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Abstract

Background: With the continuous spread of COVID-19, information about the worldwide pandemic is exploding. Therefore,
it is necessary and significant to organize such a large amount of information. As the key branch of artificial intelligence, a
knowledge graph (KG) is helpful to structure, reason, and understand data.

Objective: To improve the utilization value of the information and effectively aid researchers to combat COVID-19, we have
constructed and successively released a unified linked data set named OpenKG-COVID19, which is one of the largest existing
KGs related to COVID-19. OpenKG-COVID19 includes 10 interlinked COVID-19 subgraphs covering the topics of encyclopedia,
concept, medical, research, event, health, epidemiology, goods, prevention, and character.

Methods: In this paper, we introduce the key techniques exploited in building COVID-19 KGs in a top-down manner. First,
the schema of the modeling process for each KG in OpenKG-COVID19 is described. Second, we propose different methods for
extracting knowledge from open government sites, professional texts, public domain–specific sources, and public encyclopedia
sites. The curated 10 COVID-19 KGs are further linked together at both the schema and data levels. In addition, we present the
naming convention for OpenKG-COVID19.

Results: OpenKG-COVID19 has more than 2572 concepts, 329,600 entities, 513 properties, and 2,687,329 facts, and the data
set will be updated continuously. Each COVID-19 KG was evaluated, and the average precision was found to be above 93%. We
have developed search and browse interfaces and a SPARQL endpoint to improve user access. Possible intelligent applications
based on OpenKG-COVID19 for further development are also described.

Conclusions: A KG is useful for intelligent question-answering, semantic searches, recommendation systems, visualization
analysis, and decision-making support. Research related to COVID-19, biomedicine, and many other communities can benefit
from OpenKG-COVID19. Furthermore, the 10 KGs will be continuously updated to ensure that the public will have access to
sufficient and up-to-date knowledge.
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Introduction

On February 11, 2020, the World Health Organization
announced the official name of the 2019 novel coronavirus as
COVID-19. Meanwhile, the International Committee on
Taxonomy of Viruses named this novel coronavirus
SARS-CoV-2 [1]. The infection caused by SARS-CoV-2 is now
affecting almost every country in the world. By October 24,
2021, more than 4.95 million people have died from COVID-19,
raising concerns of widespread fear and increasing anxiety in
individuals. At present, the epidemic continues to spread, and
there are many questions that continue to plague the public
about this disease, including: How can we obtain an overall
understanding of the knowledge about COVID-19 facing such
large amounts of information coming from various media every
day? What are the variants of SARS-CoV-2 and how should
they be treated or prevented? What is the state of supplies, hot
events, and frontline health care workers in this invisible war
worldwide? How can we find drugs or vaccines, and further
learn more? What travel restrictions do local policies apply
during the epidemic? What are the requirements regarding the
various means of transport?

During this pandemic, artificial intelligence (AI) has served as
an enabler to combat COVID-19, such as successful attempts
in predicting epidemic trends [2] with sophisticated models,
accelerating computer tomography detection [3] for more
efficient diagnosis by computer vision, participating in drug
development [4], and automatically answering epidemic-related
natural language questions [5-7]. Besides deep learning, the
knowledge graph (KG) concept has drawn increasing attention
from both academia and industry since it was first proposed by
Google in 2012. As the key to the evolution of AI toward
cognitive intelligence, a KG enables machines to better organize,
reason, understand, and explain information.

The success of the above applications heavily depends on the
scale and quality of the underlying KGs, regardless of whether
they exist in the open or in a specific domain. Well-known
general-purpose KGs include DBpedia [8], Yago [9], Freebase
[10], Wikidata [11], and the Chinese linked open data effort
Zhishi.me [12]. All of these KGs leverage Wikipedia, one of
the largest encyclopedia websites in the world, as an important
source. WordNet [13], BabelNet [14], and Linguistic Linked
Open Data [15] are examples of linguistic KGs. Regarding
domain-specific KGs, we here mainly focus on life science or
health care fields. The KG Linking Open Drug Data [16] surveys
the publicly available data about drugs and creates linked
representations of the data sets. The project Open PHACTS
[17] aims to deliver and sustain an open pharmacological space
using and enhancing state-of-the-art semantic web standards
and technologies. Bio2RDF [18] uses semantic web technologies
to provide the largest network of linked data about the life
sciences. However, none of the above KGs is specific to
COVID-19. Although it is possible to extract a
COVID-19–relevant subgraph from general-purpose KGs, this
approach will suffer from low coverage of domain knowledge

and the sparsity of properties describing this knowledge (eg,
viruses and diseases).

The White House, in collaboration with publishers and tech
firms, has launched the CORD-19 data set [19], which contains
more than 59,000 published articles and preprints. Although
CORD-19 is considered to be the largest single collection of
COVID-19 knowledge amassed to date, the majority of the data
set contains unstructured data, and more than 60% of the
included papers do not mention search terms such as
“coronavirus” and “SARS-CoV” [20]. The existing COVID-19
Knowledge Graph [21] is an expansive cause-and-effect network
constructed from the scientific literature on SARS-CoV-2,
aiming to provide a comprehensive view of its pathophysiology.
However, there are only 10 entity types and 9484 facts within
this KG. Coronavirus Knowledge Graph [22] only has 27
relation types. The CovidGraph project [23] built a COVID-19
graph that stores publications, case statistics, and molecular
data in a Neo4j database, which enables exploring the underlying
knowledge for finding specific genes, authors, articles, patents,
proteins, existing treatments, and medications relevant to the
entire family of coronaviruses. However, key aspects such as
health care, epidemiology, antiepidemic goods, related events,
and frontline workers fighting the epidemic have not yet been
considered.

To capture richer and more diverse topics of COVID-19 so as
to offer more useful knowledge for the public, we have extended
these previous efforts [24-26] to construct OpenKG-COVID19,
a linked data set of COVID-19 KGs, covering 10 aspects ranging
from encyclopedia, concept, medical, health, prevention, goods,
research, epidemiology, and character to events.
OpenKG-COVID19 was launched by OpenKG [27], which is
the largest Chinese open KG community pushing for the
development of public KGs, open-source tools, and best
practices in vertical sectors in China since the middle of
February 2020. We are the first to mainly focus on constructing
high-quality pandemic KGs in China. Moreover,
OpenKG-COVID19 is open to the public with continuous efforts
to ensure that it contains up-to-date information. The publishing
and maintenance of such a large-scale KG can help researchers
around the world to understand, study, and even fight
COVID-19. An overview of OpenKG-COVID19 is depicted in
Figure 1. Each KG, its sources, and possible applications are
listed in Textbox 1.

Moreover, several key steps have been used to construct
OpenKG-COVID19, namely modeling, extraction, and fusion
of knowledge. Among them, knowledge modeling mainly
involves schema design. The schema knowledge of each data
set in OpenKG-COVID19 is described in the Methods section.
The other steps are executed automatically with the human in
the loop. In particular, we present the technical details of
knowledge extraction and then describe how the curated KGs
are further linked together at both the schema and data levels.
We further present the results of experimental validation of
OpenKG-COVID19, and discuss the access interfaces along
with the possible applications of the linked COVID19 KGs.
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Figure 1. Overview of OpenKG-COVID19. KG: knowledge graph; NCBI: National Center for Biotechnology Information; Q&A: question and answer.

Textbox 1. Sources, knowledge graphs (KGs), and application prospects of OpenKG-COVID19.

• The encyclopedia KG (Bilingual Encyclopedia Knowledge Graph [BEKG]) is based on multiple encyclopedia sources, which helps to gain a
basic understanding of SARS-CoV-2 and COVID-19.

• Targeting the question and answer (QA) system, both the medical KG and the health KG consider data sources from industrial companies and
official treatment plans, which have included COVID-19–related symptoms, diseases, drugs, and treatment options.

• The prevention KG not only provides authoritative guidance on individuals’ protection and public prevention, but also contains knowledge about
vaccines and nucleic acid tests.

• The goods KG provides the current status of materials used in the epidemic, including information of daily protective equipment, medical
diagnosis, treatment devices, and therapeutic drugs.

• The research KG aims to assist in the discovery of drugs or vaccines, and its data are derived from virus-related scientific research databases and
literature.

• The epidemiology KG helps to trace the source of infection and explore contacts. These data come from the case flow information published by
provincial health committees.

• The character KG sorts out heroic deeds and assists in the dynamic display of character information, including the individual’s resume, achievements,
and related events about combating the epidemic.

• The event KG organizes hot events about the epidemic with the when, where, who, and what factors incorporated.

• The concept KG uses automatic web-mining technologies to collect a large number of fine-grained COVID-19–related entities and their
corresponding hypernyms from web text, which has been applied in medical-related virtual assistants to address complex user information needs.

Methods

Schema of OpenKG-COVID19
A schema defines a specific, clear, high-level structure of a KG.
It is necessary to model a sound schema to accurately offer a
clear understanding of KG content. New data added to the KG
will not be allowed if the data do not conform to the defined
schema. We designed a total of 10 schemata for each subgraph:
concept, encyclopedia, medical, health, research, prevention,
goods, event, character, and epidemiology. The details of the
schemata are described in further detail elsewhere [28]. In brief,
three methods were employed to develop the schemata:

manually defined by medical experts (manual), extracted from
encyclopedic websites or COVID-19–related medical websites
(site data), and mined automatically from the web (automatic
mining). The design method of each KG is displayed in the left
part of Table 1.

Within OpenKG-COVID19, the schemata of most KGs (eg,
medical, epidemiology) have been designed by domain experts.
Taking the epidemiology KG as an example, its schema defines
the basic concepts of epidemiology such as epidemic, pathogen,
host, epidemic situation, epidemiological survey, survey method,
survey population, surveyed individual, and survey report. The
relations between these concepts contain “cause,” “is-part-of,”
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“includes,” “uses,” and similar. The entire schema diagram is
illustrated in Figure 2. Note that even though the schema shown
here was manually constructed, we can boost the entire process
by recommending users’domain keywords or related ontologies
in the same or similar field as a prototype for reuse.

Another method for schemata design is to treat semistructured
information as categories and properties in “infoboxes” as
schemata. This method was used for the design of the schemata
for the encyclopedia and research KGs. Specifically, the schema
modeling process during construction of the encyclopedia KG
is shown with a red color border in Figure 3. We further used

BabelNet [29] and Zhishi.schema [30] to expand the concepts
with multilingual labels.

We also tried to automatically mine schemata from the web.
Specifically, we performed nonlinear mapping between one
concept to another (its hypernym) based on popular embedding
technology to obtain a large number of fine-grained hypernyms
from search engines, encyclopedias, and word morphology. The
hierarchical structure (“is-a” relation) was constructed by
measuring the semantic broadness between concepts as well as
between an instance and a concept. Therefore, the data-level
knowledge was also extracted during schema design.

Table 1. Classifications of schema design and knowledge extraction of COVID-19 knowledge graphs.

Knowledge extractionSchema designKnowledge graph

Plain textSemistructuredStructuredAutomatic miningSite dataManual

✓✓✓Concept

✓✓✓✓Encyclopedia

✓✓Medical

✓✓✓Health

✓✓✓Research

✓✓✓✓Prevention

✓✓Goods

✓✓Event

✓✓Character

✓✓Epidemiology

Figure 2. Schema diagram of the epidemiology knowledge graph.
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Figure 3. Construction process of the encyclopedia knowledge graph (KG).

Knowledge Extraction for COVID-19 KGs
Construction

Overview
This section introduces methods for the classification of
knowledge extraction based on different data types. In general,
sources of knowledge extraction include structured data (eg,
linked data), semistructured data (eg, tables and infoboxes), and
unstructured data in the form of plain text. Sources of each KG
in OpenKG-COVID19 are listed in the right part of Table 1.
There exist correlations between schema design and sources for
knowledge extraction. For example, if a KG extracts its
knowledge from semistructured data sources, its schema is
usually obtained from site data. Graph mapping is leveraged to
extract a domain-specific subgraph from linked data, whereas
the “D2R” tool is used to transform relational data of a Database
into Resource Description Framework (RDF) triples. Moreover,
wrappers are used for semistructured data and information
extraction to convert plain text into structured knowledge.

Extraction from Structured Data Sources
Structured data represent the main data source of KG
construction. Our research KG focuses on information from the
virus field. It contains five subgraphs, which are the virus
taxonomy KG, SARS-CoV-2 gene-protein KG, antiviral drug
KG, SARS-CoV-2 phylogeny KG, and SARS-CoV-2 literature
extraction KG. The construction of the first four KGs fits within
this method.

Specifically, we analyzed some data of related biodatabases
(eg, National Center for Biotechnology Information [NCBI]
[31], GISAID [32], China National Center for Bioinformation
[33], DrugBank [34], and Nextstrain [35]) and related biological
KGs such as SNAP [36] at Stanford University. Moreover, we
have established in-depth collaborations with some biological
institutes in the vertical field to ensure that the research KG is
professional. We converted data in different formats from the
above sources into a unified graph structure based on the
designed schema.

The SARS-CoV-2 gene-protein KG is mainly built from the
virus data in the NCBI database. By looking up “SARS-CoV-2”
in NCBI, various types of related information are returned, such
as genome, gene, and protein. Two example triples are
(SARS-CoV-2, Virus-express-Gene, NS6) and (SARS-CoV-2,
Virus-produce-Protein, nonstructural protein NS6).

The antiviral drug KG is based on four structured databases:
DrugBank, Virus Pathogen Database [37], VirHostNet 3.0 [38],
and VISDB [39]. The KG demonstrates interaction relationships
among various types of viruses, human proteins, antiviral drugs,
and diseases. For further integration, we linked the data through
the taxonomy ID of the virus, the UniProt ID of the protein, and
the generic name of the drug. Several extracted example triples
are: (Human immunodeficiency virus 1, Virus-alias-String,
HIV-1), (Enfuvirtide, Drug-effect-Virus, Human
immunodeficiency virus 1), and (H31, HostProtein-belong
to-Host, Human).

We also extracted the virus taxonomy tree from NCBI to build
the corresponding KG. Similarly, the SARS-CoV-2 phylogeny
KG was constructed by referencing Nextstrain metadata.

Extraction From Semistructured Sites
We mainly leveraged semistructured data for building the KGs
of concept, encyclopedia, health, prevention, goods, and
character. Taking the encyclopedia KG as an example, its
knowledge in the form of RDF triples is extracted from the
integration of several encyclopedia sites (eg, Baidu Baike,
Hudong Baike, Chinese Wikipedia). We particularly considered
the following four types of semistructured data for knowledge
extraction: internal links, infoboxes, categories, and
classification trees. For an infobox, the page title is treated as
a subject, each attribute of the infobox is treated as a predicate,
and the corresponding attribute value is treated as the object.
For an internal link, we also treat the title entity as a subject,
the target entity that the internal link refers to as the object, and
the relation (defined in the schema) matching the text between
the subject mention and the object mention as the predicate. For
a category that a page belongs to, the title entity, typeOf, and
the given category form a triple. For a classification tree, a
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high-level concept can be linked with any of its ancestors in a
triple using the hyponym as the predicate. Figure 4 shows

examples for all four types of semistructured data and their
corresponding extracted triples.

Figure 4. Extraction of various types of semistructured data.

Extraction From Plain Texts
Plain texts are widely available for human consumption but are
hard for machines to understand, which hinders construction of
a KG from these unstructured data. We applied regular
expressions to extract fact triples for the six subgraphs shown
in the right part of Table 1 from plain texts. When detecting
knowledge by regular expressions, we paid more attention to
the precision of information extraction rather than the recall to
ensure that the COVID-19 knowledge managed into
OpenKG-COVID19 is relatively accurate. Finally, the average
precision of our regex matching methods was found to be
96.34% and the average recall was 87.63%. However, there are
large amounts of diverse information and complex semantic
relations in the research literature, which required more
advanced methods during the construction of the research KG.
In recent years, there has been great progress in applying
machine reading comprehension to the knowledge extraction
task on plain texts [40,41]. The basic idea is to extract the
candidate entities from sentences by a subject extraction
network, and then extract the object of a triple based on
candidate entities and a predefined predicate using a joint
predicate-object extraction network. Pretrained language models
such as bidirectional encoder representations from transformers
(BERT) [42] are employed for encoding in both networks, which
alleviates the amount of labeled data required to train a model.

Inspired by the above work, we applied the same technique in
building COVID-19 KGs from various text sources. The labeling
process can be further relieved by distant supervision [43],
where the subject and object of a triple are automatically labeled
in one sentence and the sentence context is captured to check
whether the predicate holds. After extraction and sampled

manual check, triples such as (SARS-CoV2,
Virus-interaction-Human Protein, ACE2), (SARSCoV-2,
Virus-cause-Disease, human respiratory disease), and
(nelfinavir, Drug-effect-Virus, SARS-CoV2) are returned from
the medical literature.

Interlinking Knowledge from Different COVID-19
KGs

Overview
Following the linked data principles, we connected these KGs
to promote the integration and sharing of knowledge about
COVID-19. We observed that schemata in these KGs, except
for that of the concept KG, are of relatively small scale.
Therefore, we first used an automatic ontology matching
approach to align schema-level knowledge (ie, concepts and
properties) and then asked domain experts to validate the results,
and finally leveraged the validated schema matches to align
data-level knowledge (ie, entities).

Schema Matching
Because there is no central schema for the COVID-19 KGs, we
decided to conduct pairwise schema matching. We reused
Falcon-AO [44], which is an automatic ontology matching tool.
Its main strengths lie in the integration of various powerful
matchers exploiting linguistic and structural features.
Furthermore, due to the naming issue, many schemata use
sequential IDs to name their concepts and properties. To avoid
their interference with the matching process, we disabled the
comparison of local names in Falcon-AO. The details of the
naming convention are introduced below.
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Entity Alignment
Similar to schema matching, we conducted pairwise entity
alignment. We used the property matches from schema matching
to make the properties in each pair of KGs uniform. We

observed that most matched properties are data-type properties.
Therefore, we leveraged literal similarity measures to align
entities. Since the true matches are unavailable, we deployed
the crowdsourced entity resolution approach [45] to find entity
matches, and the workflow is depicted in Figure 5.

Figure 5. Workflow of entity alignment.KG: Knowledge graph.

Similarity Computation
For each entity pair, we used similarity measures to construct
a similarity vector, where each real value in the vector represents
the similarity of the values of each pair of aligned properties.
For numerical values, the absolute difference similarity measure
was used. For textual values, the Jaccard similarity measure
was applied. Moreover, the entity-type values were converted
to texts based on their labels. Note that a few KGs are
multilingual; therefore, we used a character-level bigram to
tokenize textual values.

Match Inference
Based on similarity vectors of entity pairs, we used the partial
order assumption to infer matches and nonmatches. Once an
entity pair is judged as a match by a human, each entity pair
such that all similarity values are not less than those of the match
is inferred as a match. By contrast, once an entity pair is judged
as a nonmatch, each entity pair such that all similarity values
are not greater than those of the nonmatch is inferred as a
nonmatch. When the similarity measures evaluate the value
within the threshold range, these inference rules are
approximately true [46].

Question Selection
To save both human labor and time, the total number of
questions (ie, unresolved entity pair for validation) is required
to be minimized. However, the true answers for questions are
unknown. Alternatively, we maximized the inference power of
a new question in each step. The question-selection algorithm
iteratively chooses each unresolved pair that has the greatest
number of possible inferred matches and nonmatches.

Human Labeling
Some KGs contain a lot of medical details (eg, drugs in research,
posthospital medications, limitations, special diets); thus,
common workers from the crowdsourcing platforms may not
have sufficient domain knowledge to manage a large amount
of medical information. To ensure a data set of high quality and
benefit to downstream tasks such as question answering, we
employed expert sourcing instead of crowdsourcing to collect
answers for questions pairs. In detail, we asked one domain
expert to judge each unresolved pair as a match or a nonmatch,
and randomly sampled some labeled question pairs for further
review to obtain the final result.

Results

Data Evaluation

Data Statistics
OpenKG-COVID19 is a linked data set of COVID-19 KGs
consisting of 10 subgraphs derived from different sources such
as research publications, medical guidelines, and encyclopedia
websites. As of October 24, 2021, the data set has knowledge
of more than 2572 concepts, 329,600 entities, 513 properties,
and 2,687,329 facts. Moreover, the data set will be updated
continuously along with the occurrence of COVID-19. The
detailed statistics of each KG are listed in the left part of Table
2, demonstrating that the research KG contains the largest
numbers of both entities and facts, and all KGs have relatively
rich properties, except for the concept KG that only defines two
properties (ie, typeOf and subClassOf) but has the highest
number of concepts.
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Table 2. Detailed statistics and quality of each subgraph.

Precision (%), mean (SD)Correct, nEvaluation, nProperties, nEntities, nConcepts, nFacts, nKnowledge graph

95.52 (0.58)477850006054,31850261,154Encyclopedia

94.81 (1.71)620652921035542857Medical

99.96 (0.03)8555855664221,131312,281,797Research

96.35 (1.69)198200212291427,388Event

99.65 (0.35)570570401057211902Character

97.20 (1.25)6306462434,85911328,651Prevention

97.83 (1.42)359365571321653738Goods

98.78 (0.91)483487104711059251,575Health

98.08 (1.92)200200472163558336Epidemiology

92.31 (4.96)9610024784148719,391Concept

Accuracy Evaluation
It is crucial to assess the quality of each KG in
OpenKG-COVID19. Since no ground truths are available, we
performed manual evaluation. Owing to the large number of
facts, we adopted a similar method as that of Yago with respect
to the sampling strategy and labeling process.

For sampling, we evaluated a chosen sample of facts for each
property defined in OpenKG-COVID19. Since the fact number
of each property is not evenly distributed, we used different
sampling coefficients (ranging from 0 to 1) for different
properties. If the fact number of one property is lower than the
minimal sample number k (k=20 in our setting), it was set to 1.
Otherwise, we selected a random coefficient to ensure that the
returned samples are more than k.

For labeling, we invited three postgraduate students focusing
on KGs as their main research area to review the same sampling
data for each subgraph. They were offered three choices to
annotate each sample: agree, disagree, and unknown. If more
than one annotator made a certain choice, then the sample was
labeled as that choice. If there were three different annotations
for one sample, we asked the annotators to reconsider the choice
through acquiring further knowledge about the sample and
obtain a result. However, discrepancies only accounted for 6%
of all samples according to the record of the labeling process.
After the labeling process, 98.35% of the sampled facts were
considered to be correct by consensus. To generalize our results
on the subset to the whole data set of COVID-19 KGs, the
Wilson interval at α=5% was computed.

The precision value of each COVID-19 KG is reported in the
right part of Table 2. We found that all KGs achieved an average
precision of more than 93%, except for the concept KG with
knowledge extracted by automatic web mining, which indicates
the high quality of OpenKG-COVID19. After the error analysis,
we found two typical patterns of wrong facts. One is that there
exists a mistake of either the head entity or the tail entity, and
the other is that the relation between the entity pair does not

conform to the fact. For example, it is inappropriate to regard
“judgment basis” as the relation between “confirmed cases”
and “shock,” because this is simply a possible clinical
manifestation of patients with COVID-19.

Results and Quality of Interlinking
The schema matching results are shown in Table 3,
demonstrating overlaps between different schemata, although
such overlaps are limited. Regarding entity alignment, we found
1055 matches among five KGs. The encyclopedia KG had the
greatest number of matches with other KGs (ie, 836 with the
health KG, 55 with the medical KG, 11 with the character KG,
and 2 with the goods KG) because it contains various types of
entities (eg, drugs and hospitals). We also noted some entity
matches but no schema matches between the encyclopedia KG
and the character KG, because some shared properties (eg,
rdfs:label) are used to align entities but these properties are not
included in schema matching. We also found some duplicated
entities in the encyclopedia KG because these entities are
extracted from different websites. There were few matches
between the goods KG and other KGs because most entities in
the goods KG are medical devices, which do not appear in the
other KGs. Since some entities in the character KG are hospitals,
there were 19 matches with the health KG. The remaining
matches were mostly related to drugs.

We recruited three students with a major in Semantic Web to
evaluate the precision, recall, and F1-score of the schema
matching and entity alignment results. As shown in Table 4,
the schema matching achieved high recall, but relatively low
precision. Most false matches were caused by the similarity
measure (eg, the pair “determination of protein” and “protein”
was wrongly judged as a match). We observed that the entity
alignment achieved perfect results in all KG pairs except for
health-character with precision, recall, and F1-score of 88.2%,
100.0%, and 93.8%, respectively. The high performance of
entity alignment was attributed to the fact that the literal
information in KGs is of high quality and most matches share
exactly the same information.
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Table 3. Results of schema matching.a

CharacterGoodsEventEpidemiologyMedicalResearchHealthConceptPreventionEncyclopediaKnowledge graph

000164900—bEncyclopedia

1171602000—0Prevention

0000000—737Concept

0113133—4109Health

00103—2602Research

1036—442524Medical

400—3031804Epidemiology

016—1000150Event

0—200061810Goods

—0135501120Character

aThe numbers below the diagonal are class matches and the numbers above the diagonal are property matches.
bNot applicable.

Table 4. Performance of schema matching.

Property (%)Class (%)Knowledge graph

F1-scoreRecallPrecisionF1-scoreRecallPrecision

85.085.085.080.085.775.0Encyclopedia

97.1100.094.486.7100.076.5Prevention

———a80.090.172.0Concept

82.188.576.769.994.755.4Health

70.6100.054.588.2100.078.9Research

84.490.079.489.191.187.2Medical

88.0100.078.687.7100.078.1Epidemiology

95.8100.091.9100.0100.0100.0Event

98.5100.097.173.176.070.4Goods

83.383.383.3100.0100.0100.0Character

90.095.085.682.291.574.6Overall

aNot applicable.

Knowledge Access, Sustainability, and Possible
Applications

Naming Convention
For considerations of readability and interoperability, we
followed the RDF naming convention, which helps to quickly
locate and understand the topic and the meaning of each triple.
The convention is composed of three major parts.

The first is the resource identifier, in which each resource (ie,
concept, entity, property) is identified by a global ID that is an

integer number prefixed by a letter. That is, classes are prefixed
by C (eg, C1), entities are prefixed by R (eg, R122), and
properties are prefixed by P (eg, P31). The second is the uniform
resource identifier (URI) pattern. All URIs should follow a
pattern such as [URL]/[graphname]/[type]/[resource], where
graphname is the name of the subgraph (eg, medical, research),
type takes on an enumerable value representing the URI type
(ie, class, resource, property), and resource is the global
identifier described in the resource identifier part. The third part
is the predicate usage; the COVID-19 KGs use the set of
predicates shown in Table 5 to illustrate the schema model.
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Table 5. Primary predicates used in the OpenKG-COVID19 schemata.

DescriptionPredicate

Local name statement of all URLsrdf:label

The hypernym-hypernym relationship between two classesrdfs:subClassOf

Domain class of a propertyrdfs:domain

Range class or literal data types of a property, which can be multivaluedrdfs:range

Synonym relationship between two resourcesowl:sameA

Search and Browse Interfaces
Since the published KGs in OpenKG-COVID19 comply with
the creative commons-by share-alike license, users can feel free
to download any of them [47]. The left part of Figure 6 shows
a snapshot of the data set search interface, where 10 KGs and

a schema data set about OpenKG-COVID19 are found.
Moreover, users can search for a particular entity and browse
the detailed information of that entity in the OpenBase website
[48]. As shown in the right part of Figure 6, the search results
contain various properties of Nanshan Zhong, a famous doctor
combating the COVID-19 epidemic in China.

Figure 6. Data set search interface (left) and entity search interface (right).

SPARQL Endpoint
The SPARQL endpoint [49] of OpenKG-COVID19 is built
upon a scalable graph database, gStore [50], which provides
extendable distributed storage management as well as efficient
implementations of complex queries and update operations
based on SPARQL for RDF data sets with up to billions of
triples. Users can submit SPARQL queries to the endpoint where
relevant results are returned in the form of a table. Users can
also choose to download the results packaged in a JavaScript
Object Notation (JSON) file by clicking “Click to Download.”
As of May 22, 2020, we have recorded over 20,000 accesses to
the endpoint.

Sustainability and Knowledge Review
OpenKG-COVID19 KGs are maintained by the OpenKG
community. We are collecting questionnaires considering users’

needs and updating our KGs accordingly. COVID-19 KGs are
particularly important for timely updates because users’ needs
may change as the epidemic develops (eg, from source to
treatment).

The data quality as well as the interlinking quality of
OpenKG-COVID19 are manually evaluated. OpenBase is a
knowledge crowdsourcing platform powered by blockchain
technologies for provenance tracking and credit incentive. We
uploaded a part of the data that may contain errors due to the
sampling method, and created many microtasks for reviewing
the correctness of triples. The reviewers were volunteers
certified by possession of one specific domain knowledge. They
were able to not only review the KG data but to also commit
data corrections. All volunteers participating in knowledge
reviewing via either a web-based interface or the WeChat mini
app (see Figure 7) received a corresponding reward of credit
for their contributions to improving our KGs.
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Figure 7. Knowledge review on the web (left) and WeChat mini app (right) of OpenBase.

Possible Intelligent Applications
OpenKG-COVID19 is the basis of various intelligent
applications, whose release will help to fight against this global
plague. OpenKG-COVID19 benefits from intelligent question
answering, semantic search, recommendation systems, as well
as the abilities for visualization, mining more associations,
predicting future events, and assisting in decision-making. More
specifically, we here take the event KG, research KG, medical
KG, and overall OpenKG-COVID19 as examples.

The event KG includes the forward and reverse indexing of
events about COVID-19 in time, and provides the development
context of a series of events, which can support the verification
and traceability of hot events. Furthermore, the event KG
combined with blockchain technology could identify whether
or not an event is true.

Based on the research KG, Huawei Cloud has developed a
personalized visual query system, displaying knowledge points
and their relations, which can quickly trace the source of
information and directly locate relevant documents and
paragraphs. The research KG facilitates scientific research on
virus mechanisms and viral protein interactions, and assists drug
developers in more accurate and effective drug target research
and vaccine development.

Starting from the cases of diagnosis and treatment to research
progress, the medical KG is developed by extracting knowledge
from the existing standard documents and the web. The
epidemiology, symptoms, laboratory indicators, treatments,
drug development, and vaccines of COVID-19 could be
conveniently consulted making use of question answering based
on the medical KG. Drugs that alleviate symptoms and potential
therapeutic drugs, such as the repurposing of old drugs for a
new use, can also be mined by the medical KG.

Moreover, OpenKG-COVID19 is an enabler to accelerate the
development of bioinformatics. The network structures of
COVID-19 KGs can be used to predict relations such as
host-virus, drug-virus, or interactions between viruses and the
host protein, which will help to reveal the underlying mechanism
of COVID-19. In particular, the combination of protein-protein
interactions, drug–protein target interactions, and the
polypharmacy side effects could predict unknown side effects.

Discussion

Principal Results
In this study, we constructed OpenKG-COVID19, one of the
largest existing KGs about COVID-19. We first presented the
schema design process of OpenKG-COVID19. We then
introduced the comprehensive techniques for knowledge
extraction and knowledge fusion. Moreover, we provided an
evaluation of the quality of OpenKG-COVID19. This paper
also provides an introduction of various access interfaces
covering searching, browsing, querying, and knowledge review,
and discusses the possible applications of OpenKG-COVID19.
Our efforts can benefit KG, biomedicine, and many other
communities. New knowledge for the 10 KGs will be updated
continuously through the processes described above to maintain
and update OpenKG-COVID19 for improving its quality and
coverage.

Limitations
Although OpenKG-COVID19 is updated continuously, the
update frequency is not daily, which may result in some
information not being up to date, causing inconvenience for
downstream tasks. Moreover, it is also very necessary to control
the data set version, which is future work to be considered.

We randomized a chosen sample of facts for each property
defined in OpenKG-COVID19 to evaluate the data quality. In
some cases, the number of samples may be small, which will
lead to a less reliable evaluation result. Therefore, we plan to
further improve the quality of data by selecting a new method
to sample more triples of each property.

Conclusion
A KG is an effective technique to provide well-organized data,
and is also beneficial for intelligent question answering,
semantic search, recommendation system, visualization analysis,
and decision-making support. OpenKG-COVID19 includes rich
and diverse topics of COVID-19, covering 10 aspects ranging
from encyclopedia, concept, medical, health, prevention, goods,
research, epidemiology, and character to events. The publishing
and maintenance of OpenKG-COVID19 can help researchers
around the world to better understand, study, and even fight
COVID-19.
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