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Abstract

Background: Research on the diagnosis of COVID-19 using lung images is limited by the scarcity of imaging data. Generative
adversarial networks (GANs) are popular for synthesis and data augmentation. GANs have been explored for data augmentation
to enhance the performance of artificial intelligence (AI) methods for the diagnosis of COVID-19 within lung computed tomography
(CT) and X-ray images. However, the role of GANs in overcoming data scarcity for COVID-19 is not well understood.

Objective: This review presents a comprehensive study on the role of GANs in addressing the challenges related to COVID-19
data scarcity and diagnosis. It is the first review that summarizes different GAN methods and lung imaging data sets for COVID-19.
It attempts to answer the questions related to applications of GANs, popular GAN architectures, frequently used image modalities,
and the availability of source code.

Methods: A search was conducted on 5 databases, namely PubMed, IEEEXplore, Association for Computing Machinery (ACM)
Digital Library, Scopus, and Google Scholar. The search was conducted from October 11-13, 2021. The search was conducted
using intervention keywords, such as “generative adversarial networks” and “GANs,” and application keywords, such as
“COVID-19” and “coronavirus.” The review was performed following the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines for systematic and scoping reviews. Only those
studies were included that reported GAN-based methods for analyzing chest X-ray images, chest CT images, and chest ultrasound
images. Any studies that used deep learning methods but did not use GANs were excluded. No restrictions were imposed on the
country of publication, study design, or outcomes. Only those studies that were in English and were published from 2020 to 2022
were included. No studies before 2020 were included.

Results: This review included 57 full-text studies that reported the use of GANs for different applications in COVID-19 lung
imaging data. Most of the studies (n=42, 74%) used GANs for data augmentation to enhance the performance of AI techniques
for COVID-19 diagnosis. Other popular applications of GANs were segmentation of lungs and superresolution of lung images.
The cycleGAN and the conditional GAN were the most commonly used architectures, used in 9 studies each. In addition, 29
(51%) studies used chest X-ray images, while 21 (37%) studies used CT images for the training of GANs. For the majority of
the studies (n=47, 82%), the experiments were conducted and results were reported using publicly available data. A secondary
evaluation of the results by radiologists/clinicians was reported by only 2 (4%) studies.

Conclusions: Studies have shown that GANs have great potential to address the data scarcity challenge for lung images in
COVID-19. Data synthesized with GANs have been helpful to improve the training of the convolutional neural network (CNN)
models trained for the diagnosis of COVID-19. In addition, GANs have also contributed to enhancing the CNNs’ performance
through the superresolution of the images and segmentation. This review also identified key limitations of the potential
transformation of GAN-based methods in clinical applications.
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Introduction

Background
In December 2019, COVID-19 broke out and spread at an
unprecedented rate, given the highly contagious nature of the
virus. As a result, the World Health Organization (WHO)
declared it a global pandemic in March 2020 [1]. Therefore, a
response to combat the spread through speedy diagnosis became
the most critical need of the time. A common method for
diagnosing COVID-19 is the use of a real-time reverse
transcription–polymerase chain reaction (RT-PCR) test.
However, with the increasing number of cases worldwide, the
health care sector was overloaded as it became challenging to
cope with the requirements of the tests with the available testing
facilities. In addition, research has shown that RT-PCR may
result in false negatives or fluctuating results [2]. Hence,
diagnosis through computed tomography (CT) and X-ray images
of lungs may supplement performance. Motivated by this need,
alternative methods, such as automatic diagnosis of COVID-19
from lung images, were explored and encouraged. In this regard,
it is well understood that artificial intelligence (AI) techniques
could help inspect chest CTs and X-rays within seconds and
augment the public health care sector. The use of properly
trained AI models for diagnosis of COVID-19 is promising for
scaling up the capacity and accelerating the process as computers
are, in general, faster than humans in computations.

Many AI and medical imaging methods were explored to
provide support in the early diagnosis of COVID-19, for
example, AI for COVID-19 [3-5], machine learning for
COVID-19 [6], and data science for COVID-19 [7]. However,
AI techniques rely on large data. For example, training a
convolutional neural network (CNN) to perform classification
of COVID-19 versus normal chest X-ray images requires
training of the CNN with a large number of chest X-ray images
both for COVID-19 and for normal cases. Since the diagnosis
of COVID-19 requires studying of lung CT or X-ray images,
the availability of lung imaging data is vital to develop medical
imaging methods. However, the lack of data on COVID-19
hampered the initial progress in developing these methods to
combat COVID-19.

Many early attempts were made to collect imaging data for
lungs infected with COVID-19—specifically CT and X-ray
images either through a private collection in hospitals or through
crowdsourcing using public platforms. In parallel, many studies
have explored the use of generative adversarial networks
(GANs) to generate synthetic imaging data that can improve
the training of AI models to diagnose COVID-19.

GANs are a family of deep learning models that consist of 2
neural networks trained in an adversarial fashion [8-15]. The 2
neural networks, namely the generator and the discriminator,
attempt to minimize their losses, while maximizing the loss of
the other. This training mechanism improves the overall learning
task of the GAN model, particularly for generating data. GANs

have recently been studied for computer vision and medical
imaging tasks, such as image generation, superresolution, and
segmentation [9,10]. Given the significant potential of GANs
in medical imaging, it was intuitive that many researchers were
tempted to explore the use of GANs for data augmentation of
imaging data on COVID-19. In addition, some researchers also
used GANs for segmentation and superresolution of lung
images.

This scoping review focuses on providing a comprehensive
review of the GAN-based methods used to combat COVID-19.
Specifically, it covers the studies where GANs have been used
for lung CT and X-ray images to diagnose COVID-19 or to
enhance the performance of CNNs for the diagnosis of
COVID-19 (eg, by data augmentation or superresolution).

Research Problem
GANs have gained the attention of the medical imaging research
community. As the COVID-19 pandemic continued to grow in
2020 and 2021, the research community faced a significant
challenge due to the scarcity of medical imaging data on
COVID-19 that can be used to train AI models (eg, CNN) to
perform COVID-19 diagnosis automatically. Given the
popularity of GANs for image synthesis, researchers turned to
exploring the use of GANs for data augmentation of lung
radiology images. Many studies were conducted to use different
variants of GANs for data augmentation of lung CT images and
lung X-ray images. Similarly, a few studies also used GANs
for the diagnosis of COVID-19 from lung radiology images.
However, to the best of our knowledge, there is no review on
the role of GANs in addressing the challenges related to
COVID-19 data scarcity and diagnosis. The following research
questions related to COVID-19 imaging data were considered
for this review:

What were the common applications of GANs proposed for
challenges related to COVID-19?

• Which architectures of GANs are most commonly applied
for data augmentation tasks related to COVID-19?

• Which imaging modality is the popular choice for the
diagnosis of COVID-19?

• What were the most commonly used data sets of CT and
X-ray images for COVID-19?

• What studies were conducted with open-source code to
reproduce the results?

• What studies were conducted and presented to radiology
experts for evaluation of the suitability toward future use
in clinical applications?

The results of this review will be helpful for researchers and
professionals in the medical imaging and health care domain
who are considering using GAN-based methods to address
challenges related to COVID-19 imaging data and to address
the challenge in improving automatic diagnosis using radiology
images.
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Methods

Study Design
In this work, a scoping review was conducted following the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR)
guidelines [16]. The methods for performing the study are
described next.

Search Strategy

Search Sources
A search was conducted from October 11-13, 2021. The search
was performed on the following 5 databases: PubMed,
IEEEXplore, Association for Computing Machinery (ACM)
Digital Library, Scopus, and Google Scholar. In the case of
Google Scholar, only the first 99 results were retained as the
results beyond 99 items were highly irrelevant to the scope of
the study. Similarly, in the case of ACM Digital Library, the
first 100 results were retained as a lack of relevancy to the study
was obvious in results beyond 100.

Search Terms
The search terms used in this study were chosen from the
literature with guidance from experts in the field. The terms
were chosen based on the intervention (eg, “generative
adversarial networks,” “GANs,” “cycleGANs”) and the target
application (eg, “COVID-“19”, “coronavirus,” “corona
pandemic”). The exact search strings used in the search for this
study are available in Multimedia Appendix 1.

Search Eligibility Criteria
This study focused on the applications of GANs in analyzing
radiology images of lungs for COVID-19, used for any purpose
such as data augmentation or synthesis, diagnosis,
superresolution, and prognosis. Only those studies were included
that reported GAN-based methods for analyzing chest X-ray
images, chest CT images, and chest ultrasound images. Studies
that reported GAN-based methods for analyzing nonlung images
were removed. Any studies that used deep learning methods
but did not use GANs were also excluded. Studies reporting
GANs for nonimaging data were also excluded. To provide a
list of reliable studies, only peer-reviewed articles, conference
papers, and book chapters were included. Preprints, conference
abstracts, short letters, and commentaries were excluded.
Similarly, review articles were also excluded. No restrictions
were imposed on the country of publication, study design, or
outcomes. Studies that were written in English and were
published from 2020 to 2022 were included. No studies before
2020 were included.

Study Selection
Two reviewers (authors HA and ZS) screened the titles and
abstracts of the search results. Initial screening by the 2

reviewers was performed independently. Disagreement occurred
for only 9 articles. The disagreement was resolved through
mutual discussion and consensus. For measuring the
disagreement, Cohen κ [17] was calculated to be 0.89, which
shows good agreement between the 2 independent reviewers.
Multimedia Appendix 2 shows the matrix for the agreement
between the 2 independent reviewers.

Data Extraction
Multimedia Appendix 3 shows the form for extraction of the
key characteristics. The form was pilot-tested and refined in 2
rounds, first by data extraction for 5 studies and then by data
extraction for another 5 studies. This refinement of the form
ensured that only relevant data were extracted from the studies.
The 2 reviewers (HA and ZS) extracted the data from the
included studies, related to the GAN-based method, applications,
and data sets. Any disagreement between the reviewers was
resolved through mutual consensus and discussions. As the
disagreements at the study selection stage were resolved through
careful and lengthy discussions, the disagreement at the data
extraction was only minor.

Data Synthesis
After extraction of the data from the full text of the identified
studies, a narrative approach was used to synthesize the data.
The use of GAN-based methods was classified in terms of the
application of GANs (eg, augmentation, segmentation of lungs);
the type of GAN architecture, if reported (eg, conditional GAN
or cycleGAN); and the modality of the imaging data for which
the GAN was used (eg, CT or X-ray imaging). Similarly, the
studies were classified based on the availability of the data set
(eg, public or private), the size of the data set (eg, the number
of images in the original images and the number of images after
augmentation with the GAN, if applicable), and the proportion
of the training and test sets as well as the type of
cross-validation. The data synthesis was managed and performed
using Microsoft Excel.

Results

Search Results
From 5 online databases, a total of 348 studies were retrieved
(see Figure 1). Of the 348 studies, 81 (23.3%) duplicates were
removed. The titles and abstracts of the remaining 267 (76.7%)
studies were carefully screened as per the criteria of inclusion
and exclusion. The screening of the titles and abstracts resulted
in the exclusion of 208 (77.9%) studies (see Figure 1 for reasons
of exclusion). After the full-text reading of the remaining 59
(22.1%) studies, 2 (3%) studies were excluded following the
inclusion/exclusion criteria. Finally, a total of 57 (97%) studies
were included in this review. No additional studies were found
through reference list checking. As per the yearwise publication,
15 (26%) of 57 studies were published in 2020 and 41 (72%)
of 57 were published in 2021.
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Figure 1. PRISMA-ScR flowchart for the search outcomes and selection of studies. GAN: generative adversarial network; PRISMA-ScR: Preferred
Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews.

Demographics of the Included Studies
Among the included studies (N=57), 37 (65%) studies were
published articles in peer-reviewed journals, 18 (32%) studies
were published in conference proceedings, and 2 (4%) studies
were published as book chapters. No thesis publication was
found relevant to the scope of this review. Around one-fourth
of the studies (n=15, 26%) were published in 2020. Most of the

studies were published in 2021 (n=41, 72%). The included
studies were published in 14 countries. The largest number of
publications were from China (n=12, 21%), followed by India
(n=10, 18%). Both the United States and Egypt published the
same number of studies (n=6, 11%, each). The characteristics
are summarized in Table 1 and Multimedia Appendix 4. Figure
2 (see [18-74]) shows the demographics of the included studies,
along with the modality of the chest images used.
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Table 1. Characteristics of the included studies (N=57). Demographics are shown for type of publication, country of publication, and year of publication.

Studies, n (%)Characteristics

Publication type

37 (65)Journal

18 (32)Conference

2 (4)Book chapter

Country

12 (21)China

10 (18)India

6 (11)United States

6 (11)Egypt

4 (7)Canada

3 (5)Spain

2 (4)Malaysia

2 (4)Turkey

2 (4)Pakistan

1 (2)Vietnam

1 (2)Mexico

1 (2)South Korea

1 (2)Philippines

1 (2)Israel

Year of publication

15 (26)2020

41 (72)2021

1 (2)2022

Figure 2. Characteristics of the included studies showing the publication type, country of publication, and modality of data. The number of studies is
reflected by the size of the terminal node. The numbers S1-S57 refer to the included studies. CT: computed tomography.
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Application of the Studies
As shown in Table 2, the included studies have reported 5
different tasks being addressed: augmentation (data
augmentation), diagnosis of COVID-19, prognosis, segmentation
(to identify the lung region), and diagnosis of lung diseases. As
the diagnosis of COVID-19 using medical imaging has been a
priority since the pandemic started, 39 (68%) of 57 studies

reported the diagnosis of COVID-19 as the main focus of their
work [19-21, 23-33, 35-37, 39, 41, 42, 44, 46, 50, 52, 53, 55,
56, 58-60, 63-69, 71, 72]. In addition, 9 (16%) studies reported
data augmentation as the main task addressed in the work
[18,43,45,49,54,61,62], 1 (2%) study reported prognosis of
COVID-19 [22], 3 (5%) studies reported segmentation of lungs
[34,51,57], and 1 (2%) study reported diagnosis of multiple
lung diseases [47].

Table 2. Applications of using GANa-based methods and types of GANs.

Studies (N=57), n (%)Applications

Applications addressed in the studies

39 (68)Diagnosis

9 (16)Data augmentation

3 (5)Segmentation+diagnosis

3 (5)Segmentation

1 (2)Diagnosis of lung disease

1 (2)Prognosis

1 (2)Prognosis+diagnosis

Applications of using GANs

42 (74)Augmentation

5 (9)Diagnosis

3 (5)Superresolution

3 (5)Segmentation

2 (4)Feature extraction

1 (2)Prognosis

1 (2)3D synthesis

Type of GAN used

17 (30)GAN

9 (16)CycleGAN

9 (16)Conditional GAN

4 (7)Deep convolutional GAN

4 (7)Auxiliary classifier GAN

2 (4)Superresolution GAN

2 (4)3D conditional GAN

1 (2)BiGAN

1 (2)Random GAN

1 (2)Pix2pix GAN

aGAN: generative adversarial network.

The majority of the studies used GANs to augment the data,
where they reported the use of GANs to increase the data set
size. Specifically, 42 (74%) studies used GAN-based methods
for data augmentation [18, 21, 23-29, 31-36, 38-43, 45, 46, 48,
50, 52-56, 59-67, 71, 73, 74]. The augmented data were then
used to improve the training of different CNNs to diagnose
COVID-19. In addition, 3 (5%) studies used GANs for
segmentation of the lung region within the chest radiology
images [37,51,57], 3 (5%) studies used GANs for

superresolution to improve the quality of the images before
using them for diagnosis purposes [30,44,68], 5 (9%) studies
used GANs for the diagnosis of COVID-19 [20,58,69,70,72],
2 (4%) studies used GANs for feature extraction from images
[19,47], and 1 (2%) study used a GAN-based method for
prognosis of COVID-19 [22]. The prevalent mode of imaging
is the use of 2D imaging data, and 1 (2%) study reported a
GAN-based method for synthesizing 3D data [49]. Figure 3
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(see [18-74]) shows the mapping of the applications of
GAN-based methods for all the included studies.

Different variants have been proposed for GAN architectures
since their inception. The most common type of GAN used in
these studies was the cycleGAN, used in 9 (16%) studies
[29,35,36,42,46,54,56,70,74]. The cycleGAN is an image
translation GAN that does not require paired data to transform
images from one domain to another. Other popular types of
GANs were conditional GAN used by 9 (16%) studies
[18,22,24,25,33,37,41,57,60], deep convolutional GAN used

by 4 (7%) studies [21,38,43,67], and auxiliary classifier GAN
used by 4 (7%) studies [32,40,55,69]. The superresolution GAN
was used by 2 (4%) studies [44,68], and 1 (2%) study reported
the use of multiple GANs, namely Wassertein GAN, auxiliary
classifier GAN, and deep convolutional GAN, and compared
their performances for improving the quality of images [31].

Of the 57 studies, only 10 (18%) [18,19,26,27,30,34,43,61-73]
reported changes to the architecture of the GAN they were using.
In the rest of the studies, no major changes were reported to the
architecture of the GAN.

Figure 3. Major applications of GANs in the included studies. The number of publications for each application is reflected by the size of the circle in
the second-last layer. The numbers S1-S57 refer to the included studies. GAN: generative adversarial network.

Characteristics of the Data Sets
The included studies applied GANs on lung radiology images
obtained using various modalities. Specifically, the use of X-ray
images dominated the studies. In total, 29 (51%) studies used
X-ray images of lungs [20,21, 25, 27-29, 31, 32, 35, 37, 40-43,
45, 50, 52, 54, 56, 57, 59, 60, 62, 64, 65, 67, 70, 73, 74], while
2 1  ( 3 7 % )  s t u d i e s  u s e d  C T  i m a g e s
[18,19,22-24,26,30,33,34,36,38,48,49,51,53,55,58,61,63,66,71],
and 6 (11%) studies reported the use of both X-ray and CT
images [39,44,46,47,68,72]. Only 1 (2%) study used ultrasound

images for COVID-19 diagnosis [69], which shows that
ultrasound is not a popular imaging modality for training GANs
and other deep learning models for COVID-19 detection (also
see Figure 4). Of the 57 studies, most (n=47, 82%) used image
data sets that are publicly available. In 10 (18%) studies, the
data sets used are private. Table 3 provides a list of the various
data sets used in the included studies and whether they are
publicly available data sets or private. The most commonly used
data set was the COVIDx data set available on Github, used by
26 (46%) studies.
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Figure 4. Venn diagram showing the number of studies using CT vs X-ray images. Only 1 (2%) study reported the use of ultrasound images (not
reflected here). CT: computed tomography.

Table 3. Resources of the data sets used in the included studies. The name is provided only if available.

Modality of imagingPublic or privatePlatform (name)

CTaPublic [75]Kaggle

CTPublic [76]Github

CTPublic [77]Github

X-ray, CTPublic [78]Github (Covidx)

X-rayPublic [79]Github

X-rayPublic [80]Kaggle (Tawsif)

X-rayPublic [81]Github

X-rayPublic [82]Kaggle

CTPublic [83]Mendeley

CTPublic [84]Website

CTPublic [85]Kaggle (Allen Institute)

X-rayPublic [86]Kaggle (RSNA)

CTPublic [87]Website

UltrasoundPublic [88]Github

X-rayPublic [89]Kaggle

X-rayPublic [90]Website (Italian Society of Medical and Interventional Radiology)

CTPrivateFirst Affiliated Hospital of the University of Science and Technology
China

CTPrivateMassachusetts General Hospital, Brigham and Women's Hospital

X-rayPrivateComlejo Hospitalario Universitario de A Coruna Spain

aCT: computed tomography.

The majority of the studies reported the size of the data set in
terms of the number of images. The number of images used was
greater than 10,000 in only 7 (12%) studies
[20,22,30,39,63,66,74], while 3 (5%) studies used images
between 5000 and 10,000 [33,47,64]. The most common range
for the number of images used was 1000-5000 images used in
15 (26%) studies. Around one-fifth of the studies (n=11, 19%)
used between 500 and 1000 images. In 11 (19%) other studies,
the number of images used was less than 500. No study reported
a number of images less than 100. The maximum number of
images was 84,971, used by Uemura et al [22]. Only a few of
the studies reported the number of patients for whom the data

were used: 1 (2%) study used data for more than 1000 patients
[26], 2 (4%) studies used data for 500-1000 patients [29,42], 6
(11%) studies used data for 100-500 patients
[19,22,24,30,38,71], and 4 (7%) studies used data for less than
100 patients [18,49,66,69]. The number of patients was not
reported in the rest of the studies.

After augmentation using GANs, the studies increased the
number of images to several thousand, with a maximum number
of 21,295 [54]. In 6 (11%) studies using GANs for data
augmentation, the number of images increased to more than
10,000. In 3 (5%) studies, the number of images increased to
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5000-10,000. In 9 (16%) studies, the number of images
increased to 1000-5000, and in 2 (4%) studies, the number of
images increased between 500 and 1000. No study reported
data augmentation output below 500 images.

Evaluation Mechanisms
Generally, the popular metrics for evaluating the diagnosis and
classification performances of neural networks are accuracy,
precision, recall, dice score, and area under the receiver
operating characteristic curve (AUROC). To evaluate the
performance of neural networks for diagnosis of COVID-19,
38 (67%) of the 57 studies used accuracy, along with metrics
such as precision, recall, and dice score
[21,23-28,31-34,36,38,40,43-48,52,53,55,56,58-60,63-72,74].
Around one-fourth of the studies (n=18, 32%) used sensitivity
and specificity. In addition, 12 (21%) studies used the AUROC
[19,20,26,30,32,46-48,50,51,68,74]. The numbers do not add
up, as many studies used more than 1 metric for evaluation. In
addition to the metrics mentioned here, 1 (2%) study used
additional metrics, namely concordance index and relative
absolute error, to evaluate prognosis and survival prediction for
patients with COVID-19 [22].

Likewise, the popular metrics used to assess the quality of the
synthesized images are the structural similarity measure (SSIM),
the peak signal-to-noise ratio (PSNR), and the Fréchet inception
distance (FID). Of the 57 studies included, 6 (11%) used the
SSIM [18,30,49,60-62], 5 (9%) used the PSNR [18,30,49,61,62],
and 3 (5%) used the FID metric [18,43,62] for evaluation.

The majority of the studies (n=42, 74%) reported having the
data split between independent training and test sets. A few of
the studies (n=6, 11%) reported 5-fold or 10-fold
cross-validation for training and evaluation of the model. For
almost one-sixth of the studies (n=9, 16%), the information on
cross-validation was not available.

Reproducibility and Secondary Evaluation
This review also summarizes the studies in which the authors
provided the implementation code. Only 7 (12%) of the 57
studies provided links for their code [19,20,34,47,48,66,70].
Only 2 (4%) studies reported a secondary evaluation by
radiologists/doctors/experts by presenting the outcome of the
results obtained by their models [19,45]. In addition, 1 (2%)
study presented the results of end-to-end diagnosis of COVID-19
from CT images to 3 radiologists for a second opinion [19], and
1 (2%) study presented synthetic X-ray images to 2 radiologists
for a second opinion on the quality of the generated X-ray
images [45].

Discussion

Principal Findings
In this review, a significant rise in the number of studies on the
topic was found in 2021 compared to 2020. This makes sense
as the first half of 2020 saw only initial cases of COVID-19
infection, and research on the use of GANs for COVID-19 had
yet to gain pace. Lung radiology image data for
COVID-19-positive examples gradually became available during
this period and increased only in the latter part of 2020. The

highest number of studies were published from China and India
(n=22). There can be 2 possible reasons for this. First, the 2
countries hold the top 2 spots on the ranking of the world's most
populous countries. Second, the COVID-19 pandemic started
in China, hence prompting earlier research efforts there.

Interestingly, the same number of studies (n=6) were published
from the United States and Egypt each. The correlation mapping
in Figure 5 shows that most of the studies published in 2020
originated from China, India, Egypt, and Canada. However, in
2021, many other countries also contributed to the published
research. The number of journal papers was twice that of
conference papers. This is surprising as journal publications
would typically require more time in paper processing compared
to conferences. It can be possible that many authors turned to
journal submissions as, during the start of the pandemic, many
conferences were suspended initially before moving to the online
(virtual) mode.

In the majority of the included studies (n=39), the main task
was to perform diagnosis of COVID-19 using lung CT or X-ray
images. In these studies, a GAN was used as a submodule of
the overall framework, and diagnosis was performed with the
help of variants of CNNs, such as ResNet, VGG16, and
Inception-net. In the included studies, GANs were used for 7
different purposes: data augmentation, segmentation of lungs
within chest radiology images, superresolution of lung images
to improve the quality of the images, diagnosis of COVID-19
within the images, feature extraction, prognosis studies related
to COVID-19, and synthesis of 3D volumes of CT. Around
73% of the included studies used GAN-based methods for data
augmentation to address the data scarcity challenge of
COVID-19. It is not unexpected, as data augmentation is the
most popular application of GANs. Only 1 study used the 3D
variant of GAN for 3D synthesis of CT volumes. This is not
surprising as 3D synthesis of CT volumes using 3D GANs is
computationally expensive. The computations for the 3D
synthesis of CT volumes may exceed the available resources
of the graphics processing unit (GPU).

Since there are many variants of GANs, this review also looked
at the most commonly used GAN architecture in the included
studies. The most common choice of GAN in the included
studies was the cycleGAN used in 9 studies. The cycleGAN is
a GAN architecture that comprises 2 generators and 2
discriminators and does not require pair-to-pair training data
[11]. Hence, it was a popular choice to generate
COVID-19–positive images from normal images.

This review analyzed the common imaging modality for the
different applications related to COVID-19. As chest X-ray
imaging and CT scans are the most popular imaging methods
for studying the infection in individuals, the studies included
in this review were those that used these 2 imaging modalities.
Specifically, 35 studies used X-ray images, and 21 studies used
CT images. Some of the studies (n=6) also used both CT and
X-ray images for diagnosis by training different models or for
the transformation of images from X-ray to CT. Though
ultrasound imaging is not prevalent in the clinical diagnosis of
COVID-19, 1 study reported using ultrasound images to
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diagnose COVID-19 with GANs. No other modality of imaging
was used by the included studies.

The majority of the included studies (n=47) used data that are
available publicly on Github, Kaggle, or other publicly
accessible websites. These data are acquired from multiple
sources (eg, collected from more than 1 hospital or through
crowdsourcing), which makes them more diverse and hence
more useful for training of GAN models. Similarly, it is hoped
that the use of publicly accessible data will also encourage other
researchers to conduct experiments on the data sets. The rise of
publications in 2021 can also be linked to the availability of
publicly available data sets that continued to rise as the number
of COVID-19 cases continued to grow. A few of the included
studies (n=10) used private or proprietary data sets, and hence,

the details about those data sets are only limited to what has
been described in the corresponding studies.

Only 13 studies provided information on the number of
individuals whose data were used in the included studies.
Among these, only 1 study used data for more than 1000
individuals [26] and 2 studies used data for more than 500
individuals [29,42]. The remaining 10 studies used data for less
than 500 individuals. Given the size of the population infected
with COVID-19 (418+ million as of writing this, reported from
John Hopkins University Coronavirus Resource Center [91]),
the need for experiments with much more extensive data is
obvious. As a result of having more data, learning inherent
features within the radiology images by using GANs will
become more generalized with training on larger data. There is
still more need to contribute to publicly accessible data.

Figure 5. Mapping of correlation between publications from each country vs year of publication. Studies in 2020 originated mostly from China, India,
Egypt, and Canada. In 2021, many other countries also contributed to the published research.

Practical and Research Implications
This review presented the different studies that used GANs for
various COVID-19 applications. Data augmentation of
COVID-19 imaging data was the most common application in
the included studies. The augmented data can significantly
improve the training of AI methods, particularly deep learning
methods used for COVID-19 diagnosis. This review found that
for most of the studies, the current CT and X-ray imaging data
(even if smaller in size) are already available through publicly
accessible links on Github, Kaggle, or institutional websites.
This should encourage more researchers to build upon the
available data sets and train more variants of deep learning and
GAN-based methods to speed up the research progress on
COVID-19. Similarly, researchers can also add to the existing
data set on Github by uploading their data to the current data
repositories. An example of crowdsourcing of data is the
COVIDx image repository for lung X-ray images (see Table
3).

This review identified that the code to reproduce the results was
not available for the majority of the studies. Only 7 of the
included studies provided a public link to the code. Availability
of a public repository to reproduce the results for diagnosis or
augmented data can help in advancing the research as well as
increase the trust and reliance on the reported results in terms
of the quality of the generated images or the accuracy reports
for the diagnosis. In addition, the reproducibility by this code
was not assessed by this review, as it was beyond the scope of
this review. Careful and responsible studies are needed to make
an assessment of the published methods for transformation into
clinical applications.

The majority of the included studies (n=43) did not provide
information on the number of patients, although they did
mention the number of images used in the experiments. So, it
is unclear how many images were used per individual. Hence,
the lack of information limits the ability of the readers to
evaluate the performance in the context of the number of
patients. Moreover, for public data sets with crowd-sourced
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contributions, it is challenging to trace back the number of
images to the number of individuals.

Validation of the performance of GANs in terms of the
quality/usability of the generated images has a significant role
in promoting the acceptability of the methods. Of the included
studies, only 2 studies reported that the results were presented
to radiologists/clinicians for a secondary validation. In 1 study
on the synthesis of X-ray images, the radiologists agreed that
the quality of the X-rays has improved but falls short of
diagnostic quality for use in clinics [45]. Although using
GAN-based methods in COVID-19 is tempting for many
researchers, the lack of evaluation by radiologists or using
GAN-based methods without radiologists and clinicians in the
loop will hinder the acceptability of these methods for clinical
applications. In addition, it is beyond the scope of this review
to evaluate a study based on reporting of secondary evaluation
by the radiologists, though a secondary assessment by the
radiologists would have added value to the studies and increased
their acceptability. The lack of details related to the individuals
whose COVID-19 data were used in these studies may also
hinder their acceptance for transformation into clinical
applications. The training of GANs is usually computationally
demanding, requiring GPUs. More edge computing–based
implementations are needed for clinical applications to make
these models compatible for implementation on low-power
devices. This will increase the acceptability of these methods
in clinical devices.

Strengths and Limitations

Strengths
Though several reviews can be found on the applications of AI
techniques in COVID-19, no review was found that focused on
the potential of GAN-based methods to combat COVID-19.
Compared to other reviews [3,4,6,7] where the scope is too
broad as they attempted to cover many different AI models, this
review provided a comprehensive analysis of the GAN-based
approaches used primarily on lung CT and X-ray images.
Similarly, many reviews covered the applications of GANs in
medical imaging [10,12-15]; their applications in lung images
for COVID-19 have not been reviewed before. So, this review
may be considered the first comprehensive review that covers
all the GAN-based methods used for COVID-19 imaging data
for different applications in general and data augmentation in
particular. Thus, it is helpful for the readers to understand how
GAN-based approaches were used to address the problem of
data scarcity and how the synthetic data (generated by GANs)
were used to improve the performance of CNNs for COVID-19.
This review provided a thorough list of the various publicly
available data sets of lung CT, lung X-ray, and lung ultrasound
images. Hence, this can serve as a single point of contact for
the readers to explore these data set resources and use them in
their research work. This review is consistent with the
PRISMA-ScR guidelines for scientific reviews [16].

Limitations
This review included studies from 5 databases: PubMed,
IEEEXplore, ACM Digital Library, Scopus, and Google Scholar.
Hence, it is possible that some literature that is not indexed in
these libraries might have been left out. However, given the
coverage by these popular databases, the included studies form
a comprehensive representation of the applications of GANs in
COVID-19. The review, for practical reasons, included studies
published only in English and did not include studies in other
languages. Since the scope of this review was limited to lung
images only, the potential of GANs for other types of medical
data, such as electronic health records, textual data, and audio
data (recordings of coughing), was not covered in this review.
The results and interpretations presented in this review are
derived from the available information in the included studies.
Since different studies may have variations and even missing
details in their reporting of the data set, the training and test
sets, and the validation mechanism, a direct comparison of the
results might not be possible. Inconsistent information on the
number of images, the training mechanism for GANs, and the
selection of test set examples may have affected the findings of
this review. In addition, by modern standards of training deep
learning models, the size of data reported in most included
studies is too small. So, the results reported in the studies in
terms of diagnosis accuracy may not generalize well. The
findings and the discussions of this review are mainly based on
the authors’ understanding of GANs (and other AI methods)
and do not necessarily reflect the comments and feedback of
the doctors and clinicians.

Conclusion
This scoping review provided a comprehensive review of 57
studies on the use of GANs for COVID-19 lung imaging data.
Similar to other deep learning and AI methods, GANs have
demonstrated outstanding potential in research on addressing
COVID-19 diagnosis performance. However, the most
significant application of GANs has been data augmentation by
generating synthetic chest CT or X-ray imaging data from the
existing limited-size data, as the synthetic data showed a direct
bearing on the enhancement of the diagnosis. Although
GAN-based methods have demonstrated great potential, their
adoption in COVID-19 research is still in a stage of infancy.
Notably, the transformation of GAN-based methods into clinical
applications is still limited due to the limitations in the validation
of the results, the generalization of the results, the lack of
feedback from radiologists, and the limited explainability offered
by these methods. Nevertheless, GAN-based methods can assist
in the performance enhancement of COVID-19 diagnosis, even
though they should not be used as independent tools. In addition,
more research and advancements are needed toward the
explainability and clinical transformations of these methods.
This will pave the way for a broader acceptance of GAN-based
methods in COVID-19 applications.
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