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Abstract

Background: Redundancy in laboratory blood tests is common in intensive care units (ICUs), affecting patients’ health and
increasing health care expenses. Medical communities have made recommendations to order laboratory tests more judiciously.
Wise selection can rely on modern data-driven approaches that have been shown to help identify low-yield laboratory blood tests
in ICUs. However, although conditional entropy and conditional probability distribution have shown the potential to measure the
uncertainty of yielding an abnormal test, no previous studies have adapted these techniques to include them in machine learning
models for predicting abnormal laboratory test results.

Objective: This study aimed to address the limitations of previous reports by adapting conditional entropy and conditional
probability to extract features for predicting abnormal laboratory blood test results.

Methods: We used an ICU data set collected across Alberta, Canada, which included 55,689 ICU admissions from 48,672
patients. We investigated the features of conditional entropy and conditional probability by comparing the performances of 2
machine learning approaches for predicting normal and abnormal results for 18 blood laboratory tests. Approach 1 used patients’
vitals, age, sex, and admission diagnosis as features. Approach 2 used the same features plus the new conditional entropy–based
and conditional probability–based features. Both approaches used 4 different machine learning models (fuzzy model, logistic
regression, random forest, and gradient boosting trees) and 10 metrics (sensitivity, specificity, accuracy, precision, negative
predictive value [NPV], F1 score, area under the curve [AUC], precision-recall AUC, mean G, and index balanced accuracy) to
assess the performance of the approaches.

Results: Approach 1 achieved an average AUC of 0.86 for all 18 laboratory tests across the 4 models (sensitivity 78%, specificity
84%, precision 82%, NPV 75%, F1 score 79%, and mean G 81%), whereas approach 2 achieved an average AUC of 0.89 (sensitivity
84%, specificity 84%, precision 83%, NPV 81%, F1 score 83%, and mean G 84%). We found that the inclusion of the new features
resulted in significant differences for most of the metrics in favor of approach 2. Sensitivity significantly improved for 8 and 15
laboratory tests across the different classifiers (minimum P<.001 and maximum P=.04). Mean G and index balanced accuracy,
which are balanced performance metrics, also improved significantly across the classifiers for 6 to 10 and 6 to 11 laboratory tests.
The most relevant feature was the pretest probability feature, which is the probability that a test result was normal when a certain
number of consecutive prior tests was already normal.
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Conclusions: The findings suggest that conditional entropy–based features and pretest probability improve the capacity to
discriminate between normal and abnormal laboratory test results. Detecting the next laboratory test result is an intermediate step
toward developing guidelines for reducing overtesting in the ICU.

(JMIR Med Inform 2022;10(6):e35250) doi: 10.2196/35250
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Introduction

Background
Redundancy in laboratory blood tests is common in health care
[1]. Laboratory blood test redundancy increases health care
expenses and reduces health care resources for future patients
[1,2]. Moreover, overtesting in the intensive care unit (ICU)
can harm patients’ health by causing anemia, the need for
transfusion, discomfort, and poor sleep quality [3-8].

One of the areas greatly experiencing laboratory blood test
redundancy is ICUs, in which daily blood tests are performed
to monitor physiological functions and define clinical
management strategies. Previous reports have underscored
overtesting in ICUs. In a study conducted in an ICU of a tertiary
hospital in Ontario, Canada, physicians retrospectively analyzed
694 blood tests performed over 4 weeks and concluded that
only 48.7% of those tests were essential [9]. A similar pattern
was found in a Brazilian ICU, in which approximately half
(1768/3622, 48.81%) blood tests performed over 2 months
resulted in normal values [10].

To reduce redundancy in the ICU, the Choosing Wisely
campaign has made recommendations to order laboratory tests
judiciously [11]. These recommendations have been introduced
in the ICU via strategies such as education, audits and feedback,
and computerized physician order entry systems [12-14].
However, these recommendations require accurate identification
of laboratory tests that can be reduced without compromising
the quality of patient care.

Modern data-driven approaches can help identify redundant
laboratory blood tests in ICUs [15]. A study by Lee and Maslove
[16] used entropy, conditional entropy, and mutual information
to measure redundancy in 11 blood tests performed during the
first 3 days in the ICU. They found a decreasing trend in the
novelty of information throughout the ICU stay, showing that
performing additional laboratory tests does not necessarily result
in the gain of information. Roy et al [17] used laboratory blood
test data from a tertiary academic hospital to calculate the
conditional probability of a test yielding a normal result when
a certain number of consecutive prior tests were already normal
(pretest probability). They reported that common laboratory
tests, such as those for creatinine, potassium, and sodium, had
high chances of yielding normal results (>80%) when preceded
by a small number (3-5) of consecutive normal results.

In addition to using data-driven approaches to describe
redundancy in the ICU, other reports have used electronic
medical record (EMR) data collected during the ICU stay to
predict whether ordering a new blood test would provide new
information. Cismondi et al [18] used heart rate, blood pressure,

temperature, pulse oximeter, respiratory rate, 4 transfusion
quantities, and the value of the first laboratory test performed
in the day to classify redundancy among 8 different types of
laboratory blood tests, with an average redundancy rate of 53%,
provided to 746 patients with gastrointestinal bleeding in an
ICU. To this end, they used a supervised machine learning
approach with a fuzzy model, achieving an average accuracy
of 79.5% for detecting redundant tests. Mahani and Pajoohan
[19] followed a similar approach to predict the values of calcium
and hematocrit blood tests in the same type of patients, achieving
a mean absolute error of 0.03 mg/dL and 2.60%, respectively.
A study by Roy et al [17] reported a maximum area under the
curve (AUC) value of 0.88 for predicting low information
laboratory diagnostic tests using a random forest (RF) on an
extensive feature set comprising patients’demographics, vitals,
and descriptive statistics of 12 additional laboratory tests. This
study was further extended by Xu et al [20], who used between
600 and 870 raw features from EMRs to predict normal
laboratory results collected from 3 tertiary hospitals, achieving
an area under the receiver operating characteristic curve of ≥0.90
for 12 laboratory tests.

More complex models based on deep learning have also been
used to recommend laboratory reduction strategies. Yu et al
[21] developed a spatial-temporal deep learning model using
patients’ laboratory tests, time differences between adjacent
visits, and demographics to predict the following four outputs:
(1) the necessity of ordering a new laboratory test, (2) test
values, (3) abnormalities (based on normal reference ranges),
and (4) transitions (normal to abnormal or abnormal to normal
from the latest laboratory test). By assessing different thresholds
for their estimated necessity of a new test, the authors achieved
a reduction rate of 20.26%, with an average abnormality or
normality accuracy rate of 98.27% for 12 standard laboratory
tests.

Although previous reports have shown to be effective in
identifying unnecessary blood tests, none have used conditional
entropy and pretest probability [16,17] to predict abnormal
laboratory test results. However, as conditional entropy and
pretest probability can measure the uncertainty of yielding an
abnormal test for patients with different diagnoses, we
hypothesize that performing feature engineering on these
techniques can improve normal or abnormal laboratory test
results. Feature engineering is not a common trend in data-driven
approaches because of the capacity of deep learning models to
learn complex and robust features from raw data. However,
feature engineering is still necessary as using large amounts of
raw data as input could also be a drawback as it is not always
easy to obtain, clean, and process biomedical data [22].
Moreover, using additional laboratory tests as features can be
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counterproductive if the goal is to reduce the number of
laboratory tests.

Objectives
In this study, we adapted conditional entropy and pretest
probability techniques to derive features to predict normal and
abnormal laboratory test results. Our rationale is that by
identifying whether the next laboratory test would yield a normal
or abnormal result, medical professionals could decide on the
necessity of such a test based on their experience and the
patient’s diagnosis and disease severity. To evaluate the effect
of the inclusion of new types of features, we compared the
performance of 2 machine learning approaches for predicting
normal or abnormal laboratory test results on large-scale ICU
data from Alberta, Canada. The difference between the 2
approaches was that only the second approach included new
features based on conditional entropy and conditional
probability.

Methods

Alberta ICU Database
This retrospective study was conducted using the Alberta ICU
data set collected from 17 ICUs, comprising 55,689 ICU
admissions from 48,672 deidentified unique patients admitted
between February 2012 and December 2019. The primary data
source was eCritical, an EMR-based data repository containing
the device and laboratory data in use in all ICUs across Alberta.

Ethics Approval
The use of the ICU data set was approved by the Conjoint Health
Research Ethics Board at the University of Calgary (reference
number REB17-0389).

Selected Laboratory Blood Tests
We focused on 18 laboratory blood tests that are common and
critical in the ICU (Table 1). The reference range to determine
normality was determined using the Alberta Health Services
guideline [23].
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Table 1. Blood laboratory tests and reference normal ranges for tests selected for analysis.a

Total records, NNormal rangeLaboratory test

668,3887.20-7.40Potential of hydrogen: arterial (pH)

668,13070-90PaO2
b (mm Hg)

667,88935-45PCO2
c (mm Hg)

400,3063.5-5.0Blood potassium (mmol/L)

Hemoglobin (g/L)

398,436140-175If male

398,436123-153If female

Blood sodium (mmol/L)

396,431136-145If age (years) <90

396,431132-146If age (years) ≥90

Hematocrit (%)

395,0460.42-0.50If male

395,0460.36-0.45If female

394,8094.5-11.0White blood cells (E+9 units/L)

Blood carbon dioxide content (mmol/L)

390,90623-29If age (years) ≤60

390,90623-31If age (years) >60 and ≤90

390,90620-29If age (years) >90

Blood creatinine (µmol/L)

370,36180-115If male and age (years) <60

370,36171-115If male and age (years) ≥60

370,36153-97If female and age (years) <60

370,36153-106If female and age (years) ≥60

Blood urea (µmol/L)

295,4453.0-9.0If male and age (years) ≤55

295,4453.0-8.0If male and age (years) >55

295,4453.0-8.0If female and age (years) ≤55

295,4452.0-7.0If female and age (years) >55

225,6273.3-11.0Random glucose (mmol/L)

Alanine transaminase (U/L)

136,5520-60If male

136,5520-40If female

133,8061.71-20.5Total bilirubin (µmol/L)

128,77340-120Alkaline phosphatase (U/L)

102,92330.0-45.0Blood albumin (g/L)

Aspartate aminotransferase (U/L)

98,39910-40If male

98,3999-32If female

Gamma-glutamyl transferase (U/L)

36,0950-80If male

36,0950-50If female
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aFor some laboratory tests, the reference values depend on patients’ sex and age [23].
bPaO2: partial pressure of oxygen (arterial).
cPCO2: partial pressure of carbon dioxide (arterial).

Framework Overview
This study compared 2 approaches to predict normal and
abnormal blood laboratory tests performed in the ICU. The
prediction was performed for all laboratory tests except for those
first performed on the day, whose value was used as a feature
in both approaches.

Figure 1 shows an overview of the framework used to compare
the 2 different approaches. Inspired by the study by Cismeondi
et al [18], approach 1 used heart rate, respiration rate, heart rate,

blood pressure, temperature, pulse oximeter, respiratory rate,
and urine output to perform the classification. We also included
additional features, namely, sex, age, and admission diagnosis.
In addition to all the features from approach 1, approach 2
included the adaptation of conditional entropy and pretest
probability. The following sections explain in detail the different
stages of these 2 approaches. The code used for performing the
comparison between the approaches is publicly available in a
public repository [24]; however, our data cannot be shared
because of health care regulations.

Figure 1. A framework to compare the two redundancy detection approaches. AUC: area under the curve; CV: cross-validation; IBA: index balanced
accuracy; ICU: intensive care unit; ML: machine learning; NPV: negative predictive value; PR-AUC: precision-recall area under the curve.

Inclusion Criteria
ICU admissions that meet the following inclusion criteria were
included in the study: aged >18 years; at least one measurement
of each of heart rate, respiration rate, blood pressure,
temperature, oxygen saturation, and urine output; and ≥2 orders
for at least one of the 18 laboratory blood tests in Table 1.

ICU admissions satisfying these inclusion criteria were split
into 10 folds. Laboratory tests from the same admission were
assigned to the same fold, ensuring that ICU admissions were
mutually exclusive among the folds.

Features for Approach 1

Patients’ Vitals, Demographics, and Admission
Diagnoses
In approach 1, the variables used to predict the abnormal results
of the next laboratory blood test were heart rate (beats per
minute), oxygen saturation (%), respiration rate (breaths per

minute), temperature (°C), blood pressure (mm Hg), and total
amount of urine void (mL). These measurements were selected
as bedside monitors commonly collect large quantities of these
vitals regardless of patients’ admission diagnosis. We also
included patients’ sex, age, and admission diagnosis. Age and
sex were included as they affect the normality of the laboratory
test results (Table 1). Age corresponded to the patient’s age in
years at ICU admission. The admission diagnosis was also
included as patients in the ICU have a diverse set of underlying
diagnoses; therefore, such a feature may affect laboratory test
results. Categorical variables (sex and admission diagnosis)
were coded using an approach that maps categories into numeric
data using entropy, as presented in the study by Lopez-Arevalo
et al [25].

Preprocessing Patients’ Vitals
Owing to different sampling rates, laboratory blood tests and
patients’ vital measurements do not always occur
simultaneously. We corrected the misalignment between
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laboratory tests and patients’ vitals following the steps in the
study by Cismondi et al [26]. Specifically, for each admission,
we fitted a cubic spline interpolation for each of the 6 patient
variables (heart rate, oxygen saturation, respiration rate,
temperature, blood pressure, and urine output). The patients’
vitals were then estimated at the time of the laboratory tests.
The interpolation procedure used neither the laboratory test
values nor their class (normal or abnormal), thus avoiding any
data leakage caused by using the target predictors to preprocess
the data. Moreover, as the imputation was performed per ICU
admission and the 10 folds of the cross-validation procedure
were mutually exclusive, imputed data were not shared between
the training and test sets.

Features for Approach 2

Pretest Probability
The pretest probability was calculated as the conditional
probability of yielding a normal value, given a specific number
of previous consecutive laboratory tests were normal. This
probability was calculated on the training admissions by
following the procedure presented by Roy et al [17].
Specifically, for each admission, we counted the number of
consecutive normal laboratory tests before performing a new
test and noted whether the new test yielded a normal result.
Then, the information across the admissions was summed up,
and the pretest probability distribution for each laboratory test
was calculated as follows:

Here, countNormalTests is a function that returns the total cases
of laboratory tests yielding normal when M previous tests were
already normal, and countTests is the total number of laboratory
tests performed when M previous consecutive tests were normal.

The pretest probability distribution was calculated using only
ICU admissions from the training set. The feature values for
the held-out fold were calculated using the pretest probability
distribution obtained with the training folds.

Conditional Entropy for Abnormal Laboratory Tests
Entropy measures the expected amount of information. The
conditional entropy also measures the expected amount of
information of a random variable, given the occurrence of a
value of secondary random variables, described as follows:

Here, P(Yi, Zj) is the probability of value Yi occurring while
value Zj occurs, and P(Zj) is the probability of Z resulting in the
possible value Zj.

We adapted conditional entropy to measure the expected amount
of information of a test result if a patient’s features were already
known. This conditional entropy was calculated for all the
features of approach 1. The conditional entropy for each feature
was calculated as follows:

Here, Z is any variable of the patient’s vitals or age, z is a
possible value for such a variable, and Y=normal and
Y=abnormal indicate laboratory blood tests that yielded normal
or abnormal results, respectively. The values most associated
with a certain result (normal or abnormal) had lower entropy
(ie, number of bits), whereas those associated with a more
uncertain result had higher entropy.

To estimate the conditional probability distribution for each
patient’s feature, we grouped each feature into a histogram with
a bin width defined by the Freedman-Diaconis rule [27] as
follows:

Here, IQR(f) is the IQR for feature f, and Nz is the number of
observations in feature f.

Similar to the pretest probability, the conditional entropy
distribution was calculated using only ICU admissions from the
training folds. For the held-out fold, values were obtained from
the distribution derived from the training folds.

Classifiers

Overview
We used four different classifiers to perform the comparison
between approaches 1 and 2: (1) fuzzy modeling, (2) logistic
regression (LR), (3) RF, and (4) gradient boosting (GB) trees.

For all classifiers, the features of the training folds and the
held-out fold set were standardized before training the models
using minimum-maximum normalization to avoid any feature
scale impact on the performance. Normalization was performed
using the maximum and minimum values from the training set
as a reference.

Fuzzy Model
Fuzzy models are classifiers that define rules to establish
nonlinear relationships between a set of features and a response
variable. In this study, we used the Takagi-Sugeno model [28],
which defines rules composed of antecedents and consequences
on the features as follows:

Here, xp is the pth feature of sample x; Akp
C is the membership

function for the kth rule, the pth feature, and class C; and dk
C(x)

and fk
C(x) are the discriminant and consequent for the kth rule

and class C. The advantage of these rules is that they establish
connectivity between the features to derive the target output.
For example, a rule can state that if the heart rate is high and
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the first laboratory in the morning is low, the next laboratory
test will be abnormal.

As multiple rules are derived for the data, they are aggregated
for the final output using their degree of activation. The degree
of activation of the kth rule for class C is given by the following
equation:

Here, is the membership function of the fuzzy set

. The final discriminant for each class is as follows:

More details about fuzzy modeling can be found in the study
by Takagi and Sugeno [28].

The number of features included in each rule was selected using
a wrapper feature selection method that iteratively evaluated
whether adding a new feature improved the model classification
performance [29]. The consequence of each rule was defined
using the probabilistic approach presented in the study by van
den Berg et al [30] as follows:

Here, is the summation of the degree of activation

of all the samples in the training set, and is the
summation of the degree of activation of only the samples
belonging to class C. The fuzzy model was implemented using
the Python libraries scikit-fuzzy [31] and pyFume [32].

Machine Learning Models
Machine learning classifiers included the LR, RF, and GB tree
models. The model parameters were tuned using nested
cross-validation on the grid search and defined as follows:

• For LR, the grid search for the inverse of regularization
strength (C) was defined as {0.1, 1.0, 10.0}.

• For RF, the grid search for the number of trees was defined
as {300, 500, 800}, the number of maximum splits (tree
height) was defined as {8, 15, 25}, the number of minimum
samples to split was defined as {5, 10}, the number of
maximum samples in leaves was defined as {2, 5}, and the
number of maximum features was defined as {sqrt, log2,
None}.

• For the GB tree, the grid search for the learning rate was
defined as {0.01, 0.05, 0.10}, the number of trees was
defined as {300, 500, 800}, and the number of maximum
features was defined as {sqrt, log2, None}.

The best parameters were used to retrain a model using all data
from the training folds and then test the held-out fold. The
models were implemented using the sklearn Python library [33].

Measuring Performance
Table 2 shows the metrics used for assessing the performance
of approaches 1 and 2. A total of 10 metrics were included to
measure the different aspects of the approaches. Specificity,
sensitivity, accuracy, and AUC measured the raw performance
without considering class imbalances. In contrast, F1 score,
AUC, precision-recall AUC, mean G, and index balanced
accuracy (IBA) are less sensitive to class imbalance, thereby
providing a less biased performance for assessing the
approaches.

The metrics also allow the comparison of the approaches from
a medical perspective. Sensitivity indicates the proportion of
actual abnormal laboratory tests that were correctly classified,
whereas specificity indicates the proportion of actual normal
laboratory tests that were correctly classified. These 2 metrics
are related to precision (positive predictive value) and negative
predictive value. When the number of false positives (normal
tests predicted as abnormal) increases, the specificity and
precision metrics decrease. The same occurs with the sensitivity
and negative predictive value metrics when the number of false
negatives increases.
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Table 2. Metrics used to measure the performance of approaches 1 and 2.

DescriptionEquationMetric

The proportion of actual normal laboratory tests that were
correctly classified

TNa/(FPb + TN)Specificity

The proportion of actual abnormal laboratory tests that
were correctly classified

TPc/(FNd + TP)Sensitivity (or recall)

The proportion of laboratory tests that were correctly clas-
sified

(TP + TN)/(FN + FP + TP + TN)Accuracy

The proportion of laboratory tests predicted as abnormal
that, in fact, were abnormal

TP/(FP + TP)Precision (positive predictive value)

The proportion of laboratory tests predicted as normal that,
in fact, were normal

TN/(FN + TN)Negative predictive value

Weighted mean of precision and recall2 × (precision × recall)/(precision + recall)F1 score

The balance between the true positive rate and true negative
rate of the predictions

Area under the receiver operating
characteristic curve

The balance between the precision and recall of the predic-
tions

Area under the precision-recall curve

The balance between the performance of majority and mi-
nority classes

√(sensitivity × specificity)Mean G

Imbalanced index of the overall accuracy(mean G)2 × (1 + [sensitivity – specificity])Index balanced accuracy [34]

aTN: true negative.
bFP: false positive.
cTP: true positive.
dFN: false negative.

Comparing the 2 Approaches
The sets of metrics for each approach were compared pairwise
using a 2-sided Wilcoxon rank-sum hypothesis test. The null
hypothesis was that there was no difference between the metrics
obtained using the 2 approaches, whereas the alternative
hypothesis was that there was a difference. As 720 comparisons
were conducted for the 18 laboratory tests, 4 classifiers, and 10
metrics, we used Benjamin-Hochberg correction with the
false-positive rate set at 0.05.

Relevant Features
In addition to comparing the performances of the approaches,
we explored the most relevant features for classification. For
each iteration of the 10-fold cross-validation, we stored the
relevance of each feature for the trained model.

For each classifier, features were ranked based on their relevance
values. For the fuzzy model, relevance was given by the wrapper
feature selection method used to derive the antecedent of the
fuzzy rules. For LR, the relevance was given by the absolute
value of the coefficient associated with each feature. For the
RF and GB tree, the relevance was calculated using the mean
of the impurity reduction within each tree of the fitted models.

After performing the 10-fold cross-validation, a total of 10
ranking feature sets were obtained for each laboratory blood
test and each classifier. We aggregated these ranking feature
sets by averaging the rank of each feature, which is an
aggregation strategy used in the medical domain [35,36].

Specifically, we first averaged the rank of each feature across
the folds. We then aggregated the ranking features by averaging
the feature rank over the classifiers. As a result, we obtained an
aggregated ranking feature set for each laboratory blood test.

Comparison Using Individual Features
To compare the performance obtained with each new feature,
we compared approach 1 with the 2 alternative approaches. The
first alternative approach used the features of approach 1 plus
the pretest probability features, whereas the second alternative
approach used the features of approach 1 plus the entropy-based
features. These alternative approaches were trained and
compared with the same methodology used for approaches 1
and 2.

Results

Performance of the Approaches
Figure 2 shows the average performance of approaches 1 and
2 across the 18 laboratory tests. Both approaches suitably
predicted the laboratory blood test results. Approach 1 achieved
a median performance of at most 80% for all classifiers in 5 out
of the 10 metrics (specificity, accuracy, precision, AUC, and
precision-recall AUC), whereas approach 2 achieved a median
performance >80% for all classifiers in all metrics except IBA.
Notably, higher values (>80%) in the average performance for
the F1 score, mean G, and AUC suggest that approach 2 led to
a more accurate prediction of both normal and abnormal results
for most of the 18 blood laboratory tests.
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Figure 2. Performance distribution of approaches 1 and 2 across the laboratory blood tests. The first quantile, median, and third quantile are displayed
inside each distribution (dashed lines). AUC: area under the curve; FM: fuzzy model; GB: gradient boosting; IBA: index balanced accuracy; LR: logistic
regression; PR-AUC: precision-recall area under the curve; RF: random forest.

The detailed performance of the approaches for each laboratory
test, metric, and machine learning classifier is presented in
Multimedia Appendices 1 and 2. For both approaches, the
machine learning classifiers achieved similar performance. The
ensemble classifiers (ie, RF and GB) achieved the best overall
performance across laboratory blood tests.

Comparison Between Old and New Features
Figure 3 shows the percentage change between approaches 1
and 2 for the 10-fold mean of each metric. The inclusion of the
new features resulted in significant differences for most of the
metrics in favor of approach 2. The metric that improved the
most was sensitivity, achieving a significant improvement
between 8 and 15 laboratory tests for the different classifiers.

Specificity, in contrast, was the metric with the lowest
improvement, with a significant reduction between 2 and 5 for
the different classifiers. The F1 score, mean G, and IBA, which
are balanced performance metrics, significantly improved across
the classifiers, for 8 to 14, 6 to 10, and 6 to 11 laboratory tests,
respectively. A detailed comparison of approaches 1 and 2 for
each blood laboratory test, metric, and classifier is presented in
Multimedia Appendix 3.

Among the classifiers, LR benefited the most from the inclusion
of the new features, achieving an improvement of at least eight
metrics for 10 out of the 18 laboratory blood tests. The RF and
GB obtained less significant improvements for the different
metrics than the fuzzy and LR models.
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Figure 3. Percentage change for the 10-fold mean metric values between approaches 1 and 2. The asterisk indicates a statistically significant difference
(2-sided Wilcoxon rank-sum hypothesis tests adjusted via Benjamin-Hochberg correction using a false-positive rate set at 0.05). ALP: alkaline phosphatase;
ALT: alanine transaminase; AST: aspartate aminotransferase; AUC: area under the curve; FM: fuzzy model; GB: gradient boosting; GGT: gamma-glutamyl
transferase; IBA: index balanced accuracy; LR: logistic regression; PaO2: partial pressure of oxygen (arterial); PCO2: partial pressure of carbon dioxide
(arterial); PR-AUC: precision-recall area under the curve; RF: random forest; WBC: white blood cell.

Most Relevant Features
Figure 4 shows the top 5 features selected across the classifiers
to discriminate between abnormal and normal laboratory blood
tests for approach 2. The most common relevant feature across
the laboratory tests was the pretest probability, which ranked

in the first 2 positions in 17 of the 18 laboratory tests. The first
value of the day was also relevant for classification, ranking in
the first 2 places for half of the blood laboratory tests. The
conditional entropy variant of the features, such as diagnosis,
urine output entropy, respiratory entropy, and heart rate entropy,
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appeared more frequently in the top 5 ranking than their base
forms.

Finally, to visualize how the features relate to the prediction of
abnormal test results, the fuzzy predictive rules obtained by
retraining a fuzzy model on the data set are presented in
Multimedia Appendix 4.

Figure 4. The top 5 ranking of the features selected across the machine learning classifiers for each of the laboratory tests for approach 2. Light blue-
and light red boxes correspond to the vital features and diagnoses, respectively, shared with approach 1. The light green boxes correspond to the pretest
probability feature, and the light gray boxes correspond to the entropy-based features. ALP: alkaline phosphatase; ALT: alanine transaminase; AST:
aspartate aminotransferase; GGT: gamma-glutamyl transferase; PaO2: partial pressure of oxygen (arterial); PCO2: partial pressure of carbon dioxide
(arterial); SPO2: oxygen saturation; WBC: white blood cell.

Comparison Using Individual Features
Figure 5, Figure 6, Figure 7, and Figure 8 show the cubic root
of the percentage change between the 10-fold means of
approaches 1 and 2, approach 1 plus the pretest probability
feature, and approach 1 plus the entropy-based features for the
fuzzy modeling, LR, RF, and GB tree, respectively. For most
of the laboratory tests, the percentage change was more

consistent between approach 2 and approach 1 plus the pretest
probability feature. Indeed, approach 1 plus the pretest
probability feature obtained the same significant improvement
that was achieved with approach 2 for almost all the laboratory
tests. In contrast, approach 1 plus the entropy-based features
showed a negative percentage change, particularly for fuzzy
and logistic models.
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Figure 5. Cubic root of the percentage change between the 10-fold means of approaches 1 and 2 (blue bars), approach 1 plus the pretest probability
(yellow bars), and approach 1 plus the entropy-based features for the fuzzy model. The asterisk indicates a statistically significant difference (2-sided
Wilcoxon rank-sum hypothesis tests adjusted via Benjamin-Hochberg correction using a false-positive rate set at 0.05). ALP: alkaline phosphatase;
ALT: alanine transaminase; AST: aspartate aminotransferase; AUC: area under the curve; GGT: gamma-glutamyl transferase; IBA: index balanced
accuracy; PaO2: partial pressure of oxygen (arterial); PCO2: partial pressure of carbon dioxide (arterial); PR-AUC: precision-recall area under the curve;
WBC: white blood cell.
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Figure 6. Cubic root of the percentage change between the 10-fold means of approaches 1 and 2 (blue bars), approach 1 plus the pretest probability
(yellow bars), and approach 1 plus the entropy-based features for the logistic regression. The asterisk indicates a statistically significant difference
(2-sided Wilcoxon rank-sum hypothesis tests adjusted via Benjamin-Hochberg correction using a false-positive rate set at 0.05). ALP: alkaline phosphatase;
ALT: alanine transaminase; AST: aspartate aminotransferase; AUC: area under the curve; GGT: gamma-glutamyl transferase; IBA: index balanced
accuracy; PaO2: partial pressure of oxygen (arterial); PCO2: partial pressure of carbon dioxide (arterial); PR-AUC: precision-recall area under the curve;
WBC: white blood cell.
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Figure 7. Cubic root of the percentage change between the 10-fold means of approaches 1 and 2 (blue bars), approach 1 plus the pretest probability
(yellow bars), and approach 1 plus the entropy-based features for the random forest model. The asterisk indicates a statistically significant difference
(2-sided Wilcoxon rank-sum hypothesis tests adjusted via Benjamin-Hochberg correction using a false-positive rate set at 0.05). ALP: alkaline phosphatase;
ALT: alanine transaminase; AST: aspartate aminotransferase; AUC: area under the curve; GGT: gamma-glutamyl transferase; IBA: index balanced
accuracy; PaO2: partial pressure of oxygen (arterial); PCO2: partial pressure of carbon dioxide (arterial); PR-AUC: precision-recall area under the curve;
WBC: white blood cell.
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Figure 8. Cubic root of the percentage change between the 10-fold means of approaches 1 and 2 (blue bars), approach 1 plus the pretest probability
(yellow bars), and approach 1 plus the entropy-based features for the gradient boosting model. The asterisk indicates a statistically significant difference
(2-sided Wilcoxon rank-sum hypothesis tests adjusted via Benjamin-Hochberg correction using a false-positive rate set at 0.05). ALP: alkaline phosphatase;
ALT: alanine transaminase; AST: aspartate aminotransferase; AUC: area under the curve; GGT: gamma-glutamyl transferase; IBA: index balanced
accuracy; PaO2: partial pressure of oxygen (arterial); PCO2: partial pressure of carbon dioxide (arterial); PR-AUC: precision-recall area under the curve;
WBC: white blood cell.

Discussion

Principal Findings
We found that the inclusion of the conditional entropy–based
features and pretest probability significantly improved the
capacity to predict abnormal results of a new laboratory test.
Notably, the inclusion of these features improved the detection
of actual abnormal tests (sensitivity) for half or more than half
of the laboratory blood tests across the 4 classifiers (Figure 3).

The most relevant feature analysis revealed that the pretest
probability feature was the most relevant among the new 2 types
of features. In fact, the models strongly relied on the pretest

probability to discriminate between normal and abnormal
laboratory blood tests (Figure 4). A comparison of the
performance of adding individual features further supports this
fact by showing that approach 1 plus the pretest probability
feature can achieve results comparable with those of approach
2.

The classifiers that improved the most were the LR and fuzzy
models. A possible reason for this difference is that the LR and
fuzzy models used all the features to fit their model. Instead,
the ensemble models built individual trees by randomly selecting
a subset of the total features, thereby excluding the pretest
probabilities or entropy-based features for some trees.
Nevertheless, the RF and GB tree also improved for approach
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2, achieving significant improvements in the sensitivity, F1

score, and IBA metrics.

The inclusion of the new features improved sensitivity and
negative predictive value but decreased specificity and precision.
This trade-off is beneficial for the medical context because
although ordering extra blood tests when it may not be necessary
(higher false positives) can raise the medical expenses, patients’
safety is preserved (lower false negatives). The new features
also improved balanced metrics such as F1 score, AUC, mean
G, and IBA, thus showing the benefit of the inclusion of such
types of features to improve the capacity for discriminating
between normal and abnormal test results. For instance,
approach 2 improved the aforementioned metrics for blood gas
tests (potential of hydrogen and PCO2), which are among the
most expensive laboratory blood tests ordered in the ICU [9].

However, we note that predicting normal and abnormal blood
test results is an intermediate step toward detecting redundant
tests. Deciding whether to order a new test should be based on
more than predicting a normal laboratory result, as the situation
and severity of each patient in the ICU are different. We
included vitals and admission diagnosis to mitigate these factors;
however, human interpretation still plays a crucial role in
deciding whether ordering a new laboratory test is clinically
meaningful. Normal laboratory test results can help measure
trends, validate the required thresholds, and assess treatments.
Therefore, predicting the result of a new test as normal does not
imply its relevance or redundancy. However, redundancy
guidelines can be established by analyzing predictions using
prior consecutive results. For instance, if ≥1 previous result has
yielded normal results and the prediction of the new test is again
normal, the new laboratory blood test may be redundant. In
contrast, if the prediction is abnormal, the new test may be
relevant as it can inform medical decisions.

Relationship With Prior Reports
The relevance of the new features is consistent with prior
literature [16,17], in which entropy and conditional probability
were used to describe the high redundancy that exists in ICUs.
In our work, we went further by adapting these to predict the
abnormal results of performing a new test. Notably, to the best
of our knowledge, no previous study has used these features to
predict laboratory blood test results. This study also supports
the work by Cismondi et al [18], showing that patients’ vitals
and the value of the first laboratory test performed in the day
could guide the detection of abnormal results. However, unlike
their study, we did not include their proposed blood transfusions
to predict normal or abnormal laboratory test results as such
transfusions targeted patients with gastrointestinal bleeding. In

contrast, we extended the scope to different types of diagnoses
by the inclusion of conditional entropy and pretest probability
based on historical data.

In comparison with the studies by Roy et al [16] and Xu et al
[20], who used machine learning to predict laboratory abnormal
or normal results but did not include the pretest probability as
a feature, approach 2 achieved comparable results using a
smaller feature set (21 features vs 600 raw features).
Specifically, the RF and GB tree achieved a mean AUC >0.89
for 13 out of the 18 laboratory tests (Multimedia Appendix 2
and Figure 2). This AUC improvement again shows the
relevance of the inclusion of pretest probability as a feature in
the predictive models.

Limitations
We note that this study used an ICU data set collected in Alberta,
Canada. As ethnical and racial subgroups have different
distributions for laboratory tests [37], ICU data sets collected
in other countries may lead to different results, particularly in
low- and middle-income countries whose populations deal with
economic and cultural barriers that exacerbate their health
challenges. However, this study introduced new features that
rely on historical data, making these features flexible and
applicable to different populations. Therefore, using historical
data from a different population, the conditional entropy and
pretest probability distributions can be derived to calculate the
uncertainty of a new test that yields an abnormal result.

We also noted that our exclusion criteria excluded patients who
did not have >1 sample of the target laboratory blood test or
did not have any measurements for heart rate, respiration rate,
temperature, oxygen saturation, blood pressure, or urine output.
This condition limits the applicability of our work as it was not
designed to predict abnormal results of the first laboratory test
provided in the day or when the patient’s vitals are missing.
Future work should explore how to predict abnormal results of
a new test in such cases.

Conclusions
This study introduced new types of features to predict abnormal
or normal results in laboratory blood tests in the ICU. The new
features were extracted from historical data to describe the
chances of yielding a normal test if previous sequential tests
were normal (pretest probability) and the expected uncertainty
of an abnormal yield if a patient’s vitals were already known
(conditional entropy). These historical data combined with
patients’ data are suitable indicators to predict the abnormal
results of performing an additional laboratory blood test.
Therefore, this study provides tools that can help develop
guidelines to reduce overtesting in the ICU.
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Multimedia Appendix 1
Performance of approach 1 using the 10-fold cross-validation for each blood laboratory test and machine learning classifier. For
each classifier, the means and SDs of metrics across the 10 folds are presented. The best result for each metric and laboratory
test is in bold.
[DOCX File , 35 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Performance of approach 2 using the 10-fold cross-validation for each blood laboratory test and machine learning classifier. For
each classifier, the means and SDs of metrics across the 10 folds are presented. The best result for each metric and laboratory
test is in bold.
[DOCX File , 37 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Percentage change for the 10-fold mean metric values between approach 1 and approach 2. The asterisk indicates a statistically
significant difference (2-sided Wilcoxon rank-sum hypothesis tests adjusted with Benjamini-Hochberg using a false-positive rate
set at 0.05). The difference was conducted for each classifier and for each metric.
[DOCX File , 36 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Predictive rules for the fuzzy model. Entropy means that the feature is the conditional-based version.
[DOCX File , 15 KB-Multimedia Appendix 4]
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Abbreviations
AUC: area under the curve
EMR: electronic medical record
GB: gradient boosting
IBA: index balanced accuracy
ICU: intensive care unit
LR: logistic regression
RF: random forest
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