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Abstract

Background: Kidney transplantation is the preferred treatment option for patients with end-stage renal disease. To maximize
patient and graft survival, the allocation of donor organs to potential recipients requires careful consideration.

Objective: This study aimed to develop an innovative technological solution to enable better prediction of kidney transplant
survival for each potential donor-recipient pair.

Methods: We used deidentified data on past organ donors, recipients, and transplant outcomes in the United States from the
Scientific Registry of Transplant Recipients. To predict transplant outcomes for potential donor-recipient pairs, we used several
survival analysis models, including regression analysis (Cox proportional hazards), random survival forests, and several artificial
neural networks (DeepSurv, DeepHit, and recurrent neural network [RNN]). We evaluated the performance of each model in
terms of its ability to predict the probability of graft survival after kidney transplantation from deceased donors. Three metrics
were used: the C-index, integrated Brier score, and integrated calibration index, along with calibration plots.

Results: On the basis of the C-index metrics, the neural network–based models (DeepSurv, DeepHit, and RNN) had better
discriminative ability than the Cox model and random survival forest model (0.650, 0.661, and 0.659 vs 0.646 and 0.644,
respectively). The proposed RNN model offered a compromise between the good discriminative ability and calibration and was
implemented in a technological solution of technology readiness level 4.

Conclusions: Our technological solution based on the RNN model can effectively predict kidney transplant survival and provide
support for medical professionals and candidate recipients in determining the most optimal donor-recipient pair.

(JMIR Med Inform 2022;10(6):e34554) doi: 10.2196/34554
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Introduction

Current State of Organ Allocation
Deceased organ donation is the most common type of kidney
donation [1] and can be defined as donation after neurological
death (neurological determination of death [NDD]) and donation

after circulatory death (DCD) [2]. Despite being authorized in
Canada since 2006, DCD donations represented only 17% of
deceased organ donations in Canada in 2012 [3]. The number
of patients waiting for organ transplantation greatly exceeds the
number of organs donated [4]. Ensuring an optimal donor
identification and referral process and improving efficiency in
identifying compatible donors would help avoid missed donation
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opportunities [3] and increase the rate of DCD [4]. Assisting
informed decision-making regarding the acceptance of donor
kidney by helping patients to better understand the treatment
options and potential transplant outcomes would promote better
treatment efficiency [5].

In current clinical practice, several kidney allocation algorithms
are used to match donor organs with potential recipients. In the
United States, the Organ Procurement and Transplantation
Network uses a list of potential recipients that are ranked
according to objective medical criteria (eg, blood type, tissue
type, and size of the organ as well as medical urgency, time
spent on the waiting list, and distance between the donor and
recipient) [6]. Several simple numerical tools have also been
implemented to guide kidney allocation. An example is the
Estimated Post Transplant Survival score [7]. This score is
assigned to all adult candidates on the kidney transplant waiting
list and is based on 4 factors: candidate’s time on dialysis,
current diagnosis of diabetes, prior solid organ transplants, and
candidate’s age. The kidney donor risk index [8] combines
various donor factors to summarize the risk of graft failure after
kidney transplantation into a single number. It uses features
such as donor’s age, height, weight, ethnicity (or race), history
of hypertension, history of diabetes, cause of death, serum
creatinine level, hepatitis C status, and DCD criteria. The kidney
donor risk index is then remapped to a percentile scale where
the lower percentiles (0%-20%) represent a lower risk of graft
failure. Candidates with Estimated Post Transplant Survival
scores ≤20% will receive offers for kidneys from donors with
Kidney Donor Profile Index scores ≤20% before other
candidates at the local, regional, and national levels of
distribution [9]. Similar candidate and donor variables have also
been considered in Canadian kidney allocation systems [10].
According to the recommendations of the Canadian Council
for Donation and Transplantation, priority should be given to
young recipients (especially when the organ donor is also
young), donor-recipient pairs with zero mismatch for HLA
ABDR, highly sensitized patients, and those requiring combined
transplants.

Machine Learning Support for Organ Donation
When deciding the suitability of a kidney graft for a recipient,
it is important to estimate how long the donated organ will
remain functional. To address this question, numerous studies
have used machine learning (ML) models to predict kidney
transplant outcomes, each differing in variable and outcome
definitions.

Some models were built using data from either living donor
[11] or deceased donor transplants only [12,13], whereas others
considered both donor types [14].

In 2010, Reinaldo et al [15] evaluated several simple and
interpretable ML models, in which the decision tree model
showed 94% accuracy in predicting graft survival 1 year after
transplant.

A recent study by Luck et al [16] proposed a neural network
model built on data from the Scientific Registry of Transplant
Recipients (SRTR) database, where the outcome of interest was
graft failure. A total of 436 different variables were used to

build the neural network model. The survival predictions were
evaluated using a C-index (the percentage of transplant pairs
correctly ordered by the model according to the observed
survival durations), which was slightly higher than that obtained
using the Cox model (0.655 compared with 0.65).

These studies built and evaluated various ML models; however,
their termination at the stage of proof of concept makes it
difficult to use the results for assistance in clinical
decision-making.

Several tools have reached advanced technological readiness
levels. Patzer et al [14] built a mobile app to predict 1- and
3-year patient survival using multivariate logistic regression
analysis. Kilambi et al [17] quantified the benefits of accepting
a kidney transplant based in part on the expected patient survival
using Cox regression models. Loupy et al [18] designed a tool
to predict long-term kidney allograft failure to guide
posttransplant care, also using a Cox model. To the best of our
knowledge, all published results are based on linear models that
may not capture the nonlinear relationships between the input
variables.

The objective of this project is to develop an innovative solution
of technology readiness level 4 (TRL-4; component and
validation in a laboratory environment) that would use ML to
support medical decisions about accepting kidney transplants
for particular donor-recipient pairs, with specific attention to
DCD donations.

This study describes all stages of development of the ML
technological solution: data acquisition and preparation, training
and evaluation of ML models, and deployment of the solution.

Methods

Data Access and Data Security
BI Expertise obtained permission from SRTR (United States)
to access its extensive historical data on organ transplants that
were previously used in research [1,19].

Special measures were taken to maintain both the confidentiality
and security of personal data. The BI Expertise team leveraged
Microsoft Azure public cloud to ensure that all the data were
secured and only the team could access it remotely. Data
exfiltration risk was avoided by disabling all direct remote
accesses. The environment was only visible to end users using
a virtual machine inside Azure. This virtual machine was
entirely isolated from the computers that were accessing it (no
cut and paste).

The predictive modeling environment was based on the Azure
ML data science platform and all the data resided in Azure
Synapse Analytics. Both platforms were fully integrated to
optimize the data preparation process and feature engineering
activities. Once the predictive model was built and validated,
it was deployed to a specific virtual machine that also hosted
the user interface, which was accessible through a browser using
a computer, tablet, or mobile device.
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Ethics Approval
The proposed architecture was approved by the SRTR research
ethics board (REB 2020-020H), and upon deployment, BI
Expertise agreed to submit it to unannounced audits.

Data Set
This study was based on several data tables from SRTR, namely,
DONOR_DECEASED, REC_HISTO, CAND_KIPA, TXF_KI,
and TX_KI. The tables contained individual deidentified
sociodemographic and medical characteristics of kidney donors
and recipients as well as outcomes of kidney transplantation
such as graft failure, recipient death, or loss to follow-up.

We included first-time kidney recipients who underwent
transplantation between January 1, 2000, and December 31,
2019. This choice of subset was motivated by important progress
made in the field of kidney transplantation at the beginning of
the year 2000, and the chosen data set included transplants after
these changes were made. In addition, by selecting recipients
from the same transplant era, we ensured that all recipients
would have undergone similar methods of matching
donor-recipient pairs [20].

Data Cleaning and Selection of Variables
The selection of variables to be used for survival analysis was
based on expert knowledge, data completeness, and previously
published studies [12,21,22]. The input variables included
sociodemographic characteristics of donors and recipients,
history of comorbidities, blood type, details on donors’ death
and levels of creatinine, time on the waiting list for recipients,
and number of HLA mismatches. These data are typically known
before the decision-making about the transplant and therefore
can be reliably used as input for the ML mode. The exclusion
criteria were the following: (1) variables not known before the
transplantation (ie, immunosuppression therapy), (2) variables
specific for the US medical system (ie, payment source for
transplant recipients), and (3) variables with >20% of missing
observations. Multimedia Appendix 1 provides a complete list
of the variables and their definitions.

Outcome Definition
The primary outcome was death-censored kidney graft survival,
defined as the time elapsed between transplantation and
diagnosis of graft failure. Data were censored at the time of the
most recent follow-up for recipients who still had functioning
grafts, at the time of their last record for those who were lost to
follow-up, and at the time of death for those who died before
experiencing graft failure. Probability of graft survival was
predicted at set time points ranging from 0 to 15 years after
transplantation, with intervals of 3 months between each time
point.

Feature Engineering
Some variables contained duplicate information, such as racial
and ethnic groups. In this case, they were regrouped into a single
variable. This resulted in the creation of new variables, which
are described in detail in Multimedia Appendix 1.

LassoCV, ElasticNetCV, and recursive feature elimination
feature selection methods from the scikit-learn package were
used to select the most important variables.

Survival Analysis Models
Several linear and nonlinear survival models were considered.

Cox Proportional Hazards
The Cox proportional hazards model [23] evaluates the effects
of covariates on survival time and is commonly used in
multivariate survival analysis because of its ease of
implementation and interpretation. The Python package
scikit-survival was used in this study to perform computations
related to the Cox model.

DeepSurv
DeepSurv is a variant of the Cox model [24] that handles
nonlinear data. The hazard ratio is produced by a neural network,
which enables the model to learn from the interactions between
covariates. The Python package pycox was used to perform
training and testing of the DeepSurv model.

DeepHit
DeepHit [25] is an artificial neural network whose output vector
is the joint probability distribution of all possible events (graft
failure in this study) at each time point, which enables the model
to learn the time-varying effects of each covariate on graft
survival. The Python package pycox was used to perform
training and testing of the DeepHit model.

Random Survival Forest
Random survival forest (RSF) [26] is an extension of the random
forest model [27] that takes into account right-censoring of
survival data. An RSF is an ensemble of survival trees, and each
tree is grown on a subsample of the training data. The Python
package scikit-survival was used to build and test the RSF
model.

Recurrent Neural Network

Overview

The structure of our recurrent neural network (RNN) was
inspired by previous studies that described deep recurrent
survival analysis [28] and RNN-SURV [29]. The RNN presented
in this study was implemented in Python using TensorFlow 2.2
(Google Inc).

Structure of the RNN Model

For each of the N time intervals, the covariate vector X is
passed, along with the time interval value t, through a series of
m long short-term memory layers (Figure 1). The time interval
value is added to explicitly capture the time-varying effects of
the covariates. The N outputs are then passed through a dense
layer with sigmoid activation to obtain the hazard rate at each
time step. The hazard rates can be used to compute the estimated
probability of survival at any time step t as follows:
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Figure 1. Structure of the recurrent neural network model. LSTM: long short-term memory.

Loss Function

We compared 2 variants of loss functions, namely, the negative
log-likelihood of the cumulative distribution function on all
samples added to the negative log-likelihood of the probability
density distribution on uncensored samples [28] and the ranking
loss proposed in DeepHit [25].

Postprocessing of the RNN Output

To increase the calibration (refer to the Model
PerformanceEvaluation Metrics section), a method to use the
outputs of the RNN (individual hazard rates) as relative risk
factors was devised, similar to the individual risk scores obtained
from a Cox model. The main difference is that the risk factors
vary over time. Therefore, for each patient, we interpreted the
hazard rates at each time step as a risk score. From these risk
scores, we aimed to obtain calibrated hazard rates to produce
better calibrated survival predictions.

One approach to predict the hazard rates from the Cox model
risk scores is as follows:

Where the baseline hazard can be estimated from the training
data with:

Where d(t) is the number of events at t and R(t) is the risk set
at t, composed of all individuals still susceptible to the event of
interest at time t [30].

A similar method was implemented for our RNN model, with
the modification that the risk scores at each time step are
associated with one of n risk bins, with each risk bin having its
own baseline hazard. The cutoff points for the risk bins are

determined by computing the n-quantiles of the estimated risk
scores of the training samples at each time step.

Calibrated_Hazardi,t = Ri,t * BHk,t: estimated
calibrated hazard rate for transplant i at time step t

Ri,t: risk score for individual i at time step t

BHk,t: baseline hazard for risk bin k at time step t

Where the baseline hazards are estimated from the training data
with:

which represents the number of observed events at time t for
samples of bin k, divided by the sum of risk scores at time t for
samples of bin k that are still susceptible to the event of interest
at time t.

The individual calibrated hazard rates can then be used to
compute survival probabilities.

Training and Evaluation Data Sets
The results presented in this study were obtained using 5-fold
cross-validation. It consists of randomly splitting the data set
into 5 partitions of equal size and repeating the training and
evaluation process 5 times, each time using one partition (20%)
as the evaluation set and the remaining (80%) as the training
set.

Training and evaluating for hyperparameter tuning, choice of
loss function, and choice of training approach were performed
using 5-fold cross-validation (each with different permutations
of the 5-fold partitions). These steps were performed on the
same set used to compare ML models.
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Model Performance Evaluation Metrics

Concordance Index
The concordance index [31] is a measure of the discrimination
power of a model. It measures the concordance between the
ranking of the predicted risk metrics (eg, risk score, failure time,
or probability of failure) and the observed failure times for all
pairs of transplants. A pair of samples i,j is concordant if the
predicted risk score of i is greater than that of j and sample i
has a shorter survival period than j. The C-index is the number
of concordant pairs of transplants divided by the total number
of comparable pairs. The result can take any value between 0
and 1, with 0.5 representing no discrimination (random
predictions) and 1 representing a perfect model.

Harell C-index = where is the risk score
for transplant i.

As the C-index uses a single time-independent risk metric to
rank the transplants, it fails to account for the time-dependent
effects of covariates on the risk of a patient. In the case of
proportional hazard models such as Cox, this has no incidence
(ie, risk scores do not change over time). However, for models
that output individual survival distributions, the estimated risk
of patients may vary with time. For example, a patient with a
higher failure probability than others at an earlier time point
might have a lower failure probability than others later on.
Therefore, the time-dependent concordance index was used to
evaluate the models [32]. For this index, a pair of transplants
i,j is considered concordant if i experienced failure at a time ti
sooner than tj and the probability of i surviving beyond ti is
lower than that of j surviving beyond ti.

Antolini time-dependent C-index = 

Integrated Brier Score
The Brier score [33] for a time point t is the average squared
distance between the predicted probability of surviving beyond
time t and the observed status at t. In the presence of right
censored data, the distances must be weighed using an inverse
probability of the censoring weight method [34].

Brier score (t) = 

Where G(t) = P[censoring time > t] (estimated with the
Kaplan-Meier estimator on censoring data).

The integrated Brier score (IBS) is simply the average Brier
score across all prediction time points.

IBS = 

Calibration
Calibration of a model refers to the goodness-of-fit of its
survival predictions [35]. For example, a model predicts that a
patient has a 70% probability of surviving to time t*. Evaluating
the model’s calibration aims to answer the question whether
the patient can trust this prediction. If 100 patients with identical
characteristics as this one were under observation, it would be
possible to look at their actual survival times and verify if
approximately 70 of them survived to t*. If there was a

significant difference between the predicted and observed
survival rates, it would mean that the model was not well
calibrated [35].

In reality, the data sets are composed of patients with different
characteristics. One common method for evaluating a model’s
calibration at a chosen time point t* is to stratify all the patients
into groups based on the predicted probability of failure by time
t*. For example, one method is to stratify the patients into 10
groups, where the cutoff points are the deciles of the distribution
of the predicted probabilities. For each group, the observed
failure rate by time t* is computed using a Kaplan-Meier
estimator fitted to the patients of the group. This observed failure
rate is then compared with the average predicted probability of
failure by time t* for all patients in the group. The resulting
pairs of predicted and observed values can be visually examined
side-by-side or on a plot. This process can be repeated for all
time points [36].

However, Harrell [37] argued that the binning of the predicted
probabilities leads to a loss of precision. To address this issue,
Austin et al [36] proposed using regression splines to model the
observed failure rate as a function of the complementary log-log
transformation of the predicted failure rate, using the

relationship: . For a visual evaluation
of the calibration at a time t*, an estimate of the observed failure
probability before t* for every predicted failure probability
Fi(t*) can be obtained using the regression splines, and the
resulting pairs can be plotted. With a perfectly calibrated model,
this would yield a diagonal curve.

One of the suggested metrics for numerically assessing the
calibration is the integrated calibration index (ICI) [38], which
is simply the mean absolute difference between the predicted
and estimated observed values.

ICI (t*) = 

Development of the Technological Solution
The developed end-user application provides the relevant graft
survival probabilities in 3 steps. First, users must enter the
required information related to the donor and the transplant
candidate (Multimedia Appendix 1). Second, the predictive
model is run to obtain survival probabilities under 3 simulated
scenarios: the recipient receives the deceased donor kidney (as
per the input of step 1), the recipient receives a kidney from a
predefined average DCD donor, and the recipient receives a
kidney from a predefined average NDD donor. Third, the graft
survival predictions are shown (Multimedia Appendix 1). The
average DCD and NDD results at the current time point are
included to enable the comparison between multiple
donor-recipient matches and to support medical decision-making
about accepting the proposed donor kidney or waiting for the
next available one.

Software Used for the Project
JIRA (project management; Atlassian), Bitbucket (code
management; Atlassian), Confluence (documentation
management; Atlassian), Azure (Microsoft) Cloud Platform
(cloud), Azure Machine Learning (computations), Google Suite,
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Teams (team communication), Azure Secured Virtual Machine
(data security), VS Code (Microsoft), Python (ML model design
and coding), and Expo.io (framework for client web
applications, expo.dev) were the software used for the project.

Code and Model Availability
The code and the trained model can be available upon request
if permission from Health Canada and SRTR is obtained in each
particular case, which is needed for ethical considerations.

Results

Characteristics of the Data Sets
The initial data sets contained information on 210,688 first-time
kidney transplant recipients from deceased donors and included
402 variables. The final data set obtained after data cleaning
and selection of variables contained data on 180,141 transplants
(154,292 from NDD donations and 25,849 from DCD donations)
and included 35 variables. Feature selection methods such as
LassoCV, ElasticNetCV, and recursive feature elimination did

not recommend changing the set of variables chosen based on
manually set exclusion criteria. After one-hot encoding of the
categorical variables, the total number of input covariates was
170 (Multimedia Appendix 1).

Demographics of the patients are shown in Figure 2. This study
considered donor-recipient pairs of all ages, including pediatric
patients (aged <18 years). The data set contained an unequal
number of donors and recipients belonging to different
sociodemographic groups. The number of kidney transplant
recipients increased with age, which may reflect the fact that
the older population is more likely to have end-stage kidney
disease. In contrast, the fewest number of eligible donors per
age group was the ≥60 cohort. This may also be attributed to
the fact that not all kidneys retrieved from the older adult donors
are viable. Older adult donors are likely to have more
comorbidities, making them illegible to donate. The study
population included a large number of male recipients and
donors. It was also imbalanced regarding racial groups, with a
predominant number of White donors over donors of other races,
as well as an unequal number of recipients of different races.

Figure 2. Sociodemographic characteristics of kidney donors and recipients.

Choice of Hyperparameters and Training
The 3 neural network–based models were trained using the
Adam optimizer with a learning rate of 0.001 and batch size of
128. The optimal number of hidden layers and the number of
nodes in the layers were determined separately for each model
by testing a range of possible values, starting with small
networks and gradually increasing their size. In the 3 cases,
increasing the number of hidden layers in the past 3 models
resulted in overfitting and decreased discriminative performance.
Batch normalization and dropout with a rate of 0.10 were used.
In addition, L2 regularization with a factor of 0.001 was used
for the RNN model.

DeepSurv consists of 2 dense layers, with 32 and 16 neurons
in layers 1 and 2, respectively. DeepHit consists of 3 dense
layers with 64, 32, and 16 neurons, respectively. The long
short-term memory layers of RNN contain the same number of
neurons.

The RSF consists of 100 trees, with a maximum depth of 25
nodes. At each node, 13 randomly selected covariates were
considered to split (the square root of the number of covariates).
The minimum number of samples required to split a node was
400, and the minimum number of samples in the leaf nodes was
200. Adding more trees did not increase the discriminative
ability of the model, and reducing the minimum number of
samples to split resulted in overfitting.

Comparison of RNN Loss Functions
Different loss functions (or objective functions) were tested
when building the RNN model. It was found that using the
ranking loss proposed in DeepHit [25] yielded a model with
better discrimination ability. With the deep recurrent survival
analysis [28] loss function, the average C-index was 0.64 on
the graft survival task, whereas with the DeepHit ranking loss,
the C-index averaged approximately 0.66. Therefore, the latter
loss function was used to train the proposed RNN model.

Definition of the loss function:

where

α=.1 (a calibration parameter) and

ci=0 indicates that patient i experienced the event of
interest during observation period.

Using this loss function to train the neural network yields a
model with good discrimination ability but produces poorly
calibrated survival predictions. This is because the loss function
was mainly designed to encourage the correct ordering of pairs.
This issue motivated the postprocessing of the RNN outputs,
which is presented in the Survival Analysis Models section.
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Model Performance
In preliminary experiments, 3 approaches were tested to obtain
survival predictions for DCD kidney transplants with survival
analysis models. DeepHit was used as a benchmark for this
purpose. The first method was to train the model using only the
DCD transplant data, which yielded an average C-index of
0.604. The second method was to train the model using data
from both NDD and DCD transplants, which yielded an average
C-index of 0.631 on the DCD evaluation set. The third method
was to use transfer learning, which consisted of training the
model on the larger NDD transplant data set (to gain general
knowledge on kidney transplants), then training the model a
second time on the DCD transplant data set to gain knowledge
specific to DCD grafts. This approach yielded an average
C-index of 0.625 on the DCD-only evaluation set. Thus, the
model trained only on DCD transplants yielded the poorest
results, which may be explained by the lower volume of data
available for this specific transplant cohort. The best
performance was obtained with the model trained on a data set
that included both NDD and DCD transplants. Therefore, further
development of ML models was based on the combined data
set.

For the final evaluation of the models, a 5-fold cross-validation
was used. It consists of randomly splitting the data set into 5
partitions of equal size and repeating the training and evaluation
process 5 times, each time using one partition (20%) as the
evaluation set and the remaining (80%) as the training set. Table
1 presents the evaluation results for the 5 models that were
explored. The C-index obtained by using the Cox proportional
hazards model was 0.646. The decision tree–based RSF had a
time-dependent C-index of 0.644, whereas the neural
network–based models (DeepSurv, DeepHit, and our proposed
RNN) obtained time-dependent C-indexes of 0.650, 0.661, and

0.659, respectively. Table 1 also presents IBS and ICI for the
1-year, 5-year, and 15-year time points. The ICI for each time
point was the lowest for the Cox proportional hazards model,
whereas the C-index and IBS showed the best values for
DeepHit and RNN, respectively.

Figure 3 shows the smoothed calibration curve for the
cumulative probability of graft failure at 1 year, 5 years, and 15
years. These plots help to visualize the discrepancy between
the graft failure probability predicted by the model and the
observed graft failure rate.

For the probability of graft failure in the first year, all 5 tested
models had similar calibration, as shown by the ICIs in Table
1 and the calibration curves shown in Figure 3. They all tended
to slightly underestimate the survival rate. There were more
significant differences in the calibration of the models for the
probabilities of graft failure in the first 5 and 15 years. The
calibration curves for Cox and DeepSurv are almost perfectly
aligned with the identity line and have very low ICIs, indicating
that the 2 models produce the most reliable individual survival
predictions.

In the case of DeepHit, it is interesting to see that although it
had the best discriminative ability, the model failed to produce
sufficiently accurate survival predictions, especially at later
time points. For the 5- and 15-year time points, DeepHit had
the worst ICI (0.0285 and 0.1356) of all models, and its
calibration curve had the most significant deviation from the
identity line.

The survival predictions produced by the RNN were better
calibrated than those produced by DeepHit and RSF. However,
as seen on the calibration plots, they are not as well calibrated
as those obtained using the Cox and DeepSurv models.

Table 1. Evaluation results for the tested machine learning models.

ICI for 15 yearsICI for 5 yearsICIb for 1 yearIBSaC-indexModel

0.007480.009490.00942c0.154390.646Cox proportional hazards

0.011890.009990.009570.153610.650DeepSurv

0.135610.028580.011710.152590.661DeepHit

0.045590.017390.010580.152880.644RSFd

0.026340.010760.009890.152200.659RNNe

aIBS: integrated Brier score.
bICI: integrated calibration index.
cThe italicized values represent the best result obtained for each evaluation metric.
dRSF: random survival forest.
eRNN: recurrent neural network.
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Figure 3. Calibration plots for the probability of graft failure in the first 1, 5, and 15 years following transplant, on the evaluation data.

Discussion

Overview
This study focused on the development of an ML-based decision
support solution to help kidney transplant practitioners and their
patients make informed decisions when a deceased donor kidney
becomes available. All stages of the development process are
described: data acquisition and preparation, evaluation of
existing survival analysis models, development and evaluation
of a new survival analysis model, and deployment of the
technological solution of TRL-4.

Principal Findings
When building survival analysis models in the context of kidney
transplantation, there are several factors that characterize the

models and ultimately influence the final quality of the
prediction tool.

One factor is the size of the data sets used to build these models.
It varies widely between studies, ranging from 80 [39] to
131,709 transplants [16]. It has been demonstrated that large
sample sizes improve the predictive performance of ML models
[40]. Another important factor is the period for which the risk
of mortality or graft failure is predicted. This may depend on
data availability and duration of the observation period. Mark
et al [22] built an ensemble model to predict patient survival
throughout the first 5 years following kidney transplantation.
Luck et al [16] evaluated the graft survival probability at each
anniversary date of the graft for 15 years following
transplantation. Our study was based on the most recent
available data and included up to 19 years of observations of
180,141 transplant procedures. The models presented here
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evaluate graft survival probabilities at each quarterly anniversary
of the graft for 15 years. To the best of our knowledge, this is
the largest data set with the longest observation period used to
build ML models for predictions in the kidney transplantation
area.

The performance of a predictive model is also strongly
dependent on incorporating prognostically significant variables
into the models. The number of variables used for survival
analysis in the literature ranges from 6 to several hundred
[16,21,41,42]. Selection of a very small number of variables
may lead to the exclusion of important factors that may influence
the outcome of the transplantation, whereas including a very
large number of variables may increase the sparsity of the data,
which in turn may cause overfitting. In this study, variables
were selected based on medical expertise, previous studies
[18,22], and characteristics such as data completeness and data
duplication for the first step (35 variables).

The choice of a survival analysis model is also critical. Multiple
options have been described in the literature, such as the Cox
regression model [18], decision trees [43], support vector
machines [44], Bayesian belief networks [12], RSF [22], and
artificial neural networks [16,21].

In this study, 5 different models were explored: a
regression-based Cox proportional hazards model; RSF; and 3
neural network models, namely, DeepSurv, DeepHit, and a
proposed RNN. To the best of our knowledge, the latter was
used on kidney transplantation data for the first time in this
study. These models were evaluated on the task of predicting
kidney graft survival throughout the first 15 years following
transplantation. Three metrics were used to evaluate each model:
the C-index, IBS, and ICI, along with calibration plots.

Evaluation of ML Models
The results for the C-index metric shown in Table 1 indicate
that the neural network–based models (DeepSurv, DeepHit, and
RNN) had better discriminative ability than the Cox model and
RSF. In fact, the DeepHit model and our proposed RNN model
performed best with a C-index of 0.661 and 0.659, respectively.
This indicates their ability to discern groups of donor-recipient
pairs that were at a higher risk of experiencing graft failure after
transplant from groups that had a lower risk. The improvement
compared with the widely used Cox model (C-index of 0.646)
may be because of the higher capacity for feature extraction by
the neural networks.

The main drawback of the Cox proportional hazards model and
DeepSurv is the assumption that the computed hazard ratio is
time invariant. In contrast, DeepHit and RNN make no
assumptions about the distribution of time-to-event data and
can learn the time-varying effects of covariates, making them
more flexible. This is important when evaluating survival over
a wide time frame, as in our study, over 15 years. For example,
a covariate could have a negative effect on survival in the first
few years after transplantation but no impact in the later years.

Previously published articles on the prediction of survival of
kidney grafts from deceased donors often described different
evaluation metrics, such as accuracy [15,44], mean relative
absolute error, root mean square error, mean absolute error [15],

and C-index [14,16,18], which makes it difficult to perform a
comparison between the studies.

The performance of the proposed DeepHit and RNN models
evaluated with the C-index is comparable with the previously
published iChooseKidney technological solution (0.6640 at 3
years after transplantation) [14] and slightly exceeds the
performance of the deep learning survival model described by
Luck et al [16] (0.6550). However, the comparison of models
based on the C-index alone is limited to the evaluation of their
discriminative ability and does not consider the average accuracy
of the survival predictions. Making use of ICI and smoothed
calibration curves [31,32] helped shed light on the model’s
predictive quality.

From the results presented in Table 1 and Figure 3, we can see
that there is often an imbalance between a model’s
discriminative ability and its calibration. As discriminative
ability is required to differentiate between high-risk and low-risk
kidney transplants, one might prefer a model with a higher
C-index if a comparison of donor-candidate pairs is to be
performed, for example, in the case of organ allocation. In
contrast, as good calibration is required to provide reliable graft
survival predictions, a model with better calibration may be
preferable in cases where personalized expected graft survival
distributions are to be presented, for example, to a transplant
candidate.

Characteristics of the Developed Technological
Solution
We developed a client web application to predict organ survival
probability for each potential kidney donor-recipient pair for a
period between 1 and 15 years after the transplantation. We
opted to use the proposed RNN model to deploy our prototype
application. This model offers a compromise between the good
discriminative ability and the calibration necessary for the
purpose of our application. Indeed, one of the main uses of the
decision support application is to simultaneously present graft
survival probabilities to a kidney transplant candidate and to
offer a point of comparison by presenting graft survival
predictions that the patient could expect with other potential
donors.

It would be possible to use an alternative approach for
computing the predictions at the time now + average time before
a new kidney is available. To achieve this purpose, it would be
necessary to compute the survival for every possible additional
wait time and the probability of that wait time occurring, along
with the patient survival to that wait time. This could be an
objective for future studies.

The presented choice of approach to evaluate the average donor
predictions at the same time now as the predictions for the
offered donor kidney is a matter of simplicity and an effective
way for patients without statistical background to look at 2
options (accept or refuse the transplant) and understand the
possible outcomes.

The client application is at the prototype stage (TRL-4), aiming
to demonstrate the capabilities of the ML predictive model. The
following information about the candidate recipient is entered
in the first step of the application: age, height, weight, ethnicity,
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sex, diagnosis, number of years on dialysis, presence of diabetes,
and presence of angina. The details about potential donor that
are entered in the next step are donor’s age, height, weight,
ethnicity, donation type, creatinine level, history of diabetes,
hypertension diagnosis, hepatitis C diagnosis, and smoking
habit. These covariates are used as input for the trained RNN
model. In the next step, the user selects the number of years for
the prediction target. The output page displays the probability
of survival of the transplant for the given donor-recipient pair
and specified period as well as for the candidate recipient and
average NDD and DCD donors for comparison. It is also
possible to expand the result boxes to obtain a detailed view of
the results for any specific transplant prediction.

Future Perspectives
The current application is recipient-oriented and specific to
kidney transplantation. Future research could expand this
application to other transplanted organs and nonrecipient users.
For example, if connected to a candidate database, the
application can produce an ordered list of optimal
donor-recipient matches when an organ becomes available. The
Expo.io development environment for the client was chosen for
its capability to support web, Android, and iOS environments,
leaving many options open for the distribution and accessibility
of the service. The client also connects to the model by using
an application programming interface. Thus, although the initial
prototype was entirely run in a local environment, the solution
could easily be transferred to a cloud-based environment.

In the future, the application could also be extended to include
additional predictive models to further inform patients. For
example, when a kidney is offered to a patient, it would be
instructive to predict the expected waiting time before a better
kidney becomes available should the patient decide to remain
on the waiting list. The solution could also be upgraded to enable
the recommendation of the best candidate recipient for each
newly available kidney from the existing candidate waiting list
based on the predicted graft survival.

Limitations
Our study has certain limitations, which are important to
mention. A built-in selection bias exists in the SRTR data set.
It is evident that deceased donor kidneys accepted for
transplantation have superior characteristics than those that were
never used for transplantation and therefore do not appear in
the data. The data were imbalanced according to different age,
sex, and racial groups. These selection biases may negatively
affect the accuracy of predictions made for candidate recipients
or donors who fall into underrepresented populations.

Another limitation is the level of detail available in the data set.
The registry-level data from the SRTR certainly does not
encapsulate all the characteristics of the clinical and functional
status of donor-recipient pairs. Consequently, there must be
factors that influence graft survival that were not present in the
data. We also did not consider HLA typing, an important
variable when matching donors and recipients, because of the
complexity of modeling HLA mismatches. We must also
consider the population of the United States, on which the
models were built. Multiple factors, such as age, race, and state
of residency, may reflect the socioeconomic status of patients,
which itself may affect access to health care. To use the models
built in this study in other countries, for example, in Canada,
one must consider that some factors may differently affect graft
survival.

Conclusions
We analyzed and tested 5 ML models to predict kidney graft
survival for a period of up to 15 years after transplantation. This
study focused on patients who received deceased donor kidney
transplants in the United States between 2000 and 2019 and
included both NDD and DCD transplants. The resulting RNN
predictive model was integrated into a decision support
application designed to help kidney transplant practitioners and
their patients make informed decisions regarding transplant
options.
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