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Abstract

Background: Racial bias is a key concern regarding the development, validation, and implementation of machine learning
(ML) models in clinical settings. Despite the potential of bias to propagate health disparities, racial bias in clinical ML has yet
to be thoroughly examined and best practices for bias mitigation remain unclear.

Objective: Our objective was to perform a scoping review to characterize the methods by which the racial bias of ML has been
assessed and describe strategies that may be used to enhance algorithmic fairness in clinical ML.

Methods: A scoping review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and
Meta-analyses (PRISMA) Extension for Scoping Reviews. A literature search using PubMed, Scopus, and Embase databases, as
well as Google Scholar, identified 635 records, of which 12 studies were included.

Results: Applications of ML were varied and involved diagnosis, outcome prediction, and clinical score prediction performed
on data sets including images, diagnostic studies, clinical text, and clinical variables. Of the 12 studies, 1 (8%) described a model
in routine clinical use, 2 (17%) examined prospectively validated clinical models, and the remaining 9 (75%) described internally
validated models. In addition, 8 (67%) studies concluded that racial bias was present, 2 (17%) concluded that it was not, and 2
(17%) assessed the implementation of bias mitigation strategies without comparison to a baseline model. Fairness metrics used
to assess algorithmic racial bias were inconsistent. The most commonly observed metrics were equal opportunity difference (5/12,
42%), accuracy (4/12, 25%), and disparate impact (2/12, 17%). All 8 (67%) studies that implemented methods for mitigation of
racial bias successfully increased fairness, as measured by the authors’ chosen metrics. Preprocessing methods of bias mitigation
were most commonly used across all studies that implemented them.

Conclusions: The broad scope of medical ML applications and potential patient harms demand an increased emphasis on
evaluation and mitigation of racial bias in clinical ML. However, the adoption of algorithmic fairness principles in medicine
remains inconsistent and is limited by poor data availability and ML model reporting. We recommend that researchers and journal
editors emphasize standardized reporting and data availability in medical ML studies to improve transparency and facilitate
evaluation for racial bias.

(JMIR Med Inform 2022;10(5):e36388) doi: 10.2196/36388
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Introduction

Background
In recent years, artificial intelligence (AI) has drawn significant
attention in medicine as machine learning (ML) techniques
show an increasing promise of clinical impact. Driven by
unprecedented data accessibility and computational capacity,
ML has been reported to reach parity with human clinicians in
a variety of tasks [1-3]. ML is poised to benefit patients and
physicians by optimizing clinical workflows, enhancing
diagnosis, and supporting personalized health care interventions
[4-6]. Decision support tools based on ML have already been
implemented across health systems [7,8], and the continued
proliferation of clinical ML will impact patients in all fields of
medicine.

However, despite its appeal, significant barriers remain to the
full realization of clinically integrated ML. Key concerns include
limited model transparency due to the “black box” of ML,
inadequate reporting standards, and the need for prospective
validation in clinical settings [1,9-12]. Racial bias in clinical
ML is a crucial challenge arising from these limitations and
must be addressed to ensure fairness in clinical implementation
of ML. As ML is premised on prediction of novel outcomes
based on previously seen examples, unintended discrimination
is a natural consequence of algorithm development involving
training data that reflect real-world inequities [13].

Equity in health care remains a continual pursuit [14,15]. Bias
and disparities along dimensions of race, age, and gender have
been shown to impact health care access and delivery, evident
in varied settings, such as race correction in clinical algorithms
or clinical trial enrollment and adverse event monitoring [16,17].
Considering the growing body of literature demonstrating
profound adverse impacts of health care inequities on patient
outcomes, mitigation of the numerous and insidious sources of
potential bias in medicine requires remains a critical challenge
to prevent harm to patients [14,17]. Thus, the potential for
algorithms to perpetuate health disparities must be carefully
weighed when incorporating ML models into clinical practice
[18-20].

Algorithmic fairness is an area of ML research guiding model
development with the aim of preventing discrimination involving
protected groups, which are defined by attributes such as race,
gender, religion, physiologic variability, preexisting conditions,
physical ability, and sexual orientation [13,19]. However,
application of algorithmic fairness principles in the medical ML
literature remains nascent [20]. Greater awareness of the
potential harms of bias in clinical ML as well as methods to
evaluate and mitigate them is needed to support clinicians and
researchers across the health care and data science disciplines,
who must evaluate and implement clinical ML models with a

critical eye toward algorithmic fairness. The objective of this
study is to characterize the impact and mitigation of racial bias
in clinical ML to date and describe best practices for research
efforts extending algorithmic fairness to medicine.

Bias and Fairness in Machine Learning
In the setting of algorithmic fairness, bias is present when an
algorithm systematically favors one outcome over another. Bias
may be introduced into an ML algorithm throughout all steps
of the development process, which involves data collection,
data selection, model training, and model deployment [13].
Examples of these sources of bias are shown in Figure 1, and
their definitions are given in Multimedia Appendix 1. Notably,
historical bias may be present even if all steps of model
development are optimally performed. This is of particular
concern in the evaluation of racial bias in clinical ML, given
the presence of existing and historical health care disparities
[14].

Depending on the context, bias in clinical ML may not be
harmful and can even be used to overcome inequality [13]. In
situations in which targeting a well-defined subpopulation above
all others is desirable, an ML algorithm biased toward a
particular group may be used to proactively mitigate existing
disparities. However, bias may arise when ML models designed
to serve the needs of a specific clinical population—such as a
particular community or high-risk demographic—are
inappropriately applied to other populations or when more
general models are applied to specific populations. Additionally,
ML algorithms tend to overfit to the data on which they are
trained, which entails the learning of spurious relationships
present in the training data set and may result in a lack of
generalizability to other settings. As a result, a model that
appears unbiased in one setting may display bias in another.
Thus, bias in clinical ML must be considered in the light of the
context and particular population of interest.

Bias in an ML model may lead to unfairness if not appropriately
evaluated and accounted for. Fairness in ML is achieved when
algorithmic decision-making does not favor an individual or
group based on protected attributes. Research efforts have
emphasized group fairness over individual fairness, given the
need for algorithms that consider existing differences between
populations—whether intrinsic or extrinsic—while preventing
discrimination between groups [13,21]. Crucially, improving
model fairness does not necessarily require compromising
accuracy overall [22]. For instance, an unfair disease-screening
tool might have poor sensitivity for disease detection in one
low-risk population subgroup compared to another with higher
risk; improving the fairness of this tool would entail adjusting
the model to have more similar sensitivities between subgroups.
In this study, we examine the racial bias of clinical ML in terms
of model fairness with respect to race.
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Figure 1. The clinical machine learning development workflow (orange boxes) offers several opportunities (blue boxes) to evaluate and mitigate
potential biases introduced by the data set or model. Preprocessing methods seek to adjust the existing data set to preempt biases resulting from inadequate
data representation or labeling. In-processing methods impose fairness constraints as additional metrics optimized by the model during training or
present data in a structured manner to avoid biases in the sampling process. Postprocessing methods account for model biases by adjusting model outputs
or changing the way they are used.

Assessing and Achieving Fairness in Machine Learning
Group fairness is quantified by evaluating the similarity of a
given statistical metric between predictions made for different
groups. Group fairness indicators encountered in this review
are defined in Table 1. Critical examinations of different
methods for evaluating fairness in ML, both in general
application [13,23,24] and in the context of health care [21],
have been previously described, though applications in clinical
ML remain limited. It is important to note that fairness metrics
may be at odds with one another, depending on the context and
application [25]; thus, evaluation of an appropriate metric, given
the clinical situation of interest, is paramount [26].

Approaches to bias mitigation fall into 3 major categories
(Figure 1): preprocessing, in which inequities in data are
removed prior to model training; in-processing, in which the
model training process is conducted to actively prevent
discrimination; and postprocessing, in which outputs of a trained
model are adjusted to achieve fairness [13]. Preprocessing can
be performed by resampling existing data, incorporating new
data, or adjusting data labels. In-processing methods use
adversarial techniques, impose constraints and regularization,
or ensure fairness of underlying representations during training.
Finally, postprocessing entails group-specific modification of
decision thresholds or outcomes to ensure fairness in the
application of model predictions. Different approaches may be
optimal depending on the setting and stage of model
development.
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Table 1. Group fairness metrics encountered in this review.

DescriptionTerm

Assesses overall classifier performance by measuring the TPRb and FPRc of a classifier at different thresholds.AUROCa

Compares the average of the TPR and FPR for the classification outcome between protected and unprotected groups.Average odds

A measure of accuracy corrected for data imbalance, calculated as the average of sensitivity and specificity for a group.Balanced accuracy

Assesses how well the risk score or probability predictions reflect actual outcomes.Calibration

Measures deviation from statistical parity, calculated as the ratio of the rate of the positive outcome between protected and
unprotected groups. Ideally, the disparate impact is 1.

Disparate impact

For classification tasks in which one outcome is preferred over the other, equal opportunity is satisfied when the preferred

outcome is predicted with equal accuracy between protected and unprotected groups. Ideally, the TPR or FNRd disparity between
groups is 0.

Equal opportunity

The TPR and FPR are equal between protected and unprotected groups.Equalized odds

Compares the error rate of predictions, calculated as the number of incorrect predictions divided by the total number of predictions,
between protected and unprotected groups. Ideally, the error rate disparity between groups is 0.

Error rate

Statistical parity (also known as demographic parity) is satisfied when the rate of positive outcomes is equal between protected
and unprotected groups.

Statistical parity

aAUROC: area under the receiver operating characteristic curve.
bTPR: true-positive rate.
cFPR: false-positive rate.
dFNR: false-negative rate.

Methods

Study Design
We performed a scoping review of racial bias and algorithmic
fairness in clinical ML models in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) 2020 guidelines [27] and PRISMA Extension for
Scoping Reviews [28]. The review protocol was not registered
and is available upon request to the authors. The PubMed
MEDLINE (National Library of Medicine), Scopus (Elsevier),
and Embase (Elsevier) databases were queried by combining
terminology pertaining to ML, race, and bias as keywords.
Additional records were identified using Google Scholar search.
The exact search strategy is detailed in Multimedia Appendix
1.

Study Selection
After duplicate record removal, studies were initially screened
by title and abstract and then screened for final inclusion by full
text review. All screening was performed independently by 2
reviewers. Studies were selected based on the following
inclusion criteria: peer-reviewed original research, English
language, full text available, development or evaluation of a
clinically relevant ML model, and evaluation of bias of the
model regarding racial or ethnic groups. Studies other than
full-length papers were excluded. ML was defined as a computer
algorithm that improves automatically via training on data [4].
Per PRISMA guidelines, any disagreements regarding study
inclusion based on these criteria were reconciled by discussion.

Data Abstraction
Relevant data were abstracted from included papers by 1
reviewer. Data of interest included the clinical objective of ML
models, identification of racial bias, impact of racial bias,

metrics for bias assessment, mitigation of racial bias, methods
for bias mitigation, data set size, data source, ML model
architecture, and availability of computer code used for data
preparation and ML model development. The methodological
quality of included studies was not assessed, given the scoping
nature of this review [28].

Results

Study Characteristics
The literature search was performed on September 8, 2021, and
identified 635 records (Figure 2). Of these, 26 (4.1%) full-text
papers were reviewed and 12 (46.2%) were included in the final
analysis [29-40].

Characteristics of the included studies are summarized in Table
2. Data sets and models used are summarized in Multimedia
Appendix 1. Of the 12 studies, 3 (25%) were published in 2019,
5 (42%) in 2020, and 4 (33%) in 2021. In addition, 9 (75%)
studies originated from the United States, 1 (8%) from Canada,
1 (8%) from Sweden, and 1 (8%) from both the United Kingdom
and Nigeria. Applications of ML were varied and involved
diagnosis, outcome prediction, and clinical score prediction
performed on data sets including images, diagnostic studies,
clinical text, and clinical variables. Furthermore, 1 (8%) study
described a model in routine clinical use [36], 2 (17%) examined
prospectively validated clinical models [35,39], and the
remaining 9 (75%) described internally validated models.

Of the 12 studies, 5 (42%) published code used for analysis, 3
(25%) made model development code available [34,36,39], 2
(17%) published bias analysis code [33,36], 1 (8%) published
code relevant to debiasing [30], and 1 (8%) published data
selection code [33]. In addition, 1 (8%) study used publicly
available code for analysis [31], and code was specified as
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available upon request in 1 (8%) study [35]. Bias of an ML
model was evaluated using an external database in 8 (67%)
studies [30-34,37,38], single-institutional data in 3 (25%) studies
[35,36,40], and data from 2 institutions in 2 (17%) studies
[29,39]. No institutional data sets were published. Convolutional
neural networks (CNNs) were the predominant ML modeling
technique used (5/12, 42%), followed by logistic regression
(3/12, 25%), least absolute shrinkage and selection operator
(LASSO; 2/12, 17%), and extreme gradient boosting (XGBoost;
2/12, 17%). In addition, 3 (25%) studies evaluated models
adapted from existing neural network architectures: ResNet50
in 2 (17%) studies [29,32] and DenseNet in the other [38].

Of the 12 studies, 9 (75%) evaluated a model developed
internally by the same researchers [29-33,35,37,39,40], 2 (17%)
evaluated a model developed externally by separate researchers
[36,38], and 1 (8%) evaluated both internally and externally
developed models [34]. In addition, 8 (67%) studies concluded
that racial bias was present [29,32-34,36-39], 2 (17%) concluded
that bias was not present [35,40], and 2 (17%) assessed the
implementation of bias mitigation strategies without comparison
to a baseline model [30,31]. A variety of methods were used to
assess the presence of algorithmic racial bias: 3 (25%) studies
used multiple metrics to assess fairness [31,34,37], while the
remaining 9 (75%) used a single metric. The most commonly

used fairness metrics were equal opportunity difference [41],
defined either as the difference in the true-positive rate (TPR)
or the false-negative rate (FNR) between subgroups (5/12, 42%)
[30,31,38,39]; accuracy (4/12, 25%) [29,31,32,34]; and disparate
impact (2/12, 17%) [31,37].

The approaches and efficacy of bias mitigation methods used
in the studies evaluated are summarized in Table 3. All 8 (67%)
studies that implemented methods for mitigation of racial bias
successfully increased fairness, as measured by the authors’
chosen metrics [29-32,34,36,37,39]. Preprocessing bias
mitigation was the most commonly used strategy (7/13, 54%).
In addition, 1 (8%) study removed race information from the
training data, though superior improvements in disparate impact
and equal opportunity difference were achieved by reweighing
[37]. Furthermore, 2 (17%) studies performed in-processing
bias mitigation using the prejudice remover regularizer [42] or
adversarial debiasing during model training [31,37]. However,
in both studies, in-processing was ineffective in reducing bias
and was outperformed by other bias mitigation methods. Finally,
1 (8%) study evaluated multiple types of ML models for bias
during the development process, concluding that a LASSO
model was preferable to conditional random forest, gradient
boosting, and ensemble models for racially unbiased dementia
ascertainment [34].

Figure 2. PRISMA flowchart of study inclusion. ML: machine learning; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-analyses.
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Table 2. Study characteristics.

Protected classWas racial bias
mitigated?

How was the AIa model
biased?

Was racial bias
identified?

How was fairness
evaluated?

Clinical objectiveAuthor (year)

Dark-skinned pa-
tients, light-
skinned patients

YesPoor accuracy of models
trained on a Caucasian
data set and validated on
an African data set and
vice versa

YesAccuracyIdentification of im-
ages of burns vs
healthy skin

Abubakar et al
(2020) [29]

Non-White pa-
tients

YesN/AN/AcEqual opportunity dif-

ference (FNRb dispar-
ity)

Intensive care unit
(ICU) mortality predic-
tion

Allen et al
(2020) [30]

Black patientsYesN/AN/ABalanced accuracy,
statistical parity, dis-
parate impact, average
odds, equal opportuni-
ty

Prediction of future
health care expendi-
tures of individual pa-
tients

Briggs and
Hollmén (2020)
[31]

Dark-skinned pa-
tients

YesLower diagnostic accura-
cy in darker-skinned indi-
viduals compared to
lighter-skinned individu-
als

YesAccuracyDiagnosis of diabetic
retinopathy from fun-
dus photography

Burlina et al
(2021) [32]

Non-White pa-
tients

NoDifferences in error rates
in ICU mortality between
racial groups

YesError rate (0-1 loss)ICU mortality predic-
tion, psychiatric read-
mission prediction

Chen et al
(2019) [33]

Hispanic, non-His-
panic Black pa-
tients

YesExisting algorithms
varying in sensitivity and
specificity between
race/ethnicity groups

YesSensitivity, specifici-
ty, accuracy

Dementia status classi-
fication

Gianattasio et al
(2020) [34]

Non-White pa-
tients

NoN/ANoAUROCdPrediction of left ven-
tricular ejection frac-
tion ≤35% from the
electrocardiogram
(ECG)

Noseworthy et
al (2020) [35]

Black patientsYesBlack patients with a
higher burden than White
patients at the same algo-
rithmic risk score

YesCalibrationPrediction of future
health care expendi-
tures of individual pa-
tients

Obermeyer et al
(2019) [36]

Black patientsYesBlack women with a
worse health status than
White women at the
same predicted risk level

YesDisparate impact,
equal opportunity dif-

ference (TPRe dispari-
ty)

Prediction of postpar-
tum depression and
postpartum mental
health service utiliza-
tion

Park et al
(2021) [37]

Non-White pa-
tients

NoGreater TPR disparity in
Hispanic patients

YesEqual opportunity dif-
ference (TPR dispari-
ty)

Diagnostic label pre-
diction from chest X-
rays

Seyyed-Kalan-
tari et al (2021)
[38]

Black patientsYesGreater FNR in the Black
subgroup than in the
White subgroup

YesEqual opportunity dif-
ference (FNR dispari-
ty)

Identification of opi-
oid misuse from clini-
cal notes

Thompson et al
(2021) [39]

Non-White pa-
tients

NoN/ANoRegression analysis of
the impact of the race
variable on the candi-
dacy score

Assignment of surgi-
cal candidacy score
for patients with
epilepsy using clinical
notes

Wissel et al
(2019) [40]

aAI: artificial intelligence.
bFNR: false-negative rate.
cN/A: not applicable.
dAUROC: area under the receiver operating characteristic curve.
eTPR: true-positive rate.
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Table 3. Bias mitigation methods among reviewed studies.

EffectivenessDescription of strategies used

Preprocessing

Reweighing training data • An equal opportunity difference (FNRa difference) of 0.016 (P=.20) was achieved for intensive care
unit (ICU) mortality prediction [33].

• The mean fairness measure (average of statistical parity difference, disparate impact measure, average
odds difference, and equal opportunity difference) improved to 0.06 from 0.12 for prediction of health
care costs [34].

• Disparate impact improved from 0.31 to 0.79, and the equal opportunity (TPRb) difference improved
from –0.19 to 0.02 for prediction of postpartum depression development; prediction of mental health
service use in pregnant individuals improved from 0.45 to 0.85 and –0.11 to –0.02, respectively [40].

Combining data sets to increase
heterogeneity

• The accuracy of skin burn identification increased to 99.5% using a combined data set compared to
83.4% and 87.5% when trained on an African and evaluated on a Caucasian data set and vice versa [32].

Generating synthetic minority
class data

• Disparity in diabetic retinopathy diagnostic accuracy improved from 12.5% to 7.5% and 0.5% when
augmenting with retina appearance-optimized images and diabetic retinopathy status-optimized images
created with a generative adversarial network, respectively [35].

Adjusting label selection • Improved congruence in health outcomes between groups after developing models to predict other labels
for health status besides financial expenditures [39].

Removing race information from
training data

• Disparate impact improved from 0.31 to 0.61 and equal opportunity (TPR) difference improved from
–0.19 to –0.05 for prediction of postpartum depression development; respective improvements from
0.45 to 0.63 and –0.11 to –0.04 for prediction of mental health service use in pregnant individuals [40].

In-processing

Use of a regularizer during training • Disparate impact improved, but accuracy and the equal opportunity (TPR) difference decreased when
implementing the prejudice remover regularizer in prediction of postpartum depression in pregnant in-
dividuals [40].

Adversarial debiasing • The mean fairness measure (average of statistical parity difference, disparate impact measure, average
odds difference, and equal opportunity difference) worsened to 0.07 from 0.05 for prediction of health
care costs [34].

Postprocessing

Calibration • The equal opportunity (FNR) difference improved from 0.15 to 0.03 for identification of opioid misuse
[42].

Reject option-based classification • The mean fairness measure (average of statistical parity difference, disparate impact measure, average
odds difference, and equal opportunity difference) improved to 0.09 from 0.15 for prediction of health
care costs [34].

Varying cut-point selection • The equal opportunity (FNR) difference improved from 0.15 to 0.04 for identification of opioid misuse
[42].

• The congruence in sensitivity and specificity between groups improved without reduction in accuracy
for classification of dementia status [37].

aFNR: false-negative rate.
bTPR: true-positive rate.

Discussion

Principal Findings
Given the pressing issue of equity in health care and the rapid
development of medical ML applications, racial bias must be
thoroughly evaluated in clinical ML models in order to protect
patient safety and prevent the algorithmic encoding of inequality.
Algorithmic fairness is a relatively novel field within the
discipline of ML, and its application to medical ML remains
nascent. In our evaluation of the literature describing mitigation

of racial bias in clinical ML, we identified a variety of bias
mitigation methods, which when applied successfully increase
fairness and demonstrate the feasibility and importance of racial
bias evaluation in the medical ML development process. Based
on our findings, there is a need for heightened awareness of
algorithmic fairness concepts, increased data availability, and
improved reporting transparency in medical ML development
to ensure fairness in clinical ML.
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Impact of Racial Bias in Clinical Machine Learning
The broad scope of medical ML applications and potential
patient harms following deployment across health care systems
demand an increased emphasis on evaluation and mitigation of
racial bias in clinical ML. Screening and outcome prediction
tasks are commonly examined among reviewed studies. Racial
bias in such tasks is particularly concerning as decisions made
from flawed models trained on data, which reflect historical
inequities in disease diagnosis and care delivery, may perpetuate
inequalities by shaping clinical decision-making [14,19].
Evaluation and mitigation of potential biases must occur
throughout the model development life cycle to protect patients
from algorithmic unfairness.

Reviewed studies frequently identified racial bias in clinical
ML models. Notably, 1 algorithm in clinical use for prediction
of future health care expenditures was found to discriminate
against Black patients when compared to White patients,
potentially contributing to disparities in health care delivery
[36]. Other ML models that possibly demonstrate racial bias
remain in preclinical states of development. Several studies
have explicitly studied racial bias against Black patients
compared to White patients. For example, 2 studies
demonstrated that ML algorithms predicted similar risk scores
in Black and White patients, though the Black patients were
less healthy [36,37], and another demonstrated that an opioid
misuse classifier had a higher FNR for Black patients [39].
Disparities in mortality prediction and X-ray diagnosis were
identified in other races and ethnic groups [33,34,38], as well
as disparities in burn identification and diabetic retinopathy
identification in dark-skinned versus lighter-skinned patients
[29,32]. Although conclusions cannot be drawn regarding the
prevalence of racial bias among published clinical ML studies,
the broad scope of clinical ML models susceptible to racial bias
in this review exposes the potential of racial bias encoded in
ML models to negatively impact patients across all aspects of
health care.

Assessment of Racial Bias
Clinical ML models must be carefully evaluated for potential
biases imposed upon patients. Different fairness metrics may
highlight different aspects of fairness relevant to a particular
clinical setting; therefore, evaluation of all appropriate fairness
metrics is needed when evaluating for potential bias. For
example, calibration is particularly important to models
performing risk prediction, while equal opportunity and
disparate impact are relevant to screening and diagnostic
settings. Inconsistent choice of fairness metrics among studies
included in this review shows the need for a more standardized
assessment process of racial bias in clinical ML. Some studies
assessed fairness using metrics such as accuracy, area under the
receiver operating characteristic curve (AUROC), and
correlation of outcome with race, which may not sufficiently
evaluate fairness [21]. Moreover, there are inherent trade-offs
to the use of different fairness metrics [25], and static fairness
criteria may even lead to delayed harms in the long term [43].

Obermeyer et al [36] present an example of using model
calibration in conjunction with varied outcome labels to
successfully de-bias an algorithm used to manage population

health, and case studies have examined trade-offs of bias
evaluation metrics in other settings, such as criminal justice
[44], which may also serve as useful frameworks for clinical
ML researchers. Use of “causal models,” which allow for closely
tailored examination of discriminatory relationships in data, is
another opportunity for investigation and mitigation of biased
model behavior [45]. An increased focus from medical journals
on bias evaluation checklists applicable to clinical ML models,
such as the Prediction Model Risk of Bias Assessment Tool
(PROBAST), is desirable to further emphasize vigilance
regarding biased ML models [46]. Ultimately, more thorough
analysis of fairness criteria in clinical ML will allow researchers
to better contextualize and act on potential biases.

Clinical ML researchers should also be aware of potential
barriers to ML fairness when adapting pretrained models and
data representations. For instance, deep neural networks
performing image processing tasks are frequently pretrained on
large data sets and then fine-tuned to adapt to other tasks.
Methods for removal of spurious variations from such models
have been described, such as joint learning and unlearning
algorithms, which account for contributions of undesirable
variations during model development [47]. Language models
trained in an unsupervised manner on vast amounts of text may
learn biases present in training data [48]. Similarly, biases have
been described in word embeddings [49], which are vectorized
word representations used as inputs to ML models. Identification
of bias in embeddings raises concerns about performance
disparities in clinical applications of natural language processing
if the bias is not screened for and appropriately addressed [50].
The lack of interpretability often inherent to ML models
heightens the need for thorough evaluation of their potential
biases.

Creating Fair Models
Preprocessing and postprocessing methods of bias mitigation
were successfully implemented among the publications reviewed
for this study. Postprocessing methods appear to be easier to
implement and may allow tailoring of imperfect models to new
settings [51]. However, using preprocessing and in-processing
to create unbiased data sets and algorithms at the outset of model
development is desirable to facilitate the creation of fair,
generalizable models. Continued evaluation of these techniques
in clinical contexts is needed to inform best practices.

As data quality is generally the limiting factor to development
of robust ML models, improvements to data generally translates
directly into model performance improvements.
Supplementation of data sets using generative models to
synthesize patient data may be a viable approach to address data
limitations. A study by Burlina et al [32] illustrated this fact by
using a generative adversarial network to synthesize fundoscopy
images while reducing class imbalance. However, though data
limitations may contribute to disparities in model performance
across racial groups, algorithmic unfairness may arise from
other underlying biases in data as well [38]. Publications
included in this review demonstrated improved fairness in ML
models using multisource data sets, which may mitigate biases
in the data collection process of single-source data sets [29,38].
Moreover, care must also be taken to ensure that
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multi-institutional data sets are appropriately prepared and used
due to evidence that site-specific signatures contribute to bias
in ML models [52]. Finally, protected attributes should not
simply be ignored during model development, an approach
called “fairness through unawareness,” as models may be able
to infer protected group membership from other data features.
Additionally, omission of protected attributes may cause bias
if a legitimate relationship exists between the attribute and
outcome of interest [19].

Several online resources aggregate examples and code
implementations of published fairness evaluation and bias
mitigation methods. Some examples of these resources include
Aequitas, Artificial Intelligence Fairness 360 (IBM, Armonk,
NY, United States), and Fairlearn (Microsoft Corporation,
Redmond, WA, United States) [53,54]. Additionally,
TensorFlow, a popular deep learning framework, includes a
tool for evaluation of fairness indicators. Work by Briggs et al
[31] highlights the feasibility and positive impact of standardized
methodologies for addressing bias using a variety of
performance indicators and mitigation techniques. Greater
adoption of these and other strategies in fairness evaluation and
bias mitigation will help set standard benchmarks for fairness
in clinical ML.

The Role of Transparency and Data Availability
ML is often characterized as a black box due to its limited
interpretability, which is particularly problematic when
attempting to address and prevent racial biases in clinical ML
[55]. Although research in recent years has yielded significant
progress in explainable ML methods [56], publication of model
development code and data sets remains the most
straightforward approach to transparency. Regrettably, medical
ML research falls far short of these standards [57,58]. Code and
data availability was inconsistent among the publications
included in this review, and the majority of studies evaluated
racial bias using publicly available data sets, including the
Medical Information Mart for Intensive Care (MIMIC)
[30,33,38], Kaggle EyePACS [32], and Dissecting Bias [31].
Considering the vast number of private, institutional data sets
used to develop clinical ML models, there is a crucial need for
future publications to maximize transparency, ensuring the
ability to evaluate for fairness in clinical ML.

Increased publication of institutional data sets would facilitate
the interdisciplinary collaboration needed to translate concepts
of fairness in ML into the realm of medicine. Improved
availability of data sets would also enable researchers to more
easily validate existing models and perform fairness evaluations
on different patient populations, translating benefits of ML
across populations. Additionally, collaboration between
institutions to maintain diverse, broadly representative data sets
would facilitate the development of generalizable models free
of the biases inherent to single-institutional data. However,
ethical and patient confidentiality considerations may limit
publication of clinical data. In contrast, publication of code and
trained models, which are infrequently made available in the
clinical ML literature [1,59], would similarly allow researchers
to assess clinical ML on diverse populations without limitations
imposed by patient privacy standards or institutional

data-sharing regulations. Another possible paradigm to mitigate
bias by training on diversely representative data sets while
maintaining data privacy is federated learning, which involves
piecewise training of an ML model on separate data sets and
removes the need for data sharing during model development
[60].

Moreover, increased emphasis on fairness in clinical ML through
adoption of model development and reporting guidelines is
needed [59,61]. Reporting guidelines for medical ML studies
are inconsistently adopted, due in part to a lack of editorial
policies among medical journals [1]. Moreover, reporting of
demographic information needed to assess biases due to data
sets is lacking [62,63]. The proposed Minimum Information for
Medical AI Reporting guideline addresses these concerns by
recommending that clinical ML studies report information
necessary for understanding potential biases, including relevant
demographic information of patient data used for model
development [64]. In conjunction with upcoming reporting
guidelines tailored to clinical ML [61], efforts to improve
reporting quality will contribute to a standardized framework
for fairness evaluation and bias mitigation in clinical ML.

Limitations
As with any literature review, there are limitations to this study.
Given the heterogeneity of terminology used to describe ML
and racial bias, our search may have overlooked relevant
publications. Additionally, we were limited by publication bias
as we excluded publications other than full-length manuscripts,
and researchers may be less likely to publish results confirming
the absence of racial bias in a clinical ML model. Finally, the
novelty of ML fairness in medicine and the resulting paucity
of literature on this topic, as well as the breadth of relevant
subjects encompassed, prevented us from obtaining the quantity
and quality of data required to perform a systematic review or
meta-analysis. In particular, the lack of standardized methods
to evaluate and mitigate bias precludes any definitive
conclusions regarding their suitability in clinical ML
applications. However, the scoping review provides a
methodological framework for critical evaluation of a previously
uncharacterized area of research and draws attention to the lack
of standardization regarding racial bias mitigation in clinical
ML development. We emphasize the need for further work to
build on this important aspect of the medical ML literature.

Conclusion
Algorithmic fairness in clinical ML is a primary concern in its
ethical adoption. As medical ML applications continue to
approach widespread adoption across a multitude of clinical
settings, potential racial biases in ML models must be
proactively evaluated and mitigated in order to prevent patient
harm and propagation of inequities in health care. The adoption
of algorithmic fairness principles in medicine remains nascent,
and further research is needed to standardize best practices for
fairness evaluation and bias mitigation. We recommend that
researchers and journal editors emphasize standardized reporting
and data availability in ML studies to improve transparency and
facilitate future research. Continued interrogation of biases in
clinical ML models is needed to ensure fairness and maximize
the benefits of ML in medicine.
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