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Abstract

Background: Nonalcoholic steatohepatitis (NASH), advanced fibrosis, and subsequent cirrhosis and hepatocellular carcinoma
are becoming the most common etiology for liver failure and liver transplantation; however, they can only be diagnosed at these
potentially reversible stages with a liver biopsy, which is associated with various complications and high expenses. Knowing the
difference between the more benign isolated steatosis and the more severe NASH and cirrhosis informs the physician regarding
the need for more aggressive management.

Objective: We intend to explore the feasibility of using machine learning methods for noninvasive diagnosis of NASH and
advanced liver fibrosis and compare machine learning methods with existing quantitative risk scores.

Methods: We conducted a retrospective analysis of clinical data from a cohort of 492 patients with biopsy-proven nonalcoholic
fatty liver disease (NAFLD), NASH, or advanced fibrosis. We systematically compared 5 widely used machine learning algorithms
for the prediction of NAFLD, NASH, and fibrosis using 2 variable encoding strategies. Then, we compared the machine learning
methods with 3 existing quantitative scores and identified the important features for prediction using the SHapley Additive
exPlanations method.

Results: The best machine learning method, gradient boosting (GB), achieved the best area under the curve scores of 0.9043,
0.8166, and 0.8360 for NAFLD, NASH, and advanced fibrosis, respectively. GB also outperformed 3 existing risk scores for
fibrosis. Among the variables, alanine aminotransferase (ALT), triglyceride (TG), and BMI were the important risk factors for
the prediction of NAFLD, whereas aspartate transaminase (AST), ALT, and TG were the important variables for the prediction
of NASH, and AST, hyperglycemia (A1c), and high-density lipoprotein were the important variables for predicting advanced
fibrosis.

Conclusions: It is feasible to use machine learning methods for predicting NAFLD, NASH, and advanced fibrosis using routine
clinical data, which potentially can be used to better identify patients who still need liver biopsy. Additionally, understanding the
relative importance and differences in predictors could lead to improved understanding of the disease process as well as support
for identifying novel treatment options.
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Introduction

Obesity, metabolic syndrome, and type 2 diabetes have reached
epidemic proportions, and these conditions are strongly
associated with nonalcoholic fatty liver disease (NAFLD) [1].
Consequently, NAFLD has become the most common type of
chronic liver disease in both adults and children [2,3]. Data
from the National Health and Nutrition Examination Survey
showed that the prevalence of NAFLD has increased from 20%
in 1988-1994 to 28.3% in 1999-2004 to 33% in 2009-2012 and
leveled off at 32% in 2013-2016 [4]. Although NAFLD as well
as nonalcoholic steatohepatitis (NASH) and fibrosis can be
reversed in many cases with weight loss, these diseases remain
significantly underdiagnosed; a recent electronic health record
analysis of almost 18 million adults in Europe found the
prevalence of NAFLD and NASH to be only 1.85% [5]. NAFLD
ranges from isolated steatosis to NASH and cirrhosis. Knowing
the difference between the more benign isolated steatosis and
the more severe NASH and cirrhosis informs the physician
regarding the need for more aggressive management.
Unfortunately, these can only be distinguished through an
invasive liver biopsy. As liver biopsies are associated with
various complications and high expenses, there is an increasing
interest in developing noninvasive methods to determine the
stage of NAFLD [6].

Previous studies have explored several biomarkers as
noninvasive surrogates, including markers of apoptosis [7],
oxidative stress [8,9], and inflammation [10,11]. Several
quantitative risk score calculators, such as the US Fatty Liver
Index (US FLI) [12], aspartate aminotransferase-to-platelet ratio
index (APRI) [13], and Fibrosis-4 (FIB-4) score [14], have been
proposed and applied in clinical studies. These scores are easy
and straightforward to calculate, yet they use data that are not
routinely collected in the clinic (eg, the US FLI includes the
waist circumference) or only use a limited number of variables
(eg, APRI uses lab values for aspartate transaminase [AST] and
platelets).

With the recent development of machine learning algorithms,
we are now able to use clinical data in much more sophisticated
ways. Perveen et al [15] applied a decision tree (DT) method
to evaluate the risk of developing NAFLD in a Canadian
population, where the onset of NAFLD is determined according
to the clinical criteria, namely Adult Treatment Panel III. Islam
et al [16] compared logistic regression (LR), random forests
(RFs), and support vector machines (SVMs) for the prediction
of fatty liver disease using gender, age, and 8 other variables
from lab tests. Yip et al [17] compared LR, ridge regression,
AdaBoost, and DT for NAFLD prediction using 6 predictors
from routine clinical and laboratory variables.

Although machine learning methods have been applied to predict
NAFLD, previous studies only focused on detecting NAFLD
without discriminating between isolated steatosis and NASH,

or advanced fibrosis. In addition, it is not clear how machine
learning methods perform compared to existing quantitative
calculators (eg, APRI) in predicting NASH or advanced fibrosis.
Therefore, the aim of this project was to determine if machine
learning algorithms could identify NASH or advanced liver
fibrosis using commonly available clinical and biochemical
data.

Methods

Data Set
Deidentified data from a NASH research database (KC) were
used. Baseline data from a total of 492 participants who had
been recruited from the general population as well as the
hepatology and endocrinology clinics at the University of
Florida in Gainesville, Florida, and the University of Texas
Health Science Center at San Antonio in San Antonio, Texas,
were included. Patients participating in this study were screened
for NAFLD by routine chemistries and liver magnetic resonance
spectroscopy. The final diagnoses of NASH and fibrosis staging
were determined via a percutaneous liver biopsy. For collecting
lab test data, the measurements were conducted at 1 point for
each patient. All patients signed the informed consent form
before participating in the study.

Variable Encoding
To use the clinical and laboratory variables in machine learning
algorithms, we compared 2 encoding methods including (1)
categorical encoding, where the continuous lab values were
converted into clinically meaningful categories according to
domain experts; and (2) continuous encoding, where the
continuous values were directly used without categorization.
The categorical variables (eg, gender) were directly used in both
encoding methods.

Machine Learning Methods
We compared LR, DTs, RFs, SVMs, and gradient boosting
(GB), 5 widely used machine learning algorithms, for the
prediction of NAFLD, NASH, and advanced fibrosis. LR is a
widely used statistical model that applies a logistic function to
determine model dependency among variables. LR has been
widely used in a number of clinical studies to assess associations
or predict outcomes. In this study, we used LR as the baseline
and compared it with other machine learning methods. DT and
RFs are 2 tree-based machine learning methods that are widely
used in data mining and machine learning. An SVM is a typical
machine learning algorithm based on the large margin theory
and has been applied to various prediction tasks. GB is a
machine learning technology that produces a strong predictive
model through ensembles of a number of weak models such as
DTs. We implemented LR, DT, RFs and SVMs using the
sciki-learn library [18] and implemented GB using the official
XGBoost package.
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Feature Importance Analysis Using SHAP (SHapley
Additive ExPlanations)
We also evaluated the important variables contributing to the
prediction to examine how machine learning methods work
using the SHAP method [19]. We used the feature importance,
summary plot, and decision plot in SHAP to examine these
variables. SHAP feature importance is a global importance score
derived from the averaged absolute Shapley values per feature
across the data set. Features with high SHAP importance are
more influential for model prediction. The SHAP summary plot
combines feature importance with feature effects. In a summary
plot, each point is a Shapley value for a feature and an instance.
The position on the y-axis is determined by the feature (ranked
by the feature importance) and that on the x-axis by the Shapley
value (positive or negative impact on model prediction). The
color represents the feature value from low to high (red for high
and blue for low). The summary plot is typically used to
interpret the feature-model prediction association (positive or
negative). The SHAP decision plot is used to show how features
influence the models’ decision-making for individual samples.
In a typical decision plot, there is a straight gray line indicating
the model’s base value (starting point) and a colored line
indicating prediction. Starting at the bottom of the plot, the
prediction line shows how the SHAP values (ie, feature effects)
accumulate from the base value to arrive at the model’s final
score at the top of the plot. Thus, we can interpret which sets
of features determine the model prediction results quantitatively.
In this study, we adopted the decision plots for misclassification
analysis.

Existing NAFLD Risk Score Calculators
We examined 3 existing risk score calculators for the staging
of liver fibrosis, including APRI [13] ([AST / 40] / platelets ×
100), FIB-4 score [14] ([age × AST] / [platelets × √ALT]), and
NAFLD fibrosis score (NFS) [20] (–1.675 + [0.037 × age] +
[0.094 × BMI] + [1.13 × diabetes] + [0.99 × AST/ALT ratio]
– [0.013 × platelets] – [0.66 × albumin]). We excluded the US
FLI [12], as the waist circumference is not routinely measured
in clinical practice.

Experiments and Evaluation
For machine learning methods, we used 5-fold cross-validation
and determined the area under the receiver operating
characteristic curve (AUC or AUC-ROC) as the evaluation
metric. In the 5-fold cross-validation, the 492 patients were

divided into 5 equal groups. We trained the machine learning
model using 5 groups and used the remaining group as the test
set for prediction. We repeated this training/prediction procedure
5 times and shuffled the groups so that each group could get a
chance to serve as the test set. The parameters of the machine
learning methods were optimized according to the 5-fold
cross-validation result (training curves shown in Figures S2
through S6 in Multimedia Appendix 1). Then, we calculated
the specificity and sensitivity based on the Youden’s J statistic
(Youden index) [21,22] determined from the ROC curve along
with the AUC using the prediction from the 5-fold
cross-validation. To reduce the bias of random grouping, for
each machine learning method, we repeated the 5-fold
cross-validation 20 times using different random seeds and
calculated the mean specificity, mean sensitivity, mean AUC,
and 95% CI. For existing scoring algorithms (APRI, FIB-4, and
NFS), we used the bootstrapping strategy 100 times (80% data
each time) to calculate the mean specificity, sensitivity, and
AUC. Then, we selected the best machine learning method and
compared it with existing scoring algorithms for the prediction
of fibrosis. The mean AUC was used as the primary score for
evaluation. All statistically significant parameters were identified
by conducting 2-tailed t tests.

Ethics Approval
This study was approved by the Institutional Review Board of
the University of Florida (reference number: IRB201800923).

Results

Baseline characteristics are presented in Table 1, separating
patients based on the presence or absence of NASH. Tables
S1and S2 (see Multimedia Appendix 1) present the baseline
characteristics based on the presence or absence of advanced
fibrosis and NAFLD, respectively.

Table 2 shows the performance of the machine learning methods
for NAFLD prediction. The GB model with continuous encoding
of variables achieved the best mean AUC score of 0.9043
(derived by performing the 5-fold cross-validation 20 times).
The RF model with the continuous encoding method also
achieved a comparable mean AUC score of 0.9020. Subsequent
statistical analysis showed no significant difference (P=.61)
between RFs and GB. Both GB and RFs outperformed the LR
with P<.001 indicating statistical significance.
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Table 1. Baseline characteristics of patients with and without nonalcoholic steatohepatitis (N=492).

P valuebPatients without NASH (n=294)Patients with NASHa (n=198)Characteristic

.2254 ± 1155 ± 10Age, years, mean (SD) 

.88214 (73)142 (72)Males, n (%)

<.001Ethnicity, n (%)

126 (43)109 (55)Caucasian

107 (36)73 (37)Hispanic

55 (19)11 (5.5)African American

4 (1)3 (1.5)Asian

2 (1)0 (0)Indian

0(0)2(1)Pacific Islander

.0233 (5.5)34.1 (4.7)BMI, kg/m2, mean (SD)

.93134 (17)134 (16)SBPc, mmHg, mean (SD)

.5778 (10)79 (10)DBPd, mmHg, mean (SD)

<.001168 (38)183 (44)Total cholesterol, mg/dL, mean (SD)

<.001137 (85)202 (148)TGe, mg/dL, mean (SD)

.0398 (34)106 (36)LDL-Cf, mg/dL, mean (SD)

<.00143 (13)39 (11)HDL-Cg, mg/dL, mean (SD)

.0046.5 (1.2)6.8 (1.3)A1c
h, %

<.00128 (14)47 (26)ASTi, IUj/L, mean (SD)

<.00137 (27)64 (37)ALTk, IU/L, mean (SD)

.0030.8 (0.4)0.9 (0.5)Bilirubin, mg/dL, mean (SD)

.006237 (63)257 (84)Platelets, 109/L, mean (SD)

.0054.1 (0.4)4.2 (0.3)Albumin, g/L, mean (SD)

.142.05 (2.41)2.31 (1.51)TSHl, mIU/L, mean (SD)

.01127 (40)136 (39)FPGm, mg/dL, mean (SD)

<.001Glucose  tolerance  (n, %)

181 (62)144 (73)Type 2 diabetes

48 (16)41 (21)Impaired glucose tolerance

36 (12)7 (3)Impaired fasting glucose

29 (10)6 (3)Normal glucose tolerance

<.001247 (84)191 (96)Presence of metabolic syndrome, n (%)

<.001206 (70)180 (91)Presence of dyslipidemia, n (%)

<.001181 (62)159 (80)Use of blood pressure medications, n (%)

.99154 (52)103 (52)Use of statins, n (%)

.22119 (40)92 (46)Use of metformin, n (%)

.9665 (22)45 (23)Use of sulfonylurea, n (%)

aNASH: nonalcoholic steatohepatitis.
bFor continuous variables, the P values were calculated by the 2-sided t test using 2 independent variables with unequal population variances. For
categorical variables, the P values were calculated using the chi-square test.
cSBP: systolic blood pressure.
dDBP: diastolic blood pressure.
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eTG: triglyceride.
fLDL-C: low-density lipoprotein-cholesterol.
gHDL-C: high-density lipoprotein-cholesterol.
hA1c: hyperglycemia
iAST: aspartate transaminase.
jIU: international units.
kALT: alanine aminotransferase.
lTSH: thyroid-stimulating hormone.
mFPG: fasting plasma glucose.

Table 2. Performance of machine learning methods for prediction of nonalcoholic fatty liver disease.

Mean AUCa (95% CI)Mean specificityMean sensitivityMethod and feature encoding

Logistic regression

0.8632 (0.8560-0.8704)0.85570.7631Categorical

0.8786 (0.8716-0.8855)0.84520.8232Continuous

Support vector machines

0.8599 (0.8523-0.8676)0.81120.8013Categorical

0.8524 (0.8455-0.8594)0.82450.7773Continuous

Decision tree

0.7932 (0.7835-0.8029)0.77960.7297Categorical

0.8078 (0.7974-0.8183)0.78090.7888Continuous

Random forests

0.8782 (0.8717-0.8848)0.86020.7811Categorical

0.9020 (0.8957-0.9083)0.85950.8250Continuous

Gradient boosting

0.8686 (0.8615-0.8756)0.83800.7895Categorical

0.9043 (0.8979-0.9107)0.86940.8343Continuous

aAUC: area under the receiver operating characteristic curve.

Table 3 compares the performance of the machine learning
models in the prediction of NASH. The GB model with
continuous encoding achieved the best mean AUC of 0.8166.
The RF model with the continuous encoding method achieved
a similar mean AUC score of 0.8119. Statistical comparisons
between GB and RFs showed that P=.42, indicating no
significant difference. Again, both GB and RFs significantly
outperformed LR with P<.001 and P=.007, respectively.

Table 4 summarizes the performance of the machine learning
methods in the prediction of advanced fibrosis. GB with the
continuous encoding method achieved the best mean AUC of
0.8360. RFs with the continuous encoding method achieved a
comparable mean AUC score of 0.8337, which is not
significantly different from that of GB (P=.76). Although both
GB and RFs outperformed LR in terms of the mean AUC score,
subsequent statistical tests showed no significant difference
between them (P=.29 between GB and LR; P=.46 between RFs
and LR).

Next, we compared the best machine learning method (GB with
continuous variable) with existing scoring algorithms in

predicting advanced fibrosis. Table 5 shows the comparison
results. The GB model outperformed the 3 existing scoring
algorithms with an averaged AUC of 0.8360 for advanced
fibrosis with significant P values. Among the 3 existing scoring
algorithms, APRI achieved the best performance with an
averaged AUC of 0.7890 in predicting the outcome. The
AUC-ROC curves are provided in Figure S1 of Multimedia
Appendix 1.

Finally, we examined the importance scores of the top 10
variables for the disease states based on the SHAP values (see
Table S2 in Multimedia Appendix 1). The top important
variables for each condition were determined by the SHAP
importance feature, which is defined as the mean absolution
SHAP value. Figure 1 graphically demonstrates these results.
For NAFLD, ALT was the most important variable (SHAP
importance =1.02) followed by TG and BMI. For NASH, AST
was the most important factor (SHAP importance=0.5) followed
by ALT and TG. For advanced fibrosis, AST was the most
important risk factor (SHAP importance=0.91) followed by
hyperglycemia (A1c) and HDL.
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Table 3. Performance of machine learning methods in prediction of nonalcoholic steatohepatitis.

Mean AUCa (95% CI)Mean specificityMean sensitivityMethod and feature encoding

Logistic regression

0.7858 (0.7769-0.7948)0.75230.7244Categorical

0.7956 (0.7871-0.8041)0.79030.7070Continuous

Support vector machines

0.7924 (0.7813-0.7983)0.74800.7383Categorical

0.7968 (0.7886-0.8050)0.82560.6836Continuous

Decision trees

0.7201 (0.7098-0.7304)0.66930.7064Categorical

0.7305 (0.7210-0.7401)0.68810.6937Continuous

Random forests

0.7910 (0.7819-0.8001)0.80410.6979Categorical

0.8119 (0.8036-0.8215)0.76910.7582Continuous

Gradient boosting

0.7914 (0.7827-0.8001)0.76000.7226Categorical

0.8166 (0.8083-0.8249)0.78360.7525Continuous

aAUC: area under the receiver operating characteristic curve.

Table 4. Performance of machine learning methods in prediction of advanced fibrosis.

Mean AUCa (95% CI)Mean specificityMean sensitivityMethod and feature encoding

Logistic regression

0.7950 (0.7837-0.8063)0.77300.7683Categorical

0.8278 (0.8172-0.8392)0.74280.8500Continuous

Support vector machines

0.7628 (0.7489-0.7767)0.75870.7367Categorical

0.8122 (0.8002-0.8233)0.73200.8242Continuous

Decision tree

0.7844 (0.7651-0.8037)0.80100.7467Categorical

0.6947 (0.6740-0.7153)0.73790.6667Continuous

Random forests

0.8118 (0.7985-0.8251)0.85290.7425Categorical

0.8337 (0.8227-0.8447)0.77570.8325Continuous

Gradient boosting

0.8115 (0.7977-0.8253)0.83610.7492Categorical

0.8360 (0.8254-0.8467)0.80740.8083Continuous

aAUC: area under the receiver operating characteristic curve.
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Table 5. Comparison of gradient boosting (the best machine learning method) with existing scoring algorithms for prediction of advanced fibrosisa.

P valueMean AUCb (95% CI)Mean specificityMean sensitivityMethod

N/Ad0.8360 (0.8254-0.8467)0.80740.8083GBc

<.0010.7984 (0.7964-0.8004)0.76060.7424APRIe

<.0010.7394 (0.7371-0.7417)0.66740.7176FIB-4f

<.0010.6843 (0.6777-0.6909)0.56730.7506NFSg

aThe scores for APRI, FIB-4, and NFS were calculated by bootstrapping 80% of the data from all 492 patients 100 times.
bAUC: area under the receiver operating characteristic curve.
cGB: gradient boosting.
dN/A: not applicable.
eAPRI: aspartate aminotransferase-to-platelet ratio index.
fFIB-4: Fibrosis-4.
gNFS: Nonalcoholic Fatty Liver Disease Fibrosis Score.
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Figure 1. Top 10 important risk factors for prediction of NAFLD, NASH, and fibrosis based on SHAP importance calculated using the GB models
with the continuous feature encoding method. (SHAP importance was derived from the averaged absolute SHAP values). A1c: hyperglycemia; ALT:
alanine aminotransferase; AST: aspartate transaminase; BILIRRUB: bilirubin; CHOL: cholesterol; DBP: diastolic blood pressure; DYSLIPID:
dyslipidemia; FPG: fasting plasma glucose; GB: gradient boosting; HDL: high-density lipoprotein; LDL: low-density lipoprotein; NAFLD: nonalcoholic
fatty liver disease; NASH: nonalcoholic steatohepatitis; TG: triglyceride; TSH: thyroid-stimulating hormone; SHAP: SHapley Additive exPlanations.

Discussion

Principal Findings
In this study, we systematically compared 5 machine learning
algorithms for prediction of NAFLD, NASH, and advanced
fibrosis using variables from routine lab tests and patients’
demographics. We collected 33 variables from a total of 492
patients with NAFLD, NASH, and advanced fibrosis verified
by liver biopsy. The experimental results show that the GB
model achieved the best mean AUC scores of 0.9040, 0.8135,
and 0.8360 for the prediction of NAFLD, NASH, and advanced
fibrosis, respectively. This study demonstrated that it is feasible
to use machine learning methods for noninvasive diagnosis of
NAFLD, NASH, and advanced fibrosis.

We compared the best machine learning model, GB, with 3
existing risk score calculators (APRI, FIB-4, and NFS) and the
comparison results showed that GB significantly outperformed
the existing calculators in identifying fibrosis by leveraging
more patient variables. Even though APRI is a simple calculator
defined using only AST and Platelet, it achieved a decent
performance in identifying fibrosis cases with a relatively small
margin (~4%) compared to GB. Existing risk score calculators
are defined using a limited number of variables; therefore, they
are straightforward to calculate and easy to use in clinical
settings. On the other hand, machine learning methods can
achieve better performance by leveraging more variables from
patients. The GB model significantly outperformed FIB-4 and
NFS recommended in recent guidelines, indicating the potential
use of machine learning models as screening tools for improved
identification of advanced fibrosis in clinics.
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To use the variables in machine learning methods, we compared
2 encoding methods including continuous encoding and
categorical encoding. Categorical encoding used domain expert
knowledge to categorize the continuous lab test values into
different clinically meaningful categories (eg, low, normal, and
high). In contrast, continuous encoding is purely a data-driven
approach, using the lab values as they are and leaving the
machine learning models to learn the cutoffs. The experimental
results show that continuous encoding is better for representing
lab values in machine learning methods.

To understand how the GB model predicts NAFLD, NASH,
and advanced fibrosis, we examined the top 10 important
features, as shown in Figure 1. For NAFLD (Figure 1A), the
findings make clinical sense with ALT as the most important
risk factor, followed by obesity (BMI) and an indirect measure
of steatosis such as TG and HDL, which are inversely related
to NAFLD in the SHAP summary plot (Figure 1A right). As
expected, other risk factors were also positively associated with
NAFLD. For example, a high ALT indicates a high probability
of NAFLD. This is consistent with clinical practice. For NASH
(Figure 1B), AST is the most important feature followed by
ALT with a SHAP importance value comparable to that of AST,
which is also consistent with clinical practice. However, when
compared to NAFLD, we identified 3 novel features in the top
10, including atherogenic dyslipidemia (TG), hyperglycemia
(fasting plasma glucose), and thyroid hormone status
(thyroid-stimulating hormone). Abnormalities in the hepatic
thyroid hormone metabolism are gaining momentum as
conditions that may be linked with the development of
steatohepatitis [23]. Similar to NAFLD, many features (Figure
1B right) have positive associations with NASH. As anticipated,
AST was the most important feature for advanced fibrosis
(Figure 1C); however, A1c was a novel factor related to the

development of advanced liver fibrosis and the second most
important one. Some studies have suggested a link between A1c

and diabetes and NASH [24,25], but the relationship of diabetes
with the severity of steatohepatitis and fibrosis remains
controversial [26]. Their relevance can be best appreciated in
the summary plot (Figure 1C right). The order of these variables
only provides correlative evidence and certainly not cause and
effect; however, data such as these can also lead to the
generation of hypotheses pertaining to the relative role of
adiposity vs insulin resistance vs hyperglycemia in the
progression of liver disease from NAFLD to NASH, and then
to advanced fibrosis, and offer insights into the opportunities
for future targeted therapies.

Figure 2 presents 2 error cases of the GB model in predicting
advanced fibrosis. As for the false positive case (Figure 2A),
this patient had no fibrosis according to the biopsy result (has
NASH), but the model predicted fibrosis. The decision plot
shows that the HDL (37 mg/dL), low-density lipoprotein (33
mg/dL), and Platelet (360K) of this patient are within the normal
range, thus decreasing the SHAP value for fibrosis. However,
the A1c (11%) and AST (56 units per liter) of this patient are
significantly higher than the normal range, which increased the
SHAP value for fibrosis and led to the final predicted positive
outcome. This observation is consistent with the feature
importance analysis (Figure 1C) showing that A1c and AST are
strongly positively associated with the risk of advanced fibrosis.
As for the false negative case (Figure 2B), the patient had
advanced fibrosis determined from biopsy, but the GB model
provided a negative prediction (no fibrosis). Although this
patient has an A1c of 9.4%, which increases the SHAP value, a
normal AST (26 units per liter) significantly reduced the SHAP
value and led to the final negative prediction outcome.
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Figure 2. Decision plots for false positive and false negative prediction cases using the gradient boosting model with the continuous feature encoding
method on advanced fibrosis. A1c: hyperglycemia; AST: aspartate transaminase; ALT: alanine aminotransferase; BILIRRUB: bilirubin; CHOL:
cholesterol; DBP: diastolic blood pressure; DIAB: diabetes; DYSLIPID: dyslipidemia; FPG: fasting plasma glucose; HDL: high-density lipoprotein;
IFG: impaired fasting glucose; LDL: low-density lipoprotein; METFO: metformin; NGT: narrow gastric tube; SBP: systolic blood pressure; TG:
triglyceride; TSH: thyroid-stimulating hormone.

Limitations
This study has limitations. First, the cohort in this study had
492 patients who were recruited at the University of Florida
and the University of Texas Health Science Center. Future
studies should examine our model using cohorts from different
regions. Second, this study focused on 4 types or groups of
medications as blood pressure medications, including statins,
metformin, and sulfonylurea identified by the domain experts
(physicians at the University of Florida). We plan to extend the
data set and examine more medications (eg, obeticholic acid,
pentoxifylline). Recent studies [27-30] showed that social
determinants of health and environmental exposure are

associated with the risk of liver diseases, which could be further
explored.

Conclusions
This study shows that it is feasible to use machine learning
algorithms to identify NAFLD, NASH, and advanced fibrosis
using common clinically available data. Further validation using
larger and more clinically diverse data sets is required. Using
only clinically available data, this method can effectively target
individuals most likely to benefit from a liver biopsy to diagnose
advanced liver disease. Additionally, understanding the relative
importance of and differences in predictors could lead to
improved understanding of the disease process and provide
better support for identifying novel treatment options.
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