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Abstract

Background: Although thereisagrowing interest in prediction models based on electronic medical records (EMRs) to identify
patients at risk of adverse cardiac events following invasive coronary treatment, robust models fully utilizing EMR data are
limited.

Objective: We aimed to develop and validate machine learning (ML) models by using diverse fields of EMR to predict the risk
of 30-day adverse cardiac events after percutaneous intervention or bypass surgery.

Methods: EMR data of 5,184,565 records of 16,793 patients at a quaternary hospital between 2006 and 2016 were categorized
into static basic (eg, demographics), dynamic time-series (eg, laboratory values), and cardiac-specific data (eg, coronary
angiography). The data were randomly split into training, tuning, and testing setsin aratio of 3:1:1. Each model was evaluated
with 5-fold cross-validation and with an external EMR-based cohort at atertiary hospital. Logistic regression (LR), random forest
(RF), gradient boosting machine (GBM), and feedforward neural network (FNN) a gorithms were applied. The primary outcome
was 30-day mortality following invasive treatment.

Results: GBM showed the best performance with area under the receiver operating characteristic curve (AUROC) of 0.99; RF
had a similar AUROC of 0.98. AUROCs of FNN and LR were 0.96 and 0.93, respectively. GBM had the highest area under the
precision-recall curve (AUPRC) of 0.80, and the AUPRCs of RF, LR, and FNN were 0.73, 0.68, and 0.63, respectively. All
models showed low Brier scores of <0.1 aswell as highly fitted calibration plots, indicating a good fit of the ML -based models.
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On external validation, the GBM model demonstrated maximal performance with an AUROC of 0.90, while FNN had an AUROC
of 0.85. The AUROC:s of LR and RF were dlightly lower at 0.80 and 0.79, respectively. The AUPRCs of GBM, LR, and FNN
were similar at 0.47, 0.43, and 0.41, respectively, while that of RF was lower at 0.33. Among the categoriesin the GBM model,

time-series dynamic data demonstrated a high AUROC of >0.95,
Conclusions: Exploiting the diverse fields of the EMR data set,

contributing majorly to the excellent results.
the ML -based 30-day adverse cardiac event prediction models

demonstrated outstanding results, and the applied framework could be generalized for various health care prediction models.

(JMIR Med I nform 2022;10(5):€26801) doi: 10.2196/26801
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Introduction

Cardiovascular disease is the leading cause of mortality
throughout the world and is associated with various morbidities
[1]. Invasive treatment, including percutaneous coronary
intervention (PCI) and coronary artery bypass grafting (CABG)
surgery, is commonly required in patients with acute coronary
syndrome and stable angina. Owing to the potential risk
associated with inevitable invasiveness and the individual
comorbidities, risk stratification and identification of high-risk
patientsiswarranted [2,3]. Accordingly, several risk prediction
models for adverse events after invasive coronary treatment
have been proposed [4-7]. However, their useis limited owing
to inadequate predictive ability, low generaizability, and lack
of individualized risk assessment, as they have been devel oped
using limited number of variablesin select cohorts.

In recent times, with an increase in the availability of large
volume of electronic medical record (EMR) data, there hasbeen
agradual interest in using data-driven approaches to construct
efficient tools for risk prediction [8,9]. In addition, machine
learning (ML) algorithmsare gaining popularity asan alternative
approach for risk prediction to deal with complex EMR data
and to overcomethe limitations of previous models[10]. Recent
work on models based on EMR data for predicting adverse
events suggests that incorporation of ML might alow more
accurate risk prediction [11-14]. However, validated robust
modelsaretill limited, asthe previous model s used prespecified
variables based on traditional risk factors mainly comprising
structural data or lacked proper externa validation. Thus, this
study aimed to develop ML models by utilizing diverse fields
of both structured and unstructured EMR data to predict the
risk of 30-day major adverse cardiac events (MACE), including
mortality, after PCl or CABG and to validate the model in a
different cohort.

Methods

Database

Development and Internal Validation Set

Thedatafor thisstudy were obtained from Asan Medical Center,
which provides quaternary medical care for people in South
Korea. It has 55 departments—approximately 2700 beds—and
>8000 employess; it sees approximately 3,000,000 outpatient
clinic visits and 900,000 admissions per year. The Asan
biomedical research environment isthe data warehouse system

https://medinform.jmir.org/2022/5/€26801
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of Asan Medical Center, which has deidentified information of
4 million patients and is updated every 3 days [15]. The Asan
heart registry was constructed from diverse fields of structured
or unstructured EMR data extracted from the Asan biomedical
research environment database by using structured query
language. The registry comprised 571,157 patients, and the
inclusion criteriawere inpatient admissions or outpatient visits
in the cardiology, cardiac surgery, or emergency department
for established or suspected heart diseases between January 1,
2000 and November 30, 2016.

External Validation Set

For external validation, we used data obtained from the EMRs
of Ulsan University Hospital, which is a tertiary hospital with
approximately 900 beds that caters to a metropolitan city and
its surrounding suburban area in the southern region of South
Korea. The patients demographics, medical practice, and
operating systems differ between the 2 hospital's, which would
allow evaluation of the model in a different population.

Data Processing

The overall process for building the EMR-based database is
presented in Figure S1 of Multimedia Appendix 1. Briefly, first,
we collected the anonymized records of 748,474 patients who
had visited the Asan Medical Center or Ulsan University
Hospital because of cardiovascular diseases. Second, we set
clinically plausible criteria to remove errors and duplications.
Third, we integrated unstructured data such as readings of
medical examinationswith structured data sourced from EMRs
to create the CardioNet [16]. We subsequently performed text
mining to structuralize the significant variables associated with
cardiovascular diseases because most results of the principal
cardiovascular diseases—+elated medical examinations are
free-text readings. The basic method of text mining applied to
unstructured data can be described in 3 steps. First, we created
a metatable consisting of the main variables and conditions of
extraction by the clinician. Second, we divided the readings
into 3 frames: text, tabular, and others, and defined the extraction
rules for each frame. We took into consideration the structure
of the original data and the location of variables set in the
metatable and defined rules by using avariety of operators and
regular expressions. Third, the new tables were built by
extracting the keywords and features from the original data.
The values of the keywords were based on rules defined in the
previous step. Additionally, to ensure interoperability for
convergent multicenter research, we standardized the data by
using several codesthat correspond to the common datamodel.
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Finally, we created the descriptive table (ie, dictionary of the
CardioNet) to simplify access and utilization of data for
clinicians and engineers and continuously validated the data to
ensurereliability [16]. Most structured datawere obtained using
classic preprocessing technologies, including data cleansing,
dataintegration, datatransformation, datareduction, and privacy
protection. Finally, we extracted the following structured data
elements. demographics, administrative information, medical
history and comorbidities, diagnoses, vital signs, laboratory
values, and medications. Unstructured data included the
following elements: reports of cardiac-specific studies such as
thallium-201 single-photon emission computed tomography
(SPECT), coronary angiography, and physicians' procedure
notes for PCI or CABG. In this study, we found that with the
algorithms developed, we classified the data into 3 categories:
basic static data (demographics, administration data, medical
history, comorbidities, and diagnosis), dynamic time-series data

Kwon et d

(medications, laboratory values, and vital signs), and
disease-specific data (electrocardiography, treadmill test,
echocardiography, coronary computerized tomography,
thallium-201 SPECT, coronary angiography, PCl, and CABG)
(seeFigure 1). The details of the variablesin each category are
presented in Table S1 in Multimedia Appendix 1 [16]. With
respect to the data of the procedures or operation, the variables
only confined to the index PCI or CABG were used for this
investigation. Data collection and preparation were approved
by the Asan Medical Center and Ulsan University Hospital
institutional review board, and the requirement for informed
consent was waived. Patient deidentification was performed in
line with the Health Insurance Portability and Accountability
Act. This report adheres to the transparent reporting of a
multivariable prediction model for individual prognosis or
diagnosis reporting guideline [17].

Figure 1. Study diagram. Database, machine learning, and validation. AMC: Asan Medical Center; CABG: coronary artery bypass grafting; EMR:
electronic medical record; ML: machine learning; PCI: percutaneous coronary intervention.
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Study Population and Outcome

A cohort of 16,793 patientswho had undergone PCI (n=12,519)
or CABG (n=4274) between January 1, 2006 and November
30, 2016 was identified in the Asan heart registry. As the
majority of patients underwent the index PCI or CABG within
1 year after their first generation of datain EMR, wefairly used
1-year accumulated data prior to index proceduresfor the entire
population. Thetotal number of independent recordsin the data
set was 5,184,565, derived from 3364 features. Figure 2
illustrates an example of the patients treated with PCI,
encompassing the serial and various EMR data. In the external
validation cohort from Ulsan University Hospital, 4159 patients
comprising 3950 who underwent PCI and 209 who underwent
CABG between January 1, 2006 and November 30, 2016 were

https://medinform.jmir.org/2022/5/€26801
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included. The data set consisted of 1,482,816 recordsfrom 2333
features. Mortality was the primary endpoint, captured through
documentation of mortality in the EMR based upon National
Health Insuranceinformation. MACE asthe secondary endpoint
referred to a composite of al-cause mortality, including
myocardial infarction, stroke, or repeat revascularization at 30
days following the index invasive treatment. Myocardial
infarction, stroke, and repeat revascularization were initially
identified from source documents, including diagnosis,
electrocardiography, laboratory tests, procedura notes, and
results of imaging studies such as magnetic resonance imaging
or computerized tomography. Subsequently, the events were
rigoroudly adjudicated by cardiol ogists or heurol ogists according
to the current definitions [18].
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Figure 2. An example case incorporating serial and various electronic medical record data to predict adverse events. BP: blood pressure; BSA: body
surface area; BUN: blood urea nitrogen; CAG: coronary angiography; CK-MB: creatine kinase myocardial band; Dia: diameter; EDD: end diastolic
dimension; EF: gection fraction; EKG: electrocardiogram; ESD: end systolic dimension; FFR: fractional flow rate; GLS: global longitudinal strain;
Hb: hemoglobin; HR: heart rate; LDL: low-density lipoprotein; Leng: length; Lp(a): lipoprotein A; LV: left ventricle; PCl: percutaneous coronary
intervention; pLAD: proximal left anterior descending; Pr: pressure; RR: respiratory rate.
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ML Algorithmsand Statistics

We only used datagenerated until index PCI or CABG, whereas
data obtained after the index procedure were excluded for
developing ML algorithms (see Figure 2). Three approaches
were applied to preprocess data generated until index

https://medinform.jmir.org/2022/5/€26801
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procedures: (1) history-aware encoding isused to reflect whether
clinical events had occurred before a certain period of time, (2)
one-hot encoding is used to express the existence and
missingness of variables, and (3) characteristics of time-series
variables were captured by using descriptive statistics (eg,
minimum, maximum, average, and count). The detailed
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explanation regarding time-series data analysis is shown in
Multimedia Appendix 2. The study population was randomly
split into training, tuning, and validation cohorts in a ratio of
3:1:1. Four commonly used classes of ML agorithms were
used: logistic regression (LR), random forest (RF), gradient
boosting machine (GBM), and feedforward neural network
(FNN). LR transforms output by using a logistic sigmoid
function. RF isan extension of the bagging method, asit utilizes
both bagging and feature randomness to create an uncorrelated
forest of decision trees and decide output by majority voting
using multiple decision trees. GBM issimilar to RF, except that
they build 1 tree at a time and combine the voting resultsin a
gradual, additive, and sequential manner. FNN isaclassic type
of deep learning model that uses hierarchical layers of
abstraction and computes the output by using a combination of
multiple nodes with nonlinear activation.

The hyperparametersfor each model were determined using an
empirical search and 5-fold cross-validation on the study

Table 1. Hyperparameters and those values of each model.

Kwon et d

population to determine the values that had the best performance
(seeFigure 1). Hyperparameters and their valuesin each model
are summarized in Table 1. The optimal values of the tuning
parameterswereidentified based on thetesting accuracy values
that were calculated for each fold and averaged. Externa
validation of the developed prediction models was performed
inacohort from adifferent hospital. In addition, we determined
the performance of each data category and checked the
cumulative performance with combinations of multiple
information categories, adding each category one by one to
identify the best performance. Development of risk algorithms
in the training cohort and application of the risk algorithms to
the validation cohort was completed using Python with library
packages “ Keras with Tensorflow backend.” To investigate the
important variables in each developed model, we used the
permutation feature importance algorithm for LR and FNN,
Gini impurity for RF, and frequency of variables for GBM.

Model, hyperparameter Vaue
Logistic regression
Solver liblinear
Maximal iteration 100
Random forest
Number of estimators 100
Maximal depth 10
Gradient boosting machine
Objective binary
Estimators 150

Boosting type

Number of leaves

Maximal depth

Learning rate

Minimal number of datain child
Feedforward neural network

Learning rate

Hidden layer units

Batch size

Epoch

Dropout rate

Optimizer

Gradient boosting decision tree
15

-1 (no limit)

0.025

90

0.0002
(64,64)

64

40

05

Adam (betal=.5, beta2=999)

The descriptive characteristics of the study population are
provided as number (%) and mean (SD) for categorical and
continuous variables, respectively. The discrimination
performance of each model was evaluated based on the area
under thereceiver operating characteristic curve (AUROC) and
areaunder the precision-recall curve (AUPRC). In addition, we
evaluated model calibration (ie, the model’s ability to accurately
predict the observed absolute risk) by using the Brier score,

https://medinform.jmir.org/2022/5/€26801

where 0 would indicate perfect calibration, and generated the
calibration plots. A 2-sided P value <.05 was considered
indicative of statistical significance. We did not perform any
imputation of the missing numerical values, as explicit
imputation of missing values does not always provide consi stent
improvements in predictive models based on electronic health
records [19,20]. Because of inevitable differences in the
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characteristics and amounts of data between cohorts, we used
binary indicators of missingness on external validation [21].

Results

Baseline Characteristics and Event Rates

The basdline characteristics of the population in the development
and internal validation groups are listed in Table 2. The mean
patient age was 62.7 (SD 10.2) years; of the 16,793 patients,
12,465 (74.2%) were males and 6084 (36.2%) had diabetes,
while 243 (1.4%) had a history of congestive heart failure.
Chronic renal insufficiency, chronic lung disease, and chronic

Kwon et d

liver disease were reported in 566 (3.4%), 386 (2.3%), and 487
(2.9%) patients, respectively. Approximately two-thirds of the
patients were admitted via outpatient clinicswhiletheremaining
patients were admitted via the emergency department. Among
16,793 patientsin our developmental cohort, MACE at 30 days
occurred in 1500 (8.9%) patients, including 178 cases (1.1%)
of mortality, 1159 (6.9%) cases of myocardial infarction, 124
(7.4%) cases of stroke, and 180 (1.1%) cases of repeat
revascul arization. Among atotal of 4159 patientsin the external
validation cohort, there were 75 (1.8%) mortalities at 30 days
follow-up; the details of the patients characteristics in the
external validation cohort are shown in Table 3.

Table 2. Baselineclinical characteristics of the development and internal validation set.

Characteristics

Total population (N=16,793) Percutaneous coronary

Development and internal validation set

Coronary artery bypass

intervention (n=12,519) grafting surgery (n=4274)

Age (years), mean (SD) 62.7 (10.2)
Male sex, n (%) 12,465 (74.2)
Body mass index (kg/m?), mean (SD) 24931
Hypertension, n (%) 10,697 (63.7)
Diabetes mellitus, n (%) 6084 (36.2)
Hyperlipidemia, n (%) 9200 (54.8)
Current cigarette smoker, n (%) 3009 (17.9)
Prior myocardial infarction, n (%) 568 (3.4)
Previous cerebrovascular accident, n (%) 596 (3.5)
History of congestive heart failure, n (%) 243(1.4)
Peripheral vascular disease, n (%) 278 (1.7)
Valvular heart disease, n (%) 387(2.3)
Chronic renal insufficiency, n (%) 566 (3.4)
Chronic lung disease, n (%) 386 (2.3)
Chronic liver disease, n (%) 487 (2.9)
History of malignancy, n (%) 1019 (6.1)
Presentation with acute myocardial infarction, n (%) 3032 (18.1)
Admission via emergency department, n (%) 5054 (30.1)
Admission via outpatient clinics, n (%) 11,739 (69.9)

62.2 (10.5) 64.1(9.4)
9312 (74.4) 3153 (73.8)
25.0(3.0) 24.6(3.1)
7758 (62) 2939 (68.8)
4127 (33) 1957 (45.8)
6932 (55.4) 2268 (53.1)
2424 (19.4) 585 (13.7)
394 (3.1) 174 (4.1)
420 (3.4) 176 (4.1)
132 (1.1) 111 (2.6)
199 (1.6) 79 (1.8)
106 (0.8) 281 (6.6)
363 (2.9) 203 (4.7)
306 (2.4) 80 (1.9)
396 (3.2) 91 (2.1)
816 (6.5) 203 (4.7)
2509 (20) 523 (12.2)
3941 (31.5) 1113 (26)
8578 (68.5) 3161 (74)
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Table 3. Baselineclinical characteristics of the external validation set.

Kwon et d

Characteristics

External validation set

Total population (n=4159)  Percutaneous coronary Coronary artery bypass
intervention (n=3950) grafting surgery (n=209)

Age (years), mean (SD) 61.7 (10.9) 61.6 (9.4) 62.7 (10.9)
Male sex, n (%) 2913 (70) 2779 (70.3) 134 (64.1)
Body mass index (kg/m?), mean (SD) 24.0 (5.4) 24.0(5.2) 23.8(6.4)
Hypertension, n (%) 1947 (46.8) 1851 (46.8) 96 (45.9)
Diabetes mellitus, n (%) 1278 (30.7) 1195 (30.2) 83(39.7)
Hyperlipidemia, n (%) 1154 (27.7) 1098 (27.7) 56 (26.7)
Current cigarette smoker, n (%) 1285 (30.9) 1234 (31.2) 51 (24.4)
Prior myocardial infarction, n (%) 280 (6.7) 265 (6.7) 15(7.1)
Previous cerebrovascular accident, n (%) 233 (5.6) 220 (5.5) 13(6.2)
History of congestive heart failure, n (%) 76 (1.8) 71(1.7) 5(2.3)
Peripheral vascular disease, n (%) 49 (1.1) 45(1.1) 4(1.9
Valvular heart disease, n (%) 27 (0.6) 18 (0.4) 9(4.3)
Chronic renal insufficiency, n (%) 130 (3.1) 123 (3.1) 7(3.3)
Chronic lung disease, n (%) 146 (3.5) 143 (3.6) 3(19
Chronic liver disease, n (%) 201 (4.8) 193 (4.8) 8(3.8)
History of malignancy, n (%) 192 (4.6) 183 (4.6) 9(4.3)
Presentation with acute myocardial infarction, n (%) 1357 (32.6) 1314 (33.2) 43 (20.5)
Admission via emergency department, n (%) 1706 (41) 1634 (41.3) 72 (34.4)
Admission via outpatient clinics, n (%) 2453 (58.9) 2316 (58.6) 137 (65.5)

Performancein Predicting 30-Day Mortality

Figure 3 demonstrates the discrimination and calibration results
of 5-fold cross-validation obtained by evaluation with each
technique. GBM showed the highest AUROC with a value of
0.99 (95% CI 0.97-0.99, P<.001) and RF showed similar
AUROC of 0.98 (95% CI 0.96-0.0.99, P<.001) (seeFigure 3A).
The AUROCs of FNN and LR were dlightly lower at 0.96 (95%

Cl 0.93-0.99, P<.001) and 0.93 (95% CI 0.87-0.99, P<.001),
respectively. GBM had the highest AUPRC with a value of
0.80, and AUPRCs of RF, LR, and FNN were 0.73, 0.68, and
0.63, respectively (see Figure 3B). Interms of model calibration,
all models showed low Brier scores of lessthan 0.1, indicating
an excellent fit of the ML-based models (see Figure 3C).
Cadlibration plotsfor each model also confirmed good agreement
between the estimated predicted risk and observed risk.

Figure 3. Five-fold cross-validation of performance of each machine model in predicting 30-day mortality after invasive treatment. A. Area under the
receiver-operator characteristic curve, B. Areaunder the precision-recall curve, and C. Calibration plot with Brier score.

A

On external validation using the data set of the Ulsan University
hospital, maximal predictive performance was observed with
GBM (AUROC 0.90, 95% CI 0.86-0.95; P<.001), followed by
FNN with AUROC of 0.85 (95% CI 0.81-0.92, P<.001) (see
Figure4A). LR and RF showed dlightly lower AUROCs of 0.80
(95% CI 0.73-0.87, P<.001) and 0.79 (95% CI 0.74-0.84,

https://medinform.jmir.org/2022/5/€26801

B o

P<.001), respectively. The AUPRCs of GBM, LR, and FNN
showed similar values of 0.47, 0.42, and 0.41, respectively;
however, that of RF was lower at 0.33 (see Figure 4B). All
models showed low Brier scores of <0.1, indicating a good fit
of the ML-based models (see Figure 4C).
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Figure4. External validation of performance of each machine model in predicting 30-day mortality after invasive treatment. A. Areaunder the receiver
operator characteristic curve, B. Areaunder the precision-recall curve, and C. Cdlibration plot with Brier score.

Figure 5A illustrates the predictive performance of each data
category in GBM, which showed the highest AUROC. Among
the individual categories, laboratory values demonstrated the
highest AUROC with a value of 0.98. Medications and vital
signs showed the second highest AUROCswith avalue of 0.95.
In contrast, static data such as diagnosis and comorbidities

N

I
raction of Posst

category, data, and medical history showed low AUROCSs of
<0.80. GBM using combinations of feature categories showed
progressive improvement in performance, while dynamic
time-series datawas gradually included on top of the basic static
data, after which subtle improvement was seen when adding
cardiac-specific data (see Figure 5B).

Figure5. Prediction performance of the gradient boosting machine model assessed by area under the receiver operator characteristic curves. A. Each
data category, B. Combination of data categories. AUROC: area under the receiver operator characteristic curve.
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Performancein Predicting MACE

The performance of the ML models for predicting 30-day
MACE is demonstrated in Table 4. The maximal predictive
performance was observed with GBM (AUROC 0.88, 95% ClI
0.85-0.90; P<.001). RF and FNN showed asimilar performance
with AUROCs of 0.85 (95% CI 0.83-0.88, P<.001) and 0.85
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(95% CI 0.83-0.88, P<.001), respectively, while the AUROC
of the LR was lower at 0.83 (95% Cl 0.82-0.88, P<.001). In
terms of the AUPRC, GBM showed the highest value of 0.50,
followed by FNN, RF, and LR with values of 0.41, 0.39, and
0.37, respectively. All models showed low Brier scores of less
than 0.1, indicating a good fit of the ML-based models.

Table 4. Performance of machine learning models for predicting major adverse cardiac events.

Model Areaunder thereceiver operating character- 95% ClI P vaue Areaunder theprecision-re- Brier score
istic curve call curve

Logistic regression 0.83 0.82-0.88 <.001 0.37 0.06

Random forest 0.85 0.83-0.88 <.001 0.39 0.06

Gradient boosting machine  0.88 0.85-0.90 <.001 0.50 0.05

Feedforward neural network  0.85 0.83-0.88 <.001 041 0.06
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Calculating the Importance of Feature Variablesin
Mortality-Prediction M odels

The rank of important variables in the models for predicting
30-day mortality is presented in Table 5. In LR, systolic blood
pressure was identified as the most important variable. RF

Table 5. Top 10 important variables of each machine learning model.

Kwon et d

indicated serum aspartate aminotransferase asimportant, while
GBM and FNN indicated serum protein and serum phosphorus
important, respectively. Overal, vital signs and several
laboratory values such as arteria blood pH, O,, and CO,
concentration were mainly identified as important variables
across the different ML methods.

Rank  Logistic regression Random forest Gradient boosting machine Feedforward neural network
1 Systolic blood pressure Serum aspartate aminotransferase Serum protein Serum phosphorus
2 Diastolic blood pressure Paco2 Age Pacoz
3 Respiratory rate Arteria pH Serum phosphorus Hemoglobin
4 Pacop Paoz Systolic blood pressure Systolic blood pressure
5 Arterial pH Serum alanine aminotransferase  Platelet Normal sinus rhythm in electrocar-
diogram
6 Pago Total bilirubin Serum aspartate aminotransferase  Estimated glomerular filtration rate
7 Aspartate aminotransferase Cregtinekinase-myocardial band Panp Serum glucose
8 Pulse rate White blood cell Serum albumin Platel et
9 Blood urea nitrogen Serum sodium Pulse rate Pago
10 Serum phosphorus Platel et Activated partial thromboplastin ~ Arteria pH
time
Discussion the potential applicability. This study revealed encouraging

Principal Findings

This was a retrospective study that applied ML to structured
and unstructured patient data from the EMR of a large
quaternary hospital to develop arisk prediction model for 30-day
adverse cardiac eventsin patientswho underwent PCl or CABG.
We comparatively evaluated the performance of several models;
all models demonstrated outstanding results with AUROCs
morethan 0.90 with excellent calibration. On externa validation,
the performance in predicting 30-day mortality decreased;
however, it remained favorable. Dynamic time-series data,
including laboratory values, vital signs, and medications,
demonstrated the best performances, which mainly contributed
to outstanding performance of the models.

Traditiona risk prediction models are derived from a small set
of selected risk factors based on the significant univariate
relationship with the end point on LR, which might deteriorate
the predictive performance. Moreover, it is difficult to include
new and more discriminatory risk factors into the traditional
models, which limits their extension ability [12]. Advancesin
big data solutions alow for storage, management, and mining
of large volumes of structured and semistructured data such as
complex hedlth care data[22]. Along the emergence of big data,
ML provides an alternative approach to establish prediction
modeling that might address the current limitations. In this
context, we aimed to develop and validate ML modelsby using
longitudinal and heterogeneous data of various EM R parameters
to predict mortality or MACE at 30 days after PCI or CABG.
In addition, we explored a general framework for constructing
models by categorizing the data set into static basic data,
dynamic time-series data, and disease-specific datato examine

https://medinform.jmir.org/2022/5/€26801

results, which indicate that ML-based models for predicting
adverse events after invasive coronary treatment might be
feasible and applicable asaclinical decision supporting system
in hospitals with fully implemented EMR protocols.
Furthermore, this approach can be extended to various disease
entities or clinical events for improvement in quality of care
and patient outcomes.

In this study, we found that the algorithms developed from a
large single-center EMR database were reliable for use in the
population of a different hospital, albeit with a relatively low
performance. Of note, different hospital s serve dissimilar patient
populations and have divergent clinical practice patterns,
therefore, the EMR data reflecting the real-world clinical
practice in each hospital has its own distinct characteristics.
Hence, asomewhat |ow performance of the proposed prediction
modelsin adifferent cohort can be anticipated. Ideally, amodel
that achieves the highest possible level of generalizability is
desirable. However, there have been concerns about whether a
model developed at 1 center can be applied to another center
[9]. In medicine, there are too many practice patterns and other
local idiosyncrasies that make learning a broadly applicable
model effectively difficult [23,24]. In respect that the ultimate
application of prediction models built with EMR data is
integration with the clinical decision support system for
personalized medicine, optimizing individual centers particular
prediction model may be moreimportant rather than extending
generalizability. Hence, although the devel oped algorithmsfrom
asingle-center EMR database can be used with the database of
adifferent hospital, individual prediction models based on the
EMR dataof each single hospital would be preferablefor highly
optimized performance.
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Predictive modelswith EMR datafrequently rely on structured
data. However, given the volume and richness of data available
in unstructured clinical notes or reports, ML models might
benefit from leveraging text mining tools to enhance the model
[22,25]. Hence, we text-mined various cardiac-specific data
such as image and functional studies and detailed information
about PCI and CABG, although the process required diverse
strategies and tasks. In this study, text-mined cardiac-specific
data showed a fair ability to predict 30-day mortality risk.
Although valuable, there are still some challenges in applying
text-mined data in ML, particularly owing to the vagueness,
impreci seness, and uncertain clinical information in EMR data
[12]. In contrast, utilizing structured data is simple if the
database and automated process system for extraction,
transformation, and loading of data are well-established.
Algorithms with only time-series dynamic data, which is the
typical large-volume structured data, outperformed and primarily
contributed to the excellent final results. Intuitively, itisbelieved
that the learning model will perform better if more data are
integrated into learning [26]. Our resultsindicate that using only
large amount of reliable structured data of EMR could offer an
opportunity to devel op proper risk prediction models. However,
although improvement in clinical data collection processes is
necessary, fundamentally, significant clinical information should
be recorded digitally in a cohesive and standardized manner in
the EMR system.

Limitations

Several limitations of this study should be noted. First, the
cardiovascular event rates, including mortality, might be
underestimated because events were captured only from a
single-center EMR database. Linking it with the national claim
data or health insurance data might possibly capture the events
more accurately. Second, although ease of interpretationisvital
for evaluation of the models [27,28], the black box nature of
ML makesit difficult to be used in health care. Hence, wetried

Kwon et d

to assess the importance of the variables through severa
experiments; however, there is still alack of “explainability”
of the prediction models. For ML methodsto be readily adopted
inreal-world clinical practice, they must beinterpretable without
compromising on accuracy [29]. Future works focusing on
developing explainable ML models are necessary to provide
tailored feedback to physicians. Third, other ML methods such
as recurrent neural networks, which have shown advantage in
leveraging the dynamic features, were not investigated in this
work; thisneedsto be explored in future studies[26,29]. Fourth,
although EMR datawithin 1 year beforeindex procedureswere
used for all populations, different EMR follow-up times prior
to index procedures were not taken into account to develop
models. Finally, we did not conduct external validation for
MACE. Because physician adjudication of myocardia
infarction, stroke, or repeat revascularization events is
resource-intensive and time-consuming in alarge-scaled record
cohort, comprehensive source reviews and final ascertainment
were substantially challenged. In order to expand the use of the
EMR-based ML approach, optimization for computerized
detection and adjudication of clinical outcomes will require
considerable investment of time and collaboration with
ingtitutional information technology and bioinformatics
professionals.

Conclusion

Exploiting the diverse parameters of EMR data sets, we
developed and validated ML models for predicting the 30-day
mortality risk following PCI or CABG. The ML agorithms
showed excellent performance, and the applied framework can
be generalized for various health care prediction models. This
study suggeststhat ML using the real-word clinical dataset can
provide a substantial method of developing risk prediction
models. Future studies are warranted to establish the clinica
effectiveness of this approach and real-time application at the
point of care.
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