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Abstract

Background: Severity of illness scores—Acute Physiology and Chronic Health Evaluation, Simplified Acute Physiology Score,
and Sequential Organ Failure Assessment—are current risk stratification and mortality prediction tools used in intensive care
units (ICUs) worldwide. Developers of artificial intelligence or machine learning (ML) models predictive of ICU mortality use
the severity of illness scores as a reference point when reporting the performance of these computational constructs.

Objective: This study aimed to perform a literature review and meta-analysis of articles that compared binary classification
ML models with the severity of illness scores that predict ICU mortality and determine which models have superior performance.
This review intends to provide actionable guidance to clinicians on the performance and validity of ML models in supporting
clinical decision-making compared with the severity of illness score models.

Methods: Between December 15 and 18, 2020, we conducted a systematic search of PubMed, Scopus, Embase, and IEEE
databases and reviewed studies published between 2000 and 2020 that compared the performance of binary ML models predictive
of ICU mortality with the performance of severity of illness score models on the same data sets. We assessed the studies'
characteristics, synthesized the results, meta-analyzed the discriminative performance of the ML and severity of illness score
models, and performed tests of heterogeneity within and among studies.

Results: We screened 461 abstracts, of which we assessed the full text of 66 (14.3%) articles. We included in the review 20
(4.3%) studies that developed 47 ML models based on 7 types of algorithms and compared them with 3 types of the severity of
illness score models. Of the 20 studies, 4 (20%) were found to have a low risk of bias and applicability in model development,
7 (35%) performed external validation, 9 (45%) reported on calibration, 12 (60%) reported on classification measures, and 4
(20%) addressed explainability. The discriminative performance of the ML-based models, which was reported as AUROC, ranged
between 0.728 and 0.99 and between 0.58 and 0.86 for the severity of illness score–based models. We noted substantial heterogeneity
among the reported models and considerable variation among the AUROC estimates for both ML and severity of illness score
model types.

Conclusions: ML-based models can accurately predict ICU mortality as an alternative to traditional scoring models. Although
the range of performance of the ML models is superior to that of the severity of illness score models, the results cannot be
generalized due to the high degree of heterogeneity. When presented with the option of choosing between severity of illness score
or ML models for decision support, clinicians should select models that have been externally validated, tested in the practice
environment, and updated to the patient population and practice environment.

Trial Registration: PROSPERO CRD42021203871; https://tinyurl.com/28v2nch8
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Introduction

Background
In the United States, intensive care unit (ICU) care costs account
for 1% of the US gross domestic product, underscoring the need
to optimize its use to attenuate the continued increase in health
care expenditures [1]. Models that characterize the severity of
illnesses of patients who are critically ill by predicting
complications and ICU mortality risk can guide organizational
resource management and planning, implementation and support
of critical clinical protocols, and benchmarking and are proxies
for resource allocation and clinical performance [2]. Although
the medical community values the information provided by
such models, they are not consistently used in practice because
of their complexity, marginal predictive capacity, and limited
internal or external validation [2-5].

Severity of illness score models require periodic updates and
customizations to reflect changes in medical care and regional
case pathology [6]. Scoring models are prone to high interrater
variability, are less accurate for patients with increased severity
of illness score or specific clinical subgroups, are not designed
for repeated applications, and cannot represent patients’ status
trends [7]. The Acute Physiology and Chronic Health Evaluation
(APACHE)-II (APACHE-II) and Simplified Acute Physiology
Score (SAPS), developed in the 80s, are still in use [8]. The
underlying algorithms for APACHE-IV are in the public domain
and are available at no cost; however, their use is time intensive
and is facilitated by software that requires payments for licensing
implementation and maintenance [9]. Compared with SAPS-III,
which uses data exclusively obtained within the first hour of
ICU admission [10], APACHE-IV uses data from the first day
(24 hours) [11]. Although the Sequential Organ Failure
Assessment (SOFA) is an organ dysfunction score that detects
differences in the severity of illness and is not designed to
predict mortality, it is currently used to estimate mortality risk
based on the mean, highest, and time changes accrued in the
score during the ICU stay [11].

The availability of machine-readable data from electronic health
records enables the analysis of large volumes of medical data
using machine learning (ML) methods. ML algorithms enable
the exploration of high-dimensional data and the extraction of

features to develop models that solve classification or regression
problems. These algorithms can fit linear and nonlinear
associations and interactions between predictive variables and
relate all or some of the predictive variables to an outcome. The
increased flexibility of ML models comes with the risk of
overfitting training data; therefore, model testing on external
data is essential to ensure adequate performance on previously
unseen data. In model development, the balance between the
model’s accuracy and generalizability, or bias and variance, is
achieved through model training on a training set and
hyperparameter optimization on a tuning set. Once a few models
have been trained, they can be internally validated on a
split-sample data set or cross-validated; the candidate model
chosen is then validated on an unseen test data set to calculate
its performance metrics and out of sample error [12]. The choice
of algorithm is critical for providing a balance between
interpretability, accuracy, and susceptibility to bias and variance
[13]. Compared with the severity of illness scores, ML models
can incorporate large numbers of covariates and temporal data,
nonlinear predictors, trends in measured variables, and complex
interactions between variables [14]. Numerous ML algorithms
have been integrated into ICU predictive models, such as
artificial neural networks (NNs), deep reinforcement learning,
support vector machines (SVMs), random forest models, genetic
algorithms, clinical trajectory models, gradient boosting models,
k-nearest neighbor, naive Bayes, and the Ensemble approach
[15]. Despite the rapidly growing interest in using ML methods
to support clinical care, modeling processes and data sources
have been inadequately described [16,17]. Consequently, the
ability to validate and generalize the current literature’s results
is questionable.

Objectives
This study aims to systematically review and meta-analyze
studies that compare binary classification ML models with the
severity of illness scores for predicting ICU mortality and
determine which models have superior performance. This review
intends to provide actionable guidance to clinicians on the
prognostic value of ML models compared with the severity of
illness scores in supporting clinical decision-making, as well
as on their performance, in the context of the current guidelines
[18] and recommendations for reporting ML analysis in clinical
research [19] (Table 1).
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Table 1. Recommended structure for reporting MLa models.

Model training and validationData sources and preprocessing (feature selection)Research question and ML justification

Hardware, software, and packages usedPopulationClinical question

Evaluation (calibration and discrimination)Sample record and measurement characteristicsIntended use of the result

Configuration (parameters and hyperparameters)Data collection and qualityDefined problem type

Model optimization and generalization (hyperparame-
ter tuning and parameter limits)

Data structure and typesAvailable data

Validation method and data split and cross-validationDifferences between evaluation and validation setsDefined ML method and rationale

Validation method performance metrics on an external
data set

Data preprocessing (data aggregation, missing data,
transformation, and label source)

Defined evaluation measures, training
protocols, and validation

Reproducibility, code reuse, and explainabilityInput configurationN/Ab

aML: machine learning.
bN/A: not applicable.

Methods

We conducted a systematic review of the relevant literature.
The research methods and reporting followed the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) 2020 statement and guide to review and
meta-analysis of prediction models [20,21].

Information Sources and Search Strategy
Between December 15 and 18, 2020, we performed a
comprehensive search in the bibliographic databases PubMed,
Scopus, Embase, and IEEE of the literature published between
December 2000 and December 15, 2020. These databases were
available free of charge from the university library. We selected
PubMed for its significance in biomedical electronic research;
Scopus for its wide journal range, keyword search, and citation
analysis; Embase because of its European union literature
coverage; and IEEE Xplore for its access to engineering and
computer science literature.

The search terms included control terms (Medical Subject
Headings and Emtree) and free-text terms. The filters applied
during the search of all 4 databases were Humans and Age:Adult.
A search of the PubMed database using the terms (AI artificial
intelligence) OR (machine learning) AND (intensive care unit)
AND (mortality) identified 125 articles. The Scopus database
was searched using the terms KEY (machine learning) OR KEY
(artificial-intelligence) AND KEY (intensive care unit) AND
KEY (mortality) revealed 182 articles. The Embase database
queries using the terms (AI Artificial Intelligence) OR (machine
learning) AND (intensive care unit) AND (mortality) resulted
in 103 articles. The IEEE database search using the terms

(machine learning) OR (artificial intelligence) AND (intensive
care unit) AND (mortality) produced 51 citations.

A total of 2 authors (CB and AT) screened titles and abstracts
and recorded the reasons for exclusion. The same authors (CB
and AT) independently reviewed the previously selected full-text
articles to determine their eligibility for quantitative and
qualitative assessments. Both authors revisited the discrepancies
to guarantee database accuracy and checked the references of
the identified articles for additional papers. A third researcher
(LNM) was available to resolve any disagreements.

Eligibility Criteria and Study Selection
We included studies that compared the predictive performance
of newly developed ML classification models predictive of ICU
mortality with the severity of illness score models on the same
data sets in the adult population. To be included in the review,
the studies had to provide information on the patient cohort,
model development and validation, and performance metrics.
Both prospective and retrospective studies were eligible for
inclusion.

Data Collection Process
Data extraction was performed by CB, reviewed by AT, and
guided by the CHARMS (Critical Appraisal and Data Extraction
for Systematic Reviews of Prediction Modeling Studies)
checklist [22] specifically designed for systematic reviews of
prognostic prediction models. The methodological qualities of
the included studies were appraised with guidance from the
Prediction model Risk of Bias (ROB) Assessment Tool
(PROBAST) [23]. The reported features of the ML models are
shown in Table 2.
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Table 2. CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) checklist.

GeneralizabilityPredictive performanceModel trainingData preparationOutcome mortalityData source (descrip-
tion)

Author

NnMmLlKkJjIiHhGgFfEeDdCcBbAa

✓✓✓✓✓✓✓HospitalMIMICo 2Pirracchio et
al [1]

✓✓✓✓✓✓✓✓✓Hospital 30/90
days

Danish ICUpNielsen et al
[24]

✓✓✓✓HospitalICU IndiaNimgaonkar
et al [25]

✓✓✓✓✓✓✓✓28 days/hospitalMIMIC 3Xia et al [26]

✓✓✓✓✓✓✓✓✓Hospital, 2 days, 3
days, 30 days, 1
year

MIMIC 3Purushotham
et al [27]

✓✓✓✓✓✓✓✓✓✓✓✓HospitalANZICSqNanayakkara
et al [28]

✓✓✓✓✓✓✓✓HospitalGermanyMeyer et al
[29]

✓✓✓✓✓✓✓✓HospitalCCHICr United King-
dom

Meiring et al
[7]

✓✓✓✓✓✓✓HospitalMIMIC 3Lin et al [30]

✓✓✓✓✓✓✓ICUMIMIC 3Krishnan et al
[31]

✓✓✓✓✓✓✓✓HospitalKoreaKang et al
[32]

✓✓✓✓✓✓✓✓✓ICU and hospitalUnited KingdomJohnson et al
[33]

✓✓✓✓✓✓✓✓Hospital and 30
days

SwedenHolmgren et
al [34]

✓✓✓✓✓✓✓✓✓✓Hospital and 1 yearMIMIC 3Garcia-Gallo
et al [35]

✓✓✓✓✓✓✓✓✓ICU and hospitalMIMIC 3El-Rashidy et
al [36]

✓✓✓✓✓✓✓✓✓✓ICUEURICUSs 2Silva et al [37]

✓✓✓✓✓✓✓ICUMIMIC 3Caicedo-Tor-
res et al [38]

✓✓✓✓✓✓✓✓✓ICUeICU-CRDtDeshmukh et
al [39]

✓✓✓✓✓✓✓✓✓✓ICU and hospitalMIMIC 2Ryan et al
[40]

✓✓✓✓✓✓✓HospitalMIMIC 2Mayaud et al
[41]

aData normalization/outlier addressed.
bMissing data addressed.
cHyperparameter optimization addressed.
dOverfitting/shrinkage and cross-validation addressed.
ePredictor selection, full model versus backward elimination.
fCalibration assessed (Brier, Hosmer-Lemeshow, and calibration plot).
gDiscrimination/reclassification performed (net reclassification improvement/integrated discrimination improvement).
hClassification reported.
iRecalibration performed.
jExternally validated.
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kExplainability addressed/decision curve analysis.
lClinical applicability addressed.
mPrediction span defined.
nIntended moment of use reported.
oMIMIC: Medical Information Mart for Intensive Care.
pICU: intensive care unit.
qANZICS: Australia New Zealand Intensive Care Unit Society.
rCCHIC: Critical Care Health Informatics Collaborative.
sEURICUS: European ICU studies.
teICU CRD: Electronic ICU Collaborative Research Database.

Assessment of the ROB and Quality of Reviewed
Studies
The reviewers used the PROBAST tool to assess the
methodological quality of each study for ROB and concerns
regarding applicability in 4 domains: study participants,
predictors, outcome, and analysis [23]. The reviewers evaluated
the applicability of the selected studies by assessing the extent
to which the studied outcomes matched the goals of the review
in the 4 domains. We evaluated the ROB by assessing the
primary study design and conduct, predictor selection process,
outcome definition, and performance analysis. The ROB in the
reporting models’ performance was appraised by exploring the
reported measures of calibration (model’s predicted risk of
mortality vs the observed risk), discrimination (model’s ability
to discriminate between patients who are alive or expired),
classification (sensitivity and specificity), and reclassification
(net reclassification index). The performance of the models on
internal data sets not used for model development—internal
validation—and on data sets originating from an external patient
population–external validation—were weighted in the ROB
assignment. The ROB and applicability were assigned as low
risk, high risk, or unclear risk according to PROBAST
recommendations [42].

Meta-analysis and Performance Metrics
The C statistic–area under the receiver operating curve
(AUROC) is the most commonly reported estimate of
discriminative performance for binary outcomes [43-46] and
the pragmatic performance measure of ML and severity of
illness score models previously used in the medical literature
to compare models based on different computational methods
[21,45-47]. It is generally interpreted as follows: an AUROC
of 0.5 suggests no discrimination, 0.7 to 0.8 is considered
acceptable performance, 0.8 to 0.9 is considered excellent
performance, and >0.9 is considered outstanding performance
[48]. We included the performance of models developed using

similar algorithms in forest plots and performed heterogeneity
diagnostics and investigations without calculating a pooled
estimate [49]. The results were pooled only for studies that
followed a consistent methodology that included the external
validation or benchmarking of the models. Random-effects
meta-analyses computed the pooled AUROC for the following
subgroups of ML algorithms—NNs and Ensemble—and the
following subgroups of scoring models—SAPS II, APACHE
II and SOFA. The AUROC for each model type was weighted
using the inverse of its variance. Pooled AUROC estimates for
each model were meta-analyzed along with 95% CIs of the
estimates and were reported in forest plots together with the

associated heterogeneity statistics (I2, τ2, and Cochran Q).
Cochran Q statistic (also known as the chi-square statistic)

determines the within-study variation, τ2 determines the

between-study variability, and I2 represents the percentage of
variability from the AUROC estimate not caused by sampling
error [36]. The Cochran Q P value is denoted as P.
Meta-analyses were conducted in R (version 3.6.1) [37] (see
Multimedia Appendix 1 for scripts).

Results

Selection Process
Of the 461 screened abstracts, we excluded 372 (80.7%) because
of relevance (models not developed to predict ICU mortality),
9 (2%) duplicates, 6 (1.3%) reviews, and 8 (1.7%) conference
proceedings (not intended for clinical application). We assessed
the full text of 66 articles; the most common performance
method reported to allow comparison between all models and
a meta-analysis was the C statistic–AUROC. Of the 66 articles,
we excluded 12 (18%) articles because of limited information
on model development, 22 (33%) articles because of a lack of
comparison with clinical scoring models, and 12 (18%) articles
as the AUROC was not reported. The search strategy and
selection process are illustrated in Figure 1.
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Figure 1. Search strategy and selection process. AUROC: area under the receiver operating curve; ICU: intensive care unit.

Assessment of the Prediction Model Development
The 20 studies reported 47 ML models that were developed
based on 7 types of algorithms and compared them with 3
severity of illness score models. All ML models were developed
through a retrospective analysis of the ICU data sets. Of the 20
studies, 10 (50%) used data from the publicly available Medical
Information Mart for Intensive Care database (Beth Israel
Deaconess Medical Center in the United States) at different
stages of expansion. Of the 20 studies, 10 (50%) used national
health care databases (Danish, Australia-New Zealand, United
Kingdom, and Sweden) or ICU-linked databases (Korea, India,
and the United Kingdom). One of the studies included data from
>80 ICUs belonging to >40 hospitals [33], and one of the
studies’ ICU-linked database collected data from 9 European
countries [37]. The cohorts generating the data sets used for
model development and internal testing ranged from 1571 to
217,289 patients, with a median of 15,789 patients. Of the 20
studies, 10 (50%) used data from patients admitted to general
ICUs, whereas 10 (50%) studies used data from patients who

were critically ill with specific pathologies: gastrointestinal
bleeds [39], COVID-19 and pneumonia–associated respiratory
failure [40], postcardiac arrest [28], postcardiac surgery [29,36],
acute renal insufficiency [30,32], sepsis [35,41], or neurological
pathology [25]. The lower age thresholds for study inclusion
ranges were 12 years [25], 15 years [26,27], 16 years [33,35,38],
18 years [24,29,40], and 19 years [30]. Within the studied
cohorts, mortality ranged from 0.08 to 0.5 [29,32,36].

The processes and tools used for the selection of predicting
variables were described in 65% (13/20) of studies and included
the least absolute shrinkage and selection operator, stochastic
gradient boosting [33,35], genetic algorithms, and particle
swarm optimization [33]. Approximately 15% (3/20) of studies
[25,26,35] reported multiple models developed on variable
predictor sets, which were subsequently tested for the best
performance, validation, and calibration. The number of
predictive variables used in the final models varied between 1
and 80, with a median of 21. The most common predicting
variables are shown in Figure 2 and are grouped by the
frequency of occurrence in the studies.
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Figure 2. Frequency and type of ML model input variables (x-axis: number of studies using the input variables; y-axis: input variable). ASA: American
Society of Anesthesiology; COPD: chronic obstructive pulmonary disease; CVA: cerebral vascular accident; FIO2: fraction of inspired oxygen; ICU:
intensive care unit; LFT: liver function test; ML: machine learning; RBC: red blood cell; SpO2: oxygen saturation; PaO2: arterial oxygen pressure;
PaCO2: arterial CO2 pressure.

All studies developed models on 24-hour data; furthermore,
ML models were developed on the first hour of ICU data [34];
the first 48-hour data [27,38,41]; 3-day data [40]; 5-day data
[7]; 10-day data [26]; or on patients’ prior medical history
collected from 1 month, 3 months, 6 months, 1 year, 2.5 years,
5 years, 7.5 years, 10 years, and 23 years [24]. The frequency
of data collection ranged from every 30 minutes [29], 1 hour

[1,25,27,37], 3 hours, 6 hours, 12 hours, 15 hours [38], and 24
hours [7,36] to every 27 hours, 51 hours, and 75 hours [40].

Researchers handled missing data and continuous and fixed
variables differently. A total of 6 model developers provided
no information on missing data [1,25,29,32,34,39], and 1 [27]
addressed data cleaning. Researchers [24,30,33,35-37,40,41]
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removed the records with missing values ranging from 1 missing
value per admission to 30%, 50%, and 60% of missing data.
One of the studies [29] included only variables documented for
at least 50% of the patients and imputed the missing values with
the last measured value for the feature. Missing values (up to
60%) were forward-filled; backward-filled; or replaced with
means (continuous variables) or modes (categorical variables),
normal values, averages [24,28,36,38,40], predictive mean
matching [7], or linear interpolation imputation method [26].
The data were normalized using the minimum-maximum
normalization technique. The time prediction of hospital

mortality was undefined in 45% (9/20) of studies and varied
from 2 or 3 days to 28 days, 30 days [26], 90 days [24], and up
to 1 year [24] in the others.

There was a wide range in the prevalence of mortality among
studies (0.08-0.56), creating a class imbalance in the data sets.
In studies with low investigated outcome mortality, few
researchers addressed the problem of class imbalance (survivors
vs nonsurvivors) through balanced training [24,37], random
resampling [29], undersampling [36], or class penalty and
reweighting schemes [38]. A breakdown of the model
characteristics is presented in Table 3.
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Table 3. Information on the MLa prediction model development, validation, and performance, and on the severity of illness score performance.

Severity of illness score
model type (AUROC)

ML AUROC
external

External valida-
tion data set

K-fold/vali-
dation

FeaturesData training/test
(split %)

ML model type (AU-

ROCb test)

Author

0.942005-fold cross-
validation

1724,508Pirracchio et al,
2015 [1]

• SAPSd-II (0.78)• Ensemble SICU-

LAc (0.85) • APACHEe-II (0.83)
• SOFf (0.71)

0.77315285-fold cross-
validation

4410,368

(80/20)

Nielsen et al, 2019
[24]

• SAPS-II (0.74)• NNg (0.792)
• APACHE-II (0.72)

N/AN/AN/Ah152962

(70/30)

Nimgaonkar et al,
2004 [25]

• APACHE-II (0.77)• NN (0.88)

N/AN/ABootstrap

and RSMk
5018,415

(90/10)

Xia et al, 2019 [26] • SAPS-II (0.77)• Ensemble-

LSTMi (0.85) • SOFA (0.73)
• APACHE-II (0.74)• LSTM (0.83)

• DTj (0.82)

N/AExternal bench-
mark

5-fold cross-
validation

17/22/

136

35,627Purushotham et al,
2018 [27]

• SAPS-II (0.80)• NN (0.87)
• •Ensemble (0.84) SOFA (0.73)

N/AN/A5-fold cross-
validation

2939,560

(90/10)

Nanayakkara et al,
2018 [28]

• APACHE-III (0.8)• DT (0.86)
• SVMl (0.86)
• NN (0.85)
• Ensemble (0.87)
• GBMm (0.87)

0.81598910-fold
cross-valida-
tion

525898

(90/10)

Meyer et al, 2018
[29]

• SAPS-II (0.71)• NN (0.95)

N/AN/A21,911

LOOn

2580/20Meiring et al, 2018
[7]

• APACHE-II (0.83)• DT (0.85)
• NN (0.86)
• SVM (0.86)

N/AN/A5-fold cross-
validation

1519,044Lin et al, 2019

[30]

• SAPS-II (0.79)• DT (0.86)
• NN (0.83)
• SVM (0.86)

N/AN/A10-fold
cross-valida-
tion

110,155

(75/25)

Krishnan et al,
2018 [31]

• SAPS (0.80)• NN-ELMo (0.99)
• SOFA (0.73)
• APSp-III (0.79)

N/AN/A10-fold
cross-valida-
tion

331571

(70/30)

Kang et al, 2020
[32]

• SOFA (0.66)• SVM (0.77)
• APACHE-II (0.59)

• DT (0.78)
• NN (0.776)
• k-NNq (0.76)

0.837 (uni-
variate);

23,61810-fold
cross-valida-
tion

1039,070

(80/20)

Johnson et al, 2013
[33]

• APS-III (0.86)• LRr univariate
(0.902)

0.868 (multi-
variate)

• LR multivariate
(0.876)

N/AN/A5-fold cross-
validation

8217,289

(80/20)

Holmgren et al,
2019 [34]

• SAPS-III (0.85)• NN (0.89)

N/AN/A10-fold
cross-valida-
tion

18

140

37

5650

(70/30)

Garcia-Gallo et al,
2020 [35]

• SOFA (0.58)• SGB-LASSOs

(0.803) • SAPS (0.70)

N/AExternal bench-
mark

10-fold
cross-valida-
tion

8010,664

(75/25)

El-Rashidy et al,
2020 [36]

• APACHE-II (0.73)• Ensemble (0.93)
• SAPS-II (0.81)
• SOFA-II (0.78)
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Severity of illness score
model type (AUROC)

ML AUROC
external

External valida-
tion data set

K-fold/vali-
dation

FeaturesData training/test
(split %)

ML model type (AU-

ROCb test)

Author

• SAPS- II (0.8)N/AN/AHold out1213,164

(66/33)

• NN (0.85)Silva et al, 2006
[37]

• SAPS-II (0.73)N/AN/A5-fold cross-
validation

2222,413• NN (0.87)Caicedo-Torres et
al, 2019 [38]

• APACHE-IV (0.8)N/AN/A5-fold cross-
validation

345691

(80/20)

• XGBt (0.85)Deshmukh et al,
2020 [39]

• qSOFAu (0.76)0.911145-fold cross-
validation

1235,061

(80/20)

• DT (0.86)Ryan et al, 2020
[40]

• APACHE-III (0.68)N/AN/ABBCCVw252113

(70/30)

• GAv+LR (0.82)Mayaud et al, 2013
[41]

aML: machine learning.
bAUROC: area under the receiver operating curve.
cSICULA: Super ICU Learner Algorithm.
dSAPS: Simplified Acute Physiology Score.
eAPACHE: Acute Physiology and Chronic Health Evaluation.
fSOFA: Sequential Organ Failure Assessment.
gNN: neural network.
hN/A: not applicable.
iLSTM: long short-term memory.
jDT: decision tree.
kRSM: random subspace method.
lSVM: support vector machine.
mGBM: gradient boosting machine.
nLOO: leave one out.
oELM: extreme learning machine.
pAPS: Acute Physiology Score.
qk-NN: k-nearest neighbor.
rLR: logistic regression.
sSGB-LASSO: stochastic gradient boosting least absolute shrinkage and selection operator.
tXGB: extreme gradient boosting.
uqSOFA: Quick Sequential Organ Failure Assessment.
vGA: genetic algorithm.
wBBCV: bootstrap bias–corrected cross-validation.

Overview of ML Algorithms and Model Validation
The reviewers recorded the ML model types based on the final
trained model structure rather than on the algorithm used for
fitting the model (Table 3). The reviewers noted a diversity of
strategies in model fitting, although the implemented models
defined the operating functions and transformations. Of the 20
studies, NNs were applied in 13 (65%) [7,24-32,34,37,38],
decision trees in 8 (40%) [7,26,28,30,32,35,39,40], SVM in 4
(20%) [7,28,30,32], and Ensemble of algorithms in 4 (20%)
[1,27,28,36]. The types of algorithms used in the same study
varied between 1 and 5. All studies provided information on
data training and internal testing (see Table 2 for k-fold
validation and data splitting). Of the 20 studies, 5 (25%)

[1,24,29,33,40] performed validation on external data sets
ranging from 114 to 23,618 patients, and 2 (10%) studies [27,36]
benchmarked the ML model performance against existing ML
mortality prediction models; 14 (70%) studies reported CIs for
the measure of discrimination AUROC, 9 (45%) studies reported
on calibration (Hosmer-Lemeshow, calibration curve, or Brier
score), and 12 (60%) studies reported on classification measures
(Table 4). Approximately 10% (2/20) of studies were available
for use in clinical practice [1,33]; the models’ decisions were
explained with local interpretable model-agnostic explanations
[28] or the Shapley additive explanations method (SHAP) [39].
The AUROC of the ML models ranged from 0.728 to 0.99 for
predicting mortality.
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Table 4. Reported performance measures of the MLa models.

OtherCalibration measurementsClassification measurementsAuthor and ML model

Calibration
curve

Brier
score

HLc

score

AccuracyF1 scoreRecall/sensitivityPPVb/precisionSpecificity

Pirrachio et al [1]

DSg=0.21Uf=0.0007
(calibration
plot)

0.079N/AN/AN/AN/AN/AN/AeEnsemble SLd-1

DS=0.26U=0.006
(calibration
plot)

0.079N/AN/AN/AN/AN/AN/AEnsemble SL-2

Nielsen et al [24]

Mathews
correlation
coefficient

N/AN/AN/AN/AN/AN/A0.388N/ANNh

Purushotham et al [27]

0.491

(AUPRCi)

N/AN/AN/AN/AN/AN/AN/AN/ANN

0.435
(AUPRC)

N/AN/AN/AN/AN/AN/AN/AN/AEnsemble

Nimgaonkar et al [25]

N/ACalibration
plot

N/A27.7N/AN/AN/AN/AN/ANN-15 features

N/ACalibration
plot

N/A22.4N/AN/AN/AN/AN/ANN-22 features

Xia et al [26]

N/AN/AN/AN/A0.75330.42620.77580.2940.7503Ensemble-LSTMj

N/AN/AN/AN/A0.77030.43170.73840.3050.7746LSTM

N/AN/AN/AN/A0.77340.42900.711970.3060.7807RFk

Nanayakkara et al [28]

0.47 (log
loss)

Calibration
plot

0.156N/A0.78N/A0.760.750.79RF

0.47 (log
loss)

Calibration
plot

0.153N/A0.78N/A0.750.770.81SVCl

0.45 (log
loss)

Calibration
plot

0.147N/A0.79N/A0.80.750.78GBMm

0.48 (log
loss)

Calibration
plot

0.158N/A0.77N/A0.820.710.72NN

0.45 (log
loss)

Calibration
plot

0.148N/A0.79N/A0.770.770.81Ensemble

Meyer et al [29]

N/AN/AN/AN/A0.880.880.850.90.91RNNn

Meiring et al [7]

N/AN/AN/AN/AN/AN/AN/AN/AN/ADTo, NN, SVMp

Lin et al [30]

N/ACalibration
plot

0.085N/A0.7280.459N/AN/AN/ARF

N/ACalibration
plot

0.091N/A0.6660.406N/AN/AN/ANN
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OtherCalibration measurementsClassification measurementsAuthor and ML model

Calibration
curve

Brier
score

HLc

score

AccuracyF1 scoreRecall/sensitivityPPVb/precisionSpecificity

N/ACalibration
plot

0.086N/A0.7290.460N/AN/AN/ASVM

Krishnan et al [31]

Mathews
correlation
coefficient

N/AN/AN/A0.980.980.98N/AN/AANN-ELMq

Kang et al [32]

N/ACalibration
plot

N/AN/A0.6730.745N/AN/AN/Ak-NNr

N/ACalibration
plot

N/AN/A0.6960.752N/AN/AN/ASVM

N/ACalibration
plot

N/AN/A0.690.762N/AN/AN/ARF

N/ACalibration
plot

N/AN/A0.7110.763N/AN/AN/AXGBs

N/ACalibration
plot

N/AN/A0.749N/AN/AN/ANN

Johnson et al [33]

N/AN/A0.05122N/AN/AN/AN/AN/ALRt univariate

N/AN/A0.04819.6N/AN/AN/AN/AN/ALR multivariate

Holmgren et al [34]

N/ACalibration
plot

0.106N/AN/AN/AN/AN/AN/ANN

Garcia-Gallo et al [35]

N/ACalibration
plot

N/A0.09160.725N/AN/AN/AN/ASGBu

N/ACalibration
plot

N/A0.09160.712N/AN/AN/AN/ASGB-LASSOv

El-Rashidy et al [36]

N/AN/AN/AN/A0.9440.9370.911N/A0.94Ensemble

Silva et al [37]

N/AN/AN/AN/A0.7921N/A0.78N/A0.79NN

Caicedo-Torres et al [38]

N/AN/AN/AN/AN/AN/A0.75N/A0.827NN

Deshmukh et al [39]

N/AN/AN/AN/AN/AN/A1N/A0.27XGB

Ryan et al [40]

N/AN/AN/AN/A0.750.3780.801N/A0.75XGB

Mayaud et al [41]
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OtherCalibration measurementsClassification measurementsAuthor and ML model

Calibration
curve

Brier
score

HLc

score

AccuracyF1 scoreRecall/sensitivityPPVb/precisionSpecificity

N/ACalibration
plot

N/A10.43N/AN/AN/AN/AN/AGAw+LR

aML: machine learning.
bPPV: positive predictive value.
cHL: Hosmer-Lemeshow.
dSL: super learner.
eN/A: not available.
fU statistics.
gDS: discrimination slope.
hNN: neural network.
iAUPRC: area under the precison-recall curve.
jLSTM: long short-term memory.
kRF: random forest.
lSVC: support vector classifier.
mGBM: gradient boosting machine.
nRNN: recurrent neural network.
oDT: decision tree.
pSVM: support vector machine.
qANN-ELM: artificial neural network extreme learning machine.
rk-NN: k-nearest neighbor.
sXGB: extreme gradient boosting.
tLR: logistic regression.
uSGB: stochastic gradient boosting.
vLASSO: least absolute shrinkage and selection operator.
wGA: genetic algorithm.

The performance of the ML models was compared with that of
the following severity of illness scoring models: APACHE-II
(6/20, 30%), APACHE-III (2/20, 10%), APACHE-IV (1/20,
5%), SAPS-II (11/20, 55%), SAPS-III (1/20, 5%), SOFA (9/20,
45%), and Acute Physiology Score-3 (2/20, 10%; Table 3). The
severity of illness scores’ discrimination reported as AUROC
was associated with a CI in 65% (13/20) of studies. Calibration
of the severity of illness score models was reported in 30%
(6/20) of studies. Approximately 60% (12/20) of studies reported
binary classification results. The severity of illness scores used
for comparison and associated AUROCs were 0.70 to 0.803 for
SAPS, 0.588 to 0.782 for SOFA, and 0.593 to 0.86 for APACHE
(Table 3).

Analysis of ROB and Applicability
The results of the analysis of the ROB in the selection of the
study population, predictors, outcome definition, and
performance reporting are presented in Table 5. The results of
the assessment of the developed ML models’ applicability
regarding the study participants and setting, the predictors used
in the ML models’ development and their timing, the outcome
definition and prediction by the models, and the analysis that
reports the models’ performance are also presented in Table 5.
Of the 47 models, 4 (9%) models [1,17,23,29] were identified
as having a low risk, and 3 (6%) models were rated as having
an uncertain ROB and applicability model development
[24,29,40]. The main reason for the high ROB in the overall
judgment of the study was the lack of external validation, which
was identified in 28% (13/47) of the models.
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Table 5. Assessment for ROBa and applicability for prognostic models with the Prediction model ROB Assessment Tool checklist.

ROB and applicabilityAuthors

Overall judgmentAnalysisOutcomePredictorsParticipants

ApplicabilityROBROBApplicabilityROBApplicabilityROBApplicabilityROB

LowLowLowLowLowLowLowLowLowbPirracchio et al [1]

LowUnclearLowLowUnclearLowUnclearcLowLowNielsen et al [24]

UnclearHighHighdLowLowLowLowUnclearLowNimgaonkar et al [25]

LowHighHighLowUnclearLowLowLowLowXia et al [26]

LowLowLowLowLowLowLowLowLowPurushotham et al [27]

UnclearHighHighLowLowLowLowUnclearLowNanayakkara et al [28]

UnclearLowLowLowLowLowLowUnclearLowMeyer et al [29]

LowHighHighLowLowLowLowLowLowMeiring et al [7]

UnclearHighHighLowLowLowLowUnclearLowLin et al [30]

LowHighHighLowLowLowLowLowLowKrishnan et al [31]

UnclearHighHighLowLowLowLowUnclearLowKang et al [32]

LowLowLowLowLowLowLowLowLowJohnson et al [33]

LowHighHighLowUnclearLowLowLowLowHolmgren et al [34]

UnclearHighHighLowLowLowLowUnclearLowGarcia-Gallo et al [35]

LowLowLowLowLowLowLowLowLowEl-Rashidy et al [36]

LowHighHighLowLowLowLowLowLowSilva et al [37]

LowHighHighLowLowLowLowLowLowCaicedo-Torres et al [38]

UnclearHighHighLowLowLowLowUnclearLowDeshmukh et al [39]

LowUnclearLowLowLowLowUnclearLowLowRyan et al [40]

UnclearHighHighLowLowUnclearLowUnclearLowMayaud et al [41]

aROB: risk of bias.
bLow risk: no relevant shortcomings in ROB assessment.
cUnclear risk: unclear ROB in at least one domain and all other domains at low ROB.
dHigh risk: relevant shortcomings in the ROB assessment, at least one domain with high ROB, or model developed without external validation.

Meta-analysis
Forest plots for the NN, Ensemble, SOFA, SAPS II, and
APACHE-II models and the associated heterogeneity tests are
shown in Figures 3-7. The forest plots and tests of heterogeneity
for SVM, NN, DT, and Ensemble models that were not
externally validated can be seen in Multimedia Appendix 2.
The AUROC for each model type was weighted using the
inverse of its variance. Most of the 95% CIs of AUROC
estimates from various studies did not overlap within the forest
plot; considerable variation among AUROC estimates for both
ML and severity of illness score model types was noted.

Regrading tests of heterogeneity, I2 varied between 99% and

100%, τ2 ranged from 0.0003 to 0.0034, and P was consistently
<.01. In Figures 3-7 and Multimedia Appendix 2, the gray boxes
represent the weight estimates of the AUROC value from each
study. The horizontal line through each gray box illustrates the
95% CI of the AUROC value from that study. Black horizontal
lines through a gray box indicate that the CI limits exceeded
the length of the gray box. White horizontal lines represent the

CI limits that are within the length of the gray box. I2, τ2, and
Cochran Q P value (denoted as P) are heterogeneity tests.

Random-effects meta-analysis results of the computed pooled
AUROC of the ML subgroup models that were externally
validated or benchmarked NNs and Ensemble are shown in
Figure 3 and Figure 4.
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Figure 3. Meta-analysis results: pooled AUROC for externally validated Ensemble models. Gray boxes represent the fixed weight estimates of the
AUROC value from each study. Larger gray boxes represent larger fixed weight estimates of the AUROC values. The horizontal line through each gray
box illustrates the 95% CI of the AUROC value from that study. Black horizontal lines through a gray box indicate that the CI limits exceed the length
of the gray box. White horizontal lines represent CI limits that are within the length of the gray box. The vertical dashed lines in the forest plot are the
estimated random pooled effect of the AUROC value from the random-effects meta-analysis. The gray diamonds illustrate the 95% CI for the random

pooled effects. Tests of heterogeneity included I2, τ2, and Cochran Q P value (denoted as P). AUROC: area under the receiver operating curve;.

Figure 4. Meta-analysis results: pooled AUROC for externally validated NN models. Gray boxes represent the fixed weight estimates of the AUROC
value from each study. Larger gray boxes represent larger fixed weight estimates of the AUROC values. The horizontal line through each gray box
illustrates the 95% CI of the AUROC value from that study. Black horizontal lines through a gray box indicate that the CI limits exceed the length of
the gray box. White horizontal lines represent CI limits that are within the length of the gray box. The vertical dashed lines in the forest plot are the
estimated random pooled effect of the AUROC value from the random-effects meta-analysis. The gray diamonds illustrate the 95% CI for the random

pooled effects. Tests of heterogeneity included I2, τ2, and Cochran Q P value (denoted as P). AUROC: area under the receiver operating curve; NN:
neural network.

Figure 5. Meta-analysis results: pooled AUROC for SAPS-II. Gray boxes represent the fixed weight estimates of the AUROC value from each study.
Larger gray boxes represent larger fixed weight estimates of the AUROC values. The horizontal line through each gray box illustrates the 95% CI of
the AUROC value from that study. Black horizontal lines through a gray box indicate that the CI limits exceed the length of the gray box. White
horizontal lines represent CI limits that are within the length of the gray box. The vertical dashed lines in the forest plot are the estimated random pooled
effect of the AUROC value from the random-effects meta-analysis. The gray diamonds illustrate the 95% CI for the random pooled effects. Tests of

heterogeneity included I2, τ2, and Cochran Q P value (denoted as P). AUROC: area under the receiver operating curve; SAPS-II: Simplified Acute
Physiology Score II.
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Figure 6. Meta-analysis results: pooled AUROC for SOFA. Gray boxes represent the fixed weight estimates of the AUROC value from each study.
Larger gray boxes represent larger fixed weight estimates of the AUROC values. The horizontal line through each gray box illustrates the 95% CI of
the AUROC value from that study. Black horizontal lines through a gray box indicate that the CI limits exceed the length of the gray box. White
horizontal lines represent CI limits that are within the length of the gray box. The vertical dashed lines in the forest plot are the estimated random pooled
effect of the AUROC value from the random-effects meta-analysis. The gray diamonds illustrate the 95% CI for the random pooled effects. Tests of

heterogeneity included I2, τ2, and Cochran Q P value (denoted as P). AUROC: area under the receiver operating curve; SOFA: Sequential Organ Failure
Assessment.

Figure 7. Meta-analysis results: pooled AUROC for APACHE-II. Gray boxes represent the fixed weight estimates of the AUROC value from each
study. Larger gray boxes represent larger fixed weight estimates of the AUROC values. The horizontal line through each gray box illustrates the 95%
CI of the AUROC value from that study. Black horizontal lines through a gray box indicate that the CI limits exceed the length of the gray box. White
horizontal lines represent CI limits that are within the length of the gray box. The vertical dashed lines in the forest plot are the estimated random pooled
effect of the AUROC value from the random-effects meta-analysis. The gray diamonds illustrate the 95% CI for the random pooled effects. Tests of

heterogeneity included I2, τ2, and Cochran Q P value (denoted as P). APACHE-II: Acute Physiology and Chronic Health Evaluation-II; AUROC: area
under the receiver operating curve;.

The results of heterogeneity for the NN models were as follows:

τ2= 0.0043 (95% CI 0.0014-0.2100), I2=99.9% (95% CI
99.8%-99.9%), P<.01. The results of heterogeneity for the
Ensemble models were as follows:

τ2=0.0015 (95% CI 0.0005-0.0223), I2=99.7% (95% CI
99.6%-99.8%), P<.01. The results were synthesized, and the
models are presented in Figure 3 and Figure 4. The results of
heterogeneity for the APACHE-2 models were as follows:

τ2=0.0046 (95% CI 0.0011-0.1681), I2=99.7% (95% CI
99.6%-99.8%), P<.01. The results of heterogeneity for the

SAPS-II models were as follows: τ2=0.0012 (95% CI

0.0005-0.0133), I2=99.2% (95% CI 98.9%-99.4%), P<.01. The
results of heterogeneity for the SOFA models were as follows:

τ2=0.0009 (95% CI 0.0003-0.0461), I2=99.1% (95% CI
98.5%-99.4%), P<.01 (Figures 5-7).

Discussion

Principal Findings
This is the first study to critically appraise the literature
comparing the ML and severity of illness score models to predict
ICU mortality. In the reviewed articles, the AUROC of the ML
models demonstrated very good discrimination. The range of
the ML model AUROC was superior to that of the severity of
illness score AUROC. The meta-analysis demonstrated a high
degree of heterogeneity and variability within and among
studies; therefore, the AUROC performances of the ML and
severity of illness score models cannot be pooled, and the results

cannot be generalized. Every I2 value is >97.7%; most of the
95% CIs of AUROC estimates from various studies did not
overlap within the forest plot, suggesting considerable variation
among AUROC estimates for model types. The CI for AUROC
and the statistical significance of the difference in model
performance were inconsistently reported within studies. The
high heterogeneity came from the diverse study population and
practice location, age of inclusion, primary pathology, medical
management leading to the ICU admission, and time prediction
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window. The heterogenous data management (granularity,
frequency of data input, data management, number of predicting
variables, prediction timeframe, time series analysis, and training
set imbalance) affected model development. It may have resulted
in bias, primarily in studies where it has not been addressed
(Table 2). Generally, authors reported the ML algorithms with
predictive power superior to the clinical scoring system (Table
3); the number of ML models with inferior performance not
reported is unknown, which raises the concern of reporting bias.
The classification measures of performance were inconsistently
reported and required a predefined probability threshold;
therefore, models showed different sensitivity and specificity
based on the chosen threshold. The variations in the prevalence
of the studied outcome secondary to imbalanced data sets make
the interpretation of the accuracy difficult. The models’
calibration cannot be interpreted because of limited reporting.
The external validation process that is necessary to establish
generalization was lacking in 65% (13/20) of studies (Table 2).
The limited and variable performance metrics reported precludes
a comprehensive model performance comparison among studies.
The decision curve analysis and model interpretability
(explainability) that are necessary to promote transparency and
understanding of the model’s predictive reasoning was addressed
in 25% (5/20) of studies. Results of the clinical performance of
ML mortality prediction models as alternatives to the severity
of illness score are scarce.

The reviewed studies inconsistently and incompletely captured
the descriptive characteristics and other method parameters for
ML-based predictive model development. Therefore, we cannot
fully assess the superiority or inferiority of ML-based ICU
mortality prediction compared with traditional models; however,
we recognize the advantage that flexibility in model design
offers in the ICU setting.

Study Limitations
This review included studies that were retrospective analyses
of data sets with known outcome distributions and incorporated
the results of interventions. It is unclear which models were
developed exclusively for research purposes; hence, they were
not validated. We evaluated studies that compared ML-based
mortality prediction models with the severity of illness
score–based models, although these models relied on different
development statistical methods, variable collection times, and
outcome measurement methodologies (SOFA).

The comparison between the artificial intelligence (AI) and
severity of illness score models relies only on AUROC values
as measures of calibration, discrimination, and classification
are not uniformly reported. The random-effects meta-analysis
was limited to externally validated models. Owing to the level
of heterogeneity, the performance results for most AI and
severity of illness score models could not be pooled. The authors
recognize that 25% (5/20) of the articles were published between
2004 and 2015 before the TRIPOD (Transparent Reporting of
a multivariable prediction model for Individual Prognosis or
Diagnosis) recommendations for model development and
reporting [18]; thus, they were not aligned with the guidelines.

The reviewers assessed the models’ ROB and applicability and
were aware of the risk of reporting and publication bias favoring

the ML models. However, the high heterogeneity among studies
prevents an unambiguous interpretation of the funnel plot.

Conclusions and Recommendations
The results of our analysis show that the reporting methodology
is incomplete, nonadherent to the current recommendations,
and consistent with previous observations [16,50]. The lack of
consistent reporting of the measures of the reliability calibration
(Brier score and calibration curve of reliability deviation),
discrimination, and classification of the probabilistic estimates
on external data makes the comparative effectiveness of risk
prediction models challenging and has been noted by other
authors [43].

Predictive models of mortality can substantially increase patient
safety, and by incorporating subtle changes in organ functions
that affect outcomes, these models support the early recognition
and diagnosis of patients who are deteriorating, thus providing
clinicians with additional time to intervene. The heterogeneity
of the classification models that was revealed in detail in this
review underlines the importance of recognizing the models’
ability for temporal and geographical generalization or proper
adaptation to previously unseen data [51]. These concepts apply
to both models; similar to the ML models, severity of illness
score requires periodical updates and customizations to reflect
changes in medical care and regional case pathology over time
[6].

Our findings lead to the following recommendations for model
developers:

1. State whether the developed ML models are intended for
clinical practice

2. If models are intended for clinical applications, provide full
transparency of the clinical setting from which the data are
acquired and all the model development steps; validate the
models externally to ensure generalizability

3. If intended for clinical practice, report models’performance
metrics, which include measures of discrimination,
calibration, and classification, and attach explainer models
to facilitate interpretability

Before using ML and/or severity of illness score models as
decision support systems to guide clinical practice, we make
the following recommendations for clinicians:

1. Be cognizant of the similarities or discrepancies between
the cohort used for model development and the local
practice population, the practice setting, the model’s ability
to function prospectively, and the models’ lead times

2. Acquire knowledge of the model’s performance during
testing in the local practice

3. Ensure that the model is periodically updated to changes
in patient characteristics and/or clinical variables and
adjusted to new clinical practices and therapeutics

4. Confirm that the models’ data are monitored and validated
and that the model’s performance is periodically updated

5. When both the severity of illness score and ML models are
available, determine one model’s superiority and clinical
reliability versus the other through randomized controlled
trials
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6. When ML models guide clinical practice, ensure that the
model makes the correct recommendation for the
right reasons
and consult the explainer model

7. Identify clinical performance metrics that evaluate the
impact of the AI tool on the quality of care, efficiency,
productivity, and patient outcomes and account for
variability in practice

AI developers must search for and clinicians must be cognizant
of the unintended consequences of AI tools; both must
understand human–AI tool interactions. Healthcare organization
administrators must be aware of the safety, privacy, causality,
and ethical challenges when adopting AI tools and recognize
the Food and Drug Administration guiding principles for AI/ML
development [52].
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AI: artificial intelligence
APACHE: Acute Physiology and Chronic Health Evaluation
AUROC: area under the receiver operating curve
CHARMS: Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies
ICU: intensive care unit
ML: machine learning
NN: neural network
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PROBAST: Prediction model Risk of Bias Assessment Tool
ROB: risk of bias
SAPS: Simplified Acute Physiology Score
SOFA: Sequential Organ Failure Assessment
SVM: support vector machine
TRIPOD: Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis
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