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Abstract

Background: Acute respiratory distress syndrome (ARDS) is a condition that is often considered to have broad and subjective
diagnostic criteria and is associated with significant mortality and morbidity. Early and accurate prediction of ARDS and related
conditions such as hypoxemia and sepsis could allow timely administration of therapies, leading to improved patient outcomes.

Objective: The aim of this study is to perform an exploration of how multilabel classification in the clinical setting can take
advantage of the underlying dependencies between ARDS and related conditions to improve early prediction of ARDS in patients.

Methods: The electronic health record data set included 40,703 patient encounters from 7 hospitals from April 20, 2018, to
March 17, 2021. A recurrent neural network (RNN) was trained using data from 5 hospitals, and external validation was conducted
on data from 2 hospitals. In addition to ARDS, 12 target labels for related conditions such as sepsis, hypoxemia, and COVID-19
were used to train the model to classify a total of 13 outputs. As a comparator, XGBoost models were developed for each of the
13 target labels. Model performance was assessed using the area under the receiver operating characteristic curve. Heat maps to
visualize attention scores were generated to provide interpretability to the neural networks. Finally, cluster analysis was performed
to identify potential phenotypic subgroups of patients with ARDS.

Results: The single RNN model trained to classify 13 outputs outperformed the individual XGBoost models for ARDS prediction,
achieving an area under the receiver operating characteristic curve of 0.842 on the external test sets. Models trained on an increasing
number of tasks resulted in improved performance. Earlier prediction of ARDS nearly doubled the rate of in-hospital survival.
Cluster analysis revealed distinct ARDS subgroups, some of which had similar mortality rates but different clinical presentations.

Conclusions: The RNN model presented in this paper can be used as an early warning system to stratify patients who are at
risk of developing one of the multiple risk outcomes, hence providing practitioners with the means to take early action.

(JMIR Med Inform 2022;10(6):e36202) doi: 10.2196/36202
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Introduction

Background
Acute respiratory distress syndrome (ARDS) is a heterogeneous
syndrome broadly characterized by noncardiogenic hypoxia,
pulmonary edema, and the need for mechanical ventilation [1,2].
Despite advances made in the diagnosis and management of
patients with ARDS, ARDS is present in approximately 10%
of the patients admitted to intensive care units (ICUs)
worldwide, and mortality is as high as 30% to 40% in most
studies [1]. Tools such as the 2016 Kigali modification of the
2012 Berlin criteria have been developed to aid clinicians to
diagnose patients with ARDS [3,4]. In addition, the Lung Injury
Prediction Score and Early Acute Lung Injury score were
developed to identify and stratify patients at risk of developing
ARDS based on a collection of physiological variables and
predisposing conditions [5-7]. However, ARDS only occurs in
a small proportion of patients with a risk factor and currently
there is no consensus on how or whether patients should be
screened for ARDS. This becomes especially important in the
context of patients who are critically ill in the ICU, where health
care providers may experience challenges in continuous
monitoring and processing large amounts of clinical data from
patients. Early warning of impending ARDS should allow
implementation of lower tidal volumes in breathing support and
more careful fluid management, the 2 main strategies to prevent
or reduce the severity of ARDS [8,9].

In the past decade, artificial intelligence has shown great
promise in medicine, with potential applications across multiple
domains in health care [10]. There have been significant
advances in harnessing the power of big data from electronic
health records (EHRs) to develop machine learning algorithms
to predict the onset of a broad spectrum of medical conditions
in patients. A wide variety of such algorithms have been studied
and implemented by groups in both academia and industry
[11-16]. Previous studies have suggested that the physiological
states that exist early in the presentation of ARDS can be used
to predict ARDS before the confirmatory tests required by gold
standards such as the Berlin criteria [17,18], which requires
radiology reports that are by nature subsequent to clinical
suspicion. Early prediction is desirable because it would lead
to earlier intervention, more time for the careful administration
of treatment, or modification of the ongoing treatment, which
in turn should lead to improved outcomes such as reduced
morbidity and mortality.

Objectives
In real-world clinical settings, the task is to anticipate multiple
diseases or clinical states. In this study, we aimed to demonstrate
that multitask learning using deep learning models provides
benefits over single-task machine learning models. To this end,
we focused on the detection and early prediction of varying

severities of ARDS together with sepsis, COVID-19,
hypoxemia, and in-hospital mortality. Previous studies have
developed multilabel classification models that predict multiple
medical outcomes simultaneously. For example, Maxwell et al
[19] and Zhang et al [20] used deep neural networks to predict
multiple chronic diseases such as hypertension and diabetes and
Lipton et al [21] used recurrent neural networks (RNNs) to
classify 128 different diagnoses. Although research has been
conducted on developing single-task learning models for ARDS
prediction [22-25], thus far no studies have explored multilabel
classification models for predicting ARDS. Here, we aimed to
perform a deep analysis of how multilabel classification in the
clinical setting can take advantage of the underlying
dependencies among different diseases to allow for improved
performance for the prediction of ARDS in patients over
single-label classification models [26]. In addition, although
research has been conducted showing that early disease
prediction is possible, here we also present estimates supporting
that early prediction of ARDS is beneficial. Finally, we explore
an interesting additional benefit of using neural networks in
hospitals and the identification of distinct disease phenotypes.

Methods

Data Description
The data set included 40,703 patient encounters whose care
settings included the emergency department, inpatient facility,
or ICU. All clinical information was drawn from patient EHR
data from 7 different hospitals between April 20, 2018, and
March 17, 2021, as shown in Figure 1. Data collection was
passive, and all patient information was deidentified before the
analysis performed in this study. Radiology data were not
available. This prevented direct measurement of the Berlin
criteria for ARDS [18]. The information collected from each
hospital included discharge disposition, demographic data such
as age and sex, and time-varying data, including vital signs,
laboratory values, oxygen delivery method, medications, and
diagnosis times of any conditions present in the health record.
These data were extracted as an unordered record of data type,
data value, data units, and data collection time, also known as
datetime. Preprocessing of these data first involved reordering
the data in chronological order under each data type, with 3
equal-length arrays representing the values, units, and datetimes
of each measurement. The data were split into training,
validation, and external test data sets based on the hospital sites.
The training data set used data from 5 hospitals, the validation
data set used data from 1 hospital, and the external test data set
used data from 2 hospitals. The training and validation data sets
were used during the development of the machine learning
models, and the external test data set was used to evaluate the
models trained on the combination of training and validation
data sets.
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Figure 1. Flowchart of patients. Among 7 hospitals, 40,703 patients met three criteria: (1) admission within the date range (April 20, 2018, to March
17, 2021), (2) length of stay within the range of 2 hours to 3 months, and (3) availability of basic vital signs (blood pressure, heart rate, temperature,
respiratory rate, and peripheral oxygen saturation) and laboratory measurements (complete blood count and basic metabolic panel) in the electronic
health record. These patients were separated into training, validation, and test sets based on their hospital sites. The test set was limited to those patients
with the required features listed in Textbox 1 consisting of age, sex, and basic laboratory measurements, as well as complete blood count with differential.

Input Features
Model inputs were a defined set of data types, or features, across
all hospitals, regardless of the data availability at a particular
hospital. Textbox 1 includes all the features used to train the
models in this study. The required features are the subset of
features, including age, sex, and basic laboratory measurements,
as well as complete blood count with differential, used to
determine the time the algorithm makes its prediction. Next,
these data values were organized into a matrix with features
along the first dimension (rows) and discrete time in 20-minute
intervals along the second dimension (columns). The first
column, column index 0, contains the first time point of any
vital sign or laboratory measurement and was considered to be
the start of care. The first row was normalized age. The second
and third rows were binary indicators for male and female sex.

The remaining rows were the time-varying features and their
corresponding mask to distinguish missing values from actual
zeros (Table 1).

To normalize the features, we carried out a coarse approximation
of the mean and SD based on the normal range of these features
in the laboratory reports. The center of the normal range was
used as the approximate mean value, and half of the difference
between the 2 end points of the range was used to approximate
the SD. If a feature was missing or not measured, it was set to
0. To let the model distinguish between null values and real
values, a new set of features representing the availability mask
was vertically appended to the matrix. Each feature row had a
corresponding binary mask vector that contained 0s and 1s,
representing null values and nonnull values, respectively. During
batch training, these matrices were 0 padded on the left side
into equal-sized tensors: (batch size, 58 features, 64 timesteps).
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Textbox 1. Input features to the machine learning algorithm.

Demographics

• Age (required feature)

• Sex (required feature)

Vital signs

• Systolic blood pressure (required feature)

• Diastolic blood pressure (required feature)

• Heart rate (required feature)

• Arterial partial pressure of oxygen

• Respiratory rate (required feature)

• Peripheral oxygen saturation (required feature)

• Temperature (required feature)

Laboratory results

• Glucose

• Bilirubin

• White blood cell count (required feature)

• Red blood cell count

• Lymphocytes (required feature)

• Alanine transaminase

• International normalized ratio

• pH

• Blood urea nitrogen

• Creatinine (required feature)

• Platelet

• Neutrophils (required feature)

• Monocytes

• Hematocrit

• Lactate

• Aspartate aminotransferase

Other measurements

• Systemic inflammatory response syndrome (the systemic inflammatory response syndrome score is calculated as shown in Table S1 in Multimedia
Appendix 1)
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Table 1. Recurrent neural network features. The first 3 rows are the raw values, the next 3 rows are the corresponding normalized features, and the last
3 rows are the corresponding availability masks to distinguish missing values from actual zeros. The mask is a Boolean vector that is 0 if that measurement
is missing and 1 if that measurement is present. It should be noted that this is a subset of the total features and timesteps used for example purposes
only. The raw data are also for illustration and not a part of the input feature matrix, which consists of normalized features at 64 timesteps.

60 minutes40 minutes20 minutes0 minutes

Raw data

809910090SpO2
a (%)

1.01.81.8NoneCreatinine (mg/dL)

12NoneNoneNoneWBCb (×109/L)

Normalized

–2.30+0.02–0.5SpO2

–0.11+0.2+0.20Creatinine

+0.15000WBC

Mask

1111SpO2

1110Creatinine

1000WBC

aSpO2: peripheral oxygen saturation.
bWBC: white blood cell.

Model Output and Targets
Additional target labels were chosen for the model that are
distinct from ARDS, yet clinically related to it such that a
collective representation in the neural network is justified. These
labels are shown in Textbox 2 (these output labels will be used

throughout the paper hereafter). The model was trained to
predict these target labels, also referred to as outcomes, using
a binary cross-entropy loss function. The descriptive statistics
for the input features for each of the target outcomes are
presented in Tables S2 and S3 in Multimedia Appendix 1 for
training and test data.

Textbox 2. Clinical outcomes used as target labels for the machine learning algorithm. In total, 13 output labels were mapped to their respective
definition.

Output label and definition

• Acute respiratory distress syndrome (ARDS)-1: ARDS defined as having an International Classification of Diseases (ICD) code for ARDS as
well as a drop in peripheral oxygen saturation (SpO2) below 91%

• ARDS-2: ARDS defined as having an ICD code for ARDS as well as a drop in SpO2 below 96%. A direct but broader criterion for ARDS

• ARDS-3: ARDS defined as having an ICD code for ARDS as well as a drop in SpO2 below 91% and no mention of a heart failure–related ICD
code among prior diagnoses

• ARDS-4: ARDS defined as having an ICD code for ARDS as well as a drop in SpO2 below 96% and no mention of a heart failure–related ICD
code among prior diagnoses

• ARDS-5: ARDS defined as having an ICD code for ARDS. A direct and simple definition of ARDS

• Sepsis-6: sepsis defined as having an ICD code for sepsis or septic shock as well as a systemic inflammatory response syndrome score >2

• Sepsis-7: sepsis defined as having an ICD code for sepsis or septic shock. A direct and simple definition of sepsis

• Hypoxemia-8: a drop in SpO2 below 91% any time during hospitalization

• Hypoxemia-9: a drop in SpO2 below 96% any time during hospitalization

• Hypoxemia-10: a drop in SpO2 below 91% after algorithm evaluates

• Hypoxemia-11: a drop in SpO2 below 96% after algorithm evaluates

• Death-12: in-hospital mortality

• Covid-13: COVID-19 positivity defined as in-hospital COVID-19 positive polymerase chain reaction test or new ICD diagnosis within 7 days
before or after admission
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Timing of Algorithm Evaluation
For simplicity, we evaluated the algorithm at a single point in
time. This time is 2 timesteps (40 minutes) after the first time
at which all required features have been measured at least once.
At this time, which we refer to as the algotime, the model
predicts all the target outcomes of Textbox 2. In the training
and validation sets, we used the required features to determine
algotime, but in the case of missing features, it defaults to 8
hours after admission. In the test set, we only included patients
who had all the required features. With regard to padding, if

there are <64 timesteps available before algotime, the input
sequence is 0 padded on the left; if there are >64 timesteps
available before algotime, only the most recent 64 are taken (no
padding). As can be seen in Figure 2, on average, the algotime
occurred 31 hours after admission and ARDS was clinically
diagnosed 139 hours after admission. Thus, the average number
of hours between the algotime and the clinical diagnosis of
ARDS was 108 hours. It should be noted that the performance
statistics reported in this paper correspond to the algotime, not
the time of clinical ARDS diagnosis or the end of the hospital
stay.

Figure 2. Timing of algorithm and diagnosis. (A) Histogram of number of hours between start of care and the first time point when all required features
have been measured at least once (algotime). (B) Histogram of number of hours from start of care until new diagnosis of acute respiratory distress
syndrome (ARDS) is entered into the electronic health record. Both histograms are based on the entire data (training+validation+test sets).

Benefit Estimation
Thus far, we have defined our machine learning objective as
the early prediction of conditions. However, the impact of early
predictions on patient health outcomes is more important than
the early prediction. To approximate this improvement in the
outcome of mortality, we compared mortality rates between
patients who received early and late clinical diagnoses of ARDS.
We defined early diagnosis and late diagnosis based on when
a patient was given a clinical diagnosis of ARDS compared
with when the algorithm made a prediction. In other words, a
diagnosis for ARDS (using the ARDS-1 definition in Textbox
2 of ARDS International Classification of Diseases [ICD] code
and peripheral oxygen saturation [SpO2] below 91%) is early
if it is assigned before the algorithm makes a prediction and
late if it is assigned after a prediction is made by the algorithm.

Machine Learning Models
We used an RNN as the main deep learning model for our
research. RNNs are a class of artificial neural networks in which

connections among nodes form a directed graph along a
temporal sequence. RNNs can use their internal memory to
process variable length sequences of inputs. The network is
capable of learning a mapping function from the inputs over
time to an output. It can even learn temporal dependence from
the data. All these properties make RNNs a well-suited model
for time series data, such as that which is used in this study.
The model schema of the RNN used in this research is presented
in Figure 3. We used a generic RNN with 4 gated recurrent unit
(GRU) layers, an attention module, and 2 fully connected (FC)
layers for all numbers of outputs. The RNN was implemented
with the PyTorch package (version 1.40) in Python (version
3.6; Python Software Foundation) [27]. For the RNN, the
sequence module that was used was a 4-layer GRU [28] with
128 hidden units. Before the sequence of vectors was fed to the
GRU, it passed through a normalization layer:

n(v) = a(v – μ / σ) + b (1)
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Figure 3. Recurrent neural network model schema. The inputs have been simplified for diagrammatic purposes. Different timesteps of normalized
inputs are fed into gated recurrent unit (GRU) layers. The context vector from the attention layer and encoder output from the last GRU are concatenated
before feeding them into the first fully connected (FC) layer.

Equation 1 is a normalization function that learns the parameters
mean μ, SD σ, scaling a, and translation factor b used to
normalize the sequence of vectors containing the inputs age,
sex (Boolean), vital signs, laboratory measurements, and
systemic inflammatory response syndrome (SIRS) score before
entering the RNN. A soft attention module was used to assign
scores to each timestep in the sequence. The scores are intended
to be positively correlated with the importance of its respective
timestep. A weighted sum of the sequence’s hidden activations
was called the context vector. We concatenated the context
vector to the final GRU embedding and passed this to a 2-layer
feed forward neural network for classification. The intermediate
layer before the output logits was a 128D representation of each
patient, referred to as the penultimate embedding. Similar to
Bahdanau et al [29], the score (equation 2) of the attention neural
network was parameterized by a feed forward neural network
of the following form:

score(hl,hi) = KTtanh(Wa Prelu(Wb[hn,hi])) (2)

where tanh and Prelu denote the hyperbolic tangent function
and parameterized rectified linear unit nonlinearity functions,
respectively; hn denotes the last hidden activation in the GRU;
hi denotes each hidden activation in the sequence; i denotes the
timestep; [,] denotes concatenation of separate vectors into 1
vector; and K, Wa, and Wb denote learned parameters of the
neural network. The whole GRU-RNN, attention module, and
classification module were end-to-end differentiable, which
enabled optimization from input to output. The attention neural
network was a mechanism of the RNN that allowed for
higher-quality learning. Instead of summarizing a time series
of vectors, the attention neural network assigned each vector a
score according to how important the vector was in allowing
the model to make a prediction. In this way, the attention
network mechanism allowed the RNN to focus on specific parts
of the input, thereby enabling improved model performance.

Each point in the RNN model schema represents a neuron. At
each layer, the RNN combined the information from the current
and previous timesteps to update the activations of the deepest
GRU hidden layer. The activation of the last node of the deepest
RNN layer is concatenated with the context vector provided by
the attention network. The context vector is an

importance-weighted average of the deepest layer activations
generated by the attention neural network. This concatenated
vector is passed through 2 FC layers to generate an output (eg,
prediction of ARDS onset). With this RNN schema, the model
was trained to predict several target labels simultaneously and
to evaluate a loss function based on all targets. We implemented
a deep learning method where a single network was trained to
output 1 logit per label using a binary cross-entropy loss function
[30]. The loss function averages binary cross-entropies against
each of the targets in the model, effectively taking into account
the output of all 13 tasks. Considering each label a task, this
multilabel learning setup can be viewed as a case of multitask
learning [31]. Specifically, because all hidden layer parameters
are shared among all the targets, it is a hard parameter–sharing
variant of multitask learning [32]. Each output logit was
independently passed through a sigmoid activation function to
produce the final multilabel output [33]. Early stopping was
used, based on the ARDS-1 validation performance measured
by the area under the receiver operating characteristic curve
(AUROC). To explore the relationship between the objective
function’s number of targets and final model performance, the
lowest 2 AUROC targets were removed successively from each
version of the RNN such that the RNN was trained using 13,
11, 9, 7, and 5 targets.

Tree-based models frequently outperform deep learning models
in many clinical applications [34]. To ensure that this was not
the case in this instance, for comparison, XGBoost (XGB)
models for each of the target labels were trained using XGBoost
(version 0.81) [35] in Python (version 3.6) [36] and the same
feature matrix as the RNN model. The XGB models were trained
in a one-versus-all fashion for each target.

Model Interpretability
Heat maps were produced to visualize attention scores on each
time series. Of the 959 patients in the test set, 50 (5.21%) were
randomly selected for the following two interpretability
analyses: (1) attention scores were visualized across timesteps
as heat maps, and (2) the timestep with the highest attention
weight generated by the attention network was then further
analyzed to visualize each feature’s deviation from the mean in
this heavily attended timestep. This method implicitly describes
the importance assigned to each feature by the model and
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provides some insight into model interpretability. The feature
vector at that timestep is interpreted as a z-score for the subset
of features measured at that particular timestep. For example,
a value of 0.5 for the respiratory rate indicates that the
respiratory rate is half an SD above the mean.

In addition, Shapley additive explanations (SHAP) force plots
for 4 different patients were also generated. The patients
represent true positive, true negative, false positive, and false
negative cases for ARDS as predicted by the RNN model trained
using 13 targets. We used the ARDS-5 definition from Textbox
2 (ARDS defined as having an ICD code for ARDS) for this
analysis.

Clustering
To explore the representations used by the model and to reveal
distinct phenotypes among patients with ARDS, we collected
the 64D activations produced by the first FC layer as a
compressed representation, or embedding, for each patient. To
visually display these embeddings, we used principal component
analysis. We then used k-means clustering to group each
embedding of a patient with ARDS into its unique cluster.

Statistics
To compare different algorithms and training objectives, we
computed the 95% CI around the AUROC using the

bootstrapping method [37-39]. These CIs are with respect to
the test set (n=959).

Ethics Approval
All patient data were deidentified in compliance with the Health
Insurance Portability and Accountability Act. This study was
considered to be of minimal risk for human participants because
data collection was passive and did not pose a threat to the
participants involved. The project was approved with a waiver
of informed consent (20-DASC-122) by an independent
institutional review board, Pearl Institutional Review Board.

Results

Comparison of RNN Model With XGB Model
The XGB and RNN models were compared across all 13 outputs
(Table 2). The performance metric used for comparison was
the AUROC. The single RNN model trained to classify 13
outputs outperformed the XGB models trained separately to
classify each of the outputs in ARDS and oxygen-related
outcomes. The average receiver operating characteristic curves
for all targets are also presented in Figure S1 in Multimedia
Appendix 1, which further illustrates that the RNN model
performs at least as well as the average of all XGB models, with
the added advantage that the RNN model benefits from
parameter sharing; that is, a single RNN model performs at least
as well as the aggregate of 13 XGB models.
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Table 2. Comparison of performances of the XGBa models and RNN-13b on each of the outcomes. The table provides the AUROCc of each model
for each of the labels as well as the sensitivity and specificity. We note that the RNN-13 model outperforms the XGB model on 7 out of 13 outputs.

RNN-13XGBLabels (prevalence)

Specificity (95%
CI)

Sensitivity (95%
CI)

AUROC (95%
CI)

Specificity (95%
CI)

Sensitivity (95%
CI)

AUROC (95%
CI)

0.873 (0.852-

0.852)f
0.659 (0.519-
0.799)

0.842 (0.794-
0.888)

0.729 (0.7-0.758)0.659 (0.519-
0.799)

0.797 (0.740-
0.851)

ARDS-1d,e (0.046)

0.780 (0.753-
0.753)

0.673 (0.546-
0.801)

0.791 (0.746-
0.836)

0.657 (0.626-
0.688)

0.654 (0.525-
0.783)

0.700 (0.632-
0.768)

ARDS-2 (0.054)

0.826 (0.802-
0.802)

0.667 (0.524-
0.809)

0.845 (0.795-
0.894)

0.771 (0.744-
0.798)

0.667 (0.524-
0.809)

0.786 (0.714-
0.856)

ARDS-3 (0.044)

0.804 (0.778-
0.778)

0.653 (0.520-
0.786)

0.812 (0.768-
0.858)

0.714 (0.685-
0.744)

0.653 (0.520-
0.786)

0.748 (0.681-
0.81)

ARDS-4 (0.051)

0.795 (0.769-
0.769)

0.660 (0.533-
0.788)

0.795 (0.751-
0.839)

0.681 (0.651-
0.711)

0.660 (0.533-
0.788)

0.701 (0.629-
0.77)

ARDS-5 (0.055)

0.503 (0.471-
0.471)

0.682 (0.487-
0.876)

0.626 (0.533-
0.714)

0.547 (0.516-
0.579)

0.682 (0.487-
0.876)

0.708 (0.604-
0.803)

Sepsis-6 (0.023)

0.502 (0.469-
0.469)

0.682 (0.487-
0.876)

0.586 (0.481-
0.681)

0.715 (0.686-
0.744)

0.682 (0.487-
0.876)

0.707 (0.599-
0.798)

Sepsis-7 (0.023)

0.684 (0.649-
0.649)

0.651 (0.592-
0.709)

0.739 (0.708-
0.770)

0.657 (0.622-
0.692)

0.658 (0.600-
0.716)

0.722 (0.684-
0.760)

Hypoxemia-8 (0.268)

0.839 (0.786-
0.786)

0.659 (0.625-
0.692)

0.834 (0.810-
0.855)

0.876 (0.829-
0.922)

0.657 (0.623-
0.690)

0.829 (0.802-
0.856)

Hypoxemia-9 (0.799)

0.524 (0.489-
0.489)

0.655 (0.585-
0.726)

0.638 (0.601-
0.673)

0.536 (0.501-
0.571)

0.651 (0.581-
0.722)

0.643 (0.601-
0.688)

Hypoxemia-10 (0.182)

0.856 (0.828-
0.828)

0.651 (0.602-
0.700)

0.880 (0.862-
0.897)

0.859 (0.831-
0.887)

0.654 (0.605-
0.703)

0.880 (0.861-
0.901)

Hypoxemia-11 (0.38)

0.625 (0.594-
0.594)

0.680 (0.497-
0.863)

0.700 (0.625-
0.768)

0.700 (0.671-
0.730)

0.680 (0.497-
0.863)

0.761 (0.675-
0.841)

Death-12 (0.026)

0.622 (0.587-
0.587)

0.654 (0.592-
0.715)

0.673 (0.637-
0.714)

0.814 (0.786-
0.842)

0.654 (0.592-
0.715)

0.805 (0.770-
0.840)

Covid-13 (0.238)

aXGB: XGBoost.
bRNN-13: the recurrent neural network model that was trained using 13 targets.
cAUROC: area under the receiver operating characteristic curve.
dARDS: acute respiratory distress syndrome.
eArea under the receiver operating characteristic curve reported in the Abstract.
fSpecificity of the RNN-13 model for the five ARDS labels.

Benefit of Multitask Learning
An intermediate number of output targets between 1 and 13
were also used to retrain the RNN. Figure 4 shows the maximum

AUROC with different subsets of the 13 outcomes used as
training targets. For most targets there is a general trend toward
overall improvement of the AUROC. This demonstrates that
there is some underlying dependency among some of the labels.
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Figure 4. Model performance varies with the number of outcomes predicted during training. External test set area under the receiver operating
characteristic curve (AUROC) plotted against the number of targets in the recurrent neural network (RNN) output (eg, RNN-9 refers to an RNN with
9 outputs). From right to left, the worst-performing 2 targets in terms of AUROC are removed to train the next RNN with a smaller number of targets.
ARDS: acute respiratory distress syndrome.

Multitask Learning Converges Training in a
Comparable Number of Epochs
The learning quality and efficiency of single- versus
multiple-outcome models were evaluated in terms of the rate
of improvement of the AUROC on the validation set per each
stochastic gradient descent training epoch. We compared the
rate of learning between RNNs trained with single targets and
RNNs trained with multiple targets to demonstrate that multitask
learning does not empirically require longer durations in training

than single-learning objectives. The rate of learning was
measured as the AUROC of the validation set for each epoch.
In Figure 5, the plots of the AUROC of 3 separate randomly
initialized training episodes for 15 epochs are shown for
ARDS-1 and ARDS-2 (ARDS defined as having an ICD code
for ARDS as well as a drop in SpO2 below 96%). For these 2
outcomes, the time to reach the maximum validation AUROC
in terms of the number of epochs is comparable between single-
and multiple-target models.
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Figure 5. Training on multiple targets converges in similar time to single targets. Learning progress measured using the area under the receiver operating
characteristic curve (AUROC) on the validation set. Each line is a different training run with new randomized initial weights and training batches. (A)
AUROC predicting ARDS-1 versus number of training epochs. (B) AUROC predicting ARDS-2 versus number of training epochs. ARDS-1: acute
respiratory distress syndrome (ARDS) defined as having an International Classification of Diseases code for ARDS as well as a drop in peripheral
oxygen saturation below 91%; ARDS-2: ARDS defined as having an International Classification of Diseases code for ARDS as well as a drop in
peripheral oxygen saturation below 96%.

ARDS Clustering
Figure 6 shows the results of applying the k-means clustering
algorithm to find clusters of patients with ARDS on the output
of the first FC layer of the RNN model as mentioned in the
Machine Learning Models section. The k-means algorithm was
set to identify 3 clusters because this was the most
distinguishable number of clusters in different visualizations of
the embeddings. Figure 6 shows a 2D projection of the
embeddings using principal component analysis in which the
3 clusters A, B, and C can be seen. Deeper analysis of these
clusters is presented in Figure 7, which shows a fair amount of
variability of the targets among clusters. It can be seen that a
drop of SpO2 below 91% is more likely to be characterized
differently among the clusters than the drop of SpO2 below 96%
among ARDS targets, which is apparent in higher variability
of ARDS-1 and ARDS-3 (ARDS defined as having an ICD
code for ARDS as well as a drop in SpO2 below 91% and no
mention of a heart failure–related ICD code among prior
diagnoses) among clusters as opposed to ARDS-2 and ARDS-4

(ARDS defined as having an ICD code for ARDS as well as a
drop in SpO2 below 96% and no mention of a heart
failure–related ICD code among prior diagnoses). The clusters
do not seem to be able to distinguish among ARDS symptoms
when only the ICD code is used for ARDS prediction (as in
ARDS-5). The mortality rate in cluster A is higher than that in
the other 2 clusters, which is aligned with the fact that the rates
of ARDS-1 and ARDS-3 are also higher in this cluster. Similar
relative effects of SpO2 <91% versus SpO2 <96% can also be
seen in hypoxemia targets. Table S4 in Multimedia Appendix
1 shows the distribution of the continuous input features among
the 3 clusters. Cluster A shows more noticeable differences with
the other 2 clusters when it comes to features such as systolic
blood pressure, respiratory rate, neutrophils, lymphocytes, and
SIRS, hinting at why the mortality is higher in this group. Note
that targets 2, 5, and 9 are the most inclusive (general) of all
targets; therefore, it is possible for one or more clusters to be
completely enclosed by these targets, resulting in a rate of 100%
(Figure 7). These inclusive targets are included to improve
parameter sharing in the model for different outcomes.
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Figure 6. Recurrent neural network representations separate into unique clusters. Clustering the population with acute respiratory distress syndrome
(ARDS; n=1278) from the entire data set into 3 different groups A, B, and C by k-means clustering. The dimensions of the embedding vector were
reduced using principal component analysis. PC1: principal component 1; PC2: principal component 2.

Figure 7. Incidence rates of different targets in each of the clusters. Target 12 is the mortality rate, which is 14.45%, 9.64%, and 4.73% for clusters A,
B, and C, respectively. ARDS: acute respiratory distress syndrome.
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Benefit Estimation
From our benefit estimation case study, we found that the
mortality rate for patients who were diagnosed early with ARDS
was 5.3% (14/266), whereas for those diagnosed late with
ARDS, the mortality rate was 11.7% (116/995). The Fisher
exact test statistic value was 0.002 for the 6.3% mortality benefit
of using the algorithm’s prediction for the early diagnosis group.
For reference, the baseline mortality rate of patients without
ARDS was 1.66% (656/39,442) and that of patients with ARDS
was 10.31% (130/1261).

Model Interpretability
A visualization of the attention weights for different timesteps
of the input sequence is shown in Figure 8A in which we
observe variability in the distribution of the attention weights
within the 64-timestep window. For some of the samples, the
attention weights are higher toward the beginning of the
sequence, whereas for others they are higher toward the end of
the sequence. There are also cases where the attention weight
is moderately higher in the middle of the sequence. The cases
for which the attention weight is higher toward the end of the
sequence represent the situation in which the most recent
measurements with respect to the event of interest are more
important. The cases for which the attention weights are higher
toward the beginning of the sequence represent the situation in
which the most relevant temporal data are near the beginning
of, or before, the 64-timestep window. In this scenario, it is
probably the attention network that is amplifying the signal
from those early timesteps because without the attention

network, GRUs alone will have a gradual decay of older
timesteps. In the samples in which the attention weights are
higher in the middle, there likely exists an intermediate timestep
that has abnormal values that is emphasized more by the
network. Figure 8B shows the calculated attention scores for
specific features for the same patients as accounted for in Figure
8A. These scores were obtained by calculating the feature’s
z-score at the timestep with the highest attention weight. The
figure is shown for all time-varying features. The figure reveals
how every feature affects the model output. For example, high
values of respiratory rate and low values of pH had a positive
impact on the model.

From the SHAP force plots in Figure S2 in Multimedia
Appendix 1, one can see the most influential features for a given
patient. Red denotes the positive direction of influence on the
ARDS-5 output, whereas blue denotes the negative direction
of influence on the ARDS-5 output. The length of the arrow
denotes the magnitude of SHAP values. The value in bold is
the actual model output, which is then transformed into
probability space to give the final output between 0 and 1. SpO2

is an important feature, both to increase the probability of ARDS
when SpO2 is low (A) and to lower the probability of ARDS
when SpO2 is high (B). Low SpO2 combined with high
respiratory rate is the likely contributor to a false positive (C)
in the context of a patient with poorly controlled diabetes (ie,
blood glucose level=505 mg/dL and likely tachypnea of diabetic
ketoacidosis) [40,41]. A normal SIRS score and normal
neutrophil percentage in the absence of strongly positive features
results in a false negative (D).
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Figure 8. Attention heat maps. Each row along the y-axis is a patient. (A) Attention weights for timesteps. The heat map visualizes the attention weights
on 50 randomly selected patients for the 64-timestep inputs to the recurrent neural network model. (B) Attention scores for features. The heat map
visualizes the calculated z-score for every time-varying feature at the timestep with the greatest attention weight for the same set of patients as in part
A. Red denotes a higher value or deviation in the positive direction; blue denotes a lower value or deviation in the negative direction. ALT: alanine
transaminase; AST: aspartate aminotransferase; BUN: blood urea nitrogen; DiasABP: diastolic ambulatory blood pressure; HR: heart rate; INR:
international normalized ratio; PaO2: arterial partial pressure of oxygen; RBC: red blood cell count; RespRate: respiratory rate; SIRS: systemic
inflammatory response syndrome; SpO2: peripheral oxygen saturation; SysABP: systolic ambulatory blood pressure; Temp: temperature; WBC: white
blood cell count.
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Discussion

Principal Findings
In this study, we described the development of a deep learning
model for predicting multiple outcomes by simultaneously using
the same set of input features. We showed that the RNN model
trained to predict 13 outcomes simultaneously generalized better
on ARDS outcomes than XGB models trained to predict
individual outcomes. We showed that this improvement was
proportional to the number of targets predicted by the RNN.
This reinforces our conclusion that training the RNN model on
a larger set of outcomes improves generalization. We
hypothesize that multitask learning generalizes better in part
because of parameter sharing, which has a regularizing effect,
and information sharing across outcomes, which learns richer
representations [42]. We would also like to emphasize that the
intention of this paper was not to advance state-of-the-art
multitask learning but to provide evidence that multitask
learning is beneficial for early prediction of ARDS using only
EHR data.

We used an RNN in this study because of its ability to use its
internal memory to process variable length sequences of inputs,
learn temporal dependence from the data, and share
representations for an arbitrary number of outputs. We used a
generic RNN with 4 GRU layers, an attention module, and 2
FC layers for all numbers of outputs. We experimented with
various RNN architectures, varying the parameters such as the
number of layers and hidden units. From our light grid search,
we found that the RNN model architecture used in this paper
performed best for our use case. In addition, the attention
module seems to be an important part of the architecture in
making the prediction because without it, the performance of
the RNN dropped significantly for multiple targets as seen in
Table S5 in Multimedia Appendix 1.

To compare the RNN with other algorithms, we used XGB
because of its ability to handle missing or null values and its
current dominance in industrial applications. As EHR data often
have a high level of missing values because of variability in
data acquisition and recording habits in the live clinical
environment, this attribute of XGB is appealing. We trained
multiple XGB models separately on the same input to classify
different outcomes independently. We performed a grid search
for hyperparameter optimization, tuning parameters such as tree
depth and learning rate. Table S6 in Multimedia Appendix 1
shows the hyperparameters that were used for the grid search
for the RNN and XGB models.

We also demonstrated an application of cluster analysis to probe
deep learning models for clinical insights. Our analysis of the
total population with ARDS uncovered 3 distinct populations,
2 of which have similarly high mortality rates but different
clinical presentations. Recent studies have corroborated similar
results in populations with COVID-19 in which 2 distinct
phenotypes of ARDS were found with similar respiratory
dynamics but 2-fold difference in odds of 28-day mortality [43].
With the methods outlined in this study, phenotype discovery
would be an additional benefit that can be automatically applied
to an arbitrarily large number of outcomes predicted.

To connect our machine learning findings with real-world
clinical effects, we compared the mortality rates between
patients diagnosed earlier with ARDS and patients diagnosed
later with ARDS relative to the algorithm’s prediction time.
Our estimation showed that the mortality rate in the population
diagnosed early with ARDS was almost half of that in the
population diagnosed late with ARDS. Finally, to make our
model more interpretable, we provide 2 heat maps attempting
to visualize the attention score on each time series as well as 4
SHAP force plots presenting our case analyses regarding success
and failure prediction.

Although we—and other researchers—have previously
developed single-task machine learning models for predicting
ARDS in different cohorts of hospitalized patients, to our
knowledge, this is the first study to develop a multitask deep
learning model for ARDS prediction [22-25]. Although previous
studies have reported the development of high-performing
ARDS prediction models, we intentionally do not make direct
comparisons of model performance between our model and
previous models for several reasons. The first is that to
demonstrate that multitask learning improves performance over
single-task learning, the models should ideally be trained and
tested in a similar manner and on the same data sets.
Comparisons with other published models may not provide any
useful information on the direct benefit of using multitask
learning models for ARDS prediction. Another point of
consideration is that we used several subtypes of ARDS in our
study; therefore, direct comparison against metrics from other
studies that may use different ARDS definitions may not be
fruitful.

Real-world clinical utility of such machine learning algorithms
would need to be demonstrated through a multicenter
prospective clinical study. We have previously developed and
demonstrated the real-world impact of a sepsis prediction
algorithm (InSight) on patient outcomes in a multicenter clinical
validation study [44]. Although we performed retrospective
validation on an external test set and demonstrated good
performance of our algorithm in this study, ideally, the algorithm
should be tested at multiple hospitals that vary by geographic
location and patient demographic characteristics. Demonstrating
a reduction in length of stay and improved outcomes of patients
with ARDS through a clinical study would pave the way for
deployment of the algorithm at medical institutions.

This study includes several limitations. In many hospital
systems, radiology images and radiology reports are kept in a
software system separate from the EHR. Ideally, we would
prefer to confirm ARDS ICD codes by verifying the presence
of bilateral lung infiltrates on chest imaging. Our inputs only
included demographics, vital signs, and laboratory information.
Future work should therefore incorporate EHR as well as
imaging data. Our data set spans the emergency department,
inpatient, and ICU settings and prescribes a single early time
point for prediction. This could be a factor in the low AUROC
for sepsis predictions, which prior studies have shown to be
reliably accurate in the ICU setting [12,44]. This discrepancy
warrants further investigation. In addition, we did not have
reliable data on race and ethnicity of the patient population.
Future studies would also benefit from training the models to
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predict the additional output of respiratory support intervention
beyond the level of a nonrebreather mask [45]. Finally, because
this is a retrospective study, we are not able to determine the
performance of our algorithm in a prospective clinical setting.
Prospective testing is essential to determine how clinicians will
respond to predictions of various outcomes. It is also important
to determine whether our predictions can affect patient outcomes
or resource allocation. Our work here is meant to serve as a
reference for future research directions in establishing the most
beneficial role for machine learning algorithms in the health
care ecosystem and expanding the capabilities of machine
learning in health care. Future research could also incorporate
examining more state-of-the-art RNN architectures such as
transformers that may have better performance for long sequence
data processing.

Conclusions
We present a novel multitask deep learning model for predicting
ARDS in hospitalized patients. Our results demonstrate that,
based on the same input features, the higher the number of
related outcomes predicted by our model, the better the
performance on most outcomes. We demonstrate the clinical
utility of our model by calculating the sensitivity, specificity,
and AUROC of various iterations of the model on 2 external
test sets and explore the interpretability of our model by
visualizing attention weights using heat maps and SHAP for
global and local model interpretability. Early prediction of
ARDS, together with the stratification of patients into different
subgroups based on different clinical presentations, will enable
clinicians to take appropriate action to prevent the deterioration
of a patient’s condition, which should in turn improve patient
outcomes and mortality or morbidity rates of ARDS.
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SIRS: systemic inflammatory response syndrome
SpO2: peripheral oxygen saturation
XGB: XGBoost
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