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Abstract

Background: Traditional Chinese medicine (TCM) practitioners usually follow a 4-step evaluation process during patient
diagnosis: observation, auscultation, olfaction, inquiry, pulse feeling, and palpation. The information gathered in this process,
along with laboratory test results and other measurements such as vital signs, is recorded in the patient’s electronic health record
(EHR). In fact, all the information needed to make a treatment plan is contained in the EHR; however, only a seasoned TCM
physician could use this information well to make a good treatment plan as the reasoning process is very complicated, and it takes
years of practice for a medical graduate to master the reasoning skill. In this digital medicine era, with a deluge of medical data,
ever-increasing computing power, and more advanced artificial neural network models, it is not only desirable but also readily
possible for a computerized system to mimic the decision-making process of a TCM physician.

Objective: This study aims to develop an assistive tool that can predict prescriptions for inpatients in a hospital based on patients’
clinical EHRs.

Methods: Clinical health records containing medical histories, as well as current symptoms and diagnosis information, were
used to train a transformer-based neural network model using the corresponding physician’s prescriptions as the target. This was
accomplished by extracting relevant information, such as the patient’s current illness, medicines taken, nursing care given, vital
signs, examinations, and laboratory results from the patient’s EHRs. The obtained information was then sorted chronologically
to produce a sequence of data for the patient. These time sequence data were then used as input to a modified transformer network,
which was chosen as a prescription prediction model. The output of the model was the prescription for the patient. The ultimate
goal is for this tool to generate a prescription that matches what an expert TCM physician would prescribe. To alleviate the issue
of overfitting, a generative adversarial network was used to augment the training sample data set by generating noise-added
samples from the original training samples.

Results: In total, 21,295 copies of inpatient electronic medical records from Guang’anmen Hospital were used in this study.
These records were generated between January 2017 and December 2018, covering 6352 types of medicines. These medicines
were sorted into 819 types of first-category medicines based on their class relationships. As shown by the test results, the
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performance of a fully trained transformer model can have an average precision rate of 80.58% and an average recall rate of
68.49%.

Conclusions: As shown by the preliminary test results, the transformer-based TCM prescription recommendation model
outperformed the existing conventional methods. The extra training samples generated by the generative adversarial network
help to overcome the overfitting issue, leading to further improved recall and precision rates.

(JMIR Med Inform 2022;10(5):e35239) doi: 10.2196/35239
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Introduction

The widespread use of electronic health record (EHR) systems
has led to the explosive growth of digitized health care data. As
the amount and complexity of data grow, medical analysis and
decision-making become increasingly time-consuming and error
prone. In reality, a human physician cannot fully use all the
available information at his or her disposal in a timely fashion.
Therefore, harnessing the information contained in EHR data,
most of which is in textual form, is critical for driving innovation
research, improving health care quality, and reducing costs.
Natural language processing (NLP) is essential for transforming
relevant information sequestered in freestyle texts into structured
data for further computerized processing. The development of
a predictive model with EHR data was motivated by the desire
to offer a medication-oriented decision support tool to clinical
health care providers. To build such a predictive model, we used
NLP techniques to convert a patient’s EHR data into a
representation, which then becomes the input to a deep learning
model to predict medical events, such as medication orders.

Biomedical NLP has experienced great progress in the past 30
years [1,2] and has become especially active in recent years [3].
Previously, EHR data were analyzed using traditional machine
learning and statistical techniques such as logistic regression,
support vector machine, and random forest [4]. However, in
recent years, as reviewed in the studies by Shickel et al [5],
Sheikhalishahi et al [6], and Miotto et al [7], many research
efforts have been devoted to the application of deep learning
techniques to EHR data for clinical informatics tasks.
Autoencoders have been used by researchers [8] to predict a
specific set of diagnoses. A long short-term memory (LSTM)
sequence model [9] was trained to provide patient-specific and
time-specific predictions of medication orders for patients who
are hospitalized [10]. A convolutional neural network (CNN)
model was used to predict discharge medications using the
information available at admission [11]. Numerous articles were
surveyed in the study by Goldstein et al [12] regarding the
development of a risk prediction model using EHR data. A
comprehensive study on applying deep learning techniques to
EHR data for a variety of prediction problems was reported in
the study by Rajkomar et al [13]. Recurrent neural networks
were successfully trained using EHR data to detect medical
events [14-16].

The research on applying artificial intelligence in traditional
Chinese medicine (TCM) has been very active in the past decade
[17,18]. Data mining techniques have been used for TCM

syndrome modeling and prescription recommendation for
diabetes [19]. The PageRank algorithm [20] was modified and
applied to TCM prescription recommendations [21]. In our
previous work [17], a CNN was used to predict TCM diseases,
and XGBoost, along with other neural networks, was used to
predict TCM syndromes. Following the sequence-to-sequence
paradigm, researchers from Peking University used bidirectional
gated recurrent neural networks to generate TCM prescriptions
from symptom descriptions [22]. They proposed a coverage
mechanism along with a soft loss function as a remedy for the
repetition problem they encountered. However, the requirement
of curated descriptions of symptoms as inputs hinders the
practicality of this approach. Ideally, the model generates TCM
prescriptions directly from raw EHR data, similar to how a
human TCM physician conducts deductive reasoning.

Generating prescriptions from raw EHR data typically comprises
2 parts. The first part uses biomedical NLP [3] techniques to
extract relevant information used by a human physician to form
a feature representation [23]. The second part uses deep learning
techniques [7] to map this feature representation into a
prescription order.

The primary task of biomedical NLP is to extract relevant
information from clinical narratives written in free-form text
and store the gathered information as structured data. Numerous
deep learning techniques [24-26], such as bidirectional LSTM
(BiLSTM), have been used in the biomedical NLP field. Both
BiLSTM conditional random field (CRF) and transformer CRF
have been used for named entity recognition (NER) of EHR
notes written in Chinese [27,28]. The recognized entities are
then formed into distinct tokens. Then, the feature representation
of a patient’s EHR data becomes a sequence of tokens. The
tokens are then converted into real-valued multidimensional
vectors using word embedding techniques [29].

The purpose of this study was to develop an assistive tool that
can prescribe TCM prescriptions for inpatients in a hospital
based on the patient’s clinical EHRs. The predictive model for
TCM prescription generation is based on a sequence-transducing
model called the transformer [30]. This model is entirely based
on attention, replacing the recurrent layers most commonly used
in encoder-decoder architectures with multihead self-attention.
The training used in this predictive model was supervised
training with human-authored prescriptions contained in the
EHR data set as the training targets. Furthermore, a generative
adversarial network (GAN) [31] model was designed to augment
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the training set to further enhance the overall system
performance by reducing the effects of overfitting.

Methods

This section is arranged as follows: the overall system
architecture is briefly described; then, each constituent
subsystem, which may comprise some functional blocks, is
introduced; finally, the training process is described in the
Training subsection, where a GAN model was used to generate
noise-added samples from the original samples.

System Overview
Hospitals and medical institutes in China are rapidly moving
toward standardizing their EHRs to conform to the regulations
and specifications issued by the Ministry of Health of the
People’s Republic of China [32-34]. A standard EHR document
for a patient may contain up to 53 parts, depending on the
patient’s situation. These may include the following:

• A first page record containing the patient’s basic personal
information, such as sex, age, occupation, and marital status

• An admission record containing the description of a
patient’s illness upon admission to the hospital, including
chief complaints, medical history, and family medical
history

• A laboratory tests record containing the list of tests and the
corresponding results

• A nursing record containing nurse notes of the patient’s
condition, treatments taken and nursing care taken, body
temperatures and vital signs taken, and physician’s orders

• A treatment procedure record containing the entire
in-hospital diagnosis and treatment process and any changes
to the patient’s illness or illnesses

A high-level block diagram of the proposed system is shown
in Figure 1. The system comprises 4 subsystems: the NLP
subsystem, the feature extraction subsystem, the vectorization
subsystem, and the prescription prediction subsystem. The NLP
subsystem processes the EHR file and produces structured data,
which in turn are processed by the feature extraction subsystem
to extract relevant clinical information for prescription
prediction. The vectorization subsystem maps the sequence of
tokens written in Chinese characters to digital numbers,
presented as a vector in a multidimensional space. The
prescription prediction subsystem, which is a transformer-based
deep learning model, automatically generates a prescription
based on input vector data. Together, the first 3 subsystems
accomplish the task of extracting relevant information from an
EHR file to form input variables for the prediction model.
Similar representation learning operations were described in
our previous paper [17].

In short, NLP normalizes the raw EHR data, the feature extractor
converts the normalized data into a sequence of tokens, the
vectorization subsystem maps the tokens into vectors of real
numbers, and the predictive model performs the reasoning
process to produce a prescription.

Figure 1. Block diagram of the prescription generation system. EHR: electronic health record; NLP: natural language processing.

The NLP Subsystem
This subsystem is responsible for generating structured data
from original EHR documents. The internal block diagram of
the subsystem is shown in Figure 2. There are 3 functional
blocks in this subsystem: the preprocessing block, NER block,
and British Medical Journal block.

The preprocessing block cleans the raw EHR document by
removing pictures and unusable components. This ensures the
completeness and accuracy of the electronic medical records.
Electronic medical records with incomplete or inconsistent
information are discarded.

After the initial cleaning, the content of the EHR file is then
divided into distinct sections. For example, the admission record
is divided into sections of chief complaints, medical history,
and others. Then, all the resultant sections are sorted, formatted,
and subsequently fed to the NER block.

Only a small part of the EHR document is in a fixed format,
and the remainder is in unstructured freestyle narratives. For
fixed-format texts, a script is used to extract named entities to
form structured data.

For freestyle narratives, a functional block called entity
recognition is used to extract named entities to form structured
data entries. The NER block is implemented using a BiLSTM
network with CRF (BiLSTM-CRF) [24].

Then, the extracted named entities such as symptoms, illness,
medicine, examinations, and tests are further standardized
according to a Chinese version of the British Medical Journal
Best Practice knowledge base.

Figure 3 shows an example of the processing result, where the
admission record of a raw EHR note is converted into structured
data, with the marked words being named entities.
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Figure 2. Block diagram of the named entity recognition subsystem. BiLSTM: bidirectional long short-term memory; EMR: electronic medical record;
BiLSTM-CRF: Bidirectional long short term memory – conditional random fields; BMJ: British Medical Journal.

Figure 3. Example of converting a freestyle narrative into structured data. EHR: electronic health record.

The Feature Extraction Subsystem
To effectively mimic the reasoning process conducted by a
human physician, accurate and relevant input variables must be
chosen properly. These variables should represent the complete
set of factors that a human physician should take into
consideration when making treatment decisions. Textbox 1

summarizes the predominant factors that TCM experts consider
when making treatment decisions.

The feature extraction subsystem extracts the aforementioned
key features from the standardized structured data to form a
sequence of tokens. Figure 4 shows an example of this feature
extraction, in which a sequence of tokens is generated from
structured data.
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Textbox 1. Text type and the content to extract.

Demography

• Sex, age, height, weight, and BMI

Chief complaints

• Symptoms and signs

Recent medical history

• Symptoms, signs, and general information

Past medical history

• Past illness and medicines taken

Present illness

• Tongue coating and pulses

Body check

• Vital signs

Treatment process records

• Current illness situation and treatment plan

Physician’s orders

• Prescriptions

Nursing notes

• Vital signs and medication records

Examination reports

• Examination items and findings

Laboratory reports

• Items tested and qualitative and quantitative test results

Figure 4. Example of converting structured data into a sequence of tokens.
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The Vectorization Subsystem

Overview
Until this point, all medical information needed to make a
treatment decision was encapsulated in textual data expressed
in Chinese characters. To be used by the deep learning
network—the Transformer—the information must be mapped
into a digital variable. In this vectorization process, a Chinese
word or phrase is represented as a real-valued vector in
multidimensional feature space. This section explains how
tokenized features are further processed through word
embedding.

Training the Word Embedding Model
The corpus was a collection of 102,596 electronic medical
records from Guang’anmen Hospital and other hospitals. The
Jieba tokenizer was used to perform tokenization. The
open-source modeling tool Gensim was used to train the
word2vec [29] model with the following major parameters:
min_count=2, vector_size=100, window=5, sg=1, hs=1, and
epochs=50.

The Skip-Gram model was used, as indicated by the parameters.
Each word was represented by a real-valued vector of 100
dimensions.

Vectorization
Once the word embedding model is trained, each token is
represented by a 100-dimension vector. For each word in the
input sequence, a unique identifier is assigned using a
numerical-type value expressed as a name-value-unit before
another unique identifier is assigned. Once all tokens are
converted into vectors, the vectors are then concatenated to form
a single vector variable, which then serves as the input to the
transformer.

The NLP, feature extraction, and vectorization subsystems
together accomplish the task of feature learning by converting
an EHR document into a multidimensional real-valued vector.
Figure 5 shows an example of mapping from EHR text to word
vectors.

Figure 5. Illustration of converting electronic health record text to word vectors.

The Transformer Subsystem
The transformer subsystem is responsible for recommending a
prescription for every given input embedding, as shown in
Figure 6. The subsystem is described in the following
paragraphs.

Input embedding is a vector of max_num_tokens× vector_size
dimensions. For example, max_num_tokens=759 and
vector_size=100. Zero padding is used if the number of tokens
in a sequence is smaller than max_num_tokens. Conversely, if
the number of tokens in a sequence is larger than
max_num_tokens, the number of tokens is capped at
max_num_tokens by dropping off tokens corresponding to the
oldest time stamp with respect to the current prescription
generation time. The input embedding sample is first added to

the position vector of the same size, becoming the input to the
first encoder.

The main body of the subsystem comprises 2 identical cascaded
transformer encoders. Unlike the encoder of the original
transformer [30], which comprises 6 identical layers, the encoder
used in this research had only 1 layer with 4 sublayers. The first
was a multihead self-attention layer with Multi_heads=4 and
head_dim=8. The second was a residual layer of 100 neurons
with normalization. The third was a simple, position-wise, fully
connected feedforward network of 2048 neurons. The fourth
was a residual layer of 100 neurons with normalization.

The second encoder was followed by a linear layer, a
feedforward layer of 2048 neurons, a hidden layer, and an output
layer, as shown in Figure 6. The output layer comprised 819
neurons with a sigmoid activation function. Each of the 819
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neurons corresponded to an herbal ingredient. The hidden layer
comprised 128 neurons with a dropout mechanism and
normalization. The dropout rate was set to 0.4740. The purpose
of this hidden layer was to prevent overfitting.

The final result from the output layer was a list of probabilities
for the 819 drug ingredients, valued between 0 and 1. The
recommended prescription was then obtained by setting a
threshold for these probabilities.

Figure 6. The transformer subsystem.

Training

Training the Transformer
Training of the transformer is a supervised learning process.
The input is a real-valued vector representation of a patient’s
EHR, and the output is the prescription. The learning goal is
for a machine-generated prescription to match the medical order
prescribed by a human physician.

Augmenting the Training Data
To alleviate the overfitting effect of the proposed prediction
model, a GAN [31] network was used to augment the training
data set. Following the fundamental idea of the GAN network,
the generative model G is trained to represent the distribution
of the original training data set, and the discriminative model
D is trained to detect whether the sample originates from the
original sample set or from the output of the generative model.

During the training phase, the entire system looks like that
shown in Figure 7. For every original training sample, there is
a noise-added sample. The use of a GAN in this system
effectively doubled the number of training samples.

The internal structure of our GAN network was designed as
shown in Figure 8. Generator G comprises 2 identical LSTM
layers, each with a size of 279. Each LSTM layer is followed
by a normalization layer with a residual connection. The input
to the discriminator G could be either an original word
embedding sample or a noise-added sample generated by the
generator G. The discriminator D comprises an LSTM layer

with a size of 279, a residual and normalization layer with a
size of 100, and a full connection layer with a size of 256.
Finally, the discriminator D outputs a binary value using a
sigmoid function.

We followed a typical GAN network training procedure [31]
to train the GAN subsystem, simultaneously training the
discriminator and generator. The discriminator and generator
alternate in their training until a Nash equilibrium is reached.

The generator first produces a batch_size noise-added EHR,
embedding samples with randomly initialized coefficients of
the generator network. These samples are concatenated with
the original noise-free EHR embedding samples to form
(2×batch_size) embedding samples, each with
max_num_tokens×vector_size real values. For example, we can
have batch_size=500, max_num_tokens=560, vector_size=100.
These (2×batch_size) samples were used as inputs to the
discriminator. For every input sample, an output label indicates
whether the sample is from the true original embedding or from
the generator. The discriminator network was trained using a
backpropagation algorithm with the objective of minimizing
the prediction error. The training of the discriminator is halted
when the binary cross-entropy loss function stops decreasing.
The discriminator training is then temporarily halted to yield
to the generator training.

To train the generator, all network coefficients of the
discriminator must be frozen. The discriminator now works in
tandem with the generator during generator training. The
generator produces batch_size noise-added embedding samples,
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and for every sample, the discriminator outputs a prediction.
The generator updates its parameters using a backpropagation
algorithm based on the discriminator output. The training of the
generator is halted when the binary cross-entropy loss function
stops increasing. The generator training is then temporarily
halted to yield the discriminator training.

The aforementioned discriminator and generator training
processes together form 1 training epoch. The entire GAN
network training is accomplished through several epochs. The
training stops when a Nash equilibrium is reached.

The entire training process is illustrated using the Python
pseudocode included in Multimedia Appendix 1.

Figure 7. Block diagram of the predictive modeling system during the training phase. EHR: electronic health record; GAN: generative adversarial
network; NLP: natural language processing.

Figure 8. The internal structure of the generative adversarial network subsystem. LSTM: long short-term memory; *size of the neural network used
in that layer.

Ethics Approval
This study received institutional review board review through
Guanganmen Hospital Ethic Committee (SQ2017YFGX
060073).

Results

Data Set
EHRs generated in Guang’anmen Hospital between January 1,
2017, and December 31, 2018, were used as the data set in this
study. Initially, there were 27,846 copies of EHR notes, out of
which 6551 (23.53%) copies were discarded because of quality
control. An EHR note should be discarded if it satisfies one of
the following conditions:

• The note is incomplete for missing certain basic pages.
• The note contains inconsistent information.
• The note does not use standard descriptions.

• The note contains special EHR circumstances such as
chemotherapy, after an operation, and removal of fracture
settings.

Evaluation Metrics
The data set contained 6352 drug varieties. A complete TCM
prescription includes drug ingredients, dosages, and decoction
preparation instructions. It is still very challenging, if not
impossible, for a machine to generate such a complete TCM
prescription. At our current stage of research, we focus only on
the drug ingredients of a prescription.

Judging whether the 2 TCM prescriptions are the same is often
not straightforward, given the distinctive nature of TCM [35].
Often, 2 different herbs may have the same medical effect. When
a TCM physician prescribes a medication order, he or she often
has multiple choices at hand for herbal ingredients. As a result,
the 2 TCM physicians may prescribe different herbs for the
same patient with the same diagnosed condition. Therefore, it
is necessary to have a unified method of evaluating
machine-generated prescriptions. To this end, we need a higher
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level of abstraction. Figure 9 shows an example of the
organization of TCM drugs. In this example, 2 TCM drugs
(antiphlogistic powder and Jingfang decoction) have different
herbal ingredients but belong to the same parent drug category
and have the same medical treatment effect. In our research, we
concluded that the recommended drug should be considered a
correct recommendation as long as the recommended drug
belongs to the same parent category as that of the
human-authored prescription.

To quantitatively evaluate the performance of the
transformer-based deep learning model, we compared the
prescription generated by the machine with that prescribed by

a human physician. Here, we used the metrics of precision rate
and recall rate, which we based on 3 variables. True positive
(TP) is defined as the number of drugs that exist in the
physician’s prescription and also exist in the machine’s
prescription. False positive (FP) is the number of drugs that do
not exist in the physician’s prescription but exist in the
machine’s prescription. False negative (FN) is defined as the
number of drugs that exist in the physician’s prescription but
not in the machine’s prescription. With these definitions, we
defined the precision and recall rates as follows:

Precision rate = TP / (TP + FP) (1)

Recall rate = TP / (TP + FN) (2)

Figure 9. Classification of herbal drugs.

Hyperparameter Tuning With GridSearchCV
The data set was divided into training and test sets, with the
training set comprising 90% of the data set and the test set
comprising the rest. The model was trained using a 10-fold
cross-validation method; that is, the training set was randomly
split into 10 folds, with the model being trained 10 times. During
each of the 10 training times, the hyperparameters were tuned
using the GridSearchCV method. Each training resulted in a set
of hyperparameters, with the ultimate hyperparameters being
the average of these 10 sets of parameters.

The values of the hyperparameters of the transformer network
model have a great influence on the accuracy of the model. The
optimal values of these parameters were determined through
iterations using the grid search method. The sparse characters
of each type were embedded into a d-dimensional embedding
layer. Then, all vectors were combined using a new method:

vectors of the same type and time were averaged using the
weights of self-learning.

The model was optimized using a minimal log loss. Many
regularization methods were used, such as the vector loss rate
and the embedded layer loss rate. In addition, small-scale L2
weight punishment was used, which increased the punishment
for large weights. The training batch size was chosen as 128,
placing sentences with similar sizes into the same batch. Each
batch contained approximately 12,000 words. Finally, the
multilabel task was processed using an Adam function. For
multilabel tasks, the input with the last time stamp was
multiplied with the special end of sequence embedding. The
training was executed using the Kears framework on a server
with 8 NVIDIA P100 graphics processing unit. The fine-tuned
hyperparameters along with their respective ranges are shown
in Table 1.
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Table 1. Some hyperparameters of the model.

Parameter rangeValuesHyperparameters

(0.1, 0.5, 1.0, 1.1)0.1245Gradient

(4, 8)4Attention heads

(0.25, 0.35, 0.5)0.4410Vector loss rate

(0.25, 0.35, 0.5)0.4740Hidden layer loss rate

(0, 1)0.4375Learning rate

(0, 0.01)0.000001566L2 punishment rate

Experimental Results
To intuitively explain our experimental results, we start with a
concrete example that illustrates how EHR notes lead to
prescription orders. An example of this is shown in Figure 10.
The left side shows a snapshot of the patient’s EHR. On the
right side is a table showing a side-by-side comparison between
a human-authored order and the prescription generated by our
model. The physician’s order contains 12 ingredients, whereas
the model’s order has 11. The first 5 ingredients are identical
on both sides. The sixth ingredient from each side is the same,
although they have different Chinese names. This is because
the physician used a nickname for the herb. The remaining
ingredients differ not only in name but also in substance.
However, these 2 orders are still considered equivalent so far
as the medical treatment effect is concerned. This is because in
TCM terminology, a diagnosis must conclude with the name
of the disease (illness) and a list of syndromes [17]. In this
particular case, the diagnosed disease is emaciation-thirst, with
the primary syndrome being kidney and liver deficiency and the
secondary syndrome being dampness and stasis. The first 6
herbal ingredients target the primary syndrome. The remaining
ingredients in each prescription are for the treatment of the
secondary syndrome called dampness and stasis. As these 2
orders are only slightly different in their ingredients for treating
secondary syndrome, they are treated as the same prescription
in our research.

To further explain this prescription comparison, we present
another picture, as shown in Figure 11. The physician’s order
is called Qiju Dihuang pill, and the model’s order is called
Liuwei Dihuang pill. They are category II prescriptions that
belong to the same parent category TCM prescription called
nourishing liver and kidney. They differ only in how to dispel
dampness and resolve phlegm to address only the secondary
syndrome.

To evaluate the performance of the transformer-based predictive
model, we first conducted model training using only the original
samples, purposefully excluding the noise-added samples. The
results are described in the following paragraphs.

On the basis of the time sequences, the system produced
prescription recommendations at admission, 24 hours after
admission, 48 hours after admission, 3 days after admission,
and 1 week after admission. The test results are shown in Table
2.

From Table 2, we first observe that the precision and recall rates
obtained from the training data set are higher than their
respective counterparts from the test data set. This is
understandable as the model has seen the samples from the
training data set before but not from the test data set. The second
observation is that as time progresses, both the precision and
recall rates improve. After admission, at each subsequent
medication order time, more relevant information is collected,
and the prediction becomes more accurate. Although the number
of feature tokens was <260 for 98% of the patients at the time
of admission, this number increased to 296 in 24 hours, 333 in
48 hours, 366 in 72 hours, and 759 in 7 days. In our experiment,
we set max_num_tokens=759. This means that when the number
of feature tokens was <759, zero padding was used, and clipping
was used when there were >759 feature tokens. Selecting the
proper value for max_num_tokens is important for balancing
the trade-off between overall system performance and
computational efficiency. If the value is too large, training and
inferencing will consume too much computation horsepower.
If the value is too small, then some critical information gathered
at admission will be lost because of clipping, leading to reduced
precision and recall rates for prescription predictions at a time
that is far from the admission time (eg, 2 weeks after admission).

The second set of experimental results was obtained using more
training samples to train the predictive model. The size of the
training data set was doubled, as for every training sample, a
noise-added sample was generated by the GAN network. The
precision and recall rates are listed in Table 3.

As can be seen in Table 3, both the precision and recall rates
consistently improved by a noticeable margin. The results
convincingly prove that inserting noise-added training samples
generated by the GAN module can effectively overcome the
overfitting issue, leading to better prediction performance.

JMIR Med Inform 2022 | vol. 10 | iss. 5 | e35239 | p. 10https://medinform.jmir.org/2022/5/e35239/
(page number not for citation purposes)

Zhang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 10. Side-by-side comparison of physician’s order versus model’s order.

Figure 11. Prescription comparison: physician’s order versus model’s order.

Table 2. The precision rates and recall rates with transformer only.

Test setTraining setTime

Precision rate (%)Precision rate (%)Recall rate (%)Precision rate (%)

61.2573.8269.4981.58Admission

62.6974.5671.8883.37In 24 hours

63.0474.8171.2683.92In 48 hours

65.3876.2473.8985.16In 3 days

67.1577.9475.1787.02In 1 week
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Table 3. The precision rates and recall rates with transformer+generative adversarial network.

Test setTraining setTime

Recall rate (%)Precision rate (%)Recall rate (%)Precision rate (%)

68.4980.5870.6582.22Admission

70.882.3772.1884.15In 24 hours

70.2682.9272.5684.32In 48 hours

74.3885.0475.1087.04In 3 days

76.2386.8276.7988.91In 1 week

Comparison Study
To compare the performance of our proposed model with that
of existing prescription generation models, we implemented 3
other models. The CNN-based model [11] comprises a word
embedding layer, a convolution layer that contains 3 filters of
different sizes, a pooling layer, and a full connection layer. The
output layer contains 819 neurons, equal to the number of
prescribed herb varieties. The seq2seq [36] model comprises a
CNN encoder and an LSTM decoder. The MedAR [37] model
comprises a word embedding layer, followed by an attention

layer, and finally, a RethinkNet layer to complete the multilabel
classification. The learning rate was 0.001, the dropout rate was
0.8, and the optimization function was Adam. The final output
layer used the sigmoid function, where all other layers used the
non-linear activation function ReLU, which outputs an input x
as zero if x is negative, and outputs x itself if x is larger than or
equal to zero. Table 4 shows the respective precision and recall
rates at admission for all 4 models in discussion. The results
suggest that the proposed model has superior performance in
terms of precision and recall rates.

Table 4. Performance comparison for different models.

Recall rate (%)Precision rate (%)Model

31.0047.54Convolutional neural network

48.7464.02Seq2seqa

53.0871.46MedARb

68.4980.58Transformer+generative adversarial network

aSeq2seq: sequence to sequence model.
bMedAR: Medical data attention Rethink Net.

Discussion

Principal Findings
The following tasks have been finished in this research:

1. Deep learning NLP techniques were used to convert raw
Chinese EHR texts into feature representations.

2. The major contribution of this study is the proposal of a
transformer-based predictive modeling scheme for
medication order generation from a feature representation
of EHR data.

3. The secondary contribution of this study is the use of GAN
to augment the training data set, leading to a noticeable
performance improvement of the predictive model. Using
the GAN, noise-added samples were generated to double
the number of original training samples. This helped
alleviate the overfitting problem, making the model more
robust in terms of generalization.

Limitations
Despite the efforts made in many aspects of the diagnosis and
treatment scheme recommendations, there is still much room
for improvement. The training data set is still relatively small,

and there may be some frequently used medicines that are not
included in the training data set. The TCM prescription
knowledge base is still incomplete. Some medicines do not have
standard names, and no corresponding parent medicine name
exists in the database. Therefore, the recommended medicine
names are still the original hospital medicine names. For a
multilabel prediction task, an increased number of labels will
increase the difficulty of the model prediction and lower the
prediction accuracy. Therefore, as a more complete knowledge
base is developed, the label set will be further optimized, leading
to a greater prediction accuracy of the model.

Future Work
This paper reports the preliminary research results of automated
medication order generation from EHR texts for TCM inpatients
who are hospitalized. The recommended medicines include
Western and Chinese medicines. For Chinese medicines, only
the medicine names are recommended. In the future, the dosage
of the herbal ingredients, as well as the medicine preparation
instructions, will be included in the recommendations.
Improving the model prediction accuracy to the level of category
II is also a direction for future work. Future work could expand
the training data set to optimize the model.
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