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Abstract

Background: Globally, the preterm birth rate has tended to increase over time. Ultrasonography cervical-length assessment is
considered to be the most effective screening method for preterm birth, but routine, universal cervical-length screening remains
controversial because of its cost.

Objective: We used obstetric data to analyze and assess the risk of preterm birth. A machine learning model based on time-series
technology was used to analyze regular, repeated obstetric examination records during pregnancy to improve the performance
of the preterm birth screening model.

Methods: This study attempts to use continuous electronic medical record (EMR) data from pregnant women to construct a
preterm birth prediction classifier based on long short-term memory (LSTM) networks. Clinical data were collected from 5187
pregnant Chinese women who gave birth with natural vaginal delivery. The data included more than 25,000 obstetric EMRs from
the early trimester to 28 weeks of gestation. The area under the curve (AUC), accuracy, sensitivity, and specificity were used to
assess the performance of the prediction model.

Results: Compared with a traditional cross-sectional study, the LSTM model in this time-series study had better overall prediction
ability and a lower misdiagnosis rate at the same detection rate. Accuracy was 0.739, sensitivity was 0.407, specificity was 0.982,
and the AUC was 0.651. Important-feature identification indicated that blood pressure, blood glucose, lipids, uric acid, and other
metabolic factors were important factors related to preterm birth.

Conclusions: The results of this study will be helpful to the formulation of guidelines for the prevention and treatment of preterm
birth, and will help clinicians make correct decisions during obstetric examinations. The time-series model has advantages for
preterm birth prediction.

(JMIR Med Inform 2022;10(6):e33835) doi: 10.2196/33835
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Introduction

Background
Preterm birth, defined as birth occurring before 37 weeks of
completed gestation, is the primary cause of neonatal death and
disability and affects the long-term health of newborns [1,2].

According to the World Health Organization global action report
on preterm birth, there are approximately 15 million premature
infants born in the world every year, with an incidence rate of
5% to 18%; 1 million of these premature infants die [3]. China
is the most populous country in the world, and the
implementation of the two-child policy has increased the average
age of first pregnancy and the incidence of preterm birth [4-6].
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Compared to full-term birth, prematurity imposes adverse effects
on the health and safety of both the pregnant woman and the
infant. Prematurity increases the incidence of congenital
malformation, being small for gestational age, and nervous
system diseases associated with immature organs [7-9].
Therefore, early prediction of preterm birth and preventive
measures have a significant potential to reduce mortality and
improve the survival rate of preterm infants [10,11].

Despite the serious clinical consequences, there are currently
no effective early screening methods for preterm birth. It is
generally considered that ultrasonography cervical-length
assessment is the most effective screening method [11,12], but
routine, universal cervical-length screening remains
controversial because of its cost [13,14]. Cervical screening is
not popular in China and is performed only for pregnant women
with cervical insufficiency [15]. Fetal fibronectin is an
extracellular matrix glycoprotein that has also been extensively
studied as a predictor of preterm birth, and although it has high
specificity, it has a low detection rate [16]. Other biomarkers,
including inflammatory factors, serum proteomics, and genetic
factors, are associated with preterm birth [17], but each of these
only has good performance in a subset of cases, and few studies
have demonstrated that they are sufficiently useful for clinical
use.

There is not a single or combined screening method for preterm
birth that has high sensitivity and can reliably identify women
at risk for preterm birth [11]. The etiological mechanism of
preterm birth is elusive, and the interaction between risk factors
is complex. Machine learning algorithms based on time-series
technology can solve nonlinear relationships between
multi-dimensional variables and analyze and mine their
time-series characteristics. These machine learning models have
been shown to be effective in the prediction of obstetric diseases
[18,19]. Therefore, this paper proposes a time-series preterm
birth prediction model based on a long short-term memory
(LSTM) network.

Related Work
In the literature, various methods have been proposed to predict
the risk of preterm birth with machine learning. These methods
can be broadly categorized into 2 types, according to their data
source: special examination data or routine clinical data. Special
examination data include findings from the cervicovaginal fluid
[20], electrohysterography [21], and whole-blood gene
expression [22]. These data need special methods to obtain and
are not suitable for large-scale initial screening. Therefore,
research results based on these data have only been shown to
have better prediction performance in small-sample data sets.
Other research has sought to build prediction models based on
routine clinical examination data and demographic data. Koivu
et al [23] used a US Centers for Disease Control and Prevention
(CDC) data set of almost sixteen million observations to build
a prediction model; the best-performing machine learning model
achieved an area under the curve (AUC) of 0.64 for preterm
birth when using external the New York City test data. Lee et
al [24] used the same CDC and New York City data sets to build
an artificial neural network prediction model; it also had an
AUC of 0.64. Weber et al [25] assessed the prediction of early

(<32 weeks) spontaneous preterm birth among non-Hispanic
women by applying machine learning to multilevel data from
a large birth cohort; the AUC of this prediction model was 0.67.

Although the above prediction models have relatively reliable
performance, they all use huge, complex data sets for analysis.
It can be difficult to obtain complete data sets of this size and
complexity because of privacy issues. More importantly, these
models ignore the influence of time-related factors. Time-series
analysis and prediction methods predict future developments
according to tendencies in past changes and highlight the role
of time factors in making predictions. In fact, obstetric
examinations are continuous and repeated time-series records
and are considered to be related to pregnancy risk [26]. Previous
studies have reported that time-series models perform well in
the field of obstetrics. For example, Tao et al [27] used maternal
weight change trajectories during pregnancy to establish a
time-series hybrid model to predict the birth weight of newborns.
Zhou et al [28] predicted the risk of postpartum hemorrhage
using continuous data from prenatal physical examinations.
Compared with other biological phenomena, the 280-day
gestational cycle has a relatively fixed time; pregnant women
also have high compliance to obstetric outpatient examinations
[29]. Therefore, a time-series model to mine time-series
characteristics from data obtained during pregnancy has high
potential.

Few studies have described the interpretability of their models.
Khatibi et al [30] used Iran’s national databank of maternal and
neonatal records to design a map/reduce phase-based, parallel
feature selection machine learning algorithm to predict the risk
of preterm birth. The map phase used parallel feature selection
and classification methods to score features, while the reduce
phase aggregated the feature scores in order to determine the
contribution of predictors to the model. Similar methods include
the calculation of frequency statistics, the Gini index and other
indicators that trace the decision-making process of the tree
model [31], and calculating Shapley values to define the
importance of features [32].

Although none of the above methods are suitable for time-series
models, it is encouraging that there have been recent proposals
for interpretable frameworks for time-series classification that
can be used in different medical scenarios. In the field of
medical signals, Ivatur et al [33] proposed a post-hoc
explainability framework for deep learning models applied to
quasi-periodic biomedical time-series classification that included
3 different techniques for explanation: studying ablation,
studying permutation, and using a local, interpretable
model-agnostic explanation method. Maweu et al [34] proposed
a modular framework named the convolutional neural network
(CNN) explainability framework for electrocardiogram signals
that explains the quality of the deep learning model in terms of
quantifiable metrics and feature visualization. Electronic medical
record (EMRs) contain time series and multimodal data which
further hinder interpretability. Nguyen-Du et al [35] proposed
a new deep electronic health record spotlight framework for
transforming EMR data into pathways and 2D pathway images,
which can then be used with 2D CNN techniques to support
visual interpretation. Viton et al [36] proposed an approach
based on heat maps as a visual means of highlighting significant
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variables over a temporal sequence, which can be applied to the
problem of predicting the risk of in-hospital mortality.

This previous research motivated the current study, which makes
the following key contributions: (1) we designed and
implemented a complete process for preterm birth screening
and providing early warnings based on regular EMR data; (2)
we used machine learning based on time-series technology to
analyze the obstetric examination data and improve the
performance of the prediction model; (3) we provide a
preliminary explanation of the quantitative interpretability of
the model and explore time-series predictors affecting preterm
birth.

Methods

Setting and Study Population
The data were collected from Hangzhou Women’s Hospital
(Hangzhou Maternity and Child Health Care Hospital),

Hangzhou, Zhejiang Province, China, between 2017 and 2020.
This study included >25,000 pregnant women who received
antenatal care at Hangzhou Women’s Hospital and eventually
gave birth naturally through the vagina. The exclusion criteria
were as follows: presence of multiple pregnancies, assisted
reproduction, severe cardio- or cerebrovascular complications
or comorbidities, and performance of cervical cerclage during
pregnancy. The inclusion criterion was a first pregnancy test
taken before 12 gestational weeks. According to the Chinese
guidelines for prenatal examination [37], pregnant women
should have a monthly outpatient examination before 28 weeks
of gestation. Figure 1 shows the filtering and processing flow
chart used to select the study population. Some women were
excluded owing to failure to obtain data or implausible
pregnancy outcomes. Data from a final total of 5187 women
were available for analysis.

Figure 1. Flow chart showing participant selection.

Clinical Measurements and Data Collection
Demographic data, physical examination data, ultrasound
records, and laboratory data from the antenatal period were
retrieved from EMRs. At registration for pregnancy, information
on maternal demographic characteristics (eg, age, education,
and occupation), anthropometrics (eg, body weight, height, and
blood pressure), and clinical history (eg, parity and disease

history) were recorded. As shown in Table 1, repeated pregnancy
data were obtained for each individual from the first pregnancy
test to the final pregnancy test, taken between 25 to 28 weeks.
The clinical data included age, weight, uterine height, abdominal
circumference, blood pressure, and findings from ultrasonic
examination. Laboratory tests (eg, routine blood examination
and blood biochemistry examination, including blood lipids and
glucose) were performed at 24 weeks of gestation.
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Participants were asked to wear light clothing when their height
and weight were measured. BMI was calculated as body weight
in kilograms divided by body height in meters squared. Sitting
blood pressure was examined after at least 10 minutes of rest

using a standard mercury sphygmomanometer with the patient’s
right arm held at heart level. Maternal venous blood samples
were drawn in the morning after an overnight fast of ≥8 hours.

Table 1. Description of data sources.

Laboratory testsUltrasonic examinationGestational age

N/Ab✓aBefore 12 weeks

N/A✓From 13 to 16 weeks

N/A✓From 17 to 20 weeks

N/A✓From 21 to 24 weeks

✓✓From 25 to 28 weeks

a✓ indicates that the pregnant woman has made relevant clinical examination in this pregnancy stage.
bN/A: not applicable.

Model Design
Based on the above-mentioned features, 2 machine learning
models were constructed to predict preterm birth. One was an
early prediction model based on the data sources in Table 1.
For each cross-sectional gestational age category, extreme
gradient boosting (XGB) combined with decision trees was
employed to establish the prediction model. XGB is an
improvement on the gradient lifting algorithm and is widely
used in the field of obstetric auxiliary diagnosis [38]. The second
model used temporal prediction techniques. Long short-term
memory networks (LSTMs) are a type of time-cyclic neural
network that are suitable for processing and predicting events
with relatively long intervals and delays in the time series [39].
LSTMs can avoid the gradient disappearance of conventional
recurrent neural networks and are widely used in the field of
disease diagnosis [40].

LSTMs realize information protection and control through 3
control gates, namely the input gate, the forgetting gate, and
the output gate. The key in LSTMs is the unit state. The LSTM
unit judges whether the output of the previous time step is
useful; only useful information is saved and the rest is forgotten
at the forgetting gate. Equations (1) through (5) represent the
parameter update process, where σ represents the sigmoid
function, ht–1 represents the output of the LSTM at the previous
time step, and ht represents the current output; I, f, and o,
respectively, represent the input gate, forgetting gate, and output
gate in the LSTM unit. Equation (4) represents the process of
the state transition of the memory unit, where ct is the state of
the memory unit at the current time step. The current state is
calculated by the previous time step state, ct–1, and the result of

the forgetting gate and the input gate of the current-time LSTM
unit.

it = σ (Wχiχt + Whiht-1 + bi) (1)

ft = σ (Wχfχt + Whfht-1 + bf) (2)

ot = σ (WXoχt + Whoht-1 + bo) (3)

Ct = ftct-1 + ittanh(Wxcχt + Whcht-1 + bc) (4)

ht = ottanh(ct) (5)

The parameters of these prediction models were determined by
grid search. The models were validated with 5-fold
cross-validation. The 5-fold cross-validation splits the training
dataset into 2 sections, where 80% of the dataset is used for
training and the remaining 20% is used for testing.
Simultaneously, the incidence rate of preterm birth is about 5%,
so in situations where there were imbalanced class data
combined with unequal error costs, random oversampling was
used to balance the dataset to get true performance values for
the classifier. The random oversampling method makes the
number of minority classes the same as the number of majority
classes by randomly copying minority class samples to get new
equilibrium data.

Under the Python 3.6 environment (Python Software
Foundation), the data analysis and visualization were completed
by using NumPy, Pandas, Matplotlib, Seaborn, and other
libraries [41,42]. The machine learning model comes from the
scikit-learn library and the deep learning framework adopts
PyTorch [43]. Based on the amount of data in this study, the
LSTM network was able to run on a personal computer. The
adaptive learning rate of the Adam optimizer [44] was used to
accelerate the convergence speed of the LSTM model. Table 2
shows the values of the parameters for the 2 models.
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Table 2. Summary of parameter values in each model.

ValuesParameters

Extreme gradient boosting model

0.01Learning rate

200N_estimators

4Min_samples_leaf

3Min_samples_split

2Max_depth

Long short-term memory model

CrossEntropyLoss function

2Num_layers

AdamOptimizer

130Hidden_size

65Input size

0.001Learning rate

256Batch-size

20Epochs

Model Evaluation
The characteristics were compared between the preterm birth
and full-term birth groups. Statistical tests were 2-sided; P
values <.05 were considered statistically significant. All analyses
were performed using the statistical software SPSS 22.0 (IBM).

The prediction performance was considered an important factor
to evaluate the proposed model. In this paper, the receiver
operating characteristic (ROC) curve and AUC were used to
evaluate the model’s ability to predict preterm birth. In addition,
the evaluation indicators of the confusion matrix, including
accuracy, sensitivity, and specificity, were used to analyze the
relationship between the actual values and the predicted values
for the risk of preterm birth. Accuracy, sensitivity, and
specificity were calculated as follows: accuracy = (TN + TP) /
(TN + TP + FN + FP); sensitivity = TP / (TP + FN); and
specificity = TN / (TN + FP), where TP indicates true positive,
FP indicates false positive, TN indicates true negative, and FN
indicates false negative.

Feature importance reflects the contribution each variable makes
in classifying preterm birth, which explains the results of the
model decision. In this study, feature importance for the XGB
model was calculated by the sum of the decrease in error when
split by a variable [31]. For the LSTM model, feature ablation
was used, which provides feature importance at a given time

step for each input feature [45], computing attribution as the
difference in output after replacing each feature with a baseline;
a lower AUC indicates a more important feature.

Ethics Approval
The study design was approved by the local Ethical and
Research Committee (written permission, with approval number
2019-02-2). All medical procedures were performed following
the relevant guidelines and regulations. The informed consent
requirement for this study was waived by the board because the
researchers only accessed the database for analysis purposes
and all patient data were deidentified.

Results

General Characteristics of the Study Participants
The data set used in this paper comes from a hospital in eastern
China and is very extensive, including maternal ultrasound
records, prenatal examination reports, and laboratory data. Of
the 5187 pregnant women enrolled in the present study, 4966
gave birth at full term. The remaining 221 women gave birth
preterm. The general characteristics of the participants are
presented in Table 3. Table 4 summarizes the clinical
characteristics of the study subjects at the second trimester
(25-28 weeks).
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Table 3. General characteristics of the study population (N=5187)

Mean (SD)Characteristics

29.63 (3.52)Age, years

53.65 (8.15)Prepregnancy weight, kg

161.45 (4.84)Height, cm

20.57 (2.92)Prepregnancy BMI, kg/m2

0.26 (0.46)Parity, number

1.71 (0.98)Gravidity, number

106.12 (13.02)Prepregnancy SBPa, mmHg

67.29 (9.31)Prepregnancy DBPb, mmHg

0.003 (0.05)Number of preterm births in reproductive history, parity number

13.47 (1.22)Menarche, years

6.07 (3.03)Period, days

29.55 (7.06)Cycle, days

aSystolic blood pressure.
bDiastolic blood pressure.
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Table 4. Clinical characteristics and laboratory parameters at the second trimester.

P valuePreterm birth (n=221)Full-term birth (n=4966)Characteristics

Mean (SD)Mean (SD)

General characteristics

.0230.14 (3.64)29.61 (3.49)Age, years

.3153.74 (8.12)53.92 (7.16)Prepregnancy weight, kg

.48106.19 (11.98)106.70 (10.45)Prepregnancy SBPa, mmHg

.5367.47 (7.41)67.65 (7.96)Prepregnancy DBPb, mmHg

Physical data

.7326.09 (1.19)26.02 (1.17)Gestational age, weeks

.5677.32 (6.82)77.63 (7.27)Pulse rate, beats per minute

.2960.39 (8.29)61.16 (7.28)Maternal weight at pregnancy, kg

.04113.19 (11.24)111.42 (10.62)SBP, mmHg

<.00166.09 (8.20)65.29 (7.78)DBP, mmHg

.4524.02 (2.28)24.48 (1.82)Uterine height, cm

.4586.98 (8.33)88.76 (5.45)Mother abdominal circumference, cm

Ultrasonic data

.056.84 (0.48)6.70 (0.23)Biparietal diameter, cm

.1325.02 (1.47)24.60 (0.76)Head circumference, cm

.064.93 (0.34)4.83 (0.17)Femur length, cm

.0322.94 (1.45)22.18 (0.86)Fetal abdominal circumference, cm

Laboratory data

.022.25 (0.79)2.15 (0.78)Triglyceride, mmol/L

.432.17 (1.52)2.22 (1.75)Total bile acid, µmol/L

.12246.05 (49.60)244.05 (49.69)Uric acid, µmol/L

.11212.26 (46.10)209.12 (45.24)Platelets, cells × 109/L

.044.40 (0.46)4.35 (0.38)Fasting blood glucose, mmol/L

.286.19 (1.07)6.23 (1.01)Total cholesterol, mmol/L

.7526.26 (3.31)26.25 (2.97)Activated partial thromboplastin time, seconds

.033.85 (0.64)3.77 (0.63)Fibrinogen, g/L

.04116.79 (8.61)115.96 (8.44)Hemoglobin, g/L

aSystolic blood pressure.
bDiastolic blood pressure.

Model Performance
Based on the above-mentioned features in Table 3 and Table
4, 2 machine learning models were constructed to predict
preterm birth. An XGB model was used for cross-sectional
research and an LSTM model was used for time-series research.
The optimal parameters were set for each predictive model and
corroborated via a test data set that was derived from the training
data set by 5-fold cross-validation. The accuracy, sensitivity,
specificity, and AUC of the models for predicting preterm birth
are shown in Table 5, which compares the performance of these
2 models in identical testing data sets. Notably, the LSTM
model, used for time-series research, had the best overall
prediction ability. Its accuracy, sensitivity, specificity, and AUC

were 0.739, 0.407, 0.982, and 0.651, respectively. Furthermore,
the model performance gradually improved with the number of
gestational weeks. The overall performance of the model was
best in the last cross-sectional gestational age group, with an
overall accuracy of 0.689, sensitivity of 0.407, specificity of
0.979, and AUC of 0.601.

Based on the validation result for the training data set, an
independent testing data set was used for predicting preterm
birth. The matrices and ROC curves for the predictive models
in the testing data set are shown in Figure 2. Compared with
cross-sectional designs, the LSTM model had a lower
misdiagnosis rate at the same detection rate. The high specificity
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of the model excluded more true negative samples, lowering the cost of screening.

Table 5. Average prediction results of different methods after 5-fold cross-validation.

Time seriesObservation period (gestational weeks)Prediction results

Weeks 25-28Weeks 21-24Weeks 17-20Weeks 13-16Before 12 weeks

0.6510.6010.5680.5160.5580.532AUCa

0.4070.4070.3870.3620.3650.286Sensitivity

0.9820.9790.9770.9770.9780.974Specificity

0.7390.6890.6220.5840.5740.525Accuracy

aAUC: area under the receiver operating characteristic curve.

Figure 2. Receiver operating characteristic curves and confusion matrix of prediction models: (A) cross-sectional prediction of the extreme gradient
boosting model at weeks 25 to 28; (B) prediction results of the long short-term memory model. ROC: receiver operating characteristic.

Influence of Variables on Predictions
The identification of important features by the XGB and LSTM
models is shown in Figure 3. Feature importance was calculated
by XGB as the sum of the decrease in error when split by a
variable, which reflects the contribution each variable makes
in classifying. Maternal age was the most important variable to
predict preterm birth, followed by triglyceride level, total bile
acid level, systolic pressure during pregnancy, fundal height,

uric acid level, platelet level, and prepregnancy weight. The
LSTM model for time-series research achieved the best
performance, and feature ablation provided feature importance
for a given time-series input feature. The importance of features
was evaluated according to the degree of AUC decrease. The
results indicated that the AUC decrease rate for systolic blood
pressure was 2%, which was the most important time-series
feature, followed by fetal abdominal circumference, head
circumference, and maternal weight.
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Figure 3. Importance of the variables: (A) identification of important features by the extreme gradient boosting model at weeks 25 to 28; (B) identification
of important features by the long short-term memory model. AUC: area under the curve; SBP: systolic blood pressure.

Discussion

Principal Findings
Premature birth is widely recognized as an increasingly serious
problem. In this study, 5 pregnancy test records in the first and
second trimesters of pregnancy were selected to construct a
time-series model to predict preterm delivery. Compared with
traditional machine learning models, the use of a time-series
model improved prediction performance for preterm birth and
allowed the identification of important variables for predicting
preterm birth.

The early prediction of preterm birth has always been
challenging. The input index of traditional prediction model
research has usually been a special test item or a combination
of tests that aim to find new markers that have a high
contribution to preterm birth prediction; most past studies have
not been clinically verified [11,17,46]. Many studies have tried
to effectively predict preterm birth, which would allow early
detection and prompt management. Cervical screening, fetal
fibronectin measurement, or the combination of these methods
can effectively predict preterm birth [12-14,16,47]. However,
there are still flaws in the forecasts. For asymptomatic women,
the performance of the fetal fibronectin test is too low to be
clinically relevant [48]. Many studies have found that cervical
status is an independent risk factor for preterm birth. In China's
2014 edition of the Clinical Diagnosis and Treatment Guidelines
for Preterm Delivery [49], it is recommended that when cervical
length is <25 mm, transvaginal ultrasound should be performed

before 24 weeks to predict preterm birth in high-risk patients.
In fact, cervical examinations are still controversial for screening
of the general population. Some studies advocate for dynamic
cervical examination regardless of whether a subject is high-
or low-risk [50,51]. On the other hand, a greater number of
studies either oppose or do not recommend large-scale cervical
screening, for reasons that include but are not limited to the
material cost, the time required, the lack of unified standards,
and the professional training of laboratory personnel
[13,14,52-55], which may lead to costs that do not conform to
health economics. The prediction model in this study effectively
predicts the early development of preterm labor based on
demographic factors and prenatal laboratory data. These data
are easy to obtain in routine clinical practice. Therefore, the
prediction model of preterm birth proposed in this study can be
used as a practical screening method for preterm birth in the
first and second trimesters of pregnancy.

In fact, earlier works have already reported very close or even
higher accuracy than this study. Compared with the large
national databases used in previous studies, the conventional
data used in this paper is still relatively weak, especially in its
lack of key information, such as obstetric and gynecological
history and family history. However, we are excited that this
paper significantly improves the performance of prediction
models through a machine learning method based on time-series
technology.

This study reveals various new factors that affect the prediction
of preterm birth. Additionally, parameters that have been
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traditionally reported to be related to delivery date, such as age,
prepregnancy weight, history of preterm birth, and menstrual
cycle, were confirmed to be influential factors in preterm birth
prediction [1,56]. Interestingly, blood pressure, blood glucose,
lipids, uric acid, and other metabolic factors were also very
important factors related to preterm birth. Although it has not
been thoroughly investigated, the relationship between metabolic
risk factors and preterm birth has been preliminarily recognized
in several previous studies [57,58]. In a recent observational
study of 5535 deliveries, pregnant women with a cluster of
metabolic risk factors during early pregnancy were more likely
to give birth preterm [59]. The metabolic reaction during
pregnancy normally meets the needs of fetal growth; however,
an excessive metabolic stress reaction can lead to the occurrence
of various pathologies in pregnancy [60]. Despite the
controversy, changes in metabolic levels during pregnancy have
been observed in women who give birth preterm.

Limitations
This study has several limitations. First, the laboratory
examinations of the pregnant women were completed in their
respective communities before 20 weeks of gestation, precluding
them from being included in the analysis due to differences in
test standards. In addition, the prepregnancy characteristics were
affected by recall bias; moreover, most of the included women
were primipara. Thus, the contribution of preterm birth history
to the model was limited. Second, the performance of the model
still needs to be improved, although LSTM has great potential.
Nonetheless, considering this prediction model is a baseline

model based on conventional data, it can continue to add
biochemical and biophysical markers to increase screening
performance. In addition, advanced maternal age was a clear
confounding factor [61], and stratified analysis by age will be
considered in a follow-up study. Third, this paper is only a
preliminary explanation of the interpretability of the machine
learning model. Future work will consider using a more
sophisticated post hoc explainability framework, especially for
time-series problems. Finally, the study was possibly affected
by selection bias due to its single-center design. The prediction
model has not been widely used in clinical practice, and its
accuracy and practicality should be verified in prospective
studies with larger samples.

Conclusions
Preterm birth is the primary cause of neonatal death and
disability, and early prediction of preterm birth has great
potential to improve the survival rate of preterm infants. In this
work, we analyzed obstetric medical data based on time-series
machine learning and evaluated the risk of preterm birth. Our
study can screen high-risk groups for preterm birth in the early
and middle trimesters of pregnancy. Compared with a traditional
cross-sectional study, the time-series LSTM model in this study
had better overall prediction ability with a lower misdiagnosis
rate and the same detection rate. In future work, we will further
improve the data set, especially regarding some key
characteristics of premature birth that have been reported by
past relevant research, and build a more sophisticated post hoc
explainability framework for the time series model.
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