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Abstract

Background: Machine learning (ML) achieves better predictions of postoperative mortality than previous prediction tools.
Free-text descriptions of the preoperative diagnosis and the planned procedure are available preoperatively. Because reading
these descriptions helps anesthesiologists evaluate the risk of the surgery, we hypothesized that deep learning (DL) models with
unstructured text could improve postoperative mortality prediction. However, it is challenging to extract meaningful concept
embeddings from this unstructured clinical text.

Objective: This study aims to develop a fusion DL model containing structured and unstructured features to predict the in-hospital
30-day postoperative mortality before surgery. ML models for predicting postoperative mortality using preoperative data with
or without free clinical text were assessed.

Methods: We retrospectively collected preoperative anesthesia assessments, surgical information, and discharge summaries of
patients undergoing general and neuraxial anesthesia from electronic health records (EHRs) from 2016 to 2020. We first compared
the deep neural network (DNN) with other models using the same input features to demonstrate effectiveness. Then, we combined
the DNN model with bidirectional encoder representations from transformers (BERT) to extract information from clinical texts.
The effects of adding text information on the model performance were compared using the area under the receiver operating
characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). Statistical significance was evaluated
using P<.05.

Results: The final cohort contained 121,313 patients who underwent surgeries. A total of 1562 (1.29%) patients died within 30
days of surgery. Our BERT-DNN model achieved the highest AUROC (0.964, 95% CI 0.961-0.967) and AUPRC (0.336, 95%
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CI 0.276-0.402). The AUROC of the BERT-DNN was significantly higher compared to logistic regression (AUROC=0.952,
95% CI 0.949-0.955) and the American Society of Anesthesiologist Physical Status (ASAPS AUROC=0.892, 95% CI 0.887-0.896)
but not significantly higher compared to the DNN (AUROC=0.959, 95% CI 0.956-0.962) and the random forest (AUROC=0.961,
95% CI 0.958-0.964). The AUPRC of the BERT-DNN was significantly higher compared to the DNN (AUPRC=0.319, 95% CI
0.260-0.384), the random forest (AUPRC=0.296, 95% CI 0.239-0.360), logistic regression (AUPRC=0.276, 95% CI 0.220-0.339),
and the ASAPS (AUPRC=0.149, 95% CI 0.107-0.203).

Conclusions: Our BERT-DNN model has an AUPRC significantly higher compared to previously proposed models using no
text and an AUROC significantly higher compared to logistic regression and the ASAPS. This technique helps identify patients
with higher risk from the surgical description text in EHRs.

(JMIR Med Inform 2022;10(5):e38241) doi: 10.2196/38241
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Introduction

The prevalence of postoperative mortality is 0.5%-2.8 % in
patients undergoing elective surgery [1]. The risks are
attributable to the patient’s condition and can be modulated
with adequate evaluation and planning during surgery and
anesthesia. Several tools have been developed to predict
postoperative mortality, including the American College of
Surgeons’ (ACS) National Surgical Quality Improvement
Program (NSQIP) risk calculator, the American Society of
Anesthesiologist Physical Status (ASAPS), the risk
quantification index, the risk stratification index, and the
preoperative score [2-5]. Although these classification systems
consider the patient’s general condition and surgery category,
preoperative vital signs and laboratory data—which are critical
in predicting postoperative mortality—are not typically included
[6]. Moreover, a patient’s surgical information is commonly
written as text in the medical record. Although reading this
information helps anesthesiologists evaluate the risk of the
surgery, it is difficult to include it in a classification tool. These
deficiencies make it challenging to identify the small groups of
patients with higher risks. Better tools for predicting
postoperative mortality remain under investigation.

Machine learning (ML) is widely applied to medical problems,
including for predicting postoperative mortality [6-11]. ML
models can automatically predict postoperative mortality using
electronic health records (EHRs) before surgery, and they
achieve a superior area under the receiver operating
characteristic curve (AUROC) than previous methods [6]. To
stratify surgery types, previous studies have used the Current
Procedural Terminology (CPT) codes or International
Classification of Diseases (ICD) codes for surgical information
[2,6,7,9,12]. These methods are not widely applicable, because
the CPT is not implemented worldwide and ICD codes are
seldom recorded before surgery. In addition, because this
surgical information is written in the medical record by surgeons
before surgery, using this text in models may improve the
prediction of postoperative mortality.

Compared to structured EHRs, unstructured clinical text requires
meaningful concept embeddings to be extracted before model
training, making it more challenging [13]. However, including

this unstructured text improves the advanced prediction of
unfavorable clinical outcomes [14-16]. Bidirectional encoder
representations from transformers (BERT) is a contextualized
embedding method that preserves the distance of meanings with
multihead attention [17]. After pretrained on the relevant corpora
and proper architecture modification, BERT extracts meaningful
embeddings from clinical text [18,19].

This study aims to develop a model to predict 30-day
postoperative mortality before surgery that performs better than
state-of-the-art models. Our contribution is including free (ie,
unstructured) text in postoperative mortality prediction by
proposing a deep neural network (DNN) model with BERT.
We investigate the effectiveness of unstructured clinical texts
(eg, preoperative diagnosis and proposed procedures) in
predicting postoperative mortality.

Methods

Data Extraction
This study aims to predict in-hospital 30-day postoperative
mortality using preoperative anesthesia assessments. Data were
collected from the electronic health system of the Far Eastern
Memorial Hospital, a large academic medical center in Taiwan.
Preoperative anesthesia assessment records and discharge
summaries were included. Overall, 5 years’ worth of
retrospective data were collected from January 1, 2016, to
December 30, 2020. The last version of the anesthesia
assessment was included for each surgery. Patients over 18
years of age who underwent at least 1 surgical procedure under
general or neuraxial anesthesia were included. Cases with an
ASAPS of 6 were excluded. Records lacking entry time, exit
time, preoperative diagnosis, or proposed procedure text were
excluded. The in-hospital 30-day postoperative mortality was
defined by a discharged route of “expired” and “critical
against-advice discharge” (when the patient wants to die at
home) without future admission. Discharges within 30 days
after surgery were identified and labeled as “true”; those
occurring outside this window were marked as “false.” The end
date of the testing set was November 30, 2020, 30 days before
the end of the collected data, to ensure complete 30-day
mortality detection (Figure 1).
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Figure 1. Flow diagram. ASAPS: American Society of Anesthesiologist Physical Status.

Ethical Approval
The Institutional Review Board of the Far Eastern Memorial
Hospital approved this retrospective study and waived the
requirement of informed consent (#109129-F and #110028-F).

Data Description
We collected 123,718 surgery results for patients aged over 18
years. After applying the exclusion criteria, a cohort of 123,515
(99.8%) patients who underwent surgeries remained. A final
cohort of 121,313 (98.2%) patients was used after removing
those who underwent surgeries after November 30, 2020 (Figure

1). The training, validation, and testing cohorts finally contained
79,324 (68.7%), 19,832 (17.2%), and 16,267 (14.1%) of 115,423
patients. Patient characteristics of the training, validation, and
testing cohorts are listed in Table 1. In the overall cohort, most
patients had an ASAPS of 2 or 3. Overall, 107,176 (88.5%) of
patients were under general anesthesia. The most prevalent
comorbidities were hypertension (n=43,391, 35.8%), followed
by diabetes (n=24,314, 20.0%). A total of 1562 (1.3%), 997
(1.3%), 249 (1.3%), and 215 (1.3%) patients died within 30
days of surgery in the overall, training, validation, and testing
cohorts, respectively. Multimedia Appendix 1 present a
summary of the laboratory data and preoperative vital signs.
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Table 1. Characteristics of the cohort. Categorical variables are represented as frequency (%). Continuous variables are represented as the median
(25th, 75th percentile). The testing cohort was split by time between the training and validation cohorts, and those cases arising from the training and
validation cohorts were removed to prevent data leakage (n=5890, 4.9%).

Overall cohort (N=121,313)Testing cohort
(N=16,267)

Validation cohort
(N=19,832)

Training cohort
(N=79,324)

Feature

55 (41, 66)53 (39, 65)54 (40, 66)54 (40, 66)Age (years), median (25th, 75th percentile)

61,485 (50.7)8101 (49.8)9922 (50.0)40,444 (51.0)Male sex, n (%)

162 (157, 168)162 (157, 169)162 (156, 168)162 (157, 168)Height (cm), median (25th, 75th percentile)

64 (56, 74)65 (56, 75)64 (56, 74)64 (56, 74)Weight (kg), median (25th, 75th percentile)

24 (22, 27)24 (22, 27)24 (22, 27)24 (22, 27)BMI, median (25th, 75th percentile)

ASAPSa, n (%)

4404 (3.6)660 (4.1)739 (3.7)2925 (3.7)1

82,588 (68.1)11,508 (70.7)13,549 (68.3)54,056 (68.15)2

31,878 (26.3),654 (22.5)5155 (26.0)20,842 (26.3)3

2204 (1.8)397 (2.4)355 (1.8)1345 (1.70)4

239 (0.2)48 (0.3)34 (0.2)156 (0.2)5

9942 (8.2)1678 (10.3)1615 (8.1)6379 (8.0)ASAb emergency, n (%)

Anesthesia type, n (%)

107,176 (88.5)14,486 (89.2)17,497 (88.4)69,898 (88.3)General

13,929 (11.5)1748 (10.8)2303 (11.6)9297 (11.7)Neuraxial

Emergency level of surgery, n (%)

94,816 (78.2)12,000 (73.8)15,455 (77.9)62,226 (78.5)Elective

21,342 (17.6)3,356 (20.6)3,567 (18.0)13,800 (17.4)Urgent

4484 (3.7)801 (4.9)708 (3.6)2849 (3.6)Emergency

671 (0.6)110 (0.7)102 (0.51)449 (0.57)Immediate

Preoperative location, n (%)

72,045 (59.4)9824 (60.4)11,788 (59.4)47,187 (59.5)Ward

27,830 (22.9)2995 (18.4)4463 (22.5)18,386 (23.2)Outpatient

15,247 (12.6)2283 (14.0)2592 (13.1)10,083 (12.7)Emergency department

6191 (5.1)1165 (7.2)989 (5.0)3668 (4.6)Intensive care unit

Surgery department, n (%)

22,471 (18.5)2665 (16.4)3630 (18.3)14,760 (18.6)Urology

17,608 (14.5)2457 (15.1)2926 (14.8)11,416 (14.4)General

16,772 (13.8)2338 (14.4)2748 (13.9)10,976 (13.8)Orthopedics

15,679 (12.9)2,302 (14.2)2,578 (13.0)10,206 (12.9)Gynecologyc

13,049 (10.8)1491 (9.2)2086 (10.5)8692 (11.0)Cardiovascular

9427 (7.8)1223 (7.5)1505 (7.6)6193 (7.8)Otolaryngology

7821 (6.4)1077 (6.6)1294 (6.5)5116 (6.5)Plastic surgery

4955 (4.1)727 (4.5)833 (4.2)3233 (4.1)Neurosurgery

4357 (3.6)722 (4.4)740 (3.7)2808 (3.5)Traumatology

3104 (2.6)430 (2.6)514 (2.6)2006 (2.5)Thoracic surgery

2574 (2.1)331 (2.0)423 (2.1)1679 (2.1)Colorectal surgery

3496 (2.9)504 (3.1)555 (2.8)2239 (2.8)Others

Comorbidity, n (%)
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Overall cohort (N=121,313)Testing cohort
(N=16,267)

Validation cohort
(N=19,832)

Training cohort
(N=79,324)

Feature

24,314 (20.0)2812 (17.3)3863 (19.5)15,906 (20.1)Diabetes mellitus

13,678 (11.3)1740 (10.7)2119 (10.7)8704 (11.0)Hyperlipidemia

43,391 (35.8)4999 (30.7)7055 (35.6)28,462 (35.9)Hypertension

6564 (5.4)717 (4.4)1028 (5.2)4355 (5.5)Prior cerebrovascular accident

20,156 (16.6)2227 (13.7)3254 (16.4)13,215 (16.7)Cardiac disease

2428 (2.0)286 (1.8)380 (1.9)1549 (2.0)Chronic obstructive pulmonary disease

4626 (3.8)592 (3.6)762 (3.8)3024 (3.8)Asthma

13,887 (11.4)1664 (10.2)2299 (11.6)9118 (11.5)Hepatic disease

18,874 (15.6)1466 (9.0)3095 (15.6)12,471 (15.7)Renal disease

17,543 (14.5)2122 (13.0)2684 (13.5)11,243 (14.2)Bleeding disorder

83,490 (68.8)10,040 (61.7)13,592 (68.5)54,356 (68.5)Prior major operations

30,433 (25.1)3719 (22.9)5098 (25.7)20,235 (25.5)Smoking

18,092 (14.9)2190 (13.5)2959 (14.9)11,662 (14.7)Drug allergy

107,906 (88.9)15,107 (92.9)17,461 (88.0)69,858 (88.1)Consciousness

1562 (1.3)215 (1.3)249 (1.3)997 (1.3)30-day mortality, n (%)

aASAPS: American Society of Anesthesiologist Physical Status.
bASA: American Society of Anesthesiologists.
cThe gynecology department consists of gynecology and obstetrics.

Data Preparation
The input features included patient characteristics (age, height,
weight, BMI, sex, ASAPS, ASA emergency status, department,
preoperative location, and anesthesia type), surgery
characteristics (emergency level, preoperative diagnosis, and
proposed procedure), comorbidities (diabetes mellitus,
hyperlipidemia, hypertension, cerebrovascular accident, cardiac
disease, chronic obstructive pulmonary disease, asthma, hepatic
disease, renal disease, bleeding disorder, major operations,
smoking, and drug allergy), preoperative laboratory data
(hemoglobin, platelet, international normalized ratio,
prothrombin time, activated partial thromboplastin time,
creatinine, aspartate transaminase, alanine transaminase, blood
sugar, serum sodium, and serum potassium), and preoperative
vital signs (body temperature, oxygen saturation, heart rate,
respiratory rate, systolic and diastolic blood pressure, and
consciousness status); see Table 2.

Continuous features (eg, age, height, weight, latest laboratory
data before surgery, and preoperative vital signs) were
standardized by subtracting the mean and scaling to variance.
Outliers were regarded as input errors and treated as missing
data. Multimedia Appendix 2 lists the definitions of the outliers.

Missing values were imputed with the median value of the data
set for continuous features.

Categorical features with only 2 classes (eg, sex, comorbidities,
ASA emergency status, and consciousness status) were
converted into binary encoding. All other categorical features
(eg, ASAPS [5 classes], department [22 classes], emergency
level [4 classes], preoperative location [4 classes], and anesthesia
type [4 classes]) were transformed into one-hot encodings.
Missing data were imputed with the majority category of the
training data set. The preoperative diagnoses and proposed
procedures were expressed as free text. Characters other than
alphabetical and numerical ones were removed (eg, Chinese
characters [typically notes for colleagues only] and punctuation).
English stop words providing no helpful information to the
model (eg, “a,” “in,” and “the”) were removed using the Natural
Language Toolkit [20].

We used the previous 4 years’ surgery results to predict the last
year results. Patients who underwent surgeries between January
1, 2016, and December 31, 2019, were selected and split into
training and validation sets in a 4:1 ratio; those who underwent
surgeries between January 1, 2020, and November 30, 2020,
were selected as the testing set (Figure 1). Patients in the training
or validation set were removed from the testing set to prevent
information leakage [6].
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Table 2. Feature groups included in the models.

Feature classesaFeature type

Patient characteristics

Age, height, weight, BMIContinuous

Sex (2), ASAPSb (5), ASAc emergency (2), department (22), preoperative location (4), anesthesia type (4)Categorical

Surgery characteristics

Emergency level (4)Categorical

Preoperative diagnosis, proposed procedureFree text

Comorbid conditions

Diabetes mellitus (2), hyperlipidemia (2), hypertension (2), cerebrovascular accident (2), cardiac disease (2), chronic
obstructive pulmonary disease (2), asthma (2), hepatic disease (2), renal disease (2), bleeding disorder (2), major op-
erations (2), smoking (2), drug allergy (2)

Categorical

Preoperative laboratory values

Hemoglobin, platelet, international normalized ratio, prothrombin time, activated partial thromboplastin time, creatinine,
aspartate transaminase, alanine transaminase, blood sugar, serum sodium, serum potassium

Continuous

Preoperative vital signs

Body temperature, oxygen saturation, heart rate, respiratory rate, systolic and diastolic blood pressureContinuous

Consciousness status (2)Categorical

aThe number of classes is shown in parentheses.
bASAPS: American Society of Anesthesiologist Physical Status.
cASA: American Society of Anesthesiologists.

Study Design
Our results were compared with state-of-the-art models, using
patient preoperative vital signs and laboratory data to predict
in-hospital 30-day mortality [6]. Meanwhile, to demonstrate
the effect of adding preoperative diagnoses and proposed
procedures to the prediction model, we added text features and
compared the performances of the highest-performing models.

First, we compared the state-of-the-art models using patient and
surgery characteristics (without text), comorbidities,
preoperative vital signs, and laboratory data to predict the
in-hospital 30-day mortality. Figure 2B shows our proposed
DNN model with 4 fully connected (FC) layers and a Softmax
layer output function. We compared our DNN model with other

ML models, including a random forest classifier (with 2000
estimators and Gini impurity as the splitting criterion) [21],
extreme gradient boosting (XGBoost, with a learning rate of
0.3 and a maximum depth of 6) [22], and logistic regression
(with an L2 penalty); see Figure 2A. To balance the data while
training the ML models, oversampling by 78 times was
performed on the training set via the synthetic minority
oversampling technique; this produced synthetic samples along
a straight line between randomly selected samples in the feature
space [23]. While training our DNN model, we adjusted the
weight to compensate for the imbalanced classes. We added the
text of preoperative diagnoses and proposed procedures to the
DNN model architecture (denoted as BERT-DNN; see Figure
2C) and compared its performance with those of other models.
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Figure 2. Architectures of models. BERT: bidirectional encoder representations from transformers: DNN: deep neural network; FC: fully connected;
ML: machine learning; ReLU: rectified linear unit; XGBoost: extreme gradient boosting.

Language Model and BERT-DNN Model Design
The language model extracted features from the preprocessed
text. Figure 2C shows the architecture of the language model.
The preprocessed texts were tokenized using the BERT
tokenizer, which transformed each word fragment into a unique
token designed for use in BERT’s pretraining process [17].
Then, these tokens were embedded by Bio+Clinical BERT, a
variant of BERT pretrained on text from PubMed and Medical
Information Mart for Intensive Care III [24]. The text
information was transformed into a 768-dimension vector (the
“word embeddings”) at the pooler output layer [17,24]. These
word embeddings were input into 2 FC layers before
concatenation with other structured features. The concatenated

vectors were input into 3 FC layers and a Softmax layer output
function. Figure 2C shows the architecture of the BERT-DNN
model.

Cross-entropy was used as the loss function. Class weight
imbalances were compensated for by setting the weights as the
inverses of the different classes’ frequencies (~1:78). Further,
the training data were split into training and validating sets in
a 4:1 ratio to train the deep learning (DL) model. We used
AdamW from the PyTorch package as the optimizer, setting a
learning rate of 0.00002 for both DL models. We trained our
BERT-DNN and DNN models with batch sizes of 64 and 512,
respectively, until the 100th epoch. The DL model with the
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smallest validation loss was selected for performance
comparison.

Model Evaluation
The models were evaluated using the AUROC, the area under
the precision-recall curve (AUPRC), sensitivity (also referred
to as recall), specificity, precision (also called the positive
predictive value), and the F1 score. The F1 score was a harmonic
mean of recall and precision and was calculated as 2/[(1/recall)
+ (1/precision)]. Because postoperative mortalities accounted
for 1.3% (1562/121,313) of our data set, classes were extremely
imbalanced between the positive and negative groups. Here,
the AUPRC (which calculated the average precision) was better
than the AUROC for evaluating the discrimination of models
[25,26]. For comparison of AUROCs, we applied a
nonparametric approach proposed by DeLong et al [27] to
calculate the SE of the area and the P value. P<.05 was regarded
statistically significant. We calculated exact binomial 95% CIs
for the AUROC. For comparison of AUPRCs, we performed
bootstrapping 1000 times in the testing set to calculate the
difference in areas and the 95% CI [28]. If the 95% CI for the
difference in areas does not include 0, it can be concluded that
these 2 areas are significantly different (P<.05). We performed
bootstrapping 1000 times in the testing set to calculate the 95%
CI for other metrics [6]. The predicted probabilities were
calibrated using the histogram bins technique, using the same
observed mortality in each bin of the validation set [8]. After
calibration, the mean observed incidences of mortality were
plotted against the mean predicted probabilities within groups
in the testing set.

Visualization of Word Embeddings
To show the correlation between increased prediction
probabilities and text inputs, the t distributed stochastic neighbor
embedding (SNE) was implemented by reducing the 768
dimensions of the language model’s pool output to 2 into a plane
[29,30]. Thus, we showed the clustering of word embeddings

using assorted colors for different predicted probabilities and
different icons for observed mortalities. We randomly resampled
10,000 and 5000 patients who underwent surgeries in the
training and testing sets, respectively, to construct this
visualization. The language-model-predicted probabilities and
observed mortalities for randomly selected text inputs were
calculated and listed.

The study was implemented using Python 3.9, Scikit-learn 0.24
[31], imbalanced-learn 0.8.0 [23], PyTorch 1.8 [32], and
transformers 4.9 (Hugging Face) [24]. Our models were trained
and validated on the NVIDIA Tesla P100-PCIE-16GB graphics
processing unit (GPU). The statistical significances of AUROCs
and AUPRCs were calculated using MedCalc software (Ostend,
Belgium).

Results

Comparison of Machine Learning Models
The BERT-DNN had the highest AUROC of 0.964 (95% CI
0.961-0.967) and the highest AUPRC of 0.336 (95% CI
0.276-0.402); see Table 3 and Figure 3. The random forest
achieved the second-highest AUROC of 0.961 (95% CI
0.958-0.964), and the DNN achieved the second-highest AUPRC
of 0.319 (95% CI 0.260-0.384). The BERT-DNN model had
the highest F1 score of 0.347 (95% CI 0.305-0.388).

The BERT-DNN had a significantly higher AUROC compared
to XGBoost, logistic regression, and ASAPS but not a
significantly higher AUROC compared to the DNN and the
random forest (Table 4). The BERT-DNN also had a
significantly higher AUPRC compared to the DNN, random
forest, XGBoost, logistic regression, and ASAPS (Table 5).

In the BERT-DNN model, when the predicted probability of
mortality increased from 0.2% to 39.4%, the observed incidence
increased from 0.2% to 42.7% (Figure 4).
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Table 3. Prediction performances of MLa models and ASAPSb on the testing cohort with 95% CIs.

F1 scoree (95%
CI)

Precisiona (95%
CI)

Specificitye (95%
CI)

Sensitivitye

(95% CI)
Accuracye (95%
CI)

AUPRCd (95%
CI)

AUROCc (95%
CI)

Model

0.307 (0.269-
0.342)

0.193 (0.166-
0.219)

0.958 (0.955-
0.961)

0.749 (0.689-
0.805)

0.955 (0.952-
0.958)

0.336 (0.276-
0.402)

0.964 (0.961-
0.967)

BERTf-DNNg

0.212 (0.187-
0.236)

0.120 (0.104-
0.136)

0.913 (0.909-
0.918)

0.885 (0.841-
0.926)

0.913 (0.909-
0.917)

0.319 (0.260-
0.384)

0.959 (0.956-
0.962)

DNN

0.242 (0.182-
0.314)

0.445 (0.341-
0.557)

0.997 (0.996-
0.998)

0.167 (0.122-
0.222)

0.986 (0.984-
0.988)

0.296 (0.239-
0.360)

0.961 (0.958-
0.964)

Random forest

0.263 (0.201-
0.326)

0.409 (0.312-
0.500)

0.996 (0.995-
0.997)

0.195 (0.144-
0.249)

0.986 (0.984-
0.987)

0.281 (0.225-
0.345)

0.950 (0.946-
0.953)

XGBoosth

0.187 (0.164-
0.210)

0.105 (0.091-
0.119)

0.905 (0.901-
0.910)

0.833 (0.780-
0.882)

0.904 (0.900-
0.909)

0.276 (0.220-
0.339)

0.952 (0.949-
0.955)

Logistic regres-
sion

0.266 (0.220-
0.310)

0.197 (0.160-
0.235)

0.978 (0.975-
0.980)

0.409 (0.342-
0.478)

0.970 (0.968-
0.973)

0.149 (0.107-
0.203)

0.892 (0.887-
0.896)

ASAPS

aML: machine learning.
bASAPS: American Society of Anesthesiologist Physical Status.
cAUROC: area under the receiver operating characteristic.
dAUPRC: area under the precision-recall curve.
eThese metrics were calculated without adjusting the threshold (using 0.5 as the cut-off).
fBERT: bidirectional encoder representations from transformers.
gDNN: deep neural network.
hXGBoost: extreme gradient boosting.
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Figure 3. Comparison of discrimination of different models. (A) AUROC. (B) AUPRC. ASAPS: American Society of Anesthesiologist Physical Status;
AUPRC: area under the precision-recall curve; AUROC: area under the receiver operating characteristic curve; BERT: bidirectional encoder representations
from transformers; DNN: deep neural network; XGBoost: extreme gradient boosting.
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Table 4. Statistical significances of AUROCsa of different models. Values are P values. We applied a nonparametric approach proposed by DeLong
et al [27] to calculate the SE of the area and the P value.

Logistic regressionXGBoostdRandom forestDNNBERTb-DNNc

<0.0001f<0.0001f<0.0001f<0.0001f<0.0001fASAPSe

N/Ag0.64510.0351f0.07110.0005fLogistic regression

N/AN/A0.0262f0.09390.0025fXGBoost

N/AN/AN/A0.59720.3816Random forest

N/AN/AN/AN/A0.0944DNN

aAUROC: area under the receiver operating characteristic.
bBERT: bidirectional encoder representations from transformers.
cDNN: deep neural network.
dXGBoost: extreme gradient boosting.
eASAPS: American Society of Anesthesiologist Physical Status.
fThe difference in areas achieved statistical significance (P<.05).
gN/A: not applicable.

Table 5. Statistical significances of AUPRCsa of different models. Values are differences in areas with 95% CIs calculated by bootstrapping 1000
times [28]. If the 95% CI for the difference in areas does not include 0, it can be concluded that these 2 areas are significantly different (P<.05).

Logistic regression, differ-
ence in areas (95% CI)

XGBoostd, difference
in areas (95% CI)

Random forest, differ-
ence in areas (95% CI)

DNN, difference in
areas (95% CI)

BERTb-DNNc, differ-
ence in areas (95% CI)

0.127 (0.101-0.154)f0.133 (0.107-0.162)f0.147 (0.122-0.177)f0.170 (0.137-0.201)f0.188 (0.159-0.221)fASAPSe

N/Ag0.006 (–0.006 to
0.014)

0.020 (0.006-0.031)f0.043 (0.021-0.056)f0.061 (0.051-0.073)fLogistic regression

N/AN/A0.015 (0.005-0.022)f0.038 (0.024-0.046)f0.055 (0.044-0.068)fXGBoost

N/AN/AN/A0.023 (0.010-0.032)f0.040 (0.030-0.054)fRandom forest

N/AN/AN/AN/A0.018 (0.008-0.037)fDNN

aAUPRC: area under the precision-recall curve.
bBERT: bidirectional encoder representations from transformers.
cDNN: deep neural network.
dXGBoost: extreme gradient boosting.
eASAPS: American Society of Anesthesiologist Physical Status.
fThe difference in areas achieved statistical significance (P<.05).
gN/A: not applicable.
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Figure 4. Calibration plot. The observed incidence of mortality was plotted against the calibrated predicted probability of mortality among patients in
the test cohort (n=16,267, 14.1%). Predicted probabilities were calibrated by applying the histogram binning technique in the validation cohort using
5 bins. Mean predicted probabilities of in-hospital 30-day mortality were calculated within each group.

Visualization of Word Embeddings
Because the observed mortalities were distributed concordantly
with increased prediction probabilities, the annotated scatter
plots showed that the text contributed to low- and

high-probability predictions (Figure 5, Multimedia Appendix
3). Table 6 lists the probabilities predicted by the language
model and the mortalities observed for a randomly selected text
input.
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Figure 5. Word embeddings visualized by t distributed stochastic neighbor embedding. (A) Word embeddings of the training set. (B) Word embeddings
of the testing set. “Probs” indicates probabilities predicated by the BERT-DNN model. The intensity of color increased with the probability. “Labels”
indicates mortalities by “x” and survivors by “•”. ards: acute respiratory distress syndrome; atfl: anterior talofibular ligament; avg: arteriovenous graft;
avp: aortic valvuloplasty; BERT: bidirectional encoder representations from transformers; bct: breast-conserving therapy; bil: bilateral; bph: benign
prostate hypertrophy; bx: biopsy; chr: chronic hypertrophic rhinitis; cps: chronic paranasal sinusitis; dbj: double J stent; DNN: deep neural network;
ecmo: extracorporeal membrane oxygenation; emh: endometrial hemorrhage; esrd: end-stage renal disease; fess: functional endoscopic sinus surgery;
itc: intertrochanter; ivg: intravenous general anesthesia; lih: left inguinal hernia; mvr: mitral valve replacement; nsd: nasal septum deviation; p: post;
pcnl: percutaneous nephrolithotomy; perm cath: permanent catheter; psa: prostate-specific antigen; r: rule out; r’t: right; rirs: retrograde intrarenal
surgery; rv: right ventricle; slnd: sentinel lymph node dissection; SNE: stochastic neighbor embedding; t colon: transverse colon; tee: transesophageal
echocardiography; tep: total extraperitoneal approach; trus: transrectal ultrasound; turp: transurethral resection of the prostate; urs: ureteroscopy; vats:
video-assisted thoracic surgery; vhd: valvular heart disease. Higher-resolution version of this figure available in Multimedia Appendix 3.
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Table 6. Texts and their predicted probabilities by language model. Values are probabilities or mortalities.

Original free text combining preoperative diagnosis and proposed proceduresObserved mortality (1=mortality; 0=no
mortality)

Predicted probability

IHCAa pb CPRc ECMOd ACSe ARf full sternotomy CABGg AVRh10.951

AMIi cardiogenic shock p ECMO remove ECMO TEEj00.948

hollow organ perforation rk PPUl related LPPUm possible EXP LAPn10.940

intra-abdominal bleeding EXP LAP10.936

ischemic bowel laparoscopic diagnosis possible EXP LAP10.932

acute pulmonary embolism IHCA p ECMO angiography TEE00.927

duodenal ulcer perforation p duodenorrhaphy leakage bleeding EXP LAP10.925

respiratory failure tracheostomy00.912

hallow organ perforation r PPU LPPU00.880

acute kidney failure perm catho insertion00.815

post UPPPp wound bleeding check bleeding00.760

ESRDq HDr via right perm caths qw2 4 6 perm cath dysfunction perm cath
insertion change perm cath right neck

00.680

ESRD left AVGt occlusion left AVG thrombectomy00.527

left lower leg soft tissue infection suspect necrotizing fasciitis debridement00.415

ESRD right AVFu dysfunction upper arm angiography PTAv00.353

RLLw lung tumor r lung cancer vats RLL lobectomy wedge first send frozen
exam

00.250

left lower extremity NFx open BKy00.186

left anterior mediastinal tumor multiple lung nodules rectal cancer p CCRTz

VATSaa mediastinal tumor excision LARab

00.114

right ACLac MCLad injury arthroscopy ACL reconstruction00.042

1 C4 5 6 spondylosis 2 right carpal tunnel 1 ACDFae C4 5 6 2 right median
nerve decompression

00.041

bilaf ovag teratoma laparoscopy adnexectomy00.031

left ureter stone URSLah laser left00.030

uterine myoma robotic myomectomy00.029

acute appendicitis laparoscopic appendectomy00.029

hemorrhoids hemorrhoidectomy00.029

nontoxic goiter thyroidectomy00.029

infertility TVORai00.027

endometrial polyp TCRaj00.027

GAak 38 weeks breech caesarean section00.027

rtal breast lesion MRIam guided biopsy00.025

right inguinal hernia TEPan right00.025

aIHCA: intrahospital cardiac arrest.
bp: post.
cCPR: cardiopulmonary resuscitation.
dECMO: extracorporeal membrane oxygenation.
eACS: acute coronary syndrome.
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fAR: aortic regurgitation.
gCABG: coronary artery bypass graft.
hAVR: aortic valve replacement.
iAMI: acute myocardial infarction.
jTEE: transesophageal echocardiography.
kr: rule out.
lPPU: perforated peptic ulcer.
mLPPU: laparoscopic perforated peptic ulcer surgery.
nEXP LAP: exploratory laparotomy.
ocath: catheter.
pUPPP: uvulopalatopharyngoplasty.
qESRD, end-stage renal disease.
rHD: hemodialysis.
sperm cath: permanent catheter.
tAVG: arteriovenous graft.
uAVF: arteriovenous fistula.
vPTA: percutaneous transluminal angioplasty.
wRLL: right lower lobe.
xNF: necrotizing fasciitis.
yBK: below-knee amputation.
zCCRT: concurrent chemoradiotherapy.
aaVATS: video-assisted thoracic surgery.
abLAR: low anterior resection.
acACL: anterior cruciate ligament.
adMCL: medial collateral ligament.
aeACDF: anterior cervical discectomy and fusion.
afbil: bilateral.
agov: ovarian.
ahURSL: ureteroscopic lithotomy.
aiTVOR: transvaginal oocyte retrieval.
ajTCR: transcervical resectoscope.
akGA: gestational age.
alrt: right.
amMRI: magnetic resonance imaging.
anTEP: total extraperitoneal approach.

Discussion

Principal Findings
The DNN-BERT model predicted the in-hospital 30-day
mortality with the highest AUROC of 0.964 (95% CI
0.961-0.967) and an AUPRC of 0.336 (95% CI 0.276-0.402);
see Table 3 and Figure 3. The BERT-DNN had an AUROC
significantly higher compared to XGBoost, logistic regression,
and ASAPS but not the DNN or random forest. The BERT-DNN
also had an AUPRC significantly higher compared to the DNN,
random forest, XGBoost, logistic regression, and ASAPS.

Hill et al [6] proposed an ML model that outperformed previous
tools (eg, preoperative score to predict postoperative mortality,
Charlson comorbidity, and ASAPS) and could be used
independently by clinicians. Our BERT-DNN model
outperformed Hill et al’s [6] model, obtaining a higher AUROC,
sensitivity, and F1 score than their results (0.964, 95% CI
0.961-0.967 vs 0.932, 95% CI 0.910-0.951; 0.650, 95% CI
0.587-0.719 vs 0.239, 95% CI 0.127-0.379; and 0.347, 95% CI

0.305-0.388 vs 0.302, 95% CI 0.172-0.449, respectively); see
Table 3. The preoperative diagnosis text features and proposed
procedure information might contribute to our BERT-DNN
model and enhance its sensitivity and F1 score. Unlike Hill et
al [6], who focused on patients undergoing general anesthesia,
we trained and tested our model on both general and neuraxial
anesthesia. The DL model with clinical text predicted
postoperative mortality significantly more discriminatively than
logistic regression and ASAPS (Table 4).

DL methods predict postoperative mortality using preoperative
and intraoperative features [7-9]. Using a summary of
intraoperative features alongside the ASAPS, Lee et al [7]
presented a DNN model that achieved an AUROC of 0.91 (95%
CI 0.88-0.93). Our DNN model obtained a higher AUROC than
their model because we included key features such as
preoperative location and surgical department, the importance
of which was also verified in previous studies [6]. Fritz et al [8]
proposed a multipath convolutional neural network model to
predict postoperative mortality using intraoperative time-series
data and preoperative features. Their model achieved an
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AUROC of 0.910 (95% CI 0.897-0.924) and an AUPRC of
0.325 (95% CI 0.280-0.372) [33]. In contrast, our model can
be used preoperatively and achieve a higher AUROC and
AUPRC (Table 3).

Previous studies used ICD and CPT codes as categorical features
to stratify surgery risk [2,6,7,9,12]. This input feature has many
classes, which resulted in a sparse input matrix; this made it
difficult for the model to learn helpful information. However,
because ICD codes were typically recorded after surgery,
including them in the preoperative model was impractical.
Furthermore, the CPT code was not used globally. For this
reason, we could not compare a model including word
embeddings with one including CPT codes. However, our results
exhibited excellent discrimination with a high AUROC and
AUPRC. The AUPRC is significantly higher than models
without text. The calibration plot also strongly correlated the
predicted probabilities and observed mortalities (Figure 4).
Word embedding visualizations showed that the increased
predicted probabilities were concordant with high-risk surgery
and an increased mortality rate (Figure 5 and Table 6). We
showed that word embeddings for surgery information could
be used in DL models to predict postoperative mortality before
surgery without requiring CPT or ICD codes.

The fusion of neural networks, combining diverse types of data
(eg, image [34] and time-series [8] data) with 1D data (eg,
categorical, and continuous data), improved the model’s
performance. Including unstructured clinical text via natural
language procession can improve intensive care unit (ICU)
mortality predictions [14,16]. The DL model that combined
unstructured and structured data outperformed models using
either type of data alone [15]. Moreover, the performance of

the clinical pretrained DL language model could be maintained
between different institutions [35].

Limitations
Our study has several limitations. First, postoperative mortality
accounted for 1.3% (1562/121,313) of our cohort, and the
classes were highly imbalanced. The model training and
performance metric evaluations were difficult to apply with
these sparse positive labels. To compensate for the class
imbalance via an algorithmic method, we applied cost-sensitive
learning by balancing the weights of the loss function to
emphasize the minority group [36]. We evaluated the
discrimination of our model with the AUPRC, which is more
informative than the AUROC for imbalanced data [8,25,26].
Second, our model predicted mortality using EHRs. The errors
in the records and missing values affected the prediction results.
Typos of text interfered with the word-embedding process.
Outliers were detected and input using the defined rules
(Multimedia Appendix 2). Third, all records were collected
from a single large medical center. Although the pipeline we
created ensured that the DL model could be reproduced in other
institutes, the model weights might vary for a different data set.
The generalizability of our results must be examined in future
studies.

Conclusion
In conclusion, descriptive surgical text was essential for
predicting postoperative mortality. The word embeddings of
preoperative diagnoses and proposed procedures, via the
contextualized language model BERT, were combined in DL
models to predict postoperative mortality. This predictive
capacity can help identify patients with higher risk from
structure data and text of EHRs.
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Higher resolution of Figure 5. Word embeddings visualized by t distributed stochastic neighbor embedding. (A) Word embeddings
of the training set. (B) Word embeddings of the testing set. “Probs” indicates probabilities predicated by the BERT-DNN model.
The intensity of color increased with the probability. “Labels” indicates mortalities by “x” and survivors by “•”. ards: acute
respiratory distress syndrome; atfl: anterior talofibular ligament; avg: arteriovenous graft; avp: aortic valvuloplasty; BERT:
bidirectional encoder representations from transformers; bct: breast-conserving therapy; bil: bilateral; bph: benign prostate
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hypertrophy; bx: biopsy; chr: chronic hypertrophic rhinitis; cps: chronic paranasal sinusitis; dbj: double J stent; DNN: deep neural
network; ecmo: extracorporeal membrane oxygenation; emh: endometrial hemorrhage; esrd: end-stage renal disease; fess:
functional endoscopic sinus surgery; itc: intertrochanter; ivg: intravenous general anesthesia; lih: left inguinal hernia; mvr: mitral
valve replacement; nsd: nasal septum deviation; p: post; pcnl: percutaneous nephrolithotomy; perm cath: permanent catheter;
psa: prostate-specific antigen; r: rule out; r’t: right; rirs: retrograde intrarenal surgery; rv: right ventricle; slnd: sentinel lymph
node dissection; SNE: stochastic neighbor embedding; t colon: transverse colon; tee: transesophageal echocardiography; tep:
total extraperitoneal approach; trus: transrectal ultrasound; turp: transurethral resection of the prostate; urs: ureteroscopy; vats:
video-assisted thoracic surgery; vhd: valvular heart disease.
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