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Abstract

Background: Event extractionisessential for natural language processing. In the biomedical field, the nested event phenomenon
(event A as a participating role of event B) makes extracting this event more difficult than extracting a single event. Therefore,
the performance of nested biomedical eventsis aways underwhelming. In addition, previous works relied on a pipeline to build
an event extraction model, which ignored the dependence between trigger recognition and event argument detection tasks and
produced significant cascading errors.

Objective: Thisstudy aimsto design a unified framework to jointly train biomedical event triggers and arguments and improve
the performance of extracting nested biomedical events.

Methods: We proposed an end-to-end joint extraction model that considers the probability distribution of triggers to alleviate
cascading errors. Moreover, we integrated the syntactic structure into an attention-based gate graph convolutional network to
capture potentia interrelations between triggers and related entities, which improved the performance of extracting nested
biomedical events.

Results: The experimental results demonstrated that our proposed method achieved the best F1 score on the multilevel event
extraction biomedical event extraction corpus and achieved afavorable performance on the biomedical natural |anguage processing
shared task 2011 Genia event corpus.

Conclusions: Our conditional probability joint extraction model is good at extracting nested biomedical events because of the
joint extraction mechanism and the syntax graph structure. Moreover, asour model did not rely on external knowledge and specific
feature engineering, it had a particular generalization performance.
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Introduction

Background

In recent years, event extraction research has attracted wide
attention, especialy in biomedical event extraction, which is
critical for understanding the biomolecular interactions described
in the scientific corpus. Events are important concepts in the
field of information extraction. However, researchers have
different definitions of events, based on different research
purposes and perspectives. In the general domain, an event is
aspecific thing that describes a state change involving different
participants, such as the evaluation of automatic content
extraction, in which 8 categories and 33 subcategories of events
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are defined in a hierarchical structure, and each type of event
contains a different semantic role. In the biomedica field,
McDonald et a [1] defined event extraction as multirelationship
extraction, the purpose of which was to extract semantic role
information between different entitiesin an event. For example,
thebiomedical natural language processing (BioNL P) evaluation
task defined 9 different categories of biochemical events. Each
event included an event trigger and at |least one event argument,
and the different event types had different semantic roles. Unlike
the events in automatic content extraction, biomedical events
may have nested event phenomena.

To clearly describe the progress of biomedical event extraction,
wedefined 4 conceptsfor biomedical events, asshownin Figure
1 and Textbox 1.

Figurel. Basic progress of biomedical event extraction, where yellow boxes represent the type of entity and the blue boxes represent the type of trigger.
Theme and cause represent the rel ationship between participant and event, namely, argument detection. IL-8: interleukin 8; TNF-alpha: tumor necrosis

factor.
protein gene
Ratogitions TNF-alpha is a rapid activator of |L-8 gene expression by...
‘ protein 4 gene “
Recomation: TNF-alpha is a rapid activator of |L-8 gene expression by...
Theme
‘ i Caus ¢ Theme i ],

protein

Event Argument
Detection:

Textbox 1. Concepts for biomedical events.

gene

TNF-alphais a rapid activator of |L-8 gene expression by...

Event type
The semantic type of different events

Event description

A complete sentence or clause in the text that specifically describes at least one event

Event trigger

A word or phrase representing the occurrence of an event in the event description; usually of averb or nonverb nature, and its category is event type;

it should be noted that each event has only 1 event trigger.

Event argument

The event participants describe the different semantic rolesin the event, whose type represents the rel ati onship between the event and rel ated participants,
in the biomedical event system, there are 6 different semantic roles, where “theme” and “cause” are core arguments.

Thetask of event extraction comprises 3 subtasks: named entity
recognition, trigger recognition, and event argument detection.
Previous studies haverelied on pipeline methods [ 2-5] to extract
biomedical events. For example, given the event description (a
sentence) shown in Figure 1, the event extraction system can
find 2 entities (“TNF-alpha’ and “I1L-8") in this sentence at the
named entity recognition step. After recognizing triggers, it can
identify a positive regulation (“Pos Reg”) event mention
triggered by aword activator and an expression (“Exp”) event
mention triggered by a word expression. On the basis of the
recoghized entities and triggers, the system detects arguments
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and associates them with the related event triggers. Thus, the
entity “TNF-alpha’ is a participant in the positive regulation
event, and the entity “1L-8" is a participant in the expression
event. As the result of the previous step is the input of the
subsequent step, the pipeline methods probably introduce
cascading errorsif the precision of the previous step is biased.

As the syntactic dependency tree enriches the feature
representation, previous studiestended to use syntactic relations
to improve the performance of event extraction. For example,
Kilicoglu et a [2] leveraged external toolsto segment sentences,
annotate parts of speech (POS), and parse syntactic dependency.
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Then, they joined these features to extract biomedical events
using a dictionary and rules. Bjorne et a [4] transferred the
syntactic relationsto the path embeddings, then combined them
with word embeddings, POS embeddings, entity embeddings,
distance embeddings, and rel ative position embeddings to feed
into the convolutional neural network (CNN) model to extract
biomedical events. However, the previous studies only adopted
syntactic relations as the external features and ignored the
interrel ations between triggers and rel ated entities obtained from
the syntactic dependency tree, which improved the performance
of extracting simple events but not nested events.

Wang et al

In this study, we mainly used the multilevel event extraction
(MLEE) corpus[6] and the BioNLP shared task (BioNLP-ST)
2011 Geniaevent (GE) corpus[7] to evaluate our method. There
is some explanation regarding the MLEE extending event
extraction methods to the biomedical information field and
covering all levels of biological tissue from moleculesto entire
organisms. The MLEE label schemeisthe same asthe BioNLP
event system but has more abundant event types. 4 major
categories (anatomical, molecular, general, and planned) and
19 subcategories. The specific information is shown in Table
1

Table 1. Primary event types and argument roles in the multilevel event extraction corpus (N=6827).

Event and subevent types Core arguments Values, n (%)
Anatomical
Cell proliferation Theme (entity) 133 (2.42)
Development Theme (entity) 316 (4.81)
Blood vessel development Theme (entity) 855 (12.91)
Growth Theme (entity) 469 (2.65)
Death Theme (entity) 97 (1.53)
Breakdown Theme (entity) 69 (1.1)
Remodeling Theme (entity) 33(0.45)
Molecular
Synthesis Theme (entity) 17 (0.3)
Gene expression Theme (entity) 435 (6.66)
Transcription Theme (entity) 37 (0.61)
Catabolism Theme (entity) 26 (0.39)
Phosphorylation Theme (entity) 33(0.5)
Dephosphorylation Theme (entity) 6 (0.09)
General
Localization Theme (entity) 450 (6.87)
Binding Theme (entity) 187 (2.92)
Regulation Theme (entity or event) and cause (entity or event) 773 (11.81)
Positive regulation Theme (entity or event) and cause (entity or event) 1327 (20.33)
Negative regulation Theme (entity or event) and cause (entity or event) 921 (14.08)
Planned
Planned process Theme (entity or event) 643 (9.9)

To abate the impact of cascading errors, we propose an
end-to-end conditional probability joint extraction (CPJE)
method that can effectively transmit trigger distribution
information to the event argument detection task. To capture
the interrelations between triggers and related entities and
improvethe performance of extracting nested biomedical events,
we integrated the syntactic dependency tree into an
attention-based gate graph convolutional network (GCN), which
can capture the flow direction of the key information. The
contributions of this study are as follows:

1. We propose an end-to-end CPJE framework, CPJE, which
effectively leverages trigger distribution information to
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enhance the performance of event argument detection and
weakens cascading errors in the overall event extraction
process.

2. We used the syntactic dependency tree to capture the
interrelations between triggers and related entities and
integrated the tree into an attention-based gate GCN to
extract nested biomedical events.

3. We obtained state-of-the-art performance on the MLEE
and BioNLP-ST 2011 GE corpora for extracting nested
biomedical events.

We summarize the current frameworks for event extraction
tasksin the Related Wor ks section. Weintroduce our framework
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in the Methods section. We display the overall performancein
the Results section. We present the abl ation study, visualization,
and case study in the Discussion section. We summarize this
work and discuss future research directions in the Conclusions
section.

Related Works

The biomedical event extraction problem is similar to general
domain event extraction and entity relationship extraction;
therefore, we have many theoretica foundations and
experimental methods that can be used for reference.

Entity Relationship Extraction

Biomedical events can be regarded as complex relationship
extraction tasks, and relationship extraction methods have
achieved excellent results in various fields. Therefore, we
studied some relationship extraction methods to help conceive
the construction of event extraction models. With the
development of deep learning, an increasing number of
researchers have used deep learning algorithms to achieve the
joint extraction of entity relationships[8]. To solvethe problem
of a sparse number of labeled samples, distant supervision
methods have been applied to the relationship extraction task
[9]. Deep reinforcement learning (RL) algorithms have also
been applied to the relationship extraction task to solve noisy
data samples[10]. In addition, with the widespread application
of graph neural networks (GNNs), GCNs have been used in
certain relation-extraction tasks [11,12].

General Domain Event Extraction

In general, news event extraction is a research hot spot. Some
methods have improved the performance of event extraction by
studying feature engineering. Sentence-level feature extraction
included combinational features of triggersand event arguments
[13] or combinational features of triggersand entity relationships
[14]. Document-level feature extraction included common
information event extraction from multiple documents[15] and
joint event argument extraction based on latent-variable
semi-Markov conditional random fields [16]. Others have also
used deep learning to reduce feature engineering, which
improves a model’s generaization ability and extraction
performance; for example, learning context-dependency
information with recurrent neural networks [17], detecting
eventswith nonconsecutive CNNs[18], and obtaining syntactic
structure information with GCNs[19]. All these methods have
laid abetter foundation for the extraction of biomedical events.

Biomedical Event Extraction

Extracting biomedical events is one of the BioNLP-STs
[7,20,21]. Previous studies mainly explored human-engineered
features based on a support vector machine model [22-25].
Owing to error transmission in the pipeline approach, Riedel et
al [26] developed a joint model with dual decomposition, and
Venugopal et al [27] leveraged Markov logic networksfor joint
inference. Recently, most studies have observed remarkable
benefits of neural models. For example, some have started to
add POS tags and syntactic parsing with different neural models
[28], improved the biomedical event extraction model using
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semisupervised frameworks [29], attempted to use attention
mechanisms to obtain the semantic relationship of biomedical
texts [5], and used distributed representations to obtain context
embedding [3,4,30,31]. To incorporate more information from
the biomedical knowledge base (KB), Zhao et a [32] leveraged
a RL framework to extract biomedical events with
representations from external biomedical KBs. Li et a [33]
fused gene ontology into tree long short-term memory (LSTM)
models with distributional representations. Huang et al [34]
used aGNN to hierarchically emulate 2 knowledge-based views
from the Unified Medical Language System with conceptual
and semantic inference paths. Trieu et a [35] used multiple
overlapping, directed, acyclic graph structuresto jointly extract
biomedical entities, triggers, roles, and events. Zhao et al [36]
combined adependency-based GCN with ahypergraph to jointly
extract biomedical events. Ramponi et al [37] proposed ajoint
end-to-end framework that regards biomedical event extraction
as sequence labeling with amultilabel aware encoding strategy.

Compared with these methods, our approach joint extracts the
biomedical events with a probability distribution of triggers,
which alleviatesthe cascading errorsintroduced by the pipeline
methods. Moreover, considering the potentia interrelations
between triggers and related entities, our approach integrates
the syntactic structure into an attention-based gate GCN to
capture the flow direction of key information, which greatly
improves the extraction performance for nested biomedical
events. It is important to mention that our approach does not
require any external resources to assist the biomedical event
extraction task.

Methods

Overview

This section illustrates the proposed CPJE model. Let
W={wy,w,,...,W,} beasentence of length n, where w; istheith
word in asentence. Similarly, E={e,,e,,...,} isaset of entities
mentioned in a sentence, where k is the number of entities. As
the trigger may comprise multiple tokens, we used the BIO tag
schemeto annotate the trigger type of each token in the sentence.
When we obtained the corresponding event trigger in the
sentence, we used thisinformation to predict the corresponding
event arguments.

Asshownin Figure 2, our CPJE model mainly includes 3 layers:
an input layer, an information extraction layer, and a joint
extraction layer. The input layer converts unstructured text
information (such as word sequences, syntactic structure trees,
POS label representations, and entity label information) into a
structured discrete representation and inputs it into the next
layer. The information extraction layer converts discrete
information into continuous feature representations, which
deeply extracts the semantic and dependence information in a
sentence. The joint extraction layer parses the previous fusion
information and sends the parsed information into the trigger
softmax classifier and event softmax classifier tojointly extract
biomedical events.
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Figure 2. The architecture of the conditional probability joint extraction framework, where numbers O to 9 represent each word in the sentence, the
blue bar represents BioBERT embedding, the yellow bar represents POS-tagging embedding, and the green bar represents entity embedding. BERT:
Bidirectional Encoder Representation From Transformers; BioBERT: Biomedical Bidirectional Encoder Representation From Transformers; B-BVD:
B-blood vessel development; LSTM: long short-term memory; POS: parts of speech.
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Information Extraction Layer

This is not explained in detail as the input layer was too
superficial (only converting thetext into asequence of numbers).
Each module of the information extraction layer is presented
in the following sections.

Word Representation

Intheword representation module, to improve the representation
capability of the initial features, each word w; in the sentence
is transformed to a real-valued vector x; by concatenating the
embeddings described in the following sections.

Biomedical Bidirectional Encoder Representation From
Transformers Embedding
We used the Biomedical Bidirectional Encoder Representation

from Transformers (BioBERT) pretraining model [38] to abtain
the dynamic semantic representation of the word wi. BioBERT

embedding comprises token embedding, segment embedding,
and position embedding, which is encoded as a consequence
by amultilayer bidirectional transformer. Thus, it includesrich
semantic and positional information. Furthermore, it can solve
the polysemy problem of words. We define a; asthe word vector

representation of the word w.

POS-Tagging Embedding

We used a randomly initialized POS-tagging embedding table
to obtain each POS-tagging vector. We defined b; as the

POS-tagging vector representation of the word w;.
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Entity Label Embedding

Similar to the POS-tagging embedding, we used the BIO label
scheme to annotate the entities mentioned in the sentence and
convert the entity type label into a real-value vector by
consulting the embedding table. We defined ¢; as the entity

vector representation of the word w;.

The transformation from the token w; to the vector x; converts
the input sentence W into a sequence of real-valued vectors
X={Xq X0 X}, X T [“iebieaci], where [B] is the
concatenation operation, X is the L dimension (ie, the sum of
the dimensions of &, by, and ¢;), and X € R™¥ Xisfedinto
the subsequent blocks to obtain more valuable information for
extracting biomedical events.

Bidirectional LSTM

To obtain the context information of the input text and avoid
the gradient explosion problem caused by long texts, we chose
the classic bidirectional LSTM (BiLSTM) structure to extract
the context features of the word representations.

We fed the word representation sequence X={Xy,Xy,...,.X,} into
BiL.STM to obtain theforward hidden unit h, and the backward
hidden unit htb with ¢ dimensionintimet according to equation
1. We represented all the hidden states of the forward LSTM

and backward LSTM as Lror ER™? g0 Loack € R
respectively, where n isthe number of LSTM hidden units:
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i
hp =

(b = 0
Lyack = {h?'hgr "',hg}

LSTM (h!_,®x,)
LSTM(h?_,®x,)

Finally, we concatenated these 2 matrices to obtain the context
representation L € R™2% of BiLSTM:

L= [Lfor@Lback]

Gate GCN

To obtain the syntactic dependence in a sentence, we reference
the method proposed by Liu et a [19] to apply a gate GCN
model to anayze the sentence-dependent features. We
considered an undirected graph G=(V, €) as a syntactic
dependency treefor the sentence W, where V isthe set of nodes
andeistheset of edges. Defining V = (V1 V2, -+, va} (IVI = 1),
v, represents each word w; of sentence W, and each edge

(vi,vj) € € represents adirected syntactic arc from word w, to

word w;, with dependency type Re. In addition, for the sake of
moving information aong the direction, we add the
corresponding reversed edge (v, v;) with dependency type Re/
and self-loops (Vv;, v;) for any node vi. According to statistics,
we used the Stanford Parser [39] to obtain approximately 50
different kinds of syntactic dependency. To facilitate the GCN
internal calculation, we only considered the direction of
information flow and simplified the original dependency into
3 forms, as shown in equation 4:

direct, il=jand (v;v;)€E
Re = {reverse, i!=jand (v;,v;)€E
loop, [==j

For node V € V, we can use the hidden vector hv(j) inthejth

gate GCN layer to compute the hidden vector h,/*? of the next
layer:

RV = RELU (Suency) 9in Wy

Re(u,v)hi(ij) + b(l) )))

Re(u,v

where Re(u,V) is the dependency type between nodes u and v,
Wreuy? @nd brg,y? are the weight matrix and bias,
respectively. N (v) is the set of neighbors of node v, including
V. The weight of edge (u, v) is gu,\,(j), which applies the gate to
the edge to indicate the importance of the edge, as shown in
equation 6:

0 —

Yuv Singid(hg)VR{e(u,v) + dlji’e(u,v))

Here, Viguy' and dreyyy’ are the gate weight matrix and bias,
respectively. We used BioBERT embedding A={a;,a,,...,a,} to
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initializetheinput of thefirst GCN layer. Stacking k GCN layers

can obtain a syntactic information matrix ¢ € "™ where mis
the dimension of node v; with the same dimension of a,.

Multi-Head Attention

As shown in Figure 2, multi-head attention [40] comprises H
self-attentions, which can thoroughly learn the similarity
between nodes and calculate the importance of each node so
that the model can focus on more critical node features. Let
W WX, and W be theith initialized weight matrix of Q, K,
and V, known by equation 7:

Q: = Gw;*
K, = 6w?
v, = 6wy

Here, Wi° € ™% Wi € R™ WY € R™ and d=d,=m/H.
We calculated the scoring matrix of the ith head according to
equation 8. After concatenating H heads, we used equation 9

to obtain the attention output matrix M. W° € RF®X™ jqihe
linear transformation matrix:

— QiKj
head; = softmax(E)Vi
M = [head,®head,® --- Dhead,]W°

Joint Extraction Layer

Tagger

The tagger comprises a unidirectional LSTM that takes the
context representation given by BiLSTM as the input and the
syntactic dependency representation generated by the attention
GCN moduleto parse theinformation of the previouslayer. Let

T=[M&LLTeR™ ™ After the tagger module, we obtained
the output matrix O, which was sent to the conditional
probability extraction module.

Conditional Probability Extraction

Most joint extraction model sinput the same source information
into different subtask classifiers simultaneously to achieve

information sharing, as shown in equation 10, where Yti jsthe

output of the trigger in time step i and Y4 js the output of the
argument in step j.

Ve, = softmax™ (W'0; + b'™)

Ya; = softmax“ 9 (W*90; + b*9)
However, when the occurrence frequency of 2 subtasks in the
same data set varies significantly, the model easily focuses on

high-frequency subtasks and ignores low-frequency subtasks.
Similar to the biomedical event extraction task, for the trigger
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recognition and event argument detection subtasks, each event
trigger (ie, biomedical event) may contain 0, 1, or 2 participating
elements, and the participating element may also be another
event; therefore, the contribution of the trigger recognition task
will be greater than that of the event argument detection task.
To alleviate the abovementioned problems and reduce the
cascading errors between these 2 subtasks, we combined the
softmax output after trigger recognition and the source
information to extract the trigger vector Tr; and event argument
vector Can; according to the location of triggers and candidate
arguments. Finally, by aggregating and inputting them into the
event extraction classifier and learning the distribution features
of the trigger label, our model directly achieved biomedical
event extraction without postprocessing.

Ve SOft; = softmaxT{ (Wi, + btrt)
1 -'”l
Tri = — %, [s0ft@0y]
1 "”.
Can; =+ {c:jo[softk@ok]
yeij = softmaxevent(wevent[Tri@canj] + bevent)

Here, W' and b" are the weight matrix and bias for trigger
recognition, separately. The probability output of the trigger
softmax of the kth word is soft,. W**™ and b®°" are the weight
matrix and bias for event extraction, separately. The number of
words of the ith trigger and the jth candidate argument are i,
andj,,, separately. O, isthe source information vector of the kth
word.

Comparing equation 10 with equation 11, we found that it only
realizes the joint extraction of triggers and event arguments
using equation 10; therefore, it needs postprocessing to seek
out the tuple of events. However, owing to the aggregation of
trigger distribution information, we can discover which event
argument belongs to the trigger of step t using equation 11.

https://medinform.jmir.org/2022/6/€37804
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Joint Dice Loss

Owing to the sparse data of the biomedical event corpus and
the imbalance between positive and negative examples, the
cross-entropy or negative log-likelihood loss function causes a
large discrepancy between precision and recall. To alleviate this
problem, we propose using a joint weight self-adjusting Dice
loss function [41], asfollows:

2(1*P1,-)T?1,v'J’l,.+l
(I’Pr,)l’l,ﬂ’lﬁi

p

J(6) = %Z{"Zl(mean(zizl (1 -

2(1-pe, j)ﬂc,-’ Vet

21Pey ey e+

ty

>)+ﬁ*mean(2i:,zfil(l m
)

Here, N is the number of sentences in the corpus; ny, t,, and &,
are the number of tokens, extracted trigger candidates, and
arguments of the Ith sentence, A is for smoothing purposes, 3
is a hyperparameter to adjust the loss, and 6 is the model’s
parameters that should be trained.

Training
The CPJE model was trained using several epochs. In each
epoch, we divided the training set into batches, each containing

alist of sentences and each sentence containing a set of tokens
of variable lengths. One batch was in progress at atime step.

For each batch, we first ran the information extraction layer to
generate the context representation L € R™2% and the

attention representation with syntacticinformation M € R™™,
Then, we combined L and M asthe input of LSTM to generate
source information O. In the end, we ran the joint extraction
layer to compute gradients for overall network output (triggers
and events). After that, we back propagated the errors from the
output to the input through CPJE and updated al the network
parameters. The overal procedure of the CPJE model is
summarized in Textbox 2.
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Textbox 2. The training procedure of the conditional probability joint extraction model.

Input

1. Sequence of tokens{wj,...,.wn} along with corresponding event labels

2. Setof edges{eyy,....8,...emn} for each corresponding token

Output

All parametersin the conditional probability joint extraction model
For each epoch do
For each epoch do

Generate L and M by information extraction layer via equations 3 and 9

Generate the source information O={ 04,...,0n} by long short-term memory

1
2
3
4. ConcatenateLandM asT
5
6

Compute the trigger scores y; and the trigger softmax probability soft by the “ SoftMax Trigger” block in the joint extraction layer viathe first

equation in equation 11
7. Fuse O and soft via the second and third equationsin equation 11

8. Compute the event scores ;. by the “ SoftMax Event” block in the joint extraction layer viathe fourth equation in equation 11

9. Update the parameters by the back propagation algorithm
10. Endfor
11. Endfor

Data

Our experiments were conducted mainly on the MLEE corpus
[6], as shown in Table 2, which has 4 categories containing 19
predefined trigger subcategories. There are 262 documentswith
56,588 wordsin total, with 8291 entitiesand 6677 events. From
Table 2, we note that the number of anatomical-level eventsis
higher than the number of molecular-level and planned-level

Table 2. The multilevel event extraction statistical information.

events, although general biomedical events dominate overall.
Overall, 18% (1202/6677) of the total events involved either
direct or indirect argumentsat both the molecular and anatomical
levels. From Table 1, we find that the arguments of regulation,
positive regulation, negative regulation, and planned process
events may not be only entities but also other events; therefore,
these events are nested events, which account for approximately
54.87% (3664/6677) of all events.

Item Training, n (%) Development, n (%) Test, n (%) Total, N
Document 131 (50) 44(16.8) 87(33.2) 262
Sentence 1271 (48.73) 457 (17.52) 880 (33.74) 2608
word 27,875 (49.26) 9610 (16.98) 19,103 (33.76) 56,588
Entity 4147 (50.02) 1431 (17.26) 2713 (32.72) 8291
Event 3296 (49.36) 1175 (17.6) 2206 (33.04) 6677
Anatomical 810 (48.36) 269 (16.06) 596 (35.58) 1675
Molecular 340 (48.2) 125 (17.7) 240 (34.0) 705
General 1851 (50.66) 627 (17.16) 1176 (32.18) 3654
Planned 295 (45.9) 154 (24.0) 194 (30.2) 643

In addition, we verified our experiment using the BioNLP-ST
2011 GE corpus[7]. Asshownin Table 3, the BioNL P-ST 2011
GE corpus defines 9 biomedical event types. It is noted that a
binding event probably requires >1 protein entity as its theme
argument, and a regulation event is likely to require a protein
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or an event as its theme argument and needs a protein or an
event asits cause argument. There were 37.20% (9288/24,967)
of events (regulation, positive regulation, and negative
regulation) that led to a nested structure.
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Table 3. The primary event types and core argument roles in the BioNLP-STa 2011 GEb corpus and the important statistical information of the GE

corpus.
Event types and BioNLP-ST 2011 GE items Core arguments Values, N
Event type
Gene expression Theme (protein) N/AC
Transcription Theme (protein) N/A
Protein catabolism Theme (protein) N/A
Phosphorylation Theme (protein) N/A
Localization Theme (protein) N/A
Binding Theme (protei n)d N/A
Regulation Theme (protein or event) and cause (protein - N/A
or event)
Positive regulation Theme (protein or event) and cause (protein - N/A
or event)
Negative regulation Theme (protein or event) and cause (protein - N/A
or event)
BioNL P-ST 2011 GE corpus statistics
Document N/A 1224
Word N/A 348,908
Entity N/A 21,616
Event N/A 24,967

@8ioNLP-ST: BioNLP shared task.

bGE: Geniaevent.

°N/A: not applicable.

dReprasents the number of arguments >1.

Hyperparameter Setting

For the hyperparameter settings of our experiment, we used 768
dimensionsfor the BioBERT embeddings and set 64 dimensions
for the POS-tagging and entity label embeddings. We applied
a 1-layer BiLSTM with 128 hidden units and used a 2-layer
GCN and 2-head self-attention for our model. The dropout rate
was 0.3, the learning rate was 0.01, and the optimization
function was stochastic gradient descent (SGD). The training
of our CPJE model was based on the operating system of Ubuntu

https://medinform.jmir.org/2022/6/€37804

RenderX

20.04, using PyTorch (version 1.9.0) and Python (version 3.8.8).
The graphics processing unit was an NVIDIA TITAN Xp with
12 GB of memory.

Results

Over all Performanceon MLEE

We compare our performance with the baselines shown in
Textbox 3.
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Textbox 3. Baselines for performance.
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EventMine

and event extraction.

Semisupervised learning

Convolutional neural network

embeddings to extract biomedical events.

Reinforcement lear ning+knowledge bases

DeepEventMine

roles, and events.

Hierarchical artificial neural network

Pyysalo et a [6] applied a pipeline-based event extraction system, mainly relying on support vector machine classifiersto implement trigger recognition

Thisis asemisupervised learning framework proposed by Zhou et a [30], which can use unannotated data to extract biomedical events.
Wang et al [3] used convolutional neural networks and multiple distributed feature vector representations to achieve event extraction tasks.

mdBL STM (bidirectional long short-term memory with a multilevel attention mechanism and dependency-based word embeddings)
Heet al [5] proposed a bidirectional long short-term memory neural network based on amultilevel attention mechanism and dependency-based word

Zhao et a [32] proposed aframework of reinforcement learning with external biomedical knowledge bases for extracting biomedical events.

Trieu et a [35] proposed an end-to-end neural model. It uses a multioverlapping directed acyclic graph to detect nested biomedical entities, triggers,

Zhao et a [36] proposed a 2-level modeling method for document-level joint biomedical event extraction.

Table 4 illustrates the overall performance against the
state-of -the-art methods with gold standard entities. Asseenin
thistable, our CPJE model achieved only aslight improvement
inthetrigger recognition task. For the event extraction task, the
F, score was significantly better than the other baselines.
Notably, the gap between the precision and recall of our model
was much smaller than that of the mdBLSTM (bidirectional
long short-term memory with amultilevel attention mechanism
and dependency-based word embeddings) model, and the
precision was much better than that of the RL+KBsmaodel. This

https://medinform.jmir.org/2022/6/€37804

indicates that our model had a better effect on reducing
cascading errors than the pipeline models. In addition, the
hierarchical artificial neural network (HANN) model was also
a joint extraction model; however, its performance is
disappointing. This is because the HANN model focuses on
extracting document-level biomedical events, which contain
many cross-sentence entities, triggers, and events. However,
other models aim to extract sentence-level events; therefore,
the performance of these modelsis better than that of the HANN
model.

JMIR Med Inform 2022 | vol. 10 | iss. 6 | €37804 | p. 10
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

Wang et al

Table 4. Overal performance on multilevel event extraction compared with the state-of-the-art methods with gold standard entities.

Method Trigger recognition (%) Event extraction (%)
Precision Recall F1 score Precision Recall F1 score
EventMine® 70.79 81.69 75.84 62.28 49.56 55.20
sgL @b 72.17 82.26 76.89 55.76 59.16 57.41
CNN&€ 80.92 75.23 77.97 60.56 56.23 58.31
mdBLSTMad 82.79 76.56 79.55 90.24 44.50 59.61
RLE+KBsH N/AY N/A N/A 63.78 56.81 60.09
DeepEventMing” N/A N/A N/A 69.91 55.49 61.87
HANND N/A N/A N/A 63.91 56.08 59.74
our moda" 82.20 78.25 80.18 72.26 55.23 62.80
3Pipeline model.

bssl semisupervised learning.
CCNN: convolutional neural network.

4mdBLSTM: bidirectional long short-term memory with a multilevel attention mechanism and dependency-based word embeddings

®RL: reinforcement learning.

kB: knowledge base

IN/A: not applicable.

R Joint model.

'HANN: hierarchical artificial neural network.
IThe best value compared with baselines.

The Performance for Nested Eventson MLEE

To evaluate the effectiveness of our model for improving the
nested biomedical event extraction, we split the test set into 2
parts (simple and nested). Smple meansthat 1 event only regards
the entities as its arguments; nested means that one of the
arguments of an event may be another event. In general, nested
events are present in regulation, positive regulation, negative
regulation, and planned process events.

Table 5 illustrates the performance (F; scores) of the CNN
model [3], the RL+KBs model [32], the DeepEventMine [35]

https://medinform.jmir.org/2022/6/€37804

model, the HANN [36] model, and our model in the trigger
recognition and event extraction subtasks. In the simple and
nested data of triggers, our framework was 0.44% and 1.25%
better than the CNN model, which demonstrates that our model
can improve the performance of trigger recognition. However,
there is no significant difference between simple and nested
triggers. In the nested data of events, our model was 6.97%
higher than the CNN model, 2.57% higher than the RL+KBs
model, 9.53% higher than the DeepEventMine model, and
15.8% higher than the HANN model, which illustrates that our
CPJE model of using agate GCN and an attention mechanism
hel ps to enhance the performance of extracting nested events.
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Table 5. The F1 score performance on simple events, nested events, and all events on the multilevel event extraction corpus.

Subtask and model Simple (%) Nested (%) All (%)
Trigger
CNN? 79.52 78.80 78.52
RLP+KBs® N/AY NIA N/A
DeepEventMine N/A 79.12 N/A
HANNE N/A N/A N/A
Our model 79.96' 80.05' 80.18'
Event
CNN 61.33 54.29 58.87
RL+KBs N/A 58.69 60.09
DeepEventMine N/A 51.73 61.87
HANN 7708 45.46 59.74
Our model 64.85 61.26 62.80f

8CNN: convolutional neural network.

BRL : reinforcement learning.

K B: knowledge base.

dN/A: not applicable.

CHANN: hierarchical artificial neural network.
"The best value compared with other models.

The Performancefor All Eventson MLEE

To illustrate the impact of our framework on different events
inmore detail, Table 6 presentsthe event extraction performance
for al event types. From thistable, we obtain the best extraction
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performance for dephosphorylation events and the worst
performance for transcription events. In addition, the catabolic
events had the best extraction precision, and the phosphorylation
events had the best extraction recall rate.
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Table 6. The extraction performance for different events on multilevel event extraction corpus.

Events Precision (%) Recall (%) F1 score (%)
Cell proliferation 62.50 58.57 60.47
Development 51.82 66.43 58.22
Blood vessel development 90.42 72.66 80.57
Growth 78.02 50.58 61.37
Desath 79.12 44.32 56.81
Breakdown 71.30 48.30 57.59
Remodeling 85.71 58.32 69.41
Synthesis 48.00 20.30 28.53
Gene expression 74.72 82.42 78.38
Transcription 16.67 33.33 22.22
Catabolism 100.00 50.00 66.67
Phosphorylation 90.00 100.00 94.74
Dephosphorylation 100.00 100.00 100.00
Localization 76.86 49.98 60.57
Binding 74.52 51.23 60.71
Regulation 63.82 51.49 56.99
Positive regulation 78.28 50.66 61.51
Negative regulation 64.35 54.69 59.13
Planned process 69.57 51.86 59.42
All 64.85 61.26 62.80

Over all Performance on BioNL P-ST 2011 GE

To improve persuasion, we extended our experiment to the
BioNLP-ST 2011 GE corpus. We compared our event extraction
results with those of previous systems using the same corpus,
as shown in Table 7. Among them, the Turku Event Extraction
System (TEES) [42], EventMine[6], and stacked generalization
[25] systems are based on support vector machines with
designed features. The TEES-CNNSs [4] are CNNs integrated
into the TEES system to extract relations and events. The
DeepEventMine[35] isbased on bidirectional transformersand
an overlapping directed acyclic graph to jointly extract
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RenderX

biomedical events. The HANN [36] model relies on the GCN
and hypergraph to obtain local and globa contexts. The
KB-driventree LSTM [33] depends on KB concept embedding
to improve the pretrained distributed word representations. The
Graph Edge-conditioned Attention Networks with Science
BERT (GEANet-SciBERT) [34] adopts a hierarchical graph
representation encoded by graph edge-conditioned attention
networks to incorporate domain knowledge from the Unified
Medical Language System into a pretrained language model.
Table 7 illustrates that except for the DeepEventMine, our
approach outperformed all previous methods.
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Table 7. The performance of biomedical event extraction on the BioNL P shared task 2011 Genia event corpus.

Method and event type Precision (%) Recall (%) F4 score (%)
TEES?P

Event total® 57.65 49.56 53.30
EventMine?

Event total 63.48 53.35 57.98

Stacked generalization?

Event totdl 66.46 48.96 56.38
TEES-CNNs?¢

Event total 69.45 49.94 58.07
HANNE

Event totdl 7173 53.21 61.10

KB9-driven tree LSTM®"

Simple total' 85.95 72.62 78.73
Binding 53.16 37.68 44.10
Regulation totall 55.73 41.73 47.72
Event total 67.10 52.14 58.65

GEANet-SciBERTEK
Regulation total 55.21 47.23 50.91
Event total 64.61 56.11 60.06

DeepEventMine®

Regulation total 62.36 51.88 56.64'
Event total 76.28 55.06 63.96
Our model®
Simple total 82.23 78.88 80.52
Binding 55.12 37.48 44.62
Regulation total 57.82 46.39 51.48
Event total 72.62 53.33 61.50
3Pipeline model.

bTEES: Turku Event Extraction System.

CRepresents the overall performance on the test set.

dCNN: convolutional neural network.

€Joint model.

FHANN: hierarchical artificial neural network.

9K B: knowledge base.

hLSTM: long short-term memory.

iRepresents the overall performance for simple events on the test set.

jRepresent:s the overall performance for nested events on the test set (including regulation, positive regulation, and negative regul ation subevents).
KGEANet-SGiBERT: Graph Edge-conditioned Attention Networks with Science BERT.
The best value compared with other models.

The KB-driven tree LSTM and GEANet-SciBERT both draw  traditional static word embedding, which cannot deeply integrate
on the KB to enhance the semantic representation of wordsto  information from the KB; thus, its performance on nested events
improve the extraction performance of nested (regulation) isunsatisfactory.

events. However, the KB-driven tree LSTM only leverages
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Unlike the KB-driven tree LSTM method, the
GEANet-SciBERT model uses a specialized medical KB and
scientific information to enrich the dynamic semantic
representation of Bidirectional Encoder Representation from
Transformers (BERT) and enhances the capability of inferring
nested events via a novel GNN. Thus, the F; scores for the

nested event extraction were significantly boosted.

Interestingly, the DeepEventMine had an outstanding
performance for extracting nested biomedical events on
BioNLP-ST 2011 GE but had a passive performance on MLEE.
There are three reasons for this fact. First, the DegpEventMine
model jointly learns 4 biomedical information tasks (entity
detection, trigger detection, role detection, and event detection),
which can share more biomedical features and knowledge when
model training. Second, the DeepEventMine model usesamore
complex graph structure (multiple overlapping directed acyclic
graphs) to obtain rich syntactic information. (Finally, the
BioNLP-ST 2011 GE data set size is larger than that of the
MLEE data set; thus, the DeepEventMine model can be fully
trained on a large corpus and enhance the performance of
extracting nested events.

Discussion

In this section, we will study and discuss the performance of
our CPJE model using the MLEE corpus.

Ablation Study

The Impact of the BiLSTM

Although the output of BioBERT contains rich semantic
information, it has some noise impact on semantic information
after concatenating POS embedding, entity embedding, and
BioBERT embedding. In addition, the dimension of the
BioBERT output is 768, and the total size after concatenation
is more extensive, which tends to cause the phenomenon of
combination explosion in the feature space. Therefore, we
considered using aBiL STM, which reducesthetotal dimension
and integrates other information with the BioBERT information
to obtain aricher semantic representation.

If we remove the BIiLSTM layer, the trigger recognition
precision is dropped from 82.20% to 75.64%, and the trigger
recognition F; scoreisdropped from 80.18% to 76.39%, which
further affects the event extraction performance (the event
extraction F, score isfell from 62.80% to 58.02%).

The Impact of Softmax Probability

To evaluate the contribution of the softmax probability
distribution after trigger prediction to the event extraction task,
we used the traditional joint extraction method (as shown in
equation 10), which only uses source information when
extracting candidate trigger vectors and event argument vectors.

If we only use the source information (soft trigger) for joint
extraction, the event extraction task lacks the probability

https://medinform.jmir.org/2022/6/€37804
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distribution information after trigger recognition, which results
in a decline in the recall rate of the model and further affects
the F, scores (the event extraction F; score is dropped from
62.80% to 60.09%). However, the overall result is still slightly
higher than the pipeline baseline, which also reflects that joint
extraction can eliminate cascading errors.

The Impact of GCN

We removed the syntactic structure to evaluate the importance
of the GCN network; therefore, the GCN module was useless
in our model. If the model lacks the GCN component, the
performance of trigger recognition is slightly degraded (the
trigger recognition F; score is fell from 80.18% to 78.78%),
and the result of event extraction is significantly worse than
that of the proposed model (the event extraction F; scoreisfell

from 62.80% to 58.40%).

As the syntactic structure can provide significant potential
information for event extraction, the GCN model can be aware
of the direction of information flow in syntactic structures and
capture these features effectively. Therefore, the GCN model
isvita for event extraction.

The Impact of Dice Loss

In the face of an imbalancein biomedical corpora, we used the
Dice loss function. To verify that the Dice loss function had a
better effect on event extraction, we used the cross-entropy loss
function for comparison.

A significantly large number of negative examples in the data
set indicates that easy-negative examples are extensive. A large
number of straightforward examples overwhelmed thetraining,
making the model insufficient to distinguish between positive
and hard-negative examples. As the cross-entropy loss is
accuracy oriented and each instance contributes equally to the
loss function, the precision of the model increases (the event
extraction precision is risen from 72.26% to 89.26%), but the
F, scores do not increase (the event extraction F; score is
dropped from 62.60% to 60.30%). Dice lossis amuted version
of the F; score—the harmonic mean of precision and recall.
When the positive and negative examples in the data set are
unbalanced, the Dice loss will reduce the focus on the
easy-negative sample and increase the attention on positive and
hard-negative samples, thereby balancing the precision and
recall values and increasing the F, scores.

Visualization

For the effectiveness of the attention-based gate GCN, we used
the sentence “Effects of spironolactone on corneal allograft
survival in the rat” in Figure 3 as an example to illustrate the
captured interaction features. From Figure 3B, we know this
sentence contains 2 events: aregulation event caused by effects
and adeath event caused by survival. In addition, a death event
is one of the arguments for the regulation event.
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Figure 3. An example of attention-based gate graph neural network effectiveness. (A) Row-wise heap map, where each row is an array of average
scores of the 2 heads obtained from the multi-head attention mechanism. The darker the color, the higher the score and the stronger the interaction. (B)
Dependency parsing result produced by Stanford CoreNLP and the golden relationships between event triggers and arguments, where yellow boxes

represent entity type, and the blue boxes represent event type.
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(A) Visualization of the sentence attention scores

As we can see in Figure 3A, the effects row has moderately
strong links with Effects (self), spironolactone (its argument),
and survival (its argument and another event). Meanwhile, the
survival row has strong linkswith survival (self), effects (another
event), and corneal allograft (its argument). In addition, the
words rat and on also have strong connections with survival,
which means that the syntactic dependency information
generated by parsing is propagated through the GCN.

Case Study

Overview

Our framework has not achieved state-of-the-art results for the
BioNLP-ST 2011 GE corpus. However, the performance of
extracting nested biomedical eventsis satisfactory, particularly
in the MLEE corpus. To more intuitively demonstrate the
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(B) Dependency parsing result and event extraction result

performance of our model in extracting nested biomedical
events, we analyzed 3 examples of nested events selected from
the MLEE test set to study the strengths and weaknesses of our
model compared with the CNN [3].

Casel

As shown in Figure 4, case 1 is a simple nested event, where
therole type of event argument is only the theme. It is a nested
event; however, both the CNN and our model obtained correct
event extraction results. Thisis because this sentence does not
have a complete component, and perhaps, it isonly a part of a
complete sentence. The simpler the sentence structure is, the
easier itisfor themodel to extract practical features. Therefore,

the extraction performance for such nested eventsis generally
favorable.

Figure 4. Case study for asimple nested event on the multilevel event extraction corpus. CNN: convolutional neural network.
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Case 2 isagenera nested event whose sentence component is
complete, and the role types of event arguments are theme and
cause. Asshownin Figure 5, the CNN model detectsall correct
event triggers but cannot detect the correct event arguments.
The CNN model is a pipeline approach that considers trigger
recognition and argument detection tasks in a cascade rather
than a paralel relationship. In general, they first input the text
into the CNN model to identify the triggers in the sentence.
Then, they construct <trigger, entity> or <trigger, trigger>

Wang et al

candidate pairs and input them into the CNN model again to
detect the arguments. Finaly, rule-based or machine
learning-based methods are used to postprocess triggers and
arguments to construct complete biomedical events. If thereis
an error in some of these steps, it will directly affect the
performance of event extraction. However, our joint method
regards trigger recognition and argument detection as parallel
tasks that can provide valid information. Thus, we trained both
tasksjointly with one model, and errors could only be generated
during the model training.

Figure5. Case study for acommon nested event on multilevel event extraction corpus. CNN: convolutional neural network.
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Case 3

Case 3 is a cross-sentence nested event, as shown in Figure 6.
From this example, we can determine what needs to be
improved. Asmultiple events are nested in each other, and some
of these events are not in the same sentence, this prevents the

https://medinform.jmir.org/2022/6/€37804

RenderX

(I

E2:Theme

El:Theme

<Gene expression>

plasminogen activator|involves modulation of proto-oncogene [pp60c-srg expression

T |

Theme

<Gene expression>

plasminogen activator|involves modulation of proto-oncogene [pp60c-srg expression

|

Theme

Theme

model from extracting all events efficiently and accurately.
Compared with the CNN model, although our mode can identify
the positive regulation event triggered by resulting, it isnot in
the same clause as the devel opment event triggered by create,
which causes the positive regulation event to lack an event
argument.
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Figure 6. Case study for an across-sentence nested event on multilevel event extraction corpus. CNN: convolutional neural network.
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Conclusions performance of nested biomedical events improved. The Dice

In thisstudy, a CPJE framework based on amulti-head attention
graph CNN is proposed to achieve biomedical event extraction
tasks. The cascading errors between the 2 subtasks were reduced
because of the use of the joint extraction framework. With the
help of the attention-based gate GCN, syntactic dependency
information and the interrel ations between triggers and related
entities were effectively learned; thus, the extraction
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Abbreviations

BERT: Bidirectional Encoder Representation From Transformers

BiLSTM: bidirectional long short-term memory

BioBERT: Biomedical Bidirectional Encoder Representation From Transformers
BioNL P: biomedical natural language processing

BioNL P-ST: biomedical natural language processing shared task

CNN: convolutional neural network

CPJE: conditiona probability joint extraction

GCN: graph convolutional network

GE: Geniaevent

GEANet-SciBERT: Graph Edge-conditioned Attention Networks with Science BERT
GNN: graph neural network

HANN: hierarchical artificial neural network

KB: knowledge base

LSTM: long short-term memory

mdBL STM: bidirectional long short-term memory with amultilevel attention mechanism and dependency-based
word embeddings

MLEE: multilevel event extraction

POS: parts of speech

RL: reinforcement learning

SGD: stochastic gradient descent

TEES: Turku Event Extraction System
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