
Original Paper

Conditional Probability Joint Extraction of Nested Biomedical
Events: Design of a Unified Extraction Framework Based on
Neural Networks

Yan Wang1, PhD; Jian Wang1, PhD; Huiyi Lu2, PhD; Bing Xu2, PhD; Yijia Zhang3, PhD; Santosh Kumar Banbhrani1,

PhD; Hongfei Lin1, PhD
1School of Computer Science and Technology, Dalian University of Technology, Dalian, China
2Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
3School of Information Science and Technology, Dalian Maritime University, Dalian, China

Corresponding Author:
Jian Wang, PhD
School of Computer Science and Technology
Dalian University of Technology
No 2 Linggong Road
Dalian, 116024
China
Phone: 86 13604119266
Email: wangjian@dlut.edu.cn

Abstract

Background: Event extraction is essential for natural language processing. In the biomedical field, the nested event phenomenon
(event A as a participating role of event B) makes extracting this event more difficult than extracting a single event. Therefore,
the performance of nested biomedical events is always underwhelming. In addition, previous works relied on a pipeline to build
an event extraction model, which ignored the dependence between trigger recognition and event argument detection tasks and
produced significant cascading errors.

Objective: This study aims to design a unified framework to jointly train biomedical event triggers and arguments and improve
the performance of extracting nested biomedical events.

Methods: We proposed an end-to-end joint extraction model that considers the probability distribution of triggers to alleviate
cascading errors. Moreover, we integrated the syntactic structure into an attention-based gate graph convolutional network to
capture potential interrelations between triggers and related entities, which improved the performance of extracting nested
biomedical events.

Results: The experimental results demonstrated that our proposed method achieved the best F1 score on the multilevel event
extraction biomedical event extraction corpus and achieved a favorable performance on the biomedical natural language processing
shared task 2011 Genia event corpus.

Conclusions: Our conditional probability joint extraction model is good at extracting nested biomedical events because of the
joint extraction mechanism and the syntax graph structure. Moreover, as our model did not rely on external knowledge and specific
feature engineering, it had a particular generalization performance.
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Introduction

Background
In recent years, event extraction research has attracted wide
attention, especially in biomedical event extraction, which is
critical for understanding the biomolecular interactions described
in the scientific corpus. Events are important concepts in the
field of information extraction. However, researchers have
different definitions of events, based on different research
purposes and perspectives. In the general domain, an event is
a specific thing that describes a state change involving different
participants, such as the evaluation of automatic content
extraction, in which 8 categories and 33 subcategories of events

are defined in a hierarchical structure, and each type of event
contains a different semantic role. In the biomedical field,
McDonald et al [1] defined event extraction as multirelationship
extraction, the purpose of which was to extract semantic role
information between different entities in an event. For example,
the biomedical natural language processing (BioNLP) evaluation
task defined 9 different categories of biochemical events. Each
event included an event trigger and at least one event argument,
and the different event types had different semantic roles. Unlike
the events in automatic content extraction, biomedical events
may have nested event phenomena.

To clearly describe the progress of biomedical event extraction,
we defined 4 concepts for biomedical events, as shown in Figure
1 and Textbox 1.

Figure 1. Basic progress of biomedical event extraction, where yellow boxes represent the type of entity and the blue boxes represent the type of trigger.
Theme and cause represent the relationship between participant and event, namely, argument detection. IL-8: interleukin 8; TNF-alpha: tumor necrosis
factor.

Textbox 1. Concepts for biomedical events.

Event type

The semantic type of different events

Event description

A complete sentence or clause in the text that specifically describes at least one event

Event trigger

A word or phrase representing the occurrence of an event in the event description; usually of a verb or nonverb nature, and its category is event type;
it should be noted that each event has only 1 event trigger.

Event argument

The event participants describe the different semantic roles in the event, whose type represents the relationship between the event and related participants;
in the biomedical event system, there are 6 different semantic roles, where “theme” and “cause” are core arguments.

The task of event extraction comprises 3 subtasks: named entity
recognition, trigger recognition, and event argument detection.
Previous studies have relied on pipeline methods [2-5] to extract
biomedical events. For example, given the event description (a
sentence) shown in Figure 1, the event extraction system can
find 2 entities (“TNF-alpha” and “IL-8”) in this sentence at the
named entity recognition step. After recognizing triggers, it can
identify a positive regulation (“Pos_Reg”) event mention
triggered by a word activator and an expression (“Exp”) event
mention triggered by a word expression. On the basis of the
recognized entities and triggers, the system detects arguments

and associates them with the related event triggers. Thus, the
entity “TNF-alpha” is a participant in the positive regulation
event, and the entity “IL-8” is a participant in the expression
event. As the result of the previous step is the input of the
subsequent step, the pipeline methods probably introduce
cascading errors if the precision of the previous step is biased.

As the syntactic dependency tree enriches the feature
representation, previous studies tended to use syntactic relations
to improve the performance of event extraction. For example,
Kilicoglu et al [2] leveraged external tools to segment sentences,
annotate parts of speech (POS), and parse syntactic dependency.
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Then, they joined these features to extract biomedical events
using a dictionary and rules. Björne et al [4] transferred the
syntactic relations to the path embeddings, then combined them
with word embeddings, POS embeddings, entity embeddings,
distance embeddings, and relative position embeddings to feed
into the convolutional neural network (CNN) model to extract
biomedical events. However, the previous studies only adopted
syntactic relations as the external features and ignored the
interrelations between triggers and related entities obtained from
the syntactic dependency tree, which improved the performance
of extracting simple events but not nested events.

In this study, we mainly used the multilevel event extraction
(MLEE) corpus [6] and the BioNLP shared task (BioNLP-ST)
2011 Genia event (GE) corpus [7] to evaluate our method. There
is some explanation regarding the MLEE extending event
extraction methods to the biomedical information field and
covering all levels of biological tissue from molecules to entire
organisms. The MLEE label scheme is the same as the BioNLP
event system but has more abundant event types: 4 major
categories (anatomical, molecular, general, and planned) and
19 subcategories. The specific information is shown in Table
1.

Table 1. Primary event types and argument roles in the multilevel event extraction corpus (N=6827).

Values, n (%)Core argumentsEvent and subevent types

Anatomical

133 (2.42)Theme (entity)Cell proliferation

316 (4.81)Theme (entity)Development

855 (12.91)Theme (entity)Blood vessel development

469 (2.65)Theme (entity)Growth

97 (1.53)Theme (entity)Death

69 (1.1)Theme (entity)Breakdown

33 (0.45)Theme (entity)Remodeling

Molecular

17 (0.3)Theme (entity)Synthesis

435 (6.66)Theme (entity)Gene expression

37 (0.61)Theme (entity)Transcription

26 (0.39)Theme (entity)Catabolism

33 (0.5)Theme (entity)Phosphorylation

6 (0.09)Theme (entity)Dephosphorylation

General

450 (6.87)Theme (entity)Localization

187 (2.92)Theme (entity)Binding

773 (11.81)Theme (entity or event) and cause (entity or event)Regulation

1327 (20.33)Theme (entity or event) and cause (entity or event)Positive regulation

921 (14.08)Theme (entity or event) and cause (entity or event)Negative regulation

Planned

643 (9.9)Theme (entity or event)Planned process

To abate the impact of cascading errors, we propose an
end-to-end conditional probability joint extraction (CPJE)
method that can effectively transmit trigger distribution
information to the event argument detection task. To capture
the interrelations between triggers and related entities and
improve the performance of extracting nested biomedical events,
we integrated the syntactic dependency tree into an
attention-based gate graph convolutional network (GCN), which
can capture the flow direction of the key information. The
contributions of this study are as follows:

1. We propose an end-to-end CPJE framework, CPJE, which
effectively leverages trigger distribution information to

enhance the performance of event argument detection and
weakens cascading errors in the overall event extraction
process.

2. We used the syntactic dependency tree to capture the
interrelations between triggers and related entities and
integrated the tree into an attention-based gate GCN to
extract nested biomedical events.

3. We obtained state-of-the-art performance on the MLEE
and BioNLP-ST 2011 GE corpora for extracting nested
biomedical events.

We summarize the current frameworks for event extraction
tasks in the Related Works section. We introduce our framework
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in the Methods section. We display the overall performance in
the Results section. We present the ablation study, visualization,
and case study in the Discussion section. We summarize this
work and discuss future research directions in the Conclusions
section.

Related Works
The biomedical event extraction problem is similar to general
domain event extraction and entity relationship extraction;
therefore, we have many theoretical foundations and
experimental methods that can be used for reference.

Entity Relationship Extraction
Biomedical events can be regarded as complex relationship
extraction tasks, and relationship extraction methods have
achieved excellent results in various fields. Therefore, we
studied some relationship extraction methods to help conceive
the construction of event extraction models. With the
development of deep learning, an increasing number of
researchers have used deep learning algorithms to achieve the
joint extraction of entity relationships [8]. To solve the problem
of a sparse number of labeled samples, distant supervision
methods have been applied to the relationship extraction task
[9]. Deep reinforcement learning (RL) algorithms have also
been applied to the relationship extraction task to solve noisy
data samples [10]. In addition, with the widespread application
of graph neural networks (GNNs), GCNs have been used in
certain relation-extraction tasks [11,12].

General Domain Event Extraction
In general, news event extraction is a research hot spot. Some
methods have improved the performance of event extraction by
studying feature engineering. Sentence-level feature extraction
included combinational features of triggers and event arguments
[13] or combinational features of triggers and entity relationships
[14]. Document-level feature extraction included common
information event extraction from multiple documents [15] and
joint event argument extraction based on latent-variable
semi-Markov conditional random fields [16]. Others have also
used deep learning to reduce feature engineering, which
improves a model’s generalization ability and extraction
performance; for example, learning context-dependency
information with recurrent neural networks [17], detecting
events with nonconsecutive CNNs [18], and obtaining syntactic
structure information with GCNs [19]. All these methods have
laid a better foundation for the extraction of biomedical events.

Biomedical Event Extraction
Extracting biomedical events is one of the BioNLP-STs
[7,20,21]. Previous studies mainly explored human-engineered
features based on a support vector machine model [22-25].
Owing to error transmission in the pipeline approach, Riedel et
al [26] developed a joint model with dual decomposition, and
Venugopal et al [27] leveraged Markov logic networks for joint
inference. Recently, most studies have observed remarkable
benefits of neural models. For example, some have started to
add POS tags and syntactic parsing with different neural models
[28], improved the biomedical event extraction model using

semisupervised frameworks [29], attempted to use attention
mechanisms to obtain the semantic relationship of biomedical
texts [5], and used distributed representations to obtain context
embedding [3,4,30,31]. To incorporate more information from
the biomedical knowledge base (KB), Zhao et al [32] leveraged
a RL framework to extract biomedical events with
representations from external biomedical KBs. Li et al [33]
fused gene ontology into tree long short-term memory (LSTM)
models with distributional representations. Huang et al [34]
used a GNN to hierarchically emulate 2 knowledge-based views
from the Unified Medical Language System with conceptual
and semantic inference paths. Trieu et al [35] used multiple
overlapping, directed, acyclic graph structures to jointly extract
biomedical entities, triggers, roles, and events. Zhao et al [36]
combined a dependency-based GCN with a hypergraph to jointly
extract biomedical events. Ramponi et al [37] proposed a joint
end-to-end framework that regards biomedical event extraction
as sequence labeling with a multilabel aware encoding strategy.

Compared with these methods, our approach joint extracts the
biomedical events with a probability distribution of triggers,
which alleviates the cascading errors introduced by the pipeline
methods. Moreover, considering the potential interrelations
between triggers and related entities, our approach integrates
the syntactic structure into an attention-based gate GCN to
capture the flow direction of key information, which greatly
improves the extraction performance for nested biomedical
events. It is important to mention that our approach does not
require any external resources to assist the biomedical event
extraction task.

Methods

Overview
This section illustrates the proposed CPJE model. Let
W={w1,w2,...,wn} be a sentence of length n, where wi is the ith
word in a sentence. Similarly, E={e1,e2,...,ek} is a set of entities
mentioned in a sentence, where k is the number of entities. As
the trigger may comprise multiple tokens, we used the BIO tag
scheme to annotate the trigger type of each token in the sentence.
When we obtained the corresponding event trigger in the
sentence, we used this information to predict the corresponding
event arguments.

As shown in Figure 2, our CPJE model mainly includes 3 layers:
an input layer, an information extraction layer, and a joint
extraction layer. The input layer converts unstructured text
information (such as word sequences, syntactic structure trees,
POS label representations, and entity label information) into a
structured discrete representation and inputs it into the next
layer. The information extraction layer converts discrete
information into continuous feature representations, which
deeply extracts the semantic and dependence information in a
sentence. The joint extraction layer parses the previous fusion
information and sends the parsed information into the trigger
softmax classifier and event softmax classifier to jointly extract
biomedical events.

JMIR Med Inform 2022 | vol. 10 | iss. 6 | e37804 | p. 4https://medinform.jmir.org/2022/6/e37804
(page number not for citation purposes)

Wang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. The architecture of the conditional probability joint extraction framework, where numbers 0 to 9 represent each word in the sentence, the
blue bar represents BioBERT embedding, the yellow bar represents POS-tagging embedding, and the green bar represents entity embedding. BERT:
Bidirectional Encoder Representation From Transformers; BioBERT: Biomedical Bidirectional Encoder Representation From Transformers; B-BVD:
B-blood vessel development; LSTM: long short-term memory; POS: parts of speech.

Information Extraction Layer
This is not explained in detail as the input layer was too
superficial (only converting the text into a sequence of numbers).
Each module of the information extraction layer is presented
in the following sections.

Word Representation
In the word representation module, to improve the representation
capability of the initial features, each word wi in the sentence
is transformed to a real-valued vector xi by concatenating the
embeddings described in the following sections.

Biomedical Bidirectional Encoder Representation From
Transformers Embedding
We used the Biomedical Bidirectional Encoder Representation
from Transformers (BioBERT) pretraining model [38] to obtain
the dynamic semantic representation of the word wi. BioBERT
embedding comprises token embedding, segment embedding,
and position embedding, which is encoded as a consequence
by a multilayer bidirectional transformer. Thus, it includes rich
semantic and positional information. Furthermore, it can solve
the polysemy problem of words. We define ai as the word vector
representation of the word wi.

POS-Tagging Embedding
We used a randomly initialized POS-tagging embedding table
to obtain each POS-tagging vector. We defined bi as the
POS-tagging vector representation of the word wi.

Entity Label Embedding
Similar to the POS-tagging embedding, we used the BIO label
scheme to annotate the entities mentioned in the sentence and
convert the entity type label into a real-value vector by
consulting the embedding table. We defined ci as the entity
vector representation of the word wi.

The transformation from the token wi to the vector xi converts
the input sentence W into a sequence of real-valued vectors

X={x1,x2,...,xn}, , where is the
concatenation operation, xi is the μ dimension (ie, the sum of

the dimensions of ai, bi, and ci), and . X is fed into
the subsequent blocks to obtain more valuable information for
extracting biomedical events.

Bidirectional LSTM
To obtain the context information of the input text and avoid
the gradient explosion problem caused by long texts, we chose
the classic bidirectional LSTM (BiLSTM) structure to extract
the context features of the word representations.

We fed the word representation sequence X={x1,x2,...,xn} into

BiLSTM to obtain the forward hidden unit ht
f and the backward

hidden unit ht
b with φ dimension in time t according to equation

1. We represented all the hidden states of the forward LSTM

and backward LSTM as and ,
respectively, where n is the number of LSTM hidden units:
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Finally, we concatenated these 2 matrices to obtain the context

representation of BiLSTM:

Gate GCN
To obtain the syntactic dependence in a sentence, we reference
the method proposed by Liu et al [19] to apply a gate GCN
model to analyze the sentence-dependent features. We
considered an undirected graph G=(V, ε) as a syntactic
dependency tree for the sentence W, where V is the set of nodes

and ε is the set of edges. Defining ,
vi represents each word wi of sentence W, and each edge

represents a directed syntactic arc from word wi to
word wj, with dependency type Re. In addition, for the sake of
moving information along the direction, we add the
corresponding reversed edge (vw, vi) with dependency type Re′
and self-loops (vi, vi) for any node vi. According to statistics,
we used the Stanford Parser [39] to obtain approximately 50
different kinds of syntactic dependency. To facilitate the GCN
internal calculation, we only considered the direction of
information flow and simplified the original dependency into
3 forms, as shown in equation 4:

For node , we can use the hidden vector hv
(j) in the jth

gate GCN layer to compute the hidden vector hv
(j+1) of the next

layer:

where Re(u,v) is the dependency type between nodes u and v,

WRe(u,v)
(j) and bRe(u,v)

(j) are the weight matrix and bias,
respectively. N (v) is the set of neighbors of node v, including

V. The weight of edge (u, v) is gu,v
(j), which applies the gate to

the edge to indicate the importance of the edge, as shown in
equation 6:

Here, VRe(u,v)
j and dRe(u,v)

j are the gate weight matrix and bias,
respectively. We used BioBERT embedding A={a1,a2,...,an} to

initialize the input of the first GCN layer. Stacking k GCN layers

can obtain a syntactic information matrix , where m is
the dimension of node vi with the same dimension of ai.

Multi-Head Attention
As shown in Figure 2, multi-head attention [40] comprises H
self-attentions, which can thoroughly learn the similarity
between nodes and calculate the importance of each node so
that the model can focus on more critical node features. Let

Wi
Q, Wi

K, and Wi
V be the ith initialized weight matrix of Q, K,

and V, known by equation 7:

Here, , , , and dk=dv=m/H.

We calculated the scoring matrix of the ith head according to
equation 8. After concatenating H heads, we used equation 9

to obtain the attention output matrix M. is the
linear transformation matrix:

Joint Extraction Layer

Tagger
The tagger comprises a unidirectional LSTM that takes the
context representation given by BiLSTM as the input and the
syntactic dependency representation generated by the attention
GCN module to parse the information of the previous layer. Let

. After the tagger module, we obtained
the output matrix O, which was sent to the conditional
probability extraction module.

Conditional Probability Extraction
Most joint extraction models input the same source information
into different subtask classifiers simultaneously to achieve

information sharing, as shown in equation 10, where is the

output of the trigger in time step i and is the output of the
argument in step j.

However, when the occurrence frequency of 2 subtasks in the
same data set varies significantly, the model easily focuses on
high-frequency subtasks and ignores low-frequency subtasks.
Similar to the biomedical event extraction task, for the trigger
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recognition and event argument detection subtasks, each event
trigger (ie, biomedical event) may contain 0, 1, or 2 participating
elements, and the participating element may also be another
event; therefore, the contribution of the trigger recognition task
will be greater than that of the event argument detection task.
To alleviate the abovementioned problems and reduce the
cascading errors between these 2 subtasks, we combined the
softmax output after trigger recognition and the source
information to extract the trigger vector Tri and event argument
vector Canj according to the location of triggers and candidate
arguments. Finally, by aggregating and inputting them into the
event extraction classifier and learning the distribution features
of the trigger label, our model directly achieved biomedical
event extraction without postprocessing.

Here, Wtri and btri are the weight matrix and bias for trigger
recognition, separately. The probability output of the trigger

softmax of the kth word is softk. W
event and bevent are the weight

matrix and bias for event extraction, separately. The number of
words of the ith trigger and the jth candidate argument are im
and jn, separately. Ok is the source information vector of the kth
word.

Comparing equation 10 with equation 11, we found that it only
realizes the joint extraction of triggers and event arguments
using equation 10; therefore, it needs postprocessing to seek
out the tuple of events. However, owing to the aggregation of
trigger distribution information, we can discover which event
argument belongs to the trigger of step t using equation 11.

Joint Dice Loss
Owing to the sparse data of the biomedical event corpus and
the imbalance between positive and negative examples, the
cross-entropy or negative log-likelihood loss function causes a
large discrepancy between precision and recall. To alleviate this
problem, we propose using a joint weight self-adjusting Dice
loss function [41], as follows:

Here, N is the number of sentences in the corpus; np, tp, and ep

are the number of tokens, extracted trigger candidates, and
arguments of the lth sentence, λ is for smoothing purposes, β
is a hyperparameter to adjust the loss, and θ is the model’s
parameters that should be trained.

Training
The CPJE model was trained using several epochs. In each
epoch, we divided the training set into batches, each containing
a list of sentences and each sentence containing a set of tokens
of variable lengths. One batch was in progress at a time step.

For each batch, we first ran the information extraction layer to

generate the context representation and the

attention representation with syntactic information .
Then, we combined L and M as the input of LSTM to generate
source information O. In the end, we ran the joint extraction
layer to compute gradients for overall network output (triggers
and events). After that, we back propagated the errors from the
output to the input through CPJE and updated all the network
parameters. The overall procedure of the CPJE model is
summarized in Textbox 2.
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Textbox 2. The training procedure of the conditional probability joint extraction model.

Input

1. Sequence of tokens {w1,...,wn} along with corresponding event labels

2. Set of edges {e12,...,eij,...,emn} for each corresponding token

Output

All parameters in the conditional probability joint extraction model

1. For each epoch do

2. For each epoch do

3. Generate L and M by information extraction layer via equations 3 and 9

4. Concatenate L and M as T

5. Generate the source information O={o1,...,on} by long short-term memory

6. Compute the trigger scores yt and the trigger softmax probability soft by the “SoftMax Trigger” block in the joint extraction layer via the first
equation in equation 11

7. Fuse O and soft via the second and third equations in equation 11

8. Compute the event scores yt. by the “SoftMax Event” block in the joint extraction layer via the fourth equation in equation 11

9. Update the parameters by the back propagation algorithm

10. End for

11. End for

Data
Our experiments were conducted mainly on the MLEE corpus
[6], as shown in Table 2, which has 4 categories containing 19
predefined trigger subcategories. There are 262 documents with
56,588 words in total, with 8291 entities and 6677 events. From
Table 2, we note that the number of anatomical-level events is
higher than the number of molecular-level and planned-level

events, although general biomedical events dominate overall.
Overall, 18% (1202/6677) of the total events involved either
direct or indirect arguments at both the molecular and anatomical
levels. From Table 1, we find that the arguments of regulation,
positive regulation, negative regulation, and planned process
events may not be only entities but also other events; therefore,
these events are nested events, which account for approximately
54.87% (3664/6677) of all events.

Table 2. The multilevel event extraction statistical information.

Total, NTest, n (%)Development, n (%)Training, n (%)Item

26287 (33.2)44 (16.8)131 (50)Document

2608880 (33.74)457 (17.52)1271 (48.73)Sentence

56,58819,103 (33.76)9610 (16.98)27,875 (49.26)Word

82912713 (32.72)1431 (17.26)4147 (50.02)Entity

66772206 (33.04)1175 (17.6)3296 (49.36)Event

1675596 (35.58)269 (16.06)810 (48.36)Anatomical

705240 (34.0)125 (17.7)340 (48.2)Molecular

36541176 (32.18)627 (17.16)1851 (50.66)General

643194 (30.2)154 (24.0)295 (45.9)Planned

In addition, we verified our experiment using the BioNLP-ST
2011 GE corpus [7]. As shown in Table 3, the BioNLP-ST 2011
GE corpus defines 9 biomedical event types. It is noted that a
binding event probably requires >1 protein entity as its theme
argument, and a regulation event is likely to require a protein

or an event as its theme argument and needs a protein or an
event as its cause argument. There were 37.20% (9288/24,967)
of events (regulation, positive regulation, and negative
regulation) that led to a nested structure.
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Table 3. The primary event types and core argument roles in the BioNLP-STa 2011 GEb corpus and the important statistical information of the GE
corpus.

Values, NCore argumentsEvent types and BioNLP-ST 2011 GE items

Event type

N/AcTheme (protein)Gene expression

N/ATheme (protein)Transcription

N/ATheme (protein)Protein catabolism

N/ATheme (protein)Phosphorylation

N/ATheme (protein)Localization

N/ATheme (protein)dBinding

N/ATheme (protein or event) and cause (protein
or event)

Regulation

N/ATheme (protein or event) and cause (protein
or event)

Positive regulation

N/ATheme (protein or event) and cause (protein
or event)

Negative regulation

BioNLP-ST 2011 GE corpus statistics

1224N/ADocument

348,908N/AWord

21,616N/AEntity

24,967N/AEvent

aBioNLP-ST: BioNLP shared task.
bGE: Genia event.
cN/A: not applicable.
dRepresents the number of arguments >1.

Hyperparameter Setting
For the hyperparameter settings of our experiment, we used 768
dimensions for the BioBERT embeddings and set 64 dimensions
for the POS-tagging and entity label embeddings. We applied
a 1-layer BiLSTM with 128 hidden units and used a 2-layer
GCN and 2-head self-attention for our model. The dropout rate
was 0.3, the learning rate was 0.01, and the optimization
function was stochastic gradient descent (SGD). The training
of our CPJE model was based on the operating system of Ubuntu

20.04, using PyTorch (version 1.9.0) and Python (version 3.8.8).
The graphics processing unit was an NVIDIA TITAN Xp with
12 GB of memory.

Results

Overall Performance on MLEE
We compare our performance with the baselines shown in
Textbox 3.
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Textbox 3. Baselines for performance.

EventMine

Pyysalo et al [6] applied a pipeline-based event extraction system, mainly relying on support vector machine classifiers to implement trigger recognition
and event extraction.

Semisupervised learning

This is a semisupervised learning framework proposed by Zhou et al [30], which can use unannotated data to extract biomedical events.

Convolutional neural network

Wang et al [3] used convolutional neural networks and multiple distributed feature vector representations to achieve event extraction tasks.

mdBLSTM (bidirectional long short-term memory with a multilevel attention mechanism and dependency-based word embeddings)

He et al [5] proposed a bidirectional long short-term memory neural network based on a multilevel attention mechanism and dependency-based word
embeddings to extract biomedical events.

Reinforcement learning+knowledge bases

Zhao et al [32] proposed a framework of reinforcement learning with external biomedical knowledge bases for extracting biomedical events.

DeepEventMine

Trieu et al [35] proposed an end-to-end neural model. It uses a multioverlapping directed acyclic graph to detect nested biomedical entities, triggers,
roles, and events.

Hierarchical artificial neural network

Zhao et al [36] proposed a 2-level modeling method for document-level joint biomedical event extraction.

Table 4 illustrates the overall performance against the
state-of-the-art methods with gold standard entities. As seen in
this table, our CPJE model achieved only a slight improvement
in the trigger recognition task. For the event extraction task, the
F1 score was significantly better than the other baselines.
Notably, the gap between the precision and recall of our model
was much smaller than that of the mdBLSTM (bidirectional
long short-term memory with a multilevel attention mechanism
and dependency-based word embeddings) model, and the
precision was much better than that of the RL+KBs model. This

indicates that our model had a better effect on reducing
cascading errors than the pipeline models. In addition, the
hierarchical artificial neural network (HANN) model was also
a joint extraction model; however, its performance is
disappointing. This is because the HANN model focuses on
extracting document-level biomedical events, which contain
many cross-sentence entities, triggers, and events. However,
other models aim to extract sentence-level events; therefore,
the performance of these models is better than that of the HANN
model.
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Table 4. Overall performance on multilevel event extraction compared with the state-of-the-art methods with gold standard entities.

Event extraction (%)Trigger recognition (%)Method

F1 scoreRecallPrecisionF1 scoreRecallPrecision

55.2049.5662.2875.8481.6970.79EventMinea

57.4159.1655.7676.8982.2672.17SSLa,b

58.3156.2360.5677.9775.2380.92CNNa,c

59.6144.5090.2479.5576.5682.79mdBLSTMa,d

60.0956.8163.78N/AN/AN/AgRLe+KBsa,f

61.8755.4969.91N/AN/AN/ADeepEventMineh

59.7456.0863.91N/AN/AN/AHANNh,i

62.80j55.2372.2680.1878.2582.20Our modelh

aPipeline model.
bSSL: semisupervised learning.
cCNN: convolutional neural network.
dmdBLSTM: bidirectional long short-term memory with a multilevel attention mechanism and dependency-based word embeddings
eRL: reinforcement learning.
fKB: knowledge base
gN/A: not applicable.
hJoint model.
iHANN: hierarchical artificial neural network.
jThe best value compared with baselines.

The Performance for Nested Events on MLEE
To evaluate the effectiveness of our model for improving the
nested biomedical event extraction, we split the test set into 2
parts (simple and nested). Simple means that 1 event only regards
the entities as its arguments; nested means that one of the
arguments of an event may be another event. In general, nested
events are present in regulation, positive regulation, negative
regulation, and planned process events.

Table 5 illustrates the performance (F1 scores) of the CNN
model [3], the RL+KBs model [32], the DeepEventMine [35]

model, the HANN [36] model, and our model in the trigger
recognition and event extraction subtasks. In the simple and
nested data of triggers, our framework was 0.44% and 1.25%
better than the CNN model, which demonstrates that our model
can improve the performance of trigger recognition. However,
there is no significant difference between simple and nested
triggers. In the nested data of events, our model was 6.97%
higher than the CNN model, 2.57% higher than the RL+KBs
model, 9.53% higher than the DeepEventMine model, and
15.8% higher than the HANN model, which illustrates that our
CPJE model of using a gate GCN and an attention mechanism
helps to enhance the performance of extracting nested events.
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Table 5. The F1 score performance on simple events, nested events, and all events on the multilevel event extraction corpus.

All (%)Nested (%)Simple (%)Subtask and model

Trigger

78.5278.8079.52CNNa

N/AN/AN/AdRLb+KBsc

N/A79.12N/ADeepEventMine

N/AN/AN/AHANNe

80.18f80.05f79.96fOur model

Event

58.8754.2961.33CNN

60.0958.69N/ARL+KBs

61.8751.73N/ADeepEventMine

59.7445.4677.08fHANN

62.80f61.26f64.85Our model

aCNN: convolutional neural network.
bRL: reinforcement learning.
cKB: knowledge base.
dN/A: not applicable.
eHANN: hierarchical artificial neural network.
fThe best value compared with other models.

The Performance for All Events on MLEE
To illustrate the impact of our framework on different events
in more detail, Table 6 presents the event extraction performance
for all event types. From this table, we obtain the best extraction

performance for dephosphorylation events and the worst
performance for transcription events. In addition, the catabolic
events had the best extraction precision, and the phosphorylation
events had the best extraction recall rate.
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Table 6. The extraction performance for different events on multilevel event extraction corpus.

F1 score (%)Recall (%)Precision (%)Events

60.4758.5762.50Cell proliferation

58.2266.4351.82Development

80.5772.6690.42Blood vessel development

61.3750.5878.02Growth

56.8144.3279.12Death

57.5948.3071.30Breakdown

69.4158.3285.71Remodeling

28.5320.3048.00Synthesis

78.3882.4274.72Gene expression

22.2233.3316.67Transcription

66.6750.00100.00Catabolism

94.74100.0090.00Phosphorylation

100.00100.00100.00Dephosphorylation

60.5749.9876.86Localization

60.7151.2374.52Binding

56.9951.4963.82Regulation

61.5150.6678.28Positive regulation

59.1354.6964.35Negative regulation

59.4251.8669.57Planned process

62.8061.2664.85All

Overall Performance on BioNLP-ST 2011 GE
To improve persuasion, we extended our experiment to the
BioNLP-ST 2011 GE corpus. We compared our event extraction
results with those of previous systems using the same corpus,
as shown in Table 7. Among them, the Turku Event Extraction
System (TEES) [42], EventMine [6], and stacked generalization
[25] systems are based on support vector machines with
designed features. The TEES-CNNs [4] are CNNs integrated
into the TEES system to extract relations and events. The
DeepEventMine [35] is based on bidirectional transformers and
an overlapping directed acyclic graph to jointly extract

biomedical events. The HANN [36] model relies on the GCN
and hypergraph to obtain local and global contexts. The
KB-driven tree LSTM [33] depends on KB concept embedding
to improve the pretrained distributed word representations. The
Graph Edge-conditioned Attention Networks with Science
BERT (GEANet-SciBERT) [34] adopts a hierarchical graph
representation encoded by graph edge-conditioned attention
networks to incorporate domain knowledge from the Unified
Medical Language System into a pretrained language model.
Table 7 illustrates that except for the DeepEventMine, our
approach outperformed all previous methods.
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Table 7. The performance of biomedical event extraction on the BioNLP shared task 2011 Genia event corpus.

F1 score (%)Recall (%)Precision (%)Method and event type

TEESa,b

53.3049.5657.65Event totalc

EventMinea

57.9853.3563.48Event total

Stacked generalizationa

56.3848.9666.46Event total

TEES-CNNsa,d

58.0749.9469.45Event total

HANNe,f

61.1053.2171.73Event total

KBg-driven tree LSTMe,h

78.7372.6285.95Simple totali

44.1037.6853.16Binding

47.7241.7355.73Regulation totalj

58.6552.1467.10Event total

GEANet-SciBERTe,k

50.9147.2355.21Regulation total

60.0656.1164.61Event total

DeepEventMinee

56.64l51.8862.36Regulation total

63.96l55.0676.28Event total

Our modele

80.5278.8882.23Simple total

44.6237.4855.12Binding

51.4846.3957.82Regulation total

61.5053.3372.62Event total

aPipeline model.
bTEES: Turku Event Extraction System.
cRepresents the overall performance on the test set.
dCNN: convolutional neural network.
eJoint model.
fHANN: hierarchical artificial neural network.
gKB: knowledge base.
hLSTM: long short-term memory.
iRepresents the overall performance for simple events on the test set.
jRepresents the overall performance for nested events on the test set (including regulation, positive regulation, and negative regulation subevents).
kGEANet-SciBERT: Graph Edge-conditioned Attention Networks with Science BERT.
lThe best value compared with other models.

The KB-driven tree LSTM and GEANet-SciBERT both draw
on the KB to enhance the semantic representation of words to
improve the extraction performance of nested (regulation)
events. However, the KB-driven tree LSTM only leverages

traditional static word embedding, which cannot deeply integrate
information from the KB; thus, its performance on nested events
is unsatisfactory.
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Unlike the KB-driven tree LSTM method, the
GEANet-SciBERT model uses a specialized medical KB and
scientific information to enrich the dynamic semantic
representation of Bidirectional Encoder Representation from
Transformers (BERT) and enhances the capability of inferring
nested events via a novel GNN. Thus, the F1 scores for the
nested event extraction were significantly boosted.

Interestingly, the DeepEventMine had an outstanding
performance for extracting nested biomedical events on
BioNLP-ST 2011 GE but had a passive performance on MLEE.
There are three reasons for this fact. First, the DeepEventMine
model jointly learns 4 biomedical information tasks (entity
detection, trigger detection, role detection, and event detection),
which can share more biomedical features and knowledge when
model training. Second, the DeepEventMine model uses a more
complex graph structure (multiple overlapping directed acyclic
graphs) to obtain rich syntactic information. (Finally, the
BioNLP-ST 2011 GE data set size is larger than that of the
MLEE data set; thus, the DeepEventMine model can be fully
trained on a large corpus and enhance the performance of
extracting nested events.

Discussion

In this section, we will study and discuss the performance of
our CPJE model using the MLEE corpus.

Ablation Study

The Impact of the BiLSTM
Although the output of BioBERT contains rich semantic
information, it has some noise impact on semantic information
after concatenating POS embedding, entity embedding, and
BioBERT embedding. In addition, the dimension of the
BioBERT output is 768, and the total size after concatenation
is more extensive, which tends to cause the phenomenon of
combination explosion in the feature space. Therefore, we
considered using a BiLSTM, which reduces the total dimension
and integrates other information with the BioBERT information
to obtain a richer semantic representation.

If we remove the BiLSTM layer, the trigger recognition
precision is dropped from 82.20% to 75.64%, and the trigger
recognition F1 score is dropped from 80.18% to 76.39%, which
further affects the event extraction performance (the event
extraction F1 score is fell from 62.80% to 58.02%).

The Impact of Softmax Probability
To evaluate the contribution of the softmax probability
distribution after trigger prediction to the event extraction task,
we used the traditional joint extraction method (as shown in
equation 10), which only uses source information when
extracting candidate trigger vectors and event argument vectors.

If we only use the source information (soft trigger) for joint
extraction, the event extraction task lacks the probability

distribution information after trigger recognition, which results
in a decline in the recall rate of the model and further affects
the F1 scores (the event extraction F1 score is dropped from
62.80% to 60.09%). However, the overall result is still slightly
higher than the pipeline baseline, which also reflects that joint
extraction can eliminate cascading errors.

The Impact of GCN
We removed the syntactic structure to evaluate the importance
of the GCN network; therefore, the GCN module was useless
in our model. If the model lacks the GCN component, the
performance of trigger recognition is slightly degraded (the
trigger recognition F1 score is fell from 80.18% to 78.78%),
and the result of event extraction is significantly worse than
that of the proposed model (the event extraction F1 score is fell
from 62.80% to 58.40%).

As the syntactic structure can provide significant potential
information for event extraction, the GCN model can be aware
of the direction of information flow in syntactic structures and
capture these features effectively. Therefore, the GCN model
is vital for event extraction.

The Impact of Dice Loss
In the face of an imbalance in biomedical corpora, we used the
Dice loss function. To verify that the Dice loss function had a
better effect on event extraction, we used the cross-entropy loss
function for comparison.

A significantly large number of negative examples in the data
set indicates that easy-negative examples are extensive. A large
number of straightforward examples overwhelmed the training,
making the model insufficient to distinguish between positive
and hard-negative examples. As the cross-entropy loss is
accuracy oriented and each instance contributes equally to the
loss function, the precision of the model increases (the event
extraction precision is risen from 72.26% to 89.26%), but the
F1 scores do not increase (the event extraction F1 score is
dropped from 62.60% to 60.30%). Dice loss is a muted version
of the F1 score—the harmonic mean of precision and recall.
When the positive and negative examples in the data set are
unbalanced, the Dice loss will reduce the focus on the
easy-negative sample and increase the attention on positive and
hard-negative samples, thereby balancing the precision and
recall values and increasing the F1 scores.

Visualization
For the effectiveness of the attention-based gate GCN, we used
the sentence “Effects of spironolactone on corneal allograft
survival in the rat” in Figure 3 as an example to illustrate the
captured interaction features. From Figure 3B, we know this
sentence contains 2 events: a regulation event caused by effects
and a death event caused by survival. In addition, a death event
is one of the arguments for the regulation event.
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Figure 3. An example of attention-based gate graph neural network effectiveness. (A) Row-wise heap map, where each row is an array of average
scores of the 2 heads obtained from the multi-head attention mechanism. The darker the color, the higher the score and the stronger the interaction. (B)
Dependency parsing result produced by Stanford CoreNLP and the golden relationships between event triggers and arguments, where yellow boxes
represent entity type, and the blue boxes represent event type.

As we can see in Figure 3A, the effects row has moderately
strong links with Effects (self), spironolactone (its argument),
and survival (its argument and another event). Meanwhile, the
survival row has strong links with survival (self), effects (another
event), and corneal allograft (its argument). In addition, the
words rat and on also have strong connections with survival,
which means that the syntactic dependency information
generated by parsing is propagated through the GCN.

Case Study

Overview
Our framework has not achieved state-of-the-art results for the
BioNLP-ST 2011 GE corpus. However, the performance of
extracting nested biomedical events is satisfactory, particularly
in the MLEE corpus. To more intuitively demonstrate the

performance of our model in extracting nested biomedical
events, we analyzed 3 examples of nested events selected from
the MLEE test set to study the strengths and weaknesses of our
model compared with the CNN [3].

Case 1
As shown in Figure 4, case 1 is a simple nested event, where
the role type of event argument is only the theme. It is a nested
event; however, both the CNN and our model obtained correct
event extraction results. This is because this sentence does not
have a complete component, and perhaps, it is only a part of a
complete sentence. The simpler the sentence structure is, the
easier it is for the model to extract practical features. Therefore,
the extraction performance for such nested events is generally
favorable.

Figure 4. Case study for a simple nested event on the multilevel event extraction corpus. CNN: convolutional neural network.
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Case 2
Case 2 is a general nested event whose sentence component is
complete, and the role types of event arguments are theme and
cause. As shown in Figure 5, the CNN model detects all correct
event triggers but cannot detect the correct event arguments.
The CNN model is a pipeline approach that considers trigger
recognition and argument detection tasks in a cascade rather
than a parallel relationship. In general, they first input the text
into the CNN model to identify the triggers in the sentence.
Then, they construct <trigger, entity> or <trigger, trigger>

candidate pairs and input them into the CNN model again to
detect the arguments. Finally, rule-based or machine
learning-based methods are used to postprocess triggers and
arguments to construct complete biomedical events. If there is
an error in some of these steps, it will directly affect the
performance of event extraction. However, our joint method
regards trigger recognition and argument detection as parallel
tasks that can provide valid information. Thus, we trained both
tasks jointly with one model, and errors could only be generated
during the model training.

Figure 5. Case study for a common nested event on multilevel event extraction corpus. CNN: convolutional neural network.

Case 3
Case 3 is a cross-sentence nested event, as shown in Figure 6.
From this example, we can determine what needs to be
improved. As multiple events are nested in each other, and some
of these events are not in the same sentence, this prevents the

model from extracting all events efficiently and accurately.
Compared with the CNN model, although our model can identify
the positive regulation event triggered by resulting, it is not in
the same clause as the development event triggered by create,
which causes the positive regulation event to lack an event
argument.
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Figure 6. Case study for an across-sentence nested event on multilevel event extraction corpus. CNN: convolutional neural network.

Conclusions
In this study, a CPJE framework based on a multi-head attention
graph CNN is proposed to achieve biomedical event extraction
tasks. The cascading errors between the 2 subtasks were reduced
because of the use of the joint extraction framework. With the
help of the attention-based gate GCN, syntactic dependency
information and the interrelations between triggers and related
entities were effectively learned; thus, the extraction

performance of nested biomedical events improved. The Dice
loss replaced the cross-entropy loss, which weakened the
negative impact of the imbalanced data set. Overall, the model
obtained the best F1 score in the MLEE biomedical event
extraction corpus and achieved favorable performance on the
BioNLP-ST 2011 GE corpus. In the future, we will consider
integrating external resource knowledge to allow the model to
learn richer information and improve the performance of
cross-sentence nested events.
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Abbreviations
BERT: Bidirectional Encoder Representation From Transformers
BiLSTM: bidirectional long short-term memory
BioBERT: Biomedical Bidirectional Encoder Representation From Transformers
BioNLP: biomedical natural language processing
BioNLP-ST: biomedical natural language processing shared task
CNN: convolutional neural network
CPJE: conditional probability joint extraction
GCN: graph convolutional network
GE: Genia event
GEANet-SciBERT: Graph Edge-conditioned Attention Networks with Science BERT
GNN: graph neural network
HANN: hierarchical artificial neural network
KB: knowledge base
LSTM: long short-term memory
mdBLSTM: bidirectional long short-term memory with a multilevel attention mechanism and dependency-based
word embeddings
MLEE: multilevel event extraction
POS: parts of speech
RL: reinforcement learning
SGD: stochastic gradient descent
TEES: Turku Event Extraction System
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