa (95% CI)Characteristic

Account status (variable lagged by 1 year)

REFREFbNo account

1.18 (1.14-1.22)*1.13 (1.10-1.17)*Account exists

1.09 (1.04-1.13)*1.09 (1.04-1.13)*Baseline age (per 10 years)

Sex

REFREFMale

0.99 (0.95-1.04)1.04 (1.00-1.08)Female

Race/ethnicity

0.95 (0.92-0.99)*0.99 (0.95-1.02)Black non-Hispanic

1.03 (0.96-1.10)1.04 (0.98-1.11)Hispanic

REFREFWhite non-Hispanic

0.94 (0.90-0.97)*0.93 (0.90-0.97)*Other/unknown

HIV risk factor

1.11 (1.00-1.23)1.13 (1.03-1.23)*MSMc

1.15 (1.03-1.27)*1.15 (1.05-1.26)*Heterosexual

REFREFIDUd

0.95 (0.86-1.06)0.96 (0.88-1.05)Other/unknown

Insurance

REFREFPrivate

0.97 (0.94-1.01)1.03 (0.99-1.07)Public

0.94 (0.90-0.98)*0.99 (0.95-1.02)Ryan White

Baseline CD4+ count (square-root transformed; cells/µL)

0.99 (0.91-1.07)0.99 (0.91-1.07)100

0.99 (0.97-1.02)0.99 (0.97-1.02)200

REFREF350

1.00 (0.99-1.02)1.01 (0.99-1.02)500

0.94 (0.92-0.96)*1.00 (0.98-1.01)Baseline HIV-1 RNA viral load (log10-transformed;
copies/mL)

aaPR: adjusted prevalence ratio.
bREF: reference.
cMSM: men who have sex with men.
dIDU: injection drug use.
*P<.05.

Viral Suppression Outcome
In the multiple imputed, adjusted, and modified Poisson
regression analysis, patient portal access was independently
associated with improved viral suppression (aPR 1.18, 95% CI
1.14-1.22; Table 2). Other factors independently associated with
better viral suppression included increased age at first visit (aPR
1.09. 95% CI 1.04-1.13) and heterosexual contact as a reported
HIV transmission risk factor as compared to IDU (aPR 1.15,
95% CI 1.03-1.27). Factors independently associated with worse
viral suppression included Black non-Hispanic (aPR 0.95, 95%

CI 0.92-0.99) and other/unknown (aPR 0.94, 95% CI 0.90-0.97)
race/ethnicity as compared to White non-Hispanic race/ethnicity;
Ryan White coverage as compared to private insurance (aPR
0.94, 95% CI 0.90-0.98); and higher HIV-1 RNA viral load at
first clinic visit (aPR 0.94, 95% CI 0.92-0.96; Table 2).

Sensitivity Analysis
We conducted a sensitivity analysis in which patients with
missing data were excluded. This led to a complete case
population of 1643 patients (38.8% of total cohort, N=4237)
contributing 5589 person-years (33% of total person-years,
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N=16,951). The results were similar, but less precise, when the
2 full models from the primary analysis were used for retention
and viral suppression (Table 3). Patient portal access remained

associated with increased likelihood of retention (aPR 1.13,
95% CI 1.07-1.19) and viral suppression (aPR 1.16, 95% CI
1.10-1.23; Table 3).

Table 3. Adjusted prevalence ratios for the association of patient portal account existence and the HIV outcomes of retention in care and viral
suppression—complete case analysis. All models adjusted for variables included in the table as well as the year of cohort entry.

Viral suppression model, aPR (95% CI)Retention in care model, aPRa (95% CI)Characteristic

Account status (variable lagged by 1 year)

REFREFbNo account

1.16 (1.10-1.23)*1.13 (1.07-1.19)*Account exists

1.08 (1.06-1.11)*1.08 (1.06-1.10)*Baseline age (per 10 years)

Sex

REFREFMale

1.01 (0.93-1.09)1.05 (0.98-1.13)Female

Race/ethnicity

0.92 (0.87-0.98)*0.96 (0.97-1.01)Black non-Hispanic

0.97 (0.87-1.08)1.00 (0.91-1.10)Hispanic

REFREFWhite non-Hispanic

0.96 (0.90-1.03)0.95 (0.88-1.01)Other/unknown

HIV risk factor

1.05 (0.92-1.20)1.06 (0.93-1.21)MSMc

1.12 (0.97-1.29)1.12 (0.98-1.28)Heterosexual

REFREFIDUd

1.01 (0.85-1.21)1.01 (0.85-1.20)Other/unknown

Insurance

REFREFPrivate

0.94 (0.88-1.01)0.97 (0.91-1.04)Public

0.96 (0.90-1.01)1.00 (0.95-1.05)Ryan White

Baseline CD4+ count (square-root transformed; cells/µL)

0.99 (0.98-1.05)1.00 (0.98-1.03)100

0.99 (0.99-1.02)1.00 (0.99-1.02)200

REFREF350

1.01 (0.99-1.02)1.00 (0.99-1.01)500

0.96 (0.94-0.98)*1.00 (0.98-1.02)Baseline HIV-1 RNA viral load (log10-transformed;
copies/mL)

aaPR: adjusted prevalence ratio.
bREF: reference.
cMSM: men who have sex with men.
dIDU: injection drug use.
*P<.05.

Discussion

Principal Findings
Electronic patient portal access via Vanderbilt’s My Health at
Vanderbilt system was significantly associated with subsequent
retention and viral suppression among people living with HIV
in care at the Vanderbilt Comprehensive Care Clinic. This

finding is consistent with previous findings from a Kaiser
Permanente study that found patient portals increased patient
membership retention for both people living with HIV and
people not living with HIV [35]. There have been other studies
of people living with HIV that found patient portals improve
retention and viral suppression, but these were in less diverse
or much smaller patient populations [16,19]. A small (n=22)
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prospective quality improvement project aimed to increase
enrollment in a patient portal among women living with HIV
to improve their retention in HIV care, given their increased
risk of disengagement [16]. The authors found a significant
association between enrollment in the patient portal and the
number of scheduled visits but did not find a significant
association with missed visits or viral suppression [16]. Another
retrospective study among a population of 3374 veterans living
with HIV found a significant association between messaging
from a personal health record and viral suppression, but the
authors did not assess retention or how patient portal access
affected viral suppression [19]. The strengths of our study
include having a large, demographically diverse cohort of people
living with HIV living in Southeastern United States, a region
of the country disproportionately affected by the HIV epidemic.

In our cohort, compared to patients without patient portal access,
those with access were more likely to be younger, male, White
non-Hispanic, and report MSM as their HIV transmission risk
factor. They also had a higher CD4+ count at their first clinic
visit compared to patients without patient portal access. Our
results are consistent with previous studies in populations
including people living with HIV and people without HIV,
which showed that a higher proportion of those with access to
patient portals tend to be younger and White, although the age
difference in our study was only 2 years [8,11,13,14]. These
differences could be due to increased technological literacy in
using computers and smartphones [8,14]. Sex differences in
patient portal access in other studies have varied, with some
showing that women access patient portals more, and others
showing that men preferred using patient portals than speaking
in person with their health care providers [8,13]. In our cohort,
men were more likely to have patient portal access. Our cohort
had a higher proportion of men, but if there were no sex
differences, we would expect the same proportion among those
with and without access.

In addition to patient portal access, increasing age and reported
HIV risk factor were independently associated with retention
and viral suppression. People living with HIV in an older age
group compared to those in a younger age group and people
living with HIV who reported heterosexual activity or MSM
compared to IDU as an HIV transmission risk factor were more
likely to achieve retention and viral suppression. These findings
are consistent with a systematic review of retention studies [36].

Factors that were independently associated with worse retention
and viral suppression included race/ethnicity, insurance type,
and HIV-1 RNA viral load at the first Vanderbilt Comprehensive
Care Clinic visit. People living with HIV who are Black
non-Hispanic (compared to those who are White non-Hispanic),
have Ryan White coverage (compared to private insurance), or
had a higher HIV-1 RNA viral load at their first clinic visit had
worse retention and viral suppression. These findings are
consistent with previous cohort studies assessing viral
suppression trends over time, in which Black non-Hispanic
race/ethnicity was associated with worse viral suppression and
having Ryan White insurance was associated with worse HIV
outcomes [37,38]. However, worse outcomes for people
receiving care via the Ryan White HIV/AIDS Program is likely
because it is a proxy for lower socioeconomic status. Our

findings show that patient portal access follows similar trends
to disparities in HIV care outcomes by age, race, HIV
transmission risk factor, and insurance status, as groups with
poor patient portal access also have poor HIV outcomes.

In the setting of the current COVID-19 pandemic, engaging
care through electronic means such as patient portals and
telehealth have increased [39,40]. This pandemic may have
lasting effects on how individuals access and engage care,
showing the importance of better understanding the effects of
patient portal access on HIV care outcomes.

Our study is subject to several limitations. First, we had data
on patient portal access but not on the frequency of or reasons
for electronic patient portal use. It is possible to have patient
portal access but never use the portal. However, regardless of
use, patient portal access was associated with improved retention
and viral suppression, demonstrating that providing access to
patient portals is likely to improve HIV outcomes. Similarly,
studies have stressed the importance of electronic health literacy
in patient portal effectiveness and care outcomes. In our study,
a patient may have had access to the electronic patient portal
and used it but also had difficulty understanding the platform
or information due to technological or health literacy barriers
[41,42]. Both scenarios would have biased our results toward
a null hypothesis; therefore, it is possible that the true
relationship between patient portal access and retention and
viral suppression may be stronger than what we described.
Second, some people living with HIV in our cohort may have
silently transferred to other clinics, which led them to be
misclassified in our study as not retained in care. This may have
led to an overestimation of those not retained in care, which
could have biased our results in either direction depending on
the population misclassified. Third, the reported HIV
transmission risk factor, baseline CD4+ count, and baseline
HIV-1 RNA viral load were missing for 31% to 45% of
participants. The missing data for this risk factor and baseline
measures of clinical variables were accounted for with multiple
imputation. The results of the sensitivity analysis including only
patients with complete records had similar results, suggesting
that data were missing completely at random and therefore not
a likely source of bias. Additionally, this was a single-site study
and may not be generalizable to other settings, as electronic
patient portal access may differ elsewhere. Lastly, these data
are from 2011-2016. We were unable to provide more recent
data because after 2016, Vanderbilt’s patient portal changed.
However, we were still able to establish a connection between
an early patient portal and favorable HIV outcomes.

We examined the association of an under-studied exposure with
HIV care outcomes and found that electronic patient poral access
was independently associated with retention and viral
suppression in our cohort of people living with HIV. Studies
have demonstrated that electronic patient portals offer a unique
opportunity to improve outcomes that are a part of the HIV Care
Continuum, such as retention and viral suppression [17,18].
Our study supports prior findings and fills a gap in previous
literature by examining this association in a large cohort of
people living with HIV in an area disproportionately affected
by HIV with a median longitudinal follow-up of 5 years.
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Conclusions
Retention and viral suppression are necessary for reducing HIV
transmission and mortality, as well as increasing the quality of
life for people living with HIV. We found that electronic patient
portal access was associated with improved retention and viral

suppression. This suggests that increased access to electronic
patient portals among people living with HIV may be an
effective method to promote better HIV Care Continuum
outcomes. Large prospective studies assessing the impact of
patient portal access on retention and viral suppression are
needed to confirm these findings.
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Abstract

Background: Telemedicine as a mode of health care work has grown dramatically during the COVID-19 pandemic; the impact
of this transition on clinicians’ after-hours electronic health record (EHR)–based clinical and administrative work is unclear.

Objective: This study assesses the impact of the transition to telemedicine during the COVID-19 pandemic on physicians’
EHR-based after-hours workload (ie, “work outside work”) at a large academic medical center in New York City.

Methods: We conducted an EHR-based retrospective cohort study of ambulatory care physicians providing telemedicine services
before the pandemic, during the acute pandemic, and after the acute pandemic, relating EHR-based after-hours work to telemedicine
intensity (ie, percentage of care provided via telemedicine) and clinical load (ie, patient load per provider).

Results: A total of 2129 physicians were included in this study. During the acute pandemic, the volume of care provided via
telemedicine significantly increased for all physicians, whereas patient volume decreased. When normalized by clinical load (ie,
average appointments per day by average clinical days per week), telemedicine intensity was positively associated with work
outside work across time periods. This association was strongest after the acute pandemic.

Conclusions: Taking physicians’ clinical load into account, physicians who devoted a higher proportion of their clinical time
to telemedicine throughout various stages of the pandemic engaged in higher levels of EHR-based after-hours work compared
to those who used telemedicine less intensively. This suggests that telemedicine, as currently delivered, may be less efficient than
in-person–based care and may increase the after-hours work burden of physicians.

(JMIR Med Inform 2022;10(7):e34826)   doi:10.2196/34826
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telemedicine; telehealth; eHealth; COVID-19; EHR; electronic health record; clinician workload; impact; transition; workload;
cohort; retrospective; physician; efficient; doctor; health care professional; pandemic
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Introduction

The COVID-19 pandemic precipitated the rise of
telemedicine—defined as the synchronous provision of health
care services via telecommunications, either video or audio, to
patients at remote sites—as a powerful disrupter of health care
delivery [1-3]. Although not a new mode of work, the adoption
and scaling of telemedicine prior to the pandemic was limited
due to individual-, practice-, and system-level barriers that
included technical and usability constraints, clinician practice
patterns and preferences, security concerns, as well as payor
and regulatory environments [4,5]. The significant disruptions
to health care delivery caused by COVID-19 necessitated the
rapid implementation of telemedicine in a variety of forms
across practices and hospital systems in the United States and
globally.

Prior to the pandemic, studies of the provision of clinical care
through the medium of telemedicine identified potential benefits
such as improved access to care in underserved regions or
communities, better coordination of care, greater convenience,
and lower costs [6,7]. Telemedicine may also have the potential
to improve clinicians’ well-being and reduce burnout by
improving associated risk factors such as on-call burden,
communication, and job satisfaction [8-10]. At the same time,
however, the introduction of novel technologies that impact the
provision and experience of health care work can also be
detrimental; in particular, there is concern about the impact of
electronic health records (EHRs) on clinicians’ experience of
work and its role in increasing both clinical and nonclinical
administrative burden for physicians, including time spent on
work-related tasks “outside” of clinical hours, often referred to
as “work outside work” (WOW) or “pajama time” (PT) [11-14].
Shifting clinical and administrative work into personal time,
particularly when physicians are at home, is a source of concern
within the medical community, and it is unclear whether the
proliferation of telemedicine as a form of health care work will
exacerbate or ameliorate these conditions.

In this paper we focus on ambulatory physicians’ WOW during
a time of rapid telework transition spurred by the COVID-19
pandemic. Our goal is to evaluate the impact of telemedicine
practice on ambulatory physicians’ EHR-based WOW during
the large-scale rollout of telemedicine in an urban academic
hospital system during the COVID-19 pandemic.

Methods

Study Setting
New York University Langone Health (NYULH) is a large
academic health care system in New York City, with over 8000
health care providers across 4 hospitals and over 500 ambulatory
faculty group practices. The system is connected via a single
EHR system, Epic, with over 7.5 million active patient accounts.
Prior to the COVID-19 pandemic, NYULH offered limited
telemedicine services only through pilot programs such as
“virtual urgent care” (in emergency medicine), postoperative
wound checks (in orthopedics), and some mental health services.
Telemedicine for primary care and other routine health services
was not available. During the pandemic, NYULH rapidly scaled
its telemedicine offerings to include primary care, ambulatory
specialty practice, and urgent care. NYULH “virtual health”
was comprised of a single, enterprise-wide instance of
synchronous, video-based telecommunications encounters
between physicians and patients in remote locations accessed
through a standardized EHR-based patient portal system and a
third-party videoconferencing vendor. This platform provided
a unified patient and provider experience between clinical
practice sites and across specialties. At the height of the
pandemic, this system saw an 8595% increase in monthly
telemedicine visits between February (n=1699) and April
(n=147,736), with over 2000 unique physicians engaging in
video visits [15].

Study Design
This is an EHR-based retrospective cohort study including all
ambulatory care physicians continuously practicing (defined as
at least 5 appointments scheduled per week in the reporting
period) at any New York-based NYULH faculty group practice
site between January 1, 2020, and August 31, 2020.
Nonphysician practitioners (eg, advanced-practice providers)
and residents were not included in the study cohort, as with few
exceptions, they did not provide telemedicine-based care during
this period.

Ethical Considerations
This study was deemed part of a quality improvement and met
the criteria for exemption from institutional review board’s
review according to NYULH institutional policy. All data were
collected as part of routine clinical care and administrative
management.

Study Measures
Definitions of key variables associated with study measures and
analysis are provided in Table 1 and Table 2.
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Table 1. Epic metric key terms and variables associated with study measures.

CalculationDescriptionEpic metric

= (End date-start date)For a month, it starts on the
Sunday on or immediately
before the 1st and ends on
the last Saturday of the
month.

Reporting period

For a reporting period:Percentage of days with at
least one appointment within
the reporting period.

Days with appoint-
ments

For a reporting period:Average minutes a provider
spent in the system outside
of scheduled hours.

Appointments per day

For a reporting period:Average minutes a provider
spent in the system outside
of scheduled hours.

Time spent outside
scheduled hours

For a reporting period:Average minutes a provider
spent in the system on days
with no scheduled patients.

Time spent on un-
scheduled days

Table 2. Derived metric key terms and variables associated with study measures.

CalculationDerived metric

For a reporting period:Scheduled days

For a reporting period:Unscheduled days

For a reporting period:Time outside scheduled
hours per month

For a reporting period:Time on unscheduled days
per month

For a reporting period:Clinical load

For a reporting period:“Work outside work” mea-
sure

Pandemic Time Period
To evaluate whether the effects of telemedicine intensity were
influenced by the evolving stages of the COVID-19 pandemic,
we aggregated monthly physician data into the following 3
successive time periods: (1) the prepandemic period of January
1-February 29, 2020; (2) the acute pandemic period of March
1-May 31 (with March 15th representing the date when most
NYULH ambulatory practices were closed for in-person visits);
and (3) after the acute pandemic period of June 1-August 31,
representing the gradual resumption of in-person care.

Telemedicine Intensity
To create a measure of the relative volume of clinical care
physicians provided via telemedicine, we calculated the
proportion of total visits per month that were telemedicine-based
for each physician (number of video visits per month divided
by the total number of all patient visits per month per provider)
with values that could range from 0 to 1.

Clinical Load
Prior research has found clinical load to be an important
predictor of WOW burden [11,14] and recommended
normalizing WOW by load [11]. To account for the reduction
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and gradual resumption of in-person care during the pandemic,
we created a measure of clinical load reflecting the total number
of patient appointments for each physician each month. This
was calculated by multiplying Epic-reported values of average
number of appointments per clinical day (in-person or via
telemedicine) by average number of clinical days per week, for
each physician each month.

WOW
Derived from EHR user activity logs from Epic, WOW was
calculated by adding time outside scheduled hours (ie, the
average minutes per day spent in the system outside of scheduled
hours on scheduled days, where scheduled hours are determined
using Epic Cadence scheduling data plus two 30-minute “buffer”
periods added before the start of first appointment and after the
end of last appointment) and time on unscheduled days (ie, the
average number of minutes per day spent in the system on days
with no scheduled patients). WOW was normalized for
physicians’ patient load by dividing WOW by clinical load to
create a measure reflecting WOW per appointment.

An alternative measure of WOW uses the Epic EHR’s own
variable-generated data—PT. PT represents the average number
of minutes per day spent in charting activities on weekdays
outside a standard (local) 7 AM to 5:30 PM workday and any
time on weekends. PT does not include time spent personalizing
EHR tools (eg, documentation templates or preferences lists)
or time using reporting tools such as SlicerDicer and Reporting
Workbench during unscheduled days. Although PT can be used
as a marker of after-hours clinical work, recent studies have
called into question its accuracy and usefulness for this purpose
[15,16]. These concerns are likely exacerbated during the
pandemic due to the significant disruptions in clinical care hours
and work schedules for practices and physicians (eg, the closure
of clinics, physician illness and exposure, and the variable
outpatient work hours of physicians who were asked to provide
emergency inpatient care), and therefore, this value was not
included in this study.

Statistical Analysis
We first computed telemedicine intensity, clinical load, WOW,
and WOW per appointment for all physicians in the EHR that
met our inclusion criteria. To evaluate whether WOW
significantly varied across time periods, we ran one-way
ANOVAs on both WOW and WOW per appointment. To
evaluate the effect of telemedicine intensity and time period on
after-hours work burden, as well as whether the relationship
between telemedicine intensity and after-hours work varied

across time periods, we conducted a hierarchical linear
regression analysis in which the dependent variable was WOW
per appointment. We first entered the main effects of
telemedicine intensity and pandemic time period, followed by
the interaction of telemedicine intensity and pandemic time
period. To understand the nature of the interaction of
telemedicine intensity and pandemic time period, we partitioned
the data by time period and regressed WOW per appointment
on telemedicine intensity in each time period. All analyses were
conducted using SPSS (version 28; IBM Corp).

Results

We analyzed data on 2129 physicians from January to August
2020. The majority of physicians were from internal medicine
subspecialties (eg, cardiology, pulmonology, and geriatrics),
followed by ambulatory surgery (including general surgery and
surgical subspecialists) and general medicine practice (eg,
internal medicine and family medicine; Table 3).

One-way ANOVAs evaluating whether the average WOW per
day and WOW per appointment varied by pandemic time period
were significant across physicians (average WOW per day:
F2(2,12822)=33.09; P<.001; WOW per appointment:
F2(2,12784)=42.68; P<.001). Average WOW per day declined
during the acute pandemic relative to the prepandemic period
and then reverted back to prepandemic levels after the acute
pandemic. However, WOW per appointment increased during
the acute pandemic period across all physicians, before
subsequently declining (approaching but not reaching
prepandemic levels) after the acute pandemic (Table 4).

Across time periods (before the pandemic, during acute
pandemic, and after acute pandemic) telemedicine intensity was
positively associated with WOW per appointment (step 1 in
Table 5), with physicians who spent a larger proportion of their
time providing care via telemedicine devoting significantly
more time to after-hours EHR work. Although the pandemic
time period did not significantly affect WOW per appointment
after controlling for telemedicine intensity, it significantly
moderated the effect of telemedicine intensity on WOW per
appointment (step 2 in Table 5). Regressions of WOW per
appointment by telemedicine intensity for each time period
showed that the positive relationship between telemedicine
intensity and WOW per appointment was amplified over time,
with the strongest positive relationship in the period after acute
pandemic (Figure 1).
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Table 3. Specialty of included study physicians (N=2129).

Values, n (%)Clinical specialty

671 (31.5)Internal medicine subspecialty

377 (17.7)Surgery

326 (15.3)General practice (eg, internal medicine and family doctors)

175 (8.2)Pediatrics

141 (6.6)Neurology

134 (6.3)Obstetrician and gynecologist

91 (4.3)Other

72 (3.4)Psychiatry

68 (3.2)Emergency medicine

36 (1.7)Dermatology

32 (1.5)Rehab

6 (0.3)Pain medicine

Table 4. Work outside work (WOW) per day and per appointment, by time period.

Time periodWOW

After acute pandemicDuring acute pandemicBefore pandemic

95% CIMeanMedian95% CIMeanMedian95% CIMeanMedian

33.31-34.9134.1126.9429.50-30.9130.2023.9633.52-35.4734.5027.19WOW per day

9.70-10.3710.036.0411.31-12.0511.687.528.92-9.659.295.73WOW per ap-
pointment

Table 5. Hierarchical regression of work outside work (WOW) per appointment.

Normalized WOWStudy variables

Step 2Step 1

P valueStandard errorUnstandardized
coefficient

P valueStandard errorUnstandardized
coefficient

<.0010.15–0.520.050.13–0.27COVID-19 time period

1.411.37<.0010.326.67Telemedicine intensity

<.0010.642.48N/AN/AN/AaTelemedicine intensity×time
period

aN/A: not applicable.

JMIR Med Inform 2022 | vol. 10 | iss. 7 |e34826 | p.56https://medinform.jmir.org/2022/7/e34826
(page number not for citation purposes)

Lawrence et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Work outside work (WOW) per appointment by telemedicine intensity and time period.

Discussion

Principal Results
Our study found that telemedicine was less efficient than
in-person–based care and increased physicians’ WOW burden.
The overall EHR-based WOW declined for physicians in the
context of the COVID-19 pandemic and the rapid transition to
telemedicine; however, when controlling for changes in patient
volume and clinical hours of care, physicians who devoted a
higher proportion of their clinical time to telemedicine had
higher levels of EHR-based WOW than those who used
telemedicine less intensively. This relationship was present
during all phases of the study (before the pandemic, during
acute pandemic, and after acute pandemic) and was amplified
over time, including in the after acute pandemic phase. These
findings suggest that the observed decrease in the average WOW
during the pandemic was the result of the overall decrease in
clinical load for physicians rather than any benefits or
efficiencies of telemedicine itself. Further, the amplification of
the relationship between WOW per appointment and
telemedicine intensity in the time period beyond the acute
pandemic suggests that the WOW increasing effect of
telemedicine was exacerbated over time, and therefore, the
unique circumstances of the early COVID-19 pandemic alone
are insufficient to explain the behavior patterns of physicians.

Limitations
There are several limitations to this study that future research
could address. First, limitations in our Epic-based data set
preclude the ability to review and analyze physician EHR
activity with sufficient granularity beyond certain time periods;
for example, time periods more specific than a calendar month
or physician activity log data at smaller than 15-minute
increments. Specifically, Epic does not count WOW in its time

outside of scheduled hours if that work occurs within the 30
minutes before or after patient scheduled hours (a “shoulder
period”), which our analysis is unable to reliably differentiate
as WOW time and therefore excludes, resulting in a systematic
underestimation of the true WOW. Moreover, because shoulder
time is added for each clinical day regardless of length, this
underestimation bias is greater for physicians who spread their
patient time over more scheduled days relative to those who
see the same number of patients on fewer days [11]. Similarly,
we are unable to target more specific times of pandemic
disruption (eg, March 15, which is the exact date when most of
our institution’s ambulatory clinics closed for in-person care).
Second, we are limited in our ability to analyze activity at the
level of physician or patient demographics; therefore, we are
unable to comment on whether factors such as gender, age, or
years in practice may have affected clinical load, telemedicine
intensity, or WOW, and whether patient features such as patient
complexity or acuity contributed to these outcomes. It is
possible, for example, that telemedicine-based visits are overall
less clinically intense compared to in-person visits due to
differences in patient case mix, in which case our analysis would
underestimate the time costs associated with telemedicine-based
visits. Third, EHR-based data and work represent only part of
the overall nonclinical burden of physicians. Additional time
spent reviewing non-EHR based records, discussing care plans,
working with interdisciplinary teams (eg, nurses and care
managers), or advocating with insurers is not captured in this
study; this work may have been increased during the pandemic
due to disruptions in traditional office practices and workflows.
Additionally, as our data are behavioral, we are unable to
directly associate our measures with important factors such as
physicians’ attitudes (eg, stress and burnout). Finally, our
findings represent only the experience of physicians at a single
health care system during the unusual period of the COVID-19
pandemic and the rapid transition to telemedicine, which may
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limit generalizability across provider type, practice environment,
or geographic location.

Interpretation of Findings in Clinical Context
To our knowledge, this is the first study to systematically
evaluate the impact of the transition to telemedicine during the
COVID-19 pandemic on physicians’ after-hours workload and
one of a few studies that used EHR-based data to objectively
evaluate after-hours work burden [15-17]. Although research
documenting the experience of health systems undergoing the
transition to telemedicine in response to the pandemic has
increased [18-20], there is limited research exploring the effects
of telemedicine on health care delivery areas such as clinical
workflows, administrative load, or practice efficiencies, either
during the pandemic or prior to it; the most robust of these works
are almost a decade old and reflect a dated telemedicine
environment that may no longer be relevant to the current
context of health care delivery [21,22]. Similarly, literature
exploring the impact of telemedicine on important aspects of
physician work experience such as burnout and quality of life
are limited, with the majority of work prior to the pandemic
coming out of the field of telepsychiatry as an “early adopter”
of the technology [23,24]. This study contributes to the literature
on telemedicine in health care by exploring both the novel
context of its expansion during the COVID-19 pandemic and
its relationship to EHR-based work burden for clinicians.

A number of factors may be responsible for our findings that
telemedicine increased the after-hours work burden of
physicians. First, it is possible that organizational and
technological inefficiencies in the early design, deployment,
and scaling of telemedicine may have resulted in increased
after-hours EHR work burden for physicians using telemedicine
more intensively. These include early and ongoing technological
issues relating to the computer hardware, software functionality
and integrations, and user experience of the “virtual health”
platform deployed by our system. These issues have been
highlighted elsewhere in EHR and digital health technology
implementation research, particularly regarding usability and
user experience barriers [25-27] exacerbated by the scale and
abruptness of the transition to telemedicine due to the pandemic
[28]. However, technological inefficiencies should be at least
partially ameliorated over time as physicians learn to navigate
and optimize their setup and systems (the “learning curve”), an
assumption that is not supported by our after acute pandemic
period findings of a continued “amplified” relationship between
telemedicine intensity and after-hours EHR work. Similarly,
telemedicine training for physicians during this period of rapid
expansion was often ad hoc and likely suboptimal for the
development of effective telemedicine competencies (eg,
efficient platform navigation, technical troubleshooting, “virtual
health” EHR documentation), and thereby, potentially worsening
WOW; however, this would be expected to improve with time
as physicians adapted their workflows and learned new skills,
rather than, as our results found, establishing a pattern of
increasing work burden in the later periods of telemedicine of
use, even as access to quality telemedicine trainings and best
practice knowledge sharing improved among institutions. This
suggests that “virtual health” training as it existed during the
early phases of the pandemic was not sufficient to improve

after-hours work burden for physicians. Further exploration of
the relationship between telemedicine training and “virtual
health” practice patterns (including EHR-based activities) is
warranted as training becomes more regularly integrated into
medical education and professional development.

The second factor that might have impacted our findings is that
it is likely that significant disruptions to the work norms of
clinical practices during the pandemic affected after-hours work
patterns. In clinics, individual- and practice-level adjustments
to the demands of care provision during the pandemic likely
resulted in a number of unique work structures and arrangements
that could have likely affected physicians’ work schedules,
including time spent doing after-hours work. In particular, the
shift to a telemedicine-based platform—particularly one with
limited multiparty functionality—may have inhibited effective
team-based care between physicians and clinical support staff
(eg, medical assistants) and shifted both clinical and
administrative tasks that had prior been completed by other staff
members onto physicians. This “doctor does it all” phenomenon
has been recently described as an unintended effect of the rapid
transition to telemedicine during the pandemic [29]; within our
own system, much of the current WOW involves responding
to patient messages, phone calls, refill requests, and completing
various EHR documentation requirements often left for the end
of the day after direct patient care responsibilities are ended.
NYULH is actively engaged in reducing this burden on
providers by redistributing relevant work to support staff, as
well as using novel technologies including machine learning to
facilitate message triage and management, for example by
suppressing messages that are not actionable by providers. More
work is needed to fully understand the impact of the new
virtual-first models of care delivery on interdisciplinary teams
and team-based practice.

Learning from Other Fields and Implications for
Health Care Practice
Overall, our results suggest that telemedicine is not panacea for
the work challenges facing clinicians. In fact, our evidence
during the acute pandemic and after the acute pandemic suggests
that rather than reducing administrative burden, telemedicine
intensity may increase it, shifting the work temporally and
spatially to after-hours work and home. This suggests that a
more thorough understanding of the implications of telemedicine
in clinical practice is necessary prior to its indiscriminate
expansion to ensure policies and practices that increase
efficiency and work-life quality and counteract inefficiencies,
waste, and work-related stress and burnout are implemented.
Given the limited data available on the impact of telemedicine
on important aspects of physicians’ experience of work, it may
be instructive to look to fields outside of medicine, where the
study of “telework” (defined as a work arrangement that allows
employees to perform work at approved alternative or remote
worksites) [29] is more robust. Research in the industries of
engineering, consulting, and software development has
demonstrated varying effects of remote work on key elements
of employees’ work experience. Positive effects of telework in
these fields include increased job satisfaction, performance, and
work-life balance, as well as reduced employee turnover, real
estate costs, commute time, and environmental impact [30-32].
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Conversely, negative effects include reduced career development
and feelings of reduced energy, confidence, and engagement
due to the loss of high-quality interaction with colleagues and
clients [33,34]. Significantly, telework has been associated with
workers’ inability to disconnect from their work and increased
stress-inducing work intensification [35,36]. This relationship
may apply to telemedicine and help explain the findings in this
study. Although more investigation is needed to understand the
full scope and implications of medical telework beyond the
direct care provided by telemedicine (including tasks such as
remote teaching, non-EHR–based clinical work, administrative
work, and research), general learning from these fields may
help identify and guide key areas of future telemedicine and
telework research.

Conclusions
In this study, we evaluated the impact of the transition to
telemedicine during the COVID-19 pandemic on physicians’

EHR-based after-hours workload; we found that when
controlling for the clinical load of patient visits, physicians who
devoted a higher proportion of their clinical time to telemedicine
engaged in higher levels of EHR-based after-hours work
compared to those who used telemedicine less intensively; this
relationship persisted and was amplified over time, even after
the acute pandemic period. This suggests that telemedicine, as
currently delivered, may be less efficient than in-person–based
care and may contribute to after-hours work burden of
physicians. Further study is needed on the detailed impacts of
telemedicine on physician work practices, particularly in
contexts beyond the COVID-19 pandemic and relating to
administrative burden, after-hours clinical responsibilities
(particularly the EHR-related in-basket and patient portal
messaging responsibilities), and experience of work. Learning
from other industries where telework is more established can
help identify areas of need and opportunity in future
telemedicine care delivery.
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Abstract

Background: Intervening in and preventing diabetes distress requires an understanding of its causes and, in particular, from a
patient’s perspective. Social media data provide direct access to how patients see and understand their disease and consequently
show the causes of diabetes distress.

Objective: Leveraging machine learning methods, we aim to extract both explicit and implicit cause-effect relationships in
patient-reported diabetes-related tweets and provide a methodology to better understand the opinions, feelings, and observations
shared within the diabetes online community from a causality perspective.

Methods: More than 30 million diabetes-related tweets in English were collected between April 2017 and January 2021. Deep
learning and natural language processing methods were applied to focus on tweets with personal and emotional content. A
cause-effect tweet data set was manually labeled and used to train (1) a fine-tuned BERTweet model to detect causal sentences
containing a causal relation and (2) a conditional random field model with Bidirectional Encoder Representations from Transformers
(BERT)-based features to extract possible cause-effect associations. Causes and effects were clustered in a semisupervised
approach and visualized in an interactive cause-effect network.

Results: Causal sentences were detected with a recall of 68% in an imbalanced data set. A conditional random field model with
BERT-based features outperformed a fine-tuned BERT model for cause-effect detection with a macro recall of 68%. This led to
96,676 sentences with cause-effect relationships. “Diabetes” was identified as the central cluster followed by “death” and “insulin.”
Insulin pricing–related causes were frequently associated with death.

Conclusions: A novel methodology was developed to detect causal sentences and identify both explicit and implicit, single and
multiword cause, and the corresponding effect, as expressed in diabetes-related tweets leveraging BERT-based architectures and
visualized as cause-effect network. Extracting causal associations in real life, patient-reported outcomes in social media data
provide a useful complementary source of information in diabetes research.

(JMIR Med Inform 2022;10(7):e37201)   doi:10.2196/37201
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Introduction

Diabetes distress refers to psychological factors such as
emotional burden, worries, frustration, or stress in the day-to-day
management of all types of diabetes [1-3]. Diabetes distress is
associated with poor quality of life [4], high hemoglobin A1C

levels [5,6], and low medication adherence [7]. Reducing
diabetes distress may improve hemoglobin A1c levels and reduce
the burden of disease among people with diabetes [8]. Social
media is a useful observatory resource for patient-reported
diabetes issues and could help to contribute directly to public
and clinical decision-making from a patient’s perspective, given
the active online diabetes community [9,10]. Identifying causal
relations in expressed text data in social media platforms might
help to discover unknown etiological results, specifically, causes
of health problems, concerns, and symptoms.

To intervene and potentially prevent diabetes distress, it is
necessary to understand the causes of diabetes distress from a
patient’s perspective to understand how patients see their
disease. Causal relation extraction in natural language text has
gained popularity in clinical decision-making, biomedical
knowledge discovery, or emergency management [11]. In
particular, causal relations on Twitter have been examined for
diverse factors causing stress and relaxation [12], adverse drug
reactions [13], or causal associations related to insomnia or
headache [14]. Most approaches examine explicit causality in
text [14-16], when cause and effect are explicitly stated, for
instance, by connective words (eg, so, hence, because, lead to,
since, if-then) [11,17]. An example for an explicit cause-effect
pair is “diabetes causes hypoglycemia.” However, implicit
causality is more complicated to detect such as in “I reversed
diabetes with lifestyle changes” with cause “lifestyle changes”
and effect “reversed diabetes.”

Natural language processing methods explore among other
things how computers can be used to extract useful information
from natural language documents. In combination with machine
learning and deep learning models, which are artificial
intelligence algorithms designed to learn from experience, they
have also been applied to extract causal relations [18,19].
Machine learning methods are able to explore implicit relations
and provide better generalization contrary to rule-based
approaches [11,20-22]. An interesting approach leveraging the
transfer learning paradigm and addressing both explicit and

implicit cause-effect extraction is provided by Khetan et al [23].
They fine-tuned pretrained transformer-based Bidirectional
Encoder Representations from Transformers (BERT) language
models [24,25] to detect “cause-effect” relationships by using
publicly available data sets such as the adverse drug effect data
set [26]. More generally, the idea of transfer learning is to
leverage the knowledge of a model that has been trained on an
auxiliary domain [27].

In this study, we aimed to extract spans of text as 2 distinct
events from diabetes and diabetes-related tweets such that one
event directly (explicit) or indirectly (implicit) impacts another
event. We categorized these events as cause-event and
effect-event depending upon the expressed context of each
tweet. The identified cause and effect will then be aggregated
into clusters and ultimately visualized in an interactive
cause-effect network.

This work is realized in the frame of the World Diabetes Distress
Study, which aims to analyze what is shared on social media
worldwide to better understand what people with diabetes and
diabetes distress are experiencing [28,29]. The social network
“Twitter” is a popular data resource among diabetes researchers
owing to its public character and its active online diabetes
community compared to other social media [30,31]. Recent
studies suggest an overrepresentation of people with type 1
diabetes compared to those with type 2 diabetes who are active
on Twitter [9,31].

Methods

Overview
On the basis of diabetes-related tweets, we first preprocessed
tweets to only focus on personal, nonjoke, and emotional
content. Second, after this preprocessing step, we split tweets
into sentences for our analyses, as we aimed to identify the
cause-effect relationships between events within a sentence
(sentence level) and not across multiple sentences (tweet level).
This also simplifies model training and helps with easier
learning. Third, we identified sentences in which causal
information (opinion, observation, etc) is communicated. In the
fourth step, causes and their corresponding effects were
extracted. Lastly, those cause-effect pairs were aggregated,
described, and visualized. The entire workflow is illustrated in
Figure 1.
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Figure 1. Workflow. The steps shown in green include machine learning methods. CRF: conditional random field.

Data Collection and Ethical Considerations
Via Twitter’s streaming application programming interface, 32
million diabetes-related tweets in English were collected
between April 2017 and January 2021 based on a list of
diabetes-related keywords such as diabetes, hypoglycemia,
hyperglycemia, and insulin from all over the world (see
Multimedia Appendix 1 for the full list of keywords used). This
is an extended data set of the one used in earlier works [9]. All
data collected in this study were publicly posted on Twitter.
Therefore, according to the privacy policy of Twitter, users
agree to have this information available to the general public
[30].

Data Preprocessing
Tweets are noisy and unstructured. They contain many
misspelled or nonstandard English words. To reduce noise in
the data set, we applied a preprocessing pipeline similar to that
in earlier works, the details of which are summarized in Figure
1 [9]. First, retweets and duplicates were removed to obtain a
database with 7.7 million unique tweets. Second, we determined
only tweets with personal content where feelings, emotions,
and opinions could be shared by people with or talking about
diabetes and excluded institutional tweets referring to
commercial, news, or health information. To identify personal
content in tweets, we leveraged the transfer learning paradigm
and fine-tuned the already pretrained transformer-based
language model BERTweet, which was pretrained on 850 million
English tweets (16 billion word tokens ~ 80 GB) [25,32]. To
use the model and fine-tune it for a binary sentence
classification, a linear layer was added on top of the last
transformer layer of the BERTweet model by using the

transformers package of HuggingFace [33]. The model was
then fine-tuned with an extended data set of one used in earlier
works, leading to a total of 4303 tweets (1539 personal and
2764 institutional) to account for a possible temporal divergence
of the way people tweet [9]. The model performance to identify
tweets with personal content had accuracy of 91.2%, precision
of 86.2%, recall of 90.9%, and F1 score of 88.5%. The trained
model was then applied to all unique tweets, resulting in a total
of 2.5 million tweets with personal content. Moreover, jokes
around diabetes are common on Twitter and were considered
out of scope for this study as well. Similar to the personal
content classifier, BERTweet was fine-tuned to detect if a tweet
is a joke. For this purpose, a joke tweet data set from earlier
works was extended to 1648 tweets (486 jokes, 1162 nonjokes)
[9]. The performance to identify if a tweet is a joke had accuracy
of 90.4%, precision of 78.5%, recall of 90.8%, and F1 score of
84.2%. Applying the joke classifier on all tweets with personal
content led to a data set of 1.8 million personal nonjoke tweets.

A particular focus of this study was on studying diabetes distress
and thus, the psychological factors and emotions. To capture
these factors in tweets, only tweets containing an emotional
element such as emojis/emoticons or emotional words were
kept. Emotional words were identified based on a combination
of the psychologue Parrot’s hierarchical classification of
emotions with the 6 primary emotions (joy, love, surprise,
sadness, anger, fear) and emotional words present in common
questionnaires to study diabetes distress such as the Problem
Areas in Diabetes scale and Diabetes Distress Scale [34-36].
This led to 562,013 tweets containing personal, nonjoke, and
emotional content. More details on the preprocessing pipeline
are summarized in Multimedia Appendix 2 [9,25,32-40].
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Data Annotation
In order to identify causal sentences and cause-effect association,
5000 randomly chosen diabetes-related tweets were selected,
preprocessed, split into sentences, and then manually labeled.
We did not restrict ourselves to a specific area of
diabetes-related causal relationships, and we included potentially

all types. Table 1 illustrates some example sentences. Only
causal relationships related to diabetes were labeled as positive
samples, whereas non–diabetes-related or unclear cause-effect
relationships were labeled as negative samples. For a more
detailed explanation on the annotation, please refer to our
annotation guidelines in Multimedia Appendix 3.

Table 1. Sample sentences in different label scenarios. The examples are fictive to ensure privacy.

ExplanationCausal associationEffectCauseSentences

Possible causal association1mood swingsDiabetesDiabetes causes me to have mood swings

Possible causal association related to di-
abetes distress

1hate#diabetesI just want to eat, I hate #diabetes

Nondiabetes or diabetes distress–related
relationship. “Flu” is not diabetes-related

0——aScary, have a diabetic daughter but I read
thousands of people a year die in the United
Kingdom just from flu so why panic over
corona.

Unclear cause-effect relationship. Not
clear if “high blood pressure” or “dia-
betes” caused the stroke

0——Had two strokes and recover now and also

have high blood pressure and diabetes. 

Chaining cause-effect relationship

(A->B->C)

Event A: glucose test

Event B: anxiety

Event C: been up since 3:30

=> label the relationship which is closest
to our study objective: diabetes and dia-
betes distress

1anxietyglucose testNot sure if I've been up since 3:30 to watch
Titanic or because of my anxiety over my

glucose test is what keeps me up 

Negation in a cause/effect is considered
being part of the cause/effect as it does
not alter the meaning

1malfunctioning pancreas;
not enough insulin

type 1My 14-year-old daughter is type 1 = mal-
functioning pancreas, meaning not enough

insulin being made to regulate 

Negation is not part of cause/effect and
alters the meaning

0feel so badinsulinIt is not true to think that insulin makes you

feel so bad 

aNot available.

Labeling cause-effect pairs is a complex task. To verify the
reliability of the labeling, 2 authors labeled 500 sentences
independently and we calculated Cohen κ score, a statistical
measure expressing the level of agreement between 2 annotators
[41]. We obtained a score of 0.83, which is interpreted as an
almost perfect agreement according to Altman [42] and Landis
and Koch [43]. Disagreements were discussed between 2
authors, and 1 author labelled the other samples, resulting in
8235 labelled sentences (7218 noncausal sentences and 1017
causal sentences) from 5000 tweets.

Models
The first model was trained to predict if a sentence contains a
potential cause-effect association (causal sentence), and the
second model extracted the specific cause and the associated
effect from the causal sentence. Thus, the first model acts like
a barrier and filters noncausal sentences out. These sentences
may have either a cause, an effect, none of them, but not both.
To simplify the model training, we hypothesized that
cause-effect pairs only occur in the same sentence and we
removed all sentences with less than 6 words owing to a lack

of context. For this reason, we operated on a sentence level and
not at the tweet level. Additional challenges in our setting were
that causes and effects could be multiword entities and the
language used on Twitter is nonstandard with frequent slang
and misspelled words.

Causal Sentence Detection
The identification of causal sentences is a binary classification
task. The pretrained language model BERTweet served as a
foundation for the model architecture capable of handling the
nonstandard nature of Twitter data [32]. A feed-forward network
is built on top of the BERTweet [32] architecture consisting of
2 fully connected layers with dropout layers with a probability
of 0.3, finalized by a softmax layer, which translates the model
predictions into probabilities (Figure 2). To adjust for the class
imbalance in the labeled data, class weights were included as
parameters in the categorical cross-entropy loss function to
penalize mispredictions for causal sentences strongly. Initially,
labelled data were stratified, and 10% of it was kept as test set.
The remaining 90% of the samples were further separated into
training and validation sets with 80:20 split.
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Figure 2. Model architecture for causal sentence detection. FCLL: fully connected linear layer; p: probability of an element to be zeroed.

Data Augmentation Through Active Learning
Data imbalance on the one hand and the limited number of
positive training examples for each cause-effect pair on the
other hand (as causes and effects could potentially be related
to any concept in the diabetes domain) drove us to adopt an
active learning approach to increase the training data. Active
learning is a sample selection approach aiming to minimize the
annotation cost while maximizing the performance of machine
learning–based models [44]. It has been widely applied on
textual data [45,46]. The training data were increased in several
iterations, as illustrated in Figure 3.

The first iteration started by training the causal sentence
classifier on sentences from the 5000 tweets. The trained
classifier was then applied on 2000 randomly selected unlabeled

tweets, which were preprocessed and split into sentences,
resulting in a set of causal sentences and a set of noncausal
sentences. The sentences predicted as causal sentences were
examined manually, and possible misclassifications were
corrected to ensure clean positive training samples. The
noncausal sentence set remained untouched. As a consequence,
potential misclassifications remained in the noncausal sentence
set, which should then be considered noisy. Both the causal and
noncausal sentence set were then combined and added as new
training data to the already labeled data, leading to an updated
training set of 7000 tweets. This process was iterated 4 times
and allowed us to augment the labelled data much faster and
more efficiently than that without active learning, as it enables
us to focus on the few positive samples. The final training set
was used to train the classification model and the cause-effect
extraction model.

Figure 3. Active learning loop to augment the training set in a time-efficient fashion.
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Cause-Effect Pairs
After having trained the causal sentence classifier to detect
sentences with causal information, we identified the specific
cause-effect pairs in the causal sentences. The identification of
cause-effect pairs was casted as an event extraction or
named-entity recognition task, that is, assigning a label cause
or effect to a sequence of words. The manually labeled causes
and effects were encoded in an IO tagging format based on the
common tagging format BIO (Beginning, Inside, Outside),
introduced by Ramshaw and Marcus [47]. Here, “I-C” denotes
inside the cause and “I-E” inside the effect. Those 2 tags were
completed by the outside tag “O,” symbolizing that the word
is neither cause nor effect. The IO tagging scheme for the
example sentence with cause “prediabetes” and effect “change
my lifestyle” is summarized:

Sentence: Prediabetes, forces, me, to, change, my, lifestyle

IO tags: I-C, O, O, O, I-E, I-E, I-E

Note that a word can be both cause or effect depending on the
context. For instance “prediabetes” in “Prediabetes forces me
to change my lifestyle” takes the role of a cause, whereas in
“Limited exercising may lead to prediabetes,” it is a possible
effect. IO tagging was preferred over BIO tagging to simplify
the model learning by reducing the number of class from 5 to
3. Moreover, the task is complex and considered open domain,
as causes and effects are not restricted to 1 specific topic but
can be related to any concept in our target domain (diabetes).
As a consequence, the creation of a representative training set
is challenging, as most cause-effect pairs occur rarely. This
complexity drove us to test several model architectures; refer
to Figure 4 for an overview.

Figure 4. Model architectures of cause-effect identification. CRF: conditional random field; FCLL: fully connected linear layer; p: probability of an
element to be zeroed.

1. BERT_FFL: Pretrained BERTweet language model and on
top, 2 feed forward layers with a dropout of 0.3, followed
by a softmax layer. For the model training, the cross-entropy
loss function is selected and weighted by the class weights
to penalize mispredictions for causes and effects stronger.

2. WE_BERT_CRF: Single conditional random field (CRF)
layer with BERTweet embeddings as features augmented
by discrete features such as if the word is lowercase, digit,
or the word length. CRFs are a standard statistical sequential
classification method to identify entities in a text [48]. The
CRF function is implemented with the python package
sklearn-crfsuite [49] based on CRFsuite [50]. As parameters
for the CRF function, the default algorithm “Gradient
descent  us ing  the  Limi ted  Memory
Broyden-Fletcher-GoldfarbShanno method” was chosen,
and the coefficient for L1 and L2 regularization was 0.1.

3. FastText_CRF: Similar to WE_BERT_CRF, with the
difference that BERTweet embeddings were replaced by
FastText embeddings in the feature vector for each word.
FastText vectors trained on similar diabetes-related tweets,
which were well adapted to our use case [9].

Clustering of Causes and Effects
A large part of causes and effects can be regrouped into similar
concepts (clusters) to facilitate analyses and allow effective
network analyses. We chose a semisupervised, time-efficient
approach in which 1000 causes and 1000 effects were randomly
chosen and 2 researchers manually grouped these into clusters
such as “diabetes,” “death,” “family,” and “fear,” hereinafter
referred to as “parent clusters” to simplify understanding. The
remaining causes and effects were then automatically compared
to each element of all the clusters based on FastText vectors
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and cosine similarity and associated with the cluster containing
the most similar element. Experimentally, a similarity threshold
of 0.55 was determined; if a cause/effect had a similarity smaller
than this threshold for all elements, a new cluster was created
for this cause/effect. These clusters were also visualized in an
interactive cause-effect network, developed in D3, to enable
further exploration of the cause-effect association about diabetes
distress communication in social media. Python (version 3.8.8)
and the deep learning framework PyTorch (version 1.8.1) were
used to implement the abovementioned methods. The algorithms
are open sourced under [51].

Results

The following results were obtained from 482,583 sentences,
which were obtained from splitting the 562,013 personal,
emotional, and nonjoke tweets into sentences, excluding
questions and including only sentences with more than 5 words.

Model Training and Performance

Causal Sentences
Hyperparameters for the model training were optimized, and
the best model was trained with an Adam optimizer with a
learning rate of 1e-3 among [1e-2, 1e-3, 1e-4] and a scheduler
with linearly decreasing learning rate with 0 warmup steps. The
optimal batch size was obtained for 16 among [8,16,32], and
we trained for 35 epochs with early stopping. The performances
to detect causal sentences for the imbalanced data set are
illustrated in Table 2 for each round of the active learning loop,
with each round having been trained on more data. The highest
accuracy was reached in round 4 with 71%. We applied the
model of round 4 on all the remaining tweets, as it was trained
on the largest training data set, including difficult causal
examples missed by earlier models and is thus better at
identifying complex causal sentences. The active learning
strategy led us to increase the training data much quicker than
that without active learning and without loss in performance.
This led to a clean database of 265,328 causal sentences with
the most noisy sentences removed.

Table 2. Performance measures (macro) for each round of more training data.

Recall (%)Precision (%)Accuracy (%)Sentences in test set (n)Sentences in training set (n)Round

67.458.064.583760240

71.661.267.7104775361

66.360.367.7122388042

68.860.065.4142910,2843

67.861.071.0164811,8614

Cause and Effect Detection
After having identified the causal sentences, the cause-effect
models were trained to extract the specific cause-effect pairs.
The active learning strategy led to an extended data set of 2118
causal sentences, that is, containing both cause and effect, of
which 10% were used as a test set while the remaining 90%
were further used to create a training and validation set with an
80:20 split. The performances of the different cause-effect
models are listed in Table 3. The best performing model was
the CRF model with BERT-embedding features
(WE_BERT_CRF) with a precision, recall, and F1 score of
0.68. Surprisingly, it outperforms fine-tuning a BERT model,
which is considered the gold standard of current named-entity

recognition tasks. A potential explanation for this is that
BERT-based models make local decisions at every point of the
sequence taking the neighboring words into account before its
decision. In a situation like ours, with strong uncertainty on all
elements, owing to the complexity of the task, a single CRF
layer model leveraging BERT features, making global decisions
using the local context of each word, maximizes the probability
of the whole sequence of the decision better. Moreover, the
CRF model with simpler FastText models achieved strong
results as well with one reason being probably that the word
embeddings were specifically trained on this diabetes corpus.

Consequently, the WE_BERT_CRF model was applied on all
causal sentences leading to a data set of 96,676 sentences with
the cause and associated effect predicted.
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Table 3. Performance measures for each of the 4 architectures.

F1 scoreRecallPrecisionModels

BERT_FFL

0.470.460.48I-C

0.290.480.20I-E

0.830.770.91O

0.530.570.53macro

WE_BERT_CRF

0.620.610.63I-C

0.490.490.49I-E

0.930.930.93O

0.680.680.68macro

FastText_CRF

0.580.570.59I-C

0.410.380.45I-E

0.930.940.92O

0.640.630.65macro

Cause-Effect Description
The semisupervised clustering led to 1751 clusters. To remove
noisy clusters through potential misclassifications, only clusters
with a minimal number of 10 cause/effect occurrences were
considered for the following analyses, resulting in 763 clusters.
Note that the order of documents might affect the results, as
different clusters might have been created. Please refer to
Multimedia Appendix 4 for an overview over the 100 largest
clusters (automatically added clusters have “other” as “parent
cluster”).

Table 4 provides an overview over the largest clusters,
containing either cause or effect. Table 5 provides the most
frequent cause-effect associations, excluding the largest cluster
“diabetes,” as it will be studied separately. The cluster “diabetes”
is the largest one with 66,775 occurrences of “diabetes” as either
cause or effect (eg, diabetes, #diabetes, diabetes mellitus)
followed by “death” with 16,989 (eg, passed away, killed, died,
suicide) and “insulin” (eg, insulin, insulin hormone) with 14,148
occurrences. From the 30 largest clusters, 6 refer to nutrition,
4 to diabetes, and 3 to each of insulin, emotions, and the health
care system. The most frequent cause-effect is “unable to afford
insulin,” which causes “death” expressed in 1246 cases,

followed by “insulin” causing “death” with 1156 cases and
“type 1 diabetes” causing “fear” with 1054 cases.

The largest cluster “diabetes” mainly occurs as a cause and its
10 most frequent effects are death (n=7446), fear (n=4836), sick
(n=2799), neuropathy (n=2477), hypoglycemia (n=2062), anger
(n=1908), suffer (n=1808), insulin (n=1605), overweight
(n=1506), and reduce weight (n=1487). From the 30 most
numerous effects for “diabetes,” 6 were related to “nutrition”
and 5 to “complications and comorbidities” and 3 to each of
“diabetes distress,” “emotions,” and “health care system.”

The interactive visualization in D3 with filter options is
published in [52]. Figure 5 provides an example graph of this
visualization showing only cause-effect relationships with at
least 250 occurrences to ensure readability. It is striking that
“death” seems to play such a central role as effect with various
causes (unable to afford insulin, rationing insulin, finance,
insulin, type 1 diabetes, overweight) pointing at it. Other central
nodes are type 1 diabetes acting as cause for insulin pump,
insulin, hypoglycemia (hypo), sickness, finance, and anger, and
fear emotions, where the latter has the strongest association, or
the node “insulin” mostly relating as cause for sickness,
medication, finance, death, or hypoglycemia and fear and anger.
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Table 4. The most frequent clusters (causes and effects) with the number of occurrences.

Value (n)ClusterParent cluster

66,775diabetesDiabetes

16,989deathDeath

14,148insulinInsulin

11,693type 1 diabetesDiabetes

10,160fearEmotions

9547hypoglycemiaGlycemic variability

6549sickSymptoms

5186overweightNutrition

4909type 2 diabetesDiabetes

4481neuropathyComplications and comorbidities

4389medicationHealth care system

4307insulin pumpDiabetes Technology

4230nutritionNutrition

4149angerEmotions

4053oral glucose tolerance testHealth

3782hypertensionBlood pressure

3767financeHealth care system

3589reduce weightNutrition

3381unable to afford insulinInsulin

3325dietNutrition

3153sadnessEmotions

3144hyperglycemiaGlycemic variability

3132sufferDiabetes

2810depressionDiabetes Distress

2721hospitalHealth care system

2681stressDiabetes Distress

2369sugarNutrition

2363fastingNutrition

2244rationing insulinInsulin

2076gestational diabetesHealth
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Table 5. The most frequent cause-effect relationships excluding the cluster “diabetes” with the number of occurrences.

Value (n)EffectCause

1246deathunable to afford insulin

1156deathinsulin

1054feartype 1 diabetes

999deathtype 1 diabetes

805deathrationing insulin

751insulintype 1 diabetes

584sickoral glucose tolerance test

578hypoglycemiatype 1 diabetes

545hypoinsulin

534fearinsulin

436insulin pumptype 1 diabetes

423deathfinance

400sicktype 1 diabetes

385sickinsulin

367financeinsulin

356angertype 1 diabetes

305medicationinsulin

296angerinsulin

293fearoral glucose tolerance test

293deathtype 2 diabetes

290feartype 2 diabetes

286deathhypertension

280deathoverweight

277financetype 1 diabetes

272insulinhypoglycemia

263sickhypoglycemia

262deathaffordable insulin

255insulin pumpinsulin

248deathcomplications

240sadnessinsulin
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Figure 5. Cause-effect network with a minimum number of associations (edges) of 250. Accessible in [52].

Discussion

Principal Findings
Our findings suggest that it is feasible to extract both explicit
and implicit causes and associated effects from diabetes-related
Twitter data. We demonstrated that by adopting the transfer
learning paradigm and fine-tuning a pretrained language model,
we were able to detect causal sentences. Moreover, we have
shown that simply fine-tuning a BERT-based model does not
always outperform more traditional methods such as relying on
CRFs in the case of the cause-effect pair detection. The
precision, recall, and F1 scores, given the challenging task and
the imbalanced data set, were satisfying. The semisupervised
clustering and interactive visualization enabled us to identify
“diabetes” as the largest cluster acting mainly as the cause for
“death” and “fear.” Besides, a central cluster was detected in
“death” acting as an effect for various causes related to insulin
pricing—a link that was already detected in earlier works [9].
From a patient’s perspective, we were able to show that their
main fear is insulin pricing, which is expressed in the most
frequent cause-effect relationship “unable to afford insulin”
causing “death” or “rationing insulin” causing “death.” As the
main diabetes distress–related causes, we identified fear of
hypoglycemia, insulin, hypertension, or the oral glucose
tolerance test.

Comparison With Previous Works
Several former works have addressed causality on Twitter data.
Doan et al [14] focused on 3 health-related concepts, namely,
stress, insomnia, and headache as effects and identified causes
by using manually crafted patterns and rules. However, they
only focused on explicit causality and excluded causes and
effects encoded in hashtags and synonymous expressions [14].
On the contrary, we tackled both explicit and implicit causality,
including causes and effects in hashtags and exploiting
synonymous expressions through the use of word embeddings.
Kayesh et al [16] proposed an innovative approach, a novel
technique based on neural networks, which uses common sense
background knowledge to enhance the feature set, but they
focused on the simplified version of explicit causality in tweets.
Bollegala et al [53] developed a causality-sensitive approach
for detecting adverse drug reactions from social media by using
lexical patterns and thereby aiming at explicit causality.
Dasgupta et al [54] proposed one of the few deep learning
approaches due to the unavailability of appropriate training data,
leveraging a recursive neural network architecture to detect
cause-effect relations from text, but they also only targeted
explicit causality. A BERT-based approach tackling both explicit
and implicit causality is provided by Khetan et al [23] who used
already existing labeled corpora not based on social media data.
Recently, they further extended their work of explicit and
implicit causality understanding in single and multiple sentences
but in clinical notes [55]. To the best of our knowledge, this is
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the first paper investigating both explicit and implicit
cause-effect relationships on diabetes-related Twitter data.

Strengths and Limitations
This study demonstrates various strengths. First, by leveraging
powerful language models, we were able to identify a large
number of tweets containing cause-effect relationships, which
enabled us to the detect cause-effect associations in 20%
(96,676/482,583) of the sentences, contrary to other approaches
that were able to identify causality in less than 2% of tweets
[14]. Second, contrary to most previous work, we tackled both
explicit and implicit causal relationships, an additional
explanation for the higher number of cause-effect associations
we obtained, compared to other studies focusing only on explicit
associations [14]. Third, relying fully on automatic machine
learning algorithms avoided us from defining manually crafted
patterns to detect causal associations. Fourth, operating on social
media data that are expressed spontaneously and in real time
offers the opportunity to gain knowledge from an alternative
data source and, in particular, from a patient’s perspective,
which might complement traditional epidemiological data
sources. Lastly, the data-driven approach to identify cause-effect
relationships, as reported from Twitter users, can be used in the
next step to generate new hypotheses that can be tested in a
more clinical setting, for example, in a clinical trial.

A strong limitation is that cause-effect relations are expressed
in tweets and this cannot be used for causal inference as the
Twitter data source is uncertain and the information shared can
be an opinion or an observation. Another shortcoming is that
the performance of our algorithms to detect cause-effect pairs
is not perfect. However, the overall process and the vast amount
of data minimize this issue. The lack of recall is counterbalanced
by the sheer amount of data, and the lack of precision is
counterbalanced by the clustering approach in which
nonfrequent causes or effects are discarded [56]. Labeling causes
and effects in a data set is a highly complicated task, and we
would like to emphasize that mislabeling in the data set may
occur. Here, the actual prevalence of causal sentences is lower,

as we wanted to catch as many causal sentences as possible,
which led to also having captured some noncausal sentences.
Enhancing data quality certainly is a strong point to address to
further improve performance. The causal association structures
learnt by the model from the training set might not generalize
completely when applied on the large amount of Twitter data.
Besides, the active learning strategy certainly added noise to
the model, as only positive samples were corrected, which could
be improved in future investigations. Moreover, we would like
to highlight that the diabetes-related information shared on
Twitter may not be representative for all people with diabetes.
For instance, we observed a bigger cluster of causes/effects
related to type 1 diabetes compared to that related to type 2
diabetes, which is contrary to that in the real world [57]. A
potential explanation for that is the age distribution of Twitter
users [58]. However, owing to the large number of tweets
analyzed, a significant variability in the tweets could be
observed.

Conclusion
In this work, we developed an innovative methodology to
identify possible cause-effect relationships among
diabetes-related tweets. This task was challenging owing to
addressing both explicit and implicit causality, multiword
entities, the fact that a word could be both cause or effect, the
open domain of causes and effects, the biases occurring during
labeling of causality, and the relatively small data set for this
complex task. We overcame these challenges by augmenting
the small data set via an active learning loop. The feasibility of
our approach was demonstrated using modern BERT-based
architectures in the preprocessing and causal sentence detection.
A combination of BERT features and CRF layer were leveraged
to extract causes and effects in diabetes-related tweets, which
were then aggregated to clusters in a semisupervised approach.
The visualization of the cause-effect network based on Twitter
data can deepen our understanding of diabetes, in a way of
directly capturing patient-reported outcomes from a causal
perspective. The fear of death owing to the inability to afford
insulin was the main concern expressed.
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Abstract

Background: Emergency department (ED) overcrowding is a concerning global health care issue, which is mainly caused by
the uncertainty of patient arrivals, especially during the pandemic. Accurate forecasting of patient arrivals can allow health
resource allocation in advance to reduce overcrowding. Currently, traditional data, such as historical patient visits, weather,
holiday, and calendar, are primarily used to create forecasting models. However, data from an internet search engine (eg, Google)
is less studied, although they can provide pivotal real-time surveillance information. The internet data can be employed to improve
forecasting performance and provide early warning, especially during the epidemic. Moreover, possible nonlinearities between
patient arrivals and these variables are often ignored.

Objective: This study aims to develop an intelligent forecasting system with machine learning models and internet search index
to provide an accurate prediction of ED patient arrivals, to verify the effectiveness of the internet search index, and to explore
whether nonlinear models can improve the forecasting accuracy.

Methods: Data on ED patient arrivals were collected from July 12, 2009, to June 27, 2010, the period of the 2009 H1N1
pandemic. These included 139,910 ED visits in our collaborative hospital, which is one of the biggest public hospitals in Hong
Kong. Traditional data were also collected during the same period. The internet search index was generated from 268 search
queries on Google to comprehensively capture the information about potential patients. The relationship between the index and
patient arrivals was verified by Pearson correlation coefficient, Johansen cointegration, and Granger causality. Linear and nonlinear
models were then developed with the internet search index to predict patient arrivals. The accuracy and robustness were also
examined.

Results: All models could accurately predict patient arrivals. The causality test indicated internet search index as a strong
predictor of ED patient arrivals. With the internet search index, the mean absolute percentage error (MAPE) and the root mean
square error (RMSE) of the linear model reduced from 5.3% to 5.0% and from 24.44 to 23.18, respectively, whereas the MAPE
and RMSE of the nonlinear model decreased even more, from 3.5% to 3% and from 16.72 to 14.55, respectively. Compared with
each other, the experimental results revealed that the forecasting system with extreme learning machine, as well as the internet
search index, had the best performance in both forecasting accuracy and robustness analysis.

Conclusions: The proposed forecasting system can make accurate, real-time prediction of ED patient arrivals. Compared with
the static traditional variables, the internet search index significantly improves forecasting as a reliable predictor monitoring
continuous behavior trend and sudden changes during the epidemic (P=.002). The nonlinear model performs better than the linear
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counterparts by capturing the dynamic relationship between the index and patient arrivals. Thus, the system can facilitate staff
planning and workflow monitoring.

(JMIR Med Inform 2022;10(7):e34504)   doi:10.2196/34504

KEYWORDS

emergency department; internet search index; machine learning; nonlinear model; patient arrival forecasting

Introduction

Background
The emergency department (ED), which provides instant and
efficient medical services for patients all day, is one of the most
important parts in the health care system [1]. Unfortunately, the
ED as the main entrance in modern hospitals is now under the
threat of overcrowding, which can lead to serious negative
consequences, such as treatment delays, increased patient
mortality, and financial losses [2]. The common causes of
overcrowding are inadequate resource allocation and increased
demand for ED services, particularly during the epidemic period
[3].

The management of patient flow is a challenge faced by many
EDs. The ability to accurately forecast the demand for medical
service in EDs has considerable implications for hospitals, as
it can improve staff and equipment resource allocation.
Considering the high cost of purchasing new medical resources
in a short time, it is more reasonable to develop an accurate
forecasting model of ED patient arrivals, which could enable
better matching of current resources and ED visits. By
forecasting the level of demand for ED care in advance, medical
staff have the opportunity to prepare for this demand, which
can improve the ED service throughput, avoid overcrowding,
and ensure the safety of patients [4].

Prior Work
Previous studies mainly focused on the relationship between
patient arrivals and the traditional variables, including the
historical data of patient arrivals, calendar, weather, and holidays
[4-12]. There have been many successful applications. However,
the sudden and transient changes in people’s behavior cannot
be captured by the traditional variables. This information should
be applied to predict ED visits before such changes are noticed
in the ED [4,11,13]. Recently, there has been an increasing
interest to apply internet data to predict the behaviors and
intentions of people in many areas, such as tourist arrivals,
product sales, stock returns, and unemployment rate [14-16].
In health care, the weekly information report from Google
Trends can be used for weekly influenza epidemic detection
[17,18]. Moreover, internet data have been shown to be useful
for predicting disease trends [17-19]. However, in some
scenarios, the reliability of Google Trend is of concern as it is
vulnerable to the mass media and statistical anomalies [20,21].
Dugas et al [22] studied the association between influenza rates
and crowding metrics using the Google Flu Trends. However,
only few studies have been published regarding the potential
of internet data to improve ED visit forecasting. Ekström et al
[4] monitored the visits to a special, regional medical website
to predict the daily ED attendance with linear regression.

Combining calendar, weather, and autoregressive (AR) terms,
the least absolute shrinkage and selection operator (LASSO)
regression was applied to forecast ED patient arrivals [11]. Ho
et al [13] predicted ED patient volume in the Singapore General
Hospital using multiple regression and publicly available Google
data [13]. Moreover, they even developed a software suite to
enable data visualization and prediction of patient arrivals,
which is convenient for hospital management. Although these
methods work well in their scenarios, there remains room for
further improvement of the ED forecasting, neither limited to
a specific region nor relying on expert experience to collect
internet information. Moreover, the aforementioned studies are
mainly based on linear model, and the possible nonlinearity
may be ignored. In our paper, the nonlinearity is among patient
arrivals and all the independent variables (eg, calendar, holiday,
weather, and internet search index) are considered. A general
method is, however, needed to overcome the aforesaid
limitations.

Objective
The objective of this study is to develop an intelligent
forecasting system with a machine learning model and internet
search index to provide accurate prediction of ED patient
arrivals, to verify the effectiveness of the internet search index,
and to explore whether nonlinear models can improve the
forecasting accuracy. First, the internet search index was
constructed from 266 search queries and verified as a novel
variable by a systematic method. The data were generated from
Google search queries, covering disease names, causes,
symptoms, treatments, and others. The different types of
information required by the patient, as reflected by the search
query, might capture population-level interaction with events,
such as infectious diseases, that traditional data sources alone
may miss. The relationship between the internet search index
and the ED visits was examined by Pearson correlation
coefficient, Johansen cointegration, and Granger causality.
Second, linear and nonlinear models were applied to predict
ED patient arrivals with or without internet search index,
respectively [4-12]. In addition, a nonlinear model, the extreme
learning machine (ELM), was introduced because of its good
generalization abilities and high prediction performance in flow
prediction [23].

Methods

Overview
This study aimed to establish an intelligent system for predicting
patient arrivals accurately and timely. The system consisted of
3 parts: data collection and processing, the establishment of
forecasting model, and performance evaluation. In addition to
the ED patient arrivals and traditional variables (weather,
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holidays, calendar), the internet search index, which extracted
and integrated ED-related human behavior information scattered
in Google search engines, was generated as a new variable. The
correlation between the internet search index and patient arrivals
was verified by Pearson correlation coefficient, Johansen
cointegration, and Granger causality analysis. We then applied
8 forecasting models to predict ED patient arrivals, including
ELM, generalized linear model (GLM), autoregressive

integrated moving average model (ARIMA), ARIMA with
explanatory variables (ARIMAX), support vector machine
(SVM), artificial neural network (ANN), random forest (RF),
and long short-term memory (LSTM) [24-33]. After that, their
performances were evaluated in terms of accuracy and
robustness analysis. The details of the intelligent system are
shown in Figure 1.

Figure 1. A framework of the intelligent forecasting system with the internet search index. ANN: artificial neural network; ARIMA: autoregressive
integrated moving average model; ARIMAX: ARIMA with explanatory variables; ELM: extreme learning machine; GLM: generalized linear model;
LSTM: long short-term memory; RF: random forest; SVM: support vector machine.

Data Collection and Processing

Data on ED Patient Arrivals
In Hong Kong, patients can directly visit public ED without an
appointment and be reimbursed for most medical expenses, so
the ED is usually overcrowded. About 65% of patients walk-in
and half of them are semiurgent or nonurgent [34]. The
Cooperative Hospital is one of the largest public hospitals in
Hong Kong, which is also the first one to receive patients with
COVID-19. It has more than 4000 medical staff members and
1700 beds, and the hospital provides services for all residents
living in Hong Kong, especially those in Kowloon. The number
of ED patient arrivals from July 12, 2009, to June 27, 2010, had
an annual flow of 139,910 ED visits, with an average of about
380 visits every day. The H1N1 pandemic broke out in Hong
Kong during this period, which was a global epidemic before
the outbreak of COVID-19. This ED provides 24/7 service for
patients. As weekly scheduling arrangements have many
applicable scenarios, we focused on the dynamic characteristics
of weekly patient visits in this work. The hospital administrators
use the ED weekly visits forecasting to optimize their human
and material resources, as well as to enhance their preparedness
for a crisis [10]. For the same purpose, some scholars forecasted
ED weekly visits by considering the week of the year seasonality

[3]. Every week is from Sunday to the next Saturday. For our
analysis, all numerical data variables were converted to their
corresponding weekly data by averages per week, which can
represent the difference among weeks. In this way, the total
number of holidays within a week was used to present the impact
of this factor on patient arrivals. For temperature variables, we
applied the data from the previous week to forecast patient
arrivals in the current week. The data set has been examined
and there were no heavy outliers. All variables were transformed
with the minimum-maximum normalization technique before
modeling. Therefore, the data of 51 weeks are the total data set.
The data of the first 27 weeks were treated as the training data
set and the rest as the testing data set. In the analysis, we divided
the data set into 2 parts (60:40). We validated the model’s
forecasting power with more testing data and the convenience
of setting the split point at the beginning of the month. For
example, if we were to predict ED patient arrivals for week t+1,
then the data we applied included the number of ED patients at
week t, the month of t+1 week, the highest and lowest
temperatures at week t, and the total number of holidays for
school and public holidays in the t+1 week. The search queries
were from week t-6 to t from Google Trends. The normal and
the outbreak conditions were considered in the training data.
The weekly patient arrivals to the ED are shown in Figure 2.
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Figure 2. Weekly patient arrivals to ED. ED: emergency department.

Traditional Variables
According to previous studies [4-12], 5 exogenous variables
were chosen as input and divided into 3 groups: calendar data
(ie, months), weather data (ie, the daily highest and lowest
temperatures), and holiday data (ie, school and public holidays).
The daily highest and lowest temperatures were collected from
Hong Kong Observatory. The public holidays included the
following: The first day of January, the day preceding Lunar
New Year’s Day, the first to third day of the Lunar New Year,
Good Friday, the day following Good Friday, Easter Monday,
the day following the Ching Ming Festival, Labour Day, the
Buddha’s Birthday, the Tuen Ng Festival, Hong Kong Special

Administrative Region Establishment Day, National Day,
Chinese Mid-Autumn Festival, the Chung Yeung Festival,
Christmas Day, and the first weekday after Christmas Day. The
school summer holiday was from July 11, 2009, to August 31,
2009, and 2 school winter holidays were included: one from
December 19, 2009, to January 3, 2010, and the other from
February 10, 2010, to February 21, 2010. The boxplot of ED
arrivals by month (Figure 3) shows that patient arrivals were
much higher in July and January. Although the contribution of
this variable is limited in our analysis, it was still considered
because of its importance and the generalization of the model
[4,7]. The boxplot of holidays shows that more patients visit
the ED during public holidays (Figure 4).

Figure 3. Boxplot of patient volumes of ED visits per month. ED: emergency department.
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Figure 4. Boxplot of patient volumes in ED of holidays. ED: emergency department; HOL: holidays; NON: nonholidays; SCH: school closure.

Internet Search Index

Overview

In the Information Age, many patients prefer to search the
internet to seek information about their problem before attending
the ED. This was particularly the case during the flu outbreak
in 2009-2010 [35]. Internet data can be monitored in near real
time, showing the weekly dynamics of patient flow. Thus,
sudden and transient changes in people’s behavior can be
measured and used for prediction before such changes are
actually noticed by the ED [4]. Internet data may also be a
feasible surveillance tool for ED to prevent overcrowding.
According to the data from Statcounter [36], the Google search
engine has now become mainstream in Hong Kong, and thus
using data from this search engine is conducive to the
consistency of future forecasts. The search queries from Google
Hong Kong were collected as internet data through Statistical
Analysis Tools (Google LLC). In addition, the normalization
of Google data only slightly affects the experiments because
the data are renormalized in every iteration. However, because
the normalization of Google Trends data is within a specific
period, it is necessary to monitor the current values of the
queries.

Google Trends is a common data-aggregating tool for measuring
and analyzing Google search data, which can timely reflect the
changes and trends in a society based on the popularity of
specific Google search queries. The internet data collected had
the same geographic area and period as ED patient arrivals.
Data were collected by selecting “All categories” on Google
Trends and Google Web Search between July 12, 2009, and

June 27, 2010, in Hong Kong on the Google Trends official
website. An internet search index was constructed by combining
the ED-related search queries. The fusion method is a 4-stage
process [12].

Step 1: Queries Generation

The selection of the initial queries is important to
comprehensively collect internet information. As the current
methods are mostly based on empirical intuition, the initial
selection in this work was designed to expand the related search
scope as much as possible. We defined and organized the
information (Table 1) into 5 specific categories inspired by
expert knowledge and well-studied papers: names of diseases,
causes, symptoms, treatments, and others [13,22,37]. The initial
queries were selected based on expert knowledge and
information from the Hong Kong Department of Health. This
includes, in particular, the experience of ED staff, the most
common search queries in health-related references as well as
the information on infectious diseases and virus surveillance
from the Department of Health [13,22,37,38]. Results of some
queries indicated that potential patients with specific conditions
may visit the ED. For example, poor weather contributes to the
development of numerous ailments, such as asthma. Claritin is
a common antiallergic medication among patients with allergy.
Massages can help with lumbar muscle strain, muscle atrophy,
and migraine headaches. In Hong Kong, honey is one of the
most popular health care remedies for curing sore throat.
Ultimately, the initial 20 queries were selected. Hong Kong is
a multicultural city, and both Chinese and English are often
used in search engines. For a better understanding, the English
translations of Chinese search queries are shown in parentheses.

Table 1. Initial search queries related to emergency department patients

IndexAspects

癌症 (cancer), 流感 (influenza), abortion, flu, h1n1 symptomsNames

天氣 (weather), 病毒 (virus), pregnancy, skin problem, tobaccoCauses

喉嚨痛 (sore throat), 發燒 (fever), 出汗 (sweat), infectionsSymptoms

克拉汀 (claritin), 按摩 (massage)Treatments

蜂蜜 (honey), 醫生 (doctor), 冬季 (winter), depressionOthers
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Step 2: Queries Expansion

A total of 20 basic queries were used as seed words. The related
queries were recommended by Google Trends. These queries
were then applied in the second-round search. This process was
repeated until the queries became unavailable. A total of 268
search queries were collected by this process. As multiple
comparisons are involved, the P value modified by false
discovery rate was applied to make it hard to reject the null
hypothesis.

Step 3: Queries Selection

The Pearson correlation coefficients were calculated between
ED patient arrivals and the search queries. As the actual
distributions of queries and patient arrivals are unknown, they

were assumed to be normally distributed by convention [11].
Pearson correlation can help find some interpretable queries to
ensure their information is useful for prediction. Considering
that the actual visit is later than the online search behavior, it
is necessary to test search queries with different lags. For every
query, 7 Pearson correlation coefficients were generated from
the data of 7 weeks before the forecast week, denoted as lag1
to lag7. Among them, we selected queries with the largest
correlation coefficient no less than 0.30, which is calculated
between ED patient arrivals and the search queries in the training
data set. Finally, 9 queries were selected as shown in Table 2.
Taking into account their lags, they were shifted (ie, previous
queries moved to the corresponding rows of the current week)
and summed to build the index.

Table 2. Maximum correlation coefficient of search queries from Google Trends.

P valuebCorrelation coefficientLagaAspectsIndexNumber

.02–0.331Treatmentginger1

<.0010.501Diseaseswine fluc symptoms2

.010.361SymptomInfect3

.000.431Others衛生署 (Department of Health)4

.040.312Symptomfever5

<.0010.492Disease豬流感 診所 (swine flu clinic)6

.04–0.322Others牙醫 (dentist)7

<.0010.386Disease肠病毒 (enterovirus)8

<.001–0.427Symptomcough9

aThe unit of lag is week(s).
bThe P value is modified by false discovery rate (significance level=.05).
cSwine flu is the nickname of H1N1 influenza in Hong Kong.

Step 4: Internet Search Index Construction

To illustrate the contribution of the overall related internet
information, the internet search index was employed by shifting
and summing. In addition, the internet search index can
effectively reduce the dimension of the data compared with the
queries. According to the lag term, the 9 queries selected above
were shifted in such a way that the previous queries moved to

the corresponding rows of the current week. That is the reason
why we applied search queries from at least one week before.
All of the shifted search queries were summed to form the
internet search index as a new time series. Although the
fluctuation of the internet search index is greater than ED patient
arrivals, it presents a similar trend to ED patient arrivals (Figure
5).
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Figure 5. Trend of ED patient arrivals and internet search index. ED: emergency department.

According to the aforementioned steps, 9 valuable queries were
selected from a total of 268 queries, of which 4 were Chinese
queries: 衛生署 (Department of Health), 豬流感 診所 (swine
flu clinic), 牙醫 (dentist), and 肠病毒 (enterovirus). The
remaining 5 were English queries (ginger, swine flu symptoms,
infect, fever, and cough).

It has been observed that pandemic outbreaks can be captured
by query terms [11,39]. The 3 queries here, swine flu symptoms,
豬流感 診所 (swine flu clinic), 肠病毒 (enterovirus), can be
associated with the swine flu outbreak in 2009 and enteroviruses
outbreak in 2010 in Hong Kong. In addition, the query 衛生署
(Department of Health) is related to ED visits. The Department
of Health is the official hospital management agency in Hong
Kong [38]. Its website provides reliable and comprehensive
medical-related information and regularly issues outbreak alerts.
The remaining queries (cold, infect, fever) belong to the
common emergency services. Moreover, in Hong Kong, ginger
is an effective medicinal spice used in daily life and widely used
for the prevention and early treatment of cold. Therefore,
“ginger” as a search query might suggest that the user is a
potential ED patient. These queries capture local
population–level health information and were translated into
an internet search index. It provides information rarely found
in traditional data sources, and thus, the forecasting of ED visits
can be improved.

Extreme Learning Machine
For the forecasting model, we employed 8 different methods:
ELM, GLM, ARIMA, ARIMAX, SVM, ANN, RF, and LSTM.
Besides ELM, the others are well known. To the best of our
knowledge, this is the first time that ELM has been applied for
the prediction of ED visits.

ELM is a single hidden layer neural network algorithm [40-43].
It has been widely used in many fields because of simple
mathematical description, lower computational burden, and
faster learning speed [40]. The main feature of the ELM is that
the algorithm can randomly generate the input weights and node
biases. The least-square method is used to determine the output

weight by simple matrix computations. These made it
computationally attractive.

We used the sample data set , where xi is the input and yi is
the output; n and m are the dimension numbers of input and
output, respectively; and N is the number of samples. The
forecasting model can be established using the ELM algorithm
with L hidden neurons as follows:

where aj and bj denote the input weight and the bias of the
hidden layer, respectively; g(·) represents the activation function
of hidden neurons; βj is the output weight representing the
connected output neuron and the jth hidden neuron.

The following objective function is constructed to find the output
weight β.

Equations (2) and (3) can be rewritten as:

Hβ = Y (4)

where H is the hidden layer output matrix.

Through the least-squares method, the output weight β can be
obtained as follows:

where H+ denotes the Moore-Penrose generalized inverse of
matrix H. Using equations 1 and 7, the resulting ELM model
can be estimated.
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Evaluation Metrics
Two evaluation metrics were used to qualify the forecasting
performance of different models: the root mean square error
(RMSE) and mean absolute percentage error (MAPE). These
are written as follows:

where N is the number of observations; yi is the real value; and

indicates the forecast value.

In addition, the Diebold-Mariano (DM) test was used to compare
the forecast accuracy of forecast models [44]. The null
hypothesis is that the reference model re is more accurate than
the test model te. The DM statistic can be written as:

where 

; yi is the actual value; and yre,i and yte,i are forecasting values
of the reference and test models, respectively; N is the number

of observations; h(>1) is h-step-ahead forecasts; is the
autocovariance of the loss differential at lag k. The loss
differential time series di is confirmed as stationary with the
augmented Dickey-Fuller test.

Results

Relationship Between ED Visits and Internet Search
Index
We first analyzed the association between the internet search
index and ED patient arrivals with the Pearson correlation
coefficient. We then also applied the Johansen cointegration
and Granger causality to verify their relationship [45,46]. All
3 analyses were based on the training data set.

Initially, the Pearson correlation coefficients indicated that ED
patient arrivals were significantly correlated with the internet
search index (r=0.46, P=.002).

We next report the results of cointegration (Multimedia
Appendix 1). Given the logarithmic form of the 2 variables to
reduce the impact of outliers, a stability test was performed.
These 2 time series were stably validated by the augmented
Dickey-Fuller test [47]. The cointegration results indicated that
ED arrivals and internet search index were cointegrated. The
first hypothesis, r=0, tests for the presence of cointegration. As
the test statistic exceeds the 1% level (66.22>23.52), we have
strong evidence to reject the null hypothesis of no cointegration.
The second test for r<1 against the alternative hypothesis of r>1
also provides evidence to reject r<1 because the test statistic
again exceeds the 1% level (20.41>11.65). Thus, the
cointegration results demonstrate that ED patient arrivals and
the internet search index were cointegrated.

Meanwhile, the Granger causality test was applied to verify
whether the internet search index is a predictor of ED arrivals.
According to Multimedia Appendix 1, log(internet search index)
is the Granger cause of log(patient arrivals). It indicates a causal
relationship between internet search index and patient arrivals.
We examined the relationship between internet search index
and patient arrivals by Pearson correlation coefficient, Johansen
cointegration, and Granger causality test. As the internet search
index was correlated with ED patient arrivals, it can be included
as a novel variable in the forecasting model.

Forecasting Performance Evaluation
The forecasting models are linear and nonlinear models,
including ELM, GLM, ARIMA, ARIMAX, SVM, ANN, RF,
and LSTM. To test the predictive power of adding different
data sources, the data can be classified into 3 types: “patient
arrivals,” “patient arrivals + traditional variables,” “patient
arrivals + traditional variables + internet search index.”

The prediction accuracy of the models is evaluated by MAPE
and RMSE. As shown in Table 3, the results are promising
because the models perform with a fairly high level of accuracy
overall. It is obvious that combining the internet search index
provides a higher prediction accuracy than both “patient arrivals
+ traditional variables” and “patient arrivals.” As stated earlier,
internet search data can improve prediction.
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Table 3. Prediction performance of weekly emergency department patient arrivals.

TestingTrainingModels

RMSEMAPE (%)RMSEbMAPEa (%)

Patient arrivals

24.285.217.023.6ARIMAc

19.203.619.193.5ANNd

18.594.118.522.2SVMe

19.673.019.362.5RFf

20.794.216.932.9LSTMg

16.993.216.522.8ELMh

Patient arrivals + traditional variables

24.445.316.793.2GLMi

23.165.117.853.5ARIMAXj

18.484.016.103.4ANN

17.453.916.242.8SVM

18.363.717.052.9RF

19.944.416.433.2LSTM

16.723.513.172.7ELM

Patient arrivals + traditional variables + internet search index

23.185.016.243.2GLM

22.005.117.843.4ARIMAX

15.453.314.513.0ANN

15.093.114.842.6SVM

16.323.315.922.9RF

16.693.415.153.0LSTM

14.553.013.102.6ELM

aMAPE: average mean absolute percentage error.
bRMSE: root mean square error.
cARIMA: autoregressive integrated moving average model.
dANN: artificial neural network.
eSVM: support vector machine.
fRF: random forest.
gLSTM: long short-term memory.
hELM: extreme learning machine.
iGLM: generalized linear model.
jARIMAX: ARIMA with explanatory variables.

In particular, the performance of the models varies based on the
value of the hyperparameters. The process of tuning the
hyperparameters is performed to balance the relationship
between optimal solution and regularization in the training data
set, and thus to achieve the best generalization ability in the
testing data set. As 2 commonly used parameter selection
methods, trial-and-error and grid search guarantee good
performance. Using these methods, we applied different models
in this study. Both methods utilized different combinations of
parameters and then built the best performance model with the

selected parameters. With the trial-and-error method, the final
selected GLM was fitted with Gaussian distribution rather than
with other error distributions. The performance of ARIMA(X)
is determined by the AR order (p), the degree of difference (d),
and the moving average (MA) order (q). Autocorrelation
function and partial autocorrelation were used to identify the
value of AR and MA after verifying stationary by differencing
the time series. The sigmoid activation function is applied in
ANN. The specific values of hidden layer and hidden neuron
are chosen from grid search. Similarly, the radial is used in
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SVM. A grid search is employed to select the number of costs,
gamma, and epsilon. As for RF, the number of trees grown and
the number of variables sampled at each split are decided
through a grid search. Moreover, it is applied to tune the batch
size, hidden units, and epochs. For ELM, the number of hidden
nodes is set to 20, 120, and 150 for the “patient arrivals,”
“patient arrivals + traditional variables,” and “patient arrivals
+ traditional variables + internet search index” data set,
respectively. The kernel function is set to “satlins” for all data
sets. Furthermore, as the initial weights were generated
randomly, the parameter was decided by the average
performance of the experiments (n<10) to ensure reliability.
The optimal forms of ARIMA and ARIMAX were estimated
by minimizing Akaike information criteria and Bayesian
information criterion.

The ED experts informed that they had to increase additional
medical staff members when configuration was mismatched by
more than 18% [11]. Therefore, the aforesaid results indicate
that there are 7 and 5 mismatch days for GLM without and with
internet search index, respectively. ELM with internet search
index had 2 mismatching days, which is the least value among
all the forecasting models. Compared with “patient arrivals +
traditional variables,” it can prevent 1 mismatching day
theoretically.

Moreover, the best performance is achieved by ELM with
independent variables of “patient arrivals + traditional variables
+ internet search index” in the training and testing data sets. It
achieved an MAPE of 3%, with RMSE of 14.55. SVM also
performed well, followed by ANN, RF, LSTM, and ARIMAX;
GLM ranked last. The dynamic characteristic of the patient
arrivals can be well represented by the ELM model.

The DM test was used to compare accuracy of forecasting
models from a statistical point of view. The DM statistic results
are shown in Table 4. With internet search index, when the ELM
is applied as a test model with medium significance (P<.001),
the model was superior to other forecasting models. By contrast,
GLM had the lowest prediction performance among the 7
forecasting models. In addition, the performance of ELM, ANN,
RF, SVM, and LSTM was better than that of ARIMAX and
GLM. Therefore, nonlinear models may be more suitable for
predicting the arrival of ED patients with the internet search
index.

We next measured the DM test results between the reference
model without internet data and the test model with internet
data (Table 5). One of the critical findings is that the same
models with internet data are better than those without internet
data. Among all the models, neither GLM nor ARIMAX had a
good performance, even with the internet data. All nonlinear
models with internet data had higher accuracy than those
without.

We assessed the robustness of the 7 forecasting models with or
without the internet search index. All forecasting models were
run 20 times using data set with different lengths. The robustness
was evaluated by the SD of MAPE and RMSE. ELM was the
most stable model with minimum SD of MAPE and RMSE
(Table 6). By contrast, GLM was the most unstable forecasting
model because it had maximum SD of MAPE and RMSE. The
results also indicated that the forecasting models with the
internet search index are more stable. Moreover, the robustness
of nonlinear models is better than that of linear models.
Compared with linear models, the rate of decline for nonlinear
models is faster.
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Table 4. DMa test results of testing data set for same data set.

Reference modelb,cTest model

LSTMiRFhSVMgANNfARIMAXeGLMd

Patient arrivals + traditional variables

2.1002 (<.001)2.8481 (<.001)1.8178 (<.001)2.012 (<.001)3.0624 (<.001)2.8297 (<.001)ELM

0.1663 (.54)0.7643 (.09)1.0707 (.06)0.86595 (.11)0.2935 (.31)GLM

0.4876 (.68)0.3957 (.23)1.0691 (.06)0.64435 (.17)ARIMAX

1.9512 (.01)0.2746 (.45)0.13244 (.38)ANN

0.8714 (.12)0.5823 (.27)SVM

1.0045 (.08)RF

Patient arrivals + traditional variables + internet search index

1.6659 (.02)2.0476 (<.001)2.0325 (<.001)2.0047 (<.001)3.79 (<.001)2.5062 (<.001)ELM

0.3647 (.64)1.0467 (.09)1.6064 (.07)1.1462 (.12)0.32675 (.30)GLM

1.2671 (.07)1.5946 (.11)2.2885 (.05)1.7314 (.06)ARIMAX

1.2304 (.08)0.2104 (.49)0.14419 (.40)ANN

1.4391 (.04)0.2593 (.36)SVM

1.2992 (.06)RF

aDM: Diebold-Mariano.
bThe P value modified by false discovery rate is given in brackets. The significance level is .05.
cValues are presented as the Diebold-Mariano statistic (P value modified by false discovery rate).
dGLM: generalized linear model.
eARIMAX: ARIMA with explanatory variables.
fANN: artificial neural network.
gSVM: support vector machine.
hRF: random forest.
iLSTM: long short-term memory.
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Table 5. DM test results of testing data set for different data sets.

Reference model (without internet data)aTest model (with internet da-
ta)

ELMhLSTMgRFfSVMeANNdARIMAXcGLMb

0.8635 (.16)2.1002 (.31)1.8806 (.22)0.2314 (.40)0.2797 (.37)0.4041 (.31)2.4848
(<.001)

GLM

0.0337 (.51)1.5748 (.24)0.7756 (.20)1.7698 (.12)0.4968 (.28)2.5818
(<.001)

1.5701 (.04)ARIMAX

4.4291
(<.001)

1.2432 (.09)3.4393
(<.001)

2.8276 (<.001)4.1945 (<.001)1.7547 (.02)2.2546
(<.001)

ANN

3.2791
(<.001)

0.8602 (.07)1.6767 (.02)2.3394 (<.001)6.0597 (<.001)1.7374 (.02)2.244 (<.001)SVM

2.3075
(<.001)

0.5800 (.05)2.3097
(<.001)

1.8785 (.02)2.7599 (<.001)1.9591 (.02)1.7886 (.02)RF

1.9995 (.02)2.4263
(<.001)

1.0560 (.12)1.6441 (.04)1.3620 (.07)3.3685
(<.001)

0.8556 (.01)LSTM

4.4291
(<.001)

2.175 (.01)3.4394
(<.001)

2.8276 (<.001)4.1946 (<.001)1.7547 (.03)2.2546
(<.001)

ELM

aValues are presented as the Diebold-Mariano statistic. The P value modified by false discovery rate is in brackets. The significance level is .05.
bGLM: generalized linear model.
cARIMAX: ARIMA with explanatory variables.
dANN: artificial neural network.
eSVM: support vector machine.
fRF: random forest.
gLSTM: long short-term memory.
hELM: extreme learning machine.

Table 6. Robustness analysis.

Forecasting modelSD

ELMgRFfLSTMeARIMAXdSVMcANNbGLMa

Patient arrivals + traditional variables

1.01.21.71.71.01.02.5SD of MAPEh (%)

4.0995.3717.4095.8435.1584.38515.638SD of RMSEi

Patient arrivals + traditional variables + internet search index

0.70.81.30.90.70.82.4SD of MAPE (%)

3.3703.9855.7975.6814.0083.57715.212SD of RMSE

aGLM: generalized linear model.
bANN: artificial neural network.
cSVM: support vector machine.
dARIMAX: ARIMA with explanatory variables.
eLSTM: long short-term memory.
fRF: random forest.
gELM: extreme learning machine.
hMAPE: average mean absolute percentage error.
iRMSE: root mean square error.

These analyses have revealed some interesting findings: (1) The
forecasting performance is improved by the internet search
index, which might reflect the behavioral trends of potential
patients during the period of the H1N1 pandemic. (2) The
accuracy of the ELM model was far superior than that of other
forecasting models and the model captures the nonlinearities

between the variables and ED patients. (3) Including internet
search index results in more stable models and the proposed
ELM was the most stable among the models.
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Discussion

Principal Findings
As the number of patients increases continually, ED needs more
information to make timely and target resource configuration
strategies, thus preventing overcrowding and reducing social
pressure. In the era of big data, internet data have been used in
many areas and may help formulate new and appropriate
measures to provide early warning signals to decision makers.
In this study, we mainly focused on introducing internet data
and nonlinear models to predict ED visits during the pandemic.
The 3 contributions are summarized as follows. First, we
compared the performance of linear and nonlinear models in
the data set with or without internet search index to predict
patient arrivals. The observed increase in forecasting accuracy
could be attributed to internet data and kernel-based ELM. In
addition, we investigated the performance metrics of previous
studies. The visits to a special, regional medical website were
monitored to predict the daily ED attendance with linear
regression, with an MAPE of 4.8% [4]. Another linear model
(LASSO) was employed, in combination with traditional
variables, to reduce the MAPE and RMSE to 7.58% and 12.07
[11]. Recently, a multiple regression was applied with Google
data to predict ED arrivals in the Singapore General Hospital.
Its prediction curve indicated that MAPE was close to 8% [13].
Compared with the performance metrics, the minimum MAPE
and RMSE obtained in our study were 3.0% and 14.55,
respectively. The comparison reveals that our work is
competitive. Although the compared studies have different
scenarios, data, models, and environments, all found that the
internet data can help in the prediction of ED patient arrivals.
We further examined the accuracy and robustness from a
statistics perspective. Second, a systematic method was applied
to build the internet search index that reflects patient-related
information as comprehensively as possible in search queries,
including common diseases, possible causes, current symptoms,
self-treatment, and others. Statistically, the effectiveness of the
internet search index was also verified by Pearson correlation
coefficient, Johansen cointegration, and Granger causality.
Third, the characteristics of the ED visits during the outbreak
of H1N1 pandemic were also modeled. The problem of ED
overcrowding at such a serious time was more intense than at
normal times, which could be a typical environment for the
proposed method using the internet search index.

The proposed intelligent forecasting system predicts ED patient
arrivals accurately and timely. The predictive power provided
by the system stems from 2 parts. First, the internet search index
that integrates with relevant internet search queries greatly
contributes to the improvement of forecasting. According to
the selected queries, the lag term of most queries was lag 1,
indicating that patients are very likely to visit the ED within a
week after identifying their symptoms. As we took internet data
into account, if we extend the forecasting scale, it may miss
some queries and fail to reflect the near–real-time trends and
sudden changes. A trade-off between accuracy and time was
thus necessary here. Ultimately, we made 1-week-ahead
forecasting of ED patient arrivals. Whenever the new incoming
data are higher than previously highest values, we first updated

the internet data and then predicted the patient arrivals. More
specifically, the new incoming higher value will be normalized
as 1, meaning that we have obtained another extreme value and
thus it is necessary to update the entire query data. The
prediction model will also be retrained with the new query data.
When the highest value remains the same after adding the new
data, we simply add the new data to the existing ones. Second,
kernel-based ELM can explore the nonlinearities in data to
achieve better forecasting accuracy. It is a novel computational
intelligence method based on single-hidden layer feedforward
networks for regression and classification. The essence of ELM
is that almost all nonlinear piecewise continuous functions can
be used as the hidden-node output function, and thus, the feature
mappings used in ELM can be very diversified to approximate
arbitrary nonlinearity. Moreover, input weights and the hidden
layer parameters are randomly generated independent of the
training samples, and only the output weights are calculated
through the least-square method. This characteristic leads to a
significant improvement in the learning speed of ELM.
Therefore, ELM can be applied in the identification of
nonlinearity to forecast ED patient arrivals. The proposed system
is utilized to forecast ED patient arrivals for a Hong Kong
hospital. Our experimental results reveal that the forecasting
system with ELM is significantly superior over the traditional
linear models and some other nonlinear models. Meanwhile,
the internet search index increases the forecasting power of all
models. Therefore, this system will provide more information
for the predicted values, and then well-matched resource
allocation plans will be developed in real-time or near real-time
per week.

Limitations
The limitations of this paper are as follows. First, some patients
may not be able to access the internet. As a result, their
behaviors will not be recorded by the internet data. However,
with the development of the mobile internet, it will be more
convenient for people to obtain the information through search
engines. Second, the queries we selected only contained Chinese
and English. Thus, some internet searches in other languages
are likely ignored; however, languages other than the aforesaid
are less popular in Hong Kong. Third, the search queries we
chose may be limited. Although we had 266 queries, some
queries may have been missed. We believe that the search
queries could be updated in another comprehensive query
selection method over time. Moreover, the Granger causality
may result in spurious causality. Finally, to ensure the reliability
of the data from Google Trends, the influencing factors,
including the mass media interference and the statistical
anomalies, need to be considered. Other advanced methods in
selecting informative queries, such as Spearman, will be
seriously considered to improve the forecasting power of our
method.

Conclusions
This study supports the possibility of using internet data to
predict ED visits during a pandemic and this is, to the best of
our knowledge, the first study to use internet data and nonlinear
models to predict ED visits. Compared with several related
papers, we mainly focused on dynamic characteristics of patient
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arrivals during the H1N1 influenza, which was declared as a
pandemic in Hong Kong in 2009 [4,11,13]. The problem of ED
overcrowding at such that time was more serious than in normal
times. Using the proposed framework, the ED-related human
behavior information can be effectively extracted and introduced
into the prediction model. In this study, an intelligent forecasting
system was proposed with machine learning and internet search
index to accurately predict weekly ED patient arrivals. Initially,
we used a comprehensive and systematic method to build the
internet search index with related search queries, which
contained information about disease, causes, symptoms, and
treatments. The relationship between the internet search index
and ED patient arrivals was then verified by Pearson correlation
coefficient, Johansen cointegration, and Granger causality.
Finally, forecasting models were applied to different
combinations of data with or without internet search index.

Our experimental results indicated that all of the forecasting
models are more accurate when the internet search index is
considered, as the internet data can timely reflect the changes
and trends. Compared with other popular forecasting methods,
the proposed kernel-based ELM model was more accurate and
robust to present the nonlinearities between the variables and
ED patients. In general, the performance of nonlinear models

is better than linear models. This may imply that the dynamic
relationship between variables and patient arrivals can be well
represented by the nonlinear models. This intelligent forecasting
system can be widely applied in other EDs, with the need to
only update the internet search index according to regional or
special requirements. It may also help ED managers to improve
staff scheduling and allocate resources more effectively to
prevent overcrowding by giving an early warning, especially
during a pandemic like H1N1 or even during COVID-19 times.

Our future work will explore ED-related data from social media
platforms, such as Twitter, Facebook, and Weibo, to investigate
their impact on the ED patient arrivals. In addition, we plan to
predict the ED patient flow with different severity levels. As
there are 5 levels of ED patient arrival triages in Hong Kong,
the relationship between these 5 levels of patient arrivals and
internet information will be further studied. This will help ED
managers develop a more flexible and targeted strategy to
balance the need of different patients. Furthermore, the
spatiotemporal changes in ED patient visits are worth studying
in-depth. To further improve the accuracy of the forecasting
model, deep learning algorithms will be of great interest in our
future work, especially the ability to find efficient
representations in large amounts of data.
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Abstract

Background: Twitter provides a valuable platform for the surveillance and monitoring of public health topics; however, manually
categorizing large quantities of Twitter data is labor intensive and presents barriers to identify major trends and sentiments.
Additionally, while machine and deep learning approaches have been proposed with high accuracy, they require large, annotated
data sets. Public pretrained deep learning classification models, such as BERTweet, produce higher-quality models while using
smaller annotated training sets.

Objective: This study aims to derive and evaluate a pretrained deep learning model based on BERTweet that can identify tweets
relevant to vaping, tweets (related to vaping) of commercial nature, and tweets with provape sentiment. Additionally, the
performance of the BERTweet classifier will be compared against a long short-term memory (LSTM) model to show the
improvements a pretrained model has over traditional deep learning approaches.

Methods: Twitter data were collected from August to October 2019 using vaping-related search terms. From this set, a random
subsample of 2401 English tweets was manually annotated for relevance (vaping related or not), commercial nature (commercial
or not), and sentiment (positive, negative, or neutral). Using the annotated data, 3 separate classifiers were built using BERTweet
with the default parameters defined by the Simple Transformer application programming interface (API). Each model was trained
for 20 iterations and evaluated with a random split of the annotated tweets, reserving 10% (n=165) of tweets for evaluations.

Results: The relevance, commercial, and sentiment classifiers achieved an area under the receiver operating characteristic curve
(AUROC) of 94.5%, 99.3%, and 81.7%, respectively. Additionally, the weighted F1 scores of each were 97.6%, 99.0%, and
86.1%, respectively. We found that BERTweet outperformed the LSTM model in the classification of all categories.

Conclusions: Large, open-source deep learning classifiers, such as BERTweet, can provide researchers the ability to reliably
determine if tweets are relevant to vaping; include commercial content; and include positive, negative, or neutral content about
vaping with a higher accuracy than traditional natural language processing deep learning models. Such enhancement to the
utilization of Twitter data can allow for faster exploration and dissemination of time-sensitive data than traditional methodologies
(eg, surveys, polling research).

(JMIR Med Inform 2022;10(7):e33678)   doi:10.2196/33678
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Introduction

Background
Since its launch in 2006, Twitter has exploded in popularity to
become one of the top social media platforms. As of 2021, the
site hosts 192 million daily active users worldwide [1]. The
280-character constraint on a Twitter text post, called a tweet,
lends itself well to spontaneous and organic interactions. The
candid nature of the tweets provides invaluable data for the
public health realm. Patients spend relatively little time with
health care professionals, with some only seeing their primary
care physician once every other year, and therefore it can be
difficult for health care workers to accurately address needs or
feelings that patients often find uncomfortable disclosing to
others [2].

While Twitter provides a valuable platform for the surveillance
and monitoring of public health topics, manually categorizing
large quantities of Twitter data by hand presents challenges to
identify major trends and sentiments in a timely manner.
Machine and deep learning methods have previously been
proposed to provide a framework for systematic and automated
processing and analysis of Twitter data to develop surveillance
systems with applications to public health [3]. While these
models achieve high accuracy, they require large sets of
annotated data to be trained. By contrast, public pretrained deep
learning classification models, such as BERTweet, produce
higher-quality models while using smaller annotated training
sets [4]. In this study, we derive and evaluate a pretrained deep
learning model based on BERTweet that can identify tweets
relevant to vaping, tweets of commercial nature, and tweets
with provape sentiment. We compare the results of the
BERTweet-based classifier with a long short-term memory
model (LSTM) to show the improvements a pretrained model
has over traditional deep learning approaches.

Traditional Deep Learning
Deep learning is a class of machine learning algorithms that
uses multiple layers to progressively extract higher-level features
from raw input [4]. Several types of deep learning architectures
exist, such as deep neural networks, recurrent neural networks
(RNNs), and convolutional neural networks (CNNs).
Applications of deep learning include computer vision, speech
recognition, natural language processing, and drug design.

In their work, Visweswaran et al [3] found that LSTM models
performed particularly well on tweet classification for relevance,
sentiment, and commercial nature [3]. An LSTM network is a
special kind of RNN capable of learning long-term dependencies
[5]. Unlike standard feedforward networks, such as CNNs,
LSTMs have a feedback connection. This feedback connection
allows the network to not only process a single data point (ie,
a word), but also entire sequences of data (ie, sentence or
phrase), which make them extremely powerful in classifying
sentiment of a message.

Pretrained Transformer Models
Over the last few years, transformer models have been very
effective for a large variety of natural language processing tasks.
First proposed by Colditz et al [6], transformers use a

self-attention mechanism to capture what aspects of a sequence
are important in a series of tokens. In simple terms, self-attention
mechanisms aim to create real natural language understanding
in machines.

In 2018, Google AI Language released the Bidirectional Encoder
Representations from Transformers (BERT) model, which
improves upon the original transformer model by learning token
representations in both directions [7]. In normal transformers,
a sequence is analyzed either left to right or right to left, but not
in both directions. To achieve this, BERT uses a revamped
pretraining procedure that includes masked language model and
next sentence prediction objectives [2]. Several BERT models
pretrained on a variety of texts, languages, and topics are
available freely to the public. This creates a ready-made
approach for researchers trying to create models for a number
of language tasks, including text classification. Researchers can
use BERT in its default settings, or they can apply fine-tuning
on a data set closely applicable to the task at hand. For instance,
in this study, the created model is fine-tuned on a set of
hand-annotated tweets before testing the classification accuracy
of the system.

After BERT was introduced, the “Robustly optimized BERT
pre-training approach” (RoBERTa) was published [8].
RoBERTa was created out of the authors’ experimentation with
the default hyperparameters of BERT. They found that BERT
was significantly undertrained, and that with some minor
changes, the modified BERT model was able to outperform
newer and even larger transformer models. Pretraining
optimizations in RoBERTa include dynamic masking, large
mini-batches, larger byte-pair encodings, and using full
sentences across documents. We refer to Liu et al [8] for a more
detailed discussion of the optimizations performed in RoBERTa.
Like BERT, many pretrained variations of RoBERTa are
available online.

BERTweet is a public BERT-based model trained using the
RoBERTa pretraining procedure [9]. Released in 2020, it was
the first large-scale pretrained language model for English tweets
to be released to other researchers for further improvements and
novel applications. BERTweet was trained on 850 million
English tweets collected from 2012 to 2019, which prepares it
well for novel downstream classification tasks on a set of tweets.
This pipeline of pretraining on a large text corpus and then
fine-tuning the model for classification tasks is called transfer
learning [2]. It has been shown that pretraining is integral to
model performance on downstream tasks, and it follows that
pretraining a model on material that is similar to the texts in the
downstream task will yield improved performance. Therefore,
having access to a model trained on a large corpus of tweets is
invaluable for the creation of a Twitter-based public health
surveillance system. We refer to Nguyen et al [9] for a more
detailed explanation of how the BERTweet model functions.

Objective
It is our goal to produce an accurate BERTweet-based deep
learning classifier that can improve upon existing Twitter
surveillance systems that are focused on vaping-related tweets.
Additionally, we aim to produce a classifier that is reliable and
accurate in assessing a tweet for relevance (relevant or not),
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sentiment (positive, negative, or neutral), and commercial nature
(commercial or not). Leveraging Twitter as a complement to
traditional surveillance will allow for real-time identification
of changes that can be used by public health practitioners. For
example, when positive sentiment toward vaping rises,
practitioners may be able to determine the exact reasons why
and respond accordingly. Similarly, when there is a notable
spike in misinformation about vaping and its effects on health,
health experts will be able to act immediately to correct this
information [3].

Related Work
Several works have proposed classifiers to classify Twitter data
in terms of sentiment. Further, the last few years have seen a
surge in publications on creating classifiers to analyze public
health trends as depicted on Twitter. Gohil et al [10] performed
a review of current sentiment analysis tools available for
researchers. They found that while multiple methods existed
for analyzing the sentiment of tweets in the health care setting,
there is still the need for an accurate and verified tool for
sentiment analysis of tweets trained using a health care
setting–specific tweet. Edara et al [11] developed an LSTM to
classify cancer-related tweets based on the tone of the tweet
and compared the results against several traditional machine
learning approaches. They found that the LSTM model
outperformed all of the other approaches. Ji et al [12] utilized
the Twitter platform to monitor the spread of public concern
about epidemics by separating personal tweets from new tweets
and then further categorizing the personal tweets into those that
are negative and nonnegative using a naïve Bayes classifier.

For a general approach to performing a sentiment analysis on
Twitter data, Agarwal et al [13] introduced unigram,
feature-based, and tree-based models to classify tweets as either
a binary task (positive or negative) or a 3-way task (positive,
negative, and neutral). Harjule et al [14] proposed another
general approach to classifying the sentiment of tweets. The
authors analyzed several lexicon and machine learning–based
tweet sentiment classifiers on a large group of data sets and
found that the machine learning models were more accurate at
classifying sentiment. Kharde and Sonawane [15] performed a
similar comparative analysis and verified the claim from Harjule
et al [14] that machine learning classifiers yield higher accuracy,
with the caveat that lexicon-based methods can be more affective
in some cases.

Beyond general sentiment and public health monitoring, several
studies have looked at using Twitter to monitor trends toward
vaping and e-cigarettes [16,17]. Han and Kavuluru [18]
implemented several machine learning models, such as support
vector machines, logistic regression, and CNNs, to identify
marketing and nonmarketing e-cigarette tweets. Further, Myslín
et al [19] and Cole-Lewis et al [20] annotated tobacco-related

tweets and derived several machine learning classifiers to predict
sentiment. Huang et al [21] analyzed tweets using machine
learning classifiers to find trend in the commercial nature of
tweets relating to vaping. They found that tweets related to
e-cigarettes were about 90% commercial and about 10%
mentioned smoking cessation. Resende and Culotta [22] derived
a sentiment classifier for e-cigarette–related tweets that
identified positive and negative tweets with 96% and 70%
precision, respectively. Visweswaran et al [3] performed an
in-depth comparison of traditional machine learning classifiers
(regression, random forest, linear support vector machine, and
multinomial naïve Bayes) with deep learning classifiers (CNN,
LSTM, LSTM-CNN, and bidirectional LSTM), and found that
among all the tested networks, LSTM achieved the highest
classification accuracy.

Methods

Data Collection
Tweets were collected continuously from August to October
2019 using the Real-Time Infoveillance of Twitter Health
Messages (RITHM) framework [6]. The RITHM framework is
an open-source software for collecting and formatting Twitter
data. It additionally provides procedures for maximizing the
efficiency and effectiveness of subsequent human data coding.
The keywords that we used for data collection include vape,
vapes, vaper, vapers, vaping, juul, juuls, and juuling. The
vaping-related keywords are based on previous Twitter research
[6,10] and, in particular, we included keywords to identify the
highly popular e-cigarette brand, JUUL, which had the highest
market share at the time from which data were collected [23].
We identified and collected all tweets that matched 1 or more
keywords from the list above.

Annotation
After data collection, a random subsample of 2401 English
tweets was annotated for relevance (vaping related or not),
commercial nature (commercial or not), and sentiment (positive,
negative, or neutral). This annotation was done in accordance
with the 3-level hierarchical annotation schema, as depicted in
Table 1. A tweet was first annotated for relevance. Then, only
if the tweet was relevant, was it annotated for commercial nature
and sentiment.

A team of 2 trained annotators independently annotated batches
of 400 tweets at a time. Adjudicated annotation disagreements
were carried out under the presence of the supervising
investigator. All annotates codes have a Cohen κ value over
0.70, indicating strong internal agreement among annotators.
The full set of 2401 adjudicated annotations and tweet content
were used in the training of the classifier models. A detailed
description of the annotations can be found in Table 2.
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Table 1. Descriptions of labels used for annotating vaping-related tweets.

Example quotesDescriptionsLabels

Relevant • Is the tweet in English and related to the vaping
topic at hand (eg, vape use or users, vaping devices,
or products)?

Not relevant • Typically, non-English tweets or tweets that refer-
enced vaping cannabis products specifically.

Commercial •• Today only! Buy one JUUL get the second half price with our
online coupon code #JUUL4LIFE

Is the tweet an advertisement/marketing for vaping
products?

Noncommercial • Includes tweets that demonstrate favorability to-
ward a product but do not directly advocate for
purchasing it.

Positive •• The tweeter is currently, or has recently used, or is going to
vape:

The tweet is associated with positive emotions or
contexts regarding vaping.

• Currently juuling in the bathroom at school!

• The tweeter shows positivity or neutral acceptance from others’
usage or others’ positive comments about vaping:
• Just got Hannah to try vaping for the first time! She loved

it.

• The tweeter mentions a vape pen in association with other
positive aspects of society or popular culture.
• We need a Disney princess that rips her JUUL in the

middle of a serious conversation.

• The tweeter asks a question using first-person pronouns:
• Where can I buy a JUUL?

Negative •• The tweeter believes smoking a vape is disgusting, uncool, or
unattractive:

The tweet is associated with negative emotions or
contexts regarding vaping.

• Cannot believe everyone is smoking JUULs these days. I
think it’s disgusting.

• The tweeter criticizes/ridicules others for using a vape:
• ur mcm says ‘cigarettes are gross’ yet is addicted to

nicotine through cool cucumber flavored JUUL pods.

• The tweeter prefers to use a different substance, such as
cigarettes or marijuana:
• Tried a JUUL today for the first time but I still prefer

cigarettes over it.

Neutral • The tweet is factual but not opinionated or is a question about
unbiased facts/information about vaping:
• They are selling JUUL pens at my local tobacco shop for

anyone interested.
• What is a JUUL?
• Is a JUUL better than tobacco?
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Table 2. Description of annotated training and test data sets (N=2401).a

Number of tweets with a neutral target,
n (%)

Number of tweets with a negative target,
n (%)

Number of tweets with a positive target,
n (%)

Targets

N/AbNonrelevant:Relevant:Relevance

•• Total: 599 (24.95)Total: 1802 (75.05)
• •Training: 1637 (90.84) Training: 524 (87.48)

•• Test: 75 (12.52)Test: 165 (9.16)

N/ANoncommercial:Commercial:Commercial

•• Total: 1685 (70.18)Total: 117 (4.87)
• •Training: 106 (90.60) Training: 1516 (89.97)

•• Test: 169 (10.03)Test: 11(9.40)

Neutral:Negative:Positive:Sentiment

••• Total: 1372 (57.14)Total: 130 (5.41)Total: 172 (7.16)
• ••Training: 158 (91.86) Training: 1229 (89.58)Training: 119 (91.54)

•• •Test: 11 (8.46)Test: 14 (8.14) Test: 143 (10.42)

aPercentages may not add up to 100% as classification was made for sentiment only if the tweet was relevant.
bSentiment-only code with neutral target.

LSTM Model
We will briefly recount the process explained in Visweswaran
et al [3] to train and evaluate an LSTM model to classify a tweet
related to vaping as relevant; commercial; and if it was positive,
negative, or neutral in sentiment. Our LSTM model was
developed using the built-in functionality of the TensorFlow
machine learning library. We utilized rectified linear unit
(ReLU) as the activation function of the hidden layers and the
sigmoid activation function for the output layer. Additionally,
we utilized binary cross entropy as the loss function with Adam
as the optimizer. In accordance with Visweswaran et al’s study
[3], we used nondomain-specific GloVe word vectors.

After first testing a 70/30 split to create the relevance classifier
and testing random splits to prevent over fitting, we found
optimal results with a 90/10 split of the entire annotated data
set, as all tweets were coded as either relevant or nonrelevant.
We used the 90% split (n=1637) to train the LSTM relevance
classifier, and then tested on the remaining 10% (n=165). We
trained the model for 5 epochs using a batch size of 64. Both
the commercial and sentiment classifiers followed the same
training and testing procedures as the relevance classifier. The
one difference being that only tweets labeled as relevant were
used in the commercial and sentiment data sets. All nonrelevant
tweets were filtered out and discarded.

BERTweet
To create a classifier for relevance, 90% of the tweets labeled
as either relevant (n=1637) or nonrelevant (n=524) were used
to fine-tune the BERTweet model, and the remaining 10% were
used to test the final model (relevant n=165; nonrelevant n=75).
This splitting, training, and testing process was repeated multiple
times with random splits, and the accuracy results are the
averages of each individual run. BERTweet was trained for 20

epochs with a batch size of 32 and a learning rate of 5 × 10–5.
All other hyperparameters were left to the default values
according to Simple Transformers API, which was used to
accelerate the fine-tuning process for BERTweet and decrease

the amount of proprietary code needed to be written.
Tokenization of input tweet text was handled by Simple
Transformers API, which automatically uses the BERTweet
tokenizer defined by the creators of the model.

To create the commercial and sentiment classifiers, annotated
tweets were first filtered by relevance; nonrelevant tweets were
discarded for these classifiers, and tweets marked relevant were
then split into training and testing sets, and models were
fine-tuned using the same process as the relevance classifier.

Results

Overview
We compared the performance of the LSTM and BERTweet
classifiers in terms of F1 and AUROC scores. Additionally,
each score is the average of 3 different testing iterations of the
respective models. F1 is a function of precision and recall:

F1 = 2×(Precision × Recall)/(Precision + Recall) (1)

Precision = True positive/(True positive + False
positive) (2)

Recall = True positive/(True positive + False
negative) (3)

For F1, values closer to 1 on a scale of 0 to 1 indicate good
balance between precision and recall.

AUROC is the measure of the discrimination of the models,
that is, for example, how well a classifier differentiates between
positive, negative, and neutral tweets. The larger the AUROC
score is, the better the model performs.

Relevance
With regard to classifying a tweet as relevant or nonrelevant,
the BERTweet classifier obtained an F1 score of 0.976 and an
AUROC score of 0.945. The LSTM classifier achieved an F1
score of 0.924 and an AUROC score of 0.924. All runs of the
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BERTweet classifier achieved higher F1 and AUROC scores
than the LSTM model.

Commercial
In classifying commercial tweets (commercial or
noncommercial) the BERTweet classifier performed well with

an F1 score of 0.990 and an AUROC of 0.993. Of all classes,
the BERTweet performed best in commercial classification.
The LSTM model produced a lower F1 score of 0.727 and a
lower AUROC score of 0.903 in comparison to the BERTweet
model (Table 3).

Table 3. Comparison of BERTweet and LSTMa F1 and AUROCb scores.

SentimentCommercialRelevanceClassifier/metric

BERTweet

0.8610.9900.976F1

0.8170.9930.945AUROC

LSTM

0.2500.7270.924F1

0.7760.9030.924AUROC

aLSTM: long short-term memory.
bAUROC: area under the receiver operating characteristic curve.

Sentiment
Both the BERTweet and LSTM models performed the worst in
the classification of sentiment (positive, negative, or neutral).
BERTweet obtained an F1 of 0.861 with an AUROC of 0.817.
The LSTM model had an F1 of 0.250 with an AUROC of 0.776.

Discussion

Principal Findings
This is the first study to use BERTweet to classify vaping-related
tweets. Based on the analyses, we found that pretrained deep
learning classifiers such as BERTweet perform exceptionally
well at classifying a tweet as being relevant to vaping, being a
commercial-natured tweet about vaping, as well as the sentiment
of a tweet toward vaping. Compared with the LSTM classifier,
the BERTweet classifier had AUROC values of 0.945, 0.993,
and 0.817 for relevance, commercial nature, and sentiment,
respectively. In general, these results show that pretrained
classifiers can be utilized to monitor social medial platforms
such as Twitter for public health trends. Such enhancement to
the utilization of Twitter data can allow for faster exploration
and dissemination of time-sensitive data than traditional
methodologies such as surveys and polling research.

Practically, our work also serves to provide public health
practitioners with vaping-related information on Twitter. For
example, if there is an increase in positive sentiments of tweets,
public health practitioners may find that a particular area is
ready for policy change. Using the classification results,
practitioners can also understand how many tweets are related
to marketing of vaping and the relationship between sentiment
of people and number of commercial tweets.

Limitations
This study was performed with several limitations. First, a
relatively small set of 2401 tweets was annotated by hand.
Compared with another study [3], this was just over half the
size of the data set they annotated. While the set was small, it

was enough to produce accurate results when using BERTweet,
which is another testament to the power that pretrained
transformer models have. However, this limitation does make
it difficult to compare results directly with Visweswaran et al
[3]. Second, while we matched keywords with Visweswaran et
al’s study [3], due to the evolving nature of language on Twitter,
our collection methods could have overlooked new products or
trends that have become prevalent on the Twitter platform.
Third, we analyzed tweets that were written in English only.
This limits the populations from which this classifier can
accurately classify tweets. For instance, other countries may
have different sentiments toward vaping that were not supported
in this study. Finally, the date range of the tweets was limited
to a 2-month time span, which limits the generalizability of the
classifier over time, and therefore, more analysis would need
to be performed to discover the longevity of the classifier.

Future Research
Several different research endeavors relating to utilizing
pretrained deep learning models to classifying tweets could be
explored. First, we could expand from analyzing only English
tweets to diversify this work for global regions and languages.
Additionally, analysis on the number of annotated tweets needed
to create an equivalent LSTM model could be performed to
give substantial evidence that pretrained models provide
evidence just beyond higher classification accuracy. Finally,
the BERTweet model developed in this paper could be extended
to create a real-time analysis platform for sentiment toward
vaping to better inform public health officials, allowing them
to understand the impacts of current and future policy
interventions.

Conclusion
In this study, we produced a deep learning classification model
based on BERTweet that was able to classify a vaping-related
tweet along several viewpoints such as relevance (relevant or
not), commercial nature (commercial or not), and sentiment
(positive, negative, or neutral). We then compared the
classification performance of the BERTweet model with that
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of an LSTM model for the classification of 2401 hand-coded
tweets. We found that in all classification cases BERTweet
achieved higher levels of accuracy. The strong performance of

BERTweet shows that it can increase the ability to accurately
monitor social platforms such as Twitter with regard to public
health trends such as vaping.
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Abstract

Background: Falls may cause elderly people to be bedridden, requiring professional intervention; thus, fall prevention is crucial.
The use of electronic health records (EHRs) is expected to provide highly accurate risk assessment and length-of-stay data related
to falls, which may be used to estimate the costs and benefits of prevention. However, no studies to date have investigated the
extent to which hospital stays could be shortened through fall avoidance resulting from the use of prediction tools.

Objective: We first estimated the extended length of hospital stay caused by falls among elderly inpatients. Next, we developed
a model that predicts falls using clinical text as input and evaluated its accuracy. Finally, we estimated the potentially shortened
hospital stay that would be made possible by appropriate interventions based on the prediction model.

Methods: Patients aged 65 years or older were selected as subjects, and the EHRs of 1728 falls and 70,586 nonfalls were
subjected to analysis. The extended-stay lengths were estimated using propensity score matching of 49 associated variables.
Bidirectional encoder representations from transformers and bidirectional long short-term memory methods were used to predict
falls from clinical text. The estimated length of stay and the outputs of the prediction model were used to determine stay reductions.

Results: The extended length of hospital stay due to falls was estimated to be 17.8 days (95% CI 16.6-19.0), which dropped to
8.6 days when there were unobserved covariates at an odds ratio of 2.0. The accuracy of the prediction model was as follows:
area under the receiver operating characteristic curve, 0.851; F-value, 0.165; recall, 0.737; precision, 0.093; and specificity, 0.839.
When assuming interventions with 25% or 100% effectiveness against cases where the model predicted a fall, the stay reduction
was estimated at 0.022 and 0.099 days/day, respectively.

Conclusions: The accuracy of the prediction model using clinical text is considered to be higher than the prediction accuracy
of conventional assessments. However, our model’s precision remained low at 9.3%. This may be due, in part, to the inclusion
of cases in which falls did not occur because of preventative interventions during hospitalization. Nonetheless, it is estimated that
interventions for cases when falls were predicted will reduce medical costs by 886 Yen/day (~US $6.50/day) of intervention,
even if the preventative effect is 25%. Limitations include the fact that these results cannot be extrapolated to short- or long-term
hospitalization cases, and that this was a single-center study.

(JMIR Med Inform 2022;10(7):e37913)   doi:10.2196/37913
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Introduction

Falls in older adults represent a serious social issue, as they can
cause grave injuries that may result in the victim becoming
bedridden and in need of professional care. These risks also
exist within medical institutions, where falls among elderly
patients considerably contribute toward extended hospital stays,
increased costs, and decreased quality of life. The incidence of
falls in Japanese hospitals is reported to be 4.40/1000 patient
days, and the incidence of falls accompanying disabilities is
reported to be 0.29/1000 days [1], which is comparable to the
respective values of 3.56/1000 and 0.93/1000 patient days
reported in the United States [2].

Risk factors of falls include intrinsic variables such as muscle
weakness, history of falls, gait deficit, balance deficit, utilization
of assistive devices, visual deficit, arthritis, impaired activities
of daily living, depression, and cognitive impairment. Extrinsic
risk factors include specific medications, polypharmacy, dark
lighting, loose carpets, and a lack of bathroom safety devices
[3]. Risk assessment tools are often used by medical institutions
to assess the susceptibility to falling based on these risk factors.
Morita et al [4] investigated the predictive performance of risk
factors using a multivariate logistic regression model on 19
fall-related explanatory variables: (1) age of 70 years or older,
(2) previous history of falls, (3) decreased lower-limb muscle
strength, (4) use of a cane or walker, (5) wobbling, (6) disturbed
behaviors, (7) strong independence, (8) decreased
comprehension, (9) overestimation of self, (10) need for
someone else to stand by during excretion, (11) need for
assistance during excretion, (12) nocturia, (13) narcotics, (14)
antidepressants, (15) laxatives, (16) sleep stabilizers, (17)
antihypertensive agents, (18) clinical department or room
transfers, and (19) oxygen inhalation drip. The results showed
that the prediction accuracy reflected an area under the receiver
operating characteristic curve (AUC) value of 0.822, a recall
of 74.5%, and a specificity of 79.6%. Tools for assessing fall
risk factors are commonplace, such as the renowned Morse Fall
Scale [5], St. Thomas Risk Assessment Tool [6], Resident
Assessment Instrument [7], and Hendrich Fall Risk Model [8].
Their use requires manual responses by health care
professionals. Hence, the tendency is for the number of actions
to be small, which improves clinician interpretability but may
negatively affect the results. Furthermore, there remain
significant differences in the input terms applied by medical
professionals to electronic health records (EHRs). However,
there are expectations that computers will be able to help predict
falls with high accuracy and thus improve patient safety.

Among EHR types, clinician-input text data (ie, clinical text)
contain information relating to falls, including patient condition.
Previous research has applied natural language processing (NLP)
techniques to EHR text to classify entries related to falls and to
predict whether patients would fall during hospitalization.
Toyabe [9] investigated the frequency of true fall event entries
from progress notes, discharge summaries, image orders, and

incident reports via text mining using dependency parsing.
Bjarnadottir et al [10] reported that information on true fall
events was most frequently recorded in progress notes (100%),
incident reports (65.0%), and image orders (12.5%). They
further analyzed intensive care unit nursing records from the
Medical Information Mart for Intensive Care database, finding
meaningful information related to the risk and prevention of
falls [10]. Nakatani et al [11] extracted the nursing records of
335 fallen and 408 unfallen individuals from the EHR system
of an acute care hospital, and reported the accuracy of fall
prediction by morphological analysis and machine learning
methods. The average AUC value from five independent
experiments was 0.834 (SD 0.005), and the prediction model
contained many words closely related to known risk factors
[11]. These studies showed that entries related to patient falls
can be extracted from EHRs using NLP, but only with a certain
level of accuracy. Nevertheless, fall probability can be predicted
during hospitalization, and the results suggest that it may be a
useful risk management tool.

To the best of our knowledge, no studies have investigated the
extent to which hospital stays could be shortened through fall
avoidance resulting from the use of prediction tools. If the
extended hospital stay by a fall can be quantitatively classified,
then the costs of developing predictive accuracy and
preventative measures can be estimated based on the
performance of these aspects. Therefore, in this study, the
subject demographic was narrowed down to elderly inpatients,
and we estimated the extended length of hospital stay caused
by falls using the propensity score matching method. In the
United States, it has been reported that patients injured by falls
during hospitalization had an average stay extension of 6-12
days, incurring additional hospitalization costs of US $13,316
[2,12-14]. However, differences in medical systems and patient
demographics compared with those in Japan prohibit the
generalization of these figures. Thus, we conducted this
investigation anew for Japan. Specifically, we compared the
length of hospital stay in fallen and unfallen groups with
adjustments made for patient demographics, which were
obtained by propensity score matching using 49 covariates that
are considered to influence both falls and length of hospital stay
to ultimately estimate the average treatment effect on treatment
(ATET). Additionally, the effect of unobserved covariates on
ATET was investigated using sensitivity analysis. Next, we
used clinical entries made at the time of hospitalization of an
elderly inpatient with annotations of the presence or absence of
a fall to create a data set. The proposed method was built upon
bidirectional encoder representations from transformers (BERT)
[15], a general-purpose NLP model. Predictions were made by
inputting the clinical text up to the second day of hospitalization
and setting the objective of prediction as whether the patient
would fall within the next 30 days of hospitalization. Finally,
the results were used as a basis to estimate the shortened length
of hospital stay and reduced medical costs as a result of fall
prevention measures. We then investigated the potential costs
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incurred in implementing the model and the associated
precautionary measures.

Methods

Data Set
Among all hospitalizations that overlapped in the 7-year period
from January 1, 2011, to December 31, 2017, patients aged 65
years or older at the time of hospitalization were included.
However, those with a hospitalization period that was extensive
(top 0.05% number of days) and those aged 100 years or older
were excluded as outliers. As a result, a total of 84,299
hospitalizations were obtained from the EHR system of the
University of Tokyo Hospital. Results of comparing these

hospitalizations with the occurrence of falls that were reported
in incident reports indicated that 2402 falls were reported and
82,089 were not. In the second half of this study, we used
clinical text from the first 2 days of hospitalization to predict
the occurrence of falls from subsequent days. However, it was
considered that predicting future falls from 2 days’ worth of
clinical text would be difficult. Therefore, the prediction period
was limited to the period from day 3 to day 30 of hospitalization,
during which falls resulted in the hospitalization being classified
as “fallen hospitalization” and the nonoccurrence of a fall
resulted in the hospitalization being classified as “unfallen
hospitalization.” Experimental subjects included 72,314 cases
(1727 fallen and 70,586 unfallen) after excluding those among
the previously mentioned 84,299 that did not meet all criteria.
Figure 1 shows the extraction flow of the experiment subjects.

Figure 1. Flowchart of data collection and selection procedure.

Ethics Approval
All experiments and data collection were approved by the
institutional review board at the University of Tokyo Hospital
(approval number 201919NI). All experiments described below
were carried out under relevant ethical guidelines and
regulations.

Variables

Occurrence of Falls
We used falls that were reported in incident reports, which have
a high degree of completeness, as such reporting is mandatory.
These reports distinguish between falls during walking and falls
from bed, including mild and severe classifications. However,
these cases were not classified separately in this study.

Risk Factors for Falls
Factors other than falls influence the length of hospital stay;
thus, determining the extended length of stay caused by falls
requires the elimination of covariates that affect both falls and

the length of hospital stay. A total of 49 covariates were
identified by propensity score matching to adjust their effects
on diagnosis procedure combinations (DPCs), incident report
data sets, blood test results, and prescription drugs.

DPCs contain information entered by medical staff for all
inpatients regarding diagnostic procedures. We used several
factors influencing falls and length of stay, including age,
gender, consciousness disorder at admission, emergency
transport at admission, dementia at admission, purpose for
chemotherapy at admission, and the disease that triggered
hospitalization. The latter was coded using the 10th revision of
the International Statistical Classification of Diseases and
Related Health Problems, and 17 types of dummy variables
were developed based on the major classification code (A to
U). All variables, apart from age, were treated as binary
variables.

Incident reports comprise systematic reviews showing that past
falls are high predictors of subsequent falls [16-18]. Previous

JMIR Med Inform 2022 | vol. 10 | iss. 7 |e37913 | p.104https://medinform.jmir.org/2022/7/e37913
(page number not for citation purposes)

Kawazoe et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


history includes cases of hospitalization where falls were
reported in the respective incident report.

Blood test results were used to determine the presence or
absence of anemia and poor nutritional status, which are known
risk factors that affect falls. Seven variables were adapted as
test results reflecting these risks, including decreased
hemoglobin, decreased protein/albumin, increased urea nitrogen
(suggesting chronic kidney disease), increased liver enzymes,
decreased blood glucose, abnormal electrolytes, and elevated
C-reactive protein. Each threshold value was set as a binary
variable. Table A1 in Multimedia Appendix 1 provides the
thresholds for each variable.

Prescription drugs in this case include hypnotics and
antipsychotics, which have been identified as contributors to
falls [3]. Binary variables were set for these drugs using the
criteria of the drug corresponding to its three-digit drug efficacy
classification code from the subcategory “87 drugs and related
products” of the Japanese standard product classification. The
following 12 drug groups were considered: hypnotics,
antiepileptics, nonsteroidal anti-inflammatory drugs (NSAIDs),

anti-Parkinson drugs, antipsychiatric drugs, other neuroactive
drugs, muscle relaxants, diuretics, antihypertensive drugs,
diabetes drugs, narcotics, and laxatives. Furthermore,
polypharmacy is known to contribute to falls. This includes
cases in which 10 or more of the above-mentioned drugs were
prescribed simultaneously.

Clinical Notes
Clinical text was used as input to the fall prediction model
without distinguishing the type of clinician.

Period of Data Extraction
It was desirable to obtain the above-mentioned 49 variables
from the clinical text entered on the day of hospitalization.
However, there was a concern that the number of missing values
would increase if the target period for variable extraction was
limited to that day. Therefore, variables relating to blood test
results and prescribed drugs were taken from the 60 days before
hospitalization to the second day of hospitalization. For the
clinical text used as input, the subject period included the first
and second days. Figure 2 shows the variables used and their
target periods.

Figure 2. Period and variables of data extraction. DPC: diagnosis procedure combination; NSAID: nonsteroidal anti-inflammatory drug.
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Missing Values
Figure 2 shows that there were no missing values found in the
DPC data. However, the blood test results and prescription
orders showed cases in which these entries did not exist during
the target period. These missing values were estimated using
the multiple imputation by chained equation (MICE) method
20 times [19].

ATET Estimation by Propensity Score Matching
The extended length of hospital stay caused by falling was
estimated using propensity score matching [20]. Matching
unfallen cases with tendencies similar to those of fallen cases
and comparing the lengths of hospital stays between the two
groups were achieved by repeating this method, resulting in an
ATET estimation of the effect of falls on the length of stay. The
propensity score was obtained using a multivariate logistic
regression model with the 49 explanatory variables and the
presence or absence of falls as the objective variable. Some
variables had missing values, as described above. Thus, values
estimated from 20 MICE calculations were used as inputs to
the multivariate logistic regression model. The one-to-one
nearest-neighbor matching with replacement method [21] was
used to match the fallen and unfallen groups. Here, propensity
score matching estimations strongly assumed that the fall
allocation depended only on the explanatory variables used;
however, not all variables were observed. Therefore, the effects
of the unobserved ATET covariates were also investigated using
sensitivity analysis to the maximum P value and minimum
Hodges-Lehmann point estimate [22] according to Rosenbaum’s
[23,24] procedure. Here, the null hypothesis is fall events do
not influence the extended length of hospital stay, and the P
value is the value of the one-sided Wilcoxon signed-rank sum
test.

NLP Fall Prediction From Clinical Text
Fall prediction learning and evaluation were performed on
71,943 cases, excluding 371 cases with missing clinical text
from the 72,314 experimental data, as shown in Figure 1. Cases
in which hospitalization occurred between 2011 and 2016 (1500
fallen and 60,060 unfallen) were used as learning data; cases in
which the day of hospitalization was in 2017 (228 fallen and
10,158 unfallen) were divided into two groups so that the
number of fall cases was even. Subsequently, two-fold
cross-validation was performed using alternating models for
model selection and evaluation. The AUC, F-value, recall,
precision, and specificity were used as evaluation indicators,

and the 2-time average value was used for performance
evaluation.

We adopted a model that leveraged UTH-BERT [25], which
was pretrained on Japanese clinical text using bidirectional long
short-term memory (Bi-LSTM) [26] to predict falls. The
model-learning process involved dividing clinical text into
vocabulary tokens unique to UTH-BERT, and adding the special
tokens for classification ([CLS]) and separation ([SEP]) to the
beginning and end of sequences. In BERT, a fixed-length
sequence of up to 512 tokens is taken as input, and the
embeddings of [CLS] and those corresponding to each input
token are considered as output. [CLS] embeddings are used as
input to the classifier, after which fine tuning is performed [15].
Owing to this limitation, it was proposed to divide the input by
512 so that the tokens could be input sequentially. In this way,
[CLS] embeddings could be output sequentially to a classifier
(eg, recurrent neural network) that can use the series to classify
sentences consisting of longer sequences [27]. However, [CLS]
embeddings do not always aggregate the contents of an entire
sentence, and the likelihood of reduced performance was a
concern [28]. Therefore, we instead adopted a model in which
the output of BERT token embedding was input into a
single-layer Bi-LSTM so that a 100-dimensional feature value
output could be obtained. This was then used to perform the
binary classification of fallen and unfallen cases. Furthermore,
the structure provided that a 32-dimensional feature value would
be obtained by linearly converting the 49 fall-related variables
from the clinical text, followed by their binary classification.
Figure 3 shows the structure of the BERT+Bi-LSTM network.

The median number of characters in the clinical text of fallen
and unfallen cases was 4144 and 2105, respectively, and the
amount of text used to describe fallen cases tended to be larger.
Additionally, the median number of tokens obtained from
tokenizing the UTH-BERT vocabulary was 2531 and 1288,
respectively. The sequential input of long sequences to BERT
required maintaining an error gradient; thus, GPU memory
limitations resulted in the curtailment of the input token (text)
length. In this study, we used eight Tesla-V-100 processors with
16 GB GPU memory. However, there was a limit of 13 BERT
inputs (6630 tokens; 510 tokens×13). Therefore, text exceeding
this limit had to be truncated. There were a total of 444
hospitalization cases that exceeded 6630 tokens, which
comprised 0.6% of the entire data set. Ultimately, it was
determined that this limitation would not have a large effect on
model performance.
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Figure 3. Overview of the bidirectional encoder representations from transformers (BERT) classification model. The input document was divided into
510 tokens; classification [CLS] and separation [SEP] tokens were added at each end, and the input was sequential. All token embeddings output
sequentially were used as inputs to the bidirectional long short-term memory (Bi-LSTM) model, and the 50-dimensional vectors in the forward and
reverse directions that were output for each were combined to form 100-dimensional vectors. The feature value obtained from the document was set as
the sum of each dimension of the multiple 100-dimensional vectors, which were converted linearly and output as binary fallen or unfallen values using
a sigmoid function. FFN: feedforward neural network.

Measures Against Imbalanced Data
Since the number of fallen and unfallen cases was uneven (see
Figure 1), to reduce the impact of imbalanced data on learning,
the inverse of the class frequency calculated from the training
data set was weighted to the loss function. This is a simple
heuristic method that is widely adopted in the presence of class
imbalance [29].

Experimental Settings
We evaluated the performance of three prediction models:
two-layer multilayer perceptron (inputs=49 fall-related
variables), BERT+Bi-LSTM (inputs=only clinical text), and
BERT+Bi-LSTM (inputs=clinical text+49 fall-related variables).
For all prediction models, output binary values for each fallen
and unfallen case were obtained using a sigmoid function to
minimize the value with cross-entropy loss. It was determined
that the learning stop condition would occur when the AUC
value stopped improving for five epochs. Performance
differences between the models were then investigated via net
reclassification improvement (NRI) [30]. MeCab [31] was used
as the morphological analyzer of the clinical text, and
Mecab-ipadic-Neologd [32] and the Japanese disease name
dictionary [33] were used as analyzer dictionaries. To develop
the prediction models, we used Python v.3.8.5 (Python Software
Foundation) and the PyTorch v.1.7.1 machine learning
framework (Facebook’s Artificial Intelligence Research Lab).
All statistical analyses were conducted using the STATA v.16.1
integrated statistical software package.

Results

Fall-Related Variables
Table 1 lists the mean value, missing value rate, adjusted odds
ratio, and standardized difference of the 49 fall-related variables.
The average length of hospital stay was 30.3 days (SD 23.7)
for fallen hospitalization and 10.6 days (SD 6.8) for unfallen
hospitalization, with the difference being 19.7 days. No missing
values were found in the basic patient and disease
characteristics. The variable with the most missing values in
the blood test results was plasma glucose at a missing rate of
19.7%. The missing value rate of variables related to prescription
drugs was 8.3%. The 20-time AUC average was 0.73 (95% CI
0.72-0.74). Variables showing a significant difference at P<.05
for basic patient information included age, gender, assistance
in bathing and movement in activities of daily living, impaired
consciousness at admission, and previous history of falls in past
admissions. Similarly, several diseases were significantly
correlated with falls in terms of hospitalization triggers: diseases
of the blood and blood-forming organs, mental and behavioral
disorders, diseases of the eye and adnexa, diseases of the
circulatory system, diseases of the digestive system, diseases
of the skin and subcutaneous tissue, and diseases of the
musculoskeletal system and connective tissue. For blood tests,
low hemoglobin, low total protein or albumin, and abnormal
electrolytes were significantly correlated with falls. For
prescription drugs, NSAIDs, anti-Parkinson drugs,
antipsychotics, other neuroactive agents, and diuretics were
significantly correlated with falls. Among all fall-related
variables, mental and behavioral disorders had the highest odds
ratio and diseases of the eye and adnexa had the lowest odds
ratio (Table 1).
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Table 1. Statistics of fall-related variables.

Standardized differenceMultivariate regressionaUnfallen cases
(n=70,586)

Fallen cases

(n=1728)

Variables

After matching
(n=1728 fallen cas-
es, n=1728 unfallen
cases)

Before matching
(n=1728 fallen cas-
es, n=70,586 unfall-
en cases)

P

valueb
Adjusted odds ratio
(95% CI)

N/AN/AN/AN/Ac10.6 (6.8)30.3 (23.7)Hospital days, mean (SD)

Demographics

–0.040.33<.0011.03 (1.02-1.03)d74.3 (SD 6.4)76.5 (6.8)Age (years), mean (SD)

0.01–0.06<.0010.71 (0.63-0.80)43.840.6Sex (male 0, female 1), positive
rate (%)

0.040.29.571.08 (0.83-1.40)2.49.2ADLe Eats, positive rate (%)

0.040.43.021.37 (1.06-1.77)5.519.2ADL Bathe, positive rate (%)

0.040.37.070.76 (0.57-1.02)4.415.3ADL Dressingf, positive rate
(%)

0.020.48<.0011.79 (1.48-2.18)8.626.2ADL Transferringg, positive
rate (%)

0.050.35.751.04 (0.80-1.37)3.513.0ADL Continenceh, positive rate
(%)

0.040.39<.0011.70 (1.44-2.00)5.618.1Unconsciousness (JCSi 0,≠0),
positive rate (%)

–0.010.20.680.96 (0.78-1.17)3.98.6Emergency transport, positive
rate (%)

0.010.01.281.10 (0.92-1.32)4.011.1Cognitive disorder, positive
rate (%)

0.020.27.391.08 (0.91-1.27)11.411.7Chemotherapy admission, posi-
tive rate (%)

0.010.20.0011.37 (1.13-1.65)3.58.1Past fallen, positive rate (%)

Disease

–0.020.07.780.98 (0.82-1.17)6.88.6Certain infectious and parasitic
diseases (A00-B99), positive
rate (%)

–0.01–0.01.121.10 (0.97-1.25)41.140.8Neoplasms (C00-D48), positive
rate (%)

–0.0020.08.011.28 (1.07-1.53)6.38.3Diseases of the blood and
blood-forming organs (D50-
D89), positive rate (%)

–0.010.13.191.09 (0.96-1.24)18.523.8Endocrine, nutritional, and
metabolic diseases (E00-E90),
positive rate (%)

0.050.21<.0012.09 (1.61-2.71)1.14.6Mental and behavioral disor-
ders (F00-F99), positive rate
(%)

–0.0010.16.161.14 (0.95-1.38)4.78.4Diseases of the nervous system
(G00-G99), positive rate (%)

0.04–0.35<.0010.47 (0.36-0.61)13.33.8Diseases of the eye and adnexa
(H00-H59), positive rate (%)

0.01–0.07.100.47 (0.19-1.14)0.80.3Diseases of the ear and mastoid
process (H60-H95), positive
rate (%)
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Standardized differenceMultivariate regressionaUnfallen cases
(n=70,586)

Fallen cases

(n=1728)

Variables

After matching
(n=1728 fallen cas-
es, n=1728 unfallen
cases)

Before matching
(n=1728 fallen cas-
es, n=70,586 unfall-
en cases)

P

valueb
Adjusted odds ratio
(95% CI)

0.000.17.021.15 (1.02-1.29)26.133.9Diseases of the circulatory sys-
tem (I00-I99), positive rate (%)

–0.010.12.911.01 (0.85-1.20)6.29.5Diseases of the respiratory sys-
tem (J00-J99), positive rate (%)

–0.010.03<.0010.77 (0.67-0.87)16.617.8Diseases of the digestive sys-
tem (K00-K93), positive rate
(%)

–0.000.09.011.46 (1.09-1.95)1.63.0Diseases of the skin and subcu-
taneous tissue (L00-L99), posi-
tive rate (%)

0.000.11.021.22 (1.04-1.43)8.411.9Diseases of the musculoskeletal
system and connective tissue
(M00-M99), positive rate (%)

–0.0030.10.500.94 (0.79-1.12)7.310.0Diseases of the genitourinary
system (N00-N99), positive
rate (%)

0.00–0.10.941.03 (0.42-2.52)0.40.3Pregnancy, perinatal period,
congenital malformations
(O00-Q99), positive rate (%)

–0.010.12.801.03 (0.83-1.28)3.35.8Symptoms, signs, and abnormal
clinical and laboratory findings
(R00-R99), positive rate (%)

0.000.10.381.11 (0.88-1.40)3.15.1Injury, poisoning and certain
other consequences of external
causes (S00-T98), positive rate
(%)

Blood tests

–0.040.24<.0011.34 (1.19-1.53)57.571.8Low hemoglobin (3.9% miss-
ing data), positive rate (%)

–0.040.32.0011.20 (1.08-1.34)33.848.7Low total protein or albumin
(5.0% missing data), positive
rate (%)

–0.0040.12.221.20 (0.90-1.61)1.63.4High blood urea nitrogen (4.4%
missing data), positive rate (%)

–0.010.12.071.22 (0.98-1.52)3.66.0High liver enzymes (ASTj,

ALTk; 4.0% missing data),
positive rate (%)

–0.010.05.481.14 (0.80-1.62)1.72.5Low plasma glucose (19.7%
missing data), positive rate (%)

–0.020.32<.0011.40 (1.26-1.57)21.635.1Abnormal electrolytes (Na, K,
Cl; 12.1% missing data), posi-
tive rate (%)

–0.0050.22.211.12 (0.94-1.34)5.010.9High C-reactive protein (6.8%
missing data), positive rate (%)

Prescription

–0.0010.13.131.09 (0.97-1.22)30.737.4Hypnotics and sedatives, an-
tianxietics

0.030.16.051.30 (1.00-1.69)1.84.4Antiepileptic

–0.030.22.0011.21 (1.08-1.36)32.643.5NSAIDsl
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Standardized differenceMultivariate regressionaUnfallen cases
(n=70,586)

Fallen cases

(n=1728)

Variables

After matching
(n=1728 fallen cas-
es, n=1728 unfallen
cases)

Before matching
(n=1728 fallen cas-
es, n=70,586 unfall-
en cases)

P

valueb
Adjusted odds ratio
(95% CI)

0.020.16.0031.61 (1.18-2.21)1.03.2Antiparkinsonism

0.020.33<.0011.44 (1.25-1.66)9.621.4Antipsychotic

0.010.23.031.19 (1.01-1.39)6.613.8Other neuroactive agents

0.010.03.321.70 (0.60-4.85)0.10.3Muscle relaxant

–0.0030.24<.0011.33 (1.16-1.53)13.723.4Diuretic

–0.010.11.050.88 (0.77-1.00)25.931.4Antihypertensive

–0.010.09.481.08 (0.92-1.26)12.715.9Diabetes treatment

–0.0010.12.521.11 (0.81-1.51)1.43.3Narcotic analgesic

0.000.11.151.09 (0.97-1.22)32.638.3Purgative medicine

–0.0040.26.771.02 (0.89-1.17)35.848.7Polypharmacy (>10 drugs)

aMultivariate logistic regression on the results of missing value estimation by the multiple imputation method.
bBased on the two-tailed Z-test for a coefficient of zero.
cN/A: not applicable.
dThe odds ratio for age was calculated by univariate logistic regression with the age range from 65 to 99 years equally transformed from 0.0 to 1.0.
eADL: activities of daily living.
fAssistance is required for dressing or personal maintenance.
gAssistance is required for walking, going up and down stairs, getting into/out of bed or chair, or going to the toilet.
hAssistance is required for either defecation or urination.
iJCS: Japan Coma Scale, which has been widely used to assess patients’ consciousness level in Japan.
jAST: aspartate aminotransferase.
kALT: alanine aminotransferase.
lNSAID: nonsteroidal anti-inflammatory drug.

Impact of Falls on Hospital Stay
The AUC of the logistic regression model for which the
propensity score was calculated was 0.73. Figure 4 shows the
distribution of propensity scores before and after matching. The
upper IQR was distributed at a low range of less than 0.2 both
before and after matching. The results of matching the fallen
and unfallen cases showed a sample size of 1728 for each, and
the distribution of propensity scores in each group was similar.
Furthermore, as shown in Table 1, the standardized differences
[20] for all variables after matching were less than 0.1, and the
differences between groups became sufficiently small for all
variables [20]. The average length of hospital stays in the
unfallen group, in which propensity score matching was
performed, was 12.5 days (SD 7.0) and the ATET was 17.8
days (95% CI 16.6-19.0). Based on these results, it was
estimated that the average length of hospital stay was extended
by 17.8 to 30.3 days from 12.5 days, which was the estimated
average length of hospital stay if the fallen cases had not fallen
as a result of an elderly inpatient falling.

Table 2 summarizes the results of the Rosenbaum sensitivity
analysis for the estimated ATET according to the upper limit
of the extent of influence of the unobserved variables on the

fall propensity score (Γ), which corresponds to the upper limit
when the odds of allocation to a fallen case of the matched pair
fluctuate in the range of (1/Γ,Γ) due to the unobserved variables.
The maximum P value and minimum Hodges–Lehmann point
estimate [22] reflect the maximum value of the null hypothesis’
significance level and the minimum ATET value for each Γ
value, respectively. Here, the null hypothesis is fall events do
not influence the extended length of hospital stay, and the P
value is the value of the one-sided Wilcoxon signed-rank sum
test.

As shown in Table 2, when Γ was 7.5, the lower limit of the
estimated value of ATET was 0.8 days, and the null hypothesis
could not be rejected at the significance level of .05. By contrast,
when Γ<7.5, a significant causal effect was observed. The bias
of Γ=7.5 was huge [23], and the robustness of the hypothesis
that falls cause an increased length of stay is demonstrated.
Furthermore, as shown in Table 1, the highest odds ratio among
the 49 covariates was 2.09 for mental and behavioral disorders.
However, even with Γ=2.0, which assumes the presence of
unobserved factors having the same degree of influence as the
above variables, it was estimated that the length of hospital
stays of fallen inpatients was extended by at least 8.6 days.
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Figure 4. Box-and-whisker plots of the propensity scores (a) before matching and (b) after matching. Boxes show lower and upper IQR, and whiskers
show the highest and lowest values, excluding outliers (>1.5 times IQR; rounds). Propensity score matching was performed using one-to-one
nearest-neighbor matching with the replacement method on fallen cases.

Table 2. Sensitivity analysis for P value and Rosenbaum bounds estimates (average values calculated over 20 imputed data sets) to unobserved biases.

Minimum Hodges–Lehmann point estimate (days)Maximum P valuebΓa

14.1<.0011.0

8.6<.0012.0

6.0<.0013.0

4.1<.0014.0

2.9<.0015.0

2.0<.0016.0

1.10.017.0

0.8.057.5

0.5.168.0

aΓ: odds of differential assignment due to unobserved factors.
bThe P value is based on a one-tailed Wilcoxon signed-rank test for the null hypothesis of no extension of hospital stay caused by falls.

Performance of Fall Prediction Models
Table 3 summarizes the evaluation results of the machine
learning models. Model 1, a multilayer perceptron with only
the 49 fall-related factors as input, had the lowest AUC at 0.735.
Model 2, the BERT+Bi-LSTM with only the clinical text as
input, had the highest AUC at 0.851. Model 3, the
BERT+Bi-LSTM using the clinical text and 49 fall-related
factors as input, had an AUC of 0.850.

Tables A2 and A3 in Multimedia Appendix 1 list the NRIs for
the reclassifications conducted to investigate the performance
differences between models. Table A2 shows the result of

comparing models 1 and 3; the NRIs of the fallen and unfallen
cases were 0.123 (P<.001) and 0.068 (P<.001), respectively,
and the integrated NRI was 0.191 (P<.001). This result showed
that the performance of Model 3 was significantly improved
over that of Model 1, suggesting that using clinical text
improved predictive performance. Table A3 shows the result
of comparing models 2 and 3, and the integrated NRI of the
fallen and unfallen cases was –0.015 (P=.48), with no significant
differences observed. This result indicates that there were no
significant improvements to the performance of Model 3 over
Model 2. Thus, adding the 49 fall-related factors to the clinical
text did not improve the predictive performance.
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Table 3. Performance comparison of machine learning models with input data categories.

Evaluation accuracyaInput dataModel

PrecisionSpecificitySensitivityF1cAUCbClinical text49 fall-related factors

0.0480.7080.6620.0900.735✓Model 1: MLPd

0.0930.8390.7370.1650.851✓Model 2: BERTe+Bi-LSTMf

0.0760.7760.7940.1380.850✓✓Model 3: BERT+Bi-LSTM

aThe accuracies are the average values of two cross-validation tests based on the cutoff determined by the Youden index.
bAUC: area under the receiver operating characteristic curve.
cF1 is the harmonic mean of precision and recall.
dMLP: multilayer perceptron.
eBERT: bidirectional encoder representations from transformers.
fBi-LSTM: bidirectional long short-term memory.

Impact of Prediction-Based Interventions
Table 4 shows a cross-table summary of the evaluation results
of two Model 2 cross-validations based on the cutoff determined
by the Youden index. It can be assumed from these results that
some positive interventions were conducted on the 1806
hospitalization cases predicted to result in a fall and that some
falls were completely prevented across 19,463 days (168
hospitalizations×12.5 days=average days of unfallen cases
matched to fallen cases; 1638 hospitalizations×10.6
days=average days of unfallen cases). As a result, the
hospitalized stay was shortened by a total of 2990 days (168
hospitalizations×17.8 days=ATET) among cases that were
otherwise destined to experience a fall. This corresponds to
0.154 days per day of interventions (2990/19,463 days). Of the
8580 cases that were predicted to be unfallen, 60 cases actually
experienced a fall (ie, false negatives). This indicates that 1068
(60 hospitalizations×17.8 days=ATET) shortened hospitalization
stays were lost. Thus, the net reduced length of hospital stay

was 1922 days (2990–1068 days). This corresponds to 0.099
days per day of interventions (1922/19,463 days). The average
daily hospitalization cost in Japan is approximately 40,000 Yen
(US $1=~136 Yen) [34]. Thus, the net reduced daily medical
costs by active intervention were estimated to have been
approximately 3950 Yen (1922 days×40,000 Yen per day/19,463
days) per day of interventions. This interpretation assumes that
the preventive effect of aggressive intervention was 100%.
However, Table 5 presents estimates when the presumed effect
was adjusted to 25.5% and the ATET was set to 8.6 days. While
the results up to this point were based on fixed cut-off values
determined by the Youden index, Figure 5 shows how the net
reduced daily medical costs for scenarios 1-4 in Table 5 change
when the cutoff is changed. In Figure 5, the horizontal axis
shows the sensitivity to changing the cutoff of Model 2 in the
range of sensitivity≥0.5; the vertical axis shows the net reduced
daily medical cost. For example, if the sensitivity is set to 0.95,
the net reduced daily medical costs are 2249, 538, 1054, and
258 Yen, respectively.

Table 4. Cross-table summary of the results of the two Model 3 cross-validations. The cutoff was determined using the Youden index.

SumUnfallen casesFallen casesPredictions

18061638168Predicted fallen cases

8580852060Predicted unfallen cases

10,38610,158228Sum

Table 5. Estimated hospital days reduced by interventions based on Model 2 predictions (sensitivity 73.7%, precision 9.3%).

Net reduced daily
medical costs (Yen

per day)b

Net reduced length
of hospital stay
(number of days per
day of interventions)

Hospital stays that
could not be reduced
(number of days per
day of interventions)

Reduced length of
hospital stay (num-
ber of days per day
of interventions)

Fall prevention rate (%)ATETa (days)Scenario

39500.0990.0550.15410017.8Scenario 1

8860.0220.0120.0352517.8Scenario 2

17690.0440.0250.0691008.6Scenario 3

4200.0110.0060.017258.6Scenario 4

aATET: average treatment effect on treatment.
bMedical costs were estimated at 40,000 Yen per day (US $1=~136 Yen).
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Figure 5. Estimated net reduced daily medical costs by interventions based on Model 2 sensitivity. The maximum points in Scenarios 1-4 are indicated
by a circle with † and their values are 3951, 886, 1768, and 420 (Yen; US $1=~136 Yen), respectively. These are taken with a sensitivity of 0.737; the
sensitivity is the same as determined using the Youden index. The points with 0.95 sensitivity in Scenarios 1-4 are indicated by a circle with ††, and
their values are 2249, 538, 1054, and 258 (Yen), respectively.

Discussion

Principal Results
In this study, we verified the performance of a fall prediction
model using clinical EHR text pertaining to elderly patients,
and we estimated the reduction in medical costs incurred if fall
prevention interventions had been successfully conducted
according to the prediction results.

Extended Hospital Stays Due to Fall
The extended length of hospital stay due to falls (ATET) was
estimated at 17.8 days. This value was 1.9 days shorter than the
simple difference (19.7 days) between the average days of
hospitalized stay between fallen and unfallen groups. This is
the result of a positive correlation between fall susceptibility
and length of stay, with the exclusion of confounding
background factors between groups. Falls include incidental
falls, which intuitively lead to 17.8 days of extended stay. In
these examples, the analysis subject was aged 65 years or older
and was hospitalized for 3 days or more. It is also common for
severe falls to result in extended hospitalized stays of 1 month
or longer. Thus, it is further intuitive that this may be the effect
of averaging incidents and accidents. Meanwhile, this ATET
was obtained from 49 variables automatically extracted from
the EHR system; thus, there may have been unobserved
covariates. The verification of the P value of causal effect and
robustness of the ATET by Rosenbaum sensitivity analysis
showed that the causal effect of falls extending the length of
hospitalized stay was significant at a level of P<.05, even when

assuming unobserved covariates with large odds ratios such as
Γ=7. As reported in previous studies [2,12-14], this supports
the finding that falls extend the length of hospital stay.
Moreover, when assuming a more realistic Γ, of the 49 variables
shown in Table 1, if there were unobserved covariates with
Γ=2.0 corresponding to mental and behavioral disorders (the
largest odds ratio), then the extended length of stay caused by
falls was estimated to be at least 8.6 days. This value falls within
the 6-12 days reported in US studies [2,12-14]. However,
comparisons between acute-care hospitalized stays in 2019 [35]
showed an average length of hospital stay in the United States
of 6.1 days. The average length of hospital stay in Japan was
16.0 days, which is 2.5 times longer. Therefore, it is intuitive
that the extended length of hospital stay due to falls will be
longer in Japan. Thus, the extension of 8.6 days is thought to
be conservative.

Fall Prediction Model Performance
The accuracy of the proposed prediction model was investigated
by comparing the prediction accuracy of the 19-item multivariate
logistic regression model (AUC 0.82), including nurse
observations, performed in a previous study [4]. The AUC of
Model 1 (multilayer perceptron), which used only the 49
fall-related variables, was 0.735. This was lower than the AUC
of 0.82 obtained in the previous study, which used items
obtained only by nurse observations as explanatory variables
for the multivariate logistic regression models, including
decreased lower-limb muscle strength, use of a cane or walker,
wobbling, disturbing behaviors, strong independence, and
decreased comprehension. These variables are known to affect
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prediction accuracy. The fact that such items were not included
in the 49 variables in this study is clearly the reason for the
relatively low accuracy of Model 1. However, the AUC of
Model 3, in which clinical text was added, was 0.850.
Additionally, because this study evaluated generalization
performance using past data for learning and future data for
evaluation, this value is intuitively higher than the AUC of 0.82.
As described below, clinical nurse risk assessments of falls and
fall prevention interventions may have improved model
performance.

The AUC of Model 3, which used clinical text, was more than
0.1 higher than that of Model 1, which did not use clinical text.
A two-sided Z-test of the NRI between models showed that
Model 3 was significantly more accurate. It is therefore rational
to conclude that the prediction accuracy of a model that uses
clinical text is high because, at the time of hospitalization, the
nurse observes the patient, conducts a risk assessment, and
records the evaluation results as necessary. Therefore, clinical
text contained more information related to fall risk than the 49
fall-related variables, which likely contributed to the
improvement in prediction accuracy. Meanwhile, no significant
difference was found between the prediction accuracy of Models
2 and 3, suggesting that the clinical text also contained
information corresponding to the 49 variables at the time of
hospitalization.

It has often been reported that BERT exhibits high performance,
even with clinical text [36-39]. This is also true for this study,
in which a model combining BERT and Bi-LSTM using clinical
text recorded in daily practice allowed for fall prediction with
an accuracy equal to or higher than that of conventional risk
assessment tools. Although not limited to BERT, prediction
models that use neural networks also show high performance.
However, they lack a means of explaining the prediction, as
opposed to linear and tree models. Application of explanatory
techniques such as SHapley Additive exPlanations [40] would
lead to remarkable explanatory findings related to falls. Hence,
this is a future study direction.

Regarding model precision, Model 2 had the best precision of
9.3%, which was higher than the value of 6.9% obtained in
previous research [4]. However, this shows that many false
positives were likely present. Predicting a patient’s future is an
inherently difficult task; however, the data set used in this study
involved fall prevention measures based on risk-assessment
results. Thus, it is thought that there were likely some cases in
which falls were prevented when the risk was high. Fall
prevention measures include a mat-type buzzer installed inside
the bed and a mechanism that sounds like a buzzer when the
patient leaves the bed. A limitation of this study is that the data
set did not contain information about this and other prevention
measures. Hence, future studies should not rule these out.

Impact of Fall Prevention Interventions Based on the
Prediction Model
Table 5 shows four scenarios in which the length of hospital
stay was shortened when assuming that active fall prevention
was conducted for all cases in which Model 2 predicted falls.
The net reduced length of hospital stay per day of interventions
was 0.099 days/day when the preventive effect was set to 100%

(Scenario 1) and 0.022 days/day when the effect was set to 25%
(Scenario 2). Additionally, when assuming the presence of
unobserved covariates with odds ratios equivalent to 2.0 times,
the shortened number of days was 0.044 days/day (Scenario 3)
and 0.011 days/day (Scenario 4). The results showed that in
cases where medical expenses per day of hospitalization were
40,000 Yen/day, the break-even costs of 3950-420 Yen/day in
Scenarios 1-4 were found based on the costs of introducing the
prediction model and fall prevention measures. Figure 5, which
shows the net reduced daily medical costs when the cutoff
changed, reveals that the break-even cost of Scenarios 1-4 was
2249-258 Yen/day when the sensitivity was set to 0.95.
Although not shown in Figure 5, as an extreme cut-off setting,
the net reduced daily medical costs of applying fall prevention
interventions to all cases without using the prediction model
were 1469, 357, 696, and 172 Yen in Scenarios 1-4, respectively.
There are sensitivity points at which the net reduced daily
medical cost is higher using our prediction model than without
the prediction model in all scenarios, which shows the advantage
of using our prediction model over not using the prediction
model. Medical expenses vary depending on the size of the
hospital; thus, the break-even point is higher in larger hospitals.
Hence, the incentive for prediction should be high. These results
reflect the costs of introducing preventive measures in addition
to those already taken. Thus, more effective preventive measures
are needed. An ideal solution would be to include methods to
further prevent falls by attaching a motion sensor to patients
when a fall is predicted and using its data to predict near-future
behaviors. These technologies are expected to be available in
the near future. Furthermore, higher prediction performance
and improved fall prevention intervention will further reduce
hospitalized stays and medical costs.

Limitations and Future Work
One limitation of this study pertains to extant preventive
measures that may have negated true positives. Another
limitation pertains to the results of this study not being
applicable to patients with short-term (1-2 days) or long-term
(31 days or more) hospital stays. In this study, 232 cases of falls
that occurred during the first or second day of hospitalization
were excluded. However, these constituted 11.8% of the 1960
total cases (Figure 1). Additionally, although our data set was
relatively large, it was limited in that it was obtained from a
single facility; thus, it is not generalizable to all of Japan. Future
studies should obtain more robust data using multicenter
information and analyze the prediction results using techniques
that visualize the basis of prediction.

Conclusions
In this study, it was estimated that the general length of hospital
stay in Japan was extended by 17.8 days due to falls among
elderly inpatients. The predictive performance of the proposed
model, which predicts falls up to the 30th day of hospitalization
using clinical text from the second day of hospitalization,
showed an AUC of 0.85. Thus, it was suggested that this may
be more accurate than traditional risk assessment tools.
However, its precision was still low, at 9.3%. A possible reason
for this discrepancy may be the inclusion of cases where falls
did not occur because of successful fall prevention interventions
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during hospitalization, which were not accounted for. Fall
prevention interventions for cases predicted by this model were
shown to reduce medical costs by up to 886 Yen per day, even

if the preventive effect was as low as 25%. Limitations include
the fact that short- and long-term patients were not included,
and only a single-center demographic was applied.
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