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Abstract

Background: Severity of illness scores—A cute Physiology and Chronic Health Evaluation, Simplified Acute Physiology Score,
and Sequential Organ Failure Assessment—are current risk stratification and mortality prediction tools used in intensive care
units (ICUs) worldwide. Developers of artificial intelligence or machine learning (ML) models predictive of ICU mortality use
the severity of illness scores as a reference point when reporting the performance of these computational constructs.

Objective: This study aimed to perform a literature review and meta-analysis of articles that compared binary classification
ML modelswith the severity of illness scoresthat predict |CU mortality and determine which models have superior performance.
This review intends to provide actionable guidance to clinicians on the performance and validity of ML models in supporting
clinical decision-making compared with the severity of illness score models.

Methods: Between December 15 and 18, 2020, we conducted a systematic search of PubMed, Scopus, Embase, and |EEE
databases and reviewed studies published between 2000 and 2020 that compared the performance of binary ML models predictive
of ICU mortality with the performance of severity of illness score models on the same data sets. We assessed the studies
characteristics, synthesized the results, meta-analyzed the discriminative performance of the ML and severity of illness score
models, and performed tests of heterogeneity within and among studies.

Results:. We screened 461 abstracts, of which we assessed the full text of 66 (14.3%) articles. We included in the review 20
(4.3%) studies that developed 47 ML models based on 7 types of algorithms and compared them with 3 types of the severity of
illness score models. Of the 20 studies, 4 (20%) were found to have alow risk of bias and applicability in model development,
7 (35%) performed external validation, 9 (45%) reported on calibration, 12 (60%) reported on classification measures, and 4
(20%) addressed explainability. The discriminative performance of the M L-based models, which wasreported as AUROC, ranged
between 0.728 and 0.99 and between 0.58 and 0.86 for the severity of illness score-based model's. We noted substantial heterogeneity
among the reported models and considerable variation among the AUROC estimates for both ML and severity of illness score
model types.

Conclusions; ML-based models can accurately predict ICU mortality as an alternative to traditional scoring models. Although
the range of performance of the ML models is superior to that of the severity of illness score models, the results cannot be
generalized dueto the high degree of heterogeneity. When presented with the option of choosing between severity of illness score
or ML models for decision support, clinicians should select models that have been externally validated, tested in the practice
environment, and updated to the patient population and practice environment.

Trial Registration: PROSPERO CRD42021203871; https://tinyurl.com/28v2nch8
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Introduction

Background

Inthe United States, intensive care unit (ICU) care costs account
for 1% of the US gross domestic product, underscoring the need
to optimize its use to attenuate the continued increase in health
care expenditures [1]. Models that characterize the severity of
illnesses of patients who are criticaly ill by predicting
complications and |CU mortality risk can guide organizational
resource management and planning, implementation and support
of critical clinical protocols, and benchmarking and are proxies
for resource allocation and clinical performance [2]. Although
the medical community values the information provided by
such models, they are not consistently used in practice because
of their complexity, marginal predictive capacity, and limited
internal or external validation [2-5].

Severity of illness score models require periodic updates and
customizations to reflect changesin medical care and regional
case pathology [6]. Scoring models are prone to high interrater
variability, areless accurate for patientswith increased severity
of illness score or specific clinical subgroups, are not designed
for repeated applications, and cannot represent patients’ status
trends[7]. The Acute Physiology and Chronic Health Evaluation
(APACHE)-II (APACHE-I1) and Simplified Acute Physiology
Score (SAPS), developed in the 80s, are till in use [8]. The
underlying algorithmsfor APACHE-IV areinthe public domain
and are available at no cost; however, their useistimeintensive
andisfacilitated by software that requires paymentsfor licensing
implementation and maintenance [9]. Compared with SAPS-I,
which uses data exclusively obtained within the first hour of
ICU admission [10], APACHE-1V uses data from the first day
(24 hours) [11]. Although the Sequential Organ Failure
Assessment (SOFA) is an organ dysfunction score that detects
differences in the severity of illness and is not designed to
predict mortality, it is currently used to estimate mortality risk
based on the mean, highest, and time changes accrued in the
score during the ICU stay [11].

Theavailability of machine-readable datafrom electronic health
records enables the analysis of large volumes of medical data
using machine learning (ML) methods. ML algorithms enable
the exploration of high-dimensional data and the extraction of
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featuresto develop modelsthat solve classification or regression
problems. These agorithms can fit linear and nonlinear
associations and interactions between predictive variables and
relate all or some of the predictive variablesto an outcome. The
increased flexibility of ML models comes with the risk of
overfitting training data; therefore, model testing on external
datais essential to ensure adequate performance on previously
unseen data. In model development, the balance between the
model’s accuracy and generalizability, or bias and variance, is
achieved through model training on a training set and
hyperparameter optimization on atuning set. Once afew models
have been trained, they can be internaly validated on a
split-sample data set or cross-validated; the candidate model
chosen is then validated on an unseen test data set to calculate
its performance metrics and out of sampleerror [12]. The choice
of algorithm is critical for providing a balance between
interpretability, accuracy, and susceptibility to biasand variance
[13]. Compared with the severity of illness scores, ML models
can incorporate large numbers of covariates and temporal data,
nonlinear predictors, trendsin measured variables, and complex
interactions between variables [14]. Numerous ML algorithms
have been integrated into ICU predictive models, such as
artificial neural networks (NNs), deep reinforcement learning,
support vector machines (SVMs), random forest models, genetic
algorithms, clinical trajectory models, gradient boosting models,
k-nearest neighbor, naive Bayes, and the Ensemble approach
[15]. Despitetherapidly growing interest in using ML methods
to support clinical care, modeling processes and data sources
have been inadequately described [16,17]. Consequently, the
ability to validate and generalize the current literature’s results
is questionable.

Objectives

This study aims to systematicaly review and meta-analyze
studies that compare binary classification ML models with the
severity of illness scores for predicting ICU mortality and
determine which modelshave superior performance. Thisreview
intends to provide actionable guidance to clinicians on the
prognostic value of ML models compared with the severity of
illness scores in supporting clinical decision-making, as well
ason their performance, in the context of the current guidelines
[18] and recommendationsfor reporting ML analysisin clinical
research [19] (Table 1).
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Table 1. Recommended structure for reporting ML models.

Barboi et al

Research question and ML justification Data sources and preprocessing (feature selection)

Model training and validation

Clinica question Population
Intended use of the result
Defined problem type Data collection and quality

Available data Data structure and types

Defined ML method and rationale

Defined eval uation measures, training

protocols, and validation transformation, and label source)

N/AP Input configuration

Sample record and measurement characteristics

Differences between evaluation and validation sets

Data preprocessing (data aggregation, missing data,

Hardware, software, and packages used
Evaluation (calibration and discrimination)
Configuration (parameters and hyperparameters)

Model optimization and generalization (hyperparame-
ter tuning and parameter limits)

Validation method and data split and cross-validation

Validation method performance metrics on an external
data set

Reproducibility, code reuse, and explainability

8\IL: machine learning.
BN/A: not applicable.

Methods

We conducted a systematic review of the relevant literature.
The research methods and reporting followed the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) 2020 statement and guide to review and
meta-analysis of prediction models [20,21].

Information Sources and Search Strategy

Between December 15 and 18, 2020, we performed a
comprehensive search in the bibliographic databases PubMed,
Scopus, Embase, and | EEE of the literature published between
December 2000 and December 15, 2020. These databases were
availablefree of charge from the university library. We selected
PubMed for its significance in biomedical electronic research;
Scopusfor itswide journal range, keyword search, and citation
analysis; Embase because of its European union literature
coverage;, and |IEEE Xplore for its access to engineering and
computer science literature.

The search terms included control terms (Medical Subject
Headings and Emtree) and free-text terms. The filters applied
during the search of &l 4 databaseswere Humans and Age: Adult.
A search of the PubMed database using the terms (Al artificial
intelligence) OR (machinelearning) AND (intensive care unit)
AND (mortality) identified 125 articles. The Scopus database
was searched using thetermsKEY (machinelearning) OR KEY
(artificial-intelligence) AND KEY (intensive care unit) AND
KEY (mortality) revealed 182 articles. The Embase database
queriesusing theterms (Al Artificial Intelligence) OR (machine
learning) AND (intensive care unit) AND (mortality) resulted
in 103 articles. The IEEE database search using the terms
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(machinelearning) OR (artificial intelligence) AND (intensive
care unit) AND (mortality) produced 51 citations.

A total of 2 authors (CB and AT) screened titles and abstracts
and recorded the reasons for exclusion. The same authors (CB
and AT) independently reviewed the previously selected full-text
articles to determine their eligibility for quantitative and
gualitative assessments. Both authorsrevisited the discrepancies
to guarantee database accuracy and checked the references of
the identified articles for additional papers. A third researcher
(LNM) was available to resolve any disagreements.

Eligibility Criteria and Study Selection

We included studies that compared the predictive performance
of newly developed ML classification models predictive of ICU
mortality with the severity of illness score models on the same
data sets in the adult population. To be included in the review,
the studies had to provide information on the patient cohort,
model development and validation, and performance metrics.
Both prospective and retrospective studies were eligible for
inclusion.

Data Collection Process

Data extraction was performed by CB, reviewed by AT, and
guided by the CHARMS (Critical Appraisal and Data Extraction
for Systematic Reviews of Prediction Modeling Studies)
checklist [22] specifically designed for systematic reviews of
prognostic prediction models. The methodological qualities of
the included studies were appraised with guidance from the
Prediction model Risk of Bias (ROB) Assessment Tool
(PROBAST) [23]. The reported features of the ML models are
shown in Table 2.
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Table2. CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) checklist.

Author Data source (descrip- Outcomemortality Datapreparation Model training  Predictive performance  Generalizability
tion)
A2 P cc pd & F o8 H' 1 J KLD MmN

Pirracchioet  pimicO2 Hospital o o 0O 0O 0 0 a
a[1]
Nidseneta  panish IcuP Hospital 30/90 O O o O O o O O O
[24] days
Nimgaonkar  ICU India Hospital o O 0O O
et al [25]
Xiaetd [26] MIMIC3 28 days/hospital O O O
Purushotham MIMIC 3 Hospital, 2days, 3 0O ad a m|
etd [27] days, 30 days, 1

year
Nanayakkara anzicsd Hospital o O o o 0O o o O o oo O
et al [28]
Meyer et a Germany Hospital O o 0O o 0O O O g
[29]
Meiringeta  ccHIC UnitedKing- Hospital o O o o O 0 o 0O
(7 dom
Linetal [30] MIMIC3 Hospital O 0 O o O 0O O
Krishnaneta MIMIC 3 ICU O O o O o O O
(31]
Kang et Korea Hospital g o o o o o O ad
(32
Johnsonetal  United Kingdom ICU and hospital I O o o 0O O o O O
[33]
Holmgrenet  Sweden Hospital and 30 o o o o o O o 0O
a [34] days
GarciaGallo MIMIC3 Hospital and 1year 0 O o o o o o O o 0O
eta [35]
El-Rashidy et  MIMIC 3 ICU and hospital O O o O o O O o 0O
al [36]
Silvaet a [37] EURICUS® 2 ICU g ad | O | O ad ad o d
Caicedo-Tor- MIMIC3 ICU O O o O o O O
reset a [38]
Deshmukh et 6|CU-CRDt ICU 0 0 0 0 0 O 0 0 0
al [39]
Ryan et al MIMIC 2 ICU and hospital O O o o 0O o O O o 0O
[40]
Mayaudetal MIMIC2 Hospital O O o o O O O
[41]

@Data normalization/outlier addressed.

BMissi ng data addressed.

CHyperparameter optimization addressed.

dOverfitting/shrinkage and cross-validation addressed.

CPredictor selection, full model versus backward elimination.

fCalibration assessed (Brier, Hosmer-Lemeshow, and calibration plot).

9Discrimination/recl assification performed (net reclassification improvement/integrated discrimination improvement).
NClassification reported.

iRecalibration performed.

IExternally validated.
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kExplai nability addressed/decision curve analysis.

IClinical applicability addressed.

MPrediction span defined.

M ntended moment of use reported.

OMIMIC: Medical Information Mart for Intensive Care.

PICU: intensive care unit.

9ANZICS: AustraliaNew Zealand Intensive Care Unit Society.
'CCHIC: Critical Care Health Informatics Collaborative.
SEURICUS: European |CU studies.

'elCU CRD: Electronic ICU Collaborative Research Database.

Assessment of the ROB and Quality of Reviewed
Studies

The reviewers used the PROBAST tool to assess the
methodological quality of each study for ROB and concerns
regarding applicability in 4 domains. study participants,
predictors, outcome, and analysis[23]. Thereviewers evaluated
the applicability of the selected studies by assessing the extent
to which the studied outcomes matched the goals of the review
in the 4 domains. We evaluated the ROB by assessing the
primary study design and conduct, predictor selection process,
outcome definition, and performance anaysis. The ROB in the
reporting models' performance was appraised by exploring the
reported measures of calibration (model’s predicted risk of
mortality vs the observed risk), discrimination (model’s ability
to discriminate between patients who are alive or expired),
classification (sensitivity and specificity), and reclassification
(net reclassification index). The performance of the models on
internal data sets not used for model development—internal
validation—and on data sets originating from an external patient
population—external validation—were weighted in the ROB
assignment. The ROB and applicability were assigned as low
risk, high risk, or unclear risk according to PROBAST
recommendations [42].

M eta-analysis and Performance Metrics

The C datistic-area under the receiver operating curve
(AUROC) is the most commonly reported estimate of
discriminative performance for binary outcomes [43-46] and
the pragmatic performance measure of ML and severity of
illness score models previously used in the medical literature
to compare models based on different computational methods
[21,45-47]. It is generaly interpreted as follows. an AUROC
of 0.5 suggests no discrimination, 0.7 to 0.8 is considered
acceptable performance, 0.8 to 0.9 is considered excellent
performance, and >0.9 is considered outstanding performance
[48]. We included the performance of models devel oped using
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similar algorithmsin forest plots and performed heterogeneity
diagnostics and investigations without calculating a pooled
estimate [49]. The results were pooled only for studies that
followed a consistent methodology that included the external
validation or benchmarking of the models. Random-effects
meta-anal yses computed the pooled AUROC for the following
subgroups of ML algorithms—NNs and Ensemble—and the
following subgroups of scoring models—SAPS Il, APACHE
Il and SOFA. The AUROC for each model type was weighted
using the inverse of its variance. Pooled AUROC estimates for
each model were meta-analyzed along with 95% Cls of the
estimates and were reported in forest plots together with the
associated heterogeneity statistics (12, 14, and Cochran Q).
Cochran Q statistic (also known as the chi-square statistic)
determines the within-study variation, 1% determines the

between-study variability, and 12 represents the percentage of
variability from the AUROC estimate not caused by sampling
error [36]. The Cochran Q P vaue is denoted as P.
Meta-analyses were conducted in R (version 3.6.1) [37] (see
Multimedia Appendix 1 for scripts).

Results

Selection Process

Of the 461 screened abstracts, we excluded 372 (80.7%) because
of relevance (models not devel oped to predict ICU mortality),
9 (2%) duplicates, 6 (1.3%) reviews, and 8 (1.7%) conference
proceedings (not intended for clinical application). We assessed
the full text of 66 articles; the most common performance
method reported to allow comparison between all models and
ameta-analysis was the C statistic-cAUROC. Of the 66 articles,
we excluded 12 (18%) articles because of limited information
on model development, 22 (33%) articles because of alack of
comparison with clinical scoring models, and 12 (18%) articles
as the AUROC was not reported. The search strategy and
selection process areillustrated in Figure 1.
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Figure 1. Search strategy and selection process. AUROC: area under the receiver operating curve; |CU: intensive care unit.

Identification of studies published between 2000-2020 via databases

| S
=
i3 Absztracts identified from:
5 PubMed n=125
= Scopus n=182
= Embase n=103
s IEEE n=51
—
Y
|
Absztracts screened n=461

¥

Screening

Y

Articles assessed for eligibility

Records excluded

1. Lack of relevance (not developed to
predict ICU mortality) n=372

2. Duplicate reportz n=9

3. Reviews n=6

4. Conference proceedings n=8

M=Ea

¥

Articles excluded:

1.Limited information on model
development and validation n=12

2.Lack of comparison with clinical scoring
models n=22

3AUROC not reported n=12

Studies included in review
MN=20

Included

Assessment of the Prediction M odel Development

The 20 studies reported 47 ML models that were developed
based on 7 types of algorithms and compared them with 3
severity of illnessscoremodels. All ML modelswere devel oped
through a retrospective analysis of the ICU data sets. Of the 20
studies, 10 (50%) used datafrom the publicly available Medical
Information Mart for Intensive Care database (Beth Israel
Deaconess Medical Center in the United States) at different
stages of expansion. Of the 20 studies, 10 (50%) used national
health care databases (Danish, Australia-New Zealand, United
Kingdom, and Sweden) or | CU-linked databases (Korea, India,
and the United Kingdom). One of the studiesincluded datafrom
>80 ICUs belonging to >40 hospitals [33], and one of the
studies’ ICU-linked database collected data from 9 European
countries [37]. The cohorts generating the data sets used for
model development and internal testing ranged from 1571 to
217,289 patients, with a median of 15,789 patients. Of the 20
studies, 10 (50%) used data from patients admitted to general
ICUs, whereas 10 (50%) studies used data from patients who
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were critically ill with specific pathologies: gastrointestinal
bleeds[39], COVID-19 and pneumonia—associated respiratory
failure [40], postcardiac arrest 28], postcardiac surgery [29,36],
acuterenal insufficiency [30,32], sepsis[35,41], or neurological
pathology [25]. The lower age thresholds for study inclusion
rangeswere 12 years[25], 15 years[26,27], 16 years[33,35,39],
18 years [24,29,40], and 19 years [30]. Within the studied
cohorts, mortality ranged from 0.08 to 0.5 [29,32,36].

The processes and tools used for the selection of predicting
variableswere described in 65% (13/20) of studiesand included
the least absolute shrinkage and selection operator, stochastic
gradient boosting [33,35], genetic algorithms, and particle
swarm optimization [33]. Approximately 15% (3/20) of studies
[25,26,35] reported multiple models developed on variable
predictor sets, which were subsequently tested for the best
performance, validation, and calibration. The number of
predictive variables used in the final models varied between 1
and 80, with a median of 21. The most common predicting
variables are shown in Figure 2 and are grouped by the
frequency of occurrence in the studies.
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Figure2. Frequency and type of ML model input variables (x-axis: number of studies using theinput variables; y-axis: input variable). ASA: American
Society of Anesthesiology; COPD: chronic obstructive pulmonary disease; CVA: cerebra vascular accident; FIO2: fraction of inspired oxygen; ICU:
intensive care unit; LFT: liver function test; ML: machine learning; RBC: red blood cell; SpO2: oxygen saturation; PaO2: arterial oxygen pressure;

PaCO?2: arterial CO2 pressure.

Variables included in ML models

Atrial Fibrillation s 1
Anion Gap = 1
Antlarrhythmics s q

Antibiotics s
Acute Physiology Score === {
ASA w1
Blegding rate = {
Connective tissue disease s 1§
Electrocardiogram s 1
Gastrointestinal bleed s 1
Pulmenary Artery Pressure or Central venous Pressure s {
Positive End-expiratory Prossure s
Peptic Ulcer Disease s {
Shock Index s q
Specific Gravity s 1
Transfusion RBC or blood products s q
van Walraven s q

Number of studies with a specific variable

Alveclo-Arterial gradient me—— 2
Cell Blood Count s 2

Ch y pannel

Diabetus Melitus =7
Serum electrolytes e 2
Height and Welght s 2

Hypertension s 2

In y markers

Vascular disease s 2
Intravenous Vasopressors s 2
Acute Kidney Injury e 3
Cardiac failure —— 3
Neurclogical diseaseor CVA or dementia se— 3
Pre ICU Length of stay s 3
Surgery type S
Albumin EE——
Glucose me——
Medical transfer s—— 4

Resp failure or chronic resp di COPD

Chranie renal faillure ——— £
Coagulation Profile  me——— 5

ised or Ir upressive th

Fall se———— 5
Platelets seesss—— 5
Cardiac digeage or ischemla sees—————————

HematocritH lobi

Lactate esssssssss——

surgery

Postemergent surgery Seessssss—
Sp02 E——

AIDS

Diastolic Blood Pressure

FiOZ

Liver failure or ic livar di ot LFT

Sox

~ N

Admission type or Readmission
Pa02 or FiO2

Hematholegic cancer er lymphema

Mechanical Ventilation

Arterial Blood Gas or pH or pCO2

Cancer orm
Creatinine

y Rate
Bicarbonate

Blood Urea Nitrogen

Mean Arterial Pressure

Urine output

Potasium

P

Systolic Blood Pressure

Glasgow Coma Scale
White Blood Cells

Q

All studies developed models on 24-hour data; furthermore, [1,25,27,37], 3 hours, 6 hours, 12 hours, 15 hours[38], and 24
ML models were developed on the first hour of ICU data[34]; hours[7,36] to every 27 hours, 51 hours, and 75 hours [40].

the first 48-hour data [27,38,41]; 3-day data [40]; 5-day data
[7]; 10-day data [26]; or on patients’ prior medical history
collected from 1 month, 3 months, 6 months, 1 year, 2.5 years,
5years, 7.5 years, 10 years, and 23 years [24]. The frequency
of data collection ranged from every 30 minutes [29], 1 hour
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Researchers handled missing data and continuous and fixed
variables differently. A total of 6 model developers provided
no information on missing data [1,25,29,32,34,39], and 1 [27]
addressed data cleaning. Researchers [24,30,33,35-37,40,41]
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removed the recordswith missing valuesranging from 1 missing
value per admission to 30%, 50%, and 60% of missing data.
One of the studies[29] included only variables documented for
at least 50% of the patients and imputed the missing valueswith
the last measured value for the feature. Missing values (up to
60%) were forward-filled; backward-filled; or replaced with
means (continuous variables) or modes (categorical variables),
normal values, averages [24,28,36,38,40], predictive mean
matching [7], or linear interpolation imputation method [26].
The data were normalized using the minimum-maximum
normalization technique. The time prediction of hospital

https://medinform.jmir.org/2022/5/€35293
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mortality was undefined in 45% (9/20) of studies and varied
from 2 or 3 daysto 28 days, 30 days[26], 90 days[24], and up
to 1 year [24] in the others.

There was a wide range in the prevalence of mortality among
studies (0.08-0.56), creating a class imbalance in the data sets.
In studies with low investigated outcome mortality, few
researchers addressed the problem of classimbalance (survivors
Vs nonsurvivors) through balanced training [24,37], random
resampling [29], undersampling [36], or class penalty and
reweighting schemes [38]. A breakdown of the model
characteristicsis presented in Table 3.
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Table 3. Information on the ML? prediction model development, validation, and performance, and on the severity of illness score performance.

Author ML model type (AU- Datatraining/test Features K-fold/vali- Externa validae ML AUROC Severity of illness score
rRocP test) (split %) dation tion data set external model type (AUROC)
Pirracchio et al, o EnsembleSICU- 24,508 17 5-fold cross- 200 0.94 «  sapstii (0.78)
2015 [1] LAC (0.85) validation *  APACHE®II (0.83)
*  SOF (0.71)
Nielsenet al, 2019 NNY (0.792) 10,368 44 5-fold cross- 1528 0.773 . SAPS-I (0.74)
[24] (80/20) validation o APACHE-II (0.72)
Nimgaonkareta, « NN (0.88) 2962 15 N/AD N/A N/A «  APACHE-II (0.77)
2004 [25] (70/30)
Xiaetal,2019[26] « Ensemble- 18,415 50 Bootstrap N/A N/A e SAPSII (0.77)
LSTM' (0.85) (90/10) and RSM¥ « SOFA (0.73)
. LSTM (0.83) o APACHE-II (0.74)
+ DT (0.82)
Purushothametal, « NN (0.87) 35,627 17/22/  5-foldcross- Externa bench- N/A « SAPSHI (0.80)
2018 [27] «  Ensemble (0.84) 136 validation mark « SOFA (0.73)
Nanayakkaraetal, « DT (0.86) 39,560 29 5-foldcrosss N/A N/A o APACHE-III (0.8)
« NN (0.85)
«  Ensemble (0.87)
*  GBM™(0.87)
Meyeretal,2018 « NN (0.95) 5898 52 10-fold 5989 0.81 « SAPSII (0.72)
[29] (90/10) cross-valida-
tion
Meiringeta, 2018 . DT (0.85) 80/20 25 21,911 N/A N/A « APACHE-II (0.83)
7 « NN (0.86) n
. SVM(086) LOO
Linet al, 2019 . DT (0.86) 19,044 15 5-foldcrosss N/A N/A «  SAPSII (0.79)
« NN (0.83) validation
[30]
« SVM (0.86)
Krishnan et d, . NN-ELM® (0.99) 10,155 1 10-fold N/A N/A . SAPS (0.80)
2018 [31] (75/25) cross-vaida « SOFA (0.73)
tion * APSP-II1 (0.79)
Kangetal,2020 « SVM (0.77) 1571 33 10-fold N/A N/A .  SOFA (0.66)
[32] . DT (079) (70/30) i:ir(;):s-vahdar « APACHE-II (0.59)
« NN (0.776)
*  k-NNY9(0.76)
Johnsoneta, 2013 « | R ynivaiate  39:070 10 10-fold 23,618 0.837 (uni- «  APS-II (0.86)
[33] (0.902) (80/20) cross-vaida variate);
« LR multivariate tion 0.868 (multi-
(0.876) variate)
Holmgren et al, « NN (0.89) 217,289 8 5-foldcrosss N/A N/A « SAPSII (0.85)
2019 [34] (80/20) validation
GarciaGalloeta, « ggp.LASSOS 5650 18 10-fold N/A N/A « SOFA (0.58)
2020 [35] (0.803) (70/30) 140 cross-vaida . SAPS (0.70)
37 tion
El-Rashidy etal, « Ensemble(0.93) 10,664 80 10-fold Externa bench- N/A o APACHE-II (0.73)
2020 [36] (75/25) crossvalida-  mark + SAPSII (0.81)
tion . SOFA-II (0.78)
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Author ML model type (AU- Datatraining/test Features K-fold/vali- External valida= ML AUROC  Severity of illness score
RrRoCP test) (split %) dation tion data set external model type (AUROC)

Silvaetal, 2006 .« NN (0.85) 13,164 12 Hold out N/A N/A « SAPS-11(0.8)

(37] (66/33)

Caicedo-Torreset  « NN (0.87) 22,413 22 5-foldcrosss N/A N/A « SAPSI (0.73)

a, 2019 [38] validation

Deshmukh et a, *  XGB'(0.85) 5691 34 5-foldcross- N/A N/A o APACHE-IV (0.8)

2020[39] (80/20) validation

Ryanetal,2020 « DT (0.86) 35,061 12 5-fold cross- 114 0.91 *  GSOFAY(0.76)

[40Q] (80/20) validation

Mayaudeta,2013 « GaY4+LR (0.82) 2113 25 BBCCVW N/A N/A o APACHE-III (0.68)

(41 (70/30)

3ML: machine learning.

BAUROC: area under the receiver operating curve.
CSICULA: Super ICU Learner Algorithm.
dSAPS: S mplified Acute Physiology Score.
CAPACHE: Acute Physiology and Chronic Health Evaluation.
fSoFA: Sequential Organ Failure Assessment.
INN: neural network.

AN/A: not applicable.

iLSTM: long short-term memory.

IDT: decision tree.

KRSM: random subspace method.

lsvm: support vector machine.

MGBM: gradient boosting machine.

"LOO: leave one out.

®ELM: extreme learning machine.

PAPS: Acute Physiology Score.

9-NN: k-nearest neighbor.

'LR: logistic regression.

SSGB-LASSO: stochastic gradient boosting least absolute shrinkage and selection operator.

'X GB: extreme gradient boosting.

UgSOFA: Quick Sequential Organ Failure Assessment.
VGA: genetic algorithm.

WBBCV: bootstrap bias-corrected cross-validation.

Overview of ML Algorithmsand Model Validation

The reviewers recorded the ML model types based on the final
trained model structure rather than on the algorithm used for
fitting the model (Table 3). The reviewers noted a diversity of
strategies in model fitting, although the implemented models
defined the operating functions and transformations. Of the 20
studies, NNs were applied in 13 (65%) [7,24-32,34,37,38],
decision trees in 8 (40%) [7,26,28,30,32,35,39,40], SVM in 4
(20%) [7,28,30,32], and Ensemble of algorithms in 4 (20%)
[1,27,28,36]. The types of algorithms used in the same study
varied between 1 and 5. All studies provided information on
data training and interna testing (see Table 2 for k-fold
validation and data splitting). Of the 20 studies, 5 (25%)

https://medinform.jmir.org/2022/5/€35293

[1,24,29,33,40] performed validation on external data sets
ranging from 114 to 23,618 patients, and 2 (10%) studies[27,36]
benchmarked the ML model performance against existing ML
mortality prediction models; 14 (70%) studies reported Clsfor
the measure of discrimination AUROC, 9 (45%) studiesreported
on calibration (Hosmer-Lemeshow, calibration curve, or Brier
score), and 12 (60%) studies reported on classification measures
(Table 4). Approximately 10% (2/20) of studies were available
for usein clinical practice [1,33]; the models' decisions were
explained with local interpretable model-agnostic explanations
[28] or the Shapley additive explanations method (SHAP) [39].
The AUROC of the ML models ranged from 0.728 to 0.99 for
predicting mortality.
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Table 4. Reported performance measures of the ML models.

Authorand ML model  Classification measurements Calibration measurements Other
Specificity  ppyP/precision Recall/sensitivity Fyscore Accuracy ) © Brier Calibration
score score curve

Pirrachioet al [1]

Ensemble SL%-1  N/A® N/A N/A N/A N/A N/A 0079 yf=00007 DSY=0.21
(calibration
plot)
Ensemble SL-2 N/A N/A N/A N/A N/A N/A 0.079 U=0.006 DS=0.26
(calibration
plot)
Nielsen et al [24]
NNh N/A 0.388 N/A N/A N/A N/A N/A N/A Mathews
correlation
coefficient

Purushotham et al [27]

NN N/A N/A N/A N/A N/A N/A N/A N/A 0.491
(AUPRC")

Ensemble N/A N/A N/A N/A N/A N/A N/A N/A 0.435
(AUPRC)

Nimgaonkar et al [25]

NN-15features  N/A N/A N/A N/A N/A 27.7 N/A Calibration  N/A
plot

NN-22 features  N/A N/A N/A N/A N/A 224 N/A Calibration  N/A
plot

Xiaet al [26]

EnsembleLSTM!I 0.7503 0.294 0.7758 0.4262 0.7533 N/A N/A N/A N/A

LST™M 0.7746 0.305 0.7384 0.4317 0.7703 N/A N/A N/A N/A

REX 0.7807 0.306 0.71197 04290 0.7734 N/A N/A N/A N/A

Nanayakkara et al [28]

RF 0.79 0.75 0.76 N/A 0.78 N/A 0.156 Calibration  0.47 (log
plot loss)
svc 0.81 0.77 0.75 N/A 0.78 N/A 0.153 Calibration  0.47 (log
plot loss)
GBM™ 0.78 0.75 0.8 N/A 0.79 N/A 0.147 Calibration  0.45 (log
plot loss)
NN 0.72 0.71 0.82 N/A 0.77 N/A 0.158 Calibration  0.48 (log
plot loss)
Ensemble 0.81 0.77 0.77 N/A 0.79 N/A 0.148 Calibration  0.45 (log
plot loss)
Meyer et al [29]
RNN 0.91 0.9 0.85 0.88 0.88 N/A N/A N/A N/A
Meiring et al [7]
DT° NN, SYmMP  N/A N/A N/A N/A N/A N/A N/A N/A N/A
Lin et al [30]
RF N/A N/A N/A 0.459 0.728 N/A 0.085 Cdlibration  N/A
plot
NN N/A N/A N/A 0.406 0.666 N/A 0.091 Cdlibration  N/A
plot
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Authorand ML model  Classification measurements Calibration measurements Other
Specificity PPVb/preci gon Recal/sengtivity Fqscore Accuracy (¢ Brier Calibration
score score curve
SVM N/A N/A N/A 0.460 0.729 N/A 0.086 Calibration  N/A
plot

Krishnan et al [31]

ANN-ELMY N/A N/A 0.98 0.98 0.98 N/A N/A N/A Mathews
correlation
coefficient

Kang et al [32]

K-NN" N/A N/A N/A 0.745 0673 N/A N/A Calibration  N/A

plot

SVM N/A N/A N/A 0.752 0.696 N/A N/A Cadlibration  N/A

plot

RF N/A N/A N/A 0.762 0.69 N/A N/A Cadlibration  N/A

plot

XGBS N/A N/A N/A 0763 0711 N/A N/A Calibration  N/A

plot

NN N/A N/A N/A 0.749 N/A N/A Cadlibration  N/A

plot

Johnson et al [33]

LR univariate N/A N/A N/A N/A N/A 22 0.051 N/A N/A
LR multivariate ~ N/A N/A N/A N/A N/A 19.6 0.048 N/A N/A
Holmgren et al [34]
NN N/A N/A N/A N/A N/A N/A 0.106 Calibration  N/A
plot
Garcia-Gallo et al [35]
sGY N/A N/A N/A N/A 0.725 00916  N/A Calibration ~ N/A
plot
SGB-LASSOY  N/A N/A N/A N/A 0.712 00916  N/A Calibration ~ N/A
plot

El-Rashidy et al [36]

Ensemble 0.94 N/A 0.911 0.937 0.944 N/A N/A N/A N/A
Silva et al [37]

NN 0.79 N/A 0.78 N/A 0.7921 N/A N/A N/A N/A
Caicedo-Torreset al [38]

NN 0.827 N/A 0.75 N/A N/A N/A N/A N/A N/A
Deshmukh et al [39]

XGB 0.27 N/A 1 N/A N/A N/A N/A N/A N/A
Ryan et al [40]

XGB 0.75 N/A 0.801 0.378 0.75 N/A N/A N/A N/A

Mayaud et al [41]
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Authorand ML model  Classification measurements Calibration measurements Other
Specificity PP'\/b/preci gon Recal/sengtivity Fqscore Accuracy (¢ Brier Calibration
score score curve
GAY+LR N/A N/A N/A N/A N/A 10.43 N/A Calibration  N/A
plot

3\ L: machine learning.

bppy; positive predictive value.

°HL: Hosmer-Lemeshow.

dgi super learner.

EN/A: not available.

fU statistics.

9DS: discrimination slope.

ANIN: neural network.

IAUPRC: area under the precison-recall curve.
ILsT™: long short-term memory.

KRF: random forest.

lsve: support vector classifier.

MGBM: gradient boosting machine.

"RNN: recurrent neural network.

ODT: decision tree.

PSVM: support vector machine.

9ANN-ELM: artificial neural network extreme learning machine.
"k-NN: k-nearest neighbor.

SX GB: extreme gradient boosting.

LR logistic regression.

USGB: stochastic gradient boosting.

VLASSO: |east absolute shrinkage and selection operator.
YWGA: genetic algorithm.

The performance of the ML models was compared with that of
the following severity of illness scoring models: APACHE-II
(6/20, 30%), APACHE-III (220, 10%), APACHE-IV (1/20,
5%), SAPS-1 (11/20, 55%), SAPS-I11 (1/20, 5%), SOFA (9/20,
45%), and Acute Physiology Score-3 (2/20, 10%; Table 3). The
severity of illness scores’ discrimination reported as AUROC
was associated with a Cl in 65% (13/20) of studies. Calibration
of the severity of illness score models was reported in 30%
(6/20) of studies. Approximately 60% (12/20) of studiesreported
binary classification results. The severity of illness scores used
for comparison and associated AUROCswere 0.70 to 0.803 for
SAPS, 0.588t00.782 for SOFA, and 0.593 t0 0.86 for APACHE
(Table 3).
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Analysis of ROB and Applicability

The results of the analysis of the ROB in the selection of the
study population, predictors, outcome definition, and
performance reporting are presented in Table 5. The results of
the assessment of the developed ML models applicability
regarding the study participants and setting, the predictors used
in the ML models development and their timing, the outcome
definition and prediction by the models, and the analysis that
reports the models’ performance are also presented in Table 5.
Of the 47 models, 4 (9%) models [1,17,23,29] were identified
as having alow risk, and 3 (6%) models were rated as having
an uncertain ROB and applicability model development
[24,29,40]. The main reason for the high ROB in the overall
judgment of the study wasthelack of external validation, which
was identified in 28% (13/47) of the models.
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Table 5. Assessment for ROB®and applicability for prognostic models with the Prediction model ROB Assessment Tool checklist.

Authors ROB and applicability
Participants Predictors Outcome Analysis  Overall judgment
ROB Applicability ROB Applicability ROB Applicability ROB ROB Applicability

Pirracchio et al [1] LowP Low Low Low Low Low Low Low Low
Nielsen et al [24] Low Low Unclear® Low Unclear Low Low Unclear  Low
Nimgaonkar et al [25] Low Unclear Low Low Low Low Highd High Unclear
Xiaet a [26] Low Low Low Low Unclear Low High High Low
Purushotham et al [27] Low Low Low Low Low Low Low Low Low
Nanayakkara et al [28] Low Unclear Low Low Low Low High High Unclear
Meyer et a [29] Low Unclear Low Low Low Low Low Low Unclear
Meiring et a [7] Low Low Low Low Low Low High High Low
Lineta [30] Low Unclear Low Low Low Low High High Unclear
Krishnan et a [31] Low Low Low Low Low Low High High Low
Kang et a [32] Low Unclear Low Low Low Low High High Unclear
Johnson et a [33] Low Low Low Low Low Low Low Low Low
Holmgren et al [34] Low Low Low Low Unclear Low High High Low
Garcia-Gallo et a [35] Low Unclear Low Low Low Low High High Unclear
El-Rashidy et al [36] Low Low Low Low Low Low Low Low Low
Silvaet a [37] Low Low Low Low Low Low High High Low
Caicedo-Torres et a [38] Low Low Low Low Low Low High High Low
Deshmukh et al [39] Low Unclear Low Low Low Low High High Unclear
Ryan et a [40] Low Low Uncler Low Low Low Low Unclear Low
Mayaud et a [41] Low Unclear Low Unclear Low Low High High Unclear

8ROB: risk of bias.
BLow risk: no relevant shortcomings in ROB assessment.

fUnclear risk: unclear ROB in at least one domain and all other domains at low ROB.
dHigh risk: relevant shortcomings in the ROB assessment, at least one domain with high ROB, or model developed without external validation.

Meta-analysis

Forest plots for the NN, Ensemble, SOFA, SAPS II, and
APACHE-II models and the associated heterogeneity tests are
shownin Figures 3-7. Theforest plots and tests of heterogeneity
for SVM, NN, DT, and Ensemble models that were not
externally validated can be seen in Multimedia Appendix 2.
The AUROC for each model type was weighted using the
inverse of its variance. Most of the 95% Cls of AUROC
estimates from various studies did not overlap within the forest
plot; considerable variation among AUROC estimates for both
ML and severity of illness score model types was noted.

Regrading tests of heterogeneity, 1> varied between 99% and
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RenderX

100%, T° ranged from 0.0003 to 0.0034, and P was consistently
<.01. In Figures 3-7 and Multimedia Appendix 2, the gray boxes
represent the weight estimates of the AUROC value from each
study. The horizontal line through each gray box illustrates the
95% CI of the AUROC value from that study. Black horizontal
lines through a gray box indicate that the CI limits exceeded
thelength of the gray box. White horizontal lines represent the

Cl limits that are within the length of the gray box. 12, 12, and
Cochran Q P value (denoted as P) are heterogeneity tests.

Random-effects meta-analysis results of the computed pooled
AUROC of the ML subgroup models that were externaly
validated or benchmarked NNs and Ensemble are shown in
Figure 3 and Figure 4.
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Figure 3. Meta-analysis results: pooled AUROC for externally validated Ensemble models. Gray boxes represent the fixed weight estimates of the
AUROC va ue from each study. Larger gray boxes represent larger fixed weight estimates of the AUROC values. The horizontal line through each gray
box illustrates the 95% CI of the AUROC value from that study. Black horizontal lines through a gray box indicate that the CI limits exceed the length
of the gray box. White horizontal lines represent Cl limits that are within the length of the gray box. The vertical dashed linesin the forest plot are the
estimated random pooled effect of the AUROC value from the random-effects meta-analysis. The gray diamonds illustrate the 95% CI for the random

pooled effects. Tests of heterogeneity included 12, 12, and Cochran Q P value (denoted as P). AUROC: area under the receiver operating curve;.

Author Year Ensemble AUROC 95% Cl  Weight (random)
Pirracchio et al 2015 0.850 [0.846-0.854] 25.0%
Pirracchio et al 2015 = 0.880[0.876-0.884] 25.0%
Purushotham et al 2018 0.843(0.839-0.846] 25.0%
El-Rashidy et al 2020 0.933[0.928-0.938] 25.0%

Random-effects model , , l : , 0.876[0.838-0.915] 100.0%

0.8 0.85 0.9 0.95 1
=0.0015, P<.01

Heterogeneity: 12=1OO%, 12

Figure4. Meta-analysisresults: pooled AUROC for externally validated NN models. Gray boxes represent the fixed weight estimates of the AUROC
value from each study. Larger gray boxes represent larger fixed weight estimates of the AUROC values. The horizontal line through each gray box
illustrates the 95% CI of the AUROC value from that study. Black horizontal lines through a gray box indicate that the CI limits exceed the length of
the gray box. White horizontal lines represent ClI limits that are within the length of the gray box. The vertical dashed lines in the forest plot are the
estimated random pooled effect of the AUROC value from the random-effects meta-analysis. The gray diamonds illustrate the 95% CI for the random

pooled effects. Tests of heterogeneity included 12, 14, and Cochran Q P value (denoted as P). AUROC: area under the receiver operating curve; NN:
neural network.

Author Year NN AUROC 95% ClI Weight (random)
Nielsen et al 2019 = 0.792(0.784-0.800] 33.3%
Purushotham et al 2018 + 0.873(0.870-0.876] 33.4%
Meyer et al 2018 0.950(0.946-0.954] 33.4%
Random-effects model —_— 0.872[0.798-0.946] 100.0%

I T T T T 1

2:0‘0043’ P<01 0.75 0.8 0.85 0.9 0.95 1

Heterogeneity: !2=ﬂ00%, 1

Figure5. Meta-analysis results: pooled AUROC for SAPS-11. Gray boxes represent the fixed weight estimates of the AUROC value from each study.
Larger gray boxes represent larger fixed weight estimates of the AUROC values. The horizontal line through each gray box illustrates the 95% CI of
the AUROC value from that study. Black horizontal lines through a gray box indicate that the CI limits exceed the length of the gray box. White
horizontal linesrepresent ClI limitsthat are within the length of the gray box. The vertical dashed linesin theforest plot are the estimated random pooled
effect of the AUROC value from the random-effects meta-analysis. The gray diamonds illustrate the 95% CI for the random pooled effects. Tests of

heterogeneity included 12, 12, and Cochran Q P value (denoted as P). AUROC: area under the receiver operating curve; SAPS-I1: Simplified Acute

Physiology Scorell.
Author Year SAPS I AUROC 95% ClI Weight (random)
Pirracchio et al 2015 0.780[0.775-0.785) 20.1%
Nielsen et al 2019 - 0.742[0.734-0.750] 19.9%
Purushotham et al 2018 0.803 [0.799-0.808] 20.1%
Meyer et al 2018 - 0.710 [0.701-0.719] 19.9%
El-Rashidy et al 2020 ] = 0.812[0.805-0.819] 20.0%
Random-effects model e 0.770[0.739; 0.801] 100.0%
I I I I 1
Heterogeneity: 12=99%, 12=0.0012, P< .01 0.65 07 075 08 085
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Figure 6. Meta-analysis results: pooled AUROC for SOFA. Gray boxes represent the fixed weight estimates of the AUROC value from each study.
Larger gray boxes represent larger fixed weight estimates of the AUROC values. The horizontal line through each gray box illustrates the 95% CI of
the AUROC value from that study. Black horizontal lines through a gray box indicate that the CI limits exceed the length of the gray box. White
horizontal linesrepresent CI limitsthat are within the length of the gray box. Thevertical dashed linesin theforest plot are the estimated random pooled
effect of the AUROC value from the random-effects meta-analysis. The gray diamonds illustrate the 95% CI for the random pooled effects. Tests of

heterogeneity included 12, 12, and Cochran Q P value (denoted as P). AUROC: area under the receiver operating curve; SOFA: Sequential Organ Failure

Assessment.
Author Year SOFA AUROC 95% Cl Weight (random)
Pirracchio et al 2015 0.710[0.704-0.716] 33.4%
Purushotham et al 2018 0.732[0.728-0.737) 33.5%
El-Rashidy et al 2020 #+  0.782[0.774-0.790] 33.1%
-:::=— 0.741[0.706-0.776] 100.0%
Random-effects model | : . . |
Heterogeneity: l2=99%, 1:2=0‘0009, P<.01 0.55 06 0.65 07 0.75 0.8

Figure 7. Meta-analysis results. pooled AUROC for APACHE-II. Gray boxes represent the fixed weight estimates of the AUROC value from each
study. Larger gray boxes represent larger fixed weight estimates of the AUROC values. The horizontal line through each gray box illustrates the 95%
Cl of the AUROC value from that study. Black horizontal lines through a gray box indicate that the CI limits exceed the length of the gray box. White
horizontal linesrepresent Cl limitsthat are within the length of the gray box. The vertical dashed linesin theforest plot are the estimated random pooled
effect of the AUROC value from the random-effects meta-analysis. The gray diamonds illustrate the 95% CI for the random pooled effects. Tests of

heterogeneity included 12, 2, and Cochran Q P value (denoted as P). APACHE-II: Acute Physiology and Chronic Health Evaluation-I1; AUROC: area
under the receiver operating curve;.

Year 0, 1

Author APACHE Il AUROC 95% CI Weight (random)

Pirracchio et al 2015 :

Nielsennet al 2019 : 0.830(0.825-0.835] 33.4%

El-Rashidyet al 2020 *® 0.720(0.711-0.729] 33.3%
#® 0.73410.726-0.742] 33.3%

Random-effects model — 0.761[0.684; 0.838] 100.0%

I 1 I I 1
Heterogeneity: 1=100%, °=0.0046, P< 01 0s o8 or  os oo
Theresults of heterogeneity for the NN modelswere asfollows: : :
ogenary Discussion

°= 0.0043 (95% CI 0.0014-0.2100), 12=99.9% (95% CI
99.8%-99.9%), P<.01. The results of heterogeneity for the
Ensemble models were as follows:

Principal Findings

This is the first study to critically appraise the literature
comparing the ML and severity of illness score modelsto predict
ICU mortality. In the reviewed articles, the AUROC of the ML
models demonstrated very good discrimination. The range of
the ML model AUROC was superior to that of the severity of
illness score AUROC. The meta-analysis demonstrated a high
degree of heterogeneity and variability within and among
studies; therefore, the AUROC performances of the ML and
severity of illness score model s cannot be pooled, and the results

cannot be generalized. Every 12 value is >97.7%; most of the

1°=0.0015 (95% Cl 0.0005-0.0223), 1°=99.7% (95% CI
99.6%-99.8%), P<.01. The results were synthesized, and the
models are presented in Figure 3 and Figure 4. The results of
heterogeneity for the APACHE-2 models were as follows:
12=0.0046 (95% CI 0.0011-0.1681), 1°=99.7% (95% ClI
99.6%-99.8%), P<.01. The results of heterogeneity for the
SAPSII models were as follows: 12=0.0012 (95% ClI

0.0005-0.0133), 17=99.2% (95% CI 98.9%-99.4%), P<.01. The

results of heterogeneity for the SOFA models were as follows:

1?=0.0009 (95% Cl 0.0003-0.0461), 17=99.1% (95% ClI
98.5%-99.4%), P<.01 (Figures 5-7).
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95% Cls of AUROC estimates from various studies did not
overlap within theforest plot, suggesting considerable variation
among AUROC estimates for model types. The ClI for AUROC
and the statistical significance of the difference in model
performance were inconsistently reported within studies. The
high heterogeneity came from the diverse study population and
practice location, age of inclusion, primary pathology, medical
management leading to the |CU admission, and time prediction
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window. The heterogenous data management (granularity,
frequency of datainput, data management, number of predicting
variables, prediction timeframe, time seriesanalysis, and training
set imbalance) affected model development. It may have resulted
in bias, primarily in studies where it has not been addressed
(Table 2). Generally, authors reported the ML agorithms with
predictive power superior to the clinical scoring system (Table
3); the number of ML models with inferior performance not
reported i s unknown, which raises the concern of reporting bias.
The classification measures of performance wereinconsistently
reported and required a predefined probability threshold;
therefore, models showed different sensitivity and specificity
based on the chosen threshold. The variationsin the prevalence
of the studied outcome secondary to imbalanced data sets make
the interpretation of the accuracy difficult. The models
calibration cannot be interpreted because of limited reporting.
The external validation process that is necessary to establish
generalization waslacking in 65% (13/20) of studies (Table 2).
Thelimited and variabl e performance metrics reported precludes
acomprehensivemodel performance comparison among studies.
The decision curve analysis and model interpretability
(explainability) that are necessary to promote transparency and
understanding of the model’s predictive reasoning was addressed
in 25% (5/20) of studies. Results of the clinical performance of
ML mortality prediction models as alternatives to the severity
of illness score are scarce.

The reviewed studies inconsistently and incompletely captured
the descriptive characteristics and other method parameters for
ML -based predictive model development. Therefore, we cannot
fully assess the superiority or inferiority of ML-based 1CU
mortality prediction compared with traditional models; however,
we recognize the advantage that flexibility in model design
offersin the ICU setting.

Study Limitations

This review included studies that were retrospective analyses
of data setswith known outcome di stributions and incorporated
the results of interventions. It is unclear which models were
developed exclusively for research purposes; hence, they were
not validated. We evaluated studies that compared ML-based
mortality prediction models with the severity of illness
score-hased models, although these models relied on different
development statistical methods, variable collection times, and
outcome measurement methodologies (SOFA).

The comparison between the artificial intelligence (Al) and
severity of illness score models relies only on AUROC values
as measures of calibration, discrimination, and classification
are not uniformly reported. The random-effects meta-analysis
was limited to externally validated models. Owing to the level
of heterogeneity, the performance results for most Al and
severity of illness score models could not be pooled. The authors
recognize that 25% (5/20) of the articleswere published between
2004 and 2015 before the TRIPOD (Transparent Reporting of
a multivariable prediction model for Individual Prognosis or
Diagnosis) recommendations for model development and
reporting [18]; thus, they were not aligned with the guidelines.

The reviewers assessed the models' ROB and applicability and
were aware of therisk of reporting and publication biasfavoring
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the ML models. However, the high heterogeneity among studies
prevents an unambiguous interpretation of the funnel plot.

Conclusions and Recommendations

Theresults of our analysis show that the reporting methodol ogy
is incomplete, nonadherent to the current recommendations,
and consistent with previous observations [16,50]. The lack of
consistent reporting of the measures of thereliability calibration
(Brier score and calibration curve of reliability deviation),
discrimination, and classification of the probabilistic estimates
on external data makes the comparative effectiveness of risk
prediction models challenging and has been noted by other
authors [43].

Predictive models of mortality can substantially increase patient
safety, and by incorporating subtle changes in organ functions
that affect outcomes, these models support the early recognition
and diagnosis of patients who are deteriorating, thus providing
clinicians with additional time to intervene. The heterogeneity
of the classification models that was reveded in detail in this
review underlines the importance of recognizing the models
ability for tempora and geographical generalization or proper
adaptation to previously unseen data[51]. These concepts apply
to both models; similar to the ML models, severity of illness
score requires periodical updates and customizations to reflect
changesin medical care and regional case pathology over time

[6].

Our findings lead to the following recommendations for model
developers:

1. State whether the developed ML models are intended for
clinical practice

2. If modelsareintended for clinical applications, providefull
transparency of the clinical setting from which the dataare
acquired and all the model development steps; validate the
models externally to ensure generalizability

3. If intended for clinical practice, report models' performance
metrics, which include measures of discrimination,
calibration, and classification, and attach explainer models
to facilitate interpretability

Before using ML and/or severity of illness score models as
decision support systems to guide clinical practice, we make
the following recommendations for clinicians:

1. Be cognizant of the similarities or discrepancies between
the cohort used for model development and the local
practice population, the practice setting, the model’s ability
to function prospectively, and the models' lead times

2. Acquire knowledge of the modd’s performance during
testing in the local practice

3. Ensure that the model is periodically updated to changes
in patient characteristics and/or clinical variables and
adjusted to new clinical practices and therapeutics

4. Confirm that the models' data are monitored and validated
and that the model’s performance is periodically updated

5. When both the severity of illness scoreand ML modelsare
available, determine one model’s superiority and clinical
reliability versus the other through randomized controlled
trials

IMIR Med Inform 2022 | vol. 10 | iss. 5 | €35293 | p. 17
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When ML models guide clinical practice, ensure that the Al developers must search for and clinicians must be cognizant

model makes the correct recommendation for the of the unintended consequences of Al tools; both must
right reasons understand human-Al tool interactions. Healthcare organization
and consult the explainer model administrators must be aware of the safety, privacy, causality,

Identify clinical performance metrics that evaluate the and ethical challenges when adopting Al tools and recognize
impact of the Al tool on the quality of care, efficiency, theFoodand Drug Administration guiding principlesfor AI/ML
productivity, and patient outcomes and account for development [52].

variability in practice
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