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Abstract

Background: Traditional monitoring for adverse events following immunization (AEFI) relies on various established reporting
systems, where there is inevitable lag between an AEFI occurring and its potential reporting and subsequent processing of reports.
AEFI safety signal detection strives to detect AEFI as early as possible, ideally close to real time. Monitoring social media data
holds promise as a resource for this.

Objective: The primary aim of this study is to investigate the utility of monitoring social media for gaining early insights into
vaccine safety issues, by extracting vaccine adverse event mentions (VAEMs) from Twitter, using natural language processing
techniques. The secondary aims are to document the natural language processing techniques used and identify the most effective
of them for identifying tweets that contain VAEM, with a view to define an approach that might be applicable to other similar
social media surveillance tasks.

Methods: A VAEM-Mine method was developed that combines topic modeling with classification techniques to extract maximal
VAEM posts from a vaccine-related Twitter stream, with high degree of confidence. The approach does not require a targeted
search for specific vaccine reaction–indicative words, but instead, identifies VAEM posts according to their language structure.

Results: The VAEM-Mine method isolated 8992 VAEMs from 811,010 vaccine-related Twitter posts and achieved an F1 score
of 0.91 in the classification phase.

Conclusions: Social media can assist with the detection of vaccine safety signals as a valuable complementary source for
monitoring mentions of vaccine adverse events. A social media–based VAEM data stream can be assessed for changes to detect
possible emerging vaccine safety signals, helping to address the well-recognized limitations of passive reporting systems, including
lack of timeliness and underreporting.
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Introduction

Background
Vaccines belong to the broad category of medicines, in a
subcategory known as biologicals [1]. Unlike medicines that
are prescribed to limited populations as a course of treatment
for a disease, vaccines are given to both healthy and vulnerable
populations at large, sometimes over a short period, to enhance
their immune systems’ability to combat a pathogen. In contrast
to those who are taking a medicine to help to cure a disease or
to treat unwanted symptoms, most people receiving a vaccine
are not ill. Therefore, there is a deferred individual benefit to
taking a vaccine, and, consequently, a very low acceptance of
risk regarding vaccines [2]. In addition, the pathophysiology of
vaccine-related adverse events is not as well defined as those
of adverse drug reactions—a reaction triggered by a vaccine
could be caused by any of its multiple ingredients, its underlying
technology (eg, messenger RNA–based vs protein-based
delivery), or even an error in administration [3]—and some
people are particularly prone to reacting to vaccine ingredients
[4]. Furthermore, a vaccine’s time to market may be curtailed,
such as has occurred during the COVID-19 pandemic, and so
provide less opportunities for studying potential vaccine side
effects over a large population for a long time.

Vaccine safety relies upon rigorous compliance to development
and manufacturing standards, well conducted clinical trials,
thorough assessment, licensing, control, and administration of
vaccines. Postlicensure vaccine safety surveillance is a key
component of ensuring vaccine safety [5] and continues in a
variety of forms after regulatory approval or emergency use
authorization. It is the primary mechanism to identify serious
or rare adverse events following immunization (AEFI) that are
unlikely to have been exposed by prelicensure trials, and it
allows surveillance in populations that were unable to be
included in the trials [6]. Identification of minor AEFI is
potentially as important as those of severe adverse events, as
minor AEFI may act as a surrogate warning for more severe
sequelae (eg, increased rates of fever may be a marker for
increased febrile seizures [7])—that is, increased incidences of
even minor events could indicate larger problems.

Traditional passive (spontaneous) surveillance systems, where
a voluntary reporting of AEFI is made by individuals or by their
treating health professionals, are the main method of vaccine
safety monitoring and have proven to be useful in early detection
of vaccine-related and drug-related safety issues [8,9]. Although
these systems are the backbone of drug safety monitoring, they
suffer from major disadvantages, including underreporting,
incomplete data, and time lag between an event happening and
subsequent reporting of it [10]. Active surveillance systems
survey vaccine recipients and vaccine administrators to
determine the outcomes of recent vaccinations, irrespective of
any AEFI experience. Increasingly, alternate data sources are
being added to surveillance systems, as they offer the potential
to capture timely and additional measurements of the quantity
of possible adverse events.

Extensive use of social media has provided a platform for
sharing and seeking health-related information. Social media

data have consequently become a widely used source of data
for public health research [11]. In comparison with established
traditional surveillance systems, social media monitoring is
inexpensive and near to real time and covers large populations
[12], thus offering an easily accessible wide-ranging data source
for tracking emerging trends—which may be unavailable or
less noticeable in data gathered by traditional reporting systems
[13].

Many researchers have used social media as a
pharmacovigilance source [14]. However, there is relative deficit
in the use of social media for AEFI detection. Many
investigations of vaccine and vaccination-related social media
posts are related to sentiments, attitudes, and opinions [15-21].
Studies on using social media for detection of adverse drug
reaction have included vaccine-related words in keyword
searches used for collecting data. An example is an annotated
data set of tweets containing 250 drug-related keywords,
including vaccine, for over a period of 4 months [22]. We
downloaded and assessed these data sets, but they did not
contain any AEFI data. A total of 2 recent studies have focused
on detecting influenza [23] and COVID-19 [24] vaccine adverse
events from Twitter. However, the emphasis of both these
studies were on identifying specific vaccine adverse events
using a lexicon of adverse reactions.

Objectives
In this paper, we use the term vaccine adverse event mention
(VAEM) to refer to any vaccine-related personal health mention,
that is, VAEMs are conversations that contain personal health
mentions in a vaccine context. This distinguishes VAEM from
the AEFI and adverse drug reaction signals used in previous
studies on the use of social media for vaccine and drug reaction
surveillance, as these are searching for specific adverse vaccine
events and drug reactions.

Although vaccine safety surveillance systems monitor for
unexpected, rare, and late-onset events, they also aim to observe
changes in the rate of known and expected events, because
“while rare but particularly serious events can be detected
through review of each individual report or active surveillance,
an increased incidence in a more common AEFI is often more
difficult to detect, and has been described as akin to ‘finding a
needle in the haystack’” [13]. VAEM are conversations, ideally
gathered in volume, that contain information that may be the
common AEFI that are so elusive to traditional reporting, while
also allowing the detection of previously unknown severe events.

This paper presents the VAEM-Mine method, which
encapsulates the workflow and techniques required to enable
detection of VAEM by applying natural language processing
techniques to a relatively unfocused social media stream,
consisting of any vaccine-related Twitter conversation. The
VAEM-Mine method detects likely VAEM based on their
characteristics of being personal health mentions in a
vaccination context. VAEM-Mine has 2 components—a topic
modeling process that initially detects and filters for VAEM
(described in a previous publication [25]) and a classification
task that accurately identifies VAEM in the filtered data—which
is described in detail in this paper.
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Methods

Ethics Approval
Ethics approval for this study was granted by Monash University
Human Research Ethics Committee (project ID 11767).

Data Collection
The Twitter application program interface was used to collect
English tweets with search terms vaccination, vaccinations,
vaccine, vaccines, vax, vaxx, vaxine, vaccinated, vaccinated,
flushot, and flu shot. These were general terms that were
designed to collect a broadly representative sample of
vaccine-related conversations. We included flu shot as a
keyword because we found that this was most often used, rather
than the term flu vaccine, whereas other vaccines were usually
mentioned in conjunction with the word vaccine—and thus, for
them, we only needed to search for vaccine keywords. Upon
examining the downloaded data for specific vaccine names, we
found more records mentioning other vaccines than those
mentioning the influenza vaccine. No specific reaction mentions
were used.

A total of 400,000 tweets were initially collected across 5
months, from February 7, 2018, to June 7, 2018, which were

used for an initial training and evaluation of topic models and
classifiers. An additional 411,010 tweets were collected from
August 9, 2018, to July 20, 2019, which were used to verify the
trained topic models and classifiers and to train more powerful
classifiers. The resulting data consisted of a total of 811,010
tweets and a daily average of 2906 tweets.

The data were prepared by removing URLs and by converting
to lower case. Duplicates were removed based on tweet ID and
text. Other preparation included removing hashtags, usernames,
punctuation, and numbers. Tweets with <5 words were removed.
N-grams were created for topic modeling; preparation for
classification is explained in the following section. The final
cleaned tweets were 82.21% (328,822/400,000) of the initial
collection and 87.48% (359,535/411,010) of the second
collection—a total of 688,357.

Table 1 illustrates a sample of tweets that mention receiving
vaccinations or vaccines. The first 3 examples contain genuine
VAEM, but the others do not—even when the language is
similar. Our goal was to first isolate the most likely records
describing personal experiences of vaccination and then to refine
that selection to those that are genuine adverse reaction
mentions.

Table 1. Sample of vaccine-related tweets.

TypeTweet

VAEMa“Aw wtf my poor arm is dead af from my flu shot.”

VAEM“Cannot lie on belly, baby gets squished; cannot lie on back, baby squishes; cannot lie on right side, i get heartburn; cannot lie on left
side, vax arm is sore; let the third trimester moaning begin!”

VAEM“2 people recently, including my 88yo father, had flu shot and really bad reaction afterwards. both said it was probably as bad as getting
the flu!!! flu2018 maybe undercooked the vaccine.”

Non-VAEM“I got vaccinated as a kid. As a result, I'm now starting to gray and bald. My balding got so bad I had to shave my head. I've also gained
weight. Because of vaccines I've started aging instead of dying as a baby.”

Non-VAEM“Urgent vaccination plea after measles outbreak in West Yorkshire.”

Non-VAEM“Researchers are developing a personalized vaccine which they hope could tackle ovarian cancer.”

aVAEM: vaccine adverse event mention.

The topic modeling showed that VAEM and similar personal
health mentions were a distinct topic (among 13 vaccine-related
topics), and therefore, that topic models could be used to filter
for the tweets that were most similar to VAEM. Taking tweets
from only that topic meant that relatively homogenous data sets
could be created for labeling and subsequent training of
classifiers. The use of topic modeling for filtering data before
classification was adopted as a core component of the
VAEM-Mine method. A previous publication [25] described
the process of choosing the best performing topic models for
the method, including a detailed description of the scoring
method used to identify the best models.

Classification

Overview
As described in the previous section, data were collected in 2
phases. Topic models were trained on the first-phase data and
were used to filter that data and the subsequent second-phase

data into likely VAEM-containing data sets, which were then
used for classification. Classifiers were trained and assessed
with the filtered first-phase data set and the combined (filtered)
first-phase and second-phase data sets. The following section
describes the creation of these data sets; the subsequent section
describes the classifiers.

Classification Data Sets
The original prepared (cleaned) data collections of 328,822 and
359,535 tweets were reduced, by applying topic model–based
filtering, to data sets containing 18,801 (5.72%) and 80,372
(22.35%) tweets that were more likely to contain VAEMs—a
total of 99,173 tweets, which was only 14.41% (99,173/688,357)
of the total original cleaned data.

Therefore, filtering eliminated approximately 85.59%
(589,184/688,357) of the data, which did not contain any
significant numbers of VAEM. These more VAEM-focused
data sets were binary labeled by the author (SKH), as either
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VAEM or non-VAEM. All the labels were verified by the
domain expert. Although only 10.07% (9991/99,173) of the
tweets were identified as VAEM, this was a considerably better
proportion of VAEM compared with the original cleaned data,
which contained VAEM in only 1.45% (9991/688,357) of the
tweets.

Balanced data sets of 18.72% (3519/18,801) and 19.57%
(15,730/80,372) of the tweets were created from these
imbalanced data sets together with holdout test data sets—these
were an imbalanced test set of 3.27% (614/18,801) of the tweets
and a balanced test set of 1.03% (828/80,372) of the tweets.
The main data sets were named Phase-One and Phase-Two data
sets, and the test data sets were referred to as Phase-One Test
and Phase-Two Test data sets.

The imbalanced Phase-One Test data set of 3.27% (614/18,801)
of the tweets were obtained from Victoria, Australia, in the
period preceding and during the 2018 influenza immunization
period. These tweets were assembled to enable comparison of
tweet trends with statistics from the Australian Victorian vaccine
authority, Surveillance of Adverse Events Following
Vaccination In the Community. With 90 VAEM and 524
non-VAEM, the test set was imbalanced but reflected how the
data were obtained through the topic model filtering process,
without any subsequent balancing. The Phase-One Test data
set was used as a benchmark throughout the classification
testing. The data sets (Table 2) were combined to retrain
classifiers and train transformer-based classifiers—becoming
a Combined data set of 19,249 tweets and a Combined Test data
set of 1442 tweets. The training data were split into training and
validation data with a 75:25 ratio.

Table 2. Data set numbers.

Total, nPhase-Two data, n (%)Phase-One data, n (%)Stage

688,357359,535 (52.23)328,822 (47.77)Topic modeling

−589,184−279,163 (47.38)−310,021 (52.62)Filtering out by topic modeling

99,17380,372 (81.04)18,801 (18.96)After topic modeling

−78,482−63,814 (81.31)−14,668 (18.69)Filtering out by data preparation and balancing

20,69116,558 (80.03)4133 (19.97)For classification training

19,24915,730 (81.72)3519 (18.28)For training and validation

1442828 (57.42)614 (42.58)For testing

Classifiers
Our default data approach with traditional models (ie, not neural
network–based) was bag-of-words [26], represented via
compressed sparse matrices. We used SKLearn (Scikit-learn)
[27] vectorizing libraries such as TfidfTransformer [28] for
tokenizing lowercase text for the standard classifiers. A grid or
random search was used to ascertain the best combinations of
vectorizer, removal of stop words and numbers, and n-grams.
The neural networks used dense word embedding vectors via a

Word2Vec skip-gram corpus [29] for Convolutional Neural
Networks (CNNs) and Long Short-Term Memories (LSTMs),
and the Word2Vec corpus used Gensim library functions [30]
using all the Twitter data. The transformer models used
byte-pair-encoding [31]; the byte-pair-encoding tokens were
derived only from the filtered texts we had retained from topic
modeling. The classifiers are listed in Table 3, and details of
their definitions and parameters are listed in Multimedia
Appendix 1.
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Table 3. List of classifiers.

Library or GitHub sourceModels

sklearn.linear_model [32]LR CVa

sklearn.linear_model [32]SGDb Classifier

sklearn.svm.SVC [33]Linear SVCc

sklearn.ensemble [34]RFd

sklearn.ensemble [34]Extra Trees

sklearn.naive_bayes [35]Multinomial NBe

GitHub Joshua-Chin/nbsvm [36]NB SVMf (combined NB and Linear SVM)

GitHub dmlc/xgboost [37]XGBoostg

Majority voting [38]Ensemble (NB SVM, LR CV, SGD, Linear SVC, and RF)

Pytorch [39], RaRe-Technologies [30], Shawn1993 [40], and bamtercelboo
[41]

CNN,h LSTM,i BiLSTM,j GRU,k BiGRU,l CNN-BiLSTM, and CNN-
BiGRU

Pytorch; huggingface transformers [42]RoBERTa,m RoBERTa Large, BERT,n XLNet,o XLNet Large, and XLMp

aLR CV: Logistic Regression Cross Validation.
bSGD: Stochastic Gradient Descent.
cSVC: Support Vector Classification.
dRF: Random Forest.
eNB: Naïve Bayes.
fSVM: Support Vector Machine.
gXGBoost: Extreme Gradient Boosting.
hCNN: Convolutional Neural Network.
iLSTM: Long Short-Term Memory.
jBiLSTM: Bidirectional LSTM.
kGRU: Gated Recurrent Unit.
lBiGRU: Bidirectional Gated Recurrent Unit.
mRoBERTa: Robustly Optimized Bidirectional Encoder Representations Pretraining Approach.
nBERT: Bidirectional Encoder Representations.
oXLNet: Generalized Autoregressive Pretraining for Language Understanding.
pXLM: Cross-Lingual Language Model.

VAEM-Mine Method
The classification models were the final component of a pipeline
named the VAEM-Mine method (Figure 1), consisting of
processes that started with data collection and cleaning, followed
by processing through topic models to filter for data that were
as close as possible to the VAEM, and then, a focused binary
classification approach for isolating VAEM.

The method included decision points to determine the
appropriate direction, either the training process or the
application of the trained models to incoming data. At the
beginning of the topic modeling phase, a trained model did not
exist; thus, the work of training the topic models began. The
first step was to label some examples of the subject of interest
(in this case, VAEM) and additional examples of other subjects.
This enabled the application of a topic modeling scoring, which

measured how the VAEM-label of interest was distributed in
the topics, compared with other labeled topics. A topic model
was considered to score well if the VAEM were concentrated
in only a few topics, and ideally in only 1 topic, with minimum
data belonging to the other labels. Further refinement of the
data was possible by a second stage of topic modeling on the
data obtained from the top model of the first stage. The second
stage identified topics that had a high ratio of VAEM to other
subjects in the texts, but at the expense of losing some texts
containing VAEM. Having trained the models, they could be
applied to filter the incoming data, and it was up to the user
whether they take only the output of the best topic (or topics)
of the first-stage topic model or further refine the data by taking
it from selected topics of the second-stage topic model. The
topics of the first stage of topic modeling were also potentially
useful to obtain a domain taxonomy.
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Figure 1. The vaccine adverse event mention–mine method. CNN: Convolutional Neural Network; LSTM: Long Short-Term Memory.

The filtered data were handled by the classification phase, which
also had the decision point for either training classifiers or using
trained classifiers. When training, the choice of classifiers should
relate to the quantity of available data, and if results are not as
expected, a decision may be made to obtain more data. The
method required the incoming filtered data to be labeled for the
creation of data sets suitable to train the classifiers. It
additionally required the creation of domain-specific
embeddings. The VAEM-Mine method can be adopted as a

workflow to tackle any similar task of identifying personal
health mentions.

Results

Classification Analysis
Classification training and evaluation was conducted twice;
first, with the filtered data that were obtained from applying
topic modeling to the initial phase of data collection and then,
with the data obtained through topic model filtering over all the
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collected data. The following sections describe these as
Phase-One and Phase-Two classification.

Phase-One Classification
The first phase of classification experiments used a training set
of 2639 records, a validation set of 880 records, and the

imbalanced holdout Phase-One Test data set of 614 tweets. The
F1 scores for the models evaluated in this phase are listed in
Table 4.

Table 4. Phase-One F1 scores.

Combined testBalanced testImbalanced testValidationModel

0.8250.8460.7620.842CNNa-BiGRUb

0.8240.8410.767N/AdBERTc

0.8220.8280.7930.807BiGRU

0.8080.8150.7770.805CNN–LSTMe

0.8070.8070.8070.815BiLSTMf

0.8040.8220.7300.820GRUg

0.8020.8100.7660.816CNN-BiLSTM

0.7980.8000.7870.816CNN

0.7960.8030.7670.796LSTM

0.8100.8290.7260.815Ensemble

0.8030.8200.7300.812Logistic Regression CVh

0.7970.8240.6930.814Linear SVCi

0.7850.8250.6360.805SGDj

0.7850.7890.7670.792Naïve Bayes SVMk

0.7790.8010.6940.814Random Forest

0.7770.8010.6880.833Extra Trees

0.7740.7910.7040.811XGBoostl

0.7560.7990.6050.798Naïve Bayes

aCNN: Convolutional Neural Network.
bBiGRU: Bidirectional Gated Recurrent Unit.
cBERT: Bidirectional Encoder Representations.
dN/A: not applicable.
eLSTM: Long Short-Term Memory.
fBiLSTM: Bidirectional Long Short-Term Memory.
gGRU: Gated Recurrent Unit.
hCV: Cross Validation.
iSVC: Support Vector Classification.
jSGD: Stochastic Gradient Descent.
kSVM: Support Vector Machine.
lXGBoost: Extreme Gradient Boosting.

Table 4 includes subsequent tests of the models against the
Phase-Two Balanced test data set and a Combined Test data set
that uses all the test data. F1 scores were measured for the
positive, VAEM class, rather than for both classes. The models
are arranged in order of the best F1 score over the test data sets;
validation scores are also included, where available. Validation
F1 scores are not available for models using transfer
learning—they used a cross-validation approach, and thus, were

given combined training and validation data and were evaluated
only against test data sets.

The Ensemble model shown in the middle of Table 4 was scored
based on a maximum voting of the predictions of 5 traditional
classifiers on the test data set—consisting of the Naïve Bayes
Support Vector Machine, Linear Regression Cross Validation,
Stochastic Gradient Descent, Linear Support Vector
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Classification, and Random Forest classifiers. It had the overall
best score among the traditional classifiers on the large test data.

All the deep learning models outperformed the best traditional
classifier on the Imbalanced Test data set, by at least 6% and
almost as much as 10%—the improvement was mostly owing
to great capacity to correctly distinguish non–VAEM-related
tweets, and thus obtain a greater precision. However, when
evaluated against the Balanced and Combined Test sets, the
results differed—here, the traditional classifiers outperformed
many of the deep learning models, especially the Ensemble,
which was only surpassed by the top 3 deep learning models.

Phase-Two Classification
The second phase of classification used 5 times as many records
to train the models, by combining the 3519 training records
from the first phase with another 15,730 records, resulting in a
total of 19,249. Phase Two also introduced a large, more
balanced test data set of 828 records. The greater amount of
data allowed a proper assessment of neural networks, but it also
improved model performance across the board (Table 5). The
imbalanced change and combined change columns show the
percentage increase in the models’F1 score over the Imbalanced
Test and Combined Test data sets, compared with their
Phase-One equivalents.

There was a much greater consistency of scoring over all the
test data sets, and the top models scored best over all the test
data sets. The highest score was from the Robustly Optimized
Bidirectional Encoder Representations Pretraining Approach
(RoBERTa) Large Transformer model, with an F1 score of
0.919 on the Imbalanced data set; the standard RoBERTa model
was placed second.

One of the most noteworthy effects of having more data was
that the previously strong combinations of CNN with
Bidirectional Gated Recurrent Unit and Bidirectional LSTM
models were surpassed by the LSTM on the Imbalanced Test
data set, both when combined with a CNN but most significantly
as a stand-alone model. The LSTM in fifth position on the
imbalanced test scoring was only 2.5% behind the score of the
RoBERTa Large model. One can fairly conclude that a CNN
or hybrid CNN approach performs well when limited data are
available but will likely be surpassed by architectures designed
for sequential language processing as more data become
available.

A detailed analysis of the classifiers’ performance is provided
in Multimedia Appendix 2.
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Table 5. Phase-Two F1 scores.

Combined change, %Imbalanced change, %Combined testBalanced testImbalanced testValidationModel

——c0.9100.9080.919N/AbRoBERTaa Large

——0.9040.9050.901N/ARoBERTa

——0.9020.9060.884N/AXLNetd Large

——0.8970.9030.870N/AXLNet

——0.8970.8940.910N/AXLMe

7.712.60.8870.8920.863N/ABERTf

8.27.90.8900.8960.8550.877BiGRUg

7.111.40.8840.8900.8490.874CNNh-BiGRU

10.314.10.8780.8790.8750.866LSTMi

8.110.90.8730.8760.8620.866CNN-LSTM

8.850.8780.8840.8470.872BiLSTMj

7.913.10.8680.8760.8250.869GRUk

8.67.60.8710.8790.8240.872CNN-BiLSTM

7.22.40.8560.8660.8050.864CNN

6.812.60.8650.8740.8180.870Ensemble

7.310.50.8610.8730.8070.866Logistic RCVl

9.726.70.8610.8730.8060.865SGDm

7.515.70.8570.8690.8020.864Linear SVCn

9.514.70.8530.8640.7960.857Random Forest

9.214.70.8490.8620.7890.857Extra Trees

5.93.90.8320.8380.7980.838NBo SVMp

7.41.30.8310.8540.7140.845XGBoostq

8.721.50.8220.8410.7350.835NB

aRoBERTa: Robustly Optimized Bidirectional Encoder Representations Pretraining Approach.
bN/A: not applicable.
cChange calculation was not performed because no previous figures existed.
dXLNet: Generalized Autoregressive Pretraining for Language Understanding.
eXLM: Cross-Lingual Language Model.
fBERT: Bidirectional Encoder Representations.
gBiGRU: Bidirectional Gated Recurrent Unit.
hCNN: Convolutional Neural Network.
iLSTM: Long Short-Term Memory.
jBiLSTM: Bidirectional Long Short-Term Memory.
kGRU: Gated Recurrent Unit.
lRCV: Regression Cross Validation.
mSGD: Stochastic Gradient Descent.
nSVC: Support Vector Classification.
oNB: Naïve Bayes.
pSVM: Support Vector Machine.
qXGBoost: eXtreme Gradient Boosting.
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VAEM-Mine Method Performance
Here, we assess the overall effectiveness of the method,
regarding the quantities of tweets having VAEMs that were
progressively filtered out by the method. The values presented
are the total numbers of tweets collected and processed via the
method, with estimates where appropriate.

Topic Modeling Phase
Table 6 depicts the numbers obtained from after data collection
to the completion of the topic modeling. From the original

811,010 records, 122,653 (15.12%) records were removed by
data cleaning, and topic modeling was used to process 688,357
(84.87%) records. Stage 1 of topic modeling filtered out 82.86%
(570,383/688,357) of the records to retain 17.14%
(117,974/688,357) of the records likely to contain VAEM. The
data were approximately 14.55% (117,974/811,010) of the
original total and contained >99% of all the available VAEM
(Multimedia Appendix 3).

Table 6. Summary of topic modeling counts (N=811,010).

Counts, n (% of initial data)Steps

811,010 (100)Tweets collected

–122,653 (–15.12)Cleaned

688,357 (84.88)Tweets after cleaning

–570,383 (–70.33)Discarded (stage 1)

117,974 (14.55)Tweets after stage 1

–19,083 (–2.35)Discarded (stage 2)

98,891 (12.19)Tweets after stage 2a,b

aStage 2 proportions—non–vaccine adverse event mention: 88,900 and vaccine adverse event mention: 9991 (10.10% of stage 2 data; 1.45% of tweets
after cleaning; 1.23% of initial data).
bVaccine adverse event mention proportions—in other stage 2 topics: 2367 and in best stage 2 topic: 7624 (76.31% of vaccine adverse event mention).

To prepare for the first round of classification, additional 19,083
records were discarded—those which were not in the top 3
topics of the stage 2 topic model. Subsequent labeling of the
discarded topic most likely to contain VAEM (based on the
distribution of topic model labels) showed only 1.49% (94/6274)
of VAEM in the data, which was approximately 5.15%
(94/1826) of the VAEM in the first round.

For the second round of classification, all the records that were
identified as likely VAEM by the topic model were retained.
The resulting 12.19% (98,891/811,010) records retained over
both rounds of topic modeling were labeled, and VAEM were
found to be 10.10% (9991/98,891) of the retained data. The
stage 2 topic models’ topic numbers were assessed, and it was
found that the best stage 2 topic of 14,498 tweets contained
76.31% (7624/9991) of the retained VAEM, and there were
approximately 11.10% (7624/6874) more VAEM than
non-VAEM in the topic.

From these figures, we conclude that topic modeling is an
effective filtering mechanism, as it identified approximately all
the VAEM, while removing a lot of unwanted data. The filtered
data were more manageable for labeling for classification than
it would have otherwise been, and if needed, the filtered output
of the stage 2 topic model can be used as it is, with the
understanding that it discards some VAEM and still contains a
small but similar number of non-VAEM. However, as discussed
previously, classification is a more precise final step to obtain
VAEM from the filtered records.

Classification Phase
To assess classifier effectiveness regarding the total data, the
recall and precision of the best classifier, the RoBERTa Large

model, were applied to the total VAEM to obtain an estimate
of its performance on the total VAEM. These were a precision
score of 0.874 and a recall score of 0.948 for the combined test
data:

1. Applying the recall score of 0.948 to the total 9991
VAEM-containing tweets, we estimate that 94.81%
(9472/9991) of the VAEM tweets would be correctly
classified and 5.19% (519/9991) of the VAEM would be
missed.

2. We find that 1.54% (1370/88,900) of the non-VAEM tweets
would be added to the 9472 tweets to match to the precision
score of 0.874 (9472/10,842).

3. These results of 94.81% (9472/9991) of VAEM together
with 1.54% (1370/88,900) of the non-VAEM in the
predicted positive class were clearly superior to those
obtained with the best topic of stage 2 topic modeling,
where we saw the proportion of VAEM in the best topic
was 76.31% (7624/9991) and the almost equal number of
non-VAEM in the topic was approximately 7.70%
(6847/88,900) of the non-VAEM.

Combined Topic Modeling and Classification
Effectiveness
By measuring the combined effectiveness of topic modeling
and classification, the following results are estimated:

1. As explained in Multimedia Appendix 3, counts of VAEM
identified via topic modelling were estimated to be 99% of
all likely VAEM; therefore, with 99% being represented
as a count of 9991 VAEM, it is estimated that 10,090
VAEM originally existed.
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2. A total of 8992 VAEM are estimated to be identified via
the combined effects of cleaning, topic modelling, and
classification from the original 811,010 records, being at
least 89.11% (8992/10,090) of all likely VAEM and 1.11%
(8992/811,010) of the original data.
• A total of 98.89% (802,018/811,010) of the data were

eliminated through cleaning, topic modeling, and
classification.

• Totally, around 11% (1098/10,090) of the VAEM were
also eliminated during this processing; the attrition is
a consequence of the filtering and classification
required to capture the estimated 89.12%
(8992/10,090).

3. Overall, 98.89% (802,018/811,010) of data were eliminated
as not containing VAEM, with a very small amount
misidentified, to identify 1.11% (8992/811,010) of the data
as having VAEM, with 90% success.

The results indicate that the combined approach of topic
modeling followed by classification effectively identifies and
isolates VAEMs from approximately all other vaccine-related
Twitter posts. The VAEM-Mine method enables us to identify
the most effective topic models and classifiers for the core task
of isolating VAEM. In particular, the key to the method’s
success is the topic modeling phase, which drastically reduces
the amount of irrelevant data and thus delivers manageable data
to the classification phase. As natural language processing
technologies improve and new topic models and classifiers can
be introduced, we assume that even these results will improve.

Discussion

The key objective of this study was to contribute to research on
vaccine safety surveillance, by illustrating that social media
monitoring has the potential to augment existing surveillance
systems. We have demonstrated a topic modeling and
classification VAEM-Mine method for identifying VAEM with
high degree of sensitivity and specificity following vaccination.

Principal Findings
The VAEM-Mine method approached the problem of finding
sparse VAEMs by using topic modeling followed by
classification. Topic modeling identified texts based on their
semantic and syntactic nature. Then, it was used to extract those
tweets that predominantly describe personal health issues in
relation to vaccines. Classification identified VAEMs from the
filtered texts with high degree of accuracy. Neither of the
machine learning components were explicitly trained on specific
reaction keywords, instead they identified texts owing to their
innate capacity to detect patterns in language structure.

Other studies on detecting influenza [23] and COVID-19 [24]
have required purpose-built machine learning classifiers that
identify specific adverse event reactions from tweets. Their
classifiers were trained to identify known reaction keywords
derived from medical databases. Our approach relies on
language features of the tweets to elicit the likely cohort and
the power of modern transformer classifiers to determine the
true signals. By tackling the problem of finding adverse events
through the lens of the language used in personal health

mentions, we conclude that social media can provide a wealth
of useful data.

The VAEM-Mine method has significant capability to
successively isolate VAEMs from the massive amount of other
vaccine-related Twitter posts. The topic modeling phase could
isolate up to 99.02% (9991/10,090 [estimated]) of the Twitter
posts that contained VAEM. The data identified by Stage 1
topic modelling as likely containing VAEM were only 14.55%
(117,974/811,010) of the original data, thereby eliminating
85.45% (693,306/811,010) of mostly irrelevant posts. The
classification phase identified 8992 (90%) of the 9991 VAEM
with an F1 score of 0.91. The combination of topic modelling
and classification resulted in the identification of 89.12%
(8992/10,090 [estimated]) of the VAEM.

Training the topic modeling component of the method is enabled
by identifying the most effective topic models by using F1

scoring over a small number of labeled posts—the scoring
identifies when topic models are most effective at grouping
labeled VAEM into a topic. The topic modeling scoring method
is an important contribution of this study.

This study also presents detailed reporting, including
comparisons, on a range of classification models, including
traditional machine learning models and deep neural (deep
learning) networks. Their effectiveness was measured against
different-sized data sets, emulating data sizes that are likely to
be available to other researchers [43], and we used charts
(Multimedia Appendix 2) to illustrate how the amount of
training data affects model recall and precision.

Limitations
There are unavoidable issues and potential biases that result
from using any social media data. A limitation of this study is
the use of only English-language tweets as data source; the
approach needs to be validated by using other social media data
sources and other languages. Although the data collection for
this study spanned a year and included some potential trend
patterns during influenza seasons, a long-term data collection
would be better for any analysis of trends. At the time of the
study, a full year’s data were required to properly train and
evaluate the classifiers—this was in part because of the limited
pipeline of the Twitter application program interface and
because data collection was from a period before the COVID-19
pandemic and signals were correspondingly less frequent
compared with those found during the COVID-19 vaccines
rollout.

However, the proposed VAEM-Mine method can identify
VAEM with F1 score of 0.91 and is applicable to any similar
problem of detecting personal health mentions in social media
posts based on the language of conversations.

Conclusions and Future Research
We have determined that the VAEM-Mine method is an
effective approach for both identifying and applying the topic
models and classifiers that, when combined, can filter out the
vast amount of irrelevant vaccine-related conversations and
isolate VAEMs.
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A key contribution of this study is that appropriately scored
topic modeling is highly effective for identifying social posts
that might contain VAEM. The technique of F1 scoring of topic
models based on a small number of labeled posts, identified in
this study, is practical and easily implementable and can be used
by other researchers to assist with identifying topic models that
group texts on specific language features.

The volume of social media posts regarding the current
COVID-19 pandemic is immense, but those that are related to
personally experiencing illness owing to the virus or vaccines
are a small portion of these; however, they contain similar
language. Currently, we are applying the VAEM-Mine method
to both internally gathered and published [44] COVID-19

vaccine–related Twitter data sets to examine trends in VAEM
reporting. There are several ways in which the identified VAEM
posts can be used for vaccine safety signal detection. Among
them are (1) examining individual posts by domain experts; (2)
further classifying the posts to identify adverse events of special
interest, which include vascular, neurological, or allergic
disorders and enhanced disease; and (3) measuring changes of
post volumes that might indicate unfolding events.

This paper interprets the success of the VAEM-Mine method
in terms of percentages of data captured by the method and
compares classifiers in terms of F1 scores. Future studies can
analyze the method’s success in terms of model explainability
[45].
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