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Abstract

Background: Hyperkalemia monitoring is very important in patients with chronic kidney disease (CKD) in emergency medicine.
Currently, blood testing is regarded as the standard way to diagnose hyperkalemia (ie, using serum potassium levels). Therefore,
an alternative and noninvasive method is required for real-time monitoring of hyperkalemia in the emergency medicine department.

Objective: This study aimed to propose a novel method for noninvasive screening of hyperkalemia using a single-lead
electrocardiogram (ECG) based on a deep learning model.

Methods: For this study, 2958 patients with hyperkalemia events from July 2009 to June 2019 were enrolled at 1 regional
emergency center, of which 1790 were diagnosed with chronic renal failure before hyperkalemic events. Patients who did not
have biochemical electrolyte tests corresponding to the original 12-lead ECG signal were excluded. We used data from 855
patients (555 patients with CKD, and 300 patients without CKD). The 12-lead ECG signal was collected at the time of the
hyperkalemic event, prior to the event, and after the event for each patient. All 12-lead ECG signals were matched with an
electrolyte test within 2 hours of each ECG to form a data set. We then analyzed the ECG signals with a duration of 2 seconds
and a segment composed of 1400 samples. The data set was randomly divided into the training set, validation set, and test set
according to the ratio of 6:2:2 percent. The proposed noninvasive screening tool used a deep learning model that can express the
complex and cyclic rhythm of cardiac activity. The deep learning model consists of convolutional and pooling layers for noninvasive
screening of the serum potassium level from an ECG signal. To extract an optimal single-lead ECG, we evaluated the performances
of the proposed deep learning model for each lead including lead I, II, and V1-V6.

Results: The proposed noninvasive screening tool using a single-lead ECG shows high performances with F1 scores of 100%,
96%, and 95% for the training set, validation set, and test set, respectively. The lead II signal was shown to have the highest
performance among the ECG leads.

Conclusions: We developed a novel method for noninvasive screening of hyperkalemia using a single-lead ECG signal, and it
can be used as a helpful tool in emergency medicine.

(JMIR Med Inform 2022;10(6):e34724) doi: 10.2196/34724
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Introduction

Hyperkalemia is a potential life-threatening condition for the
general population, and so it can be a clinical and economic
burden [1]. Normal levels of potassium are between 3.5 and 5.0
mmol/L with levels above 5.5 mmol/L defined as hyperkalemia.
Patients with chronic kidney disease (CKD) are predisposed to
hyperkalemia [2], and it is a major risk factor for cardiac
arrhythmias and death [3]. According to some clinical studies,
serum potassium monitoring can reduce the risk of hyperkalemia
in patients with CKD by more than 71% [4]. Therefore, it is
very important to frequently check the serum potassium level
in patients with CKD.

Potassium is a very important electrolyte for the regulation of
the cell membrane potential and nerve conduction, so abnormal
levels of potassium are known to be associated with changes in
electrocardiogram (ECG) readings. Hyperkalemia is associated
with tall, narrow, and symmetrical T waves in an ECG, whereas
hypokalemia is associated with flat T waves [5-9]. Monitoring
hyperkalemia is very important in patients with CKD, but so
far blood testing is the only way to test serum potassium levels.
Closer and more reliable monitoring requires the development
and verification of noninvasive and continuous monitoring
methods.

Electrocardiography is used to detect heart abnormalities in
patients with various diseases. The main ECG changes
associated with hypokalemia include a decreased T wave
amplitude, ST-segment depression, T wave inversion, a
prolonged PR interval, and an increased corrected QT interval
[10]. The typical ECG findings for hyperkalemia progress from
tall, peaked T waves and a shortened QT interval to a lengthened
PR interval and a loss of the P wave followed by a widening
QRS complex and ultimately a sine wave morphology [11,12].
These morphologic differences of the ECG have been used to
detect and diagnose hyperkalemia events urgently in emergency
rooms [13]. In addition, there are some studies that have
proposed several methods to detect hyperkalemia events using
ECG signals. Among them, some researchers have developed
ECG quantification algorithms to predict serum potassium
concentration based on T wave morphology, mainly using the
slope and width of T waves. The algorithms were mostly derived
from continuous patient monitoring, such as during
hemodialysis, with homogeneous ECG morphologies from a
limited set of patients [14,15]. Recently, applying the processing
of T wave morphologies manually has been used to improve
the diagnosis of hyperkalemia [16]. Nevertheless, using T wave
changes alone to detect dyskalemias is less sensitive and specific
than a comprehensive ECG interpretation [17]. However, ECG
morphology–based methods have shown insufficient

performance and require some time to extract the morphologic
features required to detect hyperkalemia. Therefore, a more
robust and faster method for hyperkalemia detection is needed
in the clinical practice of emergency medicine.

With the revolution of artificial intelligence (AI), many deep
learning models have been developed that show human-level
performance in several clinical fields such as cardiology [18],
radiology [19], ophthalmology [20], and pathology [21]. For
instance, convolutional neural network (CNN) models have
achieved very high performances for abnormal cardiac rhythms
such as arrhythmia [22], tachycardia [23], and supraventricular
dysfunction [24], among other events [25]. Such diagnostic and
prognostic deep learning models could be developed to assist
emergency medicine clinicians in recognizing ECG changes
associated with diverse diseases. AI algorithms have emerged
in clinical decision support systems as “software as a medical
device” in a real clinical environment [26]. There are some
similar studies conducted by several researchers. Among them,
Galloway et al [11] proposed a CNN-based model to screen for
hyperkalemia using a multilead ECG signal. They demonstrated
a deep CNN model with complex architecture and evaluated its
performance using big ECG data sets in a multicenter cohort
study. Another study involved the prediction of serum potassium
concentration based on an 82-layer CNN model using a 12-lead
ECG signal [12]. They achieved robust performance with more
than 95.8% hyperkalemia detection. However, all these recent
deep learning models are hard to apply to real-time analysis in
clinical practices.

Therefore, this study proposed a novel method for noninvasive
screening of hyperkalemia based on a deep learning model using
an ECG. For this purpose, we constructed a deep learning
structure using a CNN model, and clinical data were used for
the training and testing phases. In addition, we conducted several
experiments using the different data sets, applying the changes
before and after hyperkalemia events. Finally, a simple and
accurate deep learning model was designed to implement a
noninvasive screening method for hyperkalemia that can be
applied to real-time clinical practices.

Methods

Overview
In this study, we proposed a novel method for noninvasive
screening of hyperkalemia based on a deep learning model,
using ECG. The proposed method consists of the following 3
main parts: 12-lead ECG extraction from the participants,
constructing the ECG data sets, and a deep learning model
(Figure 1). Each part of the study method is explained in more
detail in the following subsections.
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Figure 1. Diagram of the proposed method for noninvasive screening of hyperkalemia. ECG: electrocardiogram.

Ethics Approval
This study was approved by the Institutional Review Board
(IRB) of the Wonju Severance Christian Hospital (CR320162).
Enrolled patients’ informed consent was exempted by the IRB
due to the retrospective nature of the study that used fully
anonymized ECG and health data.

Participants
A total of 2958 patients who have experienced at least 1
hyperkalemia event were enrolled at a single regional emergency
center from July 2009 to June 2019. Among them, 1790 patients
were diagnosed with chronic renal failure (CRF), and the other
1168 patients did not have CRF. The patients who did not have
biochemical electrolyte tests corresponding to the original
12-lead ECG signal were excluded. We then used the data of
855 patients (555 patients with CRF, 300 patients without CRF)
(Table 1).

Table 1. Characteristics of the study participants.

Participants (N=2958)Characteristics

TotalCRF (n=1790)Non-CRFa (n=1168)

Gender, n (%)b

1243 (42)747 (60.1)496 (39.9)Female

1715 (58)1043 (60.8)672 (39.2)Male

2958 (100)1790 (60.5)1168 (39.5)Total

71.7 (15.8)72.6 (13.2)70.3 (19.0)Age (years), mean (SD)

158.0 (19.7)159.4 (14.4)155.5 (26.2)Height (cm), mean (SD)

60.9 (13.6)62.2 (12.2)58.8 (15.5)Weight (kg), mean (SD)

152 (5.1)117 (77)35 (23)Myocardial infarction, n (%)b

387 (13.1)271 (70)116 (30)Heart failure, n (%)b

328 (11.1)235 (71.6)93 (28.4)Angina, n (%)b

1163 (39.3)912 (78.4)251 (21.6)Diabetes, n (%)b

1360 (46)1037 (76.3)323 (23.8)Hypertension, n (%)b

aCRF: chronic renal failure.
bThe denominator used to calculate percentages is the sum of the non-CRF and CRF participants in that category (ie, row).

Data Sets
The 12-lead ECG recordings were collected at the 3 sections of
hyperkalemic events: pre-event, event, and postevent. The pre-
and postevents were used as normal or control events, and the
hyperkalemic event was used as the target or abnormal event.
From these 3 sections, the data sets were designed, including
data set I (pre-event vs event), data set II (postevent vs event),
and data set III (pre-event and postevent vs event). The
differences between before- and aftereffects of a hyperkalemia

event are presented in Table 2. All 12-lead ECG recordings
were matched with an electrolyte test within 2 hours in each
section to form a data set. The waveform of the 12-lead ECG
signal was then extracted and saved with a sampling frequency
of 700 Hz. Finally, an ECG signal segment with a duration of
2 seconds was composed of 1400 samples. For evaluation of
the developed AI algorithm, the ECG data set was randomly
divided by the ratio of 6:2:2 percent into the training set,
validation set, and test set for each data set.
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Table 2. Data sets for this study.

Data set III, nData set II, nData set I, nData sets

14268791186Training set

357220296Validation set

446275370Test set

222913741852Total

Deep Learning Model
Deep learning is a method for representation learning that can
learn the complex pattern and structure of the input data by
high-level data abstraction. It can learn the morphology of the
input ECG signal according to the potassium concentrations. A

deep learning model was designed based on a 5-layer CNN by
using a 1-dimensional convolutional operation, max pooling,
and a fully connected layer. The detailed structure of the
proposed deep learning model for noninvasive screening of
hyperkalemia using ECG signal is shown in Table 3.

Table 3. Architecture of the proposed deep learning model for hyperkalemia screening.

ParameterOutput shapeFilter sizeActivationNumber and layers

1

4= ••• 1400×1=batchnorm_1

2

5100ReLu ••• 1351×100100@50×1conv1D_1
••• 675×1002×1maxpool_1

3

400,080ReLu ••• 626×8080@50×1conv1D_2
••• 313×802×1maxpool_2

• ••dropout_2 313×80p=0.25a

4

144,060ReLu ••• 284×6060@30×1conv1D_3
••• 142×602×1maxpool_3

• ••dropout_3 142×60p=0.25

5

48,040ReLu ••• 123×4040@20×1conv1D_4
••• 61×402×1maxpool_4

• ••dropout_4 61×40p=0.25

6

8020ReLu ••• 52×2020@10×1conv1D_5
••• 26×202×1maxpool_5

• ••dropout_5 26×20p=0.25

7

1042Softmax ••• 520×22flatten_1
• dense_1

606,027Total •• 124 filters5 conv
• layers

ap: One of the setting parameters of the dropout technique.

Statistical Analysis
The F1 score was used to evaluate the proposed noninvasive
screening method for hyperkalemia; it evaluates the correct

classification of each class according to class equality. F1 scores
calculated by precision and recall are represented as follows:
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The numbers of true positives (TP), false positives (FP), and
false negatives (FN) are input into the equations. The F1 score
is computed based on the sample proportion of precision and
recall as follows:

Results

The results of the proposed novel method for noninvasive
screening of hyperkalemia based on deep learning using a
12-lead ECG are shown in Table 4-Table 6 for the test set of
each data set. The results of the proposed method showed that
lead II achieved the highest performance for hyperkalemia
events among other leads for data set I (Table 4).

Table 4. The performance of the proposed method for the test set of data set I.

LeadsIndex and events

V6V5V4V3V2V1III

Precision

0.540.510.660.560.610.470.960.52Normal

0.630.640.710.630.700.630.940.61Hyperkalemia

Recall

0.600.500.660.510.660.560.930.48Normal

0.580.650.710.680.650.540.970.64Hyperkalemia

F1 score

0.570.500.660.530.640.510.940.50Normal

0.600.650.710.660.680.580.950.62Hyperkalemia

Table 5. The performance of the proposed method for the test set of data set II.

LeadsIndex and events

V6V5V4V3V2V1III

Precision

0.510.360.520.280.360.280.880.31Normal

0.720.760.790.800.730.740.930.75Hyperkalemia

Recall

0.300.280.500.230.270.170.850.22Normal

0.870.820.810.840.810.840.950.82Hyperkalemia

F1 score

0.380.310.510.250.310.210.870.26Normal

0.790.790.800.820.770.790.940.78Hyperkalemia
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Table 6. The performance of the proposed method for the test set of data set III.

LeadsIndex and events

V6V5V4V3V2V1III

Precision

0.610.570.690.650.680.530.950.56Normal

0.510.600.600.570.590.740.940.47Hyperkalemia

Recall

0.590.680.630.620.701.000.960.61Normal

0.530.480.660.600.570.000.930.42Hyperkalemia

F1 score

0.600.620.660.640.690.700.960.58Normal

0.520.530.630.590.580.000.940.44Hyperkalemia

We also noticed that there are big performance differences
between lead II and other leads not only in data set I, but also
in data sets II and III. The results showed that V2 achieved the
best performance among the V1-V6 leads throughout the 3
different data sets.

We obtained good performances of the proposed deep learning
model for noninvasive screening of hyperkalemia using lead II
signal, with F1 scores of 95%, 94%, and 94% for data set I, data
set II, and data set III for the test set.

For data set I, we presented the confusion matrix of the training
set, validation set, and test set for lead II of the ECG. The results
showed good performance, with F1scores of 100%, 96%, and
95% for the training set, validation set, and test set, respectively.
The confusion matrix showed that the proposed deep learning
model gained a high and stable rate for the true positives and
false negatives (Figure 2).

Figure 2. Confusion matrix of this study. Confusion matrix of (A) the training set, (B) the validation set, and (C) the test set for the lead II
electrocardiogram channel of data set I.

Discussion

In this study, we demonstrated a novel method for noninvasive
screening of hyperkalemia based on deep learning using ECG.
We designed an optimal and simple architecture of deep learning
that can be easily implemented for real clinical applications,
especially in emergency medicine. The proposed model achieved
good performances based on feature extraction of the
characteristics of cardiac activity according to the levels of
electrolytes using ECG.

We have tried to see the morphological or rhythmical differences
between hyperkalemia pre- and postevents in ECG waveform.
To do this, we set up 3 different data sets that selected from the
pre-event, postevent, and target event sections: data set I
(pre-event vs event), data set II (postevent vs event), and data

set III (pre- and postevent vs event). All data sets were applied
to the designed deep learning model for hyperkalemia screening
in training, validation, and test phases. We trained and tested
the 3 different deep learning models using each data set. We
also conducted experiments to find the optimal signal of the
12-lead ECG for each data set one by one. We determined that
an optimal lead for hyperkalemia screening was lead II for our
12-lead ECG data sets. In general, lead II contains the most
information on cardiac activity among the leads, which may
have resulted in it having the highest performance for the
hyperkalemia screening. In addition, our results support
conventional studies on hyperkalemia screening using ECG
signals.

There are some similar studies that proposed a screening or
detection tool for hyperkalemia using ECG signals. The earliest
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one was proposed by Wrenn et al [10] in 1991. This study
compared hyperkalemia detection by 2 independent and
experienced physicians using ECG signals. The results showed
a sensitivity of 62.0% for the first reader and 55.0% for the
second reader and the κ value was 0.73. This showed how
difficult it was to detect hyperkalemia from the ECG signal
without any biochemical electrolyte tests. Another study on the
correlation between hyperkalemia and ECG morphologies was
conducted by Levis [27] in 2013. They published a clinical case
study on ECG signals observed as a hyperkalemia event occurs.
The authors demonstrated 2 different cases of older adults with
acute renal failure and hyperkalemia. They confirmed the ECG
morphology changes with peaked T waves, shortened QT
interval, and lengthening PR intervals corresponding to the
hyperkalemia or changes of serum potassium levels.

Recently, deep learning models have been applied to studies on
detection and screening of hyperkalemia from the 12-lead ECG
recordings made in emergency departments. Galloway et al [11]
developed and validated a deep learning model to screen for
hyperkalemia using ECG. The authors designed an 11-layer
deep CNN model, and it was trained and validated with 449,380
patients with CKD. They used 2 data sets for 2 leads (I and II)
and 4 leads (I, II, V3, and V5); each patient had a serum
potassium count drawn within 4 hours after their ECG was
recorded. In this multicenter cohort study, a deep learning model
was developed with complex architecture, using big ECG data
sets [11]. However, they achieved a good performance, with an
area under the curve (AUC) of 88.83% and a sensitivity of
91.3% for the 2 leads’data sets. In contrast, we proposed a deep
learning model with a light weight and high performance using
a single-lead ECG signal.

Lin et al [12] developed a 12-channel sequence-to-sequence
model with an 82-layer CNN structure to predict serum
potassium concentration by using a 12-lead ECG signal. They
modified DenseNet architecture to read the 12-lead ECG
waveforms and detect hypokalemia and hyperkalemia events,
and named it ECG12Net. ECG12Net achieved robust
performances, with an AUC of 95.8% and 97.6% for
hyperkalemia and severe hyperkalemia, respectively. However,
ECG12Net requires very high computational power to read the
12-lead ECG signal since it is composed of an 82-layer CNN
model. Our method is comparable in performance with this

model, and it is well optimized and trained for a 1-channel ECG
signal to detect hyperkalemia events. In addition, it is easy to
make it into a tool that can be used in the final clinical field
because the deep learning engine is relatively lighter.

The proposed new method for noninvasive screening of
hyperkalemia based on deep learning using ECG signals
surpasses similar previous studies, and the developed model
can be applied directly to clinical situations. This noninvasive
method does not require any blood test or invasive chemistry
diagnosis. In addition, the physicians or clinicians can check
the results quickly, within 3 minutes, which is faster than
previous invasive diagnostic methods. This is because the deep
learning model has a simple structure and is well optimized and
trained by the pre- and postevent’s ECG signals to screen for
hyperkalemia events. In addition, the proposed deep learning
model can proceed with feature extraction and classification at
once from the input ECG signal for noninvasive screening of
hyperkalemia because we do not use any handcrafted
preprocessing that extracts input ECG components such as the
RR interval or P wave. Finally, we achieved a higher
performance of the proposed noninvasive method based on a
deep learning model; it can consider the complex and cyclic
characteristics of ECG affected by levels of electrolytes.

This study has some limitations, such as the small study
population, and there are many comorbidities including heart
failure, diabetes, and hypertension in the study groups. In
addition, all participants of this study are enrolled at a single
regional emergency center, so further study should cover large
and diverse populations from multiple centers.

We demonstrated a novel method for noninvasive screening of
hyperkalemia based on deep learning using ECG. We obtained
high performances with an F1 score of 95% from the ECG
signal. In addition, we developed a simple and accurate deep
learning model for the noninvasive screening of hyperkalemia
that can be used in real-time clinical settings. Therefore, the
proposed deep learning model may be appropriate for the
noninvasive screening of hyperkalemia using a single-lead ECG
signal without any feature extraction (eg, T wave and QT
interval). Furthermore, a validation study should be conducted
for the proposed deep learning model that uses larger and more
diverse data sets based on a single-lead ECG signal.
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