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Abstract

Background: Sepsis is a severe condition associated with extensive morbidity and mortality worldwide. Pediatric, neonatal,
and maternal patients represent a considerable proportion of the sepsis burden. Identifying sepsis cases as early as possible is a
key pillar of sepsis management and has prompted the development of sepsis identification rules and algorithms that are embedded
in computerized clinical decision support (CCDS) systems.

Objective: This scoping review aimed to systematically describe studies reporting on the use and evaluation of CCDS systems
for the early detection of pediatric, neonatal, and maternal inpatients at risk of sepsis.

Methods: MEDLINE, Embase, CINAHL, Cochrane, Latin American and Caribbean Health Sciences Literature (LILACS),
Scopus, Web of Science, OpenGrey, ClinicalTrials.gov, and ProQuest Dissertations and Theses Global (PQDT) were searched
by using a search strategy that incorporated terms for sepsis, clinical decision support, and early detection. Title, abstract, and
full-text screening was performed by 2 independent reviewers, who consulted a third reviewer as needed. One reviewer performed
data charting with a sample of data. This was checked by a second reviewer and via discussions with the review team, as necessary.

Results: A total of 33 studies were included in this review—13 (39%) pediatric studies, 18 (55%) neonatal studies, and 2 (6%)
maternal studies. All studies were published after 2011, and 27 (82%) were published from 2017 onward. The most common
outcome investigated in pediatric studies was the accuracy of sepsis identification (9/13, 69%). Pediatric CCDS systems used
different combinations of 18 diverse clinical criteria to detect sepsis across the 13 identified studies. In neonatal studies, 78%
(14/18) of the studies investigated the Kaiser Permanente early-onset sepsis risk calculator. All studies investigated sepsis treatment
and management outcomes, with 83% (15/18) reporting on antibiotics-related outcomes. Usability and cost-related outcomes
were each reported in only 2 (6%) of the 31 pediatric or neonatal studies. Both studies on maternal populations were short
abstracts.

Conclusions: This review found limited research investigating CCDS systems to support the early detection of sepsis among
pediatric, neonatal, and maternal patients, despite the high burden of sepsis in these vulnerable populations. We have highlighted
the need for a consensus definition for pediatric and neonatal sepsis and the study of usability and cost-related outcomes as critical
areas for future research.

International Registered Report Identifier (IRRID): RR2-10.2196/24899
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Introduction

Sepsis Identification
Sepsis, redefined in adults in 2016 as “life-threatening organ
dysfunction caused by a dysregulated host response to infection”
[1], was associated with an estimated 11 million deaths
worldwide in 2017 [2]. Neonatal, pediatric, and obstetric
populations are particularly vulnerable to developing sepsis
[2-4].

Children aged <5 years accounted for approximately 40% of
the estimated 50 million people diagnosed with sepsis in 2017
[2]. Furthermore, a recent report indicated that children aged
<1 year have a considerably higher sepsis incidence rate
compared with other age groups in Australia [5]. An estimated
28 neonatal sepsis cases occur per 1000 live births, with an
associated mortality rate of 17.6% [4]. Survivors of pediatric
sepsis have a substantial reduction in health-related quality of
life compared with nonsepsis cases, with increased risk of
hospital readmissions, cognitive impairment, and physical
disability [6-9]. Similarly, surviving neonatal sepsis is associated
with both short- and long-term neurodevelopmental delay and
disability [10,11].

The most recent consensus definition of pediatric sepsis was
presented in 2005, applicable to children from full-term birth
to 18 years of age, and defined pediatric sepsis as modified
“systemic inflammatory response syndrome (SIRS) in the
presence of or as a result of suspected or proven infection” [12].
The definition of pediatric septic shock, a severe and often fatal
progression of sepsis, was refined by the 2020 Surviving Sepsis
Campaign guidelines to “severe infection leading to
cardiovascular dysfunction (including hypotension, need for
treatment with vasoactive medication, or impaired perfusion)”
[13]. There is currently no formal definition of sepsis distinct
to the neonatal population [14,15]; however, a recent systematic
review of randomized controlled trials found neonatal sepsis to
be most commonly defined by blood culture alone, followed
closely by blood culture combined with clinical signs [16].

In the maternal population, a consensus definition for maternal
sepsis was presented in 2017, defined as “organ dysfunction
resulting from infection during pregnancy, child-birth,
post-abortion, or post-partum period” [3]. The World Health
Organization Global Maternal Sepsis Study [17] found the ratio
of maternal infections in hospitalized women to be 70.4 (95%
CI 67.7-73.1) women per 1000 live births. Furthermore, in 2014,
a World Health Organization analysis indicated that 10.7% of
maternal deaths between 2003 and 2009 were associated with
sepsis [18]. Maternal sepsis also affects the health of the child
and has been associated with serious complications, such as
neonatal sepsis, spontaneous abortions, preterm births, and over
4.5 times the risk of death in the child [3,19,20].

Prompt initiation of treatment is critical for successful sepsis
management [21-23]. The earlier sepsis is detected, the faster

therapies can be initiated [24]. Therefore, early detection is key
to improving patient outcomes. However, pediatric, neonatal,
and maternal sepsis can be challenging to identify.
Age-dependent physiological norms contribute to vague or
nonspecific symptoms and extreme variation between patient
presentations, making it difficult for clinicians to distinguish
between benign conditions and more severe disease
[3,15,25-28]. Recently, clinical tools, often as part of associated
care bundles and clinical programs, have been developed to
facilitate improved sepsis recognition, organ dysfunction
assessment, and prediction of poor outcomes for pediatric (eg,
pediatric sequential organ failure assessment [29], pediatric
logistic organ dysfunction-2 score [30], and pediatric sepsis
score [31]), neonatal (eg, neonatal sequential organ failure
assessment [32]), and maternal sepsis (eg, modified obstetric
early warning score [33] and sepsis in obstetrics score [34]).
However, these tools typically rely on timely and regular vital
sign monitoring by clinical staff to ensure that deteriorating
patients are promptly detected [35,36].

CCDS Systems
The widespread implementation of clinical information systems
has allowed for sepsis recognition tools to be integrated into
computerized clinician decision support (CCDS) systems [37,38]
to assist clinical staff with decision-making [39]. In particular,
CCDS systems can be used to improve the early detection of
sepsis by monitoring patient data and automatically alerting
when a patient shows signs consistent with sepsis [36]. Over
the last 20 years, 2 types of CCDS systems have been developed:
knowledge-based CCDS using preprogrammed rules [39] and
adaptive systems using machine learning and artificial
intelligence techniques [40]. This review is focused only on
knowledge-based CCDS systems.

Research Questions and Aims
Despite the critical importance of sepsis detection, there is a
paucity of research on pediatric, neonatal, and maternal sepsis
recognition tools [14,15,17,37]. In this scoping review, we
mapped the available research investigating the use of
knowledge-based CCDS systems for the early detection of sepsis
in pediatric, neonatal, and maternal inpatients to provide an
overview of the field and identify knowledge gaps for future
research. Specifically, we aimed to (1) scope the study contexts,
designs, and research methods used; (2) summarize the study
outcomes investigated; and (3) map the range of CCDS system
designs and implementation features, such as the clinical criteria
for sepsis.

Methods

Overview
A protocol detailing the methodology of this scoping review
has been previously published [41]. This review follows the
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses Extension for Scoping Reviews)
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statement [42]. A completed PRISMA-ScR checklist can be
found in Multimedia Appendix 1.

Study Selection
To identify relevant studies, we used a broad 3-step strategy
[41], during which an experienced librarian was consulted. The
final search strategy combined terms for sepsis, clinical decision
support, and early detection, excluding terms for artificial
intelligence, and was used to search MEDLINE, Embase,
CINAHL, Cochrane, Latin American and Caribbean Health
Sciences Literature (LILACS), Scopus, Web of Science,
OpenGrey, ClinicalTrials.gov, and ProQuest Dissertations and
Theses Global (PQDT). The search strategy used for MEDLINE

is presented in Multimedia Appendix 2. The search was
conducted in September 2020.

The search results were exported to an EndNote X9 (Clarivate)
library. After deduplication, 2 reviewers (KA and JB)
independently performed title, abstract, and full-text screening
using the eligibility criteria reported in our protocol [41]. The
reference lists of relevant systematic reviews and salient papers
were manually searched by one reviewer (KA) with a second
reviewer (JB) double-checking their inclusion to identify any
further studies. Any disagreements were resolved through
discussion or consultation with a third reviewer (LL). A
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) diagram visually representing this process
is presented in Figure 1.

Figure 1. Flowchart of the search results and screening process. LILACS: Latin American and Caribbean Health Sciences Literature; PQDT: ProQuest
Dissertations and Theses.

A total of 2 reviewers (KA and JB) independently piloted title
and abstract screening with a random selection of 25 articles
and full-text screening with a random selection of 10 articles.
The results were discussed with a third reviewer (LL) to ensure
consensus before undertaking the full screen. The 2 reviewers
(KA and JB) had 100% agreement in the title and abstract pilot
screen, 97.6% agreement in title and abstract screening, 60%
agreement in the pilot full-text screen, and 77.4% agreement in
full-text screening. Both peer-reviewed journal articles and gray
literature studies, such as conference abstracts and theses, were
included in this review. The gray literature that was later
published as a peer-reviewed article was removed. Studies

reporting the same methods and study cohorts but measuring
different outcomes were included.

We chose to publish the results of this review in 2 manuscripts
separated by patients’age, given the distinct sepsis presentations
and pathophysiology of pediatric, neonatal, and maternal patients
compared with adults [3,28,43]. The results of the review
investigating adult CCDS systems have been published
previously [44].

Data Charting
The form used for data charting was designed using Microsoft
Access based on the data charting form previously used for
adult studies [44]. The original version was refined based on
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sample data extracted from 2 pediatric, 2 neonatal, and 1
maternal study. The remaining studies were charted by a single
reviewer (KA), with a sample of studies checked by a second
reviewer (JB), and ongoing consultation with a third reviewer
(LL). We accepted any definition of the charted items, as
detailed in the studies.

The final form abstracted data based on all 3 aims and included
all components, as listed in our protocol [41], with some minor
adjustments, as presented in Multimedia Appendix 3 [45-51].
The outcomes listed comprised (1) outcomes reported in the
aims, methods, and results and (2) outcomes from the study
sections that met our inclusion criteria [41]. The following were
excluded: (1) outcomes mentioned in the methods or
introduction but not in the results; (2) analysis of demographic
or clinical features not specifically identifying the performance
of the alert, unless they were the only outcome or the main
outcome reported; (3) outcomes not discussed in the aims or
methods and not included in the main results tables; and (4)
balancing and process outcome measures. We distinguished
live CCDS as systems that were implemented and actively
alerting and silent CCDS as systems that were implemented
and running with alerts muted.

Analyzing and Reporting the Results
The abstracted data were analyzed through a narrative review,
with accompanying statistical summaries organized by
population group and aims. Tables were created using frequency
counts and percentages to summarize the data and produce
graphical figures where appropriate. The results are presented
separately for the journal articles and conference abstracts.

The charted data demonstrated substantial diversity; hence,
individual categories were grouped to allow for meaningful
analysis. We have included a breakdown of what is included in
each group in Multimedia Appendix 4.

Ethics Approval
This scoping review used data collected from published studies
(including publicly available gray literature). No individual
patient was involved, and only aggregate-level data were
presented; hence, ethical approval or consent to participate was
not required.

Results

Study Characteristics
A database search returned 22,190 results. After deduplication,
12,139 studies were included for title and abstract screening.
The full texts of 368 articles were screened, and 146 studies
were identified for inclusion in the review. Manual searching
identified a further 11 records. Of the 157 included studies, 33
(21%) [52-84] investigated pediatric, neonatal, and maternal
populations. In comparison, 124 (79%) studies examined adult
or unspecified age (assumed adult) inpatient populations (Figure
1). Thus, pediatric, neonatal, and maternal studies only
represented 8.3% (13/157), 11.5% (18/157), and 1.3% (2/157)

of the total studies, respectively. This process is visually
presented in a PRISMA flowchart, as shown in Figure 1. A table
detailing the main characteristics of the 33 included studies is
presented in Multimedia Appendix 5 [52-84].

Pediatric Studies
Of the 13 studies investigating pediatric CCDS systems, 7 (54%)
were journal articles and 6 (46%) were conference abstracts
(Table 1). All studies were published in 2012 or later, with most
journal articles (6/7, 86%) published after 2016 (Figure 2). Of
the 13 studies, 11 (85%) were conducted in the United States,
whereas the remaining 2 (15%) studies did not specify in which
country they were conducted [64,73] (Multimedia Appendix
6). Of the 13 studies, 12 (92%) were conducted in children’s
hospitals, whereas the remaining study [58] was conducted at
a general hospital. All studies used quantitative methods, with
the principal study design split between single cohort and
before-after studies (Table 1).

The most common outcomes investigated were patient outcomes
and sepsis treatment and management outcomes (Figure 3).
Only 1 (8%) conference abstract [58] investigated an outcome
related to the CCDS system usability, and none of the studies
investigated pediatric CCDS-related cost outcomes (Figure 3).
The most commonly investigated patient outcome was sepsis
identification (9/13, 69%; Table 1). Pediatric CCDS systems
were compared with the gold standard to measure the extent to
which they identified sepsis. The gold standard definition used
to determine true sepsis cases differed between studies, with 13
different definitions used to define sepsis across 9 studies (Table
1). Similarly, the method used to identify gold standard cases
varied across studies: 38% (5/13) performed a chart review, 8%
(1/13) prospectively screened patients, 8% (1/13) applied a
manual screening tool, 8% (1/13) performed both a chart review
and screened patients, and 8% (1/13) did not specify.

The main characteristics of the investigated pediatric CCDS
systems are presented in Table 2. Most commonly, pediatric
CCDS systems were live (10/13, 77%), homegrown (11/13,
85%), alerted via the electronic health record (6/13, 46%), and
responded to by nurses (6/13, 46%) and other clinicians (5/13,
38%; Table 2).

The criteria used by the CCDS systems to identify sepsis cases
are summarized in Table 3. In general, a diverse range of criteria
was used to identify suspected sepsis cases, with 18 clinical
criteria used across 9 pediatric CCDS systems in 8 studies
included in this review. The remaining 5 pediatric studies
[73,74,80,82,83], all conference abstracts, did not specify the
CCDS system criteria used for sepsis case identification and
were not included in Table 3. A total of 2 particular systems
appear to be the subject of more than one study: the first in the
studies by Dewan et al [61] and Vidrine et al [81] and the second
in the studies by Stinson et al [77] and Viteri et al [82]. One
journal article [64] is counted twice in Table 3, as it contains 2
separate electronic CCDS systems with different criteria: one
with automated continuous screening and the other with
clinician-initiated screening.
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Table 1. Context and outcome characteristics for pediatric studies.

TotalaNumber of studies by publicationStudy characteristics

Conference abstractsJournal articles

1367Subtotal, n

Principal study type, n (%)

7 (54)4 (67)3 (43)Single cohort

6 (46)2 (33)4 (57)Before-after

Setting, n (%)

2 (15)2 (33)0 (0)Hospital wideb

5 (38)1 (17)4 (57)Emergency department

2 (15)0 (0)2 (29)Intensive care unit

4 (31)3 (50)1 (14)Inpatient units

Number of participants, n (%)

3 (23)2 (33)1 (14)≤100

3 (23)2 (33)1 (14)101-10,000

3 (23)1 (17)2 (29)10,001-100,000

2 (15)0 (0)2 (29)>100,000

2 (15)1 (17)1 (14)Unspecified

Funding, n (%)

2 (15)0 (0)2 (29)Yes (noncommercial)

2 (15)0 (0)2 (29)No

9 (69)6 (100)3 (43)Unspecified

Outcomes, n (%)

Patient outcomes

9 (69)4 (67)5 (71)Sepsis identification

Gold standard definitionc

2 (15)0 (0)2 (29)Goldstein et al [12]

1 (8)0 (0)1 (14)American Academy of Pediatrics Sepsis Collaborative tool [85]

5 (38)2 (33)3 (43)Clinician discretion

1 (8)0 (0)1 (14)Improving Pediatric Sepsis Outcomes definition [86]

1 (8)0 (0)1 (14)International Classification of Diseases codes

3 (23)2 (33)1 (14)Not specified

5 (38)1 (17)4 (57)Other

Sepsis treatment or management, n (%)

4 (31)1 (17)3 (43)Timeliness of alert or intervention

7 (54)1 (17)6 (86)Other

Usability, n (%)

1 (8)1 (17)0 (0)Satisfaction

aThe percentages were calculated from the number of pediatric studies (n=13). As some studies reported multiple outcomes for each category, there
were more than 13 outcomes in some categories, and therefore, the percentages add to more than 100%.
bIf the study setting was not explicitly stated, it was assumed to be hospital wide.
cSome studies have used multiple definitions of sepsis as part of their gold standard.
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Figure 2. Studies investigating neonatal and pediatric computerized clinician decision support systems by year, population, and publication type.

Figure 3. Outcome categories reported by studies by publication type and population.
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Table 2. Computerized clinical decision support characteristics in pediatric studies.

TotalbNumber of studies by publicationCCDSa characteristics

Conference abstractsJournal articles

1367Subtotal, n

CCDS type, n (%)

11 (85)5 (83)6 (86)Homegrownc

1 (8)1 (17)0 (0)Commercial, n (%)

1 (8)1 (17)0 (0)Epic monitor

1 (8)0 (0)1 (14)Unspecified

Silent or lived, n (%)

10 (77)5 (83)5 (71)Live

2 (15)1 (17)1 (14)Silent

1 (8)0 (0)1 (14)Both (pre or post)

Related interventions, n (%)

7 (54)5 (83)2 (29)None

5 (38)1 (17)4 (57)Response team

4 (31)1 (17)3 (43)Education and information resources

4 (31)1 (17)3 (43)Order sets

2 (15)1 (17)1 (14)Sepsis protocol

3 (23)1 (17)2 (29)Other

Responding personnel, n (%)

6 (46)0 (0)6 (86)Nurses

5 (38)2 (33)3 (43)Other clinicians

2 (15)2 (33)0 (0)Response team

3 (23)3 (50)0 (0)Not specified

Alert delivery, n (%)

6 (46)0 (0)6 (86)Electronic health record

1 (8)0 (0)1 (14)Emergency department tracking board

6 (46)6 (100)0 (0)Not specified

aCCDS: computerized clinical decision support.
bThe percentages were calculated from the number of pediatric studies (n=13). As some studies reported multiple characteristics for each category,
there were more than 13 characteristics in some categories; therefore, the percentages add to more than 100%.
cHomegrown CCDS systems are defined as CCDS systems that have been designed by the institution implementing them, rather than commercially
available systems [41].
dA live CCDS system is a system that is implemented and being used by clinicians in real time during the study. Silent systems are systems that have
been implemented but do not alert clinicians during the study and thus do not influence treatment.
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Table 3. Clinical criteria used by pediatric computerized clinical decision support (CCDS) systems for sepsis identification.

Study

Total, n

(%b)

Coffman et

al, 2018a

[58]

Vidrine et
al, 2020
[81]

Stinson et
al, 2019
[77]

Lloyd et
al, 2018
[71]

Eisenberg et
al, 2021 [64]
(automated)

Eisenberg et
al, 2021 [64]
(clinician-
initiated)

Dewan et
al, 2020
[61]

Cruz et
al, 2012
[59]

Balamuth et
al, 2017 [55]

9 (69)✓✓✓✓✓✓✓✓✓Temperature

7 (54)✓✓✓✓✓✓✓Capillary refill or
perfusion

7 (54)✓✓✓✓✓✓✓Mental status

6 (46)✓✓✓✓✓✓Heart rate

6 (46)✓✓✓✓✓✓Hypotension

5 (38)✓✓✓✓✓High-risk patient

5 (38)✓✓✓✓✓Pulse assessment

5 (38)✓✓✓✓✓Skin assessment

4 (31)✓✓✓✓Respiratory rate

3 (23)✓✓✓Infection concern,
change in clinical or
sepsis risk

2 (15)✓✓Blood culture order

1 (8)✓Leukocyte count

1 (8)✓Cardiac organ dys-
function

1 (8)✓Noncardiac organ
dysfunction

1 (8)✓Change in Pediatric
Early Warning Score

1 (8)✓Family concern

1 (8)✓Vital sign change

1 (8)✓Patient risk change

aThis study is a conference abstract, and the other 8 studies are journal articles.
bThe percentages were calculated from the number of pediatric studies (n=13).

Neonatal Studies
Of the 18 articles investigating neonatal CCDS systems, 14
(78%) were journal articles and 4 (22%) were conference
abstracts. All studies were published in 2015 or later, with most
published in 2018 (n=9; Figure 2). Overall, 61% (11/18) of the
studies were conducted in the United States, 11% (2/18) were
conducted in the Netherlands, 11% (2/18) did not specify
location, and 1 (6%) study each was set in Australia, Israel, and
the United Kingdom (Multimedia Appendix 6). All neonatal
studies used quantitative methods to investigate the CCDS
systems. A total of 89% (16/18) of studies were single site, with
the remaining 11% (2/18) of studies involving 4 [66] and 2 sites
[69]. The gestational age range of neonates included in these

studies was quite diverse, with 35 weeks and older being the
most common inclusion threshold (Table 4).

The most common outcome used to investigate neonatal CCDS
systems was sepsis treatment and management outcomes,
followed by patient outcomes (Figure 3; Table 4). CCDS-related
usability and cost outcomes were only investigated by 1 and 2
studies, respectively [53,56,66] (Figure 3; Table 4). Of the sepsis
treatment and management outcomes, antibiotics-related
outcomes were reported most frequently (15/18, 83%; Table
4). Table 5 reports the main characteristics of the neonatal CCDS
systems. Notably, most studies investigated early-onset sepsis
(15/18, 83%) using the neonatal early-onset sepsis risk calculator
developed by the Kaiser Permanente team [87-89] (14/18, 78%).
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Table 4. Context and outcome characteristics in neonatal studies.

TotalaNumber of studies by publicationStudy characteristics

Conference abstractsJournal articles

18414Subtotal, n

Principal study type, n (%)

6 (33)3 (75)3 (21)Single cohort

10 (56)1 (25)9 (64)Before-after

2 (11)0 (0)2 (14)Interrupted time series

Setting, n (%)

6 (33)2 (50)4 (29)Hospital wideb

9 (50)2 (50)7 (50)Nursery

3 (17)0 (0)3 (21)ICUc

Number of participants, n (%)

1 (6)1 (25)0 (0)≤100

6 (33)1 (25)5 (36)101-1000

6 (33)0 (0)6 (43)1001-10,000

2 (11)0 (0)2 (14)>10,001

3 (17)2 (50)1 (7)Unspecified

Age of included neonates, n (%)

1 (6)0 (0)1 (7)<33 weeks gestation

4 (22)1 (25)3 (21)≥34 weeks gestation

5 (28)1 (25)4 (29)≥35 weeks gestation

2 (11)0 (0)2 (14)≥36 weeks gestation

1 (6)0 (0)1 (7)>37 weeks gestation

1 (6)0 (0)1 (7)First month of life

4 (22)2 (50)2 (14)Unspecified

Funding, n (%)

1 (6)0 (0)1 (7)Yes (noncommercial)

7 (39)0 (0)7 (50)No

10 (56)4 (100)6 (43)Unspecified

Outcomes, n (%)

Patient outcomes

4 (22)0 (0)4 (29)ICU admission

4 (22)1 (25)3 (21)Length of stay

5 (28)1 (25)4 (29)Other

Sepsis treatment or management

15 (83)3 (75)12 (86)Antibiotics

11 (61)3 (75)8 (57)Laboratory evaluation

2 (11)0 (0)2 (14)Timeliness of alert or intervention

2 (11)0 (0)2 (14)Sepsis guideline compliance

5 (28)1 (25)4 (29)Other

Usability

1 (6)0 (0)1 (7)Effectiveness
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TotalaNumber of studies by publicationStudy characteristics

Conference abstractsJournal articles

2 (11)0 (0)2 (14)Cost

aThe percentages were calculated from the number of neonatal studies (n=18). As some studies have reported multiple outcomes for each category,
there were more than 18 outcomes in some categories; therefore, the percentages add to more than 100%.
bIf the study setting was not explicitly stated, it was assumed to be hospital wide.
cICU: intensive care unit.

Table 5. Computerized clinical decision support characteristics in neonatal studies.

TotalbNumber of studies by publicationCCDSa characteristics

Conference abstractsJournal articles

18414Subtotal, n

Type of sepsis, n (%)

15 (83)3 (75)12 (86)Early-onset sepsis

1 (6)0 (0)1 (7)Late-onset sepsis

2 (11)1 (25)1 (7)Sepsis

General CCDS criteria, n (%)

14 (78)2 (50)12 (86)Kaiser Permanente early-onset sepsis risk [89]

2 (11)1 (25)1 (7)Epic Monitor [65]

1 (6)0 (0)1 (7)RALIS [69]

1 (6)1 (25)0 (0)Not specified

Silent or livec, n (%)

16 (89)4 (100)12 (86)Live

1 (6)0 (0)1 (7)Silent

1 (6)0 (0)1 (7)Both (pre or post)

Related interventions, n (%)

9 (50)1 (25)8 (57)Education and information resources

7 (39)3 (75)4 (29)None

4 (22)0 (0)4 (29)Sepsis protocol

2 (11)0 (0)2 (14)Order sets

6 (33)1 (25)5 (36)Other

Responding personnel, n (%)

5 (28)1 (25)4 (29)Nurses

10 (56)0 (0)10 (71)Other clinicians

2 (11)1 (25)1 (7)Paramedics

4 (22)2 (50)2 (14)Not specified

Alert delivery, n (%)

13 (72)3 (75)10 (71)Calculated by personnel

2 (11)0 (0)2 (14)Other

3 (17)1 (25)2 (14)Not specified

aCCDS: computerized clinical decision support.
bThe percentages were calculated from the number of neonatal studies (n=18). As some studies have reported multiple characteristics for each category,
there were more than 18 characteristics, therefore, the percentages add to more than 100%.
cA live CCDS system is a system that is implemented and being used by clinicians in real time during the study. Silent systems are systems that have
been implemented but do not alert clinicians during the study and thus do not influence treatment.
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Maternal Studies
Only 2 studies—those by Davis et al [60] and Blumenthal et al
[57]—have investigated CCDS systems for sepsis in pregnant
or immediately postpartum populations. Both studies were
abstracts and used quantitative methods. Blumenthal et al [57]
used a before-after study design, whereas Davis et al [60] did
not provide sufficient information for the study design to be
determined. Davis et al [60] conducted a single-site,
hospital-wide study in the United States, and Blumenthal et al
[57] conducted a study at 3 sites but did not specify in which
country. None of the studies reported on the number of
participants. To identify maternal sepsis, Davis et al [60] used
the obstetric-adjusted systemic inflammatory response syndrome
(SIRS) criteria (comprising SIRS with the addition of fetal heart
rate) plus organ dysfunction, whereas Blumenthal et al [57]
used a maternal early warning score (comprising temperature
plus heart rate, altered mental state, respiratory rate, and mean
arterial pressure). Both studies investigated sepsis treatment
and management outcomes, with Blumenthal et al [57]
additionally investigating patient outcomes.

Discussion

Principal Findings
This review comprehensively scoped the current literature on
CCDS systems for early detection of sepsis in pediatric,
neonatal, and maternal hospital populations. Overall, our
findings highlight the scarcity of studies in these unique
populations when compared with the general adult population,
representing only 21% (33/157) of studies. Furthermore, only
64% (21/33) of studies were peer-reviewed journal articles.
Given the high burden of sepsis in pediatric, neonatal, and
maternal patients, this comparatively small number of studies
is concerning [2-4,18] and underlines the critical need for future
high-quality research into CCDS systems for these vulnerable
populations. However, the rapid expansion of this field in recent
years is encouraging, with all 33 studies published in the last
10 years and the majority (26/33, 79%) published in the last 5
years.

Pediatric Sepsis
Our findings emphasize the variability in pediatric studies that
have evaluated the use of sepsis CCDS systems. In particular,
we found great variability across the clinical criteria used for
pediatric sepsis identification, with 18 different clinical criteria
used in numerous combinations across 8 studies (Table 3).
Furthermore, a range of gold standard definitions was applied,
of which the most common was clinician discretion rather than
published tools [12,85,86], highlighting the lack of a consensus
definition and tool for pediatric sepsis identification. Hospital
settings varied widely between studies, and numerous related
interventions were implemented alongside the pediatric CCDS,
with few similarities. This variability makes it difficult to
compare studies and draw generalized conclusions from the
literature. All studies were single cohort or before-after studies,
highlighting the need for more robust study designs to provide
stronger evidence regarding the use of CCDS systems.

The heterogeneity in the clinical criteria used, both for the CCDS
system and the gold standard definitions, can be attributed to a
lack of current consensus regarding pediatric identification, risk
stratification, and diagnosis. Although the definition of adult
sepsis was updated in 2016 [1], followed by the publication of
the quick sepsis-related organ failure assessment tool [90], the
most recent pediatric sepsis consensus definition was in 2005
[12] and has exhibited numerous limitations [31,91,92]. An
extensive study by Weiss et al [93] found an interrater agreement
of only 0.57 between the 2005 consensus and physician
diagnosis of pediatric sepsis, further emphasizing the
inadequacies of the current consensus criteria in practice.
Researchers have since attempted to adapt the quick
sepsis-related organ failure assessment to the pediatric
population or pediatric logistic organ dysfunction-2, a pediatric
deterioration tool, to sepsis [29,30,94,95]. Preliminary results
from these studies show promise, demonstrating moderate to
high prognostic accuracy for poor patient outcomes, such as
mortality and pediatric intensive care unit admission
[29,30,94,95]. Critical to this challenge is the unique
pathophysiology of pediatric sepsis, in which simply
age-adjusting adult sepsis criteria is controversial and inadequate
[91,96]. For example, hypotension is commonly used as a key
indicator of septic shock in adults; however, it is less useful in
children, as hypotension is typically not present until much later
in the disease course [25,26,91]. In addition, symptoms
considered key to adult sepsis identification, such as tachycardia
and tachypnea, are common in febrile children regardless of
disease severity and can often be present due to crying and
distress [25,26,95]. Therefore, there have been numerous calls
by both academics and clinicians for an updated pediatric
consensus in recent years [13,43,91,95]. In 2019, the Society
of Critical Care Medicine convened the Pediatric Sepsis
Definition Taskforce to update the consensus criteria for
pediatric sepsis identification [97]. Although they have recently
published a systematic review investigating the individual
factors, clinical criteria, or illness severity scores that are used
to identify children with sepsis who are at higher risk of
developing organ dysfunction or death, the task force has not
yet released an updated definition [97]. The absence of an
up-to-date consensus for defining or detecting pediatric sepsis
has likely contributed to the high diversity of CCDS clinical
criteria used in pediatric populations and the range of definitions
used for gold standard pediatric sepsis detection. Our findings
demonstrate the need for more robust evidence to investigate
the appropriate clinical criteria for pediatric sepsis and reinforce
the urgent need for an updated consensus on the definition of
pediatric sepsis.

Notably, an updated pediatric consensus must consider the
extensive chronological and developmental age-dependent
variability found in the pediatric population. For example, the
pathophysiology of sepsis is expected to differ significantly
among an adolescent, a child aged 5 years, and an infant aged
2 months. This will likely affect how different pediatric age
groups present with sepsis, and accounting for these changes
may not be as simple as adjusting the normal threshold of
different vital signs according to age. This diversity needs to
be studied and reflected in future consensus definitions and
clinical criteria of the CCDS system.
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Neonatal Sepsis
Our findings report considerable variation across neonatal
studies, despite most studies evaluating the same CCDS system:
the Kaiser Permanente early-onset sepsis risk calculator (KPC)
[89]. In particular, the gestational age of the neonates included
in the study varied considerably (Table 4). Most studies
investigated moderate to late preterm and term infants, with
cutoffs for gestational age ranging from ≥34 to >37 weeks [98]
or infants within their first month of life. A single study [69]
investigated very preterm infants at <33 weeks gestational age
[98], indicating a key research gap, as preterm infants are at a
considerably higher risk of sepsis and infection than full-term
newborns [14,28,32,99]. A recent study [99] demonstrated that
more than one-third (38%) of extremely preterm infants, defined
as infants ≤28 weeks’ gestation, had late-onset sepsis. The
included studies investigated a diverse range of outcomes,
related interventions, and responding personnel. Large multisite
studies would improve the generalizability of the literature and
thus should be considered despite the substantial difficulty in
undertaking them.

Of the 18 neonatal studies included in this review, 14 (78%)
investigated KPC [89]. This calculator combines the baseline
early-onset sepsis incidence with maternal and infant
characteristics and a clinical evaluation [89]. It aims to identify
neonates at risk of early-onset sepsis, defined as sepsis within
the first 72 hours after birth [28,87,88]. Under conventional
sepsis management guidelines, many neonates are given
potentially unnecessary antibiotic therapy as a precaution against
sepsis, resulting in unintended negative effects [14,87]. A
systematic review and meta-analysis performed by Achten et
al [100] demonstrated that the use of KPC was associated with
a reduction in antibiotic use. However, a more recent
meta-analysis [101] showed that the KPC missed many cases
of early-onset sepsis compared with the UK National Institute
for Health and Care Excellence guidelines. This results in
delayed or missed treatment for these neonates and suggests
that further evaluation of the calculator is required [101]. In
addition, the KPC is only designed for predicting sepsis risk in
infants born at ≥34 weeks’ gestation within a very narrow
early-onset sepsis time frame [87-89]. Our review identified
only 17% (3/18) of neonatal studies that did not examine
early-onset sepsis, with 6% (1/18) investigating late-onset sepsis
and 11% (2/18) investigating general neonatal sepsis. Late-onset
neonatal sepsis, often defined as sepsis occurring ≥3 days after
birth, is a leading cause of mortality in vulnerable preterm
infants [28,32,99,102]. This calls attention to a clear knowledge
gap for future research into CCDS systems for neonatal sepsis
occurring outside the initial 72 hours of life.

To date, no consensus definition has been developed for neonatal
sepsis [15,16,28,103]. As the neonatal population is uniquely
different from adults and older children, current adult and
pediatric clinical criteria cannot be simply adapted [15,32,103].
A recently published systematic review [16] highlighted the
variance in the currently used definitions of neonatal sepsis in
randomized controlled trials. Surprisingly, the most commonly
used definition was microbiological culture by itself or in
combination with clinical signs and symptoms, despite the
proven low sensitivity of this method and the high incidence of

culture-negative sepsis among the neonatal population
[14,16,102]. Similarly, some studies included in this review
required a positive culture test to diagnose neonatal sepsis. A
consensus on the definition of neonatal sepsis is needed to better
identify suspected neonatal sepsis in clinical practice, for
research studies, and to improve antibiotic stewardship in
newborns [14,15,28,103]. Furthermore, any consensus criterion
must acknowledge the age-related variability inherent to the
neonatal population, as sepsis pathophysiology differs
considerably between a preterm neonate and an infant in their
first month of life [103].

Maternal Sepsis
Despite the devastating consequences of sepsis in pregnant and
immediately postpartum women [3,17,18], our comprehensive
literature search identified only 2 studies that evaluated the use
of CCDS systems for maternal sepsis. Pregnancy involves
extensive physiological, hormonal, and psychological changes,
which may mask the common symptoms of sepsis, resulting in
delayed diagnosis and treatment [3,19,104]. A systematic review
by Bauer et al [104] demonstrated that healthy pregnant women
during the second and third trimesters often demonstrate
considerable overlap with the SIRS criteria. This alteration of
the usual physiological state must be represented in CCDS
systems to ensure that sepsis in pregnant and immediately
postpartum women is detected early, without the risk of
unnecessary treatment in healthy patients. The lack of
high-quality peer-reviewed studies in this population underlines
a concerning knowledge gap in the literature, for which further
research is urgently needed.

Usability and Cost of CCDS Systems
The usability of any health intervention technology is critical
for its successful implementation [105-108]. Therefore,
investigating the usability of CCDS systems is essential for
developing efficient and functional systems. In particular, alarm
fatigue is a well-established usability concern for CCDS systems
[109]. Alarm fatigue occurs when clinicians become desensitized
to frequent inappropriate alarms and begin ignoring or
overriding alerts, reducing the effectiveness of alert systems
and potentially impacting patient outcomes [109,110]. To
prevent alarm fatigue, CCDS systems must be carefully
calibrated to avoid unnecessary frequent alerting [109,110].
None of the studies reported in this review investigated alarm
fatigue in response to the implemented CCDS system, despite
its importance for successful CCDS use.

Understanding the cost or cost-effectiveness of an intervention
supports policy and clinical decision-making when determining
resource allocation under limited health care budgets [111].
This is especially true for sepsis, which represents a large
financial burden on the health system through both acute hospital
care and long-term treatment and rehabilitation [112,113]. Of
the 33 studies included in this review, only 4 (12%) investigated
outcomes related to cost or usability, 1 (3%) in pediatric and 3
(9%) in neonatal populations, demonstrating a clear evidence
gap for future research.
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Strengths and Limitations
This review comprehensively searched the available literature,
both peer reviewed and gray, on the use of CCDS systems for
inpatients with neonatal, pediatric, and maternal sepsis. Owing
to time and resource constraints, the searches were limited to
studies available in the English language and thus may have
missed publications in other languages. Furthermore, the data
extraction was performed by only 1 reviewer (KA). To limit
any consequential data entry errors, the extraction form was
extensively piloted, and any issues were cross-checked and fully
discussed with the review team.

Conclusions
Our findings have illustrated a comparative scarcity of studies
investigating CCDS systems in pediatric, neonatal, and maternal
inpatients, despite their high sepsis burden. Further research is

needed to evaluate CCDS systems for the early detection of
sepsis in these vulnerable populations. We identified extensive
variation in the clinical criteria and gold standard definitions
used by pediatric CCDS systems, and our findings reinforce
calls for updated pediatric and neonatal sepsis consensus
definitions. The review also shows a clear absence of studies
investigating CCDS systems for sepsis identification in maternal
inpatients, high-risk preterm populations, and neonates outside
the first 72 hours of life. Finally, our review demonstrated a
lack of studies investigating the usability and cost of CCDS
systems, both of which are key to their effectiveness and
sustainability. In conclusion, our review has identified
substantial and important knowledge gaps in the literature
evaluating CCDS systems for the early detection of sepsis in
pediatric, neonatal, and maternal populations, which would
benefit greatly from future research.
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Abstract

Background: Severity of illness scores—Acute Physiology and Chronic Health Evaluation, Simplified Acute Physiology Score,
and Sequential Organ Failure Assessment—are current risk stratification and mortality prediction tools used in intensive care
units (ICUs) worldwide. Developers of artificial intelligence or machine learning (ML) models predictive of ICU mortality use
the severity of illness scores as a reference point when reporting the performance of these computational constructs.

Objective: This study aimed to perform a literature review and meta-analysis of articles that compared binary classification
ML models with the severity of illness scores that predict ICU mortality and determine which models have superior performance.
This review intends to provide actionable guidance to clinicians on the performance and validity of ML models in supporting
clinical decision-making compared with the severity of illness score models.

Methods: Between December 15 and 18, 2020, we conducted a systematic search of PubMed, Scopus, Embase, and IEEE
databases and reviewed studies published between 2000 and 2020 that compared the performance of binary ML models predictive
of ICU mortality with the performance of severity of illness score models on the same data sets. We assessed the studies'
characteristics, synthesized the results, meta-analyzed the discriminative performance of the ML and severity of illness score
models, and performed tests of heterogeneity within and among studies.

Results: We screened 461 abstracts, of which we assessed the full text of 66 (14.3%) articles. We included in the review 20
(4.3%) studies that developed 47 ML models based on 7 types of algorithms and compared them with 3 types of the severity of
illness score models. Of the 20 studies, 4 (20%) were found to have a low risk of bias and applicability in model development,
7 (35%) performed external validation, 9 (45%) reported on calibration, 12 (60%) reported on classification measures, and 4
(20%) addressed explainability. The discriminative performance of the ML-based models, which was reported as AUROC, ranged
between 0.728 and 0.99 and between 0.58 and 0.86 for the severity of illness score–based models. We noted substantial heterogeneity
among the reported models and considerable variation among the AUROC estimates for both ML and severity of illness score
model types.

Conclusions: ML-based models can accurately predict ICU mortality as an alternative to traditional scoring models. Although
the range of performance of the ML models is superior to that of the severity of illness score models, the results cannot be
generalized due to the high degree of heterogeneity. When presented with the option of choosing between severity of illness score
or ML models for decision support, clinicians should select models that have been externally validated, tested in the practice
environment, and updated to the patient population and practice environment.

Trial Registration: PROSPERO CRD42021203871; https://tinyurl.com/28v2nch8
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Introduction

Background
In the United States, intensive care unit (ICU) care costs account
for 1% of the US gross domestic product, underscoring the need
to optimize its use to attenuate the continued increase in health
care expenditures [1]. Models that characterize the severity of
illnesses of patients who are critically ill by predicting
complications and ICU mortality risk can guide organizational
resource management and planning, implementation and support
of critical clinical protocols, and benchmarking and are proxies
for resource allocation and clinical performance [2]. Although
the medical community values the information provided by
such models, they are not consistently used in practice because
of their complexity, marginal predictive capacity, and limited
internal or external validation [2-5].

Severity of illness score models require periodic updates and
customizations to reflect changes in medical care and regional
case pathology [6]. Scoring models are prone to high interrater
variability, are less accurate for patients with increased severity
of illness score or specific clinical subgroups, are not designed
for repeated applications, and cannot represent patients’ status
trends [7]. The Acute Physiology and Chronic Health Evaluation
(APACHE)-II (APACHE-II) and Simplified Acute Physiology
Score (SAPS), developed in the 80s, are still in use [8]. The
underlying algorithms for APACHE-IV are in the public domain
and are available at no cost; however, their use is time intensive
and is facilitated by software that requires payments for licensing
implementation and maintenance [9]. Compared with SAPS-III,
which uses data exclusively obtained within the first hour of
ICU admission [10], APACHE-IV uses data from the first day
(24 hours) [11]. Although the Sequential Organ Failure
Assessment (SOFA) is an organ dysfunction score that detects
differences in the severity of illness and is not designed to
predict mortality, it is currently used to estimate mortality risk
based on the mean, highest, and time changes accrued in the
score during the ICU stay [11].

The availability of machine-readable data from electronic health
records enables the analysis of large volumes of medical data
using machine learning (ML) methods. ML algorithms enable
the exploration of high-dimensional data and the extraction of

features to develop models that solve classification or regression
problems. These algorithms can fit linear and nonlinear
associations and interactions between predictive variables and
relate all or some of the predictive variables to an outcome. The
increased flexibility of ML models comes with the risk of
overfitting training data; therefore, model testing on external
data is essential to ensure adequate performance on previously
unseen data. In model development, the balance between the
model’s accuracy and generalizability, or bias and variance, is
achieved through model training on a training set and
hyperparameter optimization on a tuning set. Once a few models
have been trained, they can be internally validated on a
split-sample data set or cross-validated; the candidate model
chosen is then validated on an unseen test data set to calculate
its performance metrics and out of sample error [12]. The choice
of algorithm is critical for providing a balance between
interpretability, accuracy, and susceptibility to bias and variance
[13]. Compared with the severity of illness scores, ML models
can incorporate large numbers of covariates and temporal data,
nonlinear predictors, trends in measured variables, and complex
interactions between variables [14]. Numerous ML algorithms
have been integrated into ICU predictive models, such as
artificial neural networks (NNs), deep reinforcement learning,
support vector machines (SVMs), random forest models, genetic
algorithms, clinical trajectory models, gradient boosting models,
k-nearest neighbor, naive Bayes, and the Ensemble approach
[15]. Despite the rapidly growing interest in using ML methods
to support clinical care, modeling processes and data sources
have been inadequately described [16,17]. Consequently, the
ability to validate and generalize the current literature’s results
is questionable.

Objectives
This study aims to systematically review and meta-analyze
studies that compare binary classification ML models with the
severity of illness scores for predicting ICU mortality and
determine which models have superior performance. This review
intends to provide actionable guidance to clinicians on the
prognostic value of ML models compared with the severity of
illness scores in supporting clinical decision-making, as well
as on their performance, in the context of the current guidelines
[18] and recommendations for reporting ML analysis in clinical
research [19] (Table 1).
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Table 1. Recommended structure for reporting MLa models.

Model training and validationData sources and preprocessing (feature selection)Research question and ML justification

Hardware, software, and packages usedPopulationClinical question

Evaluation (calibration and discrimination)Sample record and measurement characteristicsIntended use of the result

Configuration (parameters and hyperparameters)Data collection and qualityDefined problem type

Model optimization and generalization (hyperparame-
ter tuning and parameter limits)

Data structure and typesAvailable data

Validation method and data split and cross-validationDifferences between evaluation and validation setsDefined ML method and rationale

Validation method performance metrics on an external
data set

Data preprocessing (data aggregation, missing data,
transformation, and label source)

Defined evaluation measures, training
protocols, and validation

Reproducibility, code reuse, and explainabilityInput configurationN/Ab

aML: machine learning.
bN/A: not applicable.

Methods

We conducted a systematic review of the relevant literature.
The research methods and reporting followed the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) 2020 statement and guide to review and
meta-analysis of prediction models [20,21].

Information Sources and Search Strategy
Between December 15 and 18, 2020, we performed a
comprehensive search in the bibliographic databases PubMed,
Scopus, Embase, and IEEE of the literature published between
December 2000 and December 15, 2020. These databases were
available free of charge from the university library. We selected
PubMed for its significance in biomedical electronic research;
Scopus for its wide journal range, keyword search, and citation
analysis; Embase because of its European union literature
coverage; and IEEE Xplore for its access to engineering and
computer science literature.

The search terms included control terms (Medical Subject
Headings and Emtree) and free-text terms. The filters applied
during the search of all 4 databases were Humans and Age:Adult.
A search of the PubMed database using the terms (AI artificial
intelligence) OR (machine learning) AND (intensive care unit)
AND (mortality) identified 125 articles. The Scopus database
was searched using the terms KEY (machine learning) OR KEY
(artificial-intelligence) AND KEY (intensive care unit) AND
KEY (mortality) revealed 182 articles. The Embase database
queries using the terms (AI Artificial Intelligence) OR (machine
learning) AND (intensive care unit) AND (mortality) resulted
in 103 articles. The IEEE database search using the terms

(machine learning) OR (artificial intelligence) AND (intensive
care unit) AND (mortality) produced 51 citations.

A total of 2 authors (CB and AT) screened titles and abstracts
and recorded the reasons for exclusion. The same authors (CB
and AT) independently reviewed the previously selected full-text
articles to determine their eligibility for quantitative and
qualitative assessments. Both authors revisited the discrepancies
to guarantee database accuracy and checked the references of
the identified articles for additional papers. A third researcher
(LNM) was available to resolve any disagreements.

Eligibility Criteria and Study Selection
We included studies that compared the predictive performance
of newly developed ML classification models predictive of ICU
mortality with the severity of illness score models on the same
data sets in the adult population. To be included in the review,
the studies had to provide information on the patient cohort,
model development and validation, and performance metrics.
Both prospective and retrospective studies were eligible for
inclusion.

Data Collection Process
Data extraction was performed by CB, reviewed by AT, and
guided by the CHARMS (Critical Appraisal and Data Extraction
for Systematic Reviews of Prediction Modeling Studies)
checklist [22] specifically designed for systematic reviews of
prognostic prediction models. The methodological qualities of
the included studies were appraised with guidance from the
Prediction model Risk of Bias (ROB) Assessment Tool
(PROBAST) [23]. The reported features of the ML models are
shown in Table 2.
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Table 2. CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) checklist.

GeneralizabilityPredictive performanceModel trainingData preparationOutcome mortalityData source (descrip-
tion)

Author

NnMmLlKkJjIiHhGgFfEeDdCcBbAa

✓✓✓✓✓✓✓HospitalMIMICo 2Pirracchio et
al [1]

✓✓✓✓✓✓✓✓✓Hospital 30/90
days

Danish ICUpNielsen et al
[24]

✓✓✓✓HospitalICU IndiaNimgaonkar
et al [25]

✓✓✓✓✓✓✓✓28 days/hospitalMIMIC 3Xia et al [26]

✓✓✓✓✓✓✓✓✓Hospital, 2 days, 3
days, 30 days, 1
year

MIMIC 3Purushotham
et al [27]

✓✓✓✓✓✓✓✓✓✓✓✓HospitalANZICSqNanayakkara
et al [28]

✓✓✓✓✓✓✓✓HospitalGermanyMeyer et al
[29]

✓✓✓✓✓✓✓✓HospitalCCHICr United King-
dom

Meiring et al
[7]

✓✓✓✓✓✓✓HospitalMIMIC 3Lin et al [30]

✓✓✓✓✓✓✓ICUMIMIC 3Krishnan et al
[31]

✓✓✓✓✓✓✓✓HospitalKoreaKang et al
[32]

✓✓✓✓✓✓✓✓✓ICU and hospitalUnited KingdomJohnson et al
[33]

✓✓✓✓✓✓✓✓Hospital and 30
days

SwedenHolmgren et
al [34]

✓✓✓✓✓✓✓✓✓✓Hospital and 1 yearMIMIC 3Garcia-Gallo
et al [35]

✓✓✓✓✓✓✓✓✓ICU and hospitalMIMIC 3El-Rashidy et
al [36]

✓✓✓✓✓✓✓✓✓✓ICUEURICUSs 2Silva et al [37]

✓✓✓✓✓✓✓ICUMIMIC 3Caicedo-Tor-
res et al [38]

✓✓✓✓✓✓✓✓✓ICUeICU-CRDtDeshmukh et
al [39]

✓✓✓✓✓✓✓✓✓✓ICU and hospitalMIMIC 2Ryan et al
[40]

✓✓✓✓✓✓✓HospitalMIMIC 2Mayaud et al
[41]

aData normalization/outlier addressed.
bMissing data addressed.
cHyperparameter optimization addressed.
dOverfitting/shrinkage and cross-validation addressed.
ePredictor selection, full model versus backward elimination.
fCalibration assessed (Brier, Hosmer-Lemeshow, and calibration plot).
gDiscrimination/reclassification performed (net reclassification improvement/integrated discrimination improvement).
hClassification reported.
iRecalibration performed.
jExternally validated.
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kExplainability addressed/decision curve analysis.
lClinical applicability addressed.
mPrediction span defined.
nIntended moment of use reported.
oMIMIC: Medical Information Mart for Intensive Care.
pICU: intensive care unit.
qANZICS: Australia New Zealand Intensive Care Unit Society.
rCCHIC: Critical Care Health Informatics Collaborative.
sEURICUS: European ICU studies.
teICU CRD: Electronic ICU Collaborative Research Database.

Assessment of the ROB and Quality of Reviewed
Studies
The reviewers used the PROBAST tool to assess the
methodological quality of each study for ROB and concerns
regarding applicability in 4 domains: study participants,
predictors, outcome, and analysis [23]. The reviewers evaluated
the applicability of the selected studies by assessing the extent
to which the studied outcomes matched the goals of the review
in the 4 domains. We evaluated the ROB by assessing the
primary study design and conduct, predictor selection process,
outcome definition, and performance analysis. The ROB in the
reporting models’ performance was appraised by exploring the
reported measures of calibration (model’s predicted risk of
mortality vs the observed risk), discrimination (model’s ability
to discriminate between patients who are alive or expired),
classification (sensitivity and specificity), and reclassification
(net reclassification index). The performance of the models on
internal data sets not used for model development—internal
validation—and on data sets originating from an external patient
population–external validation—were weighted in the ROB
assignment. The ROB and applicability were assigned as low
risk, high risk, or unclear risk according to PROBAST
recommendations [42].

Meta-analysis and Performance Metrics
The C statistic–area under the receiver operating curve
(AUROC) is the most commonly reported estimate of
discriminative performance for binary outcomes [43-46] and
the pragmatic performance measure of ML and severity of
illness score models previously used in the medical literature
to compare models based on different computational methods
[21,45-47]. It is generally interpreted as follows: an AUROC
of 0.5 suggests no discrimination, 0.7 to 0.8 is considered
acceptable performance, 0.8 to 0.9 is considered excellent
performance, and >0.9 is considered outstanding performance
[48]. We included the performance of models developed using

similar algorithms in forest plots and performed heterogeneity
diagnostics and investigations without calculating a pooled
estimate [49]. The results were pooled only for studies that
followed a consistent methodology that included the external
validation or benchmarking of the models. Random-effects
meta-analyses computed the pooled AUROC for the following
subgroups of ML algorithms—NNs and Ensemble—and the
following subgroups of scoring models—SAPS II, APACHE
II and SOFA. The AUROC for each model type was weighted
using the inverse of its variance. Pooled AUROC estimates for
each model were meta-analyzed along with 95% CIs of the
estimates and were reported in forest plots together with the

associated heterogeneity statistics (I2, τ2, and Cochran Q).
Cochran Q statistic (also known as the chi-square statistic)

determines the within-study variation, τ2 determines the

between-study variability, and I2 represents the percentage of
variability from the AUROC estimate not caused by sampling
error [36]. The Cochran Q P value is denoted as P.
Meta-analyses were conducted in R (version 3.6.1) [37] (see
Multimedia Appendix 1 for scripts).

Results

Selection Process
Of the 461 screened abstracts, we excluded 372 (80.7%) because
of relevance (models not developed to predict ICU mortality),
9 (2%) duplicates, 6 (1.3%) reviews, and 8 (1.7%) conference
proceedings (not intended for clinical application). We assessed
the full text of 66 articles; the most common performance
method reported to allow comparison between all models and
a meta-analysis was the C statistic–AUROC. Of the 66 articles,
we excluded 12 (18%) articles because of limited information
on model development, 22 (33%) articles because of a lack of
comparison with clinical scoring models, and 12 (18%) articles
as the AUROC was not reported. The search strategy and
selection process are illustrated in Figure 1.
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Figure 1. Search strategy and selection process. AUROC: area under the receiver operating curve; ICU: intensive care unit.

Assessment of the Prediction Model Development
The 20 studies reported 47 ML models that were developed
based on 7 types of algorithms and compared them with 3
severity of illness score models. All ML models were developed
through a retrospective analysis of the ICU data sets. Of the 20
studies, 10 (50%) used data from the publicly available Medical
Information Mart for Intensive Care database (Beth Israel
Deaconess Medical Center in the United States) at different
stages of expansion. Of the 20 studies, 10 (50%) used national
health care databases (Danish, Australia-New Zealand, United
Kingdom, and Sweden) or ICU-linked databases (Korea, India,
and the United Kingdom). One of the studies included data from
>80 ICUs belonging to >40 hospitals [33], and one of the
studies’ ICU-linked database collected data from 9 European
countries [37]. The cohorts generating the data sets used for
model development and internal testing ranged from 1571 to
217,289 patients, with a median of 15,789 patients. Of the 20
studies, 10 (50%) used data from patients admitted to general
ICUs, whereas 10 (50%) studies used data from patients who

were critically ill with specific pathologies: gastrointestinal
bleeds [39], COVID-19 and pneumonia–associated respiratory
failure [40], postcardiac arrest [28], postcardiac surgery [29,36],
acute renal insufficiency [30,32], sepsis [35,41], or neurological
pathology [25]. The lower age thresholds for study inclusion
ranges were 12 years [25], 15 years [26,27], 16 years [33,35,38],
18 years [24,29,40], and 19 years [30]. Within the studied
cohorts, mortality ranged from 0.08 to 0.5 [29,32,36].

The processes and tools used for the selection of predicting
variables were described in 65% (13/20) of studies and included
the least absolute shrinkage and selection operator, stochastic
gradient boosting [33,35], genetic algorithms, and particle
swarm optimization [33]. Approximately 15% (3/20) of studies
[25,26,35] reported multiple models developed on variable
predictor sets, which were subsequently tested for the best
performance, validation, and calibration. The number of
predictive variables used in the final models varied between 1
and 80, with a median of 21. The most common predicting
variables are shown in Figure 2 and are grouped by the
frequency of occurrence in the studies.
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Figure 2. Frequency and type of ML model input variables (x-axis: number of studies using the input variables; y-axis: input variable). ASA: American
Society of Anesthesiology; COPD: chronic obstructive pulmonary disease; CVA: cerebral vascular accident; FIO2: fraction of inspired oxygen; ICU:
intensive care unit; LFT: liver function test; ML: machine learning; RBC: red blood cell; SpO2: oxygen saturation; PaO2: arterial oxygen pressure;
PaCO2: arterial CO2 pressure.

All studies developed models on 24-hour data; furthermore,
ML models were developed on the first hour of ICU data [34];
the first 48-hour data [27,38,41]; 3-day data [40]; 5-day data
[7]; 10-day data [26]; or on patients’ prior medical history
collected from 1 month, 3 months, 6 months, 1 year, 2.5 years,
5 years, 7.5 years, 10 years, and 23 years [24]. The frequency
of data collection ranged from every 30 minutes [29], 1 hour

[1,25,27,37], 3 hours, 6 hours, 12 hours, 15 hours [38], and 24
hours [7,36] to every 27 hours, 51 hours, and 75 hours [40].

Researchers handled missing data and continuous and fixed
variables differently. A total of 6 model developers provided
no information on missing data [1,25,29,32,34,39], and 1 [27]
addressed data cleaning. Researchers [24,30,33,35-37,40,41]
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removed the records with missing values ranging from 1 missing
value per admission to 30%, 50%, and 60% of missing data.
One of the studies [29] included only variables documented for
at least 50% of the patients and imputed the missing values with
the last measured value for the feature. Missing values (up to
60%) were forward-filled; backward-filled; or replaced with
means (continuous variables) or modes (categorical variables),
normal values, averages [24,28,36,38,40], predictive mean
matching [7], or linear interpolation imputation method [26].
The data were normalized using the minimum-maximum
normalization technique. The time prediction of hospital

mortality was undefined in 45% (9/20) of studies and varied
from 2 or 3 days to 28 days, 30 days [26], 90 days [24], and up
to 1 year [24] in the others.

There was a wide range in the prevalence of mortality among
studies (0.08-0.56), creating a class imbalance in the data sets.
In studies with low investigated outcome mortality, few
researchers addressed the problem of class imbalance (survivors
vs nonsurvivors) through balanced training [24,37], random
resampling [29], undersampling [36], or class penalty and
reweighting schemes [38]. A breakdown of the model
characteristics is presented in Table 3.
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Table 3. Information on the MLa prediction model development, validation, and performance, and on the severity of illness score performance.

Severity of illness score
model type (AUROC)

ML AUROC
external

External valida-
tion data set

K-fold/vali-
dation

FeaturesData training/test
(split %)

ML model type (AU-

ROCb test)

Author

0.942005-fold cross-
validation

1724,508Pirracchio et al,
2015 [1]

• SAPSd-II (0.78)• Ensemble SICU-

LAc (0.85) • APACHEe-II (0.83)
• SOFf (0.71)

0.77315285-fold cross-
validation

4410,368

(80/20)

Nielsen et al, 2019
[24]

• SAPS-II (0.74)• NNg (0.792)
• APACHE-II (0.72)

N/AN/AN/Ah152962

(70/30)

Nimgaonkar et al,
2004 [25]

• APACHE-II (0.77)• NN (0.88)

N/AN/ABootstrap

and RSMk
5018,415

(90/10)

Xia et al, 2019 [26] • SAPS-II (0.77)• Ensemble-

LSTMi (0.85) • SOFA (0.73)
• APACHE-II (0.74)• LSTM (0.83)

• DTj (0.82)

N/AExternal bench-
mark

5-fold cross-
validation

17/22/

136

35,627Purushotham et al,
2018 [27]

• SAPS-II (0.80)• NN (0.87)
• •Ensemble (0.84) SOFA (0.73)

N/AN/A5-fold cross-
validation

2939,560

(90/10)

Nanayakkara et al,
2018 [28]

• APACHE-III (0.8)• DT (0.86)
• SVMl (0.86)
• NN (0.85)
• Ensemble (0.87)
• GBMm (0.87)

0.81598910-fold
cross-valida-
tion

525898

(90/10)

Meyer et al, 2018
[29]

• SAPS-II (0.71)• NN (0.95)

N/AN/A21,911

LOOn

2580/20Meiring et al, 2018
[7]

• APACHE-II (0.83)• DT (0.85)
• NN (0.86)
• SVM (0.86)

N/AN/A5-fold cross-
validation

1519,044Lin et al, 2019

[30]

• SAPS-II (0.79)• DT (0.86)
• NN (0.83)
• SVM (0.86)

N/AN/A10-fold
cross-valida-
tion

110,155

(75/25)

Krishnan et al,
2018 [31]

• SAPS (0.80)• NN-ELMo (0.99)
• SOFA (0.73)
• APSp-III (0.79)

N/AN/A10-fold
cross-valida-
tion

331571

(70/30)

Kang et al, 2020
[32]

• SOFA (0.66)• SVM (0.77)
• APACHE-II (0.59)

• DT (0.78)
• NN (0.776)
• k-NNq (0.76)

0.837 (uni-
variate);

23,61810-fold
cross-valida-
tion

1039,070

(80/20)

Johnson et al, 2013
[33]

• APS-III (0.86)• LRr univariate
(0.902)

0.868 (multi-
variate)

• LR multivariate
(0.876)

N/AN/A5-fold cross-
validation

8217,289

(80/20)

Holmgren et al,
2019 [34]

• SAPS-III (0.85)• NN (0.89)

N/AN/A10-fold
cross-valida-
tion

18

140

37

5650

(70/30)

Garcia-Gallo et al,
2020 [35]

• SOFA (0.58)• SGB-LASSOs

(0.803) • SAPS (0.70)

N/AExternal bench-
mark

10-fold
cross-valida-
tion

8010,664

(75/25)

El-Rashidy et al,
2020 [36]

• APACHE-II (0.73)• Ensemble (0.93)
• SAPS-II (0.81)
• SOFA-II (0.78)
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Severity of illness score
model type (AUROC)

ML AUROC
external

External valida-
tion data set

K-fold/vali-
dation

FeaturesData training/test
(split %)

ML model type (AU-

ROCb test)

Author

• SAPS- II (0.8)N/AN/AHold out1213,164

(66/33)

• NN (0.85)Silva et al, 2006
[37]

• SAPS-II (0.73)N/AN/A5-fold cross-
validation

2222,413• NN (0.87)Caicedo-Torres et
al, 2019 [38]

• APACHE-IV (0.8)N/AN/A5-fold cross-
validation

345691

(80/20)

• XGBt (0.85)Deshmukh et al,
2020 [39]

• qSOFAu (0.76)0.911145-fold cross-
validation

1235,061

(80/20)

• DT (0.86)Ryan et al, 2020
[40]

• APACHE-III (0.68)N/AN/ABBCCVw252113

(70/30)

• GAv+LR (0.82)Mayaud et al, 2013
[41]

aML: machine learning.
bAUROC: area under the receiver operating curve.
cSICULA: Super ICU Learner Algorithm.
dSAPS: Simplified Acute Physiology Score.
eAPACHE: Acute Physiology and Chronic Health Evaluation.
fSOFA: Sequential Organ Failure Assessment.
gNN: neural network.
hN/A: not applicable.
iLSTM: long short-term memory.
jDT: decision tree.
kRSM: random subspace method.
lSVM: support vector machine.
mGBM: gradient boosting machine.
nLOO: leave one out.
oELM: extreme learning machine.
pAPS: Acute Physiology Score.
qk-NN: k-nearest neighbor.
rLR: logistic regression.
sSGB-LASSO: stochastic gradient boosting least absolute shrinkage and selection operator.
tXGB: extreme gradient boosting.
uqSOFA: Quick Sequential Organ Failure Assessment.
vGA: genetic algorithm.
wBBCV: bootstrap bias–corrected cross-validation.

Overview of ML Algorithms and Model Validation
The reviewers recorded the ML model types based on the final
trained model structure rather than on the algorithm used for
fitting the model (Table 3). The reviewers noted a diversity of
strategies in model fitting, although the implemented models
defined the operating functions and transformations. Of the 20
studies, NNs were applied in 13 (65%) [7,24-32,34,37,38],
decision trees in 8 (40%) [7,26,28,30,32,35,39,40], SVM in 4
(20%) [7,28,30,32], and Ensemble of algorithms in 4 (20%)
[1,27,28,36]. The types of algorithms used in the same study
varied between 1 and 5. All studies provided information on
data training and internal testing (see Table 2 for k-fold
validation and data splitting). Of the 20 studies, 5 (25%)

[1,24,29,33,40] performed validation on external data sets
ranging from 114 to 23,618 patients, and 2 (10%) studies [27,36]
benchmarked the ML model performance against existing ML
mortality prediction models; 14 (70%) studies reported CIs for
the measure of discrimination AUROC, 9 (45%) studies reported
on calibration (Hosmer-Lemeshow, calibration curve, or Brier
score), and 12 (60%) studies reported on classification measures
(Table 4). Approximately 10% (2/20) of studies were available
for use in clinical practice [1,33]; the models’ decisions were
explained with local interpretable model-agnostic explanations
[28] or the Shapley additive explanations method (SHAP) [39].
The AUROC of the ML models ranged from 0.728 to 0.99 for
predicting mortality.
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Table 4. Reported performance measures of the MLa models.

OtherCalibration measurementsClassification measurementsAuthor and ML model

Calibration
curve

Brier
score

HLc

score

AccuracyF1 scoreRecall/sensitivityPPVb/precisionSpecificity

Pirrachio et al [1]

DSg=0.21Uf=0.0007
(calibration
plot)

0.079N/AN/AN/AN/AN/AN/AeEnsemble SLd-1

DS=0.26U=0.006
(calibration
plot)

0.079N/AN/AN/AN/AN/AN/AEnsemble SL-2

Nielsen et al [24]

Mathews
correlation
coefficient

N/AN/AN/AN/AN/AN/A0.388N/ANNh

Purushotham et al [27]

0.491

(AUPRCi)

N/AN/AN/AN/AN/AN/AN/AN/ANN

0.435
(AUPRC)

N/AN/AN/AN/AN/AN/AN/AN/AEnsemble

Nimgaonkar et al [25]

N/ACalibration
plot

N/A27.7N/AN/AN/AN/AN/ANN-15 features

N/ACalibration
plot

N/A22.4N/AN/AN/AN/AN/ANN-22 features

Xia et al [26]

N/AN/AN/AN/A0.75330.42620.77580.2940.7503Ensemble-LSTMj

N/AN/AN/AN/A0.77030.43170.73840.3050.7746LSTM

N/AN/AN/AN/A0.77340.42900.711970.3060.7807RFk

Nanayakkara et al [28]

0.47 (log
loss)

Calibration
plot

0.156N/A0.78N/A0.760.750.79RF

0.47 (log
loss)

Calibration
plot

0.153N/A0.78N/A0.750.770.81SVCl

0.45 (log
loss)

Calibration
plot

0.147N/A0.79N/A0.80.750.78GBMm

0.48 (log
loss)

Calibration
plot

0.158N/A0.77N/A0.820.710.72NN

0.45 (log
loss)

Calibration
plot

0.148N/A0.79N/A0.770.770.81Ensemble

Meyer et al [29]

N/AN/AN/AN/A0.880.880.850.90.91RNNn

Meiring et al [7]

N/AN/AN/AN/AN/AN/AN/AN/AN/ADTo, NN, SVMp

Lin et al [30]

N/ACalibration
plot

0.085N/A0.7280.459N/AN/AN/ARF

N/ACalibration
plot

0.091N/A0.6660.406N/AN/AN/ANN
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OtherCalibration measurementsClassification measurementsAuthor and ML model

Calibration
curve

Brier
score

HLc

score

AccuracyF1 scoreRecall/sensitivityPPVb/precisionSpecificity

N/ACalibration
plot

0.086N/A0.7290.460N/AN/AN/ASVM

Krishnan et al [31]

Mathews
correlation
coefficient

N/AN/AN/A0.980.980.98N/AN/AANN-ELMq

Kang et al [32]

N/ACalibration
plot

N/AN/A0.6730.745N/AN/AN/Ak-NNr

N/ACalibration
plot

N/AN/A0.6960.752N/AN/AN/ASVM

N/ACalibration
plot

N/AN/A0.690.762N/AN/AN/ARF

N/ACalibration
plot

N/AN/A0.7110.763N/AN/AN/AXGBs

N/ACalibration
plot

N/AN/A0.749N/AN/AN/ANN

Johnson et al [33]

N/AN/A0.05122N/AN/AN/AN/AN/ALRt univariate

N/AN/A0.04819.6N/AN/AN/AN/AN/ALR multivariate

Holmgren et al [34]

N/ACalibration
plot

0.106N/AN/AN/AN/AN/AN/ANN

Garcia-Gallo et al [35]

N/ACalibration
plot

N/A0.09160.725N/AN/AN/AN/ASGBu

N/ACalibration
plot

N/A0.09160.712N/AN/AN/AN/ASGB-LASSOv

El-Rashidy et al [36]

N/AN/AN/AN/A0.9440.9370.911N/A0.94Ensemble

Silva et al [37]

N/AN/AN/AN/A0.7921N/A0.78N/A0.79NN

Caicedo-Torres et al [38]

N/AN/AN/AN/AN/AN/A0.75N/A0.827NN

Deshmukh et al [39]

N/AN/AN/AN/AN/AN/A1N/A0.27XGB

Ryan et al [40]

N/AN/AN/AN/A0.750.3780.801N/A0.75XGB

Mayaud et al [41]
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OtherCalibration measurementsClassification measurementsAuthor and ML model

Calibration
curve

Brier
score

HLc

score

AccuracyF1 scoreRecall/sensitivityPPVb/precisionSpecificity

N/ACalibration
plot

N/A10.43N/AN/AN/AN/AN/AGAw+LR

aML: machine learning.
bPPV: positive predictive value.
cHL: Hosmer-Lemeshow.
dSL: super learner.
eN/A: not available.
fU statistics.
gDS: discrimination slope.
hNN: neural network.
iAUPRC: area under the precison-recall curve.
jLSTM: long short-term memory.
kRF: random forest.
lSVC: support vector classifier.
mGBM: gradient boosting machine.
nRNN: recurrent neural network.
oDT: decision tree.
pSVM: support vector machine.
qANN-ELM: artificial neural network extreme learning machine.
rk-NN: k-nearest neighbor.
sXGB: extreme gradient boosting.
tLR: logistic regression.
uSGB: stochastic gradient boosting.
vLASSO: least absolute shrinkage and selection operator.
wGA: genetic algorithm.

The performance of the ML models was compared with that of
the following severity of illness scoring models: APACHE-II
(6/20, 30%), APACHE-III (2/20, 10%), APACHE-IV (1/20,
5%), SAPS-II (11/20, 55%), SAPS-III (1/20, 5%), SOFA (9/20,
45%), and Acute Physiology Score-3 (2/20, 10%; Table 3). The
severity of illness scores’ discrimination reported as AUROC
was associated with a CI in 65% (13/20) of studies. Calibration
of the severity of illness score models was reported in 30%
(6/20) of studies. Approximately 60% (12/20) of studies reported
binary classification results. The severity of illness scores used
for comparison and associated AUROCs were 0.70 to 0.803 for
SAPS, 0.588 to 0.782 for SOFA, and 0.593 to 0.86 for APACHE
(Table 3).

Analysis of ROB and Applicability
The results of the analysis of the ROB in the selection of the
study population, predictors, outcome definition, and
performance reporting are presented in Table 5. The results of
the assessment of the developed ML models’ applicability
regarding the study participants and setting, the predictors used
in the ML models’ development and their timing, the outcome
definition and prediction by the models, and the analysis that
reports the models’ performance are also presented in Table 5.
Of the 47 models, 4 (9%) models [1,17,23,29] were identified
as having a low risk, and 3 (6%) models were rated as having
an uncertain ROB and applicability model development
[24,29,40]. The main reason for the high ROB in the overall
judgment of the study was the lack of external validation, which
was identified in 28% (13/47) of the models.
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Table 5. Assessment for ROBa and applicability for prognostic models with the Prediction model ROB Assessment Tool checklist.

ROB and applicabilityAuthors

Overall judgmentAnalysisOutcomePredictorsParticipants

ApplicabilityROBROBApplicabilityROBApplicabilityROBApplicabilityROB

LowLowLowLowLowLowLowLowLowbPirracchio et al [1]

LowUnclearLowLowUnclearLowUnclearcLowLowNielsen et al [24]

UnclearHighHighdLowLowLowLowUnclearLowNimgaonkar et al [25]

LowHighHighLowUnclearLowLowLowLowXia et al [26]

LowLowLowLowLowLowLowLowLowPurushotham et al [27]

UnclearHighHighLowLowLowLowUnclearLowNanayakkara et al [28]

UnclearLowLowLowLowLowLowUnclearLowMeyer et al [29]

LowHighHighLowLowLowLowLowLowMeiring et al [7]

UnclearHighHighLowLowLowLowUnclearLowLin et al [30]

LowHighHighLowLowLowLowLowLowKrishnan et al [31]

UnclearHighHighLowLowLowLowUnclearLowKang et al [32]

LowLowLowLowLowLowLowLowLowJohnson et al [33]

LowHighHighLowUnclearLowLowLowLowHolmgren et al [34]

UnclearHighHighLowLowLowLowUnclearLowGarcia-Gallo et al [35]

LowLowLowLowLowLowLowLowLowEl-Rashidy et al [36]

LowHighHighLowLowLowLowLowLowSilva et al [37]

LowHighHighLowLowLowLowLowLowCaicedo-Torres et al [38]

UnclearHighHighLowLowLowLowUnclearLowDeshmukh et al [39]

LowUnclearLowLowLowLowUnclearLowLowRyan et al [40]

UnclearHighHighLowLowUnclearLowUnclearLowMayaud et al [41]

aROB: risk of bias.
bLow risk: no relevant shortcomings in ROB assessment.
cUnclear risk: unclear ROB in at least one domain and all other domains at low ROB.
dHigh risk: relevant shortcomings in the ROB assessment, at least one domain with high ROB, or model developed without external validation.

Meta-analysis
Forest plots for the NN, Ensemble, SOFA, SAPS II, and
APACHE-II models and the associated heterogeneity tests are
shown in Figures 3-7. The forest plots and tests of heterogeneity
for SVM, NN, DT, and Ensemble models that were not
externally validated can be seen in Multimedia Appendix 2.
The AUROC for each model type was weighted using the
inverse of its variance. Most of the 95% CIs of AUROC
estimates from various studies did not overlap within the forest
plot; considerable variation among AUROC estimates for both
ML and severity of illness score model types was noted.

Regrading tests of heterogeneity, I2 varied between 99% and

100%, τ2 ranged from 0.0003 to 0.0034, and P was consistently
<.01. In Figures 3-7 and Multimedia Appendix 2, the gray boxes
represent the weight estimates of the AUROC value from each
study. The horizontal line through each gray box illustrates the
95% CI of the AUROC value from that study. Black horizontal
lines through a gray box indicate that the CI limits exceeded
the length of the gray box. White horizontal lines represent the

CI limits that are within the length of the gray box. I2, τ2, and
Cochran Q P value (denoted as P) are heterogeneity tests.

Random-effects meta-analysis results of the computed pooled
AUROC of the ML subgroup models that were externally
validated or benchmarked NNs and Ensemble are shown in
Figure 3 and Figure 4.
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Figure 3. Meta-analysis results: pooled AUROC for externally validated Ensemble models. Gray boxes represent the fixed weight estimates of the
AUROC value from each study. Larger gray boxes represent larger fixed weight estimates of the AUROC values. The horizontal line through each gray
box illustrates the 95% CI of the AUROC value from that study. Black horizontal lines through a gray box indicate that the CI limits exceed the length
of the gray box. White horizontal lines represent CI limits that are within the length of the gray box. The vertical dashed lines in the forest plot are the
estimated random pooled effect of the AUROC value from the random-effects meta-analysis. The gray diamonds illustrate the 95% CI for the random

pooled effects. Tests of heterogeneity included I2, τ2, and Cochran Q P value (denoted as P). AUROC: area under the receiver operating curve;.

Figure 4. Meta-analysis results: pooled AUROC for externally validated NN models. Gray boxes represent the fixed weight estimates of the AUROC
value from each study. Larger gray boxes represent larger fixed weight estimates of the AUROC values. The horizontal line through each gray box
illustrates the 95% CI of the AUROC value from that study. Black horizontal lines through a gray box indicate that the CI limits exceed the length of
the gray box. White horizontal lines represent CI limits that are within the length of the gray box. The vertical dashed lines in the forest plot are the
estimated random pooled effect of the AUROC value from the random-effects meta-analysis. The gray diamonds illustrate the 95% CI for the random

pooled effects. Tests of heterogeneity included I2, τ2, and Cochran Q P value (denoted as P). AUROC: area under the receiver operating curve; NN:
neural network.

Figure 5. Meta-analysis results: pooled AUROC for SAPS-II. Gray boxes represent the fixed weight estimates of the AUROC value from each study.
Larger gray boxes represent larger fixed weight estimates of the AUROC values. The horizontal line through each gray box illustrates the 95% CI of
the AUROC value from that study. Black horizontal lines through a gray box indicate that the CI limits exceed the length of the gray box. White
horizontal lines represent CI limits that are within the length of the gray box. The vertical dashed lines in the forest plot are the estimated random pooled
effect of the AUROC value from the random-effects meta-analysis. The gray diamonds illustrate the 95% CI for the random pooled effects. Tests of

heterogeneity included I2, τ2, and Cochran Q P value (denoted as P). AUROC: area under the receiver operating curve; SAPS-II: Simplified Acute
Physiology Score II.
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Figure 6. Meta-analysis results: pooled AUROC for SOFA. Gray boxes represent the fixed weight estimates of the AUROC value from each study.
Larger gray boxes represent larger fixed weight estimates of the AUROC values. The horizontal line through each gray box illustrates the 95% CI of
the AUROC value from that study. Black horizontal lines through a gray box indicate that the CI limits exceed the length of the gray box. White
horizontal lines represent CI limits that are within the length of the gray box. The vertical dashed lines in the forest plot are the estimated random pooled
effect of the AUROC value from the random-effects meta-analysis. The gray diamonds illustrate the 95% CI for the random pooled effects. Tests of

heterogeneity included I2, τ2, and Cochran Q P value (denoted as P). AUROC: area under the receiver operating curve; SOFA: Sequential Organ Failure
Assessment.

Figure 7. Meta-analysis results: pooled AUROC for APACHE-II. Gray boxes represent the fixed weight estimates of the AUROC value from each
study. Larger gray boxes represent larger fixed weight estimates of the AUROC values. The horizontal line through each gray box illustrates the 95%
CI of the AUROC value from that study. Black horizontal lines through a gray box indicate that the CI limits exceed the length of the gray box. White
horizontal lines represent CI limits that are within the length of the gray box. The vertical dashed lines in the forest plot are the estimated random pooled
effect of the AUROC value from the random-effects meta-analysis. The gray diamonds illustrate the 95% CI for the random pooled effects. Tests of

heterogeneity included I2, τ2, and Cochran Q P value (denoted as P). APACHE-II: Acute Physiology and Chronic Health Evaluation-II; AUROC: area
under the receiver operating curve;.

The results of heterogeneity for the NN models were as follows:

τ2= 0.0043 (95% CI 0.0014-0.2100), I2=99.9% (95% CI
99.8%-99.9%), P<.01. The results of heterogeneity for the
Ensemble models were as follows:

τ2=0.0015 (95% CI 0.0005-0.0223), I2=99.7% (95% CI
99.6%-99.8%), P<.01. The results were synthesized, and the
models are presented in Figure 3 and Figure 4. The results of
heterogeneity for the APACHE-2 models were as follows:

τ2=0.0046 (95% CI 0.0011-0.1681), I2=99.7% (95% CI
99.6%-99.8%), P<.01. The results of heterogeneity for the

SAPS-II models were as follows: τ2=0.0012 (95% CI

0.0005-0.0133), I2=99.2% (95% CI 98.9%-99.4%), P<.01. The
results of heterogeneity for the SOFA models were as follows:

τ2=0.0009 (95% CI 0.0003-0.0461), I2=99.1% (95% CI
98.5%-99.4%), P<.01 (Figures 5-7).

Discussion

Principal Findings
This is the first study to critically appraise the literature
comparing the ML and severity of illness score models to predict
ICU mortality. In the reviewed articles, the AUROC of the ML
models demonstrated very good discrimination. The range of
the ML model AUROC was superior to that of the severity of
illness score AUROC. The meta-analysis demonstrated a high
degree of heterogeneity and variability within and among
studies; therefore, the AUROC performances of the ML and
severity of illness score models cannot be pooled, and the results

cannot be generalized. Every I2 value is >97.7%; most of the
95% CIs of AUROC estimates from various studies did not
overlap within the forest plot, suggesting considerable variation
among AUROC estimates for model types. The CI for AUROC
and the statistical significance of the difference in model
performance were inconsistently reported within studies. The
high heterogeneity came from the diverse study population and
practice location, age of inclusion, primary pathology, medical
management leading to the ICU admission, and time prediction
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window. The heterogenous data management (granularity,
frequency of data input, data management, number of predicting
variables, prediction timeframe, time series analysis, and training
set imbalance) affected model development. It may have resulted
in bias, primarily in studies where it has not been addressed
(Table 2). Generally, authors reported the ML algorithms with
predictive power superior to the clinical scoring system (Table
3); the number of ML models with inferior performance not
reported is unknown, which raises the concern of reporting bias.
The classification measures of performance were inconsistently
reported and required a predefined probability threshold;
therefore, models showed different sensitivity and specificity
based on the chosen threshold. The variations in the prevalence
of the studied outcome secondary to imbalanced data sets make
the interpretation of the accuracy difficult. The models’
calibration cannot be interpreted because of limited reporting.
The external validation process that is necessary to establish
generalization was lacking in 65% (13/20) of studies (Table 2).
The limited and variable performance metrics reported precludes
a comprehensive model performance comparison among studies.
The decision curve analysis and model interpretability
(explainability) that are necessary to promote transparency and
understanding of the model’s predictive reasoning was addressed
in 25% (5/20) of studies. Results of the clinical performance of
ML mortality prediction models as alternatives to the severity
of illness score are scarce.

The reviewed studies inconsistently and incompletely captured
the descriptive characteristics and other method parameters for
ML-based predictive model development. Therefore, we cannot
fully assess the superiority or inferiority of ML-based ICU
mortality prediction compared with traditional models; however,
we recognize the advantage that flexibility in model design
offers in the ICU setting.

Study Limitations
This review included studies that were retrospective analyses
of data sets with known outcome distributions and incorporated
the results of interventions. It is unclear which models were
developed exclusively for research purposes; hence, they were
not validated. We evaluated studies that compared ML-based
mortality prediction models with the severity of illness
score–based models, although these models relied on different
development statistical methods, variable collection times, and
outcome measurement methodologies (SOFA).

The comparison between the artificial intelligence (AI) and
severity of illness score models relies only on AUROC values
as measures of calibration, discrimination, and classification
are not uniformly reported. The random-effects meta-analysis
was limited to externally validated models. Owing to the level
of heterogeneity, the performance results for most AI and
severity of illness score models could not be pooled. The authors
recognize that 25% (5/20) of the articles were published between
2004 and 2015 before the TRIPOD (Transparent Reporting of
a multivariable prediction model for Individual Prognosis or
Diagnosis) recommendations for model development and
reporting [18]; thus, they were not aligned with the guidelines.

The reviewers assessed the models’ ROB and applicability and
were aware of the risk of reporting and publication bias favoring

the ML models. However, the high heterogeneity among studies
prevents an unambiguous interpretation of the funnel plot.

Conclusions and Recommendations
The results of our analysis show that the reporting methodology
is incomplete, nonadherent to the current recommendations,
and consistent with previous observations [16,50]. The lack of
consistent reporting of the measures of the reliability calibration
(Brier score and calibration curve of reliability deviation),
discrimination, and classification of the probabilistic estimates
on external data makes the comparative effectiveness of risk
prediction models challenging and has been noted by other
authors [43].

Predictive models of mortality can substantially increase patient
safety, and by incorporating subtle changes in organ functions
that affect outcomes, these models support the early recognition
and diagnosis of patients who are deteriorating, thus providing
clinicians with additional time to intervene. The heterogeneity
of the classification models that was revealed in detail in this
review underlines the importance of recognizing the models’
ability for temporal and geographical generalization or proper
adaptation to previously unseen data [51]. These concepts apply
to both models; similar to the ML models, severity of illness
score requires periodical updates and customizations to reflect
changes in medical care and regional case pathology over time
[6].

Our findings lead to the following recommendations for model
developers:

1. State whether the developed ML models are intended for
clinical practice

2. If models are intended for clinical applications, provide full
transparency of the clinical setting from which the data are
acquired and all the model development steps; validate the
models externally to ensure generalizability

3. If intended for clinical practice, report models’performance
metrics, which include measures of discrimination,
calibration, and classification, and attach explainer models
to facilitate interpretability

Before using ML and/or severity of illness score models as
decision support systems to guide clinical practice, we make
the following recommendations for clinicians:

1. Be cognizant of the similarities or discrepancies between
the cohort used for model development and the local
practice population, the practice setting, the model’s ability
to function prospectively, and the models’ lead times

2. Acquire knowledge of the model’s performance during
testing in the local practice

3. Ensure that the model is periodically updated to changes
in patient characteristics and/or clinical variables and
adjusted to new clinical practices and therapeutics

4. Confirm that the models’ data are monitored and validated
and that the model’s performance is periodically updated

5. When both the severity of illness score and ML models are
available, determine one model’s superiority and clinical
reliability versus the other through randomized controlled
trials
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6. When ML models guide clinical practice, ensure that the
model makes the correct recommendation for the
right reasons
and consult the explainer model

7. Identify clinical performance metrics that evaluate the
impact of the AI tool on the quality of care, efficiency,
productivity, and patient outcomes and account for
variability in practice

AI developers must search for and clinicians must be cognizant
of the unintended consequences of AI tools; both must
understand human–AI tool interactions. Healthcare organization
administrators must be aware of the safety, privacy, causality,
and ethical challenges when adopting AI tools and recognize
the Food and Drug Administration guiding principles for AI/ML
development [52].
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Abstract

Background: Racial bias is a key concern regarding the development, validation, and implementation of machine learning
(ML) models in clinical settings. Despite the potential of bias to propagate health disparities, racial bias in clinical ML has yet
to be thoroughly examined and best practices for bias mitigation remain unclear.

Objective: Our objective was to perform a scoping review to characterize the methods by which the racial bias of ML has been
assessed and describe strategies that may be used to enhance algorithmic fairness in clinical ML.

Methods: A scoping review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and
Meta-analyses (PRISMA) Extension for Scoping Reviews. A literature search using PubMed, Scopus, and Embase databases, as
well as Google Scholar, identified 635 records, of which 12 studies were included.

Results: Applications of ML were varied and involved diagnosis, outcome prediction, and clinical score prediction performed
on data sets including images, diagnostic studies, clinical text, and clinical variables. Of the 12 studies, 1 (8%) described a model
in routine clinical use, 2 (17%) examined prospectively validated clinical models, and the remaining 9 (75%) described internally
validated models. In addition, 8 (67%) studies concluded that racial bias was present, 2 (17%) concluded that it was not, and 2
(17%) assessed the implementation of bias mitigation strategies without comparison to a baseline model. Fairness metrics used
to assess algorithmic racial bias were inconsistent. The most commonly observed metrics were equal opportunity difference (5/12,
42%), accuracy (4/12, 25%), and disparate impact (2/12, 17%). All 8 (67%) studies that implemented methods for mitigation of
racial bias successfully increased fairness, as measured by the authors’ chosen metrics. Preprocessing methods of bias mitigation
were most commonly used across all studies that implemented them.

Conclusions: The broad scope of medical ML applications and potential patient harms demand an increased emphasis on
evaluation and mitigation of racial bias in clinical ML. However, the adoption of algorithmic fairness principles in medicine
remains inconsistent and is limited by poor data availability and ML model reporting. We recommend that researchers and journal
editors emphasize standardized reporting and data availability in medical ML studies to improve transparency and facilitate
evaluation for racial bias.

(JMIR Med Inform 2022;10(5):e36388)   doi:10.2196/36388

KEYWORDS
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Introduction

Background
In recent years, artificial intelligence (AI) has drawn significant
attention in medicine as machine learning (ML) techniques
show an increasing promise of clinical impact. Driven by
unprecedented data accessibility and computational capacity,
ML has been reported to reach parity with human clinicians in
a variety of tasks [1-3]. ML is poised to benefit patients and
physicians by optimizing clinical workflows, enhancing
diagnosis, and supporting personalized health care interventions
[4-6]. Decision support tools based on ML have already been
implemented across health systems [7,8], and the continued
proliferation of clinical ML will impact patients in all fields of
medicine.

However, despite its appeal, significant barriers remain to the
full realization of clinically integrated ML. Key concerns include
limited model transparency due to the “black box” of ML,
inadequate reporting standards, and the need for prospective
validation in clinical settings [1,9-12]. Racial bias in clinical
ML is a crucial challenge arising from these limitations and
must be addressed to ensure fairness in clinical implementation
of ML. As ML is premised on prediction of novel outcomes
based on previously seen examples, unintended discrimination
is a natural consequence of algorithm development involving
training data that reflect real-world inequities [13].

Equity in health care remains a continual pursuit [14,15]. Bias
and disparities along dimensions of race, age, and gender have
been shown to impact health care access and delivery, evident
in varied settings, such as race correction in clinical algorithms
or clinical trial enrollment and adverse event monitoring [16,17].
Considering the growing body of literature demonstrating
profound adverse impacts of health care inequities on patient
outcomes, mitigation of the numerous and insidious sources of
potential bias in medicine requires remains a critical challenge
to prevent harm to patients [14,17]. Thus, the potential for
algorithms to perpetuate health disparities must be carefully
weighed when incorporating ML models into clinical practice
[18-20].

Algorithmic fairness is an area of ML research guiding model
development with the aim of preventing discrimination involving
protected groups, which are defined by attributes such as race,
gender, religion, physiologic variability, preexisting conditions,
physical ability, and sexual orientation [13,19]. However,
application of algorithmic fairness principles in the medical ML
literature remains nascent [20]. Greater awareness of the
potential harms of bias in clinical ML as well as methods to
evaluate and mitigate them is needed to support clinicians and
researchers across the health care and data science disciplines,
who must evaluate and implement clinical ML models with a

critical eye toward algorithmic fairness. The objective of this
study is to characterize the impact and mitigation of racial bias
in clinical ML to date and describe best practices for research
efforts extending algorithmic fairness to medicine.

Bias and Fairness in Machine Learning
In the setting of algorithmic fairness, bias is present when an
algorithm systematically favors one outcome over another. Bias
may be introduced into an ML algorithm throughout all steps
of the development process, which involves data collection,
data selection, model training, and model deployment [13].
Examples of these sources of bias are shown in Figure 1, and
their definitions are given in Multimedia Appendix 1. Notably,
historical bias may be present even if all steps of model
development are optimally performed. This is of particular
concern in the evaluation of racial bias in clinical ML, given
the presence of existing and historical health care disparities
[14].

Depending on the context, bias in clinical ML may not be
harmful and can even be used to overcome inequality [13]. In
situations in which targeting a well-defined subpopulation above
all others is desirable, an ML algorithm biased toward a
particular group may be used to proactively mitigate existing
disparities. However, bias may arise when ML models designed
to serve the needs of a specific clinical population—such as a
particular community or high-risk demographic—are
inappropriately applied to other populations or when more
general models are applied to specific populations. Additionally,
ML algorithms tend to overfit to the data on which they are
trained, which entails the learning of spurious relationships
present in the training data set and may result in a lack of
generalizability to other settings. As a result, a model that
appears unbiased in one setting may display bias in another.
Thus, bias in clinical ML must be considered in the light of the
context and particular population of interest.

Bias in an ML model may lead to unfairness if not appropriately
evaluated and accounted for. Fairness in ML is achieved when
algorithmic decision-making does not favor an individual or
group based on protected attributes. Research efforts have
emphasized group fairness over individual fairness, given the
need for algorithms that consider existing differences between
populations—whether intrinsic or extrinsic—while preventing
discrimination between groups [13,21]. Crucially, improving
model fairness does not necessarily require compromising
accuracy overall [22]. For instance, an unfair disease-screening
tool might have poor sensitivity for disease detection in one
low-risk population subgroup compared to another with higher
risk; improving the fairness of this tool would entail adjusting
the model to have more similar sensitivities between subgroups.
In this study, we examine the racial bias of clinical ML in terms
of model fairness with respect to race.
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Figure 1. The clinical machine learning development workflow (orange boxes) offers several opportunities (blue boxes) to evaluate and mitigate
potential biases introduced by the data set or model. Preprocessing methods seek to adjust the existing data set to preempt biases resulting from inadequate
data representation or labeling. In-processing methods impose fairness constraints as additional metrics optimized by the model during training or
present data in a structured manner to avoid biases in the sampling process. Postprocessing methods account for model biases by adjusting model outputs
or changing the way they are used.

Assessing and Achieving Fairness in Machine Learning
Group fairness is quantified by evaluating the similarity of a
given statistical metric between predictions made for different
groups. Group fairness indicators encountered in this review
are defined in Table 1. Critical examinations of different
methods for evaluating fairness in ML, both in general
application [13,23,24] and in the context of health care [21],
have been previously described, though applications in clinical
ML remain limited. It is important to note that fairness metrics
may be at odds with one another, depending on the context and
application [25]; thus, evaluation of an appropriate metric, given
the clinical situation of interest, is paramount [26].

Approaches to bias mitigation fall into 3 major categories
(Figure 1): preprocessing, in which inequities in data are
removed prior to model training; in-processing, in which the
model training process is conducted to actively prevent
discrimination; and postprocessing, in which outputs of a trained
model are adjusted to achieve fairness [13]. Preprocessing can
be performed by resampling existing data, incorporating new
data, or adjusting data labels. In-processing methods use
adversarial techniques, impose constraints and regularization,
or ensure fairness of underlying representations during training.
Finally, postprocessing entails group-specific modification of
decision thresholds or outcomes to ensure fairness in the
application of model predictions. Different approaches may be
optimal depending on the setting and stage of model
development.
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Table 1. Group fairness metrics encountered in this review.

DescriptionTerm

Assesses overall classifier performance by measuring the TPRb and FPRc of a classifier at different thresholds.AUROCa

Compares the average of the TPR and FPR for the classification outcome between protected and unprotected groups.Average odds

A measure of accuracy corrected for data imbalance, calculated as the average of sensitivity and specificity for a group.Balanced accuracy

Assesses how well the risk score or probability predictions reflect actual outcomes.Calibration

Measures deviation from statistical parity, calculated as the ratio of the rate of the positive outcome between protected and
unprotected groups. Ideally, the disparate impact is 1.

Disparate impact

For classification tasks in which one outcome is preferred over the other, equal opportunity is satisfied when the preferred

outcome is predicted with equal accuracy between protected and unprotected groups. Ideally, the TPR or FNRd disparity between
groups is 0.

Equal opportunity

The TPR and FPR are equal between protected and unprotected groups.Equalized odds

Compares the error rate of predictions, calculated as the number of incorrect predictions divided by the total number of predictions,
between protected and unprotected groups. Ideally, the error rate disparity between groups is 0.

Error rate

Statistical parity (also known as demographic parity) is satisfied when the rate of positive outcomes is equal between protected
and unprotected groups.

Statistical parity

aAUROC: area under the receiver operating characteristic curve.
bTPR: true-positive rate.
cFPR: false-positive rate.
dFNR: false-negative rate.

Methods

Study Design
We performed a scoping review of racial bias and algorithmic
fairness in clinical ML models in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) 2020 guidelines [27] and PRISMA Extension for
Scoping Reviews [28]. The review protocol was not registered
and is available upon request to the authors. The PubMed
MEDLINE (National Library of Medicine), Scopus (Elsevier),
and Embase (Elsevier) databases were queried by combining
terminology pertaining to ML, race, and bias as keywords.
Additional records were identified using Google Scholar search.
The exact search strategy is detailed in Multimedia Appendix
1.

Study Selection
After duplicate record removal, studies were initially screened
by title and abstract and then screened for final inclusion by full
text review. All screening was performed independently by 2
reviewers. Studies were selected based on the following
inclusion criteria: peer-reviewed original research, English
language, full text available, development or evaluation of a
clinically relevant ML model, and evaluation of bias of the
model regarding racial or ethnic groups. Studies other than
full-length papers were excluded. ML was defined as a computer
algorithm that improves automatically via training on data [4].
Per PRISMA guidelines, any disagreements regarding study
inclusion based on these criteria were reconciled by discussion.

Data Abstraction
Relevant data were abstracted from included papers by 1
reviewer. Data of interest included the clinical objective of ML
models, identification of racial bias, impact of racial bias,

metrics for bias assessment, mitigation of racial bias, methods
for bias mitigation, data set size, data source, ML model
architecture, and availability of computer code used for data
preparation and ML model development. The methodological
quality of included studies was not assessed, given the scoping
nature of this review [28].

Results

Study Characteristics
The literature search was performed on September 8, 2021, and
identified 635 records (Figure 2). Of these, 26 (4.1%) full-text
papers were reviewed and 12 (46.2%) were included in the final
analysis [29-40].

Characteristics of the included studies are summarized in Table
2. Data sets and models used are summarized in Multimedia
Appendix 1. Of the 12 studies, 3 (25%) were published in 2019,
5 (42%) in 2020, and 4 (33%) in 2021. In addition, 9 (75%)
studies originated from the United States, 1 (8%) from Canada,
1 (8%) from Sweden, and 1 (8%) from both the United Kingdom
and Nigeria. Applications of ML were varied and involved
diagnosis, outcome prediction, and clinical score prediction
performed on data sets including images, diagnostic studies,
clinical text, and clinical variables. Furthermore, 1 (8%) study
described a model in routine clinical use [36], 2 (17%) examined
prospectively validated clinical models [35,39], and the
remaining 9 (75%) described internally validated models.

Of the 12 studies, 5 (42%) published code used for analysis, 3
(25%) made model development code available [34,36,39], 2
(17%) published bias analysis code [33,36], 1 (8%) published
code relevant to debiasing [30], and 1 (8%) published data
selection code [33]. In addition, 1 (8%) study used publicly
available code for analysis [31], and code was specified as
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available upon request in 1 (8%) study [35]. Bias of an ML
model was evaluated using an external database in 8 (67%)
studies [30-34,37,38], single-institutional data in 3 (25%) studies
[35,36,40], and data from 2 institutions in 2 (17%) studies
[29,39]. No institutional data sets were published. Convolutional
neural networks (CNNs) were the predominant ML modeling
technique used (5/12, 42%), followed by logistic regression
(3/12, 25%), least absolute shrinkage and selection operator
(LASSO; 2/12, 17%), and extreme gradient boosting (XGBoost;
2/12, 17%). In addition, 3 (25%) studies evaluated models
adapted from existing neural network architectures: ResNet50
in 2 (17%) studies [29,32] and DenseNet in the other [38].

Of the 12 studies, 9 (75%) evaluated a model developed
internally by the same researchers [29-33,35,37,39,40], 2 (17%)
evaluated a model developed externally by separate researchers
[36,38], and 1 (8%) evaluated both internally and externally
developed models [34]. In addition, 8 (67%) studies concluded
that racial bias was present [29,32-34,36-39], 2 (17%) concluded
that bias was not present [35,40], and 2 (17%) assessed the
implementation of bias mitigation strategies without comparison
to a baseline model [30,31]. A variety of methods were used to
assess the presence of algorithmic racial bias: 3 (25%) studies
used multiple metrics to assess fairness [31,34,37], while the
remaining 9 (75%) used a single metric. The most commonly

used fairness metrics were equal opportunity difference [41],
defined either as the difference in the true-positive rate (TPR)
or the false-negative rate (FNR) between subgroups (5/12, 42%)
[30,31,38,39]; accuracy (4/12, 25%) [29,31,32,34]; and disparate
impact (2/12, 17%) [31,37].

The approaches and efficacy of bias mitigation methods used
in the studies evaluated are summarized in Table 3. All 8 (67%)
studies that implemented methods for mitigation of racial bias
successfully increased fairness, as measured by the authors’
chosen metrics [29-32,34,36,37,39]. Preprocessing bias
mitigation was the most commonly used strategy (7/13, 54%).
In addition, 1 (8%) study removed race information from the
training data, though superior improvements in disparate impact
and equal opportunity difference were achieved by reweighing
[37]. Furthermore, 2 (17%) studies performed in-processing
bias mitigation using the prejudice remover regularizer [42] or
adversarial debiasing during model training [31,37]. However,
in both studies, in-processing was ineffective in reducing bias
and was outperformed by other bias mitigation methods. Finally,
1 (8%) study evaluated multiple types of ML models for bias
during the development process, concluding that a LASSO
model was preferable to conditional random forest, gradient
boosting, and ensemble models for racially unbiased dementia
ascertainment [34].

Figure 2. PRISMA flowchart of study inclusion. ML: machine learning; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-analyses.
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Table 2. Study characteristics.

Protected classWas racial bias
mitigated?

How was the AIa model
biased?

Was racial bias
identified?

How was fairness
evaluated?

Clinical objectiveAuthor (year)

Dark-skinned pa-
tients, light-
skinned patients

YesPoor accuracy of models
trained on a Caucasian
data set and validated on
an African data set and
vice versa

YesAccuracyIdentification of im-
ages of burns vs
healthy skin

Abubakar et al
(2020) [29]

Non-White pa-
tients

YesN/AN/AcEqual opportunity dif-

ference (FNRb dispar-
ity)

Intensive care unit
(ICU) mortality predic-
tion

Allen et al
(2020) [30]

Black patientsYesN/AN/ABalanced accuracy,
statistical parity, dis-
parate impact, average
odds, equal opportuni-
ty

Prediction of future
health care expendi-
tures of individual pa-
tients

Briggs and
Hollmén (2020)
[31]

Dark-skinned pa-
tients

YesLower diagnostic accura-
cy in darker-skinned indi-
viduals compared to
lighter-skinned individu-
als

YesAccuracyDiagnosis of diabetic
retinopathy from fun-
dus photography

Burlina et al
(2021) [32]

Non-White pa-
tients

NoDifferences in error rates
in ICU mortality between
racial groups

YesError rate (0-1 loss)ICU mortality predic-
tion, psychiatric read-
mission prediction

Chen et al
(2019) [33]

Hispanic, non-His-
panic Black pa-
tients

YesExisting algorithms
varying in sensitivity and
specificity between
race/ethnicity groups

YesSensitivity, specifici-
ty, accuracy

Dementia status classi-
fication

Gianattasio et al
(2020) [34]

Non-White pa-
tients

NoN/ANoAUROCdPrediction of left ven-
tricular ejection frac-
tion ≤35% from the
electrocardiogram
(ECG)

Noseworthy et
al (2020) [35]

Black patientsYesBlack patients with a
higher burden than White
patients at the same algo-
rithmic risk score

YesCalibrationPrediction of future
health care expendi-
tures of individual pa-
tients

Obermeyer et al
(2019) [36]

Black patientsYesBlack women with a
worse health status than
White women at the
same predicted risk level

YesDisparate impact,
equal opportunity dif-

ference (TPRe dispari-
ty)

Prediction of postpar-
tum depression and
postpartum mental
health service utiliza-
tion

Park et al
(2021) [37]

Non-White pa-
tients

NoGreater TPR disparity in
Hispanic patients

YesEqual opportunity dif-
ference (TPR dispari-
ty)

Diagnostic label pre-
diction from chest X-
rays

Seyyed-Kalan-
tari et al (2021)
[38]

Black patientsYesGreater FNR in the Black
subgroup than in the
White subgroup

YesEqual opportunity dif-
ference (FNR dispari-
ty)

Identification of opi-
oid misuse from clini-
cal notes

Thompson et al
(2021) [39]

Non-White pa-
tients

NoN/ANoRegression analysis of
the impact of the race
variable on the candi-
dacy score

Assignment of surgi-
cal candidacy score
for patients with
epilepsy using clinical
notes

Wissel et al
(2019) [40]

aAI: artificial intelligence.
bFNR: false-negative rate.
cN/A: not applicable.
dAUROC: area under the receiver operating characteristic curve.
eTPR: true-positive rate.
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Table 3. Bias mitigation methods among reviewed studies.

EffectivenessDescription of strategies used

Preprocessing

Reweighing training data • An equal opportunity difference (FNRa difference) of 0.016 (P=.20) was achieved for intensive care
unit (ICU) mortality prediction [33].

• The mean fairness measure (average of statistical parity difference, disparate impact measure, average
odds difference, and equal opportunity difference) improved to 0.06 from 0.12 for prediction of health
care costs [34].

• Disparate impact improved from 0.31 to 0.79, and the equal opportunity (TPRb) difference improved
from –0.19 to 0.02 for prediction of postpartum depression development; prediction of mental health
service use in pregnant individuals improved from 0.45 to 0.85 and –0.11 to –0.02, respectively [40].

Combining data sets to increase
heterogeneity

• The accuracy of skin burn identification increased to 99.5% using a combined data set compared to
83.4% and 87.5% when trained on an African and evaluated on a Caucasian data set and vice versa [32].

Generating synthetic minority
class data

• Disparity in diabetic retinopathy diagnostic accuracy improved from 12.5% to 7.5% and 0.5% when
augmenting with retina appearance-optimized images and diabetic retinopathy status-optimized images
created with a generative adversarial network, respectively [35].

Adjusting label selection • Improved congruence in health outcomes between groups after developing models to predict other labels
for health status besides financial expenditures [39].

Removing race information from
training data

• Disparate impact improved from 0.31 to 0.61 and equal opportunity (TPR) difference improved from
–0.19 to –0.05 for prediction of postpartum depression development; respective improvements from
0.45 to 0.63 and –0.11 to –0.04 for prediction of mental health service use in pregnant individuals [40].

In-processing

Use of a regularizer during training • Disparate impact improved, but accuracy and the equal opportunity (TPR) difference decreased when
implementing the prejudice remover regularizer in prediction of postpartum depression in pregnant in-
dividuals [40].

Adversarial debiasing • The mean fairness measure (average of statistical parity difference, disparate impact measure, average
odds difference, and equal opportunity difference) worsened to 0.07 from 0.05 for prediction of health
care costs [34].

Postprocessing

Calibration • The equal opportunity (FNR) difference improved from 0.15 to 0.03 for identification of opioid misuse
[42].

Reject option-based classification • The mean fairness measure (average of statistical parity difference, disparate impact measure, average
odds difference, and equal opportunity difference) improved to 0.09 from 0.15 for prediction of health
care costs [34].

Varying cut-point selection • The equal opportunity (FNR) difference improved from 0.15 to 0.04 for identification of opioid misuse
[42].

• The congruence in sensitivity and specificity between groups improved without reduction in accuracy
for classification of dementia status [37].

aFNR: false-negative rate.
bTPR: true-positive rate.

Discussion

Principal Findings
Given the pressing issue of equity in health care and the rapid
development of medical ML applications, racial bias must be
thoroughly evaluated in clinical ML models in order to protect
patient safety and prevent the algorithmic encoding of inequality.
Algorithmic fairness is a relatively novel field within the
discipline of ML, and its application to medical ML remains
nascent. In our evaluation of the literature describing mitigation

of racial bias in clinical ML, we identified a variety of bias
mitigation methods, which when applied successfully increase
fairness and demonstrate the feasibility and importance of racial
bias evaluation in the medical ML development process. Based
on our findings, there is a need for heightened awareness of
algorithmic fairness concepts, increased data availability, and
improved reporting transparency in medical ML development
to ensure fairness in clinical ML.
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Impact of Racial Bias in Clinical Machine Learning
The broad scope of medical ML applications and potential
patient harms following deployment across health care systems
demand an increased emphasis on evaluation and mitigation of
racial bias in clinical ML. Screening and outcome prediction
tasks are commonly examined among reviewed studies. Racial
bias in such tasks is particularly concerning as decisions made
from flawed models trained on data, which reflect historical
inequities in disease diagnosis and care delivery, may perpetuate
inequalities by shaping clinical decision-making [14,19].
Evaluation and mitigation of potential biases must occur
throughout the model development life cycle to protect patients
from algorithmic unfairness.

Reviewed studies frequently identified racial bias in clinical
ML models. Notably, 1 algorithm in clinical use for prediction
of future health care expenditures was found to discriminate
against Black patients when compared to White patients,
potentially contributing to disparities in health care delivery
[36]. Other ML models that possibly demonstrate racial bias
remain in preclinical states of development. Several studies
have explicitly studied racial bias against Black patients
compared to White patients. For example, 2 studies
demonstrated that ML algorithms predicted similar risk scores
in Black and White patients, though the Black patients were
less healthy [36,37], and another demonstrated that an opioid
misuse classifier had a higher FNR for Black patients [39].
Disparities in mortality prediction and X-ray diagnosis were
identified in other races and ethnic groups [33,34,38], as well
as disparities in burn identification and diabetic retinopathy
identification in dark-skinned versus lighter-skinned patients
[29,32]. Although conclusions cannot be drawn regarding the
prevalence of racial bias among published clinical ML studies,
the broad scope of clinical ML models susceptible to racial bias
in this review exposes the potential of racial bias encoded in
ML models to negatively impact patients across all aspects of
health care.

Assessment of Racial Bias
Clinical ML models must be carefully evaluated for potential
biases imposed upon patients. Different fairness metrics may
highlight different aspects of fairness relevant to a particular
clinical setting; therefore, evaluation of all appropriate fairness
metrics is needed when evaluating for potential bias. For
example, calibration is particularly important to models
performing risk prediction, while equal opportunity and
disparate impact are relevant to screening and diagnostic
settings. Inconsistent choice of fairness metrics among studies
included in this review shows the need for a more standardized
assessment process of racial bias in clinical ML. Some studies
assessed fairness using metrics such as accuracy, area under the
receiver operating characteristic curve (AUROC), and
correlation of outcome with race, which may not sufficiently
evaluate fairness [21]. Moreover, there are inherent trade-offs
to the use of different fairness metrics [25], and static fairness
criteria may even lead to delayed harms in the long term [43].

Obermeyer et al [36] present an example of using model
calibration in conjunction with varied outcome labels to
successfully de-bias an algorithm used to manage population

health, and case studies have examined trade-offs of bias
evaluation metrics in other settings, such as criminal justice
[44], which may also serve as useful frameworks for clinical
ML researchers. Use of “causal models,” which allow for closely
tailored examination of discriminatory relationships in data, is
another opportunity for investigation and mitigation of biased
model behavior [45]. An increased focus from medical journals
on bias evaluation checklists applicable to clinical ML models,
such as the Prediction Model Risk of Bias Assessment Tool
(PROBAST), is desirable to further emphasize vigilance
regarding biased ML models [46]. Ultimately, more thorough
analysis of fairness criteria in clinical ML will allow researchers
to better contextualize and act on potential biases.

Clinical ML researchers should also be aware of potential
barriers to ML fairness when adapting pretrained models and
data representations. For instance, deep neural networks
performing image processing tasks are frequently pretrained on
large data sets and then fine-tuned to adapt to other tasks.
Methods for removal of spurious variations from such models
have been described, such as joint learning and unlearning
algorithms, which account for contributions of undesirable
variations during model development [47]. Language models
trained in an unsupervised manner on vast amounts of text may
learn biases present in training data [48]. Similarly, biases have
been described in word embeddings [49], which are vectorized
word representations used as inputs to ML models. Identification
of bias in embeddings raises concerns about performance
disparities in clinical applications of natural language processing
if the bias is not screened for and appropriately addressed [50].
The lack of interpretability often inherent to ML models
heightens the need for thorough evaluation of their potential
biases.

Creating Fair Models
Preprocessing and postprocessing methods of bias mitigation
were successfully implemented among the publications reviewed
for this study. Postprocessing methods appear to be easier to
implement and may allow tailoring of imperfect models to new
settings [51]. However, using preprocessing and in-processing
to create unbiased data sets and algorithms at the outset of model
development is desirable to facilitate the creation of fair,
generalizable models. Continued evaluation of these techniques
in clinical contexts is needed to inform best practices.

As data quality is generally the limiting factor to development
of robust ML models, improvements to data generally translates
directly into model performance improvements.
Supplementation of data sets using generative models to
synthesize patient data may be a viable approach to address data
limitations. A study by Burlina et al [32] illustrated this fact by
using a generative adversarial network to synthesize fundoscopy
images while reducing class imbalance. However, though data
limitations may contribute to disparities in model performance
across racial groups, algorithmic unfairness may arise from
other underlying biases in data as well [38]. Publications
included in this review demonstrated improved fairness in ML
models using multisource data sets, which may mitigate biases
in the data collection process of single-source data sets [29,38].
Moreover, care must also be taken to ensure that
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multi-institutional data sets are appropriately prepared and used
due to evidence that site-specific signatures contribute to bias
in ML models [52]. Finally, protected attributes should not
simply be ignored during model development, an approach
called “fairness through unawareness,” as models may be able
to infer protected group membership from other data features.
Additionally, omission of protected attributes may cause bias
if a legitimate relationship exists between the attribute and
outcome of interest [19].

Several online resources aggregate examples and code
implementations of published fairness evaluation and bias
mitigation methods. Some examples of these resources include
Aequitas, Artificial Intelligence Fairness 360 (IBM, Armonk,
NY, United States), and Fairlearn (Microsoft Corporation,
Redmond, WA, United States) [53,54]. Additionally,
TensorFlow, a popular deep learning framework, includes a
tool for evaluation of fairness indicators. Work by Briggs et al
[31] highlights the feasibility and positive impact of standardized
methodologies for addressing bias using a variety of
performance indicators and mitigation techniques. Greater
adoption of these and other strategies in fairness evaluation and
bias mitigation will help set standard benchmarks for fairness
in clinical ML.

The Role of Transparency and Data Availability
ML is often characterized as a black box due to its limited
interpretability, which is particularly problematic when
attempting to address and prevent racial biases in clinical ML
[55]. Although research in recent years has yielded significant
progress in explainable ML methods [56], publication of model
development code and data sets remains the most
straightforward approach to transparency. Regrettably, medical
ML research falls far short of these standards [57,58]. Code and
data availability was inconsistent among the publications
included in this review, and the majority of studies evaluated
racial bias using publicly available data sets, including the
Medical Information Mart for Intensive Care (MIMIC)
[30,33,38], Kaggle EyePACS [32], and Dissecting Bias [31].
Considering the vast number of private, institutional data sets
used to develop clinical ML models, there is a crucial need for
future publications to maximize transparency, ensuring the
ability to evaluate for fairness in clinical ML.

Increased publication of institutional data sets would facilitate
the interdisciplinary collaboration needed to translate concepts
of fairness in ML into the realm of medicine. Improved
availability of data sets would also enable researchers to more
easily validate existing models and perform fairness evaluations
on different patient populations, translating benefits of ML
across populations. Additionally, collaboration between
institutions to maintain diverse, broadly representative data sets
would facilitate the development of generalizable models free
of the biases inherent to single-institutional data. However,
ethical and patient confidentiality considerations may limit
publication of clinical data. In contrast, publication of code and
trained models, which are infrequently made available in the
clinical ML literature [1,59], would similarly allow researchers
to assess clinical ML on diverse populations without limitations
imposed by patient privacy standards or institutional

data-sharing regulations. Another possible paradigm to mitigate
bias by training on diversely representative data sets while
maintaining data privacy is federated learning, which involves
piecewise training of an ML model on separate data sets and
removes the need for data sharing during model development
[60].

Moreover, increased emphasis on fairness in clinical ML through
adoption of model development and reporting guidelines is
needed [59,61]. Reporting guidelines for medical ML studies
are inconsistently adopted, due in part to a lack of editorial
policies among medical journals [1]. Moreover, reporting of
demographic information needed to assess biases due to data
sets is lacking [62,63]. The proposed Minimum Information for
Medical AI Reporting guideline addresses these concerns by
recommending that clinical ML studies report information
necessary for understanding potential biases, including relevant
demographic information of patient data used for model
development [64]. In conjunction with upcoming reporting
guidelines tailored to clinical ML [61], efforts to improve
reporting quality will contribute to a standardized framework
for fairness evaluation and bias mitigation in clinical ML.

Limitations
As with any literature review, there are limitations to this study.
Given the heterogeneity of terminology used to describe ML
and racial bias, our search may have overlooked relevant
publications. Additionally, we were limited by publication bias
as we excluded publications other than full-length manuscripts,
and researchers may be less likely to publish results confirming
the absence of racial bias in a clinical ML model. Finally, the
novelty of ML fairness in medicine and the resulting paucity
of literature on this topic, as well as the breadth of relevant
subjects encompassed, prevented us from obtaining the quantity
and quality of data required to perform a systematic review or
meta-analysis. In particular, the lack of standardized methods
to evaluate and mitigate bias precludes any definitive
conclusions regarding their suitability in clinical ML
applications. However, the scoping review provides a
methodological framework for critical evaluation of a previously
uncharacterized area of research and draws attention to the lack
of standardization regarding racial bias mitigation in clinical
ML development. We emphasize the need for further work to
build on this important aspect of the medical ML literature.

Conclusion
Algorithmic fairness in clinical ML is a primary concern in its
ethical adoption. As medical ML applications continue to
approach widespread adoption across a multitude of clinical
settings, potential racial biases in ML models must be
proactively evaluated and mitigated in order to prevent patient
harm and propagation of inequities in health care. The adoption
of algorithmic fairness principles in medicine remains nascent,
and further research is needed to standardize best practices for
fairness evaluation and bias mitigation. We recommend that
researchers and journal editors emphasize standardized reporting
and data availability in ML studies to improve transparency and
facilitate future research. Continued interrogation of biases in
clinical ML models is needed to ensure fairness and maximize
the benefits of ML in medicine.

JMIR Med Inform 2022 | vol. 10 | iss. 5 |e36388 | p.51https://medinform.jmir.org/2022/5/e36388
(page number not for citation purposes)

Huang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


 

Authors' Contributions
No part of this work has been previously published.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Supplementary data file containing bias definitions, search strategy, and a table with study data set characteristics.
[PDF File (Adobe PDF File), 215 KB - medinform_v10i5e36388_app1.pdf ]

References
1. Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, Harvey H, et al. Artificial intelligence versus clinicians:

systematic review of design, reporting standards, and claims of deep learning studies. BMJ 2020 Mar 25;368:m689 [FREE
Full text] [doi: 10.1136/bmj.m689] [Medline: 32213531]

2. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system
for breast cancer screening. Nature 2020 Jan 01;577(7788):89-94. [doi: 10.1038/s41586-019-1799-6]

3. Shen J, Zhang CJP, Jiang B, Chen J, Song J, Liu Z, et al. Artificial intelligence versus clinicians in disease diagnosis:
systematic review. JMIR Med Inform 2019 Aug 16;7(3):e10010 [FREE Full text] [doi: 10.2196/10010] [Medline: 31420959]

4. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019 Jan 7;25(1):44-56.
[doi: 10.1038/s41591-018-0300-7] [Medline: 30617339]

5. Abul-Husn NS, Kenny EE. Personalized medicine and the power of electronic health records. Cell 2019 Mar 21;177(1):58-69
[FREE Full text] [doi: 10.1016/j.cell.2019.02.039] [Medline: 30901549]

6. Obermeyer Z, Emanuel EJ. Predicting the future: big data, machine learning, and clinical medicine. N Engl J Med 2016
Sep 29;375(13):1216-1219 [FREE Full text] [doi: 10.1056/NEJMp1606181] [Medline: 27682033]

7. Domingo J, Galal G, Huang J, Soni P, Mukhin V, Altman C, et al. Preventing delayed and missed care by applying artificial
intelligence to trigger radiology imaging follow-up. NEJM Catalyst 2022 Mar 16;3(4). [doi: 10.1056/cat.21.0469]

8. Avati A, Jung K, Harman S, Downing L, Ng A, Shah NH. Improving palliative care with deep learning. BMC Med Inform
Decis Mak 2018 Dec 12;18(Suppl 4):122 [FREE Full text] [doi: 10.1186/s12911-018-0677-8] [Medline: 30537977]

9. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in
medicine. Nat Med 2019 Jan;25(1):30-36 [FREE Full text] [doi: 10.1038/s41591-018-0307-0] [Medline: 30617336]

10. Wilkinson J, Arnold KF, Murray EJ, van Smeden M, Carr K, Sippy R, et al. Time to reality check the promises of machine
learning-powered precision medicine. Lancet Digital Health 2020 Dec;2(12):e677-e680. [doi:
10.1016/s2589-7500(20)30200-4]

11. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial
intelligence. BMC Med 2019 Oct 29;17(1):195 [FREE Full text] [doi: 10.1186/s12916-019-1426-2] [Medline: 31665002]

12. Challen R, Denny J, Pitt M, Gompels L, Edwards T, Tsaneva-Atanasova K. Artificial intelligence, bias and clinical safety.
BMJ Qual Saf 2019 Mar 12;28(3):231-237 [FREE Full text] [doi: 10.1136/bmjqs-2018-008370] [Medline: 30636200]

13. Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. A survey on bias and fairness in machine learning. ACM
Comput Surv 2021 Jul;54(6):1-35. [doi: 10.1145/3457607]

14. Bailey ZD, Feldman JM, Bassett MT. How structural racism works: racist policies as a root cause of U.S. racial health
inequities. N Engl J Med 2021 Feb 25;384(8):768-773. [doi: 10.1056/nejmms2025396]

15. Rodriguez JA, Clark CR, Bates DW. Digital health equity as a necessity in the 21st Century Cures Act era. JAMA 2020
Jun 16;323(23):2381-2382. [doi: 10.1001/jama.2020.7858] [Medline: 32463421]

16. Unger JM, Vaidya R, Albain KS, LeBlanc M, Minasian LM, Gotay CC, et al. Sex differences in risk of severe adverse
events in patients receiving immunotherapy, targeted therapy, or chemotherapy in cancer clinical trials. JCO 2022 May
01;40(13):1474-1486. [doi: 10.1200/jco.21.02377]

17. Vyas DA, Eisenstein LG, Jones DS. Hidden in plain sight: reconsidering the use of race correction in clinical algorithms.
N Engl J Med 2020 Aug 27;383(9):874-882 [FREE Full text] [doi: 10.1056/NEJMms2004740] [Medline: 32853499]

18. Paulus JK, Kent DM. Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may
increase health disparities. NPJ Digit Med 2020 Jul 30;3(1):99 [FREE Full text] [doi: 10.1038/s41746-020-0304-9] [Medline:
32821854]

19. Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring fairness in machine learning to advance health equity.
Ann Intern Med 2018 Dec 04;169(12):866. [doi: 10.7326/m18-1990]

20. Chen IY, Pierson E, Rose S, Joshi S, Ferryman K, Ghassemi M. Ethical machine learning in healthcare. Annu Rev Biomed
Data Sci 2021 Jul 20;4(1):123-144. [doi: 10.1146/annurev-biodatasci-092820-114757] [Medline: 34396058]

JMIR Med Inform 2022 | vol. 10 | iss. 5 |e36388 | p.52https://medinform.jmir.org/2022/5/e36388
(page number not for citation purposes)

Huang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v10i5e36388_app1.pdf&filename=913eebeab355f3bafc031318200c7560.pdf
https://jmir.org/api/download?alt_name=medinform_v10i5e36388_app1.pdf&filename=913eebeab355f3bafc031318200c7560.pdf
http://www.bmj.com/lookup/pmidlookup?view=long&pmid=32213531
http://www.bmj.com/lookup/pmidlookup?view=long&pmid=32213531
http://dx.doi.org/10.1136/bmj.m689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32213531&dopt=Abstract
http://dx.doi.org/10.1038/s41586-019-1799-6
https://medinform.jmir.org/2019/3/e10010/
http://dx.doi.org/10.2196/10010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31420959&dopt=Abstract
http://dx.doi.org/10.1038/s41591-018-0300-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30617339&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0092-8674(19)30222-3
http://dx.doi.org/10.1016/j.cell.2019.02.039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30901549&dopt=Abstract
http://europepmc.org/abstract/MED/27682033
http://dx.doi.org/10.1056/NEJMp1606181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27682033&dopt=Abstract
http://dx.doi.org/10.1056/cat.21.0469
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-018-0677-8
http://dx.doi.org/10.1186/s12911-018-0677-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30537977&dopt=Abstract
http://europepmc.org/abstract/MED/30617336
http://dx.doi.org/10.1038/s41591-018-0307-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30617336&dopt=Abstract
http://dx.doi.org/10.1016/s2589-7500(20)30200-4
https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-019-1426-2
http://dx.doi.org/10.1186/s12916-019-1426-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31665002&dopt=Abstract
http://qualitysafety.bmj.com/lookup/pmidlookup?view=long&pmid=30636200
http://dx.doi.org/10.1136/bmjqs-2018-008370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30636200&dopt=Abstract
http://dx.doi.org/10.1145/3457607
http://dx.doi.org/10.1056/nejmms2025396
http://dx.doi.org/10.1001/jama.2020.7858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32463421&dopt=Abstract
http://dx.doi.org/10.1200/jco.21.02377
http://paperpile.com/b/Mk3QOF/QN3U
http://dx.doi.org/10.1056/NEJMms2004740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32853499&dopt=Abstract
https://doi.org/10.1038/s41746-020-0304-9
http://dx.doi.org/10.1038/s41746-020-0304-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32821854&dopt=Abstract
http://dx.doi.org/10.7326/m18-1990
http://dx.doi.org/10.1146/annurev-biodatasci-092820-114757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34396058&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


21. Fletcher RR, Nakeshimana A, Olubeko O. Addressing fairness, bias, and appropriate use of artificial intelligence and
machine learning in global health. Front Artif Intell 2020;3:561802 [FREE Full text] [doi: 10.3389/frai.2020.561802]
[Medline: 33981989]

22. Wick M, Panda S, Tristan J. Unlocking fairness: a trade-off revisited. 2019 Presented at: Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems; December 2019; Vancouver, BC,
Canada URL: https://jtristan.github.io/papers/neurips19.pdf

23. Verma S, Rubin J. Fairness definitions explained. 2018 Presented at: Proceedings of the International Workshop on Software
Fairness; 2018; Gothenburg, Sweden. [doi: 10.1145/3194770.3194776]

24. Friedler S, Scheidegger C, Venkatasubramanian S, Choudhary S, Hamilton E, Roth D. A comparative study of
fairness-enhancing interventions in machine learning. 2019 Presented at: Proceedings of the Conference on Fairness,
Accountability, Transparency; 2019; Atlanta, GA. [doi: 10.1145/3287560.3287589]

25. Kleinberg J, Mullainathan S, Raghavan M. Inherent trade-offs in the fair determination of risk scores. 2017 Presented at:
8th Innovations in Theoretical Computer Science Conference (ITCS 2017); January 2017; Berkeley, CA. [doi:
10.4230/LIPIcs.ITCS.2017.43]

26. McCradden MD, Joshi S, Mazwi M, Anderson JA. Ethical limitations of algorithmic fairness solutions in health care
machine learning. Lancet Digital Health 2020 May;2(5):e221-e223. [doi: 10.1016/s2589-7500(20)30065-0]

27. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated
guideline for reporting systematic reviews. BMJ 2021 Mar 29;372:n71 [FREE Full text] [doi: 10.1136/bmj.n71] [Medline:
33782057]

28. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews
(PRISMA-ScR): checklist and explanation. Ann Intern Med 2018 Sep 04;169(7):467. [doi: 10.7326/M18-0850]

29. Abubakar A, Ugail H, Bukar AM. Assessment of human skin burns: a deep transfer learning approach. J Med Biol Eng
2020 Apr 24;40(3):321-333. [doi: 10.1007/s40846-020-00520-z]

30. Allen A, Mataraso S, Siefkas A, Burdick H, Braden G, Dellinger RP, et al. A racially unbiased, machine learning approach
to prediction of mortality: algorithm development study. JMIR Public Health Surveill 2020 Oct 22;6(4):e22400 [FREE
Full text] [doi: 10.2196/22400] [Medline: 33090117]

31. Briggs E, Hollmén J. Mitigating discrimination in clinical machine learning decision support using algorithmic processing
techniques. In: Appice A, Tsoumakas G, Manolopoulos Y, Matwin S, editors. International Conference on Discovery
Science. Vol 12323. Cham: Springer International; 2020:19-33.

32. Burlina P, Joshi N, Paul W, Pacheco KD, Bressler NM. Addressing artificial intelligence bias in retinal diagnostics. Transl
Vis Sci Technol 2021 Feb 05;10(2):13 [FREE Full text] [doi: 10.1167/tvst.10.2.13] [Medline: 34003898]

33. Chen I, Szolovits P, Ghassemi M. Can AI help reduce disparities in general medical and mental health care? AMA J Ethics
2019 Feb 01;21(2):E167-E179 [FREE Full text] [doi: 10.1001/amajethics.2019.167] [Medline: 30794127]

34. Gianattasio K, Ciarleglio A, Power M. Development of algorithmic dementia ascertainment for racial/ethnic disparities
research in the US Health and Retirement Study. Epidemiology (Cambridge, Mass) 2020;31(1):126-133. [doi:
10.1097/ede.0000000000001101]

35. Noseworthy PA, Attia ZI, Brewer LC, Hayes SN, Yao X, Kapa S, et al. Assessing and mitigating bias in medical artificial
intelligence: the effects of race and ethnicity on a deep learning model for ECG analysis. Circ Arrhythm Electrophysiol
2020 Mar;13(3):e007988 [FREE Full text] [doi: 10.1161/CIRCEP.119.007988] [Medline: 32064914]

36. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of
populations. Science 2019 Oct 25;366(6464):447-453. [doi: 10.1126/science.aax2342] [Medline: 31649194]

37. Park Y, Hu J, Singh M, Sylla I, Dankwa-Mullan I, Koski E, et al. Comparison of methods to reduce bias from clinical
prediction models of postpartum depression. JAMA Netw Open 2021 Apr 01;4(4):e213909 [FREE Full text] [doi:
10.1001/jamanetworkopen.2021.3909] [Medline: 33856478]

38. Seyyed-Kalantari L, Liu G, McDermott M, Chen I, Ghassemi M. CheXclusion: fairness gaps in deep chest X-ray classifiers.
Pacific Symp Biocomput 2021;26:232-243. [doi: 10.1142/9789811232701_0022]

39. Thompson H, Sharma B, Bhalla S, Boley R, McCluskey C, Dligach D, et al. Bias and fairness assessment of a natural
language processing opioid misuse classifier: detection and mitigation of electronic health record data disadvantages across
racial subgroups. J Am Med Inform Assoc 2021 Oct 12;28(11):2393-2403 [FREE Full text] [doi: 10.1093/jamia/ocab148]
[Medline: 34383925]

40. Wissel BD, Greiner HM, Glauser TA, Mangano FT, Santel D, Pestian JP, et al. Investigation of bias in an epilepsy machine
learning algorithm trained on physician notes. Epilepsia 2019 Sep 23;60(9):e93-e98 [FREE Full text] [doi: 10.1111/epi.16320]
[Medline: 31441044]

41. Hardt M, Price E, Srebro N. Equality of opportunity in supervised learning. 2016 Presented at: Advances in Neural
Information Processing Systems 29: Annual Conference on Neural Information Processing Systems; December 2016;
Barcelona, Spain.

42. Kamishima T, Akaho S, Asoh H, Sakuma J. Fairness-aware classifier with prejudice remover regularizer. 2012 Presented
at: Joint European Conference on Machine Learning and Knowledge Discovery in Databases; September 2012; Berlin,
Heidelberg. [doi: 10.1007/978-3-642-33486-3_3]

JMIR Med Inform 2022 | vol. 10 | iss. 5 |e36388 | p.53https://medinform.jmir.org/2022/5/e36388
(page number not for citation purposes)

Huang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://doi.org/10.3389/frai.2020.561802
http://dx.doi.org/10.3389/frai.2020.561802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33981989&dopt=Abstract
https://jtristan.github.io/papers/neurips19.pdf
http://dx.doi.org/10.1145/3194770.3194776
http://dx.doi.org/10.1145/3287560.3287589
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.43
http://dx.doi.org/10.1016/s2589-7500(20)30065-0
http://www.bmj.com/lookup/pmidlookup?view=long&pmid=33782057
http://dx.doi.org/10.1136/bmj.n71
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33782057&dopt=Abstract
http://dx.doi.org/10.7326/M18-0850
http://dx.doi.org/10.1007/s40846-020-00520-z
https://publichealth.jmir.org/2020/4/e22400/
https://publichealth.jmir.org/2020/4/e22400/
http://dx.doi.org/10.2196/22400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33090117&dopt=Abstract
https://tvst.arvojournals.org/article.aspx?doi=10.1167/tvst.10.2.13
http://dx.doi.org/10.1167/tvst.10.2.13
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34003898&dopt=Abstract
https://journalofethics.ama-assn.org/article/can-ai-help-reduce-disparities-general-medical-and-mental-health-care/2019-02
http://dx.doi.org/10.1001/amajethics.2019.167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30794127&dopt=Abstract
http://dx.doi.org/10.1097/ede.0000000000001101
http://europepmc.org/abstract/MED/32064914
http://dx.doi.org/10.1161/CIRCEP.119.007988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32064914&dopt=Abstract
http://dx.doi.org/10.1126/science.aax2342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31649194&dopt=Abstract
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/10.1001/jamanetworkopen.2021.3909
http://dx.doi.org/10.1001/jamanetworkopen.2021.3909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33856478&dopt=Abstract
http://dx.doi.org/10.1142/9789811232701_0022
http://europepmc.org/abstract/MED/34383925
http://dx.doi.org/10.1093/jamia/ocab148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34383925&dopt=Abstract
http://europepmc.org/abstract/MED/31441044
http://dx.doi.org/10.1111/epi.16320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31441044&dopt=Abstract
http://dx.doi.org/10.1007/978-3-642-33486-3_3
http://www.w3.org/Style/XSL
http://www.renderx.com/


43. Liu L, Dean S, Rolf E, Simchowitz M, Hardt M. Delayed impact of fair machine learning. 2019 Presented at: Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence; August 10-16, 2019; Macao. [doi:
10.24963/ijcai.2019/862]

44. Rodolfa K, Salomon E, Haynes L, Mendieta I, Larson J, Ghani R. Case study: predictive fairness to reduce misdemeanor
recidivism through social service interventions. 2020 Presented at: Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency; 2020; Barcelona, Spain. [doi: 10.1145/3351095.3372863]

45. Kusner MJ, Loftus JR. The long road to fairer algorithms. Nature 2020 Feb 04;578(7793):34-36. [doi:
10.1038/d41586-020-00274-3] [Medline: 32020122]

46. Wolff RF, Moons KG, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess the risk of bias
and applicability of prediction model studies. Ann Intern Med 2019 Jan 01;170(1):51. [doi: 10.7326/m18-1376]

47. Alvi M, Zisserman A, Nellåker C. Turning a blind eye: explicit removal of biases and variation from deep neural network
embeddings. 2018 Presented at: 15th European Conference on Computer Vision; September 2018; Munich, Germany. [doi:
10.1007/978-3-030-11009-3_34]

48. Vig J, Gehrmann S, Belinkov Y. Investigating gender bias in language models using causal mediation analysis. 2020
Presented at: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems; December 2020; Virtual Conference URL: https://proceedings.neurips.cc/paper/2020/file/
92650b2e92217715fe312e6fa7b90d82-Paper.pdf

49. Straw I, Callison-Burch C. Artificial intelligence in mental health and the biases of language based models. PLoS One 2020
Dec 17;15(12):e0240376 [FREE Full text] [doi: 10.1371/journal.pone.0240376] [Medline: 33332380]

50. Bolukbasi T, Chang K, Zou J, Saligrama V, Kalai A. Man is to computer programmer as woman is to homemaker? Debiasing
word embeddings. 2016 Presented at: Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems; December 2016; Barcelona, Spain URL: https://papers.nips.cc/paper/2016/file/
a486cd07e4ac3d270571622f4f316ec5-Paper.pdf

51. Huang Y, Li W, Macheret F, Gabriel R, Ohno-Machado L. A tutorial on calibration measurements and calibration models
for clinical prediction models. J Am Med Inform Assoc 2020 Apr 01;27(4):621-633 [FREE Full text] [doi:
10.1093/jamia/ocz228] [Medline: 32106284]

52. Howard FM, Dolezal J, Kochanny S, Schulte J, Chen H, Heij L, et al. The impact of site-specific digital histology signatures
on deep learning model accuracy and bias. Nat Commun 2021 Jul 20;12(1):4423 [FREE Full text] [doi:
10.1038/s41467-021-24698-1] [Medline: 34285218]

53. Bellamy RKE, Dey K, Hind M, Hoffman S, Houde S, Kannan K, et al. AI Fairness 360: an extensible toolkit for detecting
and mitigating algorithmic bias. IBM J Res Dev 2019 Jul 1;63(4/5):4:1-4:15. [doi: 10.1147/jrd.2019.2942287]

54. Wexler J, Pushkarna M, Bolukbasi T, Wattenberg M, Viegas F, Wilson J. The what-if tool: interactive probing of machine
learning models. IEEE Trans Visual Comput Graphics 2020;26(1):56-65. [doi: 10.1109/tvcg.2019.2934619]

55. Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.
Nat Mach Intell 2019 May 13;1(5):206-215. [doi: 10.1038/s42256-019-0048-x]

56. Tjoa E, Guan C. A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans Neural Netw
Learning Syst 2021 Nov;32(11):4793-4813. [doi: 10.1109/tnnls.2020.3027314]

57. McDermott MBA, Wang S, Marinsek N, Ranganath R, Foschini L, Ghassemi M. Reproducibility in machine learning for
health research: still a ways to go. Sci Transl Med 2021 Mar 24;13(586):eabb1655. [doi: 10.1126/scitranslmed.abb1655]
[Medline: 33762434]

58. Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung S, et al. Common pitfalls and recommendations for using
machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat Mach Intell 2021
Mar 15;3(3):199-217. [doi: 10.1038/s42256-021-00307-0]

59. Huang J, Shlobin N, DeCuypere M, Lam S. Deep learning for outcome prediction in neurosurgery: a systematic review of
design, reporting, and reproducibility. Neurosurgery 2022;90(1):16-38. [doi: 10.1227/neu.0000000000001736]

60. Sheller MJ, Edwards B, Reina GA, Martin J, Pati S, Kotrotsou A, et al. Federated learning in medicine: facilitating
multi-institutional collaborations without sharing patient data. Sci Rep 2020 Jul 28;10(1):12598 [FREE Full text] [doi:
10.1038/s41598-020-69250-1] [Medline: 32724046]

61. Wawira Gichoya J, McCoy LG, Celi LA, Ghassemi M. Equity in essence: a call for operationalising fairness in machine
learning for healthcare. BMJ Health Care Inform 2021 Apr 28;28(1):e100289 [FREE Full text] [doi:
10.1136/bmjhci-2020-100289] [Medline: 33910923]

62. Bozkurt S, Cahan E, Seneviratne M, Sun R, Lossio-Ventura JA, Ioannidis JPA, et al. Reporting of demographic data and
representativeness in machine learning models using electronic health records. J Am Med Inform Assoc 2020 Dec
09;27(12):1878-1884 [FREE Full text] [doi: 10.1093/jamia/ocaa164] [Medline: 32935131]

63. Guo LN, Lee MS, Kassamali B, Mita C, Nambudiri VE. Bias in, bias out: underreporting and underrepresentation of diverse
skin types in machine learning research for skin cancer detection-a scoping reviewA scoping review. J Am Acad Dermatol
2021 Jul 10. [doi: 10.1016/j.jaad.2021.06.884] [Medline: 34252465]

JMIR Med Inform 2022 | vol. 10 | iss. 5 |e36388 | p.54https://medinform.jmir.org/2022/5/e36388
(page number not for citation purposes)

Huang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.24963/ijcai.2019/862
http://dx.doi.org/10.1145/3351095.3372863
http://dx.doi.org/10.1038/d41586-020-00274-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32020122&dopt=Abstract
http://dx.doi.org/10.7326/m18-1376
http://dx.doi.org/10.1007/978-3-030-11009-3_34
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://dx.plos.org/10.1371/journal.pone.0240376
http://dx.doi.org/10.1371/journal.pone.0240376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33332380&dopt=Abstract
https://papers.nips.cc/paper/2016/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://papers.nips.cc/paper/2016/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
http://europepmc.org/abstract/MED/32106284
http://dx.doi.org/10.1093/jamia/ocz228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32106284&dopt=Abstract
https://doi.org/10.1038/s41467-021-24698-1
http://dx.doi.org/10.1038/s41467-021-24698-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34285218&dopt=Abstract
http://dx.doi.org/10.1147/jrd.2019.2942287
http://dx.doi.org/10.1109/tvcg.2019.2934619
http://dx.doi.org/10.1038/s42256-019-0048-x
http://dx.doi.org/10.1109/tnnls.2020.3027314
http://dx.doi.org/10.1126/scitranslmed.abb1655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33762434&dopt=Abstract
http://dx.doi.org/10.1038/s42256-021-00307-0
http://dx.doi.org/10.1227/neu.0000000000001736
https://doi.org/10.1038/s41598-020-69250-1
http://dx.doi.org/10.1038/s41598-020-69250-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32724046&dopt=Abstract
https://informatics.bmj.com/lookup/pmidlookup?view=long&pmid=33910923
http://dx.doi.org/10.1136/bmjhci-2020-100289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33910923&dopt=Abstract
http://europepmc.org/abstract/MED/32935131
http://dx.doi.org/10.1093/jamia/ocaa164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32935131&dopt=Abstract
http://dx.doi.org/10.1016/j.jaad.2021.06.884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34252465&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


64. Hernandez-Boussard T, Bozkurt S, Ioannidis J, Shah N. MINIMAR (MINimum Information for Medical AI Reporting):
developing reporting standards for artificial intelligence in health care. J Am Med Inform Assoc 2020 Dec
09;27(12):2011-2015 [FREE Full text] [doi: 10.1093/jamia/ocaa088] [Medline: 32594179]

Abbreviations
AI: artificial intelligence
AUROC: area under the receiver operating characteristic curve
FNR: false-negative rate
FPR: false-positive rate
LASSO: least absolute shrinkage and selection operator
ML: machine learning
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-analyses
TPR: true-positive rate

Edited by C Lovis; submitted 12.01.22; peer-reviewed by H Turbe; comments to author 13.02.22; revised version received 17.02.22;
accepted 27.03.22; published 31.05.22.

Please cite as:
Huang J, Galal G, Etemadi M, Vaidyanathan M
Evaluation and Mitigation of Racial Bias in Clinical Machine Learning Models: Scoping Review
JMIR Med Inform 2022;10(5):e36388
URL: https://medinform.jmir.org/2022/5/e36388 
doi:10.2196/36388
PMID:35639450

©Jonathan Huang, Galal Galal, Mozziyar Etemadi, Mahesh Vaidyanathan. Originally published in JMIR Medical Informatics
(https://medinform.jmir.org), 31.05.2022. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete
bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license
information must be included.

JMIR Med Inform 2022 | vol. 10 | iss. 5 |e36388 | p.55https://medinform.jmir.org/2022/5/e36388
(page number not for citation purposes)

Huang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://europepmc.org/abstract/MED/32594179
http://dx.doi.org/10.1093/jamia/ocaa088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32594179&dopt=Abstract
https://medinform.jmir.org/2022/5/e36388
http://dx.doi.org/10.2196/36388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35639450&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Web-Based Software Tools for Systematic Literature Review in
Medicine: Systematic Search and Feature Analysis

Kathryn Cowie1, BS; Asad Rahmatullah1, BS; Nicole Hardy1, MSc; Karl Holub1, BS; Kevin Kallmes1, MA, JD
Nested Knowledge, Saint Paul, MN, United States

Corresponding Author:
Kevin Kallmes, MA, JD
Nested Knowledge
1430 Avon St. N.
Saint Paul, MN, 55117
United States
Phone: 1 5072717051
Email: kevinkallmes@supedit.com

Related Article:
 
This is a corrected version. See correction statement: https://medinform.jmir.org/2022/11/e43520
 

Abstract

Background: Systematic reviews (SRs) are central to evaluating therapies but have high costs in terms of both time and money.
Many software tools exist to assist with SRs, but most tools do not support the full process, and transparency and replicability of
SR depend on performing and presenting evidence according to established best practices.

Objective: This study aims to provide a basis for comparing and selecting between web-based software tools that support SR,
by conducting a feature-by-feature comparison of SR tools.

Methods: We searched for SR tools by reviewing any such tool listed in the SR Toolbox, previous reviews of SR tools, and
qualitative Google searching. We included all SR tools that were currently functional and required no coding, and excluded
reference managers, desktop applications, and statistical software. The list of features to assess was populated by combining all
features assessed in 4 previous reviews of SR tools; we also added 5 features (manual addition, screening automation, dual
extraction, living review, and public outputs) that were independently noted as best practices or enhancements of transparency
and replicability. Then, 2 reviewers assigned binary present or absent assessments to all SR tools with respect to all features, and
a third reviewer adjudicated all disagreements.

Results: Of the 53 SR tools found, 55% (29/53) were excluded, leaving 45% (24/53) for assessment. In total, 30 features were
assessed across 6 classes, and the interobserver agreement was 86.46%. Giotto Compliance (27/30, 90%), DistillerSR (26/30,
87%), and Nested Knowledge (26/30, 87%) support the most features, followed by EPPI-Reviewer Web (25/30, 83%), LitStream
(23/30, 77%), JBI SUMARI (21/30, 70%), and SRDB.PRO (VTS Software) (21/30, 70%). Fewer than half of all the features
assessed are supported by 7 tools: RobotAnalyst (National Centre for Text Mining), SRDR (Agency for Healthcare Research and
Quality), SyRF (Systematic Review Facility), Data Abstraction Assistant (Center for Evidence Synthesis in Health), SR Accelerator
(Institute for Evidence-Based Healthcare), RobotReviewer (RobotReviewer), and COVID-NMA (COVID-NMA). Notably, of
the 24 tools, only 10 (42%) support direct search, only 7 (29%) offer dual extraction, and only 13 (54%) offer living/updatable
reviews.

Conclusions: DistillerSR, Nested Knowledge, and EPPI-Reviewer Web each offer a high density of SR-focused web-based
tools. By transparent comparison and discussion regarding SR tool functionality, the medical community can both choose among
existing software offerings and note the areas of growth needed, most notably in the support of living reviews.

(JMIR Med Inform 2022;10(5):e33219)   doi:10.2196/33219
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Introduction

Systematic Review Costs and Gaps
According to the Centre for Evidence-Based Medicine,
systematic reviews (SRs) of high-quality primary studies
represent the highest level of evidence for evaluating therapeutic
performance [1]. However, although vital to evidence-based
medical practice, SRs are time-intensive, taking an average of
67.3 weeks to complete [2] and costing leading research
institutions over US $141,000 in labor per published review
[3]. Owing to the high costs in researcher time and complexity,
up-to-date reviews cover only 10% to 17% of primary evidence
in a representative analysis of the lung cancer literature [4].
Although many qualitative and noncomprehensive publications
provide some level of summative evidence, SRs—defined as
reviews of “evidence on a clearly formulated question that use
systematic and explicit methods to identify, select and critically
appraise relevant primary research, and to extract and analyze
data from the studies that are included” [5]—are distinguished
by both their structured approach to finding, filtering, and
extracting from underlying articles and the resulting
comprehensiveness in answering a concrete medical question.

Software Tools for Systematic Review
Software tools that assist with central SR activities—retrieval
(searching or importing records), appraisal (screening of
records), synthesis (content extraction from underlying studies),
and documentation/output (presentation of SR outputs)—have
shown promise in reducing the amount of effort needed in a
given review [6]. Because of the time savings of web-based
software tools, institutions and individual researchers engaged
in evidence synthesis may benefit from using these tools in the
review process [7].

Existing Studies of Software Tools
However, choosing among the existing software tools presents
a further challenge to researchers; in the SR Toolbox [8], there
are >240 tools indexed, of which 224 support health care
reviews. Vitally, few of these tools can be used for each of the
steps of SR, so comparing the features available through each
tool can assist researchers in selecting an SR tool to use. This
selection can be informed by feature analysis; for example, a
previously published feature analysis compared 15 SR tools [9]
across 21 subfeatures of interest and found that DistillerSR
(Evidence Partners), EPPI-Reviewer (EPPI-Centre),
SWIFT-Active Screener (Sciome), and Covidence (Cochrane)
support the greatest number of features as of 2019. Harrison et
al [10], Marshall et al [11], and Kohl et al [12] have completed
similar analyses, but each feature assessment selected a different
set of features and used different qualitative feature assessment
methods, and none covered all SR tools currently available.

The SR tool landscape continues to evolve; as existing tools are
updated, new software is made available to researchers, and
new feature classes are developed. For instance, despite the
growth of calls for living SRs, that is, reviews where the outputs
are updated as new primary evidence becomes available, no
feature analysis has yet covered this novel capability.
Furthermore, the leading feature analyses [9-12] have focused

on the screening phase of review, meaning that no comparison
of data extraction capabilities has yet been published.

Feature Analysis of Systematic Review Tools
The authors, who are also the developers of the Nested
Knowledge platform for SR and meta-analysis (Nested
Knowledge, Inc) [13], have noted the lack of SR feature
comparison among new tools and across all feature classes
(retrieval, appraisal, synthesis, documentation/output,
administration of reviews, and access/support features). To
provide an updated feature analysis comparing SR software
tools, we performed a feature analysis covering the full life
cycle of SR across software tools.

Methods

Search Strategy
We searched the SR tools for assessment in 3 ways: first, we
identified any SR tool that was published in existing reviews
of SR tools (Table S1 in Multimedia Appendix 1). Second, we
reviewed SR Toolbox [8], a repository of indexed software tools
that support the SR process. Third, we performed a Google
search for Systematic review software and identified any
software tool that was among the first 5 pages of results.
Furthermore, for any library resource pages that were among
the search results, we included any SR tools mentioned by the
library resource page that met our inclusion criteria. The search
was completed between June and August 2021. Four additional
tools, namely SRDR+ (Agency for Healthcare Research and
Quality), Systematic Review Assistant-Deduplication Module
(Institute for Evidence-Based Healthcare), Giotto Compliance,
and Robotsearch (Robotsearch), were assessed in December
2021 following reviewer feedback.

Selection of Software Tools
The inclusion and exclusion criteria were determined by 3
authors (KK, KH, and KC). Among our search results, we
queued up all software tools that had descriptions meeting our
inclusion criteria for full examination of the software in a second
round of review. We included any that were functioning
web-based tools that require no coding by the user to install or
operate, so long as they were used to support the SR process
and can be used to review clinical or preclinical literature. The
no coding requirement was established because the target
audience of this review is medical researchers who are selecting
a review software to use; thus, we aim to review only tools that
this broad audience is likely to be able to adopt. We also
excluded desktop applications, statistical packages, and tools
built for reviewing software engineering and social sciences
literature, as well as reference managers, to avoid unfairly
casting these tools as incomplete review tools (as they would
each score quite low in features that are not related to reference
management). All software tools were screened by one reviewer
(KC), and inclusion decisions were reviewed by a second (KK).

Selection of Features of Interest
We built on the previous comparisons of SR tools published by
Van der Mierden et al [9], Harrison et al [10], Marshall et al
[11], and Kohl et al [12], which assign features a level of
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importance and evaluate each feature in reference screening
tools. As the studies by Van der Mierden et al [9] and Harrison
et al [10] focus on reference screening, we supplemented the
features with features identified in related reviews of SR tools
(Table S1 in Multimedia Appendix 1). From a study by Kohl
et al [12], we added database search, risk of bias assessment
(critical appraisal), and data visualization. From Marshall et al
[11], we added report writing.

We added 4 more features based on their importance to
software-based SR: manual addition of records, automated
full-text retrieval, dual extraction of studies, risk of bias (critical
appraisal), living SR, and public outputs. Each addition
represents either a best practice in SR [14] or a key feature for

the accuracy, replicability, and transparency of SR. Thus, in
total, we assessed the presence or absence of 30 features across
6 categories: retrieval, appraisal, synthesis,
documentation/output, administration/project management, and
access/support.

We adopted each feature unless it was outside of the SR process,
it was required for inclusion in the present review, it duplicated
another feature, it was not a discrete step for comparison, it was
not necessary for English language reviews, it was not necessary
for a web-based software, or it related to reference management
(as we excluded reference managers from the present review).
Table 1 shows all features not assessed, with rationale.

Table 1. Features from systematic reviews not assessed in this review, with rationale.

RationaleFeatures not assessed

Part of our inclusion criteriaFunctional

Reference management excluded from this reviewReference allocation

Not part of systematic review processRandomizing order of references

Review focused on English language systematic review softwareNon-Latin character support

Part of our inclusion criteriaStraightforward system requirements

Not necessary for web-based softwareInstallation guide

Part of our inclusion criteriaNo coding

Not necessary for web-based softwareMobile- or tablet-responsive interface

Not a discrete or comparable stepOther stages

Not part of the systematic review processMultiple projects

Duplicated with “distinct user roles”Work allocation

Duplicated with exportExport of decisions

Duplicated with “distinct user roles”User setup

Duplicated with screening recordsFilter references

Duplicated with “database search”Search references

Information not available to reviewersInsecure website

Information not available to reviewersSecurity

Not a discrete or comparable stepSetting up review

Not a discrete or comparable stepAutomated analysis

Not part of the systematic review processText analysis

Not part of the systematic review processReport validation

Reference management excluded from this reviewDocument management

Reference management excluded from this reviewBibliography

Feature Assessment
To minimize bias concerning the subjective assessment of the
necessity or desirability of features or of the relative
performance of features, we used a binary assessment where
each SR tool was scored 0 if a given feature was not present or

1 if a feature was present. Tools were assessed between June
and August 2021. We assessed 30 features, divided into 6 feature
classes. Of the 30 features, 77% (23/30) were identified in
existing literature, and 23% (7/30) were added by the authors
(Table 2).
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Table 2. The criteria for each selected feature, as well as the rationale.

Rationale (if added by authors)Feature fromClassification and variable name and coding

Retrieval

—bKohl et al [12], Marshall
et al [11]

1—literature search through APIa Integration with a
database; 0—no method for retrieving studies directly
from a database

Database search

—Harrison et al [10], Van
der Mierden et al [9]

1—import of references as RISc files or other file types;
0—references have to be entered manually

Reference importing

Ability to add expert additions

is called for by the PRISMAd
Added by the authors1—add a reference by entering study metadata; 0—no

method for adding individual references and gray litera-
ture

Manual addition

2020 guidelines and checklist
[14]

—Harrison et al [10], Van
der Mierden et al [9]

1—ability to import or upload full-text PDFs associated
with each study under review; 0—no method for import-
ing full-text PDFs in the screening process

Attaching full-text PDFs

Full texts are required for con-
tent extraction, and manual up-

Added by the authors1—ability to fetch some or all full texts via API or other
nonmanual method; 0—full texts must be uploaded
manually, or full-text upload not supported

Automated full-text re-
trieval

load represents a major time
investment by the user

Appraisal

—Harrison et al [10], Van
der Mierden et al [9]

1—inclusion and exclusion by title and abstract only;
0—no system for inclusion and exclusion of references
by title and abstract

Title/abstract screening

—Harrison et al [10], Van
der Mierden et al [9]

1—a distinct full-text screening phase; 0—there is no
full-text screening phase

Full-text screening

—Harrison et al [10], Van
der Mierden et al [9]

1—choice for single or double screening and a method
for resolving conflicts; 0—no ability to configure
screening mode or no ability to resolve conflicts

Dual screening and adju-
dication

—Harrison et al [10], Van
der Mierden et al [9]

1—abstract keywords are highlighted. Keywords can be

user or AIe-determined; 0—No keyword highlighting is
possible

Keyword highlighting

Automated screening has been
called for by the scientific
community [15]

Added by the authors1—has a form of machine learning or automation of the
screening process; 0—does not support any form of ma-
chine learning or automation of the screening process

Machine learning/automa-
tion (screening)

—Harrison et al [10], Kohl
et al [12]

1—automatically identifies duplicate references or marks
potential duplicates for manual review; 0—has no mech-
anism for deduplication

Deduplication of refer-
ences

Extraction

—Van der Mierden et al
[9], Kohl et al [12]

1—ability to attach tags that reflect the content of under-
lying studies to specific references; 0—no means for at-
taching content-related tags to references

Tagging references

—Harrison et al [10], Kohl
et al [12], Marshall et al
[11]

1—facilitates extraction and storage of quantitative data
into a form or template; 0—does not permit extraction
and storage or quantitative data

Data extraction

Dual extraction improves the
accuracy of data gathering [16]

Added by the authors1—ability for 2 independent reviewers to collect on each
study and for a third person to adjudicate differences;
0—no ability to have independent extraction and adjudi-
cation

Dual extraction

—Kohl et al [12]1—supports critical appraisal of studies through risk of
bias assessments; 0—no built-in features or templates to
assess risk of bias

Risk of bias

Documentation/output

—Van der Mierden et al [9]1—automated or semiautomated creation of PRISMA
flow diagrams; 0—the tool cannot automatically provide
a flow diagram meeting the PRISMA criteria

Flow diagram creation
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Rationale (if added by authors)Feature fromClassification and variable name and coding

—Marshall et al [11]1—ability to write or edit a report or manuscript; 0—no
ability to write or edit a report or manuscript

Manuscript writing

The ability to add and manage
citations is necessary to docu-
ment the source of review data

Added by the authors1—ability to insert citations based on stored study meta-
data into a text editor; 0—no ability to insert citations
into a document

Citation management

—Kohl et al [12]1—generation of figures or tables to assist with data pre-
sentation; 0—no built-in way to generate figures or tables

Data visualizations

—Harrison et al [10], Van
der Mierden et al [9]

1—supports export of references, study metadata, or col-
lected data; 0—has no export feature

Export

Admin

—Kohl et al [12], Marshall
et al [11]

1—supports protocol development or filling in a research
question template; 0—no protocol development or tem-
plates

Protocol

—Harrison et al [10], Van
der Mierden et al [9],
Marshall et al [11]

1—distinct user roles and permissions; 0—no distinct
roles; everybody has the same role and rights in the
project

Distinct user roles

—Harrison et al [10], Van
der Mierden et al [9]

1—software monitors and displays progress through the
project; 0—there is no way to determine overall progress
of the project (eg, % completed)

Activity monitoring

—Van der Mierden et al [9]1—ability to leave comments or notes on studies; 0—it
is not possible to attach comments to references

Comments or chat

—Harrison et al [10], Mar-
shall et al {11]

1—there are publicly available web-based tutorials, help
pages, training videos, or forums maintained by the soft-
ware provider; 0—there are no accessible tutorials or
training materials maintained by the software provider

Training

—Van der Mierden et al [9]1—customer support, such as support contact information,
is provided on request; 0—customer support is not clearly
available

Customer support

Access and support

—Harrison et al [10], Van
der Mierden et al [9],
Marshall et al [11]

1—a free version is available for users; 0—the tool must
be purchased, or free or trial accounts have severe limita-
tions that can compromise the systematic review

Pricing (free to use)

Living systematic review has
been called for as a novel
paradigm solving the main
limitation of systematic review
[17]

Added by the authors1—new records can be added after a project has been
completed; 0—new records cannot be added after a
project has been completed

Living/updatable

Web-based availability of sys-
tematic review outputs is impor-
tant for transparency and repli-
cability of research [18]

Added by the authors1—web-based visualizations or writing can be made
publicly visible; 0—review data and outputs cannot be
made publicly visible

Public outputs

—Harrison et al [10], Van
der Mierden et al [9],
Marshall et al [11]

1—multiple users can work simultaneously on 1 review;
0—it is not possible for multiple users to work at the same
time on the same project, independently

User collaboration

aAPI: application programming interface.
bRationale only provided for features added in this review; all other features were drawn from existing feature analyses of Systematic Review Software
Tools.
cRIS: Research Information System.
dPRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
eAI: artificial intelligence.

Evaluation of Tools
For tools with free versions available, each of the researchers
created an account and tested the program to determine feature
presence. We also referred to user guides, publications, and

training tutorials. For proprietary software, we gathered
information on feature offerings from marketing webpages,
training materials, and video tutorials. We also contacted all
proprietary software providers to give them the opportunity to
comment on feature offerings that may have been left out of
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those materials. Of the 8 proprietary software providers
contacted, 38% (3/8) did not respond, 50% (4/8) provided
feedback on feature offerings, and 13% (1/8) declined to
comment. When providers provided feedback, we re-reviewed
the features in question and altered the assessment as
appropriate. One provider gave feedback after initial puplication,
prompting issuance of a correction.

Feature assessment was completed independently by 2 reviewers
(KC and AR), and all disagreements were adjudicated by a third
(KK). Interobserver agreement was calculated using standard
methods [19] as applied to binary assessments. First, the 2
independent assessments were compared, and the number of
disagreements was counted per feature, per software. For each
feature, the total number of disagreements was counted and
divided by the number of software tools assessed. This provided
a per-feature variability percentage; these percentages were
averaged across all features to provide a cumulative
interobserver agreement percentage.

Results

Identification of SR Tools
We reviewed all 240 software tools offered on SR Toolbox and
sent forward all studies that, based on the software descriptions,
could meet our inclusion criteria; we then added in all software
tools found on Google Scholar. This strategy yielded 53 software
tools that were reviewed in full (Figure 1 shows the PRISMA
[Preferred Reporting Items for Systematic Reviews and
Meta-Analyses]-based chart). Of these 53 software tools, 55%
(29/53) were excluded. Of the 29 excluded tools, 17% (5/29)
were built to review software engineering literature, 10% (3/29)
were not functional as of August 2021, 7% (2/29) were citation
managers, and 7% (2/29) were statistical packages. Other
excluded tools included tools not designed for SRs (6/29, 21%),
desktop applications (4/29, 14%), tools requiring users to code
(3/29, 10%), a search engine (1/29, 3%), and a social science
literature review tool (1/29, 3%). One tool, Research Screener
[20], was excluded owing to insufficient information available
on supported features. Another tool, the Health Assessment
Workspace Collaborative, was excluded because it is designed
to assess chemical hazards.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-based chart showing the sources of all tools considered
for inclusion, including 2-phase screening and reasons for all exclusions made at the full software review stage. SR: systematic review.
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Overview of SR Tools
We assessed the presence of features in 24 software tools, of
which 71% (17/24) are designed for health care or biomedical
sciences. In addition, 63% (15/24) of the analyzed tools support

the full SR process, meaning they enable search, screening,
extraction, and export, as these are the basic capabilities
necessary to complete a review in a single software tool.
Furthermore, 21% (5/34) of the tools support the screening stage
(Table 3).

Table 3. Breakdown of software tools for systematic review by process type (full process, screening, extraction, or visualization; n=24).

Software toolsTools, n (%)Type

Cadima, Covidence, Colandr, DistillerSR, EPPI-Reviewer Web, Giotto Compliance, JBI SUMARI, LitStream,
Nested Knowledge, PICOPortal, Revman Web, SRDB.PRO, SRDR+, SyRF, SysRev

15 (63)Full process

Abstrackr, Rayyan, RobotAnalyst, SWIFT-Active Screener, SR Accelerator5 (21)Screening

Data Abstraction Assistant, RobotReviewer, SRDR3 (13)Extraction

COVID-NMA1 (4)Visualization

Data Gathering
Interobserver agreement between the 2 reviewers gathering data
features was 86.46%, meaning that across all feature
assessments, the 2 reviewers disagreed on <15% of the
applications. Final assessments are summarized in Table 4, and
Table S2 in Multimedia Appendix 2 shows the interobserver
agreement on a per–SR tool and per-feature basis. Interobserver
agreement was ≥70% for every feature assessed and for all SR

tools except 3: LitStream (ICF; 53.3%), RevMan Web
(Cochrane; 50%), and SR Accelerator (Institute for
Evidence-Based Healthcare; 53.3%); on investigation, these
low rates of agreement were found to be due to name changes
and versioning (LitStream and RevMan Web) and due to the
modular nature of the subsidiary offerings (SR Accelerator).
An interactive, updatable visualization of the features offered
by each tool is available in the Systematic Review
Methodologies Qualitative Synthesis.
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Table 4. Feature assessment scores by feature class for each systematic review tool analyzed. The total number of features across all feature classes is
presented in descending order.

Total (n=30),
n (%)

Access (n=4),
n (%)

Admin (n=6),
n (%)

Output (n=5),
n (%)

Extraction
(n=4), n (%)

Appraisal
(n=6), n (%)

Retrieval (n=5),
n (%)

Systematic review tool

27 (90)3 (75)6 (100)3 (60)4 (100)6 (100)5 (100)Giotto Compliance

26 (87)2 (50)6 (100)4 (80)3 (75)6 (100)5 (100)DistillerSR

26 (87)4 (100)6 (100)5 (100)2 (50)5 (83)4 (80)Nested Knowledge

25 (83)3 (75)5 (83)3 (60)4 (100)6 (100)4 (80)EPPI-Reviewer Web

23 (77)4 (100)6 (100)3 (60)3 (75)5 (83)2 (40)LitStream

21 (70)3 (75)5 (83)4 (80)2 (50)4 (67)3 (60)JBI SUMARI

21 (70)1 (25)6 (100)3 (60)2 (50)4 (67)5 (100)SRDB.PRO

20 (67)1 (25)5 (83)2 (40)4 (100)5 (83)3 (60)Covidence

20 (67)4 (100)5 (83)2 (40)2 (50)3 (50)4 (80)SysRev

19 (63)3 (75)4 (67)2 (40)3 (75)5 (83)2 (40)Cadima

19 (63)4 (100)6 (100)1 (20)3 (75)3 (50)2 (40)SRDR+

18 (60)2 (50)3 (50)2 (40)1 (25)6 (100)4 (80)Colandr

18 (60)3 (75)3 (50)2 (40)2 (50)6 (100)2 (40)PICOPortal

18 (60)2 (50)4 (50)2 (40)2 (50)5 (83)3 (60)Rayyan

17 (57)3 (75)6 (100)3 (60)2 (50)1 (17)2 (40)Revman Web

16 (53)1 (25)5 (83)1 (20)0 (0)6 (100)3 (60)SWIFT-Active Screener

15 (50)2 (50)5 (83)1 (20)1 (25)5 (83)1 (20)Abstrackr

14 (47)2 (50)5 (83)2 (40)0 (0)3 (50)2 (40)RobotAnalyst

14 (47)4 (100)5 (83)2 (40)2 (50)0 (0)1 (20)SRDR

12 (40)2 (50)2 (33)1 (20)2 (50)4 (67)1 (20)SyRF

10 (33)4 (100)3 (50)0 (0)1 (25)0 (0)2 (40)Data Abstraction Assistant

9 (30)1 (25)2 (33)0 (0)0 (0)4 (67)2 (40)SR-Accelerator

8 (27)1 (25)2 (33)1 (20)2 (50)0 (0)2 (40)RobotReviewer

6 (20)3 (75)1 (17)2 (40)0 (0)0 (0)0 (0)COVID-NMA

Feature Assessment
Giotto Compliance (27/30, 90%), DistillerSR (26/30, 87%),
and Nested Knowledge (26/30, 87%) support the most features,
followed by EPPI-Reviewer Web (25/30, 83%), LitStream
(23/30, 77%), JBI SUMARI (21/30, 70%), and SRDB.PRO
(VTS Software) (21/30, 70%).

The top 16 software tools are ranked by percent of features from
highest to lowest in Figure 2. Fewer than half of all features are
supported by 7 tools: RobotAnalyst (National Centre for Text
Mining), SRDR (Agency for Healthcare Research and Quality),
SyRF (Systematic Review Facility), Data Abstraction Assistant
(Center for Evidence Synthesis in Health, Institute for
Evidence-Based Healthcare), SR-Accelerator, RobotReviewer
(RobotReviewer), and COVID-NMA (COVID-NMA; Table
3).
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Figure 2. Stacked bar chart comparing the percentage of supported features, broken down by their feature class (retrieval, appraisal, extraction, output,
admin, and access), among all analyzed software tools.

Feature Assessment: Breakout by Feature Class
Of all 6 feature classes, administrative features are the most
supported, and output and extraction features are the least
supported (Figure 3). Only 3 tools, Covidence (Cochrane),
EPPI-Reviewer, and Giotto Compliance, offer all 4 extraction

features (Table 4). DistillerSR and Giotto support all 5 retrieval
features, while Nested Knowledge supports all 5
documentation/output features. Colandr, DistillerSR,
EPPI-Reviewer, Giotto Compliance, and PICOPortal support
all 6 appraisal features.

Figure 3. Heat map of features observed in 24 analyzed software tools. Dark blue indicates that a feature is present, and light blue indicates that a
feature is not present.
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Feature Class 1: Retrieval
The ability to search directly within the SR tool was only present
for 42% (10/24) of the software tools, meaning that for all other
SR tools, the user is required to search externally and import
records. The only SR tool that did not enable importing of
records was COVID-NMA, which supplies studies directly from
the providers of the tool but does not enable the user to do so.

Feature Class 2: Appraisal
Among the 19 tools that have title/abstract screening, all tools
except for RobotAnalyst and SRDR+ enable dual screening and
adjudication. Reference deduplication is less widespread, with
58% (14/24) of the tools supporting it. A form of machine
learning/automation during the screening stage is present in
54% (13/24) of the tools.

Feature Class 3: Extraction
Although 75% (18/24) of the tools offer data extraction, only
29% (7/24) offer dual data extraction (Giotto Compliance,
DistillerSR, SRDR+, Cadima [Cadima], Covidence,
EPPI-Reviewer, and PICOPortal [PICOPortal]). A total of 54%
(13/24) of the tools enable risk of bias assessments.

Feature Class 4: Output
Exporting references or collected data is available in 71%
(17/24) of the tools. Of the 24 tools, 54% (13/24) generate
figures or tables, 42% (10/24) of tools generate PRISMA flow
diagrams, 32% (8/24%) have report writing, and only 13%
(3/34) have in-text citations.

Feature Class 5: Admin
Protocols, customer support, and training materials are available
in 71% (17/24), 79% (19/24), and 83% (20/24) of the tools,
respectively. Of all administrative features, the least well
developed are progress/activity monitoring, which is offered
67% (16/24) of the tools, and comments, which are available
in 58% (14/24) of the tools.

Feature Class 6: Access
Access features cover both collaboration during the review,
cost, and availability of outputs. Of the 24 software tools, 83%
(20/24) permit collaboration by allowing multiple users to work
on a project. COVID-NMA, RobotAnalyst, RobotReviewer,
and SR-Accelerator do not allow multiple users. In addition, of
the 24 tools, 71% (17/24) offer a free subscription, whereas
29% (7/24) require paid subscriptions or licenses (Covidence,
DistillerSR, EPPI-Reviewer Web, Giotto Compliance, JBI
Sumari, SRDB.PRO, and SWIFT-Active Screener). Only 54%
(13/24) of the software tools support living, updatable reviews.

Discussion

Principal Findings
Our review found a wide range of options in the SR software
space; however, among these tools, many lacked features that
are either crucial to the completion of a review or recommended
as best practices. Only 63% (15/24) of the SR tools covered the
full process from search/import through to extraction and export.
Among these 15 tools, only 67% (10/15) had a search

functionality directly built in, and only 47% (7/15) offered dual
data extraction (which is the gold standard in quality control).
Notable strengths across the field include collaborative
mechanisms (offered by 20/24, 83% tools) and easy, free access
(17/24, 71% of tools are free). Indeed, the top 4 software tools
in terms of number of features offered (Giotto Compliance,
DistillerSR, Nested Knowledge, and EPPI-Reviewer all offered
between 83% and 90% of the features assessed. However, major
remaining gaps include a lack of automation of any step other
than screening (automated screening offered by 13/24, 54% of
tools) and underprovision of living, updatable outputs.

Major Gaps in the Provision of SR Tools

Search
Marshall et al [11] have previously noted that “the user should
be able to perform an automated search from within the tool
which should identify duplicate papers and handle them
accordingly” [11]. Less than a third of tools (7/24, 29%) support
search, reference import, and manual reference addition.

Study Selection
Screening of references is the most commonly offered feature
and has the strongest offerings across features. All software
tools that offer screening also support dual screening (with the
exception of RobotAnalyst and SRDR+). This demonstrates
adherence to SR best practices during the screening stage.

Automation and Machine Learning
Automation in medical SR screening has been growing. Some
form of machine learning or other automation for screening
literature is present in over half (13/24, 54%) of all the tools
analyzed. Machine learning/screening includes reordering
references, topic modeling, and predicting inclusion rates.

Data Extraction
In contrast to screening, extraction is underdeveloped. Although
extraction is offered by 75% (18/24) tools, few tools adhere to
SR best practices of dual extraction. This is a deep problem in
the methods of review, as the error rate for manual extraction
without dual extraction is highly variable and has even reached
50% in independent tests [16].

Although single extraction continues to be the only commonly
offered method, the scientific community has noted that
automating extraction would have value in both time savings
and improved accuracy, but the field is as of yet underdeveloped.
To quote a recent review on the subject of automated extraction,
“[automation] techniques have not been fully utilized to fully
or even partially automate the data extraction step of systematic
review” [21]. The technologies to automate extraction have not
achieved partial extraction at a sufficiently high accuracy level
to be adopted; therefore, dual extraction is a pressing software
requirement that is unlikely to be surpassed in the near future.

Project Management
Administrative features are well supported by SR software.
However, there is a need for improved monitoring of review
progress. Project monitoring is offered by 67% (16/24) of the
tools, which is among the lowest of all admin features and likely
the feature most closely associated with the quality of the
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outputs. As collaborative access is common and highly prized,
SR software providers should recognize the barriers to
collaboration in medical research; lack of mutual awareness,
inertia in communication, and time management and capacity
constraints are among the leading reasons for failure in
interinstitutional research [22]. Project monitoring tools could
assist with each of these pain points and improve the
transparency and accountability within the research team.

Living Reviews
The scientific community has made consistent demands for SR
processes to be rendered updatable, with the goal of improving
the quality of evidence available to clinicians, health
policymakers, and the medical public [23,24]. Despite these
ongoing calls for change, living, updatable reviews are not yet
standard in SR software tools. Only 54% (13/24) of the tools
support living reviews, largely because living review depends
on providing updatability at each step up through to outputs.
However, until greater provision of living review tools is
achieved, reviews will continue to fall out of date and out of
sync with clinical practice [24].

Study Limitations
In our study design, we elected to use a binary assessment,
which limited the bias induced by the subjective appeal of any
given tool. Therefore, these assessments did not include any
comparison of quality or usability among the SR tools. This
also meant that we did not use the Desmet [25] method, which
ranks features by level of importance. We also excluded certain
assessments that may impact user choices such as language
translation features or translated training documentation, which
is supported by some technologies, including DistillerSR. We
completed the review in August 2021 but added several software
tools following reviewer feedback; by adding expert additions
without repeating the entire search strategy, we may have missed
SR tools that launched between August and December 2021.
Finally, the authors of this study are the designers of one of the
leading SR tools, Nested Knowledge, which may have led to
tacit bias toward this tool as part of the comparison.

By assessing features offered by web-based SR applications,
we have identified gaps in current technologies and areas in
need of development. Feature count does not equate to value
or usability; it fails to capture benefits of simple platforms, such

as ease of use, effective user interface, alignment with
established workflows, or relative costs. The authors make no
claim about superiority of software based on feature prevalence.

Future Directions
We invite and encourage independent researchers to assess the
landscape of SR tools and build on this review. We expect the
list of features to be assessed will evolve as research changes.
For example, this review did not include features such as the
ability to search included studies, reuse of extracted data, and
application programming interface calls to read data, which
may grow in importance. Furthermore, this review assessed the
presence of automation at a high level without evaluating details.
A future direction might be characterizing specific types of
automation models used in screening, as well as in other stages,
for software applications that support SR of biomedical research.

Conclusions
The highest-performing SR tools were DistillerSR,
EPPI-Reviewer Web, and Nested Knowledge, each of which
offer >80% of features. The most commonly offered and robust
feature class was screening, whereas extraction (especially
quality-controlled dual extraction) was underprovided. Living
reviews, although strongly advocated for in the scientific
community, were similarly underprovided by the SR tools
reviewed here. This review enables the medical community to
complete transparent and comprehensive comparison of SR
tools and may also be used to identify gaps in technology for
further development by the providers of these or novel SR tools.

Disclaimer
This review of web-based software review software tools
represents an attempt to best capture information from software
providers’ websites, free trials, peer-reviewed publications,
training materials, or software tutorials. The review is based
primarily on publicly available information and may not
accurately reflect feature offerings, as relevant information was
not always available or clear to interpret. This evaluation does
not represent the views or opinions of any of the software
developers or service providers, except those of the authors.
The review was completed in August 2021, and readers should
refer to the respective software providers’ websites to obtain
updated information on feature offerings.
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Abstract

Background: There is increasing attention on machine learning (ML)-based clinical decision support systems (CDSS), but their
added value and pitfalls are very rarely evaluated in clinical practice. We implemented a CDSS to aid general practitioners (GPs)
in treating patients with urinary tract infections (UTIs), which are a significant health burden worldwide.

Objective: This study aims to prospectively assess the impact of this CDSS on treatment success and change in antibiotic
prescription behavior of the physician. In doing so, we hope to identify drivers and obstacles that positively impact the quality
of health care practice with ML.

Methods: The CDSS was developed by Pacmed, Nivel, and Leiden University Medical Center (LUMC). The CDSS presents
the expected outcomes of treatments, using interpretable decision trees as ML classifiers. Treatment success was defined as a
subsequent period of 28 days during which no new antibiotic treatment for UTI was needed. In this prospective observational
study, 36 primary care practices used the software for 4 months. Furthermore, 29 control practices were identified using propensity
score-matching. All analyses were performed using electronic health records from the Nivel Primary Care Database. Patients for
whom the software was used were identified in the Nivel database by sequential matching using CDSS use data. We compared
the proportion of successful treatments before and during the study within the treatment arm. The same analysis was performed
for the control practices and the patient subgroup the software was definitely used for. All analyses, including that of physicians’
prescription behavior, were statistically tested using 2-sided z tests with an α level of .05.

Results: In the treatment practices, 4998 observations were included before and 3422 observations (of 2423 unique patients)
were included during the implementation period. In the control practices, 5044 observations were included before and 3360
observations were included during the implementation period. The proportion of successful treatments increased significantly
from 75% to 80% in treatment practices (z=5.47, P<.001). No significant difference was detected in control practices (76% before
and 76% during the pilot, z=0.02; P=.98). Of the 2423 patients, we identified 734 (30.29%) in the CDSS use database in the Nivel
database. For these patients, the proportion of successful treatments during the study was 83%—a statistically significant difference,
with 75% of successful treatments before the study in the treatment practices (z=4.95; P<.001).

Conclusions: The introduction of the CDSS as an intervention in the 36 treatment practices was associated with a statistically
significant improvement in treatment success. We excluded temporal effects and validated the results with the subgroup analysis
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in patients for whom we were certain that the software was used. This study shows important strengths and points of attention
for the development and implementation of an ML-based CDSS in clinical practice.

Trial Registration: ClinicalTrials.gov NCT04408976; https://clinicaltrials.gov/ct2/show/NCT04408976

(JMIR Med Inform 2022;10(5):e27795)   doi:10.2196/27795

KEYWORDS

machine learning; ML; artificial intelligence; clinical decision support system; implementation study; information technology;
urinary tract infections

Introduction

Background
The application of machine learning (ML) in health care is
increasing. Previous studies have shown that using data from
electronic health records (EHRs) can inform us about treatment
effectiveness and outcomes in a real patient population,
providing insight into unknown disease correlations in the
process [1-3]. As current medical knowledge is often based on
average results from studies in an isolated clinical setting, these
data could fill important knowledge gaps in practice resulting
from the fact that randomized controlled trials often use stringent
selection criteria and therefore do not cover the complexity and
variety of patients in everyday practice [4-9].

Most algorithms featured in academic research do not reach
clinical practice nor are their performances evaluated
prospectively [10-12]. This makes it challenging to assess the
true added value of ML in health care as well as to formulate a
scientific and societal vision on the balance between this added
value and its pitfalls and risks. Finally, little research has been
conducted on the interaction of a clinical decision support
system (CDSS) with the end user, which greatly affects adoption
and clinical results [13-16].

The treatment of urinary tract infections (UTIs) in primary care
offers an opportunity to add clinical value to ML. UTIs are
common and represent a significant health burden worldwide
[17,18]. In the Netherlands, a UTI is the most frequent diagnosis
in women consulting general practitioners (GPs), with an
incidence rate of 125 per 1000 patient years and 19.6 per 1000
patient years for men in 2018 [19]. Uncomplicated UTIs often
occur in young, healthy, and nonpregnant women. Certain host
factors predispose to the development of a complicated course,
including abnormalities of the urinary tract, male sex, diabetes
mellitus, immune deficiency, or immune-compromising drugs
[18,20,21]. The treatment guidelines for patients with UTIs
were published by the Dutch College of General Practitioners
(NHG). At the time of this research, guidelines published in
2013 were in place [22]. Most clinical trials on the treatment
of UTIs that underpin the evidence in this guideline are
conducted on female patients with uncomplicated infections;
hence, the scientific evidence for clinically effective treatments
with increased risk of complicated UTIs is limited [20-22]. GPs
consider the lack of agreement as a problem for all key
recommendations while using UTI guidelines [23].

The development of ML-based algorithms could facilitate better
decision-making through the delivery of individualized
recommendations based on real-world data on all types of

patients, which could be beneficial in determining the optimal
treatment for patients at risk for complicated UTIs [11].

Supporting GPs With ML
Pacmed, a Dutch organization developing and implementing
ML-based decision support in health care, developed, together
with the consortium that conducted this research, a CDSS to
aid GPs with the treatment choice for patients with a UTI. On
the basis of the EHR data from UTI observations in the Nivel
Primary Care Database, ML-based classifiers were constructed
to estimate the probability of success of the 8 antibiotics
commonly used for an individual patient with a UTI.

Study Objective
In this study, we prospectively assessed the impact of the CDSS
on the clinical results and prescription behavior of physicians.
For this purpose, we compared the proportion of successful
treatments before and during the implementation of the CDSS
as well as the proportion of antibiotics chosen by the physician.
By conducting an implementation study among GPs in 36
practices in the Netherlands, we aim not only to assess the
impact of the software but also to study the interaction and
adoption of the software. In doing so, we hope to identify
general drivers and obstacles that positively impact health care
with ML.

Methods

Study Design
This research was carried out following a routine practice-based
prospective observational study design, in which 36 practices
used the software (henceforth, the treatment practices) for a
period of 4 months, starting in November 2017. A period of 4
months was chosen based on a power analysis of the primary
outcome as well as the prevalence of patients with UTI in Dutch
primary care. Treatment practices were mostly recruited at the
care group level. This is a partnership between primary care
practices to collaboratively organize care for chronic diseases.
These groups also often decide to collectively participate in
innovation projects such as this research, without consulting
every individual GP or primary care practice. Physicians from
all participating practices were trained on the responsible use
of the software and were instructed to its intended use as
supportive to their decisions (ClinicalTrials.gov NCT04408976).

Ethics Approval
The study protocol was reviewed and determined to meet the
requirements for exemption from the Ethics Committee (the
Medical Ethical Committee) review under the Dutch Medical
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Research Involving Human Subjects Act (WMO) and to be in
accordance with the Dutch Medical Treatment Act (WGBO)
and the Dutch Data Protection Act (WBP, now AVG).

The Clinical Decision Support Software: ML-Based
Classifiers
The decision support system was developed through iterative
consultation with multiple clinical stakeholders. A complete
description of the model development and evaluation process
is beyond the scope of this study. However, we provide some
background information in the following paragraphs,
highlighting the envisioned interaction with the end user in
practice.

On the basis of the EHR data of patients who had at least one
UTI between 2012 and 2014 and were >12 years, ML classifiers
were constructed to estimate the probability of success for the
8 antibiotics commonly used for an individual patient with a
UTI. In the potential absence of reliable UTI diagnosis data, we
selected only patients who received antibiotic treatment for a
UTI as reliably diagnosed patients in the data. Successful
treatment was defined as a subsequent period of 28 days in
which no new treatment was needed. The final data set for CDSS
development contained 122,203 UTIs pertaining to 264
practices.

Owing to the anatomical differences between male and female
patients with UTI, separate models were constructed for each
sex. Fosfomycin was excluded as a treatment option in the
clinical decision support system for male patients as this
treatment is almost never used for male patients. The prediction
would thus be of limited relevance, and the data set lacked
sufficient data points to train a model. This approach resulted
in 15 models in total: 8 for female patients and 7 for male
patients.

The information presented by the ML classifiers was to be used
in synergy with the existing experience and all other relevant
sources of information. Hence, interpretability, clinical
readability, and clinical relevance were prioritized in the
development of the ML models. Decision trees were chosen as
the classification method to allow for nonlinearities in the model
while retaining interpretability. All 67 features that had been
added as features to the classifiers were deemed medically
important by the NHG guidelines issued at that time or had been
indicated to affect treatment decisions, as discussed with medical
experts [22]. These variables include patient characteristics,
such as the presence of diabetes, pregnancy, indications of tissue
invasion, dysfunctional urinary tracts, medical UTI history, and
the treatment associated with these episodes. Other predictive
features that were more difficult to interpret medically were
also excluded. The classifiers were constructed using a
scikit-learn pipeline, including missing value imputation, feature
scaling, and L1 feature selection [24]. Hyperparameters were
optimized using 10-fold cross-validation, and the model
performance was evaluated using a cross-validated area under
the receiver operator curve. This approach yielded modest model
performance in terms of area under the curve (averaging around
0.6 over all models).

Although the classifiers were not able to predict with high
accuracy which treatments would certainly (not) be successful,
the models allowed for distinguishing patients with a relatively
high risk of unsuccessful outcomes from patients with a low
risk of unsuccessful treatment. More importantly, for a single
patient, the models distinguished between treatments with a
relatively high risk of unsuccessful outcomes and treatments
with a medium or low risk of unsuccessful outcomes. Thus,
although a substantial part of the outcome variation is
unexplained, we expected the use of the model’s predictions
for treatment decisions to positively affect treatment outcomes.

The medical soundness and relevance of the decision trees were
confirmed by multiple clinical experts inspecting the features
and resulting models through a long list of clinical hypotheses
on the practical performance of treatments for different patient
groups. Moreover, before the implementation study, a (the
Medical Ethical Committee’) passive model validation was
performed. Showing the predictions as well as the support
information of the models for patients with UTI treated less
than a month ago by their physician, we validated the usability,
relevance, reliability, and interpretability of the information
presented. These rounds of validations with medical experts
convinced us that the models were reliable and could add value
to clinical practice.

The Clinical Decision Support Software: User Interface
The software interface was developed in close collaboration
with several primary care physicians through user tests and
expert groups. The CDSS was not integrated into the EHR of
GPs, so users were requested to enter patient characteristics into
the web-based software. To invite the end user to interpret the
information thoroughly and in an unbiased manner, antibiotics
were always presented in the same order, independent of the
probability of treatment success. Users were provided with a
bar chart showing the estimated outcomes for the relevant
treatment options based on similar patients within the database
(Figure 1).

The algorithms in the CDSS presented the expected outcomes
as well as the necessary support information for the physician
at the time of the treatment decision. Owing to the choice of
decision tree classifiers, we were able to follow the
characteristics of an individual patient through the decision tree
nodes and share with the physician the characteristics of the
sample which was used to predict the outcome of a treatment.
This information, such as the age range of these patients and
other clinically relevant features, can be retrieved by clicking
on the relevant treatment.

We chose not to display the models themselves because the
large number of features and the different models would have
been confusing. We did not add CIs around the predictions in
the user interface. Calculating and presenting a CI around a
probabilistic prediction is not straightforward, and this
complexity could have been confusing or incorrectly interpreted.

In addition to the presentation of the expected outcomes, the
relevant part of the 2013 NHG guidelines was also presented.
All 8 antibiotics from the NHG recommendations for patients
with a UTI are shown, although for female patients without
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signs of tissue invasion, after expert consultation, it was decided
not to show antibiotics with high tissue penetration as treatment
options, as other treatments should be considered and tried first
in most instances. Finally, GPs were instructed to use the

software only for patients >12 years and to assess the
information presented together with all other information they
deemed relevant in treating patients with a UTI.

Figure 1. Decision support software: interface to enter patient characteristics (top); presentation of expected outcomes and NHG (Dutch College of
General Practitioners) guidelines (bottom).

Selection of Control Practices
Control practices were identified from a pool of 129 potential
control practices in the Nivel database through a propensity
score-matched augmented control procedure. As shown in
previous research, these matching methods can be used to
construct an artificial control group for trials by matching
treatment and control units that are similar in terms of their

observable characteristics [25,26]. As practice characteristics
are most informative in the way patients are being treated,
propensity score-matching was performed at the aggregated
practice level. The total number of patients per practice and
their average age were the characteristics used to construct the
propensity. Matching was performed using a caliper of 0.05.
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The treatment practices were matched with 29 control practices.
Data from all patients with a UTI in these practices were
analyzed. This resulted in 4998 observations of patients with a
UTI in the treatment practices before the pilot started and 3422
observations during the pilot. The control practices resulted in
5044 observations before and 3360 observations during the
pilot.

Preparation of Study Data

Nivel Primary Care Database
All analyses were performed using the Nivel Primary Care
Database, containing structured EHR data from 530 GP practices
in the Netherlands. A selection was made so that the data set
only contained the data of all patients with at least one UTI
during this study.

The data request was approved by all necessary and appropriate
bodies from the Nivel Governance-Document Nivel Primary
Care Database [27] under number NZR00317.030. The use of
the data for this specific research was in accordance with all
relevant Dutch and European laws and legislations.

The study included all patients who had at least one indication
of UTI symptoms, indicated by the International Classification
of Primary Care codes U70 (acute pyelonephritis), U71
(cystitis), U72 (nonspecific urethritis), U01 (painful micturition),
or U02 (frequent micturition) and were prescribed antibiotic
treatment for this UTI.

We used data from 2 periods. The first period consisted of the
time before the implementation study (week 16 until week 4),
and the second period consisted of the time during the
implementation period (weeks 0 to 20). Within these 20 weeks,
the software was used for different periods of 16 weeks. Owing
to the defined outcome measure of treatment success that
requires patients not to receive another treatment for UTI within
28 days, an additional 4 weeks were added to ensure that the
treatment outcome of these patients was also captured within
the analysis.

The prescribed treatment for UTI was directly recorded in the
EHR system of the GP. Background information about the
patient and their comorbidities consisted of a combination of
diagnoses and symptom codes and the prescription of other
medications related to these comorbidities.

Pacmed Use Database
Through use of physicians and their assistants, data on patient
characteristics and chosen treatments were generated using
Pacmed software. These data were generated with informed
consent from the treated patients.

The patients present in this database were those for whom we
were certain that the software had been used. Therefore, we
attempted to identify these Pacmed patients in the Nivel
database. However, because all identifiable personal data were
removed for both the Pacmed software and the Nivel database,
it was not possible to match these 2 databases directly.

Instead, identification took place iteratively using a sequential
matching procedure. A single matching approach failed because
of practical challenges resulting from the nature of the data sets.

The Nivel database was generated automatically from all the
different information systems used in the participating practices,
resulting in a data set with subtle differences between the
practices. The Pacmed data consist of data directly resulting
from the use of the CDSS. Attempting to match the databases
through a single matching procedure based on practice location,
gender, date of birth, and the data of consultation failed, as we
assessed it as very likely that the Pacmed software had been
used days after the first visit or at a second visit. Therefore,
another approach was used where patient identification was
performed iteratively through a sequential matching procedure,
in such a way that after an initial merge, unique matches that
were found were removed and the matching with a new variable
constellation for the remaining patients was continued.

First, an effort was made to identify patients from Pacmed in
the raw EHR data provided by Nivel. Thereafter, additional
matching was performed for patients in the processed Nivel
data set. Variables that were matched based on the raw Nivel
data included age, sex, date of birth, and date of consultation.
In addition, age categories, day intervals around the date of
consultation, prescribed medication, and comorbidities were
constructed. All matches included gender and practice postal
codes.

Primary and Secondary Outcomes
The primary outcome of interest was the difference in the
proportion of successful treatments between the periods before
and during the study. Successful treatment was defined as a
period of 28 days after the initial treatment, during which no
new treatment was needed. This outcome definition was
constructed using GP expert groups and a meticulous analysis
of the impact of different definition choices.

The analyses of the primary outcomes were repeated for
subgroups based on sex and age, if the patients had diabetes
and if UTI was complicated. In addition, to directly compare
the differences between the treatment and control arms, the
primary outcome was compared between the groups during the
implementation study.

A total of 2 sensitivity analyses were performed to test the
robustness of primary outcomes. First, to exclude potential
temporal effects, the same test for the primary outcome of
interest was performed for control practices. Second, the
proportion of successful treatments for patients for whom the
software had certainly been used was compared with the
proportion of successful treatments for patients in the treatment
practices before the implementation study.

Finally, the prescription behavior of the physicians was analyzed
to determine whether there was a statistically significant
difference in prescribed antibiotics between the treatment and
control practices before and during the implementation study
period. This analysis was repeated for observations for which
we were sure that the software had been used. Specifically, we
were interested in the difference in the proportion of high tissue
penetration antibiotics chosen by physicians when presented
with the expected outcomes of treatments.
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Statistical Analysis

Power Analysis
We conducted a power analysis to gauge the required number
of observations of patients with UTIs to detect small effect sizes
(Cohen effect size of 0.1) of the intervention [28]. Patients were
clustered within a practice, making them more likely to be
treated or respond similarly within that practice. To account for
this clustering, sample sizes were adjusted using an inflation
factor [25]. The inflation factor is a function of the intracluster
correlation coefficient and average cluster sizes per practice.
However, the mean average cluster size (the number of patients
with a UTI) per practice was 72.7, and practices showed large
variations in average cluster sizes (SD 98.3, range 10-325).
Therefore, along with the inflation factor, a cluster variation
coefficient was calculated for the outcome variables. Thus, the
reported sample size was adjusted, including the intracluster
correlation and cluster variation coefficients. The desired sample
size was calculated to be at least 851 at a power of 0.8 and a
type 1 error rate of 0.05 to detect small effects.

Outcome Statistics
A total of 2 sample z tests with an α level of .05 were used to
test the statistical significance of the primary outcome analysis,

both the sensitivity analyses and the prescription behavior
analyses. To test the significance of the subgroup analyses for
the primary outcome measure, additional z tests were used. To
determine whether the differences were statistically significant
and to avoid the inflation of type 1 errors, Bonferroni corrections
were applied. Differences with a P value <.006 (0.05/9) were
determined to be statistically significant. To further compare
the primary outcomes across different subgroups, the relative
risk ratio was used [29].

Results

Patient Population
The Pacmed use database contained 1689 unique patients, of
which 734 (43.46%) unique individual patients were identified
in the Nivel database through the sequential identification
procedure. This is the number of patients for whom we can be
certain that the software was used.

Figure 2 shows the variables used in the sequential matching
procedure and the number of matches found in each iteration.
Table 1 displays the patient characteristics for the cohort in
treatment and control practices during the implementation study
and specifies the characteristics of the patients identified from
the Pacmed use database.

Figure 2. The number of matches found through the sequential matching procedure.
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Table 1. Patient characteristics of the observations in treatment and control practices during the implementation study.

Proportion of patients in control prac-
tices observations (n=3360)

Proportion of patients identified in
Pacmed Clinical Decision Support
System observations (n=1121)

Proportion of patients in treatment
practices observations (n=3422)

Characteristic

0.860.920.88Sex (female)

Age (years)

0.170.150.17<30

0.200.180.2130-50

0.290.390.3650-70

0.330.280.26>70

0.130.090.08Diabetes

0.120.130.11UTIa with tissue invasionb

0.130.130.12Complicated UTIc

aUTI: urinary tract infection.
bA UTI with tissue invasion was defined as a UTI with which (a combination of) the International Classification of Primary Care codes associated with
tissue invasion-related symptoms were registered (A02, A03, A04, and A05).
cComplicated UTI is defined as a UTI with tissue invasion or a simultaneous pyelonephritis or prostatitis episode, International Classification of Primary
Care codes U70 and Y93, respectively.

Evaluation Outcomes

Primary Outcome and Sensitivity Analyses
The proportion of successful treatments increased significantly
from 75% to 80% in treatment practices (z=5.47; P<.001). In
the control practices, no significant change in outcomes was
observed during the same period (76% before and 76% during
the pilot, z=0.02; P=.98). The proportion of successful
treatments during the study was 83% for the observations of
which we are certain that the software had been used. This was
a statistically significant difference, with 75% of successful

treatments before the study in the treatment practices (z=4.95;
P<.001). The comparison of the primary outcome between the
control practices and the treatment practices during the
implementation study also showed a significant difference (76%
for the treatment practices and 80% for the control practices,
z=4.86; P<.001).

The change in outcome has been specified for subgroups based
on sex, age, comorbidities (diabetes) and whether the UTI was
complicated in Table 2. In this analysis, the increase in outcomes
was statistically significant for female patients and patients >70
years.

Table 2. Test statistics of primary outcome or several patient subgroups in the treatment practices observations before (n=4998) and during (n=3422)
the study.

P valueRisk ratioProportion of successful treatments
during study

Proportion of successful treatments
before study

Subgroup

Sex

<.0011.070.810.76Female (n=3008)

.011.080.780.72Male (n=414)

Age (years)

.011.060.860.81<30 (n=580)

.051.040.830.8030-50 (n=719)

.051.040.790.7650-70 (n=1227)

<.001a1.090.760.70>70 (n=896)

.031.100.790.72Complicated UTIb,c (n=404)

.031.110.790.71Diabetes (n=275)

aSignificant Bonferroni adjusted P values (.05/9).
bUTI: urinary tract infection.
cA complicated UTI is defined as a UTI with tissue invasion or a simultaneous pyelonephritis or prostatitis episode, International Classification of
Primary Codes U70 and Y93, respectively.
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GP Prescription Behavior
In the treatment practices as well as in the control practices,
there was no significant difference in the proportion of high
tissue penetration antibiotics prescribed between the period
prior and during the implementation study. Table 3 has

additional information on the choice of treatment before and
during the study period. As it is known that there are sex
differences in prescribed medications owing to differences in
underlying etiology, the same table is shown for both sexes.
Table 4 shows the same information for the observations for
which we were sure that the software was used.
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Table 3. Proportion of medication prescribed before and during implementation study.

Control practicesTreatment practices

P valueDelta %DuringBeforeP valueDelta %DuringBefore

n=3360n=5044n=3422n=4998All patients

.02−0.020.770.79.370.010.800.79Antibiotics with low tissue penetration

.03−0.020.570.60.56−0.010.590.59Nitrofurantoin

.240.010.150.14.700.000.130.13Fosfomycin

.11−0.010.040.05.580.000.060.06Trimethoprim

.630.000.000.00.0010.020.020.01Norfloxacin

.020.020.230.21.37−0.010.200.21Antibiotics with high tissue penetration

.090.010.150.13.04−0.020.140.16Ciprofloxacin

.590.000.040.04.440.000.030.03Augmentin

.0050.010.030.02.650.000.020.02Sulfamethoxazole and trimethoprim

.580.000.010.01.450.000.010.01Amoxicillin

n=2881n=4439n=3008n=4361Female patients

.12−0.010.830.84.990.000.840.84Antibiotics with low tissue penetration

.11−0.020.620.63.39−0.010.610.62Nitrofurantoin

.120.010.160.15.750.000.140.14Fosfomycin

.09−0.010.040.05.990.000.060.06Trimethoprim

.690.000.000.00.0060.010.010.01Norfloxacin

.120.010.170.16.990.000.160.16Antibiotics with high tissue penetration

.610.000.100.10.660.000.110.12Ciprofloxacin

.610.000.100.10.550.000.020.02Augmentin

.010.010.020.02.980.000.010.01Sulfamethoxazole and trimethoprim

.390.000.010.01.770.000.010.01Amoxicillin

n=478n=605n=414n=637Male patients

.77−0.010.430.44.140.050.490.44Antibiotics with low tissue penetration

.84−0.010.330.33.860.010.370.36Nitrofurantoin

.92−0.000.060.06.940.000.030.03Fosfomycin

.970.000.040.04.080.020.050.03Trimethoprim

.700.000.010.01.090.020.040.02Norfloxacin

.770.010.570.56.14−0.050.510.56Antibiotics with high tissue penetration

.410.020.420.39.003−0.090.350.44Ciprofloxacin

.13−0.020.060.09.520.010.080.07Augmentin

.360.010.070.06.370.010.050.03Sulfamethoxazole and trimethoprim

.50−0.010.010.02.050.020.020.01Amoxicillin

n=433n=369n=404n=365Patients with complicated UTIa,b

.74−0.010.610.62.190.050.620.58Antibiotics with low tissue penetration

.07−0.060.360.43.800.010.430.42Nitrofurantoin

.920.120.210.10.910.000.100.10Fosfomycin

.02−0.040.030.06.370.020.060.05Trimethoprim

.003−0.030.000.03.010.020.030.01Norfloxacin

.740.010.390.38.19−0.050.380.42Antibiotics with high tissue penetration

.970.000.220.22.01−0.080.220.30Ciprofloxacin
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Control practicesTreatment practices

P valueDelta %DuringBeforeP valueDelta %DuringBefore

.260.020.100.08.770.010.080.07Augmentin

.930.000.050.05.110.020.050.03Sulfamethoxazole and trimethoprim

.53−0.010.020.02.760.000.020.02Amoxicillin

n=429n=359n=275n=355Patients with diabetes

.02−0.070.680.75.740.010.720.70Antibiotics with low tissue penetration

.01−0.090.430.52.14−0.060.410.47Nitrofurantoin

.650.010.180.17.920.000.140.14Fosfomycin

.670.010.060.06.100.040.100.06Trimethoprim

.830.000.010.01.030.040.060.03Norfloxacin

.020.070.320.25.74−0.010.280.30Antibiotics with high tissue penetration

.160.040.210.17.43−0.030.220.25Ciprofloxacin

.880.000.040.04.860.000.040.03Augmentin

.030.030.050.02.690.000.020.01Sulfamethoxazole and trimethoprim

.450.010.010.01.080.010.010.00Amoxicillin

n=1122n=1721n=896n=1599Patients with age >70 years

.02−0.040.700.74.310.020.720.70Antibiotics with low tissue penetration

.11−0.030.450.48.20−0.030.430.45Nitrofurantoin

.74−0.010.190.20.480.010.170.16Fosfomycin

.47−0.010.060.06.470.010.070.07Trimethoprim

.580.000.010.00.0010.030.050.02Norfloxacin

.020.040.300.26.31−0.020.280.30Antibiotics with high tissue penetration

.030.030.200.17.06−0.030.210.24Ciprofloxacin

.03−0.020.030.05.390.010.040.03Augmentin

.0040.020.040.02.320.010.030.02Sulfamethoxazole and trimethoprim

.270.010.020.01.750.000.010.01Amoxicillin

aUTI: urinary tract infection.
bA complicated UTI is defined as a UTI with tissue invasion or a simultaneous pyelonephritis or prostatitis episode, International Classification of
Primary Care codes U70 and Y93, respectively.

Table 4. Proportion of medication prescribed before and during implementation study for all patients, for the observations identified from the Pacmed
use database.

Treatment practices

P valueDelta %During (identified; n=1121)Before (n=4998)

.150.020.810.79Antibiotics with low tissue penetration

<.001−0.070.530.59Nitrofurantoin

<.0010.030.160.13Fosfomycin

.010.020.080.06Trimethoprim

<.0010.030.040.01Norfloxacin

.15−0.020.190.21Antibiotics with high tissue penetration

.01−0.030.130.16Ciprofloxacin

.530.000.030.03Augmentin

.390.000.020.02Sulfamethoxazole and trimethoprim

.020.010.010.01Amoxicillin
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Discussion

Principal Findings
The most important result of this study is that the introduction
of the CDSS as an intervention in the 34 treatment practices
was associated with improved treatment success for patients
with UTI. The percentage of successful treatments in the patient
population increased from 75% before implementation of the
CDSS to 80% during the implementation period. Next to a
significant increase in treatment outcome within the treatment
arm, the difference between treatment and control group was
also significant (76% in control practices and 80% in treatment
practices during the study). These control practices were selected
through propensity score-matching and were similar at baseline.
This resulted in control practices that, at the time of the study,
had comparable patient populations with UTI.

To assess whether the increase in treatment success was due to
the CDSS presented in this study, we performed 2 sensitivity
analyses. First, the software was not used for all patients in the
Nivel database. Therefore, we sought to identify patients from
the Pacmed use database in the Nivel database. We had been
able to identify more than half of the patients in the Pacmed use
database in the Nivel database. The association of the increase
in treatment success with the introduction of the intervention
was strengthened by the fact that the increase in clinical outcome
was even higher and statistically significant (83%) for the
patients for whom we were sure that the software had been used.
The significance of this test must be seen from the perspective
that the populations are not identical, and that there is a potential
selection bias in the patient population in the CDSS database.
However, Table 1 shows comparable prevalence among the
relevant clinical subgroups.

Second, we assessed whether the increase in treatment success
was due to temporal effects, namely, the spontaneous
improvement of treatment success for all practices, independent
of the introduction of the CDSS. In the control practices, no
significant increase in the proportion of successful treatments
was observed.

Finally, the increase in treatment success did not seem to have
been caused by an increase in the prescription of high tissue
penetration antibiotics. On an average, for female and male
patients, we did not observe a significant difference in the
proportion of antibiotics with high tissue penetration. We
observed a significant increase in the prescription of norfloxacin
in female patients.

Behavior Change Within the Treatment Practices
An increase in treatment success was observed for multiple
subgroups. In this analysis, only the results for female patients
and patients aged >70 years were found to be statistically
significant. Other subgroups with a noteworthy increase in
outcomes included male patients, patients with complicated
UTIs, and patients with diabetes. The reason that the increase
in outcome cannot be deemed significant in this analysis is
presumably partly owing to the sample sizes of these subgroups,
as opposed to lower effect sizes. In particular, most clinical
trials on the treatment of UTIs, supporting the evidence in the

Dutch GP guidelines at the time, were conducted in female
patients with uncomplicated infections [20-22]. One could then
expect that an ML-based CDSS, aiming to fill knowledge gaps
by learning from more complex patients in practice, would be
most valuable for patient groups that are now understudied.

Within these subgroups, although not statistically significant,
we observed an indication of behavioral change in the treatment
arm. For all these subgroups (male, patients with diabetes,
patients with a complicated UTI, and patients >70 years), the
proportion of norfloxacin treatments doubled, which was not
observed in the control practices. Norfloxacin was not
recommended as a treatment option for all subgroups in the
NHG guideline.

The NHG guidelines at the time recommended nitrofurantoin
as the first choice for male and diabetic patients, with
trimethoprim as the second choice. Trimethoprim prescriptions
almost doubled for both subgroups only in the treatment
practices. For patients with a complicated UTI, we observed a
decrease in ciprofloxacin treatment only in the treatment
practices, although ciprofloxacin was the first recommended
treatment in the NHG guidelines at the time. Using Bonferroni
adjusted P values, the difference in prescription behavior was
not deemed to be statistically significant, and the effect of this
indicated behavior change on clinical outcome should serve as
a hypothesis for future research. However, it should be noted
that it is unlikely that the increase in outcomes is (solely) owing
to better guideline adherence. The analysis of behavioral changes
for the CDSS patients identified in the Nivel database confirms
this insight, with a significant decrease in nitrofurantoin
treatments, which is the first recommended treatment option
for almost all patient groups in the guideline, and a significant
increase in norfloxacin treatments.

However, many other unmeasured factors could have improved
patient outcomes independent of the information presented by
the CDSS. Among other things, knowing to participate in the
trial could have led to a better diagnosis and more conscious
treatment choice, independent of the relevance or value of the
CDSS.

Strengths
Only by integrating the knowledge in the clinician’s workflow
and evaluating the impact prospectively can we truly assess the
potential added value of a new technology such as ML in today’s
health care system. A strength of this study is the fact that we
developed a CDSS that, through its accessibility, was often used
by the participating physicians to enable us to analyze the
difference in our chosen outcome on a scale large enough for
the results to be statistically significant. A more in-depth study
on the use and perceived accessibility of physicians is in
preparation.

In the design of the software, the transparency of the underlying
technology was key to ensuring its usability. The algorithms
that form the intelligence of the software were deliberately
chosen to be interpretable and understandable models for the
end user as well as for the physicians who were part of the
development. In addition, the resulting predictions of treatment
success presented in the CDSS during the study were
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accompanied by supporting information regarding the patient
characteristics on which the predictions were based. Finally, by
presenting the relevant subsection of the active NHG guidelines,
we presented the necessary context information to assess all
sources of information equally, enabling the physician to
combine these sources together with their experience, expertise,
and intuition to make the best decision for the patient.

The execution of sensitivity analyses to assess the robustness
of the association between treatment success and the intervention
of the CDSS is another strength of this study. We had access
to EHR from the Nivel database of treatment practices as well
as from control practices, enabling us to exclude temporal
effects. The fact that we had access to the Pacmed use database
made it possible to specifically analyze the subgroup of patients
for whom we were certain that the tool had been used.

We observed that for patients in whom the tool had been used,
the outcome improvement seemed more pronounced compared
with the rest of the patients in the treatment practices. This
suggests a clear added value of the CDSS tool itself, rather than
the mere fact that more attention was paid to UTI in these
practices. Next, it is noteworthy that we were able to assess the
adoption rate of the software and relate it to the outcome of
interest. Only by doing so is it possible to evaluate the expected
impact in relation to the (financial) investment needed to
develop, implement, integrate, monitor, and continuously
improve complex technologies such as ML for physicians
[14,15].

Limitations
To assess the impact of the CDSS on treatment success, we
chose several measurements to ensure the robustness and
reliability of our outcome measure. To ensure that the patients
included were indeed affected by UTI, we selected only patients
on having received antibiotic treatment rather than using only
the diagnosis code as the selection criterion. However, a more
specific diagnosis of a UTI can be made through laboratory
data, which have not been used, as laboratory test results were
not recorded in the EHR data for many UTI patients. In addition,
there was a selection bias in selecting only patients who received
antibiotic treatment. However, this selection bias was the same
for the treatment and control practices for this study.

Furthermore, treatment success is indirectly derived from the
information systems of GPs and is used as a proxy for clinical
examination. This method is similar to the algorithms used to
construct disease episodes based on EHR data [30]. A similar
methodology was followed, defining treatment success as a
subsequent period of 28 days, where no new treatment was
needed, indicating a reduced risk for treatment failure or relapse.
Possible flaws concerning therapy compliance cannot be
mitigated using these data. Information about the resolution of
complaints or bacterial clearance, and thus, decisive knowledge
on treatment success, was absent. In addition, it is likely that
unnecessary antibiotic prescriptions were considered successful
based on our definition of treatment success. However, the
potential flaw in our outcome definition was consistent with
treatment and control practices. Moreover, we have no indication
that the use of the CDSS resulted in more unnecessary
prescriptions (and with that positively influenced the primary

outcome of this research). In both the treatment and control
practices, the total number of antibiotic prescriptions decreased
by almost identical proportions (from 4998 to 3422 in the
treatment practices [–32%] and from 5044 to 3360 in the control
practices [–33%]).

In addition, negative effects, side effects, or impacts on general
resistance to treatments were not investigated in this study.
These are, of course, factors that should impact the evaluation
of a CDSS of this kind in practice. However, we excluded
antibiotics with high tissue penetration in the software as
treatment options, as we were aware of the potential negative
effects of these treatments. This might have contributed to the
fact that we did not observe a significant increase in these
proportions of treatments prescribed during the study.
Furthermore, it can be expected that the side effects of the
treatments were considered by GPs in the treatment and control
arms of the study. GPs were actively advised to choose a
treatment based on all the information they deemed relevant,
not only the information presented through the CDSS. Therefore,
as we expect GPs to include knowledge on the side effects and
negative effects of treatments in their decision-making, we
mitigate the impact of this information being absent in the
CDSS.

Finally, we were unable to relate the significant increase in
patient outcomes to significant behavior change by physicians
in treatment practices. The analyses of behavior change could
potentially have been done more thoroughly if we had been able
to match more patients between the Pacmed data and Nivel
database. Out of 1200, only 734 (61.16%) patients could be
matched owing to an underestimated complexity in matching
these databases. In hindsight, a pseudonymized patient identifier
would have enabled us to match a significantly higher number
of patients in the Nivel database, if not all, from the CDSS data.
The most important underestimation of this complexity was the
incorrect assumption that participating physicians and assistants
would always use the software during the first consultation with
the patients. As this was not the case, it was difficult to identify
patients based on their characteristics as well as the time they
had entered into the software. We strongly recommend extensive
research on the care paths of patients in multiple clinical
institutions to match the implementation study design with these
care paths. Another effort to further understand the behavior
change and thus the impact of the CDSS would be to have expert
groups and extensive surveys on how the software impacted
the decision-making of GPs and assistants at an individual level.

Relevance and Future Directions
This research brings important knowledge to the research field
of responsibly implemented ML-based decision support systems
with clinical relevance. In particular, most published algorithms
do not reach the frontline of clinical practice nor are they
validated prospectively [10,11]. To make this technology live
up to its great promises, prospective validation is needed,
resulting in high-quality protocols for the responsible
development and deployment of ML in health care
[11,14,31-34].

Unfortunately, there is very little scientific discussion on the
responsible evaluation of the CDSS to assess its impact and
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validity once it has been implemented. Nevertheless, only by
evaluating its impact on relevant outcomes, while integrated in
the clinical workflow, the potential and risks can be fully
understood [15,35]. One of the greatest barriers to achieving
impact in practice is the adoption of the CDSS by the clinician
as an end user [15,33]. Nevertheless, studies often fail to assess
(or report on) the impact of the technology on the users and
their workflow [13,14,16]. Therefore, it is even more important
to have protocols in place to thoroughly analyze the behavior
change, assess its robustness, and compare the outcomes for
groups for which the tool has certainly been used with those
that one is uncertain about.

Conclusions
The introduction of the CDSS as an intervention in the 36
treatment practices was associated with a statistically significant
improvement in treatment success for patients with a UTI,

namely, an increase from 75% to 80% successful treatments.
The 2 sensitivity analyses enabled us to present this result with
greater robustness. First, temporal effects were excluded by
evaluating treatment success in the same period for a group of
control practices selected through a propensity score-matching
procedure. Second, analyzing the subgroup for whom we were
certain the software had been used strengthened the association
of an increase in successful treatment with the presentation of
the CDSS in the treatment arm.

This study shows some important strengths and points of
attention in the design and development of clinical decision
support software as well as a thorough evaluation of its clinical
impact in practice. Further research is needed on the interaction
of ML-based clinical decision support software with end users
to assess the potential impact of this technology for patients and
physicians, and to develop concrete and objective guidelines to
perform this research responsibly.
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Abstract

Background: Traditional Chinese medicine (TCM) practitioners usually follow a 4-step evaluation process during patient
diagnosis: observation, auscultation, olfaction, inquiry, pulse feeling, and palpation. The information gathered in this process,
along with laboratory test results and other measurements such as vital signs, is recorded in the patient’s electronic health record
(EHR). In fact, all the information needed to make a treatment plan is contained in the EHR; however, only a seasoned TCM
physician could use this information well to make a good treatment plan as the reasoning process is very complicated, and it takes
years of practice for a medical graduate to master the reasoning skill. In this digital medicine era, with a deluge of medical data,
ever-increasing computing power, and more advanced artificial neural network models, it is not only desirable but also readily
possible for a computerized system to mimic the decision-making process of a TCM physician.

Objective: This study aims to develop an assistive tool that can predict prescriptions for inpatients in a hospital based on patients’
clinical EHRs.

Methods: Clinical health records containing medical histories, as well as current symptoms and diagnosis information, were
used to train a transformer-based neural network model using the corresponding physician’s prescriptions as the target. This was
accomplished by extracting relevant information, such as the patient’s current illness, medicines taken, nursing care given, vital
signs, examinations, and laboratory results from the patient’s EHRs. The obtained information was then sorted chronologically
to produce a sequence of data for the patient. These time sequence data were then used as input to a modified transformer network,
which was chosen as a prescription prediction model. The output of the model was the prescription for the patient. The ultimate
goal is for this tool to generate a prescription that matches what an expert TCM physician would prescribe. To alleviate the issue
of overfitting, a generative adversarial network was used to augment the training sample data set by generating noise-added
samples from the original training samples.

Results: In total, 21,295 copies of inpatient electronic medical records from Guang’anmen Hospital were used in this study.
These records were generated between January 2017 and December 2018, covering 6352 types of medicines. These medicines
were sorted into 819 types of first-category medicines based on their class relationships. As shown by the test results, the
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performance of a fully trained transformer model can have an average precision rate of 80.58% and an average recall rate of
68.49%.

Conclusions: As shown by the preliminary test results, the transformer-based TCM prescription recommendation model
outperformed the existing conventional methods. The extra training samples generated by the generative adversarial network
help to overcome the overfitting issue, leading to further improved recall and precision rates.

(JMIR Med Inform 2022;10(5):e35239)   doi:10.2196/35239

KEYWORDS

traditional Chinese medicine; transformer; generative adversary networks; electronic health records; artificial intelligence; natural
language processing; machine learning; word2Vec

Introduction

The widespread use of electronic health record (EHR) systems
has led to the explosive growth of digitized health care data. As
the amount and complexity of data grow, medical analysis and
decision-making become increasingly time-consuming and error
prone. In reality, a human physician cannot fully use all the
available information at his or her disposal in a timely fashion.
Therefore, harnessing the information contained in EHR data,
most of which is in textual form, is critical for driving innovation
research, improving health care quality, and reducing costs.
Natural language processing (NLP) is essential for transforming
relevant information sequestered in freestyle texts into structured
data for further computerized processing. The development of
a predictive model with EHR data was motivated by the desire
to offer a medication-oriented decision support tool to clinical
health care providers. To build such a predictive model, we used
NLP techniques to convert a patient’s EHR data into a
representation, which then becomes the input to a deep learning
model to predict medical events, such as medication orders.

Biomedical NLP has experienced great progress in the past 30
years [1,2] and has become especially active in recent years [3].
Previously, EHR data were analyzed using traditional machine
learning and statistical techniques such as logistic regression,
support vector machine, and random forest [4]. However, in
recent years, as reviewed in the studies by Shickel et al [5],
Sheikhalishahi et al [6], and Miotto et al [7], many research
efforts have been devoted to the application of deep learning
techniques to EHR data for clinical informatics tasks.
Autoencoders have been used by researchers [8] to predict a
specific set of diagnoses. A long short-term memory (LSTM)
sequence model [9] was trained to provide patient-specific and
time-specific predictions of medication orders for patients who
are hospitalized [10]. A convolutional neural network (CNN)
model was used to predict discharge medications using the
information available at admission [11]. Numerous articles were
surveyed in the study by Goldstein et al [12] regarding the
development of a risk prediction model using EHR data. A
comprehensive study on applying deep learning techniques to
EHR data for a variety of prediction problems was reported in
the study by Rajkomar et al [13]. Recurrent neural networks
were successfully trained using EHR data to detect medical
events [14-16].

The research on applying artificial intelligence in traditional
Chinese medicine (TCM) has been very active in the past decade
[17,18]. Data mining techniques have been used for TCM

syndrome modeling and prescription recommendation for
diabetes [19]. The PageRank algorithm [20] was modified and
applied to TCM prescription recommendations [21]. In our
previous work [17], a CNN was used to predict TCM diseases,
and XGBoost, along with other neural networks, was used to
predict TCM syndromes. Following the sequence-to-sequence
paradigm, researchers from Peking University used bidirectional
gated recurrent neural networks to generate TCM prescriptions
from symptom descriptions [22]. They proposed a coverage
mechanism along with a soft loss function as a remedy for the
repetition problem they encountered. However, the requirement
of curated descriptions of symptoms as inputs hinders the
practicality of this approach. Ideally, the model generates TCM
prescriptions directly from raw EHR data, similar to how a
human TCM physician conducts deductive reasoning.

Generating prescriptions from raw EHR data typically comprises
2 parts. The first part uses biomedical NLP [3] techniques to
extract relevant information used by a human physician to form
a feature representation [23]. The second part uses deep learning
techniques [7] to map this feature representation into a
prescription order.

The primary task of biomedical NLP is to extract relevant
information from clinical narratives written in free-form text
and store the gathered information as structured data. Numerous
deep learning techniques [24-26], such as bidirectional LSTM
(BiLSTM), have been used in the biomedical NLP field. Both
BiLSTM conditional random field (CRF) and transformer CRF
have been used for named entity recognition (NER) of EHR
notes written in Chinese [27,28]. The recognized entities are
then formed into distinct tokens. Then, the feature representation
of a patient’s EHR data becomes a sequence of tokens. The
tokens are then converted into real-valued multidimensional
vectors using word embedding techniques [29].

The purpose of this study was to develop an assistive tool that
can prescribe TCM prescriptions for inpatients in a hospital
based on the patient’s clinical EHRs. The predictive model for
TCM prescription generation is based on a sequence-transducing
model called the transformer [30]. This model is entirely based
on attention, replacing the recurrent layers most commonly used
in encoder-decoder architectures with multihead self-attention.
The training used in this predictive model was supervised
training with human-authored prescriptions contained in the
EHR data set as the training targets. Furthermore, a generative
adversarial network (GAN) [31] model was designed to augment
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the training set to further enhance the overall system
performance by reducing the effects of overfitting.

Methods

This section is arranged as follows: the overall system
architecture is briefly described; then, each constituent
subsystem, which may comprise some functional blocks, is
introduced; finally, the training process is described in the
Training subsection, where a GAN model was used to generate
noise-added samples from the original samples.

System Overview
Hospitals and medical institutes in China are rapidly moving
toward standardizing their EHRs to conform to the regulations
and specifications issued by the Ministry of Health of the
People’s Republic of China [32-34]. A standard EHR document
for a patient may contain up to 53 parts, depending on the
patient’s situation. These may include the following:

• A first page record containing the patient’s basic personal
information, such as sex, age, occupation, and marital status

• An admission record containing the description of a
patient’s illness upon admission to the hospital, including
chief complaints, medical history, and family medical
history

• A laboratory tests record containing the list of tests and the
corresponding results

• A nursing record containing nurse notes of the patient’s
condition, treatments taken and nursing care taken, body
temperatures and vital signs taken, and physician’s orders

• A treatment procedure record containing the entire
in-hospital diagnosis and treatment process and any changes
to the patient’s illness or illnesses

A high-level block diagram of the proposed system is shown
in Figure 1. The system comprises 4 subsystems: the NLP
subsystem, the feature extraction subsystem, the vectorization
subsystem, and the prescription prediction subsystem. The NLP
subsystem processes the EHR file and produces structured data,
which in turn are processed by the feature extraction subsystem
to extract relevant clinical information for prescription
prediction. The vectorization subsystem maps the sequence of
tokens written in Chinese characters to digital numbers,
presented as a vector in a multidimensional space. The
prescription prediction subsystem, which is a transformer-based
deep learning model, automatically generates a prescription
based on input vector data. Together, the first 3 subsystems
accomplish the task of extracting relevant information from an
EHR file to form input variables for the prediction model.
Similar representation learning operations were described in
our previous paper [17].

In short, NLP normalizes the raw EHR data, the feature extractor
converts the normalized data into a sequence of tokens, the
vectorization subsystem maps the tokens into vectors of real
numbers, and the predictive model performs the reasoning
process to produce a prescription.

Figure 1. Block diagram of the prescription generation system. EHR: electronic health record; NLP: natural language processing.

The NLP Subsystem
This subsystem is responsible for generating structured data
from original EHR documents. The internal block diagram of
the subsystem is shown in Figure 2. There are 3 functional
blocks in this subsystem: the preprocessing block, NER block,
and British Medical Journal block.

The preprocessing block cleans the raw EHR document by
removing pictures and unusable components. This ensures the
completeness and accuracy of the electronic medical records.
Electronic medical records with incomplete or inconsistent
information are discarded.

After the initial cleaning, the content of the EHR file is then
divided into distinct sections. For example, the admission record
is divided into sections of chief complaints, medical history,
and others. Then, all the resultant sections are sorted, formatted,
and subsequently fed to the NER block.

Only a small part of the EHR document is in a fixed format,
and the remainder is in unstructured freestyle narratives. For
fixed-format texts, a script is used to extract named entities to
form structured data.

For freestyle narratives, a functional block called entity
recognition is used to extract named entities to form structured
data entries. The NER block is implemented using a BiLSTM
network with CRF (BiLSTM-CRF) [24].

Then, the extracted named entities such as symptoms, illness,
medicine, examinations, and tests are further standardized
according to a Chinese version of the British Medical Journal
Best Practice knowledge base.

Figure 3 shows an example of the processing result, where the
admission record of a raw EHR note is converted into structured
data, with the marked words being named entities.
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Figure 2. Block diagram of the named entity recognition subsystem. BiLSTM: bidirectional long short-term memory; EMR: electronic medical record;
BiLSTM-CRF: Bidirectional long short term memory – conditional random fields; BMJ: British Medical Journal.

Figure 3. Example of converting a freestyle narrative into structured data. EHR: electronic health record.

The Feature Extraction Subsystem
To effectively mimic the reasoning process conducted by a
human physician, accurate and relevant input variables must be
chosen properly. These variables should represent the complete
set of factors that a human physician should take into
consideration when making treatment decisions. Textbox 1

summarizes the predominant factors that TCM experts consider
when making treatment decisions.

The feature extraction subsystem extracts the aforementioned
key features from the standardized structured data to form a
sequence of tokens. Figure 4 shows an example of this feature
extraction, in which a sequence of tokens is generated from
structured data.
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Textbox 1. Text type and the content to extract.

Demography

• Sex, age, height, weight, and BMI

Chief complaints

• Symptoms and signs

Recent medical history

• Symptoms, signs, and general information

Past medical history

• Past illness and medicines taken

Present illness

• Tongue coating and pulses

Body check

• Vital signs

Treatment process records

• Current illness situation and treatment plan

Physician’s orders

• Prescriptions

Nursing notes

• Vital signs and medication records

Examination reports

• Examination items and findings

Laboratory reports

• Items tested and qualitative and quantitative test results

Figure 4. Example of converting structured data into a sequence of tokens.
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The Vectorization Subsystem

Overview
Until this point, all medical information needed to make a
treatment decision was encapsulated in textual data expressed
in Chinese characters. To be used by the deep learning
network—the Transformer—the information must be mapped
into a digital variable. In this vectorization process, a Chinese
word or phrase is represented as a real-valued vector in
multidimensional feature space. This section explains how
tokenized features are further processed through word
embedding.

Training the Word Embedding Model
The corpus was a collection of 102,596 electronic medical
records from Guang’anmen Hospital and other hospitals. The
Jieba tokenizer was used to perform tokenization. The
open-source modeling tool Gensim was used to train the
word2vec [29] model with the following major parameters:
min_count=2, vector_size=100, window=5, sg=1, hs=1, and
epochs=50.

The Skip-Gram model was used, as indicated by the parameters.
Each word was represented by a real-valued vector of 100
dimensions.

Vectorization
Once the word embedding model is trained, each token is
represented by a 100-dimension vector. For each word in the
input sequence, a unique identifier is assigned using a
numerical-type value expressed as a name-value-unit before
another unique identifier is assigned. Once all tokens are
converted into vectors, the vectors are then concatenated to form
a single vector variable, which then serves as the input to the
transformer.

The NLP, feature extraction, and vectorization subsystems
together accomplish the task of feature learning by converting
an EHR document into a multidimensional real-valued vector.
Figure 5 shows an example of mapping from EHR text to word
vectors.

Figure 5. Illustration of converting electronic health record text to word vectors.

The Transformer Subsystem
The transformer subsystem is responsible for recommending a
prescription for every given input embedding, as shown in
Figure 6. The subsystem is described in the following
paragraphs.

Input embedding is a vector of max_num_tokens× vector_size
dimensions. For example, max_num_tokens=759 and
vector_size=100. Zero padding is used if the number of tokens
in a sequence is smaller than max_num_tokens. Conversely, if
the number of tokens in a sequence is larger than
max_num_tokens, the number of tokens is capped at
max_num_tokens by dropping off tokens corresponding to the
oldest time stamp with respect to the current prescription
generation time. The input embedding sample is first added to

the position vector of the same size, becoming the input to the
first encoder.

The main body of the subsystem comprises 2 identical cascaded
transformer encoders. Unlike the encoder of the original
transformer [30], which comprises 6 identical layers, the encoder
used in this research had only 1 layer with 4 sublayers. The first
was a multihead self-attention layer with Multi_heads=4 and
head_dim=8. The second was a residual layer of 100 neurons
with normalization. The third was a simple, position-wise, fully
connected feedforward network of 2048 neurons. The fourth
was a residual layer of 100 neurons with normalization.

The second encoder was followed by a linear layer, a
feedforward layer of 2048 neurons, a hidden layer, and an output
layer, as shown in Figure 6. The output layer comprised 819
neurons with a sigmoid activation function. Each of the 819
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neurons corresponded to an herbal ingredient. The hidden layer
comprised 128 neurons with a dropout mechanism and
normalization. The dropout rate was set to 0.4740. The purpose
of this hidden layer was to prevent overfitting.

The final result from the output layer was a list of probabilities
for the 819 drug ingredients, valued between 0 and 1. The
recommended prescription was then obtained by setting a
threshold for these probabilities.

Figure 6. The transformer subsystem.

Training

Training the Transformer
Training of the transformer is a supervised learning process.
The input is a real-valued vector representation of a patient’s
EHR, and the output is the prescription. The learning goal is
for a machine-generated prescription to match the medical order
prescribed by a human physician.

Augmenting the Training Data
To alleviate the overfitting effect of the proposed prediction
model, a GAN [31] network was used to augment the training
data set. Following the fundamental idea of the GAN network,
the generative model G is trained to represent the distribution
of the original training data set, and the discriminative model
D is trained to detect whether the sample originates from the
original sample set or from the output of the generative model.

During the training phase, the entire system looks like that
shown in Figure 7. For every original training sample, there is
a noise-added sample. The use of a GAN in this system
effectively doubled the number of training samples.

The internal structure of our GAN network was designed as
shown in Figure 8. Generator G comprises 2 identical LSTM
layers, each with a size of 279. Each LSTM layer is followed
by a normalization layer with a residual connection. The input
to the discriminator G could be either an original word
embedding sample or a noise-added sample generated by the
generator G. The discriminator D comprises an LSTM layer

with a size of 279, a residual and normalization layer with a
size of 100, and a full connection layer with a size of 256.
Finally, the discriminator D outputs a binary value using a
sigmoid function.

We followed a typical GAN network training procedure [31]
to train the GAN subsystem, simultaneously training the
discriminator and generator. The discriminator and generator
alternate in their training until a Nash equilibrium is reached.

The generator first produces a batch_size noise-added EHR,
embedding samples with randomly initialized coefficients of
the generator network. These samples are concatenated with
the original noise-free EHR embedding samples to form
(2×batch_size) embedding samples, each with
max_num_tokens×vector_size real values. For example, we can
have batch_size=500, max_num_tokens=560, vector_size=100.
These (2×batch_size) samples were used as inputs to the
discriminator. For every input sample, an output label indicates
whether the sample is from the true original embedding or from
the generator. The discriminator network was trained using a
backpropagation algorithm with the objective of minimizing
the prediction error. The training of the discriminator is halted
when the binary cross-entropy loss function stops decreasing.
The discriminator training is then temporarily halted to yield
to the generator training.

To train the generator, all network coefficients of the
discriminator must be frozen. The discriminator now works in
tandem with the generator during generator training. The
generator produces batch_size noise-added embedding samples,
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and for every sample, the discriminator outputs a prediction.
The generator updates its parameters using a backpropagation
algorithm based on the discriminator output. The training of the
generator is halted when the binary cross-entropy loss function
stops increasing. The generator training is then temporarily
halted to yield the discriminator training.

The aforementioned discriminator and generator training
processes together form 1 training epoch. The entire GAN
network training is accomplished through several epochs. The
training stops when a Nash equilibrium is reached.

The entire training process is illustrated using the Python
pseudocode included in Multimedia Appendix 1.

Figure 7. Block diagram of the predictive modeling system during the training phase. EHR: electronic health record; GAN: generative adversarial
network; NLP: natural language processing.

Figure 8. The internal structure of the generative adversarial network subsystem. LSTM: long short-term memory; *size of the neural network used
in that layer.

Ethics Approval
This study received institutional review board review through
Guanganmen Hospital Ethic Committee (SQ2017YFGX
060073).

Results

Data Set
EHRs generated in Guang’anmen Hospital between January 1,
2017, and December 31, 2018, were used as the data set in this
study. Initially, there were 27,846 copies of EHR notes, out of
which 6551 (23.53%) copies were discarded because of quality
control. An EHR note should be discarded if it satisfies one of
the following conditions:

• The note is incomplete for missing certain basic pages.
• The note contains inconsistent information.
• The note does not use standard descriptions.

• The note contains special EHR circumstances such as
chemotherapy, after an operation, and removal of fracture
settings.

Evaluation Metrics
The data set contained 6352 drug varieties. A complete TCM
prescription includes drug ingredients, dosages, and decoction
preparation instructions. It is still very challenging, if not
impossible, for a machine to generate such a complete TCM
prescription. At our current stage of research, we focus only on
the drug ingredients of a prescription.

Judging whether the 2 TCM prescriptions are the same is often
not straightforward, given the distinctive nature of TCM [35].
Often, 2 different herbs may have the same medical effect. When
a TCM physician prescribes a medication order, he or she often
has multiple choices at hand for herbal ingredients. As a result,
the 2 TCM physicians may prescribe different herbs for the
same patient with the same diagnosed condition. Therefore, it
is necessary to have a unified method of evaluating
machine-generated prescriptions. To this end, we need a higher
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level of abstraction. Figure 9 shows an example of the
organization of TCM drugs. In this example, 2 TCM drugs
(antiphlogistic powder and Jingfang decoction) have different
herbal ingredients but belong to the same parent drug category
and have the same medical treatment effect. In our research, we
concluded that the recommended drug should be considered a
correct recommendation as long as the recommended drug
belongs to the same parent category as that of the
human-authored prescription.

To quantitatively evaluate the performance of the
transformer-based deep learning model, we compared the
prescription generated by the machine with that prescribed by

a human physician. Here, we used the metrics of precision rate
and recall rate, which we based on 3 variables. True positive
(TP) is defined as the number of drugs that exist in the
physician’s prescription and also exist in the machine’s
prescription. False positive (FP) is the number of drugs that do
not exist in the physician’s prescription but exist in the
machine’s prescription. False negative (FN) is defined as the
number of drugs that exist in the physician’s prescription but
not in the machine’s prescription. With these definitions, we
defined the precision and recall rates as follows:

Precision rate = TP / (TP + FP) (1)

Recall rate = TP / (TP + FN) (2)

Figure 9. Classification of herbal drugs.

Hyperparameter Tuning With GridSearchCV
The data set was divided into training and test sets, with the
training set comprising 90% of the data set and the test set
comprising the rest. The model was trained using a 10-fold
cross-validation method; that is, the training set was randomly
split into 10 folds, with the model being trained 10 times. During
each of the 10 training times, the hyperparameters were tuned
using the GridSearchCV method. Each training resulted in a set
of hyperparameters, with the ultimate hyperparameters being
the average of these 10 sets of parameters.

The values of the hyperparameters of the transformer network
model have a great influence on the accuracy of the model. The
optimal values of these parameters were determined through
iterations using the grid search method. The sparse characters
of each type were embedded into a d-dimensional embedding
layer. Then, all vectors were combined using a new method:

vectors of the same type and time were averaged using the
weights of self-learning.

The model was optimized using a minimal log loss. Many
regularization methods were used, such as the vector loss rate
and the embedded layer loss rate. In addition, small-scale L2
weight punishment was used, which increased the punishment
for large weights. The training batch size was chosen as 128,
placing sentences with similar sizes into the same batch. Each
batch contained approximately 12,000 words. Finally, the
multilabel task was processed using an Adam function. For
multilabel tasks, the input with the last time stamp was
multiplied with the special end of sequence embedding. The
training was executed using the Kears framework on a server
with 8 NVIDIA P100 graphics processing unit. The fine-tuned
hyperparameters along with their respective ranges are shown
in Table 1.
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Table 1. Some hyperparameters of the model.

Parameter rangeValuesHyperparameters

(0.1, 0.5, 1.0, 1.1)0.1245Gradient

(4, 8)4Attention heads

(0.25, 0.35, 0.5)0.4410Vector loss rate

(0.25, 0.35, 0.5)0.4740Hidden layer loss rate

(0, 1)0.4375Learning rate

(0, 0.01)0.000001566L2 punishment rate

Experimental Results
To intuitively explain our experimental results, we start with a
concrete example that illustrates how EHR notes lead to
prescription orders. An example of this is shown in Figure 10.
The left side shows a snapshot of the patient’s EHR. On the
right side is a table showing a side-by-side comparison between
a human-authored order and the prescription generated by our
model. The physician’s order contains 12 ingredients, whereas
the model’s order has 11. The first 5 ingredients are identical
on both sides. The sixth ingredient from each side is the same,
although they have different Chinese names. This is because
the physician used a nickname for the herb. The remaining
ingredients differ not only in name but also in substance.
However, these 2 orders are still considered equivalent so far
as the medical treatment effect is concerned. This is because in
TCM terminology, a diagnosis must conclude with the name
of the disease (illness) and a list of syndromes [17]. In this
particular case, the diagnosed disease is emaciation-thirst, with
the primary syndrome being kidney and liver deficiency and the
secondary syndrome being dampness and stasis. The first 6
herbal ingredients target the primary syndrome. The remaining
ingredients in each prescription are for the treatment of the
secondary syndrome called dampness and stasis. As these 2
orders are only slightly different in their ingredients for treating
secondary syndrome, they are treated as the same prescription
in our research.

To further explain this prescription comparison, we present
another picture, as shown in Figure 11. The physician’s order
is called Qiju Dihuang pill, and the model’s order is called
Liuwei Dihuang pill. They are category II prescriptions that
belong to the same parent category TCM prescription called
nourishing liver and kidney. They differ only in how to dispel
dampness and resolve phlegm to address only the secondary
syndrome.

To evaluate the performance of the transformer-based predictive
model, we first conducted model training using only the original
samples, purposefully excluding the noise-added samples. The
results are described in the following paragraphs.

On the basis of the time sequences, the system produced
prescription recommendations at admission, 24 hours after
admission, 48 hours after admission, 3 days after admission,
and 1 week after admission. The test results are shown in Table
2.

From Table 2, we first observe that the precision and recall rates
obtained from the training data set are higher than their
respective counterparts from the test data set. This is
understandable as the model has seen the samples from the
training data set before but not from the test data set. The second
observation is that as time progresses, both the precision and
recall rates improve. After admission, at each subsequent
medication order time, more relevant information is collected,
and the prediction becomes more accurate. Although the number
of feature tokens was <260 for 98% of the patients at the time
of admission, this number increased to 296 in 24 hours, 333 in
48 hours, 366 in 72 hours, and 759 in 7 days. In our experiment,
we set max_num_tokens=759. This means that when the number
of feature tokens was <759, zero padding was used, and clipping
was used when there were >759 feature tokens. Selecting the
proper value for max_num_tokens is important for balancing
the trade-off between overall system performance and
computational efficiency. If the value is too large, training and
inferencing will consume too much computation horsepower.
If the value is too small, then some critical information gathered
at admission will be lost because of clipping, leading to reduced
precision and recall rates for prescription predictions at a time
that is far from the admission time (eg, 2 weeks after admission).

The second set of experimental results was obtained using more
training samples to train the predictive model. The size of the
training data set was doubled, as for every training sample, a
noise-added sample was generated by the GAN network. The
precision and recall rates are listed in Table 3.

As can be seen in Table 3, both the precision and recall rates
consistently improved by a noticeable margin. The results
convincingly prove that inserting noise-added training samples
generated by the GAN module can effectively overcome the
overfitting issue, leading to better prediction performance.
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Figure 10. Side-by-side comparison of physician’s order versus model’s order.

Figure 11. Prescription comparison: physician’s order versus model’s order.

Table 2. The precision rates and recall rates with transformer only.

Test setTraining setTime

Precision rate (%)Precision rate (%)Recall rate (%)Precision rate (%)

61.2573.8269.4981.58Admission

62.6974.5671.8883.37In 24 hours

63.0474.8171.2683.92In 48 hours

65.3876.2473.8985.16In 3 days

67.1577.9475.1787.02In 1 week
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Table 3. The precision rates and recall rates with transformer+generative adversarial network.

Test setTraining setTime

Recall rate (%)Precision rate (%)Recall rate (%)Precision rate (%)

68.4980.5870.6582.22Admission

70.882.3772.1884.15In 24 hours

70.2682.9272.5684.32In 48 hours

74.3885.0475.1087.04In 3 days

76.2386.8276.7988.91In 1 week

Comparison Study
To compare the performance of our proposed model with that
of existing prescription generation models, we implemented 3
other models. The CNN-based model [11] comprises a word
embedding layer, a convolution layer that contains 3 filters of
different sizes, a pooling layer, and a full connection layer. The
output layer contains 819 neurons, equal to the number of
prescribed herb varieties. The seq2seq [36] model comprises a
CNN encoder and an LSTM decoder. The MedAR [37] model
comprises a word embedding layer, followed by an attention

layer, and finally, a RethinkNet layer to complete the multilabel
classification. The learning rate was 0.001, the dropout rate was
0.8, and the optimization function was Adam. The final output
layer used the sigmoid function, where all other layers used the
non-linear activation function ReLU, which outputs an input x
as zero if x is negative, and outputs x itself if x is larger than or
equal to zero. Table 4 shows the respective precision and recall
rates at admission for all 4 models in discussion. The results
suggest that the proposed model has superior performance in
terms of precision and recall rates.

Table 4. Performance comparison for different models.

Recall rate (%)Precision rate (%)Model

31.0047.54Convolutional neural network

48.7464.02Seq2seqa

53.0871.46MedARb

68.4980.58Transformer+generative adversarial network

aSeq2seq: sequence to sequence model.
bMedAR: Medical data attention Rethink Net.

Discussion

Principal Findings
The following tasks have been finished in this research:

1. Deep learning NLP techniques were used to convert raw
Chinese EHR texts into feature representations.

2. The major contribution of this study is the proposal of a
transformer-based predictive modeling scheme for
medication order generation from a feature representation
of EHR data.

3. The secondary contribution of this study is the use of GAN
to augment the training data set, leading to a noticeable
performance improvement of the predictive model. Using
the GAN, noise-added samples were generated to double
the number of original training samples. This helped
alleviate the overfitting problem, making the model more
robust in terms of generalization.

Limitations
Despite the efforts made in many aspects of the diagnosis and
treatment scheme recommendations, there is still much room
for improvement. The training data set is still relatively small,

and there may be some frequently used medicines that are not
included in the training data set. The TCM prescription
knowledge base is still incomplete. Some medicines do not have
standard names, and no corresponding parent medicine name
exists in the database. Therefore, the recommended medicine
names are still the original hospital medicine names. For a
multilabel prediction task, an increased number of labels will
increase the difficulty of the model prediction and lower the
prediction accuracy. Therefore, as a more complete knowledge
base is developed, the label set will be further optimized, leading
to a greater prediction accuracy of the model.

Future Work
This paper reports the preliminary research results of automated
medication order generation from EHR texts for TCM inpatients
who are hospitalized. The recommended medicines include
Western and Chinese medicines. For Chinese medicines, only
the medicine names are recommended. In the future, the dosage
of the herbal ingredients, as well as the medicine preparation
instructions, will be included in the recommendations.
Improving the model prediction accuracy to the level of category
II is also a direction for future work. Future work could expand
the training data set to optimize the model.
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Python pseudocode for the training of generative adversarial network with Keras Framework.
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Abstract

Background: Many of the benefits of electronic health records (EHRs) have not been achieved at expected levels because of
a variety of unintended negative consequences such as documentation burden. Previous studies have characterized EHR use
during and outside work hours, with many reporting that physicians spend considerable time on documentation-related tasks.
These studies characterized EHR use during and outside work hours using clock time versus actual physician clinic schedules to
define the outside work time.

Objective: This study aimed to characterize EHR work outside scheduled clinic hours among primary care pediatricians using
a retrospective descriptive task analysis of EHR access log data and actual physician clinic schedules to define work time.

Methods: We conducted a retrospective, exploratory, descriptive task analysis of EHR access log data from primary care
pediatricians in September 2019 at a large Midwestern pediatric health center to quantify and identify actions completed outside
scheduled clinic hours. Mixed-effects statistical modeling was used to investigate the effects of age, sex, clinical full-time
equivalent status, and EHR work during scheduled clinic hours on the use of EHRs outside scheduled clinic hours.

Results: Primary care pediatricians (n=56) in this study generated 1,523,872 access log data points (across 1069 physician
workdays) and spent an average of 4.4 (SD 2.0) hours and 0.8 (SD 0.8) hours per physician per workday engaged in EHRs during
and outside scheduled clinic hours, respectively. Approximately three-quarters of the time working in EHR during or outside
scheduled clinic hours was spent reviewing data and reports. Mixed-effects regression revealed no associations of age, sex, or
clinical full-time equivalent status with EHR use during or outside scheduled clinic hours.

Conclusions: For every hour primary care pediatricians spent engaged with the EHR during scheduled clinic hours, they spent
approximately 10 minutes interacting with the EHR outside scheduled clinic hours. Most of their time (during and outside
scheduled clinic hours) was spent reviewing data, records, and other information in EHR.
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Introduction

Current research suggests that the proliferation of electronic
health records (EHRs) has contributed to the increased time
physicians spend interacting with computers, often at the
expense of direct patient care [1-6]. Prior research has shown
that physicians in the United States spend 1 to 2 additional hours
completing EHR-related tasks for every hour they spend with
patients [7]. Other research on this topic suggests that physicians
spend approximately half their workdays on EHRs [8]. This
EHR documentation burden was predicted in a systematic
review published in 2005 by Canadian researchers, warning
that the goal of decreased documentation time with the adoption
of EHRs will likely not be realized, particularly among
physicians [9].

The increased workload associated with EHR tasks has resulted
in many physicians completing their EHR-related tasks during
nonwork hours (eg, at night, on weekends, and during vacation
time) [7,10,11]. Prior research suggests that physicians spend
90 minutes each day on EHRs outside their normal work hours.
A study reported that even among physicians reporting EHR
proficiency, more than half (56%) reported time spent at home
on EHR-related work was excessive or moderately high, with
less than one-quarter reporting sufficient time for documentation
during work hours [12]. In another study, more than one-third
of physicians self-reported working outside work hours, with
approximately 60% of that time spent using EHRs [5]. A third
study reported that of the 6 hours that clinicians spent on EHRs
per weekday, 24% of this time was outside work hours [8].

Previous studies have quantified EHR work during and outside
work hours [1,4-6,8,13-18] using predetermined times as their
definition of work hours. Using the same approach, others have
assessed the types of actions completed in EHR during these
periods and the time allocated to these actions [8,15]. For
instance, clerical and administrative actions (eg, documentation,
order entry, billing and coding, and system security) accounted
for almost half of the EHR actions (44%), and inbox
management accounted for another one-quarter (24%) of that
time [8].

The aim of our study is to characterize EHR work outside
scheduled clinic hours among primary care pediatricians. The
study design, using a retrospective descriptive task analysis of
EHR access log data, extends the prior literature by identifying
specific actions that are frequently completed outside work
hours using physician schedules rather than fixed clock times
to define outside work hours. Focusing on schedules instead of
clock time allows us to produce more accurate estimates of time

spent on the EHR outside of the actual scheduled clinic hours,
as physician work schedules can be variable and include
evenings and weekends. To our knowledge, no study thus far
has used individual physician schedules to classify time spent
into work and nonwork hours, which is a critical addition to the
dialog and research on EHR-related documentation burden.

Methods

Setting
This study used a retrospective analysis of EHR access log data
from primary care pediatricians at the Nationwide Children’s
Hospital (NCH), a large, free-standing US children’s hospital
that uses the Epic EHR (Epic Systems Corporation). All
physicians who, in September 2019, generated primary care
relative value units (RVUs), a measure of billable service
volume and complexity, were included in the study. The use of
EHR audit log data collected over a 1-month time frame is
recommended because of the amount of work required to collect
and clean a larger data set and the potential for shorter periods
to better expose anomalies because of events such as vacations
and changes in staffing [19]. Pediatricians generating
non–primary care RVUs such as in inpatient or urgent care
settings were omitted. All the access log data of pediatricians
who met the inclusion and exclusion criteria were included in
the study.

Ethics Approval
This study was approved by the institutional review boards of
the NCH (protocol number IRB1800261) and Ohio State
University (rotocol number 2019N0042).

Data Acquisition and Preparation
Clinical, billing, scheduling, and EHR use data were extracted
from the local Epic EHR and other administrative sources into
a separate database for analysis (Figure 1). The data included
pediatricians’ planned clinic hours, patient appointments,
demographic information (eg, age and sex), employment
information (length of hospital service, physicians’ total
workload or full-time equivalent [FTE] status, and physicians’
clinical workload or clinical FTE [cFTE] status), and EHR
access log entries. The EHR access log captures discrete
time-stamped actions associated with provider navigation and
use of the EHR [15,20]. It captures providers’direct interactions
with the EHR system, such as log-in, logout, chart review
activity, clinical documentation, and ordering actions [15,20].
Log files also record information such as the user, the time of
access, the device from which the EHR was accessed, and the
portion of the EHR system that was accessed [15].
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Figure 1. Flow chart of data acquisition and data preparation. EHR: electronic health record; RVU: relative value unit.

The primary variables for our analysis were the EHR actions
and access time extracted from the EHR access log files. EHR
actions refer to events or movements recorded in the EHR
system through mouse clicks and scrolling. These actions were
grouped into 6 meaningful action categories (4 clinical and 2
general categories) using an iterative process in which the
primary researcher (SA) worked with a clinical informatics
physician fellow under the supervision of the NCH Chief
Medical Information Officer (JH) to review various actions and
associated categories. This process resulted in the identification
of four clinical action categories (reviewing data and reports,
creating and authenticating documentation, entering and
authenticating orders, and completing inbox and communication
tasks) and two general action categories (log-in and logout
activities).

EHR access time (ie, duration or elapsed time) refers to the time
spent in the EHR or the time spent completing actions in the

EHR. Access time was estimated using a previously validated
algorithm used by Arndt et al [8]. Access time was defined as
the time between each activity log entry and the next log entry
for a given user. The total access time was calculated for all
EHR actions for each physician and then decomposed into two
mutually exclusive time segments: (1) during scheduled clinic
hours and (2) outside scheduled clinic hours.

EHR work during scheduled clinic hours was defined as EHR
work that occurred during the period 30 minutes before to 30
minutes after scheduled patient visits for each physician each
day. Similarly, EHR work outside of scheduled clinic hours was
defined as work completed outside of the work hours period.
A margin of 30 minutes was added to each physician’s
scheduled clinic hours to capture preparatory actions or closing
actions for a set of consecutive patient visits. Finally, we
identified and examined high users of EHR outside scheduled
clinic hours to determine unique patterns of use.
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Data Analysis
Descriptive task analysis was used to quantify and identify
patterns of EHR work completed outside the scheduled clinic
hours. All actions spanning >15 minutes were removed to omit
occurrences of idle time. This cutoff was determined after
careful examination of the data, sensitivity analyses, discussions
with the Chief Medical Information Officer (JH), and the
acknowledgment that, in practice, a single action in the EHR is
typically not >15 minutes. Descriptive statistics (using
demographic data) were calculated for the overall physician
group. Categorical variables are reported as frequencies and
percentages of the total. Continuous variables are summarized
as mean and SD. The overall EHR access time for each
physician was determined by averaging the amount of time
spent during and outside the scheduled clinic hours each day
across the study month. The overall time and the proportion of
time spent on the actions completed in the EHR were examined
by calculating the time spent per physician per workday.
Administrative time (ie, time allotted within clinical schedules
to complete clinical notes, inbox messages, and other
administrative duties related to patient care) was calculated and
reported by dividing the total number of hours of administrative
time by the total number of physician workdays. The total
number of administrative hours was estimated to be
approximately 11% of the nominal clinical hours during the
4-week study period. The frequency (or number) and duration
of EHR actions were examined to determine which actions were
consistently completed outside scheduled clinic hours and
whether any patterns emerged.

Regression analyses were also conducted to determine
relationships between certain explanatory variables and
variations in EHR use. For these analyses, the main outcome

variables were the duration of EHR use both during and outside
scheduled clinic hours and total EHR use. Mixed-effects
statistical modeling was performed using daily and weekly
aggregated data to assess the fixed effects of physician age, sex,
and clinical FTE status on EHR use and estimate the magnitude
of random effects because of variations among providers and
temporal differences affecting all providers daily and weekly.
The distributions of the outcome variables were analyzed to
assess the normality assumption and determine whether a
transformation was needed. All data were managed and analyzed
using Microsoft Excel (version 16.0.4266) and R (version 3.5.2;
R Foundation for Statistical Computing).

Results

User Statistics
There were 62 (n=14, 23% male and n=48, 77% female)
pediatricians identified as working in the Division of Primary
Care Pediatrics who generated primary care RVUs during
September 2019, of whom 4 (6%) were excluded because they
were employed on a contingency status, 1 (2%) was excluded
because she had zero cFTE status, and 1 (2%) was excluded
because she did not see patients during the study period. The
56 pediatricians included in the study (n=12, 21% male and
n=44, 79% female) generated 1,523,872 EHR access log data
points (across 1069 physician workdays). Of the 56
pediatricians, 49 (86%) used EHR outside the scheduled clinic
hours. The descriptive statistics are presented in Table 1. The
sample group comprised pediatricians aged 30 to 69 (mean 45.6,
SD 9.9) years, with an average length of hospital service of 10.1
(SD 7.6) years (range 4 months to 33 years). The average FTE
and cFTE statuses were 0.8 (SD 0.2) and 0.5 (SD 0.2),
respectively.

Table 1. Descriptive statistics (N=56).

Values, mean (SD; range)Characteristics

45.6 (9.9; 30-69)Age (years)

10.1 (7.6; 0.3-46)Length of hospital service (years)

0.8 (0.2; 0.5-1.0)Full-time equivalent status

0.5 (0.2; 0.5-0.9)Clinical full-time equivalent status

4.4 (2.0; 0.7-8.2)EHRa work during scheduled clinic hours (hours per physician per workday)

0.8 (0.8; 0-3.2)EHR work outside scheduled clinic hours (hours per physician per workday)

aEHR: electronic health record.

EHR Access Time
The pediatricians in this study had an average of 6 hours of
scheduled work time, excluding administrative time. They spent
approximately 4.4 (median 4.3) hours per workday interacting
with the EHR during scheduled clinic hours and approximately
0.8 (median 0.4) hours per workday outside scheduled clinic
hours. On average, the available administrative time was 0.5

hours per workday. EHR use ranged between 0.7 and 8.2 hours
during scheduled clinic hours and between 0 and 3.2 hours
outside of scheduled clinic hours. When physicians used the
EHR outside of scheduled clinic hours, they typically did so in
the evenings and on weekends. Figure 2 presents a histogram
of the average time spent in the EHR by each physician outside
the scheduled clinic hours.
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Figure 2. Histogram of average time spent in the electronic health record (EHR) by each physician outside scheduled clinic hours.

EHR Action Categories

Overview
A total of 290 unique EHR actions were identified, and each
action was classified into an EHR action category. Of the 290
EHR actions, 161 (55.5%) were classified as reviewing patient
charts, 64 (22.1%) as creating and authenticating documentation,
34 (11.7%) as completing inbox and communication tasks, 19
(6.6%) as entering and authenticating orders, and 12 (4.1%) as
completing log-in and logout activities.

Action Frequencies and Duration by EHR Action
Categories
Table 2 presents an overview of the time spent on EHRs per
physician per workday grouped by the EHR action category.
Pediatricians spent approximately 73% (3.72/5.12) of their time
reviewing data and reports, 7% (0.33/5.12) creating and
authenticating documentation, 12% (0.60/5.12) completing
inbox and communication tasks, 3% (0.13/5.12) entering and
authenticating orders, and 6% (0.33/5.12) engaging in log-in
and logout activities. For order entry, only 8% (0.01/0.13) of
the work was completed outside scheduled clinic hours, whereas
for the other 3 clinical categories, 13% (0.08/0.60) to 16%
(0.59/3.72) of the work was completed outside scheduled clinic
hours.

Table 2. Time spent per physician per workday by action category.

Hours spent per physician per workday, n (%)

TotalOutside scheduled clinic hoursDuring scheduled clinic hours

3.72 (73)0.59 (78)3.13 (72)Reviewing data and reports

0.33 (7)0.05 (7)0.28 (7)Creating and authenticating documentation

0.60 (12)0.08 (11)0.52 (12)Completing inbox and communication tasks

0.13 (3)0.01 (2)0.12 (3)Entering and authenticating orders

0.04 (1)0.01 (1)0.03 (1)Log-in actions

0.29 (6)0.02 (2)0.28 (6)Logout actions

5.12 (100)0.76 (100)4.35 (100)Total

Top 3 Most Frequent Actions by EHR Action Category
Approximately 93.1% (270/290) of EHR actions were completed
outside the scheduled clinic hours per physician per workday.
Of these 270 actions, the 3 most frequent specific actions
completed outside scheduled clinic hours within the 4 clinical
action categories accounted for 74 (27.4%) actions and 25
minutes per physician per workday (Table 3). For chart review,

the most frequent EHR action outside scheduled clinic hours
was viewing patient data, which occurred 28 times and over 13
minutes per physician per workday. This trend was similar for
EHR use during scheduled clinic hours. For documentation, the
2 most frequent activities outside scheduled clinic hours were
the use of visit documentation templates (occurring 15 times
over 1 minute per physician per workday) and the signing of
clinical notes (occurring 2 times over 0.4 minutes per physician
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per workday). During scheduled clinic hours, the use of visit
documentation templates was the most frequent activity;
however, the second most frequent activity was the modification
of clinical diagnoses. For inbox and communication, viewing
inbox messages was the most frequent EHR action outside the
scheduled clinic hours. This action occurred approximately 8
times over 2 minutes per physician per workday. However,

during scheduled clinic hours, the most frequent EHR action in
this category was the creation of inbox messages. For order
entry, the most frequent EHR action outside scheduled clinic
hours was the use of outpatient order sets, which occurred 3
times over 0.2 minutes per physician per workday. This trend
was similar during the scheduled clinic hours.

Table 3. Top 3 most frequent actions completed outside scheduled clinic hours in the EHRa per physician per workday by EHR action category.

Total minutes spent per physician per workdayFrequency per physician per workday

Reviewing data and reports

12.728Patient data viewed

3.54Encounter data viewed

3.24Clinical notes viewed

Creating and authenticating documentation

1.115Visit documentation template used

0.42Clinical note signed

0.32Encounter diagnoses entered

Completing inbox and communication tasks

2.28Inbox message viewed

0.73Inbox message created

0.73Inbox folder loaded

Entering and authenticating orders

0.23Outpatient order sets used

0.21Order list changed

0.21Length of stay entered

25.474Total

aEHR: electronic health record.

High Outside Scheduled Clinic Hours EHR Users
EHR use by physicians who spent >1.5 hours per workday
outside scheduled clinic hours (10/56, 18%) was further
examined to determine if there were additional insights that
could be gained from pediatricians who use the EHR more
outside scheduled clinic hours. Together, these physicians
generated a total of 212 physician workdays, spent an average
of 2.2 hours per physician per workday in the EHR outside

scheduled clinic hours, and exhibited similar trends (in terms
of the most frequent activities completed in the EHR) to those
of the entire group.

Factors Associated With EHR Use
Mixed-effects models revealed no significant associations of
age, sex, and cFTE status with EHR use during or outside
scheduled clinic hours (Table 4).

JMIR Med Inform 2022 | vol. 10 | iss. 5 |e34787 | p.104https://medinform.jmir.org/2022/5/e34787
(page number not for citation purposes)

Attipoe et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Mixed regression models.

Total EHR useEHR work outside scheduled clinic hoursEHRa work during scheduled clinic hoursModels

Fixed effects, coefficients (SE)

N/A−0.18 (0.02)N/AbEHR work during scheduled clinic
hours (minutes)

−0.05 (0.02)−0.004 (0.01)−0.06 (0.02)Age (years)

−0.14 (0.43)−0.80 (0.29)0.86 (0.50)Gender

3.63 (0.79)0.67 (0.54)3.63 (0.92)cFTEc status

4.67 (1.18)2.23 (0.76)3.00 (1.34)Constant

Random effects, variance (SD)

3.74 (1.93)0.06 (0.24)3.45 (1.86)Day

1. 35 (1.61)0.63 (0.80)1.91 (1.38)Provider

Model fitness (R2; %)

7.89.910.0Fixed effects

41.553.441.4Random effects

49.363.751.4Total

aEHR: electronic health record.
bN/A: not applicable.
ccFTE: clinical full-time equivalent.

Discussion

Principal Findings
In this study, we quantified and characterized EHR work outside
scheduled clinic hours and found that pediatricians spent
approximately 0.8 hours per physician per workday completing
work in the EHR outside of scheduled clinic hours. The time
spent using the EHR outside scheduled clinic hours accounted
for approximately 15% of the total daily EHR time (ie, 5 hours
per physician per workday). Specifically, outside scheduled
clinic hours (ie, 0.76 hours per physician per workday),
pediatricians spent 78% of their time (ie, 0.59 hours per
physician per workday) reviewing data and reports, 11% (ie,
0.08 hours per physician per workday) completing inbox and
communication tasks, 8% (ie, 0.06 hours per physician per
workday) documenting and completing orders, and 3% (ie, 0.03
hours per physician per workday) engaging in log-in and logout
activities. This distribution across action categories was similar
to the distribution of actions during scheduled clinic hours.

Comparison With Prior Work
The proportion of total time spent in the EHR outside work
hours in this study (0.76/5.12, 15%) was lower than that reported
by Arndt et al (24%) [8], Rotenstein et al (25% and 26%)
[14,18], and Holmgren et al (30%) [13] and higher than that
reported by Overhage and Johnson (12%) [21] and Holmgren
et al (13%) [17]. Each of these alternative estimates
characterized EHR use outside work hours using a predefined
clock time, whereas this study used actual physician schedules.
The methodology used in this study is arguably superior because
of the granular level of detail used to classify time as during or
outside work hours. We used scheduled patient visits (and
physician schedules by extension) to define the EHR work

outside work hours for each physician. We also included 30
minutes before and after each scheduled clinic time to capture
preparatory and closing actions. Thus, we are confident that our
time segment classifications truly reflect whether a physician
was actively seeing patients or completing related tasks. Using
clock time to define work versus after-work time might not
always capture exactly when a physician starts and ends their
actual workday.

The daily time spent in the EHR reported in this study (ie, 5
hours) is comparable with current estimates in the literature,
which range from 1.5 to 5 hours [1,6,8,13,15,18,22]. With
respect to the time spent per action category, most of the
pediatricians’ time was spent reviewing data and reports both
during and outside scheduled clinic hours. Only a small fraction
of their time was spent completing documentation and order
entry actions. This finding differs from reports in the literature
and anecdotal evidence that indicate physicians spend most of
their time completing documentation-related activities,
particularly outside work hours [1-6,8,13,15,23,24]. For
instance, the study by Overhage and Johnson [21] found that
among their sample of pediatricians practicing in US-based
ambulatory practices, documentation accounted for 31% of
EHR use time, and chart review accounted for another 31% of
EHR use time. The study by Arndt et al [8] found that
nonteaching ambulatory physicians spent 44% of the total EHR
use time engaged in clerical and administrative tasks (eg,
documentation, order entry, billing and coding, and system
security). Another study by Tai-Seale et al [15] found that
primary care physicians spent 51% of their time completing
EHR work, and 34% of this portion was spent on progress notes.
A more recent study by Holmgren et al [13] found that
ambulatory clinicians in the United States spent 67% of their
EHR use time completing notes and orders.
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One of the reasons why documentation time estimates in this
study were lower than those commonly reported in the literature
may be the differences in the categorization of EHR actions. In
the abovementioned studies, the time spent viewing patient data
during the process of writing a progress note may not have been
distinguished from the total time spent on the note (ie, from the
time the note was opened until it was finally signed). In this
study, raw access log data were used to categorize each EHR
action into one of the EHR action categories. No meanings were
inferred—all viewing actions were categorized under reviewing
data and reports, whereas all data entry actions were categorized
as documentation. The level of granularity and objectivity used
in this study ensures the robustness of our categorization and
estimates. Another reason for the relatively lower documentation
time estimates may be attributed to the extensive use of
documentation templates with quick selection options and
prepopulated data, as well as the extensive use of outpatient
order sets for good childcare and common presenting complaints
at this hospital. These practices may contribute to the reduced
time spent on the EHR on documentation activities.

In addition, we found that pediatricians spend approximately
10% of their time completing inbox and communication actions
both during and outside scheduled clinic hours. This estimate
is lower than that reported in prior studies. The study by
Holmgren et al [13] found that inbox activities accounted for
approximately 14% of EHR work, whereas Arndt et al [8] and
Tai-Seale et al [15] reported 24% and 22%, respectively.
Interestingly, in this study, the loading and viewing of inbox
messages were the most frequent and longest EHR actions
outside of scheduled clinic hours in the communication category;
however, during scheduled clinic hours, the most frequent and
longest EHR action was the creation of messages. Perhaps
physicians spend time checking their messages outside
scheduled clinic hours to stay abreast with current patient needs
but wait to respond to these messages during their scheduled
clinic hours. A second study by Tai-Seale et al [25] found that
receiving an excessive amount of system-generated inbox
messages was associated with a higher probability of burnout
and intention to reduce clinical work time, suggesting that this
aspect of EHR work can have considerable effects on a
physician’s well-being. On the other hand, a more recent study
by Melnick et al [26] suggested that EHR inbox management
was associated with physician departure—less time spent on
EHRs was associated with physician departure. Although their
finding was counterintuitive, they proposed that tracking EHR
metrics could potentially identify physicians at a high risk of
departure [26].

Factors Associated With EHR Use
This study found no association of age, sex, or cFTE with EHR
use. This finding is in contrast to previous findings from this
research group [27]. In our previous work, we found that female
physicians spend more time than male physicians using the
EHR during work hours but not outside work hours.
Provider-to-provider variation was the largest and most
dominant source of variation in EHR use outside work hours,
accounting for 52% of the total variance. However, in that study,

EHR work outside work hours was defined using clock time,
whereas our approach in this study of using actual physician
schedules may have produced more accurate estimations, which
could have eliminated bias in our prior models that accounted
for the observed differences.

EHR Access Log Data Use in Research
The use of EHR access logs is valid for assessing EHR actions
as there is consistency between the direct observation findings,
physician self-reported EHR work outside work hours, and EHR
system event log data [8,28]. Although EHR access log data
are highly complex, often uncharacterized, and require powerful
statistical software and technical skills for processing and
analysis, understanding and using raw EHR data could serve
as an external validation of EHR vendor–supplied metrics. This
validation is important as many researchers and hospital
administrators use vendor-supplied data to explore research
questions because of their ready availability and ease of use.
However, the proprietary algorithms used by EHR vendors (eg,
Epic’s Signal and Cerner’s LightsOn) use a black box
methodology, wherein the actual composition of each metric is
unknown. This study remedies this limitation by exposing and
using raw access log data to produce more meaningful metrics
and analyses.

At present, there are no agreed-upon standards for categorizing
EHR actions. A standard categorization scheme for EHR actions
will help provide a common language to facilitate and promote
clear communication in this nascent research space. Upon close
review of action categories used in the abovementioned studies,
other studies in the scientific literature, and this study, the
following conceptual categorization scheme of clinical EHR
actions seems adequate as a foundation on which to further
build: data review, data entry, data transmission, and other
(Table 5). Rather than creating new action categories with each
new research study, we propose building on the aforementioned
categories, as this classification scheme is both clear and
clinically meaningful. As it relates to this study, the proposed
conceptual classification scheme aligns well with the categories
used in this study in that data review aligns with reviewing data
and records, data entry aligns with creating and authenticating
documentation and entering and authenticating orders, data
transmission aligns with completing inbox and communication
tasks, and other aligns with log-in and logout activities.

The set of EHR action categories used by Zheng et al [29] (ie,
reading, entering, printing, processing, log-in, and logout) is
arguably one of the clearest among the available classifications
used in the literature as it objectively categorizes the action
without assigning any meaning—for instance, reading versus
chart review. Perhaps, this strength is also the reason researchers
refrain from using it; that is, the categories lack clinical meaning.
The action categories used by Arndt et al [8] (ie, medical care,
clerical, and inbox) have the opposite issue: they have clinical
meaning but are somewhat ambiguous. For instance, some of
the actions in the category of medical care could also be seen
as clerical tasks. The categories used by Holmgren et al [13]
closely align with those used in this study, are clear, and have
clinical meaning.
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Table 5. Proposed conceptual EHRa action categorization scheme.

Action categories used
by Zheng et al [29]

Action categories
used by Arndt et al [8]

Action categories used
by Holmgren et al [13]

Action categories used in this studyConceptual EHR action categoriza-
tion scheme

ReadingMedical careClinical reviewReviewing data and reportsData review—information review,
retrieval, or gathering activities

EnteringClericalNotes; ordersCreating and authenticating documen-
tation; entering and authenticating
orders

Data entry—information entry or
recording activities

PrintingInboxIn-basket messagesInbox and communication tasksData transmission—information
transmission activities

Log-in, logout, and
processing

N/AN/AbLog-in and logout activitiesOther—other nonclinical activities

aEHR: electronic health record.
bN/A: not applicable.

Strengths and Limitations
A major strength of this study is the level of objectivity and
granularity used to define time segments and action categories.
Time segments were defined using actual scheduled patient
visits to construct the physician workday schedules. These
schedules were validated against the planned physician
schedules. To the best of our knowledge, no study has used
actual schedules to define EHR outside of work hours. In
addition, action categories were defined using clear and
objective criteria. Such a concise categorization of EHR work
outside work hours and EHR action categories facilitates more
accurate estimations. However, there are a few limitations to
this study.

First, we were unable to parse chart review actions associated
with other action categories. Several chart review actions are
associated with other action categories. For instance,
documentation-related actions are usually associated with chart
review actions, and the methodology used in this study did not
capture these nuanced associations. For example, if a physician
viewed previous clinical notes while writing their own clinical
note for that encounter, this action was classified as reviewing
data and reports; however, to the physician, this viewing action
might be more cognitively associated with documentation. This
may explain why our estimates for the reviewing data and
reports category were relatively high. This explanation also
addresses why we found that physicians in this study spent only
a small fraction of their time completing documentation and
order entry actions, which was lower than the estimates in the
literature and anecdotal evidence. The current scientific literature
suggests that physicians spend a considerable amount of time
outside work hours completing documentation-related activities
[8], although the EHR is purported to contribute to more
efficient use of physicians’ time.

In addition, this study did not have (and therefore did not
include) work RVU (wRVU) as a factor in the regression
analysis. wRVU is a key factor for understanding EHR work.
Typically, wRVU indicates the volume and intensity of medical
services provided; thus, the higher the wRVU, the more likely
it is for a physician to spend time with the EHR. The absence
of wRVU in the regression models may be the reason they did
not generate statistically significant associations. However, the

findings are important as they provide a general characterization
of EHR use by pediatricians at this institution.

Finally, the study sample size was limited to 1 calendar month
of EHR activity data for a single practice, setting, type of
provider, and commercial EHR system (ie, academic primary
care pediatricians at NCH using the Epic system), thus limiting
the generalizability of the study findings. For instance, our study
findings may not be generalizable to other specialties, including
primary care specialties for adults, nor are they likely
generalizable to subspecialty academic practices—they are most
relevant to the academic pediatric practice. Furthermore, EHR
interfaces are often modified according to the needs of each
provider system [22]. Thus, the reported EHR use statistics may
not be generalizable to other institutions and provider groups.
On the other hand, Epic’s EHR is the most widely used EHR
in the United States and includes use metrics [30], making our
findings widely comparable with other institutions and provider
groups. Furthermore, the pediatric population is an important
one, and the sample group (ie, primary care physicians) helps
reduce the technical complexity of studying work during and
outside work hours.

Implications and Future Research
Primary care pediatricians care for many children during
half-day sessions (often simultaneously), work with nurses and
other support staff, and interact with patients at multiple points
in their daily workflow [28]. In addition, they spend considerable
time on EHRs during and outside work hours to document and
provide care. Thus, there is a need to improve
physician-computer interactions by streamlining EHR workflows
[22]. These improvements will likely need to be customized so
that they are relevant to the specific type of practice: general
pediatrics, subspecialty pediatrics, and many variations of adult
practices. To identify interventions to improve EHR design and
use, physicians’ EHR actions must be properly characterized
to better understand their various activities and use patterns
[22]. By identifying specific EHR actions that consistently
dominate computer use across multiple providers, more targeted,
data-driven approaches could be developed to improve
physician-computer interactions [22]. This implication reinforces
the need to validate proprietary algorithms and metrics generated
by EHR vendors, as many researchers and hospital
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administrators rely on these metrics (vs computing them from
raw EHR log data) for clinical, research, and policy purposes.
This is understandable, given the tremendous complexity and
resource requirements for working with and processing raw
EHR access log data.

Contrary to prior research and anecdotal evidence, our analysis
found that pediatricians spend a moderate amount of time on
EHRs outside of scheduled clinic hours and relatively less time
completing documentation-related tasks. As described
previously, this hospital uses documentation templates
extensively, which potentially helps reduce documentation time
in the EHR. Other medical facilities may consider adopting
such usability features to reduce the documentation burden
among providers. With the issue of EHR documentation burden
being prevalent among physicians and contributing to burnout
among this group [31-35], opportunities to reduce the burden
may help enhance physician well-being.

There are many opportunities for future research in this area,
including standardizing vendor-derived EHR data descriptions
in a way that is clinically relevant and important [26], validating
the use of EHR access log data across different settings,
exploring the relationship between EHR action frequency and
EHR action duration, examining the contribution of EHR use
outside work hours to physician well-being, determining
overestimation and underestimation margins of estimates, and

developing a taxonomy of EHR use to further promote
consistency and valid comparisons across organizations and
research studies. Such research will help provide additional
insights into EHR workflow issues and the effect of EHR work
on physician well-being. Furthermore, researchers in this field
should strive to set standards [36,37], as we have proposed
above. Accepted standards, for instance, on how to calculate
work outside work hours and categorize EHR actions, will help
facilitate research in this space.

Conclusions
In this study, we used EHR access log data to identify actions
typically completed outside scheduled clinic hours and the
pattern of this EHR work. This study fills a gap in the literature
by quantifying the use of EHR outside of scheduled clinic hours
using actual scheduled patient visits rather than planned
physician schedules or predefined clock times as a proxy. The
findings from this study suggest that primary care pediatricians
spend more than one-tenth of their EHR use time outside of
scheduled clinic hours and that approximately three-quarters of
this time is spent reviewing data and reports, whereas negligible
time is spent completing orders. Further studies are needed to
explore EHR use patterns by physicians and the reasons for
these patterns to help improve EHR work and workflow.
Qualitative and mixed methods research studies will be
instrumental in gaining insights into these patterns.
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Abstract

Background: Health information exchange and multiplatform health record viewers support more informed medical decisions,
improve quality of care, and reduce the risk of adverse outcomes due to fragmentation and discontinuity in care during transition
of care. An example of a multiplatform health record viewer is the VA/DoD Joint Longitudinal Viewer (JLV), which supports
the Department of Veterans Affairs (VA) and Department of Defense (DoD) health care providers with read-only access to patient
medical records integrated from multiple sources. JLV is intended to support more informed medical decisions such as reducing
duplicate medical imaging when previous image study results may meet current clinical needs.

Objective: We estimated the impact of provider usage of JLV on duplicate imaging for service members transitioning from the
DoD to the VA health care system.

Methods: We conducted a retrospective cross-sectional study in fiscal year 2018 to examine the relationship between providers’
use of JLV and the likelihood of ordering duplicate images. Our sample included recently separated service members who had
a VA primary care visit in fiscal year 2018 within 90 days of a DoD imaging study. Patients who received at least one imaging
study at VA within 90 days of a DoD imaging study of the same imaging mode and on the same body part are considered to have
received potentially duplicate imaging studies. We use a logistic regression model with “JLV provider” (providers with 1 or more
JLV audits in the prior 6 months) as the independent variable to estimate the relationship between JLV use and ordering of
duplicate images. Control variables included provider image ordering rates in the prior 6 months, provider type, patient demographics
(age, race, gender), and clinical characteristics (Elixhauser comorbidity score).

Results: Providers known to utilize JLV in the prior 6 months order fewer duplicate images relative to providers not utilizing
JLV for similar visits over time (odds ratio 0.44, 95% CI 0.24-0.78; P=.005). This effect is robust across multiple specifications
of linear and logistic regression models. The provider’s practice pattern of ordering image studies and the patient’s health status
are powerful confounders.

Conclusions: This study provides evidence that adoption of a longitudinal viewer of health records from multiple electronic
health record systems is associated with a reduced likelihood of ordering duplicate images. Investments in health information
exchange systems may be effective ways to improve the quality of care and reduce adverse outcomes for patients experiencing
fragmentation and discontinuity of care.

(JMIR Med Inform 2022;10(5):e32168)   doi:10.2196/32168
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Introduction

Health information exchange (HIE) allows health care providers
and patients to access and share patient-level electronic health
information between different health care settings [1-3]. When
health information such as radiology reports, laboratory results,
and drug allergy history is shared, HIE helps ensure the safety
of patients and improve clinic efficiency [4]. Adoption of HIE
has the potential to address the Institute of Medicine’s quality
aims [5] and produce substantial financial value [6]. Previous
research linked the use of electronic health record viewers or
HIE participation to improved health care quality measures such
as higher patient satisfaction or lower readmission and duplicate
diagnostic imaging study rates. A recent study by Legler et al
[7] demonstrated that providers’early adoption of a longitudinal
health record viewer was related to patients more likely reporting
that providers were knowledgeable of their medical history. In
another recent work, Chen et al [8] found that hospitals’
participation in HIE was associated with a reduction in 30-day
readmission rates in Florida. Bailey et al [9] found that use of
HIE was associated with a decreased probability of ordering
repeated diagnostic imaging in the emergency evaluation of
back pain. For patients transitioning between health care
systems, fragmentation and discontinuity in care increase the
risk of adverse health outcomes [10]. Providers’ access to
patient-level medical records from multiple health care settings
may support more informed medical decisions, improve quality
of care, enhance care coordination, and reduce risks of adverse
outcomes due to fragmentation.

Minimizing orders for unnecessary duplicate medical image
studies is important for improving health care efficiency,
reducing unnecessary time burdens on patients, and attenuating
adverse health outcomes caused by excessive medical radiation,
such as increased risk of cancer [10-13]. However, there is little
evidence regarding the impact of HIE on duplicate imaging.
Vest et al [14] found that the use of an HIE system to access
previous patient information was associated with a reduction
in repeated medical imaging, but the study was limited by its
setting in 11 counties in New York and was unable to adjust
for potential confounders at the provider level. In this paper,
we estimate the impact of provider usage of integrated health
record viewers on the ordering of duplicate imaging for patients
receiving health care in multiple settings.

An example of integrated health record viewers is the Joint
Longitudinal Viewer (JLV), formerly known as the Joint Legacy
Viewer (version 2.2). As a web-based graphical user interface,
JLV supports the Department of Veterans Affairs (VA) and
Department of Defense (DoD) health care providers with an
integrated, read-only view of health data from the VA and DoD
systems as well as VA community partners [7]. Released on
October 1, 2014, JLV has been used by an increasing number
of providers to view noncomputable patient-level health
information such as vital signs, physician notes, medications,
allergy, immunization, and radiology records [15]. The

integrated viewer allows providers to access a complete set of
the patient’s previous medical images and therefore has the
potential to reduce the frequency of duplicate medical image
studies.

Methods

Study Design
We conducted a retrospective cross-sectional study in fiscal
year 2018 to examine the relationship between provider use of
JLV and the ordering of potentially duplicate image studies.
The analysis compared duplicate imaging ordered by JLV-using
and non–JLV-using providers of VA outpatient primary care
visits in fiscal year 2018 for recently separated service members.
We conducted the study for VA quality improvement and
program evaluation purposes, and therefore, the study was
exempt from Institutional Review Board review.

Participants and Setting
Recently separated service members who had at least one VA
primary care visit in fiscal year 2018 within 90 days of an
imaging study conducted at DoD were eligible to be included
in the sample. We excluded VA primary care visits that were
compensation and pension exams or not provided by physicians,
physician assistants, or nurse practitioners. We also excluded
DoD imaging studies if the primary diagnosis was cancer
because duplicate diagnostic images were likely to be clinically
appropriate and recommended by providers for patients with
cancer. Patients who received at least one imaging study at VA
within 90 days of a DoD imaging study using the same imaging
mode and on the same body part were considered to have
received potentially duplicate imaging studies [11].

Measures
VA clinic stop codes (322, 323, and 350) were used to identify
outpatient primary care visits. Compensation and Pension exams
were identified using the secondary stop code (450) and the
appointment type (Compensation and Pension) and were
excluded from the VA primary care visits. Audit logs acquired
from the JLV system were assessed to determine a provider’s
JLV utilization during a specific VA primary care visit and the
provider's JLV utilization history over the 6 months prior to the
visit.

The independent variable “JLV encounter” indicated whether
a JLV audit was linked to the patient on the primary care visit
date. The independent variable “JLV provider” indicated
whether the provider had 1 or more JLV audits in the 6 months
prior to the visit date. Endogeneity is likely to be a problem in
the estimation of the association between “JLV encounter” and
duplicate imaging because unobserved confounders such as
patient complexity are related to both JLV use and ordering
duplicate image studies during the primary care visit. We
estimated the direct (proxy) relationship between “JLV provider”
and duplicate imaging to deal with the potential endogeneity
problem. We also used a 2-stage statistical model by using JLV
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providers as an instrumental variable to estimate the causal
relationship between JLV encounter and duplicate imaging. The
categorization of JLV providers was based on the provider’s
prior interactions with other patients and indicated the provider’s
propensity to view health records through JLV. Thus, this
variable was independent of the observed and unobserved
characteristics of the patient under study. This is especially true
in the VA setting where patients are arbitrarily assigned to
primary care providers. Current Procedural Terminology codes
indicating imaging procedures were categorized by mode and
body part to compare VA and DoD imaging records and identify
potential duplicate images. Following Vest et al [14], the
dependent variable was coded as “duplicate image” if an
imaging study ordered during the VA primary care visit was of
the same mode and the same body part as a DoD imaging study
for the patient within 90 days prior to the VA visit date.
Covariates included the provider’s rate of ordering images
during previous primary care visits with other patients over the
6 months prior to the VA visit date, provider type (physicians
and physician assistants/nurse practitioners), patient
demographics (age, gender, and race), clinical characteristics
(Elixhauser comorbidity score), and fiscal month (October 2017
to September 2018).

Statistical Analyses
Descriptive statistics were calculated to explore the distributions
of duplicate image ordering, the provider’s rate of ordering
images in the prior 6 months, the patient’s Elixhauser
comorbidity score, and other covariates. In our primary
statistical model, we used a logistic regression to estimate the
relationship between the provider’s JLV use in the prior 6
months (yes/no) and duplicate imaging (yes/no). In an alternative
specification, we used instrumental variables to focus on JLV
use in the actual primary care visit. To deal with the potential
endogeneity problem that unobserved patient characteristics
might confound that relationship, we used a 2-stage residual
inclusion (2SRI) logistic regression model to estimate the
relationship between the provider’s JLV use during the primary
care visit (yes/no) and the ordering of duplicate imaging studies
(yes/no) with JLV provider as the instrumental variable.

More formally, we wished to estimate the relationship between
duplicate imaging and use of JLV during the primary care visit,
controlling for potential confounders, including provider
imaging rate in the prior 6 months, provider type (physician or
physician assistant/nurse practitioner), patient age, gender,
Elixhauser comorbidity risk score, time (month), and facility
(VA Medical Center) (equation 1). This model could produce
biased estimates because the decision to use JLV during the
visit could be simultaneously determined with the decision to
order a duplicate imaging study due to unobserved confounding
factors such as patient complexity. To address this problem, we
estimated the first stage model, which related JLV use during
the visit to the provider’s JLV use history (the JLV provider
variable). Then, we estimated the second stage model, which
related duplicate imaging to JLV use during the visit. Anscombe
residuals (Xµe) calculated from the first stage were included in
the second stage model because 2SRI models with Anscombe
residuals generate less biased estimates for rare outcomes

compared to 2SRI models with other forms of residuals [16].
Bootstrapping was used to improve the estimation of standard
errors.

2SRI logistic regression model: Y = f(Xeβe + Xoβo)
+ Xµβµ + ε (1)

Y: Provider ordering duplicate imaging

Xe: JLV encounter, endogenous

Xo: Provider imaging rate in prior 6 months, provider type
(physician or physician assistant/nurse practitioner), patient age,
gender, Elixhauser comorbidity risk score, time (month), and
facility (VA Medical Center)

Xµ: Unobserved confounding factor such as patient complexity

ε: Residual

First stage: Xe = Wα + Xµβµ(2)

W: The instrument of JLV provider and observed exogenous
variables

Second stage: Y = f(Xeβe + Xoβo + Xµeβµ) + ε (3)

Xµe: Anscombe residual calculated from the first stage model
estimates

We tested the robustness of the result by using different model
specifications, including ordinary least squares models on the
relationship between JLV provider and duplicate imaging and
linear 2-stage least squares models on the relationship between
JLV encounter and duplicate imaging using JLV provider as an
instrumental variable. We used Stata 15.1 (StataCorp LLC) to
conduct the statistical analysis.

Results

Overall, JLV use has increased since fiscal year 2015. Rapid
growth of monthly JLV audits was observed in fiscal year 2018
(Figure 1). Table 1 shows that the duplicate imaging rate among
non–JLV encounters was 7.8% (34/435) and the duplicate
imaging rate among JLV encounters was 7.9% (36/457).
However, a direct comparison of these rates may be a biased
estimate of the effect of JLV use owing to the endogeneity
problem discussed above. The duplicate imaging rates were
11.2% (34/305) and 6.1% (36/587) among the non–JLV provider
and JLV provider groups, respectively. Unlike the first
comparison, this one should not be biased by uncontrolled
differences in patient characteristics. Of the 892 unique
patient-provider encounters in our analytic sample, 588 (65.9%)
were males and the average age was 34.3 years, 512 (57.4%)
patients were White, 228 (25.6%) were Black, and 152 (17%)
were of other races. On average, patients had an Elixhauser
comorbidity score of 1.2. Among the providers of these
encounters, 336 (37.7%) were physicians and 556 (62.3%) were
physician assistants/nurse practitioners. Providers had an average
image ordering rate of 17.5% in the prior 6 months. Average
patient and provider characteristics were not significantly
different between the JLV encounter and non–JLV encounter
groups or between the JLV provider and non–JLV provider
groups (Table 1).
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Figure 1. Joint Longitudinal Viewer use growth. JLV: Joint Longitudinal Viewer.

Table 1. Characteristics of the recently separated service members receiving Veterans Affairs primary care in fiscal year 2018 and characteristics of
the related primary care providers (by Joint Longitudinal Viewer Encounter and Joint Longitudinal Viewer Provider).

Overall
(N=892)

JLV provider
(n=587)

Non–JLV provider
(n=305)

JLV encounter
(n=457)

Non–JLVa en-
counter (n=435)Characteristics

Patient characteristics

588 (65.9)380 (64.7)208 (68.2)290 (63.5)298 (68.5)Gender (male), n (%)

34.334.134.534.334.2Age (years), mean

Race, n (%)

512 (57.4)348 (59.3)164 (53.8)269 (58.9)243 (55.9)White

228 (25.6)143 (24.4)85 (27.9)114 (24.9)114 (26.2)Black or African American

152 (17)96 (16.4)56 (18.4)74 (16.2)78 (17.9)Other

1.221.231.211.281.16Elixhauser comorbidity score (mean)

Provider characteristics

17.517.31817.217.8Provider history rate of ordering imaging
studies (mean)

Provider type, n (%)

336 (37.7)198 (33.7)138 (45.3)167 (36.5)169 (38.9)Physician

556 (62.3)389 (66.3)167 (54.8)290 (63.5)266 (61.1)Physician assistant/Nurse

practitioner

aJLV: Joint Longitudinal Viewer.

In our primary analysis with provider history of JLV utilization
as the independent variable, after controlling for patient and
provider characteristics, provider JLV use was significantly
associated with a reduced likelihood (odds ratio [OR] 0.44, 95%
CI 0.24-0.78; P=.005; average incremental effect=–0.05) of
ordering duplicate image studies. Provider history of ordering
images and patient Elixhauser comorbidity scores were strong
confounders of the relationship between JLV use and duplicate
imaging. Providers with high rates of ordering images in the
prior 6 months were more likely to order duplicate images (OR
4.15, 95% CI 1.86-9.25; P=.001). Patient Elixhauser comorbidity
scores of 3 or more were significantly associated with a reduced
likelihood of receiving duplicate imaging services (OR 0.15,
95% CI 0.04-0.52; P=.003) (Table 2). In a logistic regression
model, the average incremental effect is a nonlinear function
of the coefficients and values of other explanatory variables
[17]. Although the average incremental effect is easier to
interpret than the OR, the statistical significance of the average

incremental effect does not necessarily correspond to the
significance of the coefficient or OR. As a result, the
significance of the average incremental effect is not reported
above.

In the 2SRI analysis, the results of our first stage model (Table
3) indicated that past use of JLV was strongly predictive of use
of JLV by the provider during the primary care encounter (OR
1.43, 95% CI 1.05-1.81; P<.001). In a test of the coefficient on
the instrument, a Cragg-Donald Wald F statistic greater than
10 indicates that the instrument is strong enough [17]. In a linear
version of the first stage model, the strength of the instrument
was tested (Cragg-Donald Wald F=43.68; P<.001). The
Cragg-Donald Wald F statistic of 43.68 is greater than 10 and
suggests that provider past use of JLV was a strong instrument.
This is a necessary condition for JLV provider to serve as an
instrumental variable for JLV encounter in our 2-stage
specifications.
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In the analysis assessing the relationship between JLV encounter
and duplicate imaging with JLV provider as an instrumental
variable, provider use of JLV was significantly associated with
a reduction (OR 0.08, 95% CI 0.01-0.81; P=.03; average
incremental effect=–0.16) in the likelihood of ordering duplicate
images, controlling for patient and provider characteristics, time
effects, and facility random effects (Table 4). Provider history
of ordering images and patient Elixhauser comorbidity scores
were strong confounders of the relationship between JLV use
and duplicate imaging. Providers with high rates of ordering
image studies in the prior 6 months were more likely to order

duplicate images (OR 3.93, 95% CI 1.42-10.94; P=.009)
compared to providers with low rates of ordering medical image
studies. Patient Elixhauser comorbidity scores of 3 or more
were significantly associated with a reduced likelihood of
receiving duplicate imaging procedures (OR 0.16, 95% CI
0.04-0.57; P=.005) (Table 4).

Our main finding that JLV use had a significant effect on
reducing duplicate imaging was robust using different model
specifications, including 2-stage least squares models estimating
the association between JLV encounter and duplicate imaging
(see Table S2 in Multimedia Appendix 1).

Table 2. The impact of provider use of Joint Longitudinal Viewer in the prior 6 months of outpatient primary care visits on provider ordering of duplicate
images.

P valueOdds ratio (95% CI)aCharacteristics

Provider characteristics

.0050.44 (0.24-0.78)Joint Longitudinal Viewer provider

Provider history of ordering imaging studies (quartiles)

RefRefb1

.780.87 (0.33-2.32)2

.012.73 (1.23-6.06)3

.0014.15 (1.86-9.25)4

Provider type

RefRefPhysician

.341.32 (0.75-2.32)Physician assistant/Nurse practitioner

Patient characteristics

Gender

RefRefFemale

.111.68 (0.89-3.17)Male

Age (years)

RefRef<30

.012.19 (1.17-4.11)30-39

.540.78 (0.35-1.73)40-49

.651.27 (0.46-3.56)≥50

Race

RefRefWhite

.801.09 (0.56-2.13)Black or African American

.161.63 (0.82-3.21)Other

Elixhauser comorbidity score

RefRef0

.010.44 (0.23-0.83)1

.030.40 (0.18-0.90)2

.0030.15 (0.04-0.52)3 and above

aThe odds ratio and 95% CIs are estimated from the logistic regression model controlling for all variables shown in the table as well as facility (random
effects) and fiscal month.
bRef indicates baseline in the analysis.
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Table 3. The impact of provider use of Joint Longitudinal Viewer during outpatient primary care visits on provider ordering of duplicate images (stage

1 full output).a

P valueOdds ratio (95% CI)Joint Longitudinal Viewer encounter (first stage)

<.0011.43 (1.05 to 1.81)Joint Longitudinal Viewer provider

Provider characteristics

Provider history of ordering imaging studies (quartiles)

RefRefb1

.45–0.18 (–0.63 to 0.28)2

.210.30 (–0.17 to 0.78)3

.46–0.19 (–0.67 to 0.30)4

Provider type

RefRefPhysician

.75–0.06 (–0.42 to 0.30)Physician assistant/Nurse practitioner

Patient characteristics

Gender

RefRefFemale

.28–0.20 (–0.56 to 0.16)Male

Age (years)

RefRef<30

.900.03 (–0.38 to 0.43)30-39

.640.10 (–0.34 to 0.55)40-49

.280.37 (–0.30 to 1.03)≥50

Race

RefRefWhite

.15–0.30 (–0.70 to 0.11)Black or African American

.22–0.29 (–0.75 to 0.18)Other

Elixhauser comorbidity score

RefRef0

.98–0.01 (–0.40 to 0.39)1

.230.29 (–0.19 to 0.77)2

.610.13 (–0.37 to 0.64)3 and above

Fiscal month

RefRef1

.690.15 (–0.59 to 0.90)2

.24–0.47 (–1.26 to 0.31)3

.12–0.63 (–1.42 to 0.17)4

.73–0.14 (–0.97 to 0.68)5

.22–0.49 (–1.27 to 0.29)6

.120.62 (–0.15 to 1.39)7

.090.61 (–0.10 to 1.33)8

.080.65 (–0.07 to 1.37)9

.120.59 (–0.16 to 1.35)10

.090.68 (–0.10 to 1.46)11

.080.77 (–0.09 to 1.63)12
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P valueOdds ratio (95% CI)Joint Longitudinal Viewer encounter (first stage)

.005–1.11 (–1.88 to –0.33)Consc

aAverage incremental effects are estimated from the 2-stage residual inclusion logistic regression controlling for all variables shown in the table.
bRef indicates baseline in the analysis.
cCons: Constant term in the regression.
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Table 4. The impact of provider use of Joint Longitudinal Viewer during outpatient primary care visits on provider ordering of duplicate images (Stage

2 full output).a

P valueOdds ratio (95% CI)Duplicate imaging (second stage)

.030.08 (0.01-0.81)Joint Longitudinal Viewer encounter

.013.16 (1.29-7.79)Anscombe residual

Provider characteristics

Provider history of ordering imaging studies (quartiles)

RefRefb1

.780.83 (0.23-3.07)2

.023.11 (1.18-8.22)3

.0093.93 (1.42-10.94)4

Provider type

RefRefPhysician

.561.24 (0.61-2.51)Physician assistant/Nurse practitioner

Patient characteristics

Gender

RefRefFemale

.281.49 (0.72-3.08)Male

Age (years)

RefRef<30

.062.28 (0.98-5.34)30-39

.790.87 (0.32-2.42)40-49

.571.50 (0.38-5.93)≥50

Race

RefRefWhite

.951.03 (0.48-2.18)Black or African American

.321.57 (0.65-3.80)Other

Elixhauser comorbidity score

RefRef0

.030.43 (0.20-0.91)1

.110.43 (0.15-1.21)2

.0050.16 (0.04-0.57)3 and above

Fiscal month

RefRef1

.911.41 (0.00-602.30)2

.931.31 (0.00-542.59)3

.911.43 (0.00-639.45)4

.930.75 (0.00-290.28)5

.981.10 (0.00-523.39)6

.723.15 (0.01-1539.80)7

.861.77 (0.01-819.76)8

.654.11 (0.01-1699.58)9

.644.41 (0.01-2011.70)10

.831.96 (0.01-762.17)11
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P valueOdds ratio (95% CI)Duplicate imaging (second stage)

.605.02 (0.01-2177.41)12

.340.05 (0.00-22.75)Consc

aAverage incremental effects are estimated from the 2-stage residual inclusion logistic regression controlling for all variables shown in the table.
bRef indicates baseline in the analysis.
cCons: Constant term in the regression.

Discussion

This study using national data from VA and DoD found that
providers who viewed integrated patient health records from
multiple settings were less likely to order potentially duplicate
imaging studies for patients who had prior imaging studies
conducted within 90 days. Based on results from our primary
analysis, providers with a history of using JLV were 5
percentage points less likely to order duplicate images during
a VA primary care visit for recently separated service members
compared to providers who did not have a history of using JLV.
Using the JLV provider as an independent variable, we were
able to reduce potential endogeneity due to unobserved
confounders that were associated with both JLV use during the
primary care visit and ordering of duplicate images.

Our results were consistent with previous findings that use of
HIE systems was associated with a reduction in repeat imaging
studies [14] and that a longitudinal viewer of patient records
from multiple sources was related to more positive patient
experiences of care [7]. Our analysis had the added advantage
of including provider-level variables, primarily a provider
history of ordering images, which appeared to be a strong
confounder. Access to national-level VA and DoD data also
enabled the study to focus on images ordered for recently
separated service members, who were transitioning between
health care delivery systems and may be particularly likely to
benefit from investments in integrated health information
viewers or HIE systems.

Our study has several limitations. First, we focused on VA
primary care visits and images within the 90-day follow-up
period of a DoD image and therefore were unable to capture
duplicate images in other settings such as community-based
clinics. Further research could examine duplicate image studies
ordered during different types of outpatient and inpatient
encounters to improve the generalizability of the results. Second,
limited by the administrative data source, we could not
determine whether the identified duplicate imaging procedures

were unnecessary. In some cases, providers may need to
examine repeat image studies for serial changes in disease status
or order follow-up imaging studies based on recommendations
in the patient’s previous imaging reports. Thus, some of the
duplicate image studies we identified might have been clinically
appropriate. We mitigated this limitation by excluding patients
with cancer diagnoses and ensuring the consistency of the
definition of duplicate imaging studies among the providers
who used and did not use JLV. Third, restricted by data access,
we could not adjust for HIE through another widely used health
information viewer, VistaWeb, which was recently
decommissioned. We tried to overcome this limitation by
focusing on VA primary care visits in fiscal year 2018—the
year when we observed rapid growth in JLV utilization after
the VA’s transition from VistaWeb to JLV. Fourth, our result
was not robust when we changed the definition of JLV provider
to providers with 10 or more JLV audits in the 6 months prior
to the VA primary care visit, suggesting the heterogeneity of
JLV benefits by frequency of use.

Organizational fragmentation and discontinuity of care have
been linked to increased costs and adverse outcomes in VA and
other health care settings [6]. Our findings suggest that the use
of a longitudinal viewer of health records from multiple
electronic health record sources has the potential to alleviate
patient time burden, reduce adverse health effects of radiation,
and decrease costs resulting from unnecessary duplicate imaging
procedures. Health systems outside the VA could also consider
investments in health information viewers or HIE technology
to reduce the deleterious effects of fragmentation.

In conclusion, this study provides evidence that adoption of a
longitudinal viewer of health records from multiple electronic
health record systems is associated with a reduced likelihood
of ordering duplicate image studies. In future studies, the
association between health information viewers and other types
of duplicate medical tests and care coordination metrics such
as follow-up of suspicious lung nodules could be investigated
to more fully illustrate the impact of HIE on quality and
efficiency of care.
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Abstract

Background: An essential step in any medical research project after identifying the research question is to determine if there
are sufficient patients available for a study and where to find them. Pursuing digital feasibility queries on available patient data
registries has proven to be an excellent way of reusing existing real-world data sources. To support multicentric research, these
feasibility queries should be designed and implemented to run across multiple sites and securely access local data. Working across
hospitals usually involves working with different data formats and vocabularies. Recently, the Fast Healthcare Interoperability
Resources (FHIR) standard was developed by Health Level Seven to address this concern and describe patient data in a standardized
format. The Medical Informatics Initiative in Germany has committed to this standard and created data integration centers, which
convert existing data into the FHIR format at each hospital. This partially solves the interoperability problem; however, a distributed
feasibility query platform for the FHIR standard is still missing.

Objective: This study described the design and implementation of the components involved in creating a cross-hospital feasibility
query platform for researchers based on FHIR resources. This effort was part of a large COVID-19 data exchange platform and
was designed to be scalable for a broad range of patient data.

Methods: We analyzed and designed the abstract components necessary for a distributed feasibility query. This included a user
interface for creating the query, backend with an ontology and terminology service, middleware for query distribution, and FHIR
feasibility query execution service.

Results: We implemented the components described in the Methods section. The resulting solution was distributed to 33 German
university hospitals. The functionality of the comprehensive network infrastructure was demonstrated using a test data set based
on the German Corona Consensus Data Set. A performance test using specifically created synthetic data revealed the applicability
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of our solution to data sets containing millions of FHIR resources. The solution can be easily deployed across hospitals and
supports feasibility queries, combining multiple inclusion and exclusion criteria using standard Health Level Seven query languages
such as Clinical Quality Language and FHIR Search. Developing a platform based on multiple microservices allowed us to create
an extendable platform and support multiple Health Level Seven query languages and middleware components to allow integration
with future directions of the Medical Informatics Initiative.

Conclusions: We designed and implemented a feasibility platform for distributed feasibility queries, which works directly on
FHIR-formatted data and distributed it across 33 university hospitals in Germany. We showed that developing a feasibility
platform directly on the FHIR standard is feasible.

(JMIR Med Inform 2022;10(5):e36709)   doi:10.2196/36709

KEYWORDS

federated feasibility queries; FHIR; distributed analysis; feasibility study; HL7 FHIR; FHIR Search; CQL; COVID-19; pandemic;
health data; query; patient data; consensus data set; medical informatics; Fast Healthcare Interoperability Resources

Introduction

Context
The COVID-19 pandemic has highlighted the critical need for
all countries to strengthen their health data and information
systems. Timely, credible, reliable, and actionable data ensure
that political decisions are data-driven and facilitate
understanding, monitoring, and forecasting [1]. Khan et al [2]
have pointed out the need to strengthen national preparedness
and the requirement that national public health institutes
overcome practical challenges that affect timely access to and
use of data. Their analysis identified that the availability of
robust information systems that allow relevant data to be
collected, shared, and analyzed sufficiently rapidly is needed
to provide a timely local response to infectious disease outbreaks
in the future [2].

In Germany, the nationally funded Medical Informatics Initiative
(MII; funded by the Ministry of Education and
Research—Bundesministerium für Bildung und Forschung)
through 4 funded consortia (Data Integration for Future
Medicine [DIFUTURE] [3], Heidelberg-Göttingen-Hanover
Medical Informatics [HiGHmed] [4], Medical Informatics in
Research and Care in University Medicine [MIRACUM] [5],
and Smart Medical Information Technology for Healthcare
[SMITH] [6]) has, in recent years, led to the establishment of
data integration centers (DICs) in almost all 34 German
university hospitals. These university hospitals created data
sharing networks within their respective consortia. However,
no overarching cross-consortia research data and feasibility
portal existed as of spring 2020.

Need and Task
To tackle the COVID-19 challenges, the Bundesministerium
für Bildung und Forschung has initiated the network of
university medicine hospitals, which has launched 13 different
projects, for example, to coordinate action plans and diagnostic
and therapeutic strategies and to provide a comprehensive
COVID-19 data exchange (CODEX) platform [7,8].
Decentralized data collection within the CODEX project was
based on the German Corona Consensus Data Set (GECCO), a
data set specifically designed to collect data on patients with
COVID-19 for research [9].

To make real hospital GECCO data available, university
hospitals used Fast Healthcare Interoperability Resources
(FHIR) repositories within their MII DIC. To support feasibility
studies as part of the German Portal for Medical Research Data
(Deutsches Forschungsdatenportal für Gesundheit [FDPG]) and
to identify the size of decentral available data sets based on
dedicated cohort characterizations (eg, described by Doods et
al [10], Soto-Rey et al [11], and Laaksonen et al [12]), we
developed a central feasibility portal, securely connected to all
German university hospital GECCO FHIR data repositories.
For timely design and development, owing to the pandemic, it
was imperative to build on tools and experiences from previous
projects and align the design for later strategic integration of
this feasibility portal into FDPG of the MII [13].

Background
First, the FDPG shall provide the central access point for
researchers (Figure 1) to retrieve information about the
availability of routine care data and biosamples in the network
of all German university hospitals based on a central feasibility
portal (which was, however, not yet developed in 2020). Second,
it will provide functionality to electronically apply for data and
biosample use in future projects. The latter functionality will
manage all incoming research project applications, distribute
these electronically to the DICs of all German university
hospitals, and keep track of all application status replies from
those decentral centers.

To allow studies to query and select patient data from a large,
distributed pool of health care institutions, data need to be
consolidated across these institutions. In contrast, the hospital
landscape is very diverse, with each hospital using different
systems and data formats. Although the 4 MII consortia have
defined concepts for data harmonization within their consortia
DIC (eg, openEHR in HiGHmed [14], the Informatics for
Integrating Biology and the Bedside [i2b2] data model [5] in
MIRACUM and DIFUTURE, Intersystems HealthShare in
SMITH, and the Observational Medical Outcomes Partnership
[OMOP] Common Data Model [15,16] in MIRACUM) within
the MII, an agreement on a cross-consortia standardized data
model was required. Thus, the emerging open standard FHIR
[17], developed by Health Level Seven, is a promising candidate
for addressing interoperability needs. Health care organizations
widely adopt it to achieve interoperability, and it is increasingly
supported by major electronic health record vendors. The rapidly
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increasing availability of data in the FHIR format makes it a
natural choice to collect real-world data, while allowing the
possibility of translating it to other more specific formats in a
relatively simple manner [18]. Thus, the MII working group for
interoperability proposed the definition of the MII core data set
[19] model based on FHIR. Consistent with this effort, the MII

as a whole has agreed on FHIR as the de facto standard for
interconsortia communication [20]. Therefore, every DIC in
Germany has committed to make its data accessible via the
FHIR standard application programming interface (API), making
FHIR the only common format supported across all consortia.

Figure 1. Central German Portal for Medical Research Data and connection to all consortia and data integration centers (DICs; Medical Informatics
Initiative).

Objectives
The objective of this study was to deduce and illustrate the
conceptual design decisions for a distributed feasibility query
portal directly based on FHIR data, including the underlying
query transformation and execution tools and the middleware
components implemented for secure network connections. We
also aimed to describe the status of its implementation and use
and provide an outlook on its future strategic integration in the
German national MII infrastructure.

Methods

Abstract Architecture of a Distributed Feasibility
Platform
A major challenge for the CODEX project was that any
architecture should leverage the power of the German university
hospital’s DIC and be compatible with the agreed MII data
sharing concepts. Thus, the CODEX project’s feasibility portal
was designed to serve as a generic basis for future developments
in complementary MII projects. It was further conceived to be
extendable to query the MII core data sets.

A feasibility query aims to identify suitable patients for a study.
For feasibility, patient privacy can be guaranteed through
anonymization by aggregation of the results, while still
providing valuable information about the feasibility of a study,
as only the number of patients is needed. The task of a
distributed feasibility platform is to provide a user with the
ability to specify a set of inclusion and exclusion criteria at a
central location, send the query to participating sites, translate
this query into a search query that can be executed inside a

hospital’s research data repository, and return the number of
patients matching the criteria combination.

To achieve this, we had to create (1) a user interface (UI;
feasibility UI) for creating and managing feasibility queries;
(2) a backend service, which translates the user input into a
standardized format (Structured Query) using an ontology
service; (3) a middleware to securely transport the query; and
(4) an execution service, which can process the standardized
format, convert it to queries for an FHIR server, and execute
the queries. Then, this service should return the number of
patients identified.

Requirement Analysis and Architectural Design
The first step toward developing our tool was to define a list of
capabilities (requirements) our platform should support. Building
on previous studies on usability [21], query platforms [22],
feasibility queries [23], and expert interviews, we curated and
prioritized our requirements using Atlassian Confluence as
collaboration platform [24]. The prioritization of the features
was based on the added value of a feature and the potential
estimated implementation cost. The identified features and their
prioritization are presented in Multimedia Appendix 1.

The Structured Query as the central part of our feasibility
process was developed across multiple meetings with the whole
team, including experts on ontology, FHIR, FHIR Search,
Clinical Quality Language (CQL), research data repositories,
and medical data analysis. From the beginning, it was designed
to provide a framework for feasibility queries, which, on the
one hand, allowed to create feasibility queries across multiple
grouped inclusion and exclusion criteria and, on the other hand,
restricted the possible options in a way that makes it easy to
translate it into existing FHIR query languages (CQL and FHIR
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Search). The experts included expertise with existing query
tools such as i2b2, OMOP, and Sample Locator [25], previously
developed in other projects. This ensured that it would allow
for capabilities similar to the existing query tools. The Structured
Query, as evidenced by its specification [26], closely resembles
the structure of the UI information, while providing sufficient
abstraction to separate it from the UI by uniquely identifying
single criteria based on their place within a given medical
vocabulary. Building on the Structured Query and UI
specifications, we worked closely with the whole team to define
the necessary UI ontology (UI profiles) and a mapping file for
query translation, which was to be used during query translation
to enrich the basic definition of a criterion of the Structured
Query with query language–specific parameters required for
query translation. Critically, by analyzing the CQL language,
we found that it has capabilities beyond the requirements of our
feasibility specification, and therefore, we would have to specify
a subset of CQL for query translation, leading to an incomplete
translation, making it more fragile. Therefore, translation from
a simpler (specifically restricted) format such as the Structured
Query was considered to be easier and allowed us to control
further development and separate the representation of the
criteria from an implementation-specific system such as CQL
and FHIR Search. Furthermore, the Structured Query, although
independent of the UI, was designed to resemble it closely,
making its generation by the UI easier, as the appropriate query
object can be already built by the UI in JavaScript objects, which
directly translate to the Structured Query in JSON format.
Working across multiple institutions, we also had to consider
how the queries and query results are securely exchanged
between the different nodes of the network. This was achieved
by using middleware components responsible for query
transportation. To align the strategy with the other parts of the

CODEX project and MII, we evaluated 4 middleware
components as part of our project, which had been used
previously to transport feasibility queries or used in other parts
of the CODEX project to streamline further development. These
included the AKTIN broker [27], data sharing framework (DSF)
[28], connector component federated search [29], and German
Biobank Node Client-Broker [30,31]. We then used the 2
middleware that had the highest scores as a base for further
development. To calculate the score, 6 software developers from
5 institutions rated the existing solutions for code quality,
documentation, complexity, and suitability for our requirements,
on a scale of 1 (very good) to 5 (very bad).

Finally, based on experience from previous studies [22,32] and
prototypes for data selection on FHIR servers, we knew that
although CQL can support queries involving multiple criteria
across different FHIR resources, the capability of FHIR Search
is limited. Therefore, if FHIR Search was to be used for more
complex queries, a software component was needed to execute
and combine single FHIR Search queries to answer more
sophisticated feasibility queries.

As part of our project, we performed a usability analysis based
on our prototype implementation of the UI, the results of which
were fed back into our development process to improve the user
experience. This evaluation is described in more detail in a
separate publication [33].

Figure 2 shows the abstract software components involved in
the feasibility process. From left to right, it further illustrates
how the representation of the query changes from user input,
via a structured representation of the input (Structured Query)
to an FHIR query language (FHIR Search [32,34,35] or CQL
[16,36-40]) as it moves through the system.

Figure 2. Abstract software components of a distributed feasibility platform. CQL: Clinical Quality Language; ETL: extract-transform-load; FHIR:
Fast Healthcare Interoperability Resources; GUI: graphical user interface; UI: user interface.

Performance Analysis
Performance of query execution depends on multiple factors
including data set size, type of query execution (CQL vs FHIR

Search), query composition (ie, number of criteria within a
query), and number of resources processed as part of the query
execution.
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On the basis of these factors, we created 3 data sets (Table 1)
with synthetic FHIR resources that would simulate different
server loads and provide data sets, which would return a result
for specific queries leading to query-specific data loads from
1, 10, 100, and 1000 thousands of patients. In addition, we
augmented 2 of the data sets with background data, which
consisted of 413,375 conditions (across 8593 unique condition
codes), 270,505 procedures (across 6429 unique procedure
codes), and 4,907,600 observations (across 1798 unique
observation codes) to represent a typical distribution of data
found across a hospital, based on the distributions of a German
university hospital. This background data provide data within
the server, which are not queried for, but might have an impact
on index sizes and query execution speeds.

Furthermore, we created queries that included 4 criteria, each
of which would be found exactly 1, 10, 100, or 1000 thousand

times. The queries were designed to look for only 1 condition
criterion (eg, ICD10–C50.1) or an AND combination of a
patient, condition, procedure, and observation criterion (eg,
female, ICD10 C50.1, OPS 5-787.ex, and LOINC 55782-7).
The combination was always chosen to provide a specific load
and has no clinical relevance. They were further chosen to
demonstrate a worst-case scenario, where every part would have
to be evaluated (AND rather than OR) to provide the answer,
as every part would be true for this exact number of patients,
implying that the program cannot terminate the search
prematurely. We created CQL and Structured Queries for each
query and, then, ran all CQL and Structured Queries on the
same server 10 times consecutively after 1 warm-up run to
ensure the same caching across each query. The host server had
8 cores, 16 GB RAM, and 320 GB solid state drive disk space.
The repository for the performance test is available elsewhere
[41].

Table 1. Performance test data sets.

Overall, nObservations, nProcedures, nConditions, nPatients, nData set

444,000111,000111,000111,000111,000Small

6,035,4805,018,600381,505524,375111,000bga-small

10,035,4806,018,6001,381,5051,524,3751,111,000bg-large

abg: background.

Results

Overview and Implementation
While implementing the abstract concept of a feasibility
platform explained previously, reusing existing proven software
artifacts from previous projects was a major requisite. The
proposed architecture ensures strict modularity to achieve
flexibility for future extensions and strategic alignments with
other developments, for example, in MII. Finally, to fit into the
existing architecture designs of the different MII consortia,
partial duplication of modules and communication pathways

(providing the university hospitals with optional implementation
choices) for our development was accepted, when existing
modular components could easily be integrated into a coherent
framework. The detailed resulting architecture is illustrated in
Figure 3.

The system’s UI (feasibility UI) allows researchers to choose
multiple criteria from an ontology tree (Figure 4) and combine
them into a set of inclusion and exclusion criteria (Figure 5)
using Boolean logic. The inclusion criteria are combined in a
conjunctive normal form and the exclusion criteria in a
disjunctive normal form.

Figure 3. Detailed architecture of the distributed feasibility platform. CQL: Clinical Quality Language; DSF: data sharing framework; ETL:
extract-transform-load; FDPG: Deutsches Forschungsdatenportal für Gesundheit; FHIR: Fast Healthcare Interoperability Resources; FLARE: Feasibility
Analysis Request Executor; UI: user interface.
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Figure 4. Example user interface representation of an ontology tree.

The ontology (ie, hierarchically structured concepts) for the UI
is generated in JSON format based on the underlying FHIR
profiles and a terminology service. A detailed description of
how the ontology and mapping files are generated is described
in a separate publication [42].

The process that generates the UI ontology also generates 2
configuration files (terminology tree and FHIR mapping). These
files are required by the central feasibility backend and the
decentral FHIR feasibility executor to process the input from
the UI and translate it into FHIR-compatible search queries.

Once a researcher has created a feasibility query in the UI, it is
converted into our Structured Query format. The Structured
Query is a formal representation of the feasibility query, which
structures the user input to allow easy translation into different
query languages and closely resembles the user input structure.
Currently, we support translation into 2 query languages used
by FHIR servers: FHIR Search and CQL. Multimedia Appendix
2 illustrates the processing of the Structured Query example
shown in Figure 5 from the UI to CQL and FHIR Search.

Figure 5. Example feasibility query in the user interface.
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FHIR Search is part of the FHIR standard and implemented by
most FHIR servers. However, currently, complex feasibility
queries with intercriterion dependencies are not supported by
FHIR Search. A way to overcome this limitation is to break a
feasibility query into multiple smaller parts, each of which can
be written as a single FHIR Search query. The parts (FHIR
Search queries) are then sent to the FHIR server separately. The
results are evaluated and combined using set algebra to calculate
the final answer for a feasibility query.

For this purpose, we used the software library, Feasibility
Analysis Request Executor (FLARE), initially developed for a
research project by the University Hospital
Rheinisch-Westfälische Technische Hochschule Aachen [43].
For our project, we contributed to the development of FLARE,
by extending the software to support the Structured Query.

CQL is a high-level domain-specific query language, which is
similar to Structured Query Language, built specifically with
medical data in mind [39,40]. It supports, among many other
use cases, the definition of cohort characterizations and counting
of the respective cohort size, which are needed for feasibility
queries. CQL is more powerful than FHIR Search; however, it
is not as widely supported by current implementations of FHIR
servers. Currently, the popularity of CQL is growing in the
FHIR community and has recently been added to the HAPI
project [37], a popular open-source FHIR reference
implementation. Furthermore, it is supported by the Blaze FHIR
server, developed within the German Biobank Alliance project
[25], aimed at high-throughput performance. Blaze and the CQL
language were chosen as an implementation option in the
CODEX project after a comprehensive FHIR server benchmark.
CQL has an advantage over FHIR Search in that even complex
search queries can be written in a single query, which leads to
faster query execution. Therefore, in CODEX, we support both
CQL and FHIR Search.

To translate Structured Query to CQL and FHIR Search, we
created translation components, which use an FHIR mapping
JSON file to map each criterion to its respective FHIR query
representation based on its coding (equivalent to FHIR coding
type). The information provided by this mapping describes how
the criterion is to be searched for inside the FHIR server. This
includes the FHIR Search parameters to be used and the type
of FHIR resource (eg, observation).

We use a terminology tree JSON file to find all the children of
a criterion for inclusion in the respective search. This is
necessary as researchers can select groups of criteria by selecting
a parent criterion in a terminology hierarchy to include all child
elements within the query. An example is the search for the
diagnosis Diabetes mellitus, Type 2. If a researcher adds the
diagnosis Diabetes mellitus, Type 2 as a criterion (ICD10
code=E11) our tool expands the search to all subtypes of
Diabetes mellitus, Type 2 (including, for example,
E11.0—Diabetes mellitus, Type 2: with coma). The information
necessary to identify all subtypes of type 2 diabetes is provided
in the terminology tree file.

A usability analysis of our prototype revealed that it is simple
and intuitive. It also showed 26 problems, 8 of which were rated
as “critical” [33]. However, usability problems were focused

on the presentation of the UI or the ontology and will have no
impact on the architectural decisions made. Specifically, our
architecture will allow us to resolve these problems independent
of the rest of the system for query translation, transportation,
and execution.

Supporting Multiple Query Paths
CQL and FHIR Search have slightly different requirements
regarding query execution. We generate multiple representations
of the same feasibility query in the central feasibility backend
and send all of them to each decentral DIC. This allows the DIC
to configure which query representation to use without changing
the central implementation. All feasibility queries can be
generated as a single CQL query. Therefore, we generate the
CQL query centrally and send this query to the DICs and their
FHIR servers, which can execute them directly. As, in most
cases, the FHIR Search representation of a Structured Query
cannot be generated as a single query, we send the Structured
Query to the DIC. Each DIC that prefers to use FHIR Search
for the query execution will use the FLARE component locally.
It translates each Structured Query into FHIR Search queries
inside the respective DIC using the mapping and terminology
tree files and executes them against the FHIR server.

Supporting Multiple Middleware
In our architecture, a middleware has the task to securely
transport the query into a DIC and transport the answer to a
query back to the central platform. In our case, the query is an
object that contains the serialized version of our different query
representations—Structured Query and CQL. To secure the
connection between our central middleware components and
local middleware clients, without requiring the university
hospitals to open their firewall for outside requests, we chose
a pull transport mechanism instead of a push process from the
outside. Within CODEX, we evaluated multiple middleware
components already developed by various MII partner sites and
chose 2 that are already widely used in different consortia and
fulfill the requirements mentioned previously: AKTIN broker
[27,44] and HiGHmed DSF [28]. Both were extended to fully
comply with the CODEX requirements, leading to a new client
release for AKTIN [45] and the creation of a feasibility process
for the DSF [46], similar to that created by Wettstein et al [47].

Privacy Through Anonymization by Aggregation and
Access Restriction
The system we present here allows for querying patient data
across multiple institutions from a central location, and
information about patients is leaving the respective institution.
This information, as any information about patients, is sensitive
and needs to be anonymous when leaving an institution. The
nature of feasibility queries is such that only an integer number
leaves each participating hospital. However, a potential
reconstruction of a patient profile by the central location would
be possible if the exact number was returned. To avoid this, we
aggregate each result by rounding it to the nearest 10 patients.
A result of zero is returned as zero. We further restrict access
to the platform to registered users and track all the created
feasibility queries.
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Containerization and Deployment Across Hospitals
The system described here is composed of many connected
pieces of software, which must be installed across many
institutions to create a feasibility query network of participating
institutions. To ensure easy distribution of the software and
streamline the installation process, we ensured that each software
component created is distributed as a Docker image. We further
tested our implementation for Kubernetes and installed a version
of it in the Kubernetes cluster of the DIC of the university
hospital in Erlangen, Germany. For easy installation across the
institutions, we created an installation package, which provides
an easy-to-install package based on multiple docker-compose
files. In this first installation, the sites used only the AKTIN
middleware, as the DSF was still in development and the set-up
of the DSF proved to be more complex; for example, specific
client certificates issued by an official certificate authority were
required for its use. During the installation process, we found
that the sites had very stringent firewalls and needed the option
to support a proxy server between the client inside the hospital
and the central broker. After adding proxy support, all the
participating institutions could install the software and join the
feasibility network.

First Ontology Generation and Test Across Hospitals
We implemented the architecture described previously and
generated an ontology, a terminology tree, and a mapping file

based on the GECCO FHIR profiles. We then distributed our
implementation across the 33 participating institutions and asked
them to load synthetic test data into their respective FHIR
servers. We deployed the central feasibility tool and sent queries
across the institutions. The test data set was generated based on
synthetic data and converted to the MII FHIR format. We then
used our UI to generate multiple test queries and found that we
could create and execute them on our chosen FHIR servers. We
further created a synthetic test patient data set in FHIR format
[48] using the electronic data capture tool, REDCap (Research
Electronic Data Capture; Vanderbilt University) [49], used by
many participating institutions to capture COVID-19 data. The
data set contains each type of criterion available in our UI. We
verified our implementation using this data set.

Performance and Query Execution Speed
By running the performance tests (Table 2), we found that CQL
was faster than FLARE as the number of resources processed
increased. We also found that query execution time increased
with the number of resources processed for a search and the
amount of background data. For queries where small result sets
had to be processed (<100,000 resources) and large amount of
background data were loaded into the server, FLARE was faster
than CQL. CQL processed all requests in <30 seconds. FLARE
did not perform well with very large data sets and queries where
>1,000,000 resources had to be processed, leading to execution
times >47 seconds.

Table 2. Query response times across data set, query, and query execution type (CQLa and FLAREb).

Response time by query execution and data set type (seconds), mean (SD) of 10 consec-
utive runs

Resources
processed, n

Patients
found, n

Criteria
search for

Query

flare-bg-
large

cql-bg-largeflare-bg-
small

cql-

bgc-small

flare-smallcql-small

0.04 (0.0)1.56 (0.04)0.04 (0.0)0.3 (0.01)0.03 (0.0)0.22 (0.01)0040

0.13 (0.01)5.52 (0.54)0.11 (0.01)0.85 (0.19)0.11 (0.0)0.57 (0.09)1000100011000-1

0.37 (0.26)1.82 (0.06)0.24 (0.06)0.35 (0.05)0.23 (0.06)0.25 (0.03)4000100041000-all

0.67 (0.07)5.49 (0.21)0.49 (0.01)0.89 (0.08)0.5 (0.01)0.56 (0.08)10,00010,000110000-1

1.94 (1.37)2.1 (0.08)1.0 (0.1)0.68 (0.07)0.99 (0.08)0.35 (0.04)40,00010,000410000-all

5.37 (1.18)6.07 (0.26)5.16 (0.21)1.13 (0.09)4.34 (0.07)0.85 (0.11)100,000100,0001100000-1

10.8 (0.09)4.16 (0.18)9.65 (0.24)2.65 (0.23)8.25 (0.41)1.48 (0.12)400,000100,0004100000-all

47.53 (1.35)10.49 (1.26)N/AN/AN/AN/Ad1,000,000 1,000,00011000000-1

119.64
(4.51)

29.05 (2.38)N/AN/AN/AN/A4,000,0001,000,00041000000-all

aCQL: Clinical Quality Language.
bFLARE: Feasibility Analysis Request Executor.
cbg: background.
dN/A: not applicable.

Discussion

Principal Findings
We presented the concept and implementation of a distributed
feasibility query platform, which works directly with
FHIR-formatted hospital data. This demonstrates that the FHIR

standard is suitable to build a feasibility platform on. FHIR
Search does not support feasibility queries across multiple
criteria directly. However, we built an FHIR feasibility executor,
which combines single queries to answer these feasibility
queries. This executor needs to load and combine the results of
the different subqueries and, therefore, will be a performance
bottleneck if single queries return large data sets. Therefore, we
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also offer the fast but less widely available CQL query option.
Furthermore, separating the concerns and supporting multiple
query languages for query executions allows us to adjust to
individual institutions’needs. Similarly, we found it to be useful
to support multiple middleware components by providing clear
interfaces. This supports more organizations and strategic
directions and allows focusing on one middleware (AKTIN),
while the other (DSF) is still being developed and deployed.
Comparing the 2 middleware, the AKTIN implementation has
the advantage of being simple, which is easy to maintain and
extend for the purpose of transporting feasibility queries. It is
agnostic to the query transported, so that the process extension
necessary for the AKTIN implementation was easy and fast to
achieve. Furthermore, the AKTIN middleware has been used
successfully for several years in other projects. The DSF is an
FHIR-based middleware and focuses on providing a platform
for defining processes, which can be run across institutions.
This enforces more structure than the AKTIN middleware, in
the hope that this leads to improved interoperability. The DSF
allows peer-to-peer communication if required. However,
peer-to-peer communication is not relevant for feasibility queries
from a central location. The biggest disadvantage of the DSF
is that, with its large feature set, structure, and interoperability,
it also introduces a high complexity to the system. Furthermore,
the DSF is still in development and is yet to be used in a
production environment. We chose to support both middleware
in this project, as both have advantages and disadvantages, and
the use of either within our future architecture largely depends
on their respective use and acceptance within the MII.

Centering around the newly defined Structured Query format,
which formally describes a feasibility query, allows the
separation of the UI ontology from the translation into
FHIR-compatible query languages. Therefore, the platform is
built in a modular fashion and highly extendable. For example,
one could imagine that an entirely different UI could be
developed and integrated into the platform to satisfy future
requirements, as long as it creates a Structured Query. Similarly,
it allows the ontology, mapping, and what query execution
languages the Structured Query is translated into, to be changed,
to work with future query languages (eg, if the scope of the
underlying data set changes). This allows the ontology for the
front end to be created completely independent of the mapping
and does not require a specific format for an ontology, allowing
for quicker ontology generation compared with approaches that
extend existing research platforms such as i2b2 [35]. The
Structured Query can be considered as a new internal format
for feasibility queries, and it could be argued that the
representation as a Structured Query is not as interoperable as
an FHIR representation. However, given the need to translate
the query into multiple languages before being sent across
institutions and that the Structured Query closely resembles the
user input, the conversion from user input to Structured Query
is much simpler than generating an analogous FHIR
representation, which would then be converted again to FHIR
Search and CQL. Furthermore, currently, no FHIR specification
for feasibility queries exists, which would match the complexity
of our Structured Query [32].

In the proposed architecture, the ontology and mapping to FHIR
are added using the generated files. Thus, the used ontology
and mapping to FHIR can be easily changed. This allows the
feasibility platform to extend beyond our project and national
boundaries. It is important to consider that any ontology used
must be agreed by the institutions participating in a data sharing
network and either be applicable directly or mapped at the
decentral location according to the rules set by the institution.
The FHIR standards’ wide applicability, its wealth of
complexity, and medical data entities it can support makes this
a feasibility tool that can work with very diverse data, from
laboratory data to conditions or biological specimen data. The
translation and mapping we created is not restricted to a few
FHIR resources, and the platform allows for the extension of
the ontology and mapping to any FHIR resource. The fact that
we generate mapping files, which can be distributed with our
software, meant that the participating sites do not have to open
an extra connection to a central terminology server or provide
a terminology server themselves. This increases security and
ease of installation.

Related Work
The FHIR standard has become more popular in recent years.
More recently, it has been investigated not only for the exchange
of patient data but also as a tool for data selection, extraction,
and analysis [22,35]. With the popularity of the standard and
the MII deciding to use FHIR as its main format for data
exchange [19], the task was to build tools directly on the FHIR
standard, rather than transforming data further to be analyzed
with other software such as OMOP and i2b2 and tools built on
their data models, such as Shared Health Research Information
Network [50]. In this study, we designed and implemented a
feasibility tool, which clearly separates the concerns of the
different components and defines clear interfaces. This makes
it easy to extend the platform and exchange components at each
step of the process from user input to query execution and data
storage. Similar to Paris et al [35], we present a feasibility
platform, which works directly with the FHIR standard. Unlike
Paris et al [35] we present a distributed system, which not only
supports the translation of a query to FHIR Search but also the
more powerful CQL query language. Hereby, we pave the way
for translating standardized feasibility queries into other query
languages based on structured input query, mapping, and
term-code tree to resolve ontology hierarchies. Our
implementation has the distinct advantage of allowing us to
map user input to FHIR directly, rather than mapping user input
to i2b2 objects and, then, to FHIR, thus reducing the overall
complexity. Finally, as the usability of the existing feasibility
UIs of i2b2 and OMOP can still be improved [21], the current
architecture included and implemented a new and modern UI,
which was found in our usability analysis to be intuitive and
easy to use. Furthermore, the Sample Locator [25], previously
developed as part of the German Biobank Alliance (originating
from previous work in the German Cancer Consortium [51])
had the following limitations. (1) It did not include a generic
terminology-based ontology tree, which allows researchers to
select concepts easily. The current selection criteria were
hard-coded, thus hindering the flexible extension of the UI. This
is especially important, as the scope of the project will grow
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over time. (2) It did not allow for more complex queries, such
as grouping different criteria in OR groups within AND groups.
Therefore, conjunctive (inclusion criteria) and disjunctive
(exclusion criteria) normal form was chosen for the new UI,
which supports more complex queries. (3) It allowed for direct
not exclusion of criteria, which is currently not supported for
all FHIR Search queries and would have introduced more
complexity into the query translation process and had
implications for performance (an FHIR Search for: not condition
C50.1 would have returned a set of all other conditions). (4) It
did not support time restrictions across all criteria.

The system’s modular design supports different software
components and final architecture decisions within the various
MII university hospitals, depending on their local architecture
design already existing within their DICs. Modularity with
clearly defined APIs means that the comprehensive architecture
framework can be adjusted easily, with locally preferred
microservice components, if they fulfill the same functionality,
thus supporting varying local requirements.

Beyond the analysis of the systems, as part of this study, there
are many competing infrastructures for standardizing and
distributing queries in a privacy-preserving manner. Specifically,
for distributed analysis, multiple frameworks such as the
Personal Health Train (PHT) [52,53] and DataSHIELD [54,55]
exist. However, here, the focus is on a distributed feasibility
platform for standardized feasibility queries that preserves
privacy by aggregation at each site. This makes infrastructures
such as the PHT and DataSHIELD, which focus on interactive
and custom analyses, less well suited for our purpose. PHT
specifically focuses on distributing custom analyses
(algorithm+query) using containers to move the algorithms to
the data. This is a great strength of the PHT, but it is not
applicable for a structured feasibility query, which can be
executed in the exact same manner (by the same algorithm)
every time. Currently, the feasibility platform does not provide
a mechanism for multiparty computing, allowing for exact
responses to privacy-preserving feasibility queries across sites.
This might be potentially relevant for rare diseases, where low
numbers of patients would otherwise be returned to each site,
thus making more accurate numbers essential. Previous work
such as the PHT or DSF could be extended to provide a
multiparty computing approach to return exact feasibility
answers aggregated across multiple institutions. In the system
described here, only the middleware would have to be replaced
or extended, as the UI, query generation, and query execution
at the sites would be identical.

Limitations
A feasibility platform across institutions works only if the
institutions agree on the same ontology and map their data to
the same terminologies or provide a mapping from the given
input to their terminologies. In our project, we built on the
German DIC data harmonization efforts. This ensures the
compatibility of our queries with the data in each participating
institution, as all DICs convert the data according to the same
FHIR profiles and implementation guides of the MII core data
set [56] and the GECCO [9] data set. Not all countries have
these DICs, which means that extra data harmonization efforts

would be required, which can be expensive and time-consuming.
Furthermore, many electronic health record providers now
support FHIR, but this does not necessarily mean that they
provide the consented profiles or terminologies necessary for
a distributed query. Creating a good ontology that is easy to use
and provides the researcher with the right criteria is a difficult
task. Many institutions generate ontologies manually, which
means that they are carefully curated, but this is expensive and
time-consuming. We successfully generated an ontology and
mapping in an automatic process based on FHIR profiles and
an ontology server. Whether this is applicable to arbitrary FHIR
profiles still needs to be investigated.

The way we implemented the FHIR Search query path for
multicriteria grouped feasibility queries means that the result
sets of the sub-FHIR Search queries must be downloaded,
patient IDs must be extracted, and the resulting sets must be
combined. This download process may not be feasible for
queries where parts return many results. To address this problem,
currently, we also support CQL, which is a better option for
large data sets. Our performance test demonstrated that CQL
answers queries processing multiple millions of resources within
30 seconds. FLARE answered queries where 400,000 resources
had to be processed in <12 seconds. Specifically, for COVID-19
data sets, we currently do not expect 1 site to return millions of
patients, which means that the current implementation will
answer queries on patients who are specific to COVID-19 in
seconds rather than minutes. Furthermore, the finding that the
number of resources processed is the main predictor of query
execution time paves the way for future improvements. The
current performance test, as well as being repeatable, allows
one to draw conclusions on feasible data set sizes. However, a
more comprehensive investigation with data sets of 200 or 500
million resources and different server sizes and better
understanding of what large real-world data sets look like are
still missing. This is especially relevant within the MII if the
current feasibility portal is extended beyond the COVID-19
data set to analyze multiple years of real-world hospital data.

Future Directions and Conclusions
We presented the design and implementation of a feasibility
platform for distributed feasibility queries, which works directly
on FHIR-formatted data. The platform was deployed across 33
university hospitals and the viability of the approach was
demonstrated using a set of synthetic test data in the appropriate
format. Supporting FHIR Search directly requires a feasibility
executor (FLARE) to answer feasibility queries across multiple
criteria. The advantage of the FLARE approach is that it did
not only overcome current FHIR Search limitations but will
also provide a solution to further limitations in the future. An
example of this is the implementation of time-dependent
intercriterion relationships (eg, a specific laboratory value within
3 days of a medication), which we plan to implement in the
future. This is possible as full FHIR resources can be processed,
including the appropriate time stamp field for each resource,
which can then be compared for the specified interresource time
constraints for each patient. Our performance analysis revealed
that our implemented feasibility platform can answer queries
for large data sets (multiple millions of resources) within
seconds and that CQL is significantly faster than FLARE. The
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performance depends heavily on the number of patients for CQL
and, for FLARE, the number of hits for each single criterion
searched for. Consistent with this, we are planning to improve
the performance of our implementation by using heuristics on
the FHIR server to optimize FLARE and CQL query execution.
This means identifying the criterion with the statistically lowest
number of occurrences first, and then, querying further criteria
with the reduced patient set. This is possible for FLARE and
CQL and will be investigated by our team in the future. The
implementation and design described here focused on the
GECCO COVID-19 data set. The platform presented here is
very generalizable and can be applied to any FHIR-formatted
data or even to different query languages currently supported
by different FHIR servers. One of the next steps is to integrate
more data from different sources. In this pursuit, partners from
the MII and German Biobank Alliance [57] have joined forces
in 2021 to bring together previously independent initiatives for
data and biosample sharing, by aligning information technology
infrastructures and the respective regulatory and governance
frameworks established in Germany within the biobanking
community on one side and the medical informatics community
on the other. The resulting Aligning Biobanks and DIC

Efficiently [58] project started in May 2021 [59]. In our
implementation, we only tested specific FHIR servers; however,
our support of FHIR Search allows us to work with any standard
FHIR API. Thus, testing our system with FHIR-APIs built on
optimized database systems, as suggested by Paris et al [35],
would be of interest. The platform presented here provides a
solution only for the first part of the research cycle. Given the
way the platform is built, currently, we return only the number
of patients. One can easily imagine changing the return value
to a list of patient IDs, which would allow the platform to create
a cohort or patient subpopulation for a later decentral data
selection process. This decentral cohort-creation process can
then be combined with a decentral data selection process. This
would allow a researcher to create a feature (criteria) set of data,
based on the previously created cohort, which the researcher
would like to extract for further analysis. Such a tool can then
extract the required data and create a prepared data set for
analysis at each site. In the simplest case, this prepared data set
can be a comma-separated list of selected features for each
patient. Creating such a tool would allow the FHIR standard to
support distributed privacy-preserving analysis using tools such
as DataSHIELD [54,60].
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Abstract

Background: Electronic health records (EHRs) have been implemented in many low-resource settings but lack strong evidence
for usability, use, user confidence, scalability, and sustainability.

Objective: This study aimed to evaluate staff use and perceptions of an EHR widely used for HIV care in >300 health facilities
in Rwanda, providing evidence on factors influencing current performance, scalability, and sustainability.

Methods: A randomized, cross-sectional, structured interview survey of health center staff was designed to assess functionality,
use, and attitudes toward the EHR and clinical alerts. This study used the associated randomized clinical trial study sample
(56/112, 50% sites received an enhanced EHR), pulling 27 (50%) sites from each group. Free-text comments were analyzed
thematically using inductive coding.

Results: Of the 100 participants, 90 (90% response rate) were interviewed at 54 health centers: 44 (49%) participants were
clinical and 46 (51%) were technical. The EHR top uses were to access client data easily or quickly (62/90, 69%), update patient
records (56/89, 63%), create new patient records (49/88, 56%), generate various reports (38/85, 45%), and review previous records
(43/89, 48%). In addition, >90% (81/90) of respondents agreed that the EHR made it easier to make informed decisions, was
worth using, and has improved patient information quality. Regarding availability, (66/88) 75% said they could always or almost
always count on the EHR being available, whereas (6/88) 7% said never/almost never. In intervention sites, staff were significantly
more likely to update existing records (P=.04), generate summaries before (P<.001) or during visits (P=.01), and agree that “the
EHR provides useful alerts, and reminders” (P<.01).

Conclusions: Most users perceived the EHR as well accepted, appropriate, and effective for use in low-resource settings despite
infrastructure limitation in 25% (22/88) of the sites. The implementation of EHR enhancements can improve the perceived
usefulness and use of key functions. Successful scale-up and use of EHRs in small health facilities could improve clinical
documentation, care, reporting, and disease surveillance in low- and middle-income countries.

(JMIR Med Inform 2022;10(5):e32305)   doi:10.2196/32305
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Introduction

Background
Effective and high-quality health care requires high-quality,
timely health information—“Information is care” [1]. Scaling
up effective care for millions of patients with HIV in
resource-limited settings such as sub-Saharan Africa required
the development of new paradigms for the collection, storage,
viewing, and analysis of clinical data and health information
[2]. Most health centers treating HIV started with only structured
paper records. As the volume of patient data grew and in-country
digital capacity improved, electronic tools were introduced.
Many early electronic health records (EHRs) in resource-limited
settings have been developed for HIV care, including those in
Malawi [3], Kenya [4], and Haiti [5]. These projects
demonstrated the feasibility of deploying health information
systems, improvements in reporting to ministries of health
(MoHs) and donors, and the ability to monitor the continuum
of care. Furthermore, this initial evidence also suggested that
the use of EHR systems for HIV, tuberculosis (TB) and
multidrug-resistant TB treatment could improve the quality of
care [2]. A critical challenge to improving the quality of care
in low-income settings is the ability to achieve long-term,
consistent EHR use at a large scale. To better understand the
perceptions and clinical uses of EHR systems that support
improved use and care in Rwanda, we conducted a quantitative
user survey supplemented by free-text questions. For the
purposes of this study, the terms electronic health record and
electronic medical record are used interchangeably.

HIV Care in Rwanda
Rwanda is an East Central African country bordering Tanzania,
Uganda, Burundi, and the Democratic Republic of the Congo.
Rwanda had a per capita income of US $773 in 2018, up from
US $241 in 2004 [6], and has made great progress in rebuilding
its health care systems after the genocide against Tutsi in 1994.
A major health challenge Rwanda has faced, along with

neighboring countries in Africa, is the HIV epidemic. A 2018
to 2019 survey indicated that HIV prevalence among adults
aged 15 to 49 years was 2.6% [7]. Great strides have been made
in the treatment of patients who are HIV positive, including
improvements in the prevention of mother-to-child transmission
uptake, and reduction in the rate of loss to follow-up for patients
receiving antiretroviral therapy (ART) in Rwanda. This is
demonstrated by the near achievement in 2019 of the 2020 Joint
United Nations Programme on HIV/AIDS 90-90-90 goal, with
84% of adults who were HIV positive knowing their status,
98% of those knowing their status on ART, and 90% of those
on ART having a suppressed viral load [7]. From the beginning
of the HIV treatment scale-up, the Government of Rwanda has
emphasized care and prevention in rural areas as well as in urban
settings; recruitment, training, and supervision of community
health workers; and the use of health information systems. These
information systems included national-level surveillance systems
for HIV care [8,9], mobile health systems to support antenatal
and primary care, and patient information or EHR systems
mainly for supporting HIV care in health centers and hospitals.
The 3 main EHR systems used have been OpenMRS (OpenMRS
Inc) in health centers and 36 district hospitals offering HIV
services, IQcare (International Quality Care, Palladium Inc)
[10] in some health centers (now replaced by OpenMRS), and
OpenClinic (OpenClinic GA) [11] in some hospitals. Since
2009, the MoH has moved to using OpenMRS for all HIV health
centers and most hospitals in the country.

OpenMRS
OpenMRS is an open-source software platform for building
EHRs, with a focus on health care needs in low- and
middle-income countries (LMICs). Founded in 2004, the
OpenMRS community set goals to create a public software
platform to assist health care organizations worldwide in
developing EHR systems that were adaptable to local needs,
owned by local organizations, and programmed by local
developers as much as possible [12] (Textbox 1).

Textbox 1. The OpenMRS electronic health record system.

OpenMRS has an unusual modular architecture allowing modules from the core development team to be mixed with modules from other developers
to create flexible and updatable systems, with typical implementations using 35 to 45 modules. This ensures the core OpenMRS code is common to
nearly all OpenMRS installations. Data are stored using a concept dictionary allowing flexibility in data capture and translation to other languages
[12]. This approach also supports a range of standards for data storage and exchange with mappings available for a range of coding standards such as
the International Classification of Diseases, 10th Revision, and Logical Observation Identifiers Names and Codes in the master Columbia International
eHealth Laboratory concept dictionary.

Adapting OpenMRS to new uses typically requires technical expertise including Java programming if new modules are required. There were limitations
to the older user interface used in this project (which has now been superseded), requiring care in developing clinical workflows. OpenMRS has been
adapted to support a wide range of care including HIV, multidrug-resistant tuberculosis, primary care, emergency care, heart disease, oncology, and
surgery. A Server Monitoring Tool module was developed to track system uptime and downtime, daily data entry rates, and completeness of key
variables. The Server Monitoring Tool was used as part of the larger evaluation study in Rwanda.

OpenMRS was developed by a collaboration among the Academic Model Providing Access to Healthcare project in Kenya with the Regenstrief
Institute in Indiana, United States; the Partners In Health Informatics team in Rwanda and Boston, Massachusetts, United States (HSF); and the
informatics lead of the South African Medical Research Council (now CEO of Jembi Health Systems, Cape Town, South Africa—CS). Ongoing
maintenance of the core OpenMRS platform is accomplished through the OpenMRS community—a worldwide network of volunteers with technology,
health care, and international development expertise.

Initially, OpenMRS was used for HIV and TB treatment in
outpatient settings, supporting projects funded by the US
President’s Emergency Plan for AIDS Relief and the Global

Fund for AIDS, Tuberculosis, and Malaria. Currently, it covers
a wide range of clinical areas. Partners In Health implemented
and currently supports OpenMRS in 46 health centers and 3
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hospitals in Rwanda covering HIV care, pediatrics, primary
care, cardiology, and oncology.

Between 2009 and 2013, the Rwanda MoH deployed OpenMRS
to >300 health centers providing HIV care throughout the
country [13]. Before and during deployment, OpenMRS had to
be customized to support the Rwanda MoH requirements. A
dedicated 9-month course led by Partners In Health/Inshuti Mu
Buzima trained programmers in enterprise Java and health
information system design [14]. Several graduates were hired
by the MoH and created custom OpenMRS modules for HIV
and primary care using OpenMRS version 1.6 core code. This
is the version of OpenMRS used in the control sites for this
study. Unstable internet connectivity in rural Rwanda (similar
to many low-income countries) required each site to run its own
instance on a local server, requiring stable power and local
technical support.

Impact of EHR Systems in Resource-Limited Countries
Over the last two decades, EHR systems have been implemented
in a wide range of countries, including those with the lowest
income levels. The scale-up of HIV care and transition from an
emergency outbreak response to a lifelong chronic care model
was a major driver for the expansion of EHR system use and
the development of common, shared information system tools.
Countries, including Rwanda, Kenya, Uganda, Mozambique,
and Nigeria, have scaled up the use of OpenMRS EHR systems
for HIV care to hundreds of their clinical sites. Other EHRs,
including IQcare, have been widely used in countries such as
Kenya [15].

The OpenMRS community has prioritized support for effective
and safe clinical care as well as reporting and research.
Smaller-scale studies have evaluated the impact of EHR system
improvements on the aspects of clinical care, the systems
efficacy. Were et al [16] studied the addition of alerts to printed
patient summaries generated by OpenMRS on a range of clinical
actions for the care of children who were HIV positive in
Eldoret, Kenya. In a randomized controlled trial (RCT), they
showed that health care workers receiving the summaries with
alerts were 4 times more likely to carry out actions such as
ordering CD4 counts (a T lymphocytes test) and polymerase
chain reaction tests for HIV antigen. In a larger study, Oluoch
et al [17] studied the impact of improved decision support tools
implemented in an EHR in Kenya on the quality of HIV care.
In a cluster RCT of 13 health centers and 41,062 patients, they
showed that sites with the decision support tools were quicker
and more effective in responding to HIV treatment failure [17].
Critical questions remain regarding the key factors that
determine individual EHR use, facilitate scaling up to tens or
hundreds of smaller health facilities, support long-term use, and
influence the clinical impact of these systems in routine
care—the effectiveness of EHRs in LMICs [18].

Methods

Overview
The aims of this study are to evaluate the following questions
in a large number of health centers in Rwanda: (1) staff and
stakeholder expectations and perceptions of health information
system performance; (2) staff and stakeholder expectations and
perceptions around effort expended to use health information
systems; (3) infrastructural, organizational, and individual
conditions that are barriers and facilitators to using such tools
(including training and technical support); (4) staff perceptions
of technology fatigue; and (5) any differences in the experiences
of staff in intervention and control sites and between clinical
and technical users.

The EHR Implementation Science Study
The focus of this manuscript is the electronic medical record
(EMR) user survey component of a process evaluation, which
is part of a larger, 3-part implementation science study on the
use of an enhanced EHR to support HIV care in 56 randomly
allocated health centers that commenced in July 2018. It
included the evaluation of (1) EHR use, performance, and data
quality; (2) the clinical impact in an RCT; and (3) the cost of
development and implementation of the enhanced EHR
functionality.

For enrollment in the overall study, first, the enhanced EHR
package (Textbox 2) was piloted in 2 health centers in Kigali
(Kicukiro Health Centre and Kagugu Health Centre), and
improvements were made in response to the user experience
and comments. Next, the following selection criteria were
applied: (1) the presence of ≥3 computers, 1 printer, and a local
area network; (2) active HIV case numbers between 50 and 700;
and (3) successful installation of the Server Monitoring Tool
(Textbox 1) and evidence of regular data entry by staff. Using
these criteria, a total of 112 sites were selected to participate in
the clustered RCT. These sites were a mix of urban and rural
health centers and some district hospitals. Of the 112 sites, 56
(50%) were randomized into the intervention sites, which had
the enhanced EHR installed on the servers between June 25 and
July 5, 2018. All 56 sites had the alerts for delayed patient
enrollment, 28 sites also had alerts for delayed viral load testing,
and 14 had the alerts for evidence of treatment failure. For the
analysis of the survey, sites with at least the top-level alerts
(delayed HIV care registration) were classed as intervention.
Health facility staff, including clinicians, data managers, local
information technology (IT) staff, local clinic managers, and
district IT specialists, in all 112 study sites were trained on
general EHR use and data management. Additional training
was provided for staff in the intervention sites on the enhanced
EHR and equivalent training on the control EHR.
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Textbox 2. The enhanced electronic health record (EHR) package.

The enhanced EHR package enhancements

• Upgraded OpenMRS software version (to v.1.11) and additions to the concept dictionary

• Improved workflow for registering and managing patients with HIV

• Improved ordering of laboratory analyses (HIV tests, CD4 counts, and viral loads)

• Upgraded clinician summaries of patients showing key clinical data and alerts and reminders designed to improve care

• Custom automatic reports to identify patients not receiving optimal care, implementing the same alerts and reminders

• Alerts and reports designed to identify patients with care delivery issues. These were chosen to reflect the needs identified by the Rwandan
Ministry of Health and based on the 2016 World Health Organization guidelines for HIV care (WHO Consolidated Guidelines HIV 2016 [19])
and included the following:

• Newly diagnosed patients with HIV who have not been enrolled in antiretroviral therapy within 2 weeks of diagnosis

• Patients with 8 months of antiretroviral therapy who do not have a viral load test result in the EHR (6 months of care + 2 months for result
to return and be entered in the EHR)

• Patients who have an abnormal (elevated) viral load result and require assessment and management for treatment failure

Study Environment
The user survey was conducted at primary health care facilities,
referred to here as health centers, offering HIV treatment
services, located throughout Rwanda, approximately 5 months
after the installation of the enhanced EHR.

Study Design
This study used a cross-sectional, key informant structured
interview design within control and intervention sites. The data
were collected through structured interviews to ensure high
response rates and avoid technical limitations that may have
impacted a web-based survey and biased results toward
better-supported sites and users. The goal is to gain insights
into the adoption, functionality, use, and perceptions of EHRs
by clinical staff (nurses, physicians, and social workers) and
technical staff (IT staff, data entry staff, and data managers) in
health centers. Care of patients in smaller health facilities in
East Africa, including those with HIV, is mostly carried out by

nurses or junior clinician grades and rarely by physicians. The
study questions were as follows: (1) whether the actions and
perceptions of staff using the enhanced EHR intervention would
be different from those using the control EHR and (2) whether
clinicians have different experiences with the EHR than
technical staff.

Sampling and Sample Size
This study drew from the sample frame of the clustered RCT
implementation study. The RCT enrolled 112 health centers
from >300 that use the OpenMRS EHR for HIV care. Of the
112 sites, 54 (48.2%) were randomly selected, including 27
(50%) from the enhanced EHR sites (intervention) and 27 (50%)
control sites (Figure 1). Randomization was performed with R.

A total of 100 participants were approached for the structured
interview, with the goal of 1 clinician (nurse or physician) and
1 data manager at each health center. If not available, other EHR
users were recruited if possible.
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Figure 1. Sample design (total electronic medical record sites include those managed by Partners In Health/Inshuti Mu Buzima; there were >300 active
ministry of health–run sites). EHR: electronic health record; RCT: randomized controlled trial.

Data Collection Tool
The structured interview and observation (survey) tool included
sections on demographics, experience with IT, EHR training
received, frequency of EHR use for different tasks, overall ease
of use, usefulness for specific tasks, technical and user support,
and system stability and infrastructure issues. The survey tool
included 5-point Likert scale quantitative close-ended questions
and qualitative open-ended questions. It was adapted from a
form originally used by Médecins Sans Frontières, piloted in
20 clinics in Rwanda in 2012 [13], and translated from English
into Kinyarwanda.

Data Collection
The survey was conducted by 10 trained data collectors from
the Rwanda School of Public Health. Survey responses were
documented and recorded in a preprogrammed Android tablet
using ODK [20]. Free-text comments were documented in
Kinyarwanda, translated into English, and reviewed by bilingual
research team members before analysis. Written informed
consent was obtained, and participants’ confidentiality was
assured using a private interview room at each health center
surveyed.

Data Analysis
Descriptive statistics were carried out using Excel (Microsoft
Corp). JMP Statistical Software (SAS Institute) and Excel were
used for the chi-square tests for the 5-point Likert scale
responses. For the comparison of clinicians and technical users,
all Likert scale questions were tested for significance. For the

comparison of the intervention and control sites, the 2 groups
of questions (12 and 18) most directly related to the technical
improvements in the enhanced EHR were tested. P values were
adjusted for multiple comparisons using the Benjamini and
Hochberg method and R p.adjust [21]. Analyses were designed
and carried out with assistance from a statistician and a data
scientist at Brown University (see Acknowledgments).

Free-text comments, which were all short statements, were
analyzed thematically using inductive coding by one author
(HSF) and recoding by a second author (MM), with
discrepancies resolved by discussion. Common concepts were
described and rated based on the number of user responses
matching each code.

Ethical Considerations
This study was approved by the following investigational review
boards: Rwanda National Ethics Committee, Kigali
(#913/RNAC/2016) and the University of Leeds School of
Medicine Research Ethics Committee, Leeds, United Kingdom
(MREC16-176). This study was reviewed in accordance with
the US Centers for Disease Control and Prevention human
research protection procedures (approval #CGH HSR
2014-270a) and determined to be research. However,
investigators of the Centers for Disease Control and Prevention
did not interact with human participants or have access to
identifiable data during this research.
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Results

Participant Characteristics
A total of 100 participants were approached for interview and
consented to participate. Of these 100 participants, 90 (90%
response rate) were available at the time of the visit by study
staff, with 44 (49%) from the intervention sites. The participants
had a mean age of 35.9 (SD 6.2; range 23-58) years, a mean of
7.5 (SD 2.0; range 0-38) years working at the health centers,
and 47% (42/90) were female. Their educational attainment was
reported as some secondary schooling (8/90, 9%), completed
secondary schooling (18/90 20%), and postsecondary schooling
(64/90, 71%). Their occupations were nurse (41/90, 46%),
physician (1/90, 1%), social worker (2/90, 2%), data manager
(42/90, 47%), IT officer (1/90, 1%), and data entry staff (3/90,
3%). Respondents had a mean of 3.3 (SD 2.0) years of
experience with the EHR and a mean of 1.9 (SD 1.4) trainings
and 9.7 (SD 7.9) training days.

General Use of Technology
A large majority of respondents used mobile phones, with 82%
(74/90) using them “about half the time,” “most of the time,”
or “all of the time” for texting, and 82% (74/90) similarly for
mobile data. Computer use outside of work was reported by
31% (28/90) and internet use by 49% (44/90). Clinicians
(physicians, nurses, and social workers) reported significantly
less use than technical staff (IT officers, data managers, and
data entry staff; P=.009 and P=.04, respectively).

Training on EHR
Respondents agreed or strongly agreed that their training on the
EHR was effective (82/84, 98%), and they were confident in
using the EHR (81/87, 93%). However, 77% (66/86) of
respondents disagreed or strongly disagreed with the statement
“I am generally not concerned making errors in EHR.” There
were no statistically significant differences in responses on
training between clinicians and technical staff. However, in
free-text comments, 81% (73/90) of respondents requested more
training. These requests included refreshers, training on new
modules or updates, and more practical hands-on training. There
were also requests for training in reports and data analysis.
Mentorship, supportive supervision, or more technical backup
were requested by many respondents.

Use of EHR Functions
Tables 1-7 show and summarize the results for the following
question: “Please indicate how often you use the EMR to assist
you with the following tasks.” Combining the categories most
of the occasions and always/almost always, the percentages for
common tasks were 56% (49/88) for creating new patient
records, 63% (56/89) for updating existing patient records, 40%
(36/89) for generating patient summaries before visits, 48%
(43/89) for reviewing previous patient encounters, 30% (21/69)
for ordering laboratory analyses, 43% (36/83) for viewing
laboratory results, 33% (25/75) for following test results over
time, 45% (38/85) for generating automatic reports, 45% (38/85)
for generating ad hoc reports (eg, quarterly or TracNET reports),
and 49% (41/84) for referring patients to another health facility.
The results were 22% (18/82) for generating consult sheets and
16% (14/85) for generating clinician summaries.

Table 1. Frequency of survey responses for Likert scale data: question 6 (n=90).

Top 2 groups,
n (%)

5—always/almost
always, n (%)

4—most of the
occasions, n (%)

3—about half the
occasions, n (%)

2—seldom, n (%)1—never/almost
never, n (%)

Question 6. How often do you do
the following activities?

74 (82)34 (38)40 (44)8 (9)3 (3)5 (6)Use a mobile phone to send text
messages

74 (82)30 (33)44 (49)9 (10)2 (2)5 (6)Use a mobile phone to access
email, internet, WhatsApp, or
Facebook

28 (31)12 (13)16 (18)29 (32)5 (6)28 (31)Use a computer outside of work

44 (49)17 (19)27 (30)20 (22)13 (14)13 (14)Access the internet to check
email, go to websites, or any
other internet activities

Table 2. Frequency of survey responses for Likert scale data: question 10.

Top 2 groups,
n (%)

Strongly
agree, n (%)

Agree, n (%)Neutral, n (%)Disagree, n (%)Strongly dis-
agree, n (%)

Question 10. Training

82 (98)61 (73)21 (25)0 (0)1 (1)1 (1)The training I received relating to the EMRa was
effective (n=84)

17 (20)4 (5)13 (15)3 (3)30 (35)36 (42)In general I am not concerned about making errors
in the EMR (n=86)

81 (93)39 (45)42 (48)1 (1)4 (5)1 (1)I am confident using the EMR (n=87)

aEMR: electronic medical record.
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Table 3. Frequency of survey responses for Likert scale data: questions 12 to 14.

Top 2
groups,
n (%)

Always/al-
most always,
n (%)

Most of the oc-
casions, n (%)

About half
of the occa-
sions, n (%)

Seldom,
n (%)

Never/al-
most never,
n (%)

Question

12. Please indicate how often you use the electronic medical record to assist you with the following tasks.

49 (56)32 (36)17 (19)23 (26)14 (16)2 (2)Creating new patient records (n=88)

56 (63)30 (34)26 (29)20 (22)10 (11)3 (3)Updating existing patient records (n=89)

36 (40)15 (17)21 (24)28 (31)14 (16)11 (12)Generating patient summaries before visits (n=89)

43 (48)22 (25)21 (24)27 (30)13 (15)6 (7)Reviewing previous patient encounters (n=89)

21 (30)9 (13)12 (17)11 (16)5 (7)32 (46)Ordering laboratory analyses (n=69)

36 (43)17 (20)19 (23)18 (22)7 (8)22 (27)Viewing laboratory results (n=83)

25 (33)10 (13)15 (20)14 (19)4 (5)32 (43)Following test results over time (n=75)

7 (11)5 (8)2 (3)5 (8)3 (5)50 (77)Ordering medicine (n=65)

14 (18)7 (9)7 (9)7 (9)4 (5)54 (68)Generating pharmacy reports (n=79)

38 (45)24 (28)14 (16)8 (9)8 (9)31 (36)Generating automatic reports (n=85)

38 (45)25 (29)13 (15)11 (13)2 (2)34 (40)Generating ad hoc reports (n=85)

18 (22)6 (7)12 (15)12 (15)5 (6)47 (57)Generating consult sheets (n=82)

14 (16)6 (7)8 (9)15 (18)8 (9)48 (56)Generating clinician summaries (n=85)

41 (49)27 (32)14 (17)17 (20)6 (7)20 (24)Referring patients to another health center (n=84)

37 (42)1 (1)38 (40)29 (33)10 (11)13 (15)13. All considered, how often do you use the electronic medical
record as an information source in your clinical work? (n=89)

68 (76)7 (8)61 (69)13 (15)4 (4)4(4)14. All considered, how often do you use paper-based medical
records as an information source in your clinical work? (n=89)

Table 4. Frequency of survey responses for Likert scale data: question 16.

Top 2 groups,
n (%)

Strongly
agree, n (%)

Agree, n (%)Neutral,
n (%)

Disagree,
n (%)

Strongly dis-
agree, n (%)

Question 16. Please tell us the degree to which you agree or dis-

agree with the following statements about the EMRa.

71 (85)22 (26)49 (58)4 (5)3 (4)6 (7)I am able to find where to document care (n=84)

64 (72)20 (22)44 (49)2 (2)19 (21)4 (4)In general it is easy to correct errors in EMR (n=89)

85 (96)47 (53)38 (43)1 (1)2 (2)1 (1)In general the screen display is easy to read (n=89)

77 (87)24 (27)53 (60)5 (6)6 (7)1 (1)The content is laid out in an understandable way (n=89)

83 (93)39 (44)44 (49)1 (1)4 (4)1 (1)It is easy to retrieve patient records in the EMR (n=89)

aEMR: electronic medical record.

Table 5. Frequency of survey responses for Likert scale data: question 18.

Top 2
groups,
n (%)

Always/al-
most always,
n (%)

Most of the oc-
casions, n (%)

About half
of the occa-
sions, n (%)

Seldom,
n (%)

Never/al-
most never,
n (%)

Question 18. Please tell us the degree to which you agree or

disagree with the following statements about the EMRa.

64 (78)28 (34)36 (44)6 (7)7 (9)5 (6)The EMR provides useful alerts, reminders (n=82)

87 (97)50 (56)37 (41)1 (1)2 (2)0 (0)The EMR makes it easier to manage patients (n=90)

85 (94)45 (50)40 (44)1 (1)3 (3)1 (1)The EMR easier to make informed decisions (n=90)

64 (71)30 (33)34 (38)5 (6)21 (23)0 (0)The EMR makes it easier exchange patient information with
other health care providers (n=90)

89 (99)45 (50)44 (49)0 (0)1 (1)0 (0)The EMR is worth the time and energy to use (n=90)

83 (92)33 (37)50 (56)4 (4)3 (3)0 (0)The quality of information has improved due to the EMR (n=90)

aEMR: electronic medical record.
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Table 6. Frequency of survey responses for Likert scale data: question 20.

Top 2 groups,
n (%)

Strongly
agree, n (%)

Agree, n (%)Neutral,
n (%)

Disagree,
n (%)

Strongly dis-
agree, n (%)

Question 20. Please tell us the degree to which you agree or dis-

agree with the following statements about the EMRa.

63 (71)18 (20)45 (51)2 (2)17 (19)7 (8)It is easy to report problems with the EMR (n=89)

53 (60)8 (9)45 (51)6 (7)23 (26)7 (8)I get feedback when I report errors or problems with the EMR
(n=89)

49 (55)9 (10)40 (45)3 (3)28 (31)9 (10)Effective help is available when I experience problems with the
EMR (n=89)

35 (41)8 (9)27 (31)3 (3)37 (43)11 (13)I use the EMR because of the proportion of coworkers who use
it (n=86)

67 (75)28 (31)39 (44)6 (7)9 (10)7 (8)My supervisor is very supportive of use of the EMR for my job
(n=89)

84 (93)35 (39)49 (54)3 (3)2 (2)1 (1)In general, the Ministry of Health has supported the use of the
EMR (n=90)

aEMR: electronic medical record.

Table 7. Frequency of survey responses for Likert scale data: question 22.

Top 2
groups,
n (%)

Always/al-
most always,
n (%)

Most of the oc-
casions, n (%)

About half
of the occa-
sions, n (%)

Seldom,
n (%)

Never/al-
most never,
n (%)

Question 22. Indicate how often you experience the following:

66 (75)37 (42)29 (33)16 (18)4 (5)2 (2)How often can you count on EMRa to be up and available?
(n=88)

74 (82)36 (40)38 (42)10 (11)3 (3)3 (3)How often is grid electricity present? (n=90)

30 (34)26 (30)4 (5)3 (3)3 (3)52 (59)How often is the backup generator available? (n=88)

56 (63)36 (40)20 (22)19 (21)2 (2)12 (13)How often is there internet? (n=89)

41 (48)28 (33)13 (15)11 (13)6 (7)27 (32)How often is there cellular network coverage? (n=85)

77 (87)65 (73)12 (13)6 (7)2 (2)4 (4)How often is a computer available when you need to use the

EHRb? (n=89)

13 (15)4 (5)9 (10)29 (33)15 (17)31 (35)How often is the EHR very slow? (reverse scale; n=88)

aEMR: electronic medical record.
bEHR: electronic health record.

Staff in intervention sites were significantly more likely to use
the EHR for “Updating existing patient records” (P=.04),
“Generating patient summaries before visits” (P<.001),
“Viewing laboratory results” (P=.04), and “Generating clinician
summaries” (ie, on-screen summaries; P=.01). Clinician
responses indicated that they carried out the following tasks
significantly less frequently than technical staff: “Creating new
patient records” (P=.02) and “Updating existing patient records”
(P=.04).

A total of 42% (37/89) of respondents stated that they used the
EHR always/almost always or most of the time, as opposed to
76% (68/89) for the paper records. They agreed or strongly
agreed >85% (71/84) of the time (Tables 1-7) with the following
statements about the EMR: “I can find where to document care,”
“The screen displays are easy to read,” “Content lay out is
understandable,” and “It is easy to retrieve records in EHR.”
For the statement “It is easy to correct errors in EHR,”
agreement was 72% (64/89).

Respondents agreed or strongly agreed >90% (81/90) of the
time that “the EHR makes it easier to manage patients’ medical
file and patient’s medical follow up,” “the EHR makes it easier

to make informed decisions,” “the EHR is worth the time and
energy to use,” and “quality of information has improved due
to the EHR.” For the statement “the EHR makes it easier to
exchange patient information with other health care providers,”
agreement was 71% (64/90). For the statement “the EHR
provides useful alerts and reminders,” agreement was 78%
(64/82) with significantly stronger agreement in the intervention
sites (P=.01).

Answers to questions on technical and user support received
mixed responses. Respondents agreed or strongly agreed with
these questions with the following scores: “It is easy to report
problems with the EHR,” 71% (63/89); “I get feedback when I
report errors or problems,” 60% (53/89); “Effective help is
available with the EHR,” 55% (49/89); “I use EHR because of
the proportion of coworkers who use it,” 41% (35/86); “My
supervisor is very supportive of EHR use on the job,” 75%
(67/89); and “In general, the MOH supported the use of EHR,”
93% (84/90).
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Infrastructure
Infrastructure problems were a significant issue (Tables 1-7).
The following were stated to be available always/almost always
or most of the occasions: a computer when you need the EHR
(77/89, 87%), grid power (74/90, 82%), wired internet
connectivity (56/89, 63%), cellular internet (41/85, 48%), and
a backup generator (30/88, 34%). For the question “How often
can you count on EHR to be up and available?” response was
75% (66/88), with 18% (16/88) saying it was available about
half the time and 7% (6/88) almost never.

Table 8 shows the analysis of free-text comments. The most
frequent responses to the question “What are three functions

you like about the electronic medical record?” were “to get
client data easily and/or quickly” (62/90, 69%), “it helps to
generate reliable reports in a short time” (39/90, 43%), “it stores
client information safely and/or securely” (31/90, 34%), and “it
helps to monitor clients on a daily basis” (20/90, 22%). In
response to the question “What are three functions you do not
like about the electronic medical record?” most frequent
comments were “often unstable or blocked” (20/90, 22%), “hard
to correct errors or unsubscribe patients” (11/90, 12%), “cannot
work with OpenMRS outside the health facility/not online”
(9/90, 10%), and “poor internet” (6/90, 7%).
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Table 8. Responses to free-text questions on user likes and dislikes (n=90).

Value, n (%)Question, themes, and example comments

What are 3 functions you like about the electronic medical record?

Supports accessible and safe patient record keeping

62 (69)Helps users to get client data easily and/or quickly

31 (34)Stores client information safely and/or securely

Supports patient care by providing needed information on the patient

6 (6)Provides alerts

Makes managing patient data easier

14 (16)“Simplifies my daily work”

Helps to generate reports

39 (43)Support generation of reports reliably and in a short time

Example comments

N/Aa“It provides an alert regarding viral loads, CD4.” (intervention site)

N/A“When it is well manipulated can reduce workload in the service.”

N/A“It indicates missing information in the client’s file.”

N/A“To identify client that do not respect their appointment.”

N/A“Number of lost follow up.”

What are 3 functions you do not like about the electronic medical record?

System stability or unavailability

20 (22)Often unstable or blocked

7 (8)Lack of technical support

6 (7)Poor internet connection

Lack of updates for key functionality or metadata

3 (3)Lack of drugs listed in formulary

Lack of connectivity beyond individual health facilities

9 (10)Cannot work with OpenMRS outside the health facility/not on the internet

4 (4)Unable to track patient transfers

Error correction/editing

7 (8)Hard to correct errors

2 (2)Cannot unsubscribe patients

Example comments

N/A“There are few nurses that use OpenMRS efficiently.”

N/A“You cannot use OpenMRS out of working site.”

N/A“I like OpenMRS but this new version there some information that cannot provide.”

N/A“I like OpenMRS but this new version there some information that cannot provide.”

N/A“Blockage of OpenMRS affects my daily performance.”

aN/A: not applicable.

Discussion

Principal Findings
Overall, the results suggest that most users of OpenMRS at
Rwanda MoH health centers perceive the EHR as a valuable
tool for patient care and reporting activities. The responses

showed a high level of EHR use and acceptability across most
health centers despite the challenges of implementing EHR
systems in these environments. This finding provides
foundational evidence to implementers who have an urgent need
to understand how well EHRs can be scaled up to hundreds or
thousands of health facilities (addressing objectives on
performance and scalability). An unusual feature of the Rwanda
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OpenMRS implementation is the long interval since the original
deployment. Some MoH health centers have used the EHR
continuously for 8 or 9 years, with no major upgrades in control
sites for >5 years. Therefore, this study allows assessment of
the long-term performance of the EHR by typical users
(objective on sustainability). Such data are not available from
any existing studies that we are aware of, which have mostly
focused on larger hospitals in more controlled settings with
better infrastructure [11,22] or small numbers of test sites.

Responses to the 2 groups of questions most relevant to the
features of the enhanced EHR package showed, in the
intervention sites, more frequent use of core clinical tools,
including updating records, using patient summaries, and
viewing laboratory results. Significantly more respondents in
the intervention sites agreed that “The electronic medical record
provides useful alerts and reminders,” indicating support for
more advanced EHR features added in the enhanced EHR.

There were some differences in the level of EHR use between
clinicians and technical staff, including core clinical activities
such as creating and updating records. Clinicians, as expected,
had less technical experience and were significantly less likely
to use computers outside work or access the internet for a range
of applications. These findings indicate the need for further
improvements in usability and workflow and in both IT and
EHR training for clinicians.

It is important to note that recent versions of OpenMRS have
greatly improved user interfaces and general functionality
[23,24] and are expected to have significantly higher scores for
usability and overall satisfaction. An up-to-date version of
OpenMRS was implemented in Rwandan district hospitals in
2020/2021.

Limitations
This survey was conducted through structured interviews with
all participants. The less confidential nature of interviews
compared with a web-based survey may have increased
desirability bias as staff were aware that the study was endorsed
by the MoH. There was a strong positive response on the
question of MoH support and on statements that the effort to
enter data and use the EHR was worthwhile. However, on other
questions such as infrastructure, including power and internet
connectivity, and availability of technical support, participants
were more mixed in their responses, and for the question “I am
generally not concerned making errors in EHR” they were
clearly prepared to admit that there were problems. Many made
clear that they had challenges with using the EHR, and clinicians
would appear to rely on data managers and other technical staff
to assist with many activities. Free-text comments provided
critical insights into the actual experiences of staff, along with
many other issues related to usability, use, and the need for
training. The lack of significant differences in the experiences
of the clinicians and technical staff regarding many questions

may be partly due to the survey not being powered to show
small differences between these groups. Another limitation was
that the 112 sites selected for the broader study had better
hardware and evidence of more consistent data entry than the
others; therefore, EMR implementations described here may
perform better than the full set of EMR sites in Rwanda.

Comparison With Previous Work
Previous studies of EHR users in LMICs have identified a range
of experiences. Ojo [25] used the Delone McLean Information
Success Model in a study of EHR users in hospitals in Nigeria
and showed that system quality and use were the most important
in determining EHR success [25]. Tilahun and Fritz [26]
conducted a similar study on the experience of users with an
EHR in hospitals in Ethiopia. Compared with the survey in this
study, they showed high levels of dissatisfaction with the EHR
and low use levels owing to poor service quality (power
infrastructure, user support, training, and lack of computers in
the wards) and the need for double entry of data into the EHR
and paper records (also a problem in Rwanda) [26]. A survey
of the OpenClinic EHR users at the Kigali University Teaching
Hospital in Rwanda showed strongly positive user comments
on satisfaction and perception of data quality and usability
compared with paper records [11].

Conclusions
This survey provides evidence that EHR systems have become
an accepted component of HIV care delivery in Rwanda. Staff
were generally supportive of the system, although most wanted
further training, technical support, and better power and network
infrastructure. Staff at intervention sites were more likely to use
or have positive experiences of key functionality that was
improved in the enhanced EHR. As this survey is part of a larger
evaluation study, the responses will be compared with results
from key informant interviews, the costing and data quality
studies, monitoring of server performance and use, and clinical
impact in the cluster RCT. Further surveys are planned for other
large-scale rollouts of OpenMRS in low-income settings,
building on the survey form and findings in this study. The
results are likely to be generalized to similar EHR systems in
low-income settings if they are well tailored to the clinical needs
and workflow. They are also highly relevant to the critical need
for systems to support accurate, timely, and analyzable primary
care data on patients in remote and very underserved clinics in
low-income countries, replacing basic tools such as paper
registers. This should improve the clinical documentation, care,
reporting, and tracking of disease outbreaks, including
COVID-19.

Data Availability
The data underlying this paper cannot be shared publicly because
of the need for privacy of the individuals who participated in
the study. The data will be shared upon reasonable request with
the corresponding author.
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Abstract

Background: Multiple chronic diseases in patients are a major burden on the health service system. Currently, diseases are
mostly treated separately without paying sufficient attention to their relationships, which results in the fragmentation of the care
process. The better integration of services can lead to the more effective organization of the overall health care system.

Objective: This study aimed to analyze the connections between diseases based on their co-occurrences to support decision-makers
in better organizing health care services.

Methods: We performed a cluster analysis of diagnoses by using data from the Finnish Health Care Registers for primary and
specialized health care visits and inpatient care. The target population of this study comprised those 3.8 million individuals
(3,835,531/5,487,308, 69.90% of the whole population) aged ≥18 years who used health care services from the years 2015 to
2018. They had a total of 58 million visits. Clustering was performed based on the co-occurrence of diagnoses. The more the
same pair of diagnoses appeared in the records of the same patients, the more the diagnoses correlated with each other. On the
basis of the co-occurrences, we calculated the relative risk of each pair of diagnoses and clustered the data by using a graph-based
clustering algorithm called the M-algorithm—a variant of k-means.

Results: The results revealed multimorbidity clusters, of which some were expected (eg, one representing hypertensive and
cardiovascular diseases). Other clusters were more unexpected, such as the cluster containing lower respiratory tract diseases and
systemic connective tissue disorders. The annual cost of all clusters was €10.0 billion, and the costliest cluster was cardiovascular
and metabolic problems, costing €2.3 billion.

Conclusions: The method and the achieved results provide new insights into identifying key multimorbidity groups, especially
those resulting in burden and costs in health care services.

(JMIR Med Inform 2022;10(5):e35422)   doi:10.2196/35422

KEYWORDS

multimorbidity; cluster analysis; disease co-occurrence; multimorbidity network; health care data analysis; graph clustering;
k-means; data analysis; cluster; machine learning; comorbidity; register; big data; Finland; Europe; health record

Introduction

Multimorbidity
Multiple chronic diseases in patients are a major burden to the
health service system in terms of both service use and costs [1].

In many service systems, diseases are mostly treated separately
without paying sufficient attention to their relationships, which
results in the fragmentation of the care process. Better
integration of services can lead to a more effective organization
of the overall health care system. To support this, we analyzed
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the connections between diseases based on their co-occurrence
and performed a clustering analysis to identify multimorbidity
patterns.

Multimorbidity is often defined as the coexistence of ≥2 chronic
conditions within a patient [2,3]; however, the number of
medical conditions included in this definition ranges widely
[4]. Systematic reviews have shown that multimorbidity reduces
self-rated health, quality of life, and functional ability and
increases the risk of premature death, hospitalization, and use
of health services, causing a substantial economic burden for
societies and health care systems [5]. Wang et al [6] reported
that multimorbidity cases, defined as patients with ≥2 chronic
conditions, have 2 to 16 times higher costs than
nonmultimorbidity cases. Brettschneider et al [7] analyzed the
impact of 45 conditions on health-related quality of life. The
authors measured multimorbidity using a weighted count score
and assessed its association with decreases in the health-related
quality of life. The strongest impact was observed in Parkinson
disease, depression, and obesity.

An active research area is the measurement of the severity of
multimorbidity. Stirland et al [8] reviewed 35 multimorbidity
measures. Most measures (25 of 35) in their review were based
on simple (weighted or unweighted) counts of diseases; some
measures (4 of 35) used drug counts, and some (5 of 35) were
based on expert-generated grouping of diagnoses, mainly based
on frequencies. Such measures have been used to assess
mortality, health care use, cost, and quality of life.

Diagnosis Groups
The number of possible multimorbidities is too large for human
analysts to examine them individually. In the case of only 205
diagnoses, there are 20,910 different pairs of diagnoses. It is
easier to analyze their connections by first dividing the diagnoses
into smaller groups that contain related diagnoses and then
examining only the connections between diagnoses within each
group. This effectively removes less relevant multimorbidities
from the data and allows us to show the connections in small
groups that are easy to analyze.

Diagnosis groups can also predict future costs for a patient.
Farley [9] discovered that simply counting the number of
diagnosis clusters to which a patient belongs is a good predictor
of high costs in the future. When combined with other measures
such as the number of prescriptions, it outperformed more
complex comorbidity indices such as the Charlson, Elixhauser,
and RxRisk-V indices [9].

Diagnosis groups were previously created manually by experts
by joining diagnoses of clinical similarity. Travers et al [10]
studied how well the 4 groupings covered emergency medicine.
The authors discovered that the Agency for Healthcare Research
and Quality grouping for inpatient care provides the best
coverage (99%), whereas the National Center for Health
Statistics vital statistics grouping covers only 88%. They also
criticized that most clusters (76%) were small, and there were
large clusters containing dissimilar conditions. Open questions
include how to evaluate a cluster system and determine its
clinical relevance. Travers et al [10] further argued that a good
clustering system should collapse the individual International

Classification of Diseases, Ninth Revision, Clinical Modification
(ICD-9-CM) codes into clinically meaningful clusters.

The number of groups was also problematic. Schneeweiss et al
[11] argued that 367 clusters are too many for comparative
analysis, whereas 17 clusters are too broad for this purpose. The
authors reduced the number of International Classification of
Diseases (ICD) categories to 110 diagnosis clusters by
cross-tabulation between the ICD-9-CM and International
Classification of Health Problems in Primary Care–2
classifications, covering approximately 90% of all diagnoses
of their records made by family physicians.

Clustering to Detect Multimorbidity Patterns
An alternative to the manual grouping of diagnoses is the use
of computer algorithms to create groups. A cluster is a group
of objects that are similar to each other, whereas objects in
different clusters are expected to be far from each other or at
least less similar than those in the same cluster [12]. Clustering
can be used to detect multimorbidity patterns by grouping either
patients or diseases [13]. If we group the diagnoses, one
diagnosis belongs to only one cluster, whereas a patient can
belong to several clusters. If we group the patients, the reverse
is true: one diagnosis can belong to several groups, but one
patient can belong to only one cluster. This study focused on
grouping diagnoses.

The data used in clustering can be either numerical values or
text. Here, we follow the study by Hidalgo et al [14] and
represent the diagnoses as nodes and their relationships as links
in a network. We refer to this as the multimorbidity network. In
this network, the weight of the links between 2 diagnoses
measures how strongly they correlate in a patient record
database.

Although clustering algorithms have been widely used elsewhere
in health care, the existing literature lacks reliable, automatic,
and computer-generated clusters. Estiri et al [15] used clustering
to detect anomalies in health records by combining
agglomerative clustering with a k-means algorithm. The idea
was to detect small clusters and flag them as anomalies. The
authors reported a significantly smaller number of false positive
cases than simple anomaly detection based on the SD and
Mahalanobis distance.

Huang et al [16] clustered patients into 5 clinically meaningful
groups based on the similarity of their diagnoses and the
geographical locations of the hospitals. Their motivation was
to build machine learning models trained for each group
separately to provide a better prediction of mortality and
intensive care unit stay time.

Kalgotra et al [17] used co-occurrence statistics to build a
multimorbidity network to study the disparity of gender. The
statistics were extracted from the treatment data of >22.1 million
patients. They created networks separately for men and women
and compared the structures of the 2 networks. The networks
of female patients had more connections with mental health.

Folino et al [18] clustered patients based on a multimorbidity
network built using co-occurrence statistics. They used the
k-means clustering algorithm with Jaccard distance. A
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representative of each cluster was chosen as the set of all
diseases whose relative frequency in the cluster exceeded a
user-defined threshold (eg, 0.8). Clustering was used to predict
future diseases and was tested using the records of 1462 patients
from a small town in South Italy.

In the study by Folino and Pizzuti [19], the same prediction
system was revised using common neighbors in the network.
Records of 2541 patients from 2000 to 2009 were used to build
a network from ICD-9-CM codes. The resulting network
contained 492 nodes and 21,676 connections. A total of 2
separate subnetworks were created. The first included only
connections with a relative risk (RR) value of >20 (2330
connections), and the other included those with a Pearson
correlation value of ≤0.06 (7242 connections). Future patient
diseases were predicted by calculating the number of common
neighbors shared by the 2 diseases.

Ding et al [20] extended the previous prediction model using
ICD, 10th Revision (ICD-10) and demographic data. On the
basis of data collected between 2007 and 2014 in an (unnamed)
provincial capital in China, they reported that 71% of acute
diseases and 82% of chronic diseases were predictable.

John et al [21] applied clustering to 1039 American Indians
using data from an interview-based questionnaire. Cornell et al
[20] used ICD-9 codes from data obtained from administrative
databases of primary care clinics. Marengoni et al [22] used
electronic medical records of the acute care wards of 38 internal
medicine and geriatric wards in Italy in 2008.

Marengoni et al [22] calculated clusters of diseases to detect
groups of patients at risk of in-hospital death. Their data
comprised 1332 older people hospitalized in acute care wards.
This small data set had 19 diagnoses, which were grouped into
8 clusters using a correlation matrix and average linkage
agglomerative clustering. The results included 4 clusters
comprising a disease and its possible consequences. For
example, diabetes is clustered with cerebrovascular diseases
and coronary heart diseases, thyroid dysfunction with anxiety,
and chronic renal failure with anemia. The combination of
chronic renal failure and anemia had the highest likelihood of
in-hospital death, with an odds ratio of 6.1.

Most existing studies on clustering are based on hierarchical
agglomerative methods using heuristic criteria, either average
or complete linkage [13]. Wartelle et al [23] extended
hierarchical agglomerative clustering by directly optimizing
clustering using RR. By default, this is a more solid approach
than any linkage criterion (single, average, or complete). They
applied the method to data collected from the emergency
department (ED) of Troyes Hospital in Eastern France during
a 2-year period between 2017 and 2019. A network comprising
151 ICD-10 blocks was created using 114,391 hospital visits
of 72,666 patients.

Proposed Methodology
In this study, instead of agglomerative clustering, we applied a
k-means–based algorithm. Previously, k-means clustering was
used for clustering patients [24]. We applied the algorithm for
clustering diseases using data comprising 45 million health care
visits covering all public health service use (both primary and

secondary care) of the population aged ≥18 years in the entire
of Finland from 2015 to 2018. This data set is significantly
larger than that used in any of the previous studies.

We constructed a multimorbidity network comprising diseases
represented as blocks of the ICD-10 codes. Correlated diseases
were in the network. The strength of the links between the
diseases was measured using RR, which estimates how much
higher the observed prevalence is in relation to the expected
prevalence. Clustering was used to find multimorbidity patterns
by dividing the network into subgroups with high RR values
within. These groups can contain previously unknown
multimorbidity patterns.

Similar to the study by Wartelle et al [23], our study was also
based on RR. However, there were 2 main differences. First,
the agglomerative clustering algorithm in the study by Wartelle
et al [23] needs to access the original data after each merge to
recalculate the RR values, which is very time consuming with
large data. We constructed the network only once, without any
need to access the original data after that. This approach scales
better as the network is remarkably smaller than the original
data (205 nodes vs 58 million patients). K-means itself may
require multiple runs [25] to create accurate clustering; however,
we avoided this by using a more robust derivation called the
M-algorithm [26].

The second difference is that the results of [23] were obtained
from emergency visits. Although the resulting clusters could
be valid in this context, the generated clusters were different
from those obtained from all general health care visits.

The main contributions of our paper can be summarized as
follows:

• We use a k-means–based algorithm called M-algorithm,
which has been shown to provide highly accurate clustering
with controlled validation data sets and scaling up to
large-scale data [26].

• We use inverse internal weight (IIW) in the network as a
cost function as it has been shown to provide more balanced
cluster sizes than other alternatives [26].

• We apply the algorithm to large-scale data comprising 58
million health care visits in all of Finland from 2015 to
2018.

• We make the data publicly available on the University of
Eastern Finland website [27], including the multimorbidity
network and the clusters.

These contributions directly support several of the goals
described by Whitty and Watt [28]. These objectives include
strengthening statistical methods to detect clusters, applying
them to large data sets, and treating clusters of diseases more
effectively. In this paper, we describe the content of the
generated clusters and their relationships with nearby clusters.
We report the most significant observations and their effects
on both service use and costs in the health care system. The
study follows the TRIPOD (Transparent Reporting of a
multivariable prediction model for Individual Prognosis or
Diagnosis) guidelines [29] for all relevant items except those
related to prediction.
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Methods

Overview
Graph clustering has been used in physics [30,31], engineering
[32], image processing [33], and medical [34] and social
sciences [35]. The technique has several names, including
network community detection [36-42], graph clustering [43] or
graph partitioning [33,44,45]. These methods can be directly
applied to diseases by considering the co-occurrence matrix of
diseases as a graph.

By grouping data into meaningful clusters and finding
co-occurring diagnoses, it is possible to plan the treatment
processes of multimorbid patients and the resources needed in
service provision. It is known that diseases often cluster because

of a common risk factor; however, only a small number of
possible clusters and the connections between the clusters are
well known [28].

Data
A summary of the patient record database is presented in Table
1. The data were extracted from the National Administrative
Care Register for Health Care, covering all inpatient and
outpatient primary and specialized care between 2015 and 2018.
Finnish health care registers include data on the patient’s age,
gender, and the municipality of residence, as well as information
concerning the service event, such as the type of contact (visit,
phone call, or inpatient admission) and reason for the visit,
treatment, and procedures. Reasons for visits were recorded
using ICD-10 or International Classification of Primary Care,
second edition codes.

Table 1. Summary of the patient database.

ValuesData

Entire database

4,280,985 (100)All patients, n (%)

3,987,382 (93.14)Patients with ICD-10a codes

2015 to 2018Time range

311,721,962 (100)Total visits, n (%)

69,306,854 (22.23)Visits with ICD-10 codes

1.6Number of diagnoses per visit, mean

9685 millionTotal cost of all visits per year (€b)

Included in clustering

58,391,604 (18.73)Visits, n (%)

6596 millionCosts per year (€)

2538 (6478)Cost of patient per year (€), mean (SD)

3,835,531 (89.59)Patients, n (%)

2,536,944 (37,494)Patients per year, mean (SD)

Gender, n (%)

2,062,110 (54)Women

1,773,419 (46)Men

54Age (years), median

943,717 (25)Patients aged >70 years, n (%)

aICD-10: International Classification of Diseases, 10th Revision.
bA currency exchange rate of €1=US $1.09 is applicable.

The entire patient record database contains information on 4.3
million patients aged >18 years. For the cluster analysis, we
only included patients with a medical diagnosis (excluding
external cause diagnoses), which totaled 3.8 million. The full
database included approximately 312 million contacts with
health services. The visits were divided into 272,090,337
contacts with primary care services and 39,631,625 contacts
with special care services. Primary care contacts included
142,874,297 home visits, 71,658,708 visits to a health center,
26,849,249 phone calls, and 30,708,083 other types of contacts.

For the clustering analysis, from all the visits (311,721,962),
we included only those having ICD-10 diagnoses recorded
(n=69,306,854 [22.23%]). We excluded all the symptom codes
(R00-R99); external causes for injuries, diseases, and deaths
(V01-Y92); and health factors and contacts to the service
providers (Z00-ZZB), as they do not represent any disease
themselves, as well as special diagnosis codes (U00-U99). After
filtering these out, the remaining data included 18.73%
(58,391,604/311,721,962) of visits.
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The costs for each diagnosis were calculated using the
computational standard cost [46,47] using patient grouping
methods and standard unit costs calculated from national-level
cost accounting projects. Hospitalizations and hospital outpatient
visits were grouped using the Nordic Diagnosis-Related Groups
grouper. The Nordic Diagnosis-Related Groups cost weights
for hospitalizations and outpatient visits were based on
individual-level cost accounting data from several hospitals and
were used in the national price lists by the Finnish Institute for
Health and Welfare [48]. The unit cost estimates for each type
of primary care contact were obtained from the national standard
price list for primary care encounters. The unit cost estimates
for social care encounters and community care bed-days were
derived from the national price list for the unit costs of health
care services in Finland.

The total annual health service cost in Finland during the period
2015 to 2018 was €9685 million for a total of 311 million visits.

A currency exchange rate of €1=US $1.09 is applicable. The
cost estimation for the data used in the cluster analysis totals to
€6596 million per year. The annual cost of each year had an
increasing trend between 2015 and 2017 but decreased in 2018:
€6579 million (2015), €6626 million (2016), €6723 million
(2017), and €6455 million (2018). Some changes may have
originated from changes in recording practices. In addition,
patients who were hospitalized for longer periods (weeks or
months) were not included in the 2018 data if they were not
discharged by the end of 2018.

Measuring RR
There are several possibilities for measuring the strength of the
relationship between 2 diseases (Table 2). These include φ
correlation (Pearson correlation) [14,34], co-occurrence
correlation [49], Jaccard coefficient [50], Yule Q [21,22], Salton
cosine index [17], and multiple variants of RR [18,19,26]. For
a good review, refer to the study by Srinivasan et al [49].

Table 2. Ways of measuring disease connectivity.

ReferencesFormulaaName

[14,51]Relative risk 1

[18]Relative risk 2

[52]Relative risk 3

[49]Co-occurrence correlation

[14,18,34] (slight variation [52])φ-correlation

aN: number of patients; Px: number of patients with diagnosis x (prevalence); Pxy: number of patients with both diagnosis x and y (prevalence); E[xy]:
expected frequency of xy; p(x)=Px/N: probability of a random patient having a diagnosis x; p(xy)=Pxy/N: probability of a random patient having both
diagnosis x and y.

Several authors [17,23,49] have noted that the existing measures
contain biases. For example, RR overemphasizes the connection
between infrequent diseases. The Pearson correlation
underestimates the relationship between common and infrequent
diseases. Owing to these problems, Srinivasan et al [49] ended
up proposing their own method, called co-occurrence
correlation.

We used RR (variant 1 in Table 2) as this measure has been
widely used in the literature, and its values are clear to
understand. It has been used previously by several authors
[14,18,23] to study the relationship between diagnoses. It can
also be used for other purposes; for example, to study market
baskets [51].

RR is defined based on the diagnoses’ prevalence, as follows:

Here, p(x) (Px/N) and p(y) (Py/N) are the probabilities that a
randomly chosen patient has diseases x and y, respectively, and
p(xy) (Pxy/N) is the probability that a randomly chosen patient
has both diseases. E[xy] is the expected frequency of xy. Figure
1 demonstrates the detailed calculation of the RR values in cases
of asthma and sleep disorders. An RR value >1.0 indicates that
the 2 diseases are related.
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Figure 1. Example of measuring comorbidity by relative risk. Here, asthma and sleep disorders are highly correlated. If they were independent of each
other, the probability of a person having both should be p(A) × p(B) = 0.18%, whereas their observed co-occurrence would be 0.49%. Therefore, the
relative risk to have both is 2.7 times higher than by random chance.

Most RR values are between 0.5 and 5.0; however, they can
also be >100. These outlier values would dominate the clustering
cost function optimization, and for this reason, we normalized
them to the range of (0,1) by using the following variant of the
generalized symmetrical sigmoid function [53]:

Multimorbidity Network
A multimorbidity network is formed by connecting all pairs of
diagnoses that are related (Figure 2). Each node in this network
corresponds to a medical diagnosis, and the strength of the
connections can be measured using RR, correlation, or other
methods. We used the name multimorbidity network following
the choice of Aguado et al [54]. This network has also been
called a disease co-occurrence network [48], phenotypic disease
network [14], comorbidity network [17], and disease
comorbidities network [34].

Figure 2. Multimorbidity network formed by finding related diagnoses for all diagnoses in the data set.

Several previous studies used multimorbidity networks
[14,17,18,34,49,54]. In addition, Klimek et al [55] and Moni
and Liò [52] studied comorbidity associations, although they

did not explore much of the network analysis. Moni and Liò
[52] created R language software called comoR for disease
comorbidity risk analysis. Divo et al [34] studied chronic
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obstructive pulmonary disease for disease screening and
management. Folino et al [18] predicted future diseases based
on past medical history. Srinivasan et al [49] used a
multimorbidity network to extract features for a high-cost patient
prediction. Hidalgo et al [14] also published multimorbidity
network data (based on 13 million patients) [56].

We constructed a multimorbidity network (Figure 3 [57]) by
calculating the RR value for all pairs of diagnoses, including

those with an RR value ≥1.0 and at least 10 patients with both
diagnoses. The accuracy used for diagnoses was the subgroup
of the ICD-10 classification (eg, I20-I25). We also filtered out
the diagnoses that indicated symptoms and external causes
(those starting with Z, W, Y, and R). After filtering, we obtained
205 disease subgroups in the graph (see Multimedia Appendix
1 for the full list).

Figure 3. The full network was overwhelming to analyze, with 205 disease subgroups and 14,254 connections overall. Here, we show only the 8895
connections with a relative risk of >1.5. Connections with relative risk >3.0 are drawn in bold. ICD-10 (International Classification of Diseases, 10th
revision) subgroups are represented by the first diagnosis of the group (Multimedia Appendix 1). The image was created by using the Gephi software
[56]. Only very tight groups such as pregnancy-related diagnoses and tumors can be recognized from the network.

Clustering

Overview
The main motivation for clustering is that the multimorbidity
network is too large (205 nodes and 14,254 connections) for
detailed analysis. For this reason, we clustered the graph to form
more compact entities of related diseases. The goal was to assign
strongly related diseases to the same cluster but keep

uncorrelated diseases in different clusters. To achieve this goal,
an evaluation criterion was necessary to measure the
effectiveness of clustering.

Cost Function
Instead of using heuristic criteria such as average or complete
linkage, it is better to define an exact cost function that the
clustering algorithm optimizes directly. When clustering
numerical data, a typical goal is to measure the compactness of
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the clusters. For example, both the Ward method and k-means
minimize the sum of squared distances between the data objects
to the cluster mean (centroid). However, calculating the mean
of a subgraph is not possible directly but would require an
indirect solution such as vectorizing the nodes by graph
embedding [58]. Moreover, calculating the distance between 2
nodes is not possible if they are not connected. Therefore,
graph-specific cost functions have been developed to overcome
these issues.

Three cost functions were evaluated in the study by Sieranoja
and Fränti [26] with controlled data—conductance, mean
internal weight, and IIW. The last function produced the most
accurate clustering result with balanced cluster sizes and was
therefore chosen in this study as well. When k is the number of
clusters, Wi is the internal weight of cluster i, and M is the total
weight (mass) of the entire graph, the cost is calculated as
follows:

In multimorbidity network analysis, it is desirable to have
clusters of approximately the same size. This could be controlled
by specifying the number of clusters. As the cost function
induces balanced cluster sizes, we aimed to group N nodes into
k clusters of size N/k=n. In our case, we had N=205 diseases
and k=15 clusters with 205/15=13.7 diseases, on average. This
size was sufficiently small to allow us to investigate the clusters
manually.

Clustering Algorithm
We used the recently developed M-algorithm in [26], which
combines a k-means type of iterative optimization with an
additional merge and split strategy to escape from local minima
(Figures 4-5). The IIW was the recommended cost function.

Figure 4. The M-algorithm merges 2 random clusters, splits 1 random cluster, and fine-tunes the result by using the K-algorithm. The network in this
example is the k-nearest neighbors graph of the presented 2D data set.

K-means uses two optimization steps: assignment and centroid
steps. In the assignment step, every point is placed in the cluster
whose mean (centroid) is closest. However, the assignment of
points is not independent of the assignment of other points.
Their joint effect may cause the cost value to fluctuate so that
the total value increases even if the single assignment decreases.
To avoid this problem, we used the sequential variant of
k-means, where every assignment has an immediate effect on
the centroids. This technique prevents fluctuations.

The k-means variant applied to graphs is called the K-algorithm,
which is similar to the original k-means algorithm but without
centroids. The distance calculations were replaced by directly
evaluating the effect of the assignment on the cost function.
Most cost functions are based on maximizing the weights inside
the cluster or minimizing external weights. Therefore, the effect
of a node joining a cluster can be calculated using only its edges
and the size of the cluster.

The K-algorithm iteratively improves the initial solution by
sequentially processing the nodes in random order. For each
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node, the method considers all clusters and checks whether
changing the partition of the node improves the cost function.
If it does, the cluster assignment is changed. After all the nodes
have been processed, the algorithm starts another iteration. The
iterations continue until no changes occur.

The M-algorithm differs from the K-algorithm in the additional
merge and split step. The M-algorithm first merges 2 random

clusters and then splits 1 random cluster. The clustering solution
is fine-tuned using the K-algorithm. If the new solution improves
the cost function value, it is kept as the current solution;
otherwise, the process continues from the previous solution.
The merge and split process is repeated depending on the
amount of computation time required. The pseudocode for the
algorithm is presented in Figure 5.

Figure 5. Pseudocode for the M-algorithm.

As the network itself is quite small (205 diagnoses), the
clustering algorithm takes only a little time. The time complexity
of the M-algorithm is O(RIN[k+|E|/N]), where R is the number
of repeats, N is the number of diagnoses (nodes), k is the number
of clusters, |E|/N is the average number of connections for each
node (diagnosis), and I is a small number that reflects the
number of iterations to converge. We ran the M-algorithm for
20,000 repeats, which took 27 minutes (single thread) on an
Intel Xeon(R) W-2255 CPU at 3.70 GHz. The bottleneck was
the O(Nv) network construction, which needed to process all
Nv=58 million patient visits and took 52 minutes.

The number of clusters, k, must be fixed by the researcher
beforehand. A small number is likely to generate large mixed
clusters of many diseases, thereby losing the capability to make
meaningful observations. A large number of clusters tend to
mainly cluster diseases from the same ICD group, which might
lose the chance to detect relevant multimorbidity patterns. We
tried clustering with several different k values and chose k=15
as it produced clusters of convenient size for analysis in the
form of similarity matrices.

It is also possible for the algorithm to recommend the number
of clusters using a suitable cluster validity index that measures

the ratio of within-cluster and between-clusters similarities, as
in the study by Zhao and Fränti [59]. Wartelle et al [23] derived
a validity index from RR and obtained k=16 clusters in their
data. We used the silhouette coefficient [60] for our data, and
in the range of 5 to 25, it obtained k=17 clusters. They are both
close to our choice of k=15.

Ethics Approval
Permission to use the register data was obtained from the Finnish
Institute for Health and Welfare. All methods were carried out
in accordance with relevant guidelines and regulations or
declaration of Helsinki. The Finnish legislation (Act 552/2019)
do not require informed consent for register-based research
when study is solely based on registers and the study is
considered to be of public health importance.

Results

RR Measurements
Table 3 shows the 10 pairs of disease subgroups with the highest
RR values. They are diagnoses with the highest probability of
appearing jointly relative to the expected probability with the
independent assumption. Some connections are obvious, often
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representing the same or closely related conditions (C40-C41
and C45-C49). Some have known explanations in medical
science (F70-F79 and Q90-Q99) or a clear causal relationship
(D80-D89 and N00-N08). There are also connections with
smaller RR values that are not so obvious at first sight; however,

they are clinically meaningful (I26-I28 and M30-M36). In
addition to using the ICD-10 subgroups, we calculated the RR
values for diagnoses with 3-character precision. Some RR values
<1.0 were also found for diagnoses such as E10 and E11, which
are exclusive to each other.

Table 3. The 10 disease pairs with the highest relative risk (RR) valuea.

Count
(n=3987,
382%), %

RRDiagnosis BDiagnosis A

DescriptionCodeDescriptionCode

484 (0.01)170.1Inflammatory diseases of the central ner-
vous system

G00-G09Viral infections of the central nervous systemA80-A89

132 (0.00)110.7Sequelae of infectious and parasitic diseasesB90-B94TuberculosisA15-A19

107 (0.00)98.3Malignant neoplasms of mesothelial and
soft tissue

C45-C49Malignant neoplasms of bone and articular
cartilage

C40-C41

893 (0.02)91.0Burns and corrosions of multiple and unspec-
ified body regions

T29-T32Burns and corrosions of external body sur-
face, specified by site

T20-T25

945 (0.02)79.7Chromosomal abnormalities, not elsewhere
classified

Q90-Q99Mental retardationF70-F79

811 (0.02)50.7Disorders of optic nerve and visual path-
ways

H46-H48Demyelinating diseases of the central nervous
system

G35-G37

2386 (0.06)47.2Glomerular diseasesN00-N08Certain disorders involving the immune
mechanism

D80-D89

866 (0.02)45.7Other diseases of pleuraJ90-J94Suppurative and necrotic conditions of lower
respiratory tract

J85-J86

328 (0.01)45.3Congenital malformations of the urinary
system

Q60-Q64Other disorders of kidney and ureterN25-N29

238 (0.01)42.0Congenital malformations of the nervous
system

Q00-Q07Mental retardationF70-F79

aFull list is available on the University of Eastern Finland website [27].

Clustering Results
The overall clustering results are visualized as a graph in Figure
6. The graph shows connections within the clusters; however,
all connections between clusters have been eliminated for clarity.
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Figure 6. Clusters obtained from the multimorbidity network. Subjective labels of 6 clusters are also shown. This figure shows all 205 diagnoses and
only those 1144 connections with relative risk ≥1.5. Cases with a relative risk of ≥3 are shown with thicker lines. International Classification of Diseases,
10th Revision, blocks are represented by the first diagnosis of the block (eg, F10-F19 by F10).

We fixed the number of clusters to 15 for the M-algorithm [26].
This roughly matches the number 16 used in a study by Wartelle
et al [23]. The main characteristics of the resulting clusters are
summarized in Tables 4 and 5. The strength of the associations
between the diagnosis subgroups inside the 2 example clusters

and the connections between the 2 clusters can be observed in
Figure 7. The number of patients in each cluster, the number of
visits to health services, total costs, cost per visit, and cost per
patient are reported in Table 6.
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Table 4. Content of the 15 clusters (ICD-10a blocks) and their strengths as the mean RRb values of diagnoses within the cluster.

ICD-10 codesRR, meanCluster

O85-O92; O30-O48; O20-O29; O10-O16; O60-O75; O94-O99; O80-O84; P05-P08; P00-P04; O00-
O08; P35-P39; P90-P96; Q50-Q56; P70-P74; P50-P61

11.3Cluster 1

B50-B64; N00-N08; D70-D77; C81-C96; D55-D59; D80-D89; D65-D69; B99-B99; A15-A19; N17-
N19; B20-B24; K70-K77; K90-K93

8.1Cluster 2

F70-F79; Q90-Q99; F80-F89; Q00-Q07; Q35-Q37; Q80-Q89; Q65-Q79; F90-F98; Q20-Q28; Q10-Q18;
H65-H75; H60-H62; K00-K14

7.8Cluster 3

C40-C41; C45-C49; C76-C80; C30-C39; D37-D48; C69-C72; C00-C14; C51-C58; C64-C68; C73-C75;
C50-C50; C43-C44; D10-D36

7.6Cluster 4

J95-J99; J85-J86; J90-J94; J80-J84; Q30-Q34; I26-I28; J40-J47; B95-B98; M30-M36; J20-J22; E65-
E68; E20-E35; I80-I89

5.7Cluster 5

T36-T50; B15-B19; F60-F69; F10-F19; F99-F99; T51-T65; F20-F29; F30-F39; T33-T35; T26-T28;
F40-F48; T20-T25; F50-F59; P10-P15

5.4Cluster 6

E40-E46; E50-E64; D60-D64; I95-I99; D50-D53; L55-L59; D00-D09; E15-E16; G60-G64; I70-I79;
L10-L14; C60-C63; N40-N51

4.8Cluster 7

G80-G83; G10-G14; J60-J70; G90-G99; F00-F09; G70-G73; G30-G32; N10-N16; B90-B94; S70-S79;
M80-M85; G20-G26VG35-G37

4.6Cluster 8

Q60-Q64; N25-N29; K65-K67; Q38-Q45; C15-C26; K80-K87; K55-K64; K40-K46; N20-N23; K20-
K31; K50-K52; A00-A09; K35-K38

4.5Cluster 9

G00-G09; A80-A89; A90-A99; A65-A69; M00-M03; A30-A49; B25-B34; A20-A28; M05-M14; B00-
B09; L00-L08; L40-L45; B35-B49; G40-G47; A75-A79

4.3Cluster 10

H53-H54; H46-H48; H55-H59; H49-H52; H43-H45; H30-H36; H15-H22; H40-H42; H25-H28; H00-
H06; H10-H13; H90-H95; H80-H83

3.8Cluster 11

T00-T07; T90-T98; T79-T79; S10-S19; S30-S39; S20-S29; T08-T14; T29-T32; S50-S59; S40-S49;
S80-S89; S60-S69; S00-S09; T15-T19

3.0Cluster 12

M95-M99; M40-M43; M45-M49; M86-M90; T80-T88; G50-G59; M15-M19; M20-M25; M50-M54;
M91-M94; M65-M68; M70-M79; N99-N99; M60-M63

2.9Cluster 13

A50-A64; A70-A74; B85-B89; N70-N77; B65-B83; T66-T78; L50-L54; L20-L30; N80-N98; L60-L75;
J30-J39; N60-N64; J00-J06; S90-S99

2.9Cluster 14

I30-I52; I20-I25; I60-I69; I10-I15; L80-L99; I05-I09; J09-J18; E70-E90; N30-N39; E10-E14; E00-E07;
I00-I02; P20-P29; C97-C97; P80-P83

2.1Cluster 15

aICD-10: International Classification of Diseases, 10th Revision.
bRR: relative risk.
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Table 5. Summarization of the cluster content with their age and gender distributions.

DescriptionAge ≥70
years, %

Age (years),
median

Dominant genderCluster

Values, n
(%)

Gender

Pregnancy, childbirth and the puerperium (O codes), certain
conditions and disorders originating in perinatal period

033219,566
(99.68)

WomenCluster 1: pregnancy

(P05-P08, P00-P04, P35-P39, P90-P96, P70-P74, and P50-
P61), and congenital malformations of genital organs (Q50-
56)

Infectious diseases strongly affecting the immune system
(B50-B64, B20-24, B99-B99, and A15-19); malignant

5069110,157
(50.79)

MenCluster 2: immune system
and blood-forming organs

neoplasms of lymphoid, hematopoietic, and related tissue
(C81-96); diseases of the kidneys (N00-N08 and N17-N19),
liver (K70-77), blood, and blood-forming organs and disor-
ders of the immune mechanism (D70-D77, D55-D59, D80-
D89, and D65-D69 [except nutritional and aplastic and
other anemias]); and other diseases of the digestive system
(K90-K93)

Mental retardation (F70-79) and disorders of psychological
development or unspecified disorder (F80-F89, F99-F99)

17491,062,480
(55.13)

WomenCluster 3: mixed cluster; in-
cludes mental disorders,
malformations, and ear and
oral cavity diseases

and congenital malformations (Q codes except for codes
for congenital malformations of the respiratory system,
digestive system, genital organs, and urinary system); dis-
eases of the ear (H65-H75 and H60-H62); and diseases of
the oral cavity, salivary glands, and jaws (K00-K14)

Malignant neoplasms (all C codes, except codes for malig-
nant neoplasms in digestive organs; male genital organs;

4266317,372
(62.64)

WomenCluster 4: tumors

lymphoid, hematopoietic, and related tissue; multiple inde-
pendent sites) and benign neoplasms (D10-D36)

Lower respiratory tract diseases and related inflammatory
conditions (J95-J99, J85-J86, J90-J94, J80-J84, J40-J47,

3864437,591
(59.13)

WomenCluster 5: lower respiratory
system

and J20-J22); congenital malformations of the respiratory
system (Q30-Q36), pulmonary heart disease and diseases
of pulmonary circulation (I26-I28); bacterial, viral, and
other infectious agents (B95-B98); systemic connective
tissue disorders (M30-M36), obesity (E65-E68) and disor-
ders of other endocrine glands (E20-E35); and diseases of
veins, lymphatic vessels, and lymph nodes not classified
elsewhere (I80-I89)

Mental and behavioral disorders and substance abuse
problems (F60-F69, F10-F19, F20-F29, F30-F39, F40-F48,

1546369,203
(58.30)

WomenCluster 6: mental and behav-
ioral disorders

F50-F59, and F99); poisonings (T36-T50 and T51-T65)
and certain viral infections (B15-B19); and related burns
(T20-T25 and T26-T28), frostbite injuries (T33-T35), and
birth trauma (P10-P15)

Malnutrition (E40-E46) and nutritional deficiencies (E50-
64); anemias (D50-D53 and D60-D64); other and unspeci-

5872314,390
(66.98)

MenCluster 7: nutritional

fied disorders of the circulatory system (I95-I99); certain
skin diseases (L55-L59 and L10-L14); in situ neoplasms
(D00-D09); other disorders of glucose regulation and pan-
creatic internal secretion (E15-E16); polyneuropathies
(G60-G64); diseases of arteries, arterioles, and capillaries
(I70-I79); and diseases and malignant neoplasms of male
genital organs (C60-C63 and N40-N51)

Cerebral palsy, memory disorders, other diseases of the
central nervous system or neurodegenerative diseases (in-

6476242,917
(59.83)

WomenCluster 8: diseases related to
aging

cluded G-codes), lung diseases because of external agents
(J60-J70), organic mental disorders (F00-F09), renal tubu-
lointerstitial diseases (N10-N16), changes in bone structure
(M80-85) and injuries (hip and thigh S70-S79), and other
infections (B90-B94)
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DescriptionAge ≥70
years, %

Age (years),
median

Dominant genderCluster

Values, n
(%)

Gender

Congenital malformations of the urinary system and diges-
tive system (Q60-Q64 and Q38-Q45), some disorders of
the kidney and ureter (N25-N29) and genitourinary system
(N20-N23), diseases of the digestive system (all K codes,
except diseases of the oral cavity, salivary glands and jaw,
and diseases of the liver), malignant neoplasms of digestive
organs (C15-C26), and intestinal infectious diseases (A00-
A09)

3763387,222
(54.07)

WomenCluster 9: mixed cluster; in-
cludes organ malformations
and digestive system disor-
ders

Inflammatory diseases (G00-G09)/viral infections (A80-
A89) of the central nervous system, hemorrhagic fevers
(A90-A99), certain other infectious and parasitic diseases
(A65-A69, A30-A49, A20-A28, A75-A79, B00-B09, and
B35-B49), infectious arthropathies/inflammatory pol-
yarthropathies (M00-M03 and M05-M14), infections of
the skin and subcutaneous tissue or papulosquamous disor-
ders (L00-L08 and L40-L45), and episodic and paroxysmal
disorders (G40-G47)

3361483,595
(53.55)

WomenCluster 10: infections and
inflammation

Diseases of the eye and adnexa (all H codes) and diseases
of the inner ear (H80-H83) and other disorders of the ear
(H90-H90)

4567491,892
(58.89)

WomenCluster 11: eye and ear

Injuries in different parts of the body (all S codes, except
injuries to the hip and thigh) and in multiple body regions
(T00-T07) or unspecified parts (T08-T14 and T29-T32),
effects of foreign bodies entering through a natural orifice
(T15-T19), and some of their consequences (T79-T79 and
T90-T98)

2655516,849
(51.27)

MenCluster 12: injuries

Diseases of the musculoskeletal system and connective
tissue (all M codes, except infectious and inflammatory
arthropathies or poly arthropathies, systemic connective
tissue disorders, and disorders of bone density and struc-
ture); complications of surgical and medical care (T80-
T88); nerve, nerve root, and plexus disorders (G50-G59);
and other disorders of the genitourinary system (N99-N99)

3160855,218
(58.69)

WomenCluster 13: musculoskeletal
system

Sexually transmitted diseases (A50-A64 and A70-A74),
parasitic diseases (B85-B89 and B65-B83), unspecified
effects of external causes (T66-T78), inflammatory diseases
of female pelvic organs (N70-N77), disorders of the breast
(N60-N64), noninflammatory disorders of the female gen-
ital tract (N80-N98), some diseases of the skin (L50-L54,
L20-L30, and L60-L75), acute and some other upper respi-
ratory infections (J30-J39 and J00-J06), and injuries to the
ankle and foot (S90-S99)

1948844,339
(65.79)

WomenCluster 14: mixed cluster;
includes sexually transmit-
ted, parasitic, and urinary
tract diseases

Diseases of the circulatory system (all I codes, except pul-
monary heart disease and diseases of pulmonary circulation
[I26-I28] and diseases of arteries and veins [I70-I79, I 80-
I89, and I95-I99]), other disorders of the skin and subcuta-
neous tissue (L80-L99), influenza and pneumonia (J09-
J18), metabolic disorders (E70-E90), disorders of the thy-
roid gland (E00-E07), diabetes mellitus (E10-E14), other
diseases of urinary system (N30-N39), respiratory and
cardiovascular disorders specific to the perinatal period
(P20-P29), malignant neoplasms of independent (primary)
multiple sites (C97-C97), and conditions involving the in-
tegument and temperature regulation of fetus and newborn
(P80-P83)

4768867,133
(56.22)

WomenCluster 15: cardiovascular
and metabolic
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Figure 7. Two example clusters and their connections in between. The numbers are relative risk values. High values and the red color signify stronger
relationships. The blocks are represented by the first diagnosis code (eg, T36 represents block T36-T50).
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Table 6. Estimated (annual) costs of each clustera.

Cost per pa-

tientb (€)

Cost per

visitb (€)
Total costb (€c;
millions)

Visitsb (n=14,597,901), n
(%)

Patientsb (n=2,536,944),
n (%)

DescriptionCluster

2648810207255,902 (1.75)78,159 (3.08)Pregnancy1

5435798521653,500 (4.48)95,865 (3.78)Immune system and blood-
forming organs

2

3871713241,899,209 (13.01)838,208 (33.04)Mental disorders, malforma-
tions, ear and mouth

3

33486737041,046,147 (7.17)210,272 (8.29)Tumors4

2070651620953,199 (6.53)299,482 (11.80)Lower respiratory system5

32384349082,094,496 (14.35)280,450 (11.05)Mental and behavioral disor-
ders

6

2703741525708,930 (4.86)194,250 (7.66)Nutritional7

42396617301,105,325 (7.57)172,194 (6.79)Diseases related to aging8

2744829720867,971 (5.95)262,362 (10.34)Organ malformations and diges-
tive system

9

17435646271,110,728 (7.61)359,738 (14.18)Infections and inflammation10

929359298827,680 (5.67)320,947 (12.65)Eye and ear11

1286579417720,282 (4.93)324,191 (12.78)Injuries12

13564908361,704,486 (11.68)616,550 (24.30)Musculoskeletal system13

611303290955,465 (6.55)474,604 (18.71)Sexually transmitted, parasitic,
urinary tract

14

292067922583,326,018 (22.78)773,406 (30.49)Cardiovascular and metabolic15

aA patient and a visit can belong to multiple clusters. Visits and costs include only visits and related costs for diagnoses in a cluster. The cost per visit
is calculated as an average for the whole 4-year period; all other values are annual.
bNumber of patients: mean 353,378; number of visits: mean 1,215,289; cost: mean €666 million; cost per visit: mean €583; cost per patient: mean
€2377.
cA currency exchange rate of €1=US $1.09 is applicable.

Most clusters were dominated by records of female patients.
Cluster 1 (219,566/220,280, 100%) included only women, as
it comprised pregnancy-related diagnoses. Other clusters with
>60% of records of women were cluster 14 (844,339/1,283,478,
65.7%) of mixed diseases (sexual and urinary) and cluster 4
(317,372/506,660, 62.6%) of malignant tumors. The only cluster
with a significantly higher proportion of diagnoses from men
was cluster 7 (314,390/469,378, 66.9%), which comprised
diagnoses mainly related to nutrition. In most other clusters,
the proportions of men and women were approximately equal.

The main reasons for female dominance were that the full
database included 1,999,325 men and 2,253,669 women and
that women had an average of 6.6 diagnoses, whereas men had
only 5.4 diagnoses. A possible reason is that there is a lower
threshold for women to seek help from health services than for
men. For example, the study by Corrigan [61] suggested that
social factors discourage men from seeking mental health care,
which can lead to the absence of mental health–related
multimorbidities among men.

As all diagnoses were forced to belong to a cluster, there were
several mixed clusters. For example, the largest cluster (cluster
3) comprised 33.04% (838,208/2,536,944) of patients, including
those with dental health problems (K00-K14). If this subgroup
of diagnoses were removed, the number of patients would

decrease to only 87,634 and would mainly comprise diagnoses
related to mental retardation, congenital malformations, and
chromosomal abnormalities. However, it is quite logical that
dental health–related diagnoses are clustered with mental
retardation; congenital malformations; and abnormalities, such
as patients with malformations in the oral cavity, jaws, and
teeth, which is a patient group treated in the public health service
system.

The second-largest cluster (cluster 15), comprising 30.49%
(773,406/2,536,944) of patients, included cardiovascular,
endocrine, and metabolic diseases. It also had the highest
number of visits to health care (3.3 million annual visits). The
third-largest cluster (cluster 13) had 24.30% (616,550/2,536,944)
of patients but was more focused on diagnoses related to
diseases of the musculoskeletal system and connective tissues.
Other more clearly focused clusters included tumors (cluster
4), mental disorders (cluster 6), injuries (cluster 12), diseases
related to nutrition (cluster 7), and pregnancy (cluster 1). These
clusters can be easily explained based on morbidity and
mortality data in Finland. Cardiovascular diseases are still the
major cause of death [62], and mental disorders are the main
cause of disability pensions, followed by musculoskeletal
disorders [63].
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These clusters also had clear age profiles. The average age of
most clusters was rather high, being ≥60 years in the case of 10
clusters. The exceptions were cluster 6 (mental; mean 46 years),
cluster 12 (injuries; mean 55 years), mixed clusters 3 (mental,
ear, and oral cavity; mean 49 years) and 14 (sexual and urinary;
mean 48 years), and cluster 1 (pregnancy; mean 33 years).

Although clustering captures many connections between
diseases, it does not capture all information. In fact, many

interesting connections can be found by analyzing how strongly
the clusters are connected to each other (Figure 8). Cluster 7
(nutritional problems) was the most central cluster, with a strong
connection to 10 other clusters. Cluster 1 (pregnancy) was also
connected to cluster 6 (mental and behavioral disorders). For
example, pregnancy with abortive outcomes (O00-O08) had 5
connections with RR >2 to cluster 6 (mental and behavioral
disorders), including neurotic, stress related, mood disorders,
and drug poisoning (T36-T50).

Figure 8. Connections between clusters. Each cluster is represented in the rows with the number and description and in the columns with the number.
Values in the table represent the number of links with a relative risk of >2.0 between the clusters. Higher values signify a stronger connection and are
emphasized by the red color. Three clusters with the highest values for each row are highlighted with bold font.

Cluster 12 (injuries) had strong connections with clusters 6, 7,
and 8. For example, the connection to the nutritional problems
cluster had 56 links, with an RR >2. Of these links, 9 came from
connections to other and unspecified disorders of the circulatory
system (I95-I99).

Figure 7 shows the connections between clusters 6 and 12 in
more detail. Cluster 6 comprised mental health (eg, F30-F39
and F60-F69) and substance abuse–related (T36-T50 and
F10-F19) diagnoses. Cluster 12 comprised fractures and other
injuries. These clusters had a strong connection. A possible
explanation is that mental health and substance abuse problems
often lead to painful, fracture-causing accidents.

Cost Effect
The costs of all visits, ward stays, and other contacts of patients
belonging to the cluster were calculated for those contacts in
services with a diagnosis belonging to the cluster. The estimated
costs for each cluster are presented in Table 5. The costs are in
euro currency (€).

In general, the cost depends on the number of patients and visits.
The largest cluster (cardiovascular and metabolic cluster 15)
had 3.3 million visits and €2.3 billion in total costs. However,
the cost per patient (€2920) was not the highest, and the cost
per visit (€679) was only slightly above average. The diseases
in the cluster, such as cardiovascular and metabolic disorders,
are largely treated in primary health care, and thus, the average
visit cost remains relatively low.

For each patient, the highest costs were in cluster 2 (€5435),
including infectious diseases strongly affecting the immune
system, diseases of the blood and blood-forming organs, and
other disorders involving the immune mechanism. These
diseases are likely to need frequent contact with specialized
care. Per-patient costs were also high in cluster 8 (diseases
related to aging), including diagnoses of neurodegenerative
diseases and memory disorders requiring frequent health care
contacts and intensive care. The cheapest clusters per patient
were cluster 3 (mental disorders, malformations, and ear and
mouth; €387) and cluster 14 (sexually transmitted, parasitic,
and urinary tract diseases; €611). However, if dental diagnoses
were removed, the cost for cluster 3 would be €1144.

The highest cost per visit (€829) was in cluster 9, including
organ malformations and diseases of the digestive system. The
second-highest cost per visit was observed in cluster 1
(pregnancy), where the cost per visit was €810. This is likely
because of delivery-related hospital stays, operations, and other
specialized care. Regular maternity care visits are not usually
recorded using the ICD-10 codes. Clusters with the lowest cost
per visit were the same as those with the lowest cost per patient.

Table 7 shows how the costs of some clusters have developed
during the years relative to the total cost of all clusters in the
same year. Only clusters with a visible trend (increasing or
decreasing) are shown. Clusters that included tumors, lower
respiratory system, and eye and ear steadily increased their
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proportion of all costs from 2015 to 2018, as well as the cluster
that included inflammatory diseases and infections, among a
few others. The diseases included in these clusters increase with

age, and thus, the increase in costs is most likely because of the
aging of the population.

Table 7. Trends of the annual costs (relative to all costs) of selected clusters from 2015 to 2018.

2018201720162015Trend and cluster

Increasing trend, %

7.47.27.17Tumors

6.66.46.36.1Mixed cluster 10

6.46.46.26.1Lower respiratory system

3.23.132.9Eye and ear

Decreasing trend, %

8.8999.5Mental and behavioral disorders

6.36.76.76.9Mixed cluster 8

44.24.24.4Injuries

222.22.4Pregnancy

The relative costs of mental and behavioral disorders decreased
the most (from 9.5% to 8.8%), whereas injuries (4.4% to 4.0%)
and pregnancy-related diseases (2.4% to 2.0%) also showed a
clear decrease. There are several explanations for the observed
decline in the costs of care related to mental and behavioral
disorders, including the current tendency to prefer outpatient
services and difficulties in appropriate service provision. The
absolute cost values for pregnancy-related issues were €219
million, €213 million, €202 million, and 194 million from 2015
to 2018. Therefore, the decrease is real, which could be
explained by the decrease in the birth rate from 1.65 to 1.41
during the same period (1.65, 1.57, 1.49, and 1.41) [64].

Discussion

Principal Findings
We analyzed the data by clustering the diagnoses into 15
clusters. All clusters were consistent with expert knowledge of
the domain. Some of these clusters were expected. For example,
mental and behavioral disorders were so closely associated with
substance abuse problems that they formed one cluster. Some
clusters also showed interesting and unexpected connections,
such as a cluster that included lower respiratory tract diseases
and systemic connective tissue disorders. Although some
connections are easily justified by the close relation of the
diagnoses, they are not necessarily considered when planning
the current service processes and resources. For example,
understanding the strong connections between many disorders
related to aging could improve the treatment processes of older
patients who are multimorbid.

Analysis of the connections between clusters also provided
interesting details. For example, the mental health and substance
abuse cluster was very closely connected to the cluster
comprising fractures and other injuries. A possible explanation
is that mental health and substance abuse problems often lead
to painful, fracture-causing accidents. The nutritional problems
cluster was the most central in the data, with a strong connection
to 10 other clusters. This is an interesting finding that addresses

the connection between nutritional status and various health
disorders.

For each patient, the highest costs were in cluster 2 (€5435),
which included infectious diseases that strongly affect the
immune system, diseases of the blood and blood-forming organs,
and other disorders involving the immune mechanism. These
diseases are likely to need frequent contact with specialized
care.

Clusters associated with an aging population increased their
proportion of all costs from 2015 to 2018. These clusters
included diseases related to tumors, lower respiratory system,
and eye and ear. The relative costs of mental and behavioral
disorders decreased the most (from 9.5% to 8.8%), which might
be partly explained by the current tendency to prefer outpatient
services.

Limitations
The underlying data reflect how patients use health services and
are diagnosed during health care contacts, which may not always
accurately reflect the true relationship between diseases. For
example, a person who visits health services only for caries
treatment may not be as easily diagnosed with alcohol-related
disorders (F10) or problems related to metabolic disorders (E66)
as a person who visits because of mental health issues or
maternity issues.

The clustering methodology itself has a few limitations.
Although the chosen clustering algorithm and cost function
were shown to have good clustering accuracy with validation
data, it forces every diagnosis to belong to a cluster, even if it
does not have any connections to other diagnoses. A possible
improvement could be the application of outlier detection as a
preprocessing step to remove such cases.

Another limitation is that every diagnosis can belong to only
one cluster, although it can be connected to diseases in several
clusters. For example, dental health diagnoses were clustered
with mental retardation and malformations but are clearly very
relevant comorbidities for other chronic conditions such as
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diabetes. In addition, many infectious disease subgroups are
likely to have significant connections with many chronic
conditions that decrease the immune response, such as tumors.

The data might also be biased by domestic characteristics within
the Finnish population and traditions in recording diagnoses.
For example, some conditions such as substance abuse disorders
are still highly stigmatized and thus underdiagnosed. The
research goal was to find relevant multimorbidity diseases that
have a high cost effect on the Finnish health care system.
Although some bias might exist, we expect most multimorbidity
patterns to appear in other high-income countries, and therefore,
the main results might be globally generalizable. This finding
was partly confirmed by similar studies in the United States
[65] and France [23].

Comparison with other clustering results in earlier studies was
challenging mainly because there are many variations in the
definition and measures of multimorbidity, as well as the data
sources, such as registers, health records, and self-reports, which
have been used to obtain information on comorbidities. These
differences make comparison difficult but still possible to some
degree, as shown in the studies by Prados-Torres et al [13] and
Wartelle et al [23].

Comparison With Prior Work

Comparison of Clusters
Wartelle et al [23] obtained 16 clusters (vs 15 in our case). Some
of these were similar to ours. For example, cluster 5 contained
diagnoses related to mental disorders, substance abuse, and
fractures. In our results, substance abuse and mental problems
also formed a cluster, which was closely connected to another
cluster with different types of fractures. Their data also included
one women-specific cluster with pregnancy-related diagnoses.
However, most of the clusters were very different from ours.

Their clusters were more unbalanced in size; 5 of the clusters
contained only 1 diagnosis, and the largest cluster had 13
diagnoses. In our case, the smallest cluster was size 13, and the
largest size was 15. This is partly because of our choice of a
clustering cost function that favors more balanced clusters and
also because the choice of ED data in [23] was expected to
generate larger clusters for trauma diagnoses.

Most of the differences originated from the data. Our data are
from everyday health care visits, whereas the data studied by
Wartelle et al [23] came from ED visits. They had a smaller
number of diagnoses (162 vs 205). These included symptom
codes (R00-R99) and factors influencing health status
(Z00-Z99), which we removed as we found them to confuse the
analysis. These data-related factors produced several clear
differences in the results, which we report in the following
sections.

The first difference from the study by Wartelle et al [23] is that
our data had a female majority (2,062,110/3,835,531, 53.7%).
We had only 3 clusters with more male than female patients
(nutritional 314,390/469,378, 66.9%; injuries
516,849/1,008,118, 51.2%; immune system and blood-forming
organs 110,157/216,898, 50.7%). The ED data had 10 clusters
with a male majority (52%-64%). A likely explanation is that

these clusters were either directly or indirectly related to trauma
commonly treated in EDs, whereas our data represent the
services used in primary health care, which has only one cluster
(cluster 12) related to injuries.

Patients in the ED data were also much younger than those in
our data (mean age 40 years vs 51 years). There were 3 clusters
in which the average age of patients exceeded 50 years. One of
the clusters (approximately 50%) mostly comprised children
aged <5 years. Our data were restricted to adult patients. ED
data also lacked a clear pregnancy cluster, and pregnancy-related
diagnoses were merged with digestive- and menstruation-related
diagnoses.

Busija et al [66] conducted a meta-analysis investigating 51
different articles on multimorbidity profiles. They constructed
a similarity matrix of health conditions by counting the number
of times each pair of diseases appeared within the same group.
The similarity matrix was then projected onto a 2D surface
using multidimensional scaling (SPSS/PROXSCAL). This was
performed separately for 4 different types of studies grouped
by methodology: exploratory factor analysis, cluster analysis
of diseases, latent class analysis, and cluster analysis of people.

Overall, their data had fewer diagnoses and clusters. The largest
case (factor analysis) included only 70 diagnoses, and they
manually distinguished 5 clusters (with a group of mental health
problems as one axis) from the 2D projection. They reported
clustering of vision, hearing impairment, and fractures in 2 of
the 4 cases. In our data, vision and hearing problems were in
one cluster, and fractures were in another. These were also
weakly connected. A mental health group was visible in all 4
cases and was closely associated with addictions. This is
consistent with our results, where mental health and substance
abuse problems formed 1 cluster.

Comparison of Costs
We compared the cost of our data with that reported by the
Milken Institute in the United States in 2016 [65]. The costliest
(both direct and indirect costs) chronic disease in the United
States is diabetes type 2, with direct costs of US $185 billion.
When indirect costs are included, the four most costly diseases
were hypertension (US $1042 billion), diabetes type 2 (US $526
billion), chronic back pain (US $440 billion), and osteoarthritis
(US $430 billion).

The costliest diseases (hypertension and type 2 diabetes) are in
accordance with our results, where the costliest is cluster 15
(cardiovascular and metabolic), which includes hypertension
and diabetes-related diagnoses (I10-I15 and E10-E14), as well
as other related cardiovascular diseases common in the Finnish
population. The costs of the cluster become high as the size of
the patient population increases, as well as the need for frequent
contact with health care, although costs per visit are close to
average.

Conclusions
To the best of our knowledge, this is the first clustering study
with such a rich data set, including all health care visits of
Finnish adults aged ≥18 years, covering both primary- and
secondary-level care. Good coverage is important, as the
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tendency in the development of health service systems is to seek
better integration of services, including the integration of
primary health care, specialized care, and social services.

Identifying multimorbidity clusters, related characteristics, and
especially the burden they cause for service use and costs is
helpful in estimating the resources needed in the service system,
including the specialties and other knowledge profiles of
professionals. Such information could also be applied to estimate
future needs when, for example, the projections of population
aging and other demographics are known.

To the best of our knowledge, this is the first study to use
k-means–based clustering of diseases. Although the standard
k-means algorithm can be unstable, we used a recent

modification called the M-algorithm, which was shown to be
accurate on controlled validation data sets. This directly
optimizes a cost function for a network that has RR values as
weights. Existing studies rely mainly on agglomerative
clustering, using either a heuristic cost function such as average
or complete linkage or a slow calculation of the RR. The
methodology used was accurate and scalable for large-scale
data.

In a future study, we will consider clustering patients and
comparing whether the same diagnoses can be grouped together.
Another idea is to study geographical differences within Finland.
The data are large, and as they are publicly available, they have
a high potential for others to find more interesting results by
data mining.
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Abstract

Background: Machine learning (ML) achieves better predictions of postoperative mortality than previous prediction tools.
Free-text descriptions of the preoperative diagnosis and the planned procedure are available preoperatively. Because reading
these descriptions helps anesthesiologists evaluate the risk of the surgery, we hypothesized that deep learning (DL) models with
unstructured text could improve postoperative mortality prediction. However, it is challenging to extract meaningful concept
embeddings from this unstructured clinical text.

Objective: This study aims to develop a fusion DL model containing structured and unstructured features to predict the in-hospital
30-day postoperative mortality before surgery. ML models for predicting postoperative mortality using preoperative data with
or without free clinical text were assessed.

Methods: We retrospectively collected preoperative anesthesia assessments, surgical information, and discharge summaries of
patients undergoing general and neuraxial anesthesia from electronic health records (EHRs) from 2016 to 2020. We first compared
the deep neural network (DNN) with other models using the same input features to demonstrate effectiveness. Then, we combined
the DNN model with bidirectional encoder representations from transformers (BERT) to extract information from clinical texts.
The effects of adding text information on the model performance were compared using the area under the receiver operating
characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). Statistical significance was evaluated
using P<.05.

Results: The final cohort contained 121,313 patients who underwent surgeries. A total of 1562 (1.29%) patients died within 30
days of surgery. Our BERT-DNN model achieved the highest AUROC (0.964, 95% CI 0.961-0.967) and AUPRC (0.336, 95%
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CI 0.276-0.402). The AUROC of the BERT-DNN was significantly higher compared to logistic regression (AUROC=0.952,
95% CI 0.949-0.955) and the American Society of Anesthesiologist Physical Status (ASAPS AUROC=0.892, 95% CI 0.887-0.896)
but not significantly higher compared to the DNN (AUROC=0.959, 95% CI 0.956-0.962) and the random forest (AUROC=0.961,
95% CI 0.958-0.964). The AUPRC of the BERT-DNN was significantly higher compared to the DNN (AUPRC=0.319, 95% CI
0.260-0.384), the random forest (AUPRC=0.296, 95% CI 0.239-0.360), logistic regression (AUPRC=0.276, 95% CI 0.220-0.339),
and the ASAPS (AUPRC=0.149, 95% CI 0.107-0.203).

Conclusions: Our BERT-DNN model has an AUPRC significantly higher compared to previously proposed models using no
text and an AUROC significantly higher compared to logistic regression and the ASAPS. This technique helps identify patients
with higher risk from the surgical description text in EHRs.

(JMIR Med Inform 2022;10(5):e38241)   doi:10.2196/38241

KEYWORDS

bidirectional encoder representations from transformers; deep neural network; natural language processing; postoperative mortality
prediction; unstructured text; machine learning; preoperative medicine; anesthesia; prediction model; anesthesiologist; deep
learning model; electronic health record; neural network

Introduction

The prevalence of postoperative mortality is 0.5%-2.8 % in
patients undergoing elective surgery [1]. The risks are
attributable to the patient’s condition and can be modulated
with adequate evaluation and planning during surgery and
anesthesia. Several tools have been developed to predict
postoperative mortality, including the American College of
Surgeons’ (ACS) National Surgical Quality Improvement
Program (NSQIP) risk calculator, the American Society of
Anesthesiologist Physical Status (ASAPS), the risk
quantification index, the risk stratification index, and the
preoperative score [2-5]. Although these classification systems
consider the patient’s general condition and surgery category,
preoperative vital signs and laboratory data—which are critical
in predicting postoperative mortality—are not typically included
[6]. Moreover, a patient’s surgical information is commonly
written as text in the medical record. Although reading this
information helps anesthesiologists evaluate the risk of the
surgery, it is difficult to include it in a classification tool. These
deficiencies make it challenging to identify the small groups of
patients with higher risks. Better tools for predicting
postoperative mortality remain under investigation.

Machine learning (ML) is widely applied to medical problems,
including for predicting postoperative mortality [6-11]. ML
models can automatically predict postoperative mortality using
electronic health records (EHRs) before surgery, and they
achieve a superior area under the receiver operating
characteristic curve (AUROC) than previous methods [6]. To
stratify surgery types, previous studies have used the Current
Procedural Terminology (CPT) codes or International
Classification of Diseases (ICD) codes for surgical information
[2,6,7,9,12]. These methods are not widely applicable, because
the CPT is not implemented worldwide and ICD codes are
seldom recorded before surgery. In addition, because this
surgical information is written in the medical record by surgeons
before surgery, using this text in models may improve the
prediction of postoperative mortality.

Compared to structured EHRs, unstructured clinical text requires
meaningful concept embeddings to be extracted before model
training, making it more challenging [13]. However, including

this unstructured text improves the advanced prediction of
unfavorable clinical outcomes [14-16]. Bidirectional encoder
representations from transformers (BERT) is a contextualized
embedding method that preserves the distance of meanings with
multihead attention [17]. After pretrained on the relevant corpora
and proper architecture modification, BERT extracts meaningful
embeddings from clinical text [18,19].

This study aims to develop a model to predict 30-day
postoperative mortality before surgery that performs better than
state-of-the-art models. Our contribution is including free (ie,
unstructured) text in postoperative mortality prediction by
proposing a deep neural network (DNN) model with BERT.
We investigate the effectiveness of unstructured clinical texts
(eg, preoperative diagnosis and proposed procedures) in
predicting postoperative mortality.

Methods

Data Extraction
This study aims to predict in-hospital 30-day postoperative
mortality using preoperative anesthesia assessments. Data were
collected from the electronic health system of the Far Eastern
Memorial Hospital, a large academic medical center in Taiwan.
Preoperative anesthesia assessment records and discharge
summaries were included. Overall, 5 years’ worth of
retrospective data were collected from January 1, 2016, to
December 30, 2020. The last version of the anesthesia
assessment was included for each surgery. Patients over 18
years of age who underwent at least 1 surgical procedure under
general or neuraxial anesthesia were included. Cases with an
ASAPS of 6 were excluded. Records lacking entry time, exit
time, preoperative diagnosis, or proposed procedure text were
excluded. The in-hospital 30-day postoperative mortality was
defined by a discharged route of “expired” and “critical
against-advice discharge” (when the patient wants to die at
home) without future admission. Discharges within 30 days
after surgery were identified and labeled as “true”; those
occurring outside this window were marked as “false.” The end
date of the testing set was November 30, 2020, 30 days before
the end of the collected data, to ensure complete 30-day
mortality detection (Figure 1).

JMIR Med Inform 2022 | vol. 10 | iss. 5 |e38241 | p.174https://medinform.jmir.org/2022/5/e38241
(page number not for citation purposes)

Chen et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.2196/38241
http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Flow diagram. ASAPS: American Society of Anesthesiologist Physical Status.

Ethical Approval
The Institutional Review Board of the Far Eastern Memorial
Hospital approved this retrospective study and waived the
requirement of informed consent (#109129-F and #110028-F).

Data Description
We collected 123,718 surgery results for patients aged over 18
years. After applying the exclusion criteria, a cohort of 123,515
(99.8%) patients who underwent surgeries remained. A final
cohort of 121,313 (98.2%) patients was used after removing
those who underwent surgeries after November 30, 2020 (Figure

1). The training, validation, and testing cohorts finally contained
79,324 (68.7%), 19,832 (17.2%), and 16,267 (14.1%) of 115,423
patients. Patient characteristics of the training, validation, and
testing cohorts are listed in Table 1. In the overall cohort, most
patients had an ASAPS of 2 or 3. Overall, 107,176 (88.5%) of
patients were under general anesthesia. The most prevalent
comorbidities were hypertension (n=43,391, 35.8%), followed
by diabetes (n=24,314, 20.0%). A total of 1562 (1.3%), 997
(1.3%), 249 (1.3%), and 215 (1.3%) patients died within 30
days of surgery in the overall, training, validation, and testing
cohorts, respectively. Multimedia Appendix 1 present a
summary of the laboratory data and preoperative vital signs.
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Table 1. Characteristics of the cohort. Categorical variables are represented as frequency (%). Continuous variables are represented as the median
(25th, 75th percentile). The testing cohort was split by time between the training and validation cohorts, and those cases arising from the training and
validation cohorts were removed to prevent data leakage (n=5890, 4.9%).

Overall cohort (N=121,313)Testing cohort
(N=16,267)

Validation cohort
(N=19,832)

Training cohort
(N=79,324)

Feature

55 (41, 66)53 (39, 65)54 (40, 66)54 (40, 66)Age (years), median (25th, 75th percentile)

61,485 (50.7)8101 (49.8)9922 (50.0)40,444 (51.0)Male sex, n (%)

162 (157, 168)162 (157, 169)162 (156, 168)162 (157, 168)Height (cm), median (25th, 75th percentile)

64 (56, 74)65 (56, 75)64 (56, 74)64 (56, 74)Weight (kg), median (25th, 75th percentile)

24 (22, 27)24 (22, 27)24 (22, 27)24 (22, 27)BMI, median (25th, 75th percentile)

ASAPSa, n (%)

4404 (3.6)660 (4.1)739 (3.7)2925 (3.7)1

82,588 (68.1)11,508 (70.7)13,549 (68.3)54,056 (68.15)2

31,878 (26.3),654 (22.5)5155 (26.0)20,842 (26.3)3

2204 (1.8)397 (2.4)355 (1.8)1345 (1.70)4

239 (0.2)48 (0.3)34 (0.2)156 (0.2)5

9942 (8.2)1678 (10.3)1615 (8.1)6379 (8.0)ASAb emergency, n (%)

Anesthesia type, n (%)

107,176 (88.5)14,486 (89.2)17,497 (88.4)69,898 (88.3)General

13,929 (11.5)1748 (10.8)2303 (11.6)9297 (11.7)Neuraxial

Emergency level of surgery, n (%)

94,816 (78.2)12,000 (73.8)15,455 (77.9)62,226 (78.5)Elective

21,342 (17.6)3,356 (20.6)3,567 (18.0)13,800 (17.4)Urgent

4484 (3.7)801 (4.9)708 (3.6)2849 (3.6)Emergency

671 (0.6)110 (0.7)102 (0.51)449 (0.57)Immediate

Preoperative location, n (%)

72,045 (59.4)9824 (60.4)11,788 (59.4)47,187 (59.5)Ward

27,830 (22.9)2995 (18.4)4463 (22.5)18,386 (23.2)Outpatient

15,247 (12.6)2283 (14.0)2592 (13.1)10,083 (12.7)Emergency department

6191 (5.1)1165 (7.2)989 (5.0)3668 (4.6)Intensive care unit

Surgery department, n (%)

22,471 (18.5)2665 (16.4)3630 (18.3)14,760 (18.6)Urology

17,608 (14.5)2457 (15.1)2926 (14.8)11,416 (14.4)General

16,772 (13.8)2338 (14.4)2748 (13.9)10,976 (13.8)Orthopedics

15,679 (12.9)2,302 (14.2)2,578 (13.0)10,206 (12.9)Gynecologyc

13,049 (10.8)1491 (9.2)2086 (10.5)8692 (11.0)Cardiovascular

9427 (7.8)1223 (7.5)1505 (7.6)6193 (7.8)Otolaryngology

7821 (6.4)1077 (6.6)1294 (6.5)5116 (6.5)Plastic surgery

4955 (4.1)727 (4.5)833 (4.2)3233 (4.1)Neurosurgery

4357 (3.6)722 (4.4)740 (3.7)2808 (3.5)Traumatology

3104 (2.6)430 (2.6)514 (2.6)2006 (2.5)Thoracic surgery

2574 (2.1)331 (2.0)423 (2.1)1679 (2.1)Colorectal surgery

3496 (2.9)504 (3.1)555 (2.8)2239 (2.8)Others

Comorbidity, n (%)
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Overall cohort (N=121,313)Testing cohort
(N=16,267)

Validation cohort
(N=19,832)

Training cohort
(N=79,324)

Feature

24,314 (20.0)2812 (17.3)3863 (19.5)15,906 (20.1)Diabetes mellitus

13,678 (11.3)1740 (10.7)2119 (10.7)8704 (11.0)Hyperlipidemia

43,391 (35.8)4999 (30.7)7055 (35.6)28,462 (35.9)Hypertension

6564 (5.4)717 (4.4)1028 (5.2)4355 (5.5)Prior cerebrovascular accident

20,156 (16.6)2227 (13.7)3254 (16.4)13,215 (16.7)Cardiac disease

2428 (2.0)286 (1.8)380 (1.9)1549 (2.0)Chronic obstructive pulmonary disease

4626 (3.8)592 (3.6)762 (3.8)3024 (3.8)Asthma

13,887 (11.4)1664 (10.2)2299 (11.6)9118 (11.5)Hepatic disease

18,874 (15.6)1466 (9.0)3095 (15.6)12,471 (15.7)Renal disease

17,543 (14.5)2122 (13.0)2684 (13.5)11,243 (14.2)Bleeding disorder

83,490 (68.8)10,040 (61.7)13,592 (68.5)54,356 (68.5)Prior major operations

30,433 (25.1)3719 (22.9)5098 (25.7)20,235 (25.5)Smoking

18,092 (14.9)2190 (13.5)2959 (14.9)11,662 (14.7)Drug allergy

107,906 (88.9)15,107 (92.9)17,461 (88.0)69,858 (88.1)Consciousness

1562 (1.3)215 (1.3)249 (1.3)997 (1.3)30-day mortality, n (%)

aASAPS: American Society of Anesthesiologist Physical Status.
bASA: American Society of Anesthesiologists.
cThe gynecology department consists of gynecology and obstetrics.

Data Preparation
The input features included patient characteristics (age, height,
weight, BMI, sex, ASAPS, ASA emergency status, department,
preoperative location, and anesthesia type), surgery
characteristics (emergency level, preoperative diagnosis, and
proposed procedure), comorbidities (diabetes mellitus,
hyperlipidemia, hypertension, cerebrovascular accident, cardiac
disease, chronic obstructive pulmonary disease, asthma, hepatic
disease, renal disease, bleeding disorder, major operations,
smoking, and drug allergy), preoperative laboratory data
(hemoglobin, platelet, international normalized ratio,
prothrombin time, activated partial thromboplastin time,
creatinine, aspartate transaminase, alanine transaminase, blood
sugar, serum sodium, and serum potassium), and preoperative
vital signs (body temperature, oxygen saturation, heart rate,
respiratory rate, systolic and diastolic blood pressure, and
consciousness status); see Table 2.

Continuous features (eg, age, height, weight, latest laboratory
data before surgery, and preoperative vital signs) were
standardized by subtracting the mean and scaling to variance.
Outliers were regarded as input errors and treated as missing
data. Multimedia Appendix 2 lists the definitions of the outliers.

Missing values were imputed with the median value of the data
set for continuous features.

Categorical features with only 2 classes (eg, sex, comorbidities,
ASA emergency status, and consciousness status) were
converted into binary encoding. All other categorical features
(eg, ASAPS [5 classes], department [22 classes], emergency
level [4 classes], preoperative location [4 classes], and anesthesia
type [4 classes]) were transformed into one-hot encodings.
Missing data were imputed with the majority category of the
training data set. The preoperative diagnoses and proposed
procedures were expressed as free text. Characters other than
alphabetical and numerical ones were removed (eg, Chinese
characters [typically notes for colleagues only] and punctuation).
English stop words providing no helpful information to the
model (eg, “a,” “in,” and “the”) were removed using the Natural
Language Toolkit [20].

We used the previous 4 years’ surgery results to predict the last
year results. Patients who underwent surgeries between January
1, 2016, and December 31, 2019, were selected and split into
training and validation sets in a 4:1 ratio; those who underwent
surgeries between January 1, 2020, and November 30, 2020,
were selected as the testing set (Figure 1). Patients in the training
or validation set were removed from the testing set to prevent
information leakage [6].
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Table 2. Feature groups included in the models.

Feature classesaFeature type

Patient characteristics

Age, height, weight, BMIContinuous

Sex (2), ASAPSb (5), ASAc emergency (2), department (22), preoperative location (4), anesthesia type (4)Categorical

Surgery characteristics

Emergency level (4)Categorical

Preoperative diagnosis, proposed procedureFree text

Comorbid conditions

Diabetes mellitus (2), hyperlipidemia (2), hypertension (2), cerebrovascular accident (2), cardiac disease (2), chronic
obstructive pulmonary disease (2), asthma (2), hepatic disease (2), renal disease (2), bleeding disorder (2), major op-
erations (2), smoking (2), drug allergy (2)

Categorical

Preoperative laboratory values

Hemoglobin, platelet, international normalized ratio, prothrombin time, activated partial thromboplastin time, creatinine,
aspartate transaminase, alanine transaminase, blood sugar, serum sodium, serum potassium

Continuous

Preoperative vital signs

Body temperature, oxygen saturation, heart rate, respiratory rate, systolic and diastolic blood pressureContinuous

Consciousness status (2)Categorical

aThe number of classes is shown in parentheses.
bASAPS: American Society of Anesthesiologist Physical Status.
cASA: American Society of Anesthesiologists.

Study Design
Our results were compared with state-of-the-art models, using
patient preoperative vital signs and laboratory data to predict
in-hospital 30-day mortality [6]. Meanwhile, to demonstrate
the effect of adding preoperative diagnoses and proposed
procedures to the prediction model, we added text features and
compared the performances of the highest-performing models.

First, we compared the state-of-the-art models using patient and
surgery characteristics (without text), comorbidities,
preoperative vital signs, and laboratory data to predict the
in-hospital 30-day mortality. Figure 2B shows our proposed
DNN model with 4 fully connected (FC) layers and a Softmax
layer output function. We compared our DNN model with other

ML models, including a random forest classifier (with 2000
estimators and Gini impurity as the splitting criterion) [21],
extreme gradient boosting (XGBoost, with a learning rate of
0.3 and a maximum depth of 6) [22], and logistic regression
(with an L2 penalty); see Figure 2A. To balance the data while
training the ML models, oversampling by 78 times was
performed on the training set via the synthetic minority
oversampling technique; this produced synthetic samples along
a straight line between randomly selected samples in the feature
space [23]. While training our DNN model, we adjusted the
weight to compensate for the imbalanced classes. We added the
text of preoperative diagnoses and proposed procedures to the
DNN model architecture (denoted as BERT-DNN; see Figure
2C) and compared its performance with those of other models.
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Figure 2. Architectures of models. BERT: bidirectional encoder representations from transformers: DNN: deep neural network; FC: fully connected;
ML: machine learning; ReLU: rectified linear unit; XGBoost: extreme gradient boosting.

Language Model and BERT-DNN Model Design
The language model extracted features from the preprocessed
text. Figure 2C shows the architecture of the language model.
The preprocessed texts were tokenized using the BERT
tokenizer, which transformed each word fragment into a unique
token designed for use in BERT’s pretraining process [17].
Then, these tokens were embedded by Bio+Clinical BERT, a
variant of BERT pretrained on text from PubMed and Medical
Information Mart for Intensive Care III [24]. The text
information was transformed into a 768-dimension vector (the
“word embeddings”) at the pooler output layer [17,24]. These
word embeddings were input into 2 FC layers before
concatenation with other structured features. The concatenated

vectors were input into 3 FC layers and a Softmax layer output
function. Figure 2C shows the architecture of the BERT-DNN
model.

Cross-entropy was used as the loss function. Class weight
imbalances were compensated for by setting the weights as the
inverses of the different classes’ frequencies (~1:78). Further,
the training data were split into training and validating sets in
a 4:1 ratio to train the deep learning (DL) model. We used
AdamW from the PyTorch package as the optimizer, setting a
learning rate of 0.00002 for both DL models. We trained our
BERT-DNN and DNN models with batch sizes of 64 and 512,
respectively, until the 100th epoch. The DL model with the
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smallest validation loss was selected for performance
comparison.

Model Evaluation
The models were evaluated using the AUROC, the area under
the precision-recall curve (AUPRC), sensitivity (also referred
to as recall), specificity, precision (also called the positive
predictive value), and the F1 score. The F1 score was a harmonic
mean of recall and precision and was calculated as 2/[(1/recall)
+ (1/precision)]. Because postoperative mortalities accounted
for 1.3% (1562/121,313) of our data set, classes were extremely
imbalanced between the positive and negative groups. Here,
the AUPRC (which calculated the average precision) was better
than the AUROC for evaluating the discrimination of models
[25,26]. For comparison of AUROCs, we applied a
nonparametric approach proposed by DeLong et al [27] to
calculate the SE of the area and the P value. P<.05 was regarded
statistically significant. We calculated exact binomial 95% CIs
for the AUROC. For comparison of AUPRCs, we performed
bootstrapping 1000 times in the testing set to calculate the
difference in areas and the 95% CI [28]. If the 95% CI for the
difference in areas does not include 0, it can be concluded that
these 2 areas are significantly different (P<.05). We performed
bootstrapping 1000 times in the testing set to calculate the 95%
CI for other metrics [6]. The predicted probabilities were
calibrated using the histogram bins technique, using the same
observed mortality in each bin of the validation set [8]. After
calibration, the mean observed incidences of mortality were
plotted against the mean predicted probabilities within groups
in the testing set.

Visualization of Word Embeddings
To show the correlation between increased prediction
probabilities and text inputs, the t distributed stochastic neighbor
embedding (SNE) was implemented by reducing the 768
dimensions of the language model’s pool output to 2 into a plane
[29,30]. Thus, we showed the clustering of word embeddings

using assorted colors for different predicted probabilities and
different icons for observed mortalities. We randomly resampled
10,000 and 5000 patients who underwent surgeries in the
training and testing sets, respectively, to construct this
visualization. The language-model-predicted probabilities and
observed mortalities for randomly selected text inputs were
calculated and listed.

The study was implemented using Python 3.9, Scikit-learn 0.24
[31], imbalanced-learn 0.8.0 [23], PyTorch 1.8 [32], and
transformers 4.9 (Hugging Face) [24]. Our models were trained
and validated on the NVIDIA Tesla P100-PCIE-16GB graphics
processing unit (GPU). The statistical significances of AUROCs
and AUPRCs were calculated using MedCalc software (Ostend,
Belgium).

Results

Comparison of Machine Learning Models
The BERT-DNN had the highest AUROC of 0.964 (95% CI
0.961-0.967) and the highest AUPRC of 0.336 (95% CI
0.276-0.402); see Table 3 and Figure 3. The random forest
achieved the second-highest AUROC of 0.961 (95% CI
0.958-0.964), and the DNN achieved the second-highest AUPRC
of 0.319 (95% CI 0.260-0.384). The BERT-DNN model had
the highest F1 score of 0.347 (95% CI 0.305-0.388).

The BERT-DNN had a significantly higher AUROC compared
to XGBoost, logistic regression, and ASAPS but not a
significantly higher AUROC compared to the DNN and the
random forest (Table 4). The BERT-DNN also had a
significantly higher AUPRC compared to the DNN, random
forest, XGBoost, logistic regression, and ASAPS (Table 5).

In the BERT-DNN model, when the predicted probability of
mortality increased from 0.2% to 39.4%, the observed incidence
increased from 0.2% to 42.7% (Figure 4).
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Table 3. Prediction performances of MLa models and ASAPSb on the testing cohort with 95% CIs.

F1 scoree (95%
CI)

Precisiona (95%
CI)

Specificitye (95%
CI)

Sensitivitye

(95% CI)
Accuracye (95%
CI)

AUPRCd (95%
CI)

AUROCc (95%
CI)

Model

0.307 (0.269-
0.342)

0.193 (0.166-
0.219)

0.958 (0.955-
0.961)

0.749 (0.689-
0.805)

0.955 (0.952-
0.958)

0.336 (0.276-
0.402)

0.964 (0.961-
0.967)

BERTf-DNNg

0.212 (0.187-
0.236)

0.120 (0.104-
0.136)

0.913 (0.909-
0.918)

0.885 (0.841-
0.926)

0.913 (0.909-
0.917)

0.319 (0.260-
0.384)

0.959 (0.956-
0.962)

DNN

0.242 (0.182-
0.314)

0.445 (0.341-
0.557)

0.997 (0.996-
0.998)

0.167 (0.122-
0.222)

0.986 (0.984-
0.988)

0.296 (0.239-
0.360)

0.961 (0.958-
0.964)

Random forest

0.263 (0.201-
0.326)

0.409 (0.312-
0.500)

0.996 (0.995-
0.997)

0.195 (0.144-
0.249)

0.986 (0.984-
0.987)

0.281 (0.225-
0.345)

0.950 (0.946-
0.953)

XGBoosth

0.187 (0.164-
0.210)

0.105 (0.091-
0.119)

0.905 (0.901-
0.910)

0.833 (0.780-
0.882)

0.904 (0.900-
0.909)

0.276 (0.220-
0.339)

0.952 (0.949-
0.955)

Logistic regres-
sion

0.266 (0.220-
0.310)

0.197 (0.160-
0.235)

0.978 (0.975-
0.980)

0.409 (0.342-
0.478)

0.970 (0.968-
0.973)

0.149 (0.107-
0.203)

0.892 (0.887-
0.896)

ASAPS

aML: machine learning.
bASAPS: American Society of Anesthesiologist Physical Status.
cAUROC: area under the receiver operating characteristic.
dAUPRC: area under the precision-recall curve.
eThese metrics were calculated without adjusting the threshold (using 0.5 as the cut-off).
fBERT: bidirectional encoder representations from transformers.
gDNN: deep neural network.
hXGBoost: extreme gradient boosting.
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Figure 3. Comparison of discrimination of different models. (A) AUROC. (B) AUPRC. ASAPS: American Society of Anesthesiologist Physical Status;
AUPRC: area under the precision-recall curve; AUROC: area under the receiver operating characteristic curve; BERT: bidirectional encoder representations
from transformers; DNN: deep neural network; XGBoost: extreme gradient boosting.
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Table 4. Statistical significances of AUROCsa of different models. Values are P values. We applied a nonparametric approach proposed by DeLong
et al [27] to calculate the SE of the area and the P value.

Logistic regressionXGBoostdRandom forestDNNBERTb-DNNc

<0.0001f<0.0001f<0.0001f<0.0001f<0.0001fASAPSe

N/Ag0.64510.0351f0.07110.0005fLogistic regression

N/AN/A0.0262f0.09390.0025fXGBoost

N/AN/AN/A0.59720.3816Random forest

N/AN/AN/AN/A0.0944DNN

aAUROC: area under the receiver operating characteristic.
bBERT: bidirectional encoder representations from transformers.
cDNN: deep neural network.
dXGBoost: extreme gradient boosting.
eASAPS: American Society of Anesthesiologist Physical Status.
fThe difference in areas achieved statistical significance (P<.05).
gN/A: not applicable.

Table 5. Statistical significances of AUPRCsa of different models. Values are differences in areas with 95% CIs calculated by bootstrapping 1000
times [28]. If the 95% CI for the difference in areas does not include 0, it can be concluded that these 2 areas are significantly different (P<.05).

Logistic regression, differ-
ence in areas (95% CI)

XGBoostd, difference
in areas (95% CI)

Random forest, differ-
ence in areas (95% CI)

DNN, difference in
areas (95% CI)

BERTb-DNNc, differ-
ence in areas (95% CI)

0.127 (0.101-0.154)f0.133 (0.107-0.162)f0.147 (0.122-0.177)f0.170 (0.137-0.201)f0.188 (0.159-0.221)fASAPSe

N/Ag0.006 (–0.006 to
0.014)

0.020 (0.006-0.031)f0.043 (0.021-0.056)f0.061 (0.051-0.073)fLogistic regression

N/AN/A0.015 (0.005-0.022)f0.038 (0.024-0.046)f0.055 (0.044-0.068)fXGBoost

N/AN/AN/A0.023 (0.010-0.032)f0.040 (0.030-0.054)fRandom forest

N/AN/AN/AN/A0.018 (0.008-0.037)fDNN

aAUPRC: area under the precision-recall curve.
bBERT: bidirectional encoder representations from transformers.
cDNN: deep neural network.
dXGBoost: extreme gradient boosting.
eASAPS: American Society of Anesthesiologist Physical Status.
fThe difference in areas achieved statistical significance (P<.05).
gN/A: not applicable.
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Figure 4. Calibration plot. The observed incidence of mortality was plotted against the calibrated predicted probability of mortality among patients in
the test cohort (n=16,267, 14.1%). Predicted probabilities were calibrated by applying the histogram binning technique in the validation cohort using
5 bins. Mean predicted probabilities of in-hospital 30-day mortality were calculated within each group.

Visualization of Word Embeddings
Because the observed mortalities were distributed concordantly
with increased prediction probabilities, the annotated scatter
plots showed that the text contributed to low- and

high-probability predictions (Figure 5, Multimedia Appendix
3). Table 6 lists the probabilities predicted by the language
model and the mortalities observed for a randomly selected text
input.
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Figure 5. Word embeddings visualized by t distributed stochastic neighbor embedding. (A) Word embeddings of the training set. (B) Word embeddings
of the testing set. “Probs” indicates probabilities predicated by the BERT-DNN model. The intensity of color increased with the probability. “Labels”
indicates mortalities by “x” and survivors by “•”. ards: acute respiratory distress syndrome; atfl: anterior talofibular ligament; avg: arteriovenous graft;
avp: aortic valvuloplasty; BERT: bidirectional encoder representations from transformers; bct: breast-conserving therapy; bil: bilateral; bph: benign
prostate hypertrophy; bx: biopsy; chr: chronic hypertrophic rhinitis; cps: chronic paranasal sinusitis; dbj: double J stent; DNN: deep neural network;
ecmo: extracorporeal membrane oxygenation; emh: endometrial hemorrhage; esrd: end-stage renal disease; fess: functional endoscopic sinus surgery;
itc: intertrochanter; ivg: intravenous general anesthesia; lih: left inguinal hernia; mvr: mitral valve replacement; nsd: nasal septum deviation; p: post;
pcnl: percutaneous nephrolithotomy; perm cath: permanent catheter; psa: prostate-specific antigen; r: rule out; r’t: right; rirs: retrograde intrarenal
surgery; rv: right ventricle; slnd: sentinel lymph node dissection; SNE: stochastic neighbor embedding; t colon: transverse colon; tee: transesophageal
echocardiography; tep: total extraperitoneal approach; trus: transrectal ultrasound; turp: transurethral resection of the prostate; urs: ureteroscopy; vats:
video-assisted thoracic surgery; vhd: valvular heart disease. Higher-resolution version of this figure available in Multimedia Appendix 3.
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Table 6. Texts and their predicted probabilities by language model. Values are probabilities or mortalities.

Original free text combining preoperative diagnosis and proposed proceduresObserved mortality (1=mortality; 0=no
mortality)

Predicted probability

IHCAa pb CPRc ECMOd ACSe ARf full sternotomy CABGg AVRh10.951

AMIi cardiogenic shock p ECMO remove ECMO TEEj00.948

hollow organ perforation rk PPUl related LPPUm possible EXP LAPn10.940

intra-abdominal bleeding EXP LAP10.936

ischemic bowel laparoscopic diagnosis possible EXP LAP10.932

acute pulmonary embolism IHCA p ECMO angiography TEE00.927

duodenal ulcer perforation p duodenorrhaphy leakage bleeding EXP LAP10.925

respiratory failure tracheostomy00.912

hallow organ perforation r PPU LPPU00.880

acute kidney failure perm catho insertion00.815

post UPPPp wound bleeding check bleeding00.760

ESRDq HDr via right perm caths qw2 4 6 perm cath dysfunction perm cath
insertion change perm cath right neck

00.680

ESRD left AVGt occlusion left AVG thrombectomy00.527

left lower leg soft tissue infection suspect necrotizing fasciitis debridement00.415

ESRD right AVFu dysfunction upper arm angiography PTAv00.353

RLLw lung tumor r lung cancer vats RLL lobectomy wedge first send frozen
exam

00.250

left lower extremity NFx open BKy00.186

left anterior mediastinal tumor multiple lung nodules rectal cancer p CCRTz

VATSaa mediastinal tumor excision LARab

00.114

right ACLac MCLad injury arthroscopy ACL reconstruction00.042

1 C4 5 6 spondylosis 2 right carpal tunnel 1 ACDFae C4 5 6 2 right median
nerve decompression

00.041

bilaf ovag teratoma laparoscopy adnexectomy00.031

left ureter stone URSLah laser left00.030

uterine myoma robotic myomectomy00.029

acute appendicitis laparoscopic appendectomy00.029

hemorrhoids hemorrhoidectomy00.029

nontoxic goiter thyroidectomy00.029

infertility TVORai00.027

endometrial polyp TCRaj00.027

GAak 38 weeks breech caesarean section00.027

rtal breast lesion MRIam guided biopsy00.025

right inguinal hernia TEPan right00.025

aIHCA: intrahospital cardiac arrest.
bp: post.
cCPR: cardiopulmonary resuscitation.
dECMO: extracorporeal membrane oxygenation.
eACS: acute coronary syndrome.
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fAR: aortic regurgitation.
gCABG: coronary artery bypass graft.
hAVR: aortic valve replacement.
iAMI: acute myocardial infarction.
jTEE: transesophageal echocardiography.
kr: rule out.
lPPU: perforated peptic ulcer.
mLPPU: laparoscopic perforated peptic ulcer surgery.
nEXP LAP: exploratory laparotomy.
ocath: catheter.
pUPPP: uvulopalatopharyngoplasty.
qESRD, end-stage renal disease.
rHD: hemodialysis.
sperm cath: permanent catheter.
tAVG: arteriovenous graft.
uAVF: arteriovenous fistula.
vPTA: percutaneous transluminal angioplasty.
wRLL: right lower lobe.
xNF: necrotizing fasciitis.
yBK: below-knee amputation.
zCCRT: concurrent chemoradiotherapy.
aaVATS: video-assisted thoracic surgery.
abLAR: low anterior resection.
acACL: anterior cruciate ligament.
adMCL: medial collateral ligament.
aeACDF: anterior cervical discectomy and fusion.
afbil: bilateral.
agov: ovarian.
ahURSL: ureteroscopic lithotomy.
aiTVOR: transvaginal oocyte retrieval.
ajTCR: transcervical resectoscope.
akGA: gestational age.
alrt: right.
amMRI: magnetic resonance imaging.
anTEP: total extraperitoneal approach.

Discussion

Principal Findings
The DNN-BERT model predicted the in-hospital 30-day
mortality with the highest AUROC of 0.964 (95% CI
0.961-0.967) and an AUPRC of 0.336 (95% CI 0.276-0.402);
see Table 3 and Figure 3. The BERT-DNN had an AUROC
significantly higher compared to XGBoost, logistic regression,
and ASAPS but not the DNN or random forest. The BERT-DNN
also had an AUPRC significantly higher compared to the DNN,
random forest, XGBoost, logistic regression, and ASAPS.

Hill et al [6] proposed an ML model that outperformed previous
tools (eg, preoperative score to predict postoperative mortality,
Charlson comorbidity, and ASAPS) and could be used
independently by clinicians. Our BERT-DNN model
outperformed Hill et al’s [6] model, obtaining a higher AUROC,
sensitivity, and F1 score than their results (0.964, 95% CI
0.961-0.967 vs 0.932, 95% CI 0.910-0.951; 0.650, 95% CI
0.587-0.719 vs 0.239, 95% CI 0.127-0.379; and 0.347, 95% CI

0.305-0.388 vs 0.302, 95% CI 0.172-0.449, respectively); see
Table 3. The preoperative diagnosis text features and proposed
procedure information might contribute to our BERT-DNN
model and enhance its sensitivity and F1 score. Unlike Hill et
al [6], who focused on patients undergoing general anesthesia,
we trained and tested our model on both general and neuraxial
anesthesia. The DL model with clinical text predicted
postoperative mortality significantly more discriminatively than
logistic regression and ASAPS (Table 4).

DL methods predict postoperative mortality using preoperative
and intraoperative features [7-9]. Using a summary of
intraoperative features alongside the ASAPS, Lee et al [7]
presented a DNN model that achieved an AUROC of 0.91 (95%
CI 0.88-0.93). Our DNN model obtained a higher AUROC than
their model because we included key features such as
preoperative location and surgical department, the importance
of which was also verified in previous studies [6]. Fritz et al [8]
proposed a multipath convolutional neural network model to
predict postoperative mortality using intraoperative time-series
data and preoperative features. Their model achieved an
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AUROC of 0.910 (95% CI 0.897-0.924) and an AUPRC of
0.325 (95% CI 0.280-0.372) [33]. In contrast, our model can
be used preoperatively and achieve a higher AUROC and
AUPRC (Table 3).

Previous studies used ICD and CPT codes as categorical features
to stratify surgery risk [2,6,7,9,12]. This input feature has many
classes, which resulted in a sparse input matrix; this made it
difficult for the model to learn helpful information. However,
because ICD codes were typically recorded after surgery,
including them in the preoperative model was impractical.
Furthermore, the CPT code was not used globally. For this
reason, we could not compare a model including word
embeddings with one including CPT codes. However, our results
exhibited excellent discrimination with a high AUROC and
AUPRC. The AUPRC is significantly higher than models
without text. The calibration plot also strongly correlated the
predicted probabilities and observed mortalities (Figure 4).
Word embedding visualizations showed that the increased
predicted probabilities were concordant with high-risk surgery
and an increased mortality rate (Figure 5 and Table 6). We
showed that word embeddings for surgery information could
be used in DL models to predict postoperative mortality before
surgery without requiring CPT or ICD codes.

The fusion of neural networks, combining diverse types of data
(eg, image [34] and time-series [8] data) with 1D data (eg,
categorical, and continuous data), improved the model’s
performance. Including unstructured clinical text via natural
language procession can improve intensive care unit (ICU)
mortality predictions [14,16]. The DL model that combined
unstructured and structured data outperformed models using
either type of data alone [15]. Moreover, the performance of

the clinical pretrained DL language model could be maintained
between different institutions [35].

Limitations
Our study has several limitations. First, postoperative mortality
accounted for 1.3% (1562/121,313) of our cohort, and the
classes were highly imbalanced. The model training and
performance metric evaluations were difficult to apply with
these sparse positive labels. To compensate for the class
imbalance via an algorithmic method, we applied cost-sensitive
learning by balancing the weights of the loss function to
emphasize the minority group [36]. We evaluated the
discrimination of our model with the AUPRC, which is more
informative than the AUROC for imbalanced data [8,25,26].
Second, our model predicted mortality using EHRs. The errors
in the records and missing values affected the prediction results.
Typos of text interfered with the word-embedding process.
Outliers were detected and input using the defined rules
(Multimedia Appendix 2). Third, all records were collected
from a single large medical center. Although the pipeline we
created ensured that the DL model could be reproduced in other
institutes, the model weights might vary for a different data set.
The generalizability of our results must be examined in future
studies.

Conclusion
In conclusion, descriptive surgical text was essential for
predicting postoperative mortality. The word embeddings of
preoperative diagnoses and proposed procedures, via the
contextualized language model BERT, were combined in DL
models to predict postoperative mortality. This predictive
capacity can help identify patients with higher risk from
structure data and text of EHRs.
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Summary of laboratory values and vital sign values.
[DOC File , 45 KB - medinform_v10i5e38241_app1.doc ]

Multimedia Appendix 2
Continuous feature limits to define outliers.
[DOC File , 33 KB - medinform_v10i5e38241_app2.doc ]

Multimedia Appendix 3
Higher resolution of Figure 5. Word embeddings visualized by t distributed stochastic neighbor embedding. (A) Word embeddings
of the training set. (B) Word embeddings of the testing set. “Probs” indicates probabilities predicated by the BERT-DNN model.
The intensity of color increased with the probability. “Labels” indicates mortalities by “x” and survivors by “•”. ards: acute
respiratory distress syndrome; atfl: anterior talofibular ligament; avg: arteriovenous graft; avp: aortic valvuloplasty; BERT:
bidirectional encoder representations from transformers; bct: breast-conserving therapy; bil: bilateral; bph: benign prostate
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hypertrophy; bx: biopsy; chr: chronic hypertrophic rhinitis; cps: chronic paranasal sinusitis; dbj: double J stent; DNN: deep neural
network; ecmo: extracorporeal membrane oxygenation; emh: endometrial hemorrhage; esrd: end-stage renal disease; fess:
functional endoscopic sinus surgery; itc: intertrochanter; ivg: intravenous general anesthesia; lih: left inguinal hernia; mvr: mitral
valve replacement; nsd: nasal septum deviation; p: post; pcnl: percutaneous nephrolithotomy; perm cath: permanent catheter;
psa: prostate-specific antigen; r: rule out; r’t: right; rirs: retrograde intrarenal surgery; rv: right ventricle; slnd: sentinel lymph
node dissection; SNE: stochastic neighbor embedding; t colon: transverse colon; tee: transesophageal echocardiography; tep:
total extraperitoneal approach; trus: transrectal ultrasound; turp: transurethral resection of the prostate; urs: ureteroscopy; vats:
video-assisted thoracic surgery; vhd: valvular heart disease.
[PNG File , 5102 KB - medinform_v10i5e38241_app3.png ]
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Abstract

Background: Although there is a growing interest in prediction models based on electronic medical records (EMRs) to identify
patients at risk of adverse cardiac events following invasive coronary treatment, robust models fully utilizing EMR data are
limited.

Objective: We aimed to develop and validate machine learning (ML) models by using diverse fields of EMR to predict the risk
of 30-day adverse cardiac events after percutaneous intervention or bypass surgery.

Methods: EMR data of 5,184,565 records of 16,793 patients at a quaternary hospital between 2006 and 2016 were categorized
into static basic (eg, demographics), dynamic time-series (eg, laboratory values), and cardiac-specific data (eg, coronary
angiography). The data were randomly split into training, tuning, and testing sets in a ratio of 3:1:1. Each model was evaluated
with 5-fold cross-validation and with an external EMR-based cohort at a tertiary hospital. Logistic regression (LR), random forest
(RF), gradient boosting machine (GBM), and feedforward neural network (FNN) algorithms were applied. The primary outcome
was 30-day mortality following invasive treatment.

Results: GBM showed the best performance with area under the receiver operating characteristic curve (AUROC) of 0.99; RF
had a similar AUROC of 0.98. AUROCs of FNN and LR were 0.96 and 0.93, respectively. GBM had the highest area under the
precision-recall curve (AUPRC) of 0.80, and the AUPRCs of RF, LR, and FNN were 0.73, 0.68, and 0.63, respectively. All
models showed low Brier scores of <0.1 as well as highly fitted calibration plots, indicating a good fit of the ML-based models.
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On external validation, the GBM model demonstrated maximal performance with an AUROC of 0.90, while FNN had an AUROC
of 0.85. The AUROCs of LR and RF were slightly lower at 0.80 and 0.79, respectively. The AUPRCs of GBM, LR, and FNN
were similar at 0.47, 0.43, and 0.41, respectively, while that of RF was lower at 0.33. Among the categories in the GBM model,
time-series dynamic data demonstrated a high AUROC of >0.95, contributing majorly to the excellent results.

Conclusions: Exploiting the diverse fields of the EMR data set, the ML-based 30-day adverse cardiac event prediction models
demonstrated outstanding results, and the applied framework could be generalized for various health care prediction models.

(JMIR Med Inform 2022;10(5):e26801)   doi:10.2196/26801

KEYWORDS

big data; electronic medical record; machine learning; mortality; adverse cardiac event; coronary artery disease; prediction

Introduction

Cardiovascular disease is the leading cause of mortality
throughout the world and is associated with various morbidities
[1]. Invasive treatment, including percutaneous coronary
intervention (PCI) and coronary artery bypass grafting (CABG)
surgery, is commonly required in patients with acute coronary
syndrome and stable angina. Owing to the potential risk
associated with inevitable invasiveness and the individual
comorbidities, risk stratification and identification of high-risk
patients is warranted [2,3]. Accordingly, several risk prediction
models for adverse events after invasive coronary treatment
have been proposed [4-7]. However, their use is limited owing
to inadequate predictive ability, low generalizability, and lack
of individualized risk assessment, as they have been developed
using limited number of variables in select cohorts.

In recent times, with an increase in the availability of large
volume of electronic medical record (EMR) data, there has been
a gradual interest in using data-driven approaches to construct
efficient tools for risk prediction [8,9]. In addition, machine
learning (ML) algorithms are gaining popularity as an alternative
approach for risk prediction to deal with complex EMR data
and to overcome the limitations of previous models [10]. Recent
work on models based on EMR data for predicting adverse
events suggests that incorporation of ML might allow more
accurate risk prediction [11-14]. However, validated robust
models are still limited, as the previous models used prespecified
variables based on traditional risk factors mainly comprising
structural data or lacked proper external validation. Thus, this
study aimed to develop ML models by utilizing diverse fields
of both structured and unstructured EMR data to predict the
risk of 30-day major adverse cardiac events (MACE), including
mortality, after PCI or CABG and to validate the model in a
different cohort.

Methods

Database

Development and Internal Validation Set
The data for this study were obtained from Asan Medical Center,
which provides quaternary medical care for people in South
Korea. It has 55 departments—approximately 2700 beds—and
>8000 employees; it sees approximately 3,000,000 outpatient
clinic visits and 900,000 admissions per year. The Asan
biomedical research environment is the data warehouse system

of Asan Medical Center, which has deidentified information of
4 million patients and is updated every 3 days [15]. The Asan
heart registry was constructed from diverse fields of structured
or unstructured EMR data extracted from the Asan biomedical
research environment database by using structured query
language. The registry comprised 571,157 patients, and the
inclusion criteria were inpatient admissions or outpatient visits
in the cardiology, cardiac surgery, or emergency department
for established or suspected heart diseases between January 1,
2000 and November 30, 2016.

External Validation Set
For external validation, we used data obtained from the EMRs
of Ulsan University Hospital, which is a tertiary hospital with
approximately 900 beds that caters to a metropolitan city and
its surrounding suburban area in the southern region of South
Korea. The patients’ demographics, medical practice, and
operating systems differ between the 2 hospitals, which would
allow evaluation of the model in a different population.

Data Processing
The overall process for building the EMR-based database is
presented in Figure S1 of Multimedia Appendix 1. Briefly, first,
we collected the anonymized records of 748,474 patients who
had visited the Asan Medical Center or Ulsan University
Hospital because of cardiovascular diseases. Second, we set
clinically plausible criteria to remove errors and duplications.
Third, we integrated unstructured data such as readings of
medical examinations with structured data sourced from EMRs
to create the CardioNet [16]. We subsequently performed text
mining to structuralize the significant variables associated with
cardiovascular diseases because most results of the principal
cardiovascular diseases–related medical examinations are
free-text readings. The basic method of text mining applied to
unstructured data can be described in 3 steps. First, we created
a metatable consisting of the main variables and conditions of
extraction by the clinician. Second, we divided the readings
into 3 frames: text, tabular, and others, and defined the extraction
rules for each frame. We took into consideration the structure
of the original data and the location of variables set in the
metatable and defined rules by using a variety of operators and
regular expressions. Third, the new tables were built by
extracting the keywords and features from the original data.
The values of the keywords were based on rules defined in the
previous step. Additionally, to ensure interoperability for
convergent multicenter research, we standardized the data by
using several codes that correspond to the common data model.
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Finally, we created the descriptive table (ie, dictionary of the
CardioNet) to simplify access and utilization of data for
clinicians and engineers and continuously validated the data to
ensure reliability [16]. Most structured data were obtained using
classic preprocessing technologies, including data cleansing,
data integration, data transformation, data reduction, and privacy
protection. Finally, we extracted the following structured data
elements: demographics, administrative information, medical
history and comorbidities, diagnoses, vital signs, laboratory
values, and medications. Unstructured data included the
following elements: reports of cardiac-specific studies such as
thallium-201 single-photon emission computed tomography
(SPECT), coronary angiography, and physicians’ procedure
notes for PCI or CABG. In this study, we found that with the
algorithms developed, we classified the data into 3 categories:
basic static data (demographics, administration data, medical
history, comorbidities, and diagnosis), dynamic time-series data

(medications, laboratory values, and vital signs), and
disease-specific data (electrocardiography, treadmill test,
echocardiography, coronary computerized tomography,
thallium-201 SPECT, coronary angiography, PCI, and CABG)
(see Figure 1). The details of the variables in each category are
presented in Table S1 in Multimedia Appendix 1 [16]. With
respect to the data of the procedures or operation, the variables
only confined to the index PCI or CABG were used for this
investigation. Data collection and preparation were approved
by the Asan Medical Center and Ulsan University Hospital
institutional review board, and the requirement for informed
consent was waived. Patient deidentification was performed in
line with the Health Insurance Portability and Accountability
Act. This report adheres to the transparent reporting of a
multivariable prediction model for individual prognosis or
diagnosis reporting guideline [17].

Figure 1. Study diagram. Database, machine learning, and validation. AMC: Asan Medical Center; CABG: coronary artery bypass grafting; EMR:
electronic medical record; ML: machine learning; PCI: percutaneous coronary intervention.

Study Population and Outcome
A cohort of 16,793 patients who had undergone PCI (n=12,519)
or CABG (n=4274) between January 1, 2006 and November
30, 2016 was identified in the Asan heart registry. As the
majority of patients underwent the index PCI or CABG within
1 year after their first generation of data in EMR, we fairly used
1-year accumulated data prior to index procedures for the entire
population. The total number of independent records in the data
set was 5,184,565, derived from 3364 features. Figure 2
illustrates an example of the patients treated with PCI,
encompassing the serial and various EMR data. In the external
validation cohort from Ulsan University Hospital, 4159 patients
comprising 3950 who underwent PCI and 209 who underwent
CABG between January 1, 2006 and November 30, 2016 were

included. The data set consisted of 1,482,816 records from 2333
features. Mortality was the primary endpoint, captured through
documentation of mortality in the EMR based upon National
Health Insurance information. MACE as the secondary endpoint
referred to a composite of all-cause mortality, including
myocardial infarction, stroke, or repeat revascularization at 30
days following the index invasive treatment. Myocardial
infarction, stroke, and repeat revascularization were initially
identified from source documents, including diagnosis,
electrocardiography, laboratory tests, procedural notes, and
results of imaging studies such as magnetic resonance imaging
or computerized tomography. Subsequently, the events were
rigorously adjudicated by cardiologists or neurologists according
to the current definitions [18].
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Figure 2. An example case incorporating serial and various electronic medical record data to predict adverse events. BP: blood pressure; BSA: body
surface area; BUN: blood urea nitrogen; CAG: coronary angiography; CK-MB: creatine kinase myocardial band; Dia: diameter; EDD: end diastolic
dimension; EF: ejection fraction; EKG: electrocardiogram; ESD: end systolic dimension; FFR: fractional flow rate; GLS: global longitudinal strain;
Hb: hemoglobin; HR: heart rate; LDL: low-density lipoprotein; Leng: length; Lp(a): lipoprotein A; LV: left ventricle; PCI: percutaneous coronary
intervention; pLAD: proximal left anterior descending; Pr: pressure; RR: respiratory rate.

ML Algorithms and Statistics
We only used data generated until index PCI or CABG, whereas
data obtained after the index procedure were excluded for
developing ML algorithms (see Figure 2). Three approaches
were applied to preprocess data generated until index

procedures: (1) history-aware encoding is used to reflect whether
clinical events had occurred before a certain period of time, (2)
one-hot encoding is used to express the existence and
missingness of variables, and (3) characteristics of time-series
variables were captured by using descriptive statistics (eg,
minimum, maximum, average, and count). The detailed
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explanation regarding time-series data analysis is shown in
Multimedia Appendix 2. The study population was randomly
split into training, tuning, and validation cohorts in a ratio of
3:1:1. Four commonly used classes of ML algorithms were
used: logistic regression (LR), random forest (RF), gradient
boosting machine (GBM), and feedforward neural network
(FNN). LR transforms output by using a logistic sigmoid
function. RF is an extension of the bagging method, as it utilizes
both bagging and feature randomness to create an uncorrelated
forest of decision trees and decide output by majority voting
using multiple decision trees. GBM is similar to RF, except that
they build 1 tree at a time and combine the voting results in a
gradual, additive, and sequential manner. FNN is a classic type
of deep learning model that uses hierarchical layers of
abstraction and computes the output by using a combination of
multiple nodes with nonlinear activation.

The hyperparameters for each model were determined using an
empirical search and 5-fold cross-validation on the study

population to determine the values that had the best performance
(see Figure 1). Hyperparameters and their values in each model
are summarized in Table 1. The optimal values of the tuning
parameters were identified based on the testing accuracy values
that were calculated for each fold and averaged. External
validation of the developed prediction models was performed
in a cohort from a different hospital. In addition, we determined
the performance of each data category and checked the
cumulative performance with combinations of multiple
information categories, adding each category one by one to
identify the best performance. Development of risk algorithms
in the training cohort and application of the risk algorithms to
the validation cohort was completed using Python with library
packages “Keras with Tensorflow backend.” To investigate the
important variables in each developed model, we used the
permutation feature importance algorithm for LR and FNN,
Gini impurity for RF, and frequency of variables for GBM.

Table 1. Hyperparameters and those values of each model.

ValueModel, hyperparameter

Logistic regression

liblinearSolver

100Maximal iteration

Random forest

100Number of estimators

10Maximal depth

Gradient boosting machine

binaryObjective

150Estimators

Gradient boosting decision treeBoosting type

15Number of leaves

–1 (no limit)Maximal depth

0.025Learning rate

90Minimal number of data in child

Feedforward neural network

0.0002Learning rate

(64,64)Hidden layer units

64Batch size

40Epoch

0.5Dropout rate

Adam (beta1=.5, beta2=.999)Optimizer

The descriptive characteristics of the study population are
provided as number (%) and mean (SD) for categorical and
continuous variables, respectively. The discrimination
performance of each model was evaluated based on the area
under the receiver operating characteristic curve (AUROC) and
area under the precision-recall curve (AUPRC). In addition, we
evaluated model calibration (ie, the model’s ability to accurately
predict the observed absolute risk) by using the Brier score,

where 0 would indicate perfect calibration, and generated the
calibration plots. A 2-sided P value <.05 was considered
indicative of statistical significance. We did not perform any
imputation of the missing numerical values, as explicit
imputation of missing values does not always provide consistent
improvements in predictive models based on electronic health
records [19,20]. Because of inevitable differences in the
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characteristics and amounts of data between cohorts, we used
binary indicators of missingness on external validation [21].

Results

Baseline Characteristics and Event Rates
The baseline characteristics of the population in the development
and internal validation groups are listed in Table 2. The mean
patient age was 62.7 (SD 10.2) years; of the 16,793 patients,
12,465 (74.2%) were males and 6084 (36.2%) had diabetes,
while 243 (1.4%) had a history of congestive heart failure.
Chronic renal insufficiency, chronic lung disease, and chronic

liver disease were reported in 566 (3.4%), 386 (2.3%), and 487
(2.9%) patients, respectively. Approximately two-thirds of the
patients were admitted via outpatient clinics while the remaining
patients were admitted via the emergency department. Among
16,793 patients in our developmental cohort, MACE at 30 days
occurred in 1500 (8.9%) patients, including 178 cases (1.1%)
of mortality, 1159 (6.9%) cases of myocardial infarction, 124
(7.4%) cases of stroke, and 180 (1.1%) cases of repeat
revascularization. Among a total of 4159 patients in the external
validation cohort, there were 75 (1.8%) mortalities at 30 days
follow-up; the details of the patients’ characteristics in the
external validation cohort are shown in Table 3.

Table 2. Baseline clinical characteristics of the development and internal validation set.

Development and internal validation setCharacteristics

Coronary artery bypass
grafting surgery (n=4274)

Percutaneous coronary

intervention (n=12,519)

Total population (N=16,793)

64.1 (9.4)62.2 (10.5)62.7 (10.2)Age (years), mean (SD)

3153 (73.8)9312 (74.4)12,465 (74.2)Male sex, n (%)

24.6 (3.1)25.0 (3.0)24.9 (3.1)Body mass index (kg/m2), mean (SD)

2939 (68.8)7758 (62)10,697 (63.7)Hypertension, n (%)

1957 (45.8)4127 (33)6084 (36.2)Diabetes mellitus, n (%)

2268 (53.1)6932 (55.4)9200 (54.8)Hyperlipidemia, n (%)

585 (13.7)2424 (19.4)3009 (17.9)Current cigarette smoker, n (%)

174 (4.1)394 (3.1)568 (3.4)Prior myocardial infarction, n (%)

176 (4.1)420 (3.4)596 (3.5)Previous cerebrovascular accident, n (%)

111 (2.6)132 (1.1)243 (1.4)History of congestive heart failure, n (%)

79 (1.8)199 (1.6)278 (1.7)Peripheral vascular disease, n (%)

281 (6.6)106 (0.8)387 (2.3)Valvular heart disease, n (%)

203 (4.7)363 (2.9)566 (3.4)Chronic renal insufficiency, n (%)

80 (1.9)306 (2.4)386 (2.3)Chronic lung disease, n (%)

91 (2.1)396 (3.2)487 (2.9)Chronic liver disease, n (%)

203 (4.7)816 (6.5)1019 (6.1)History of malignancy, n (%)

523 (12.2)2509 (20)3032 (18.1)Presentation with acute myocardial infarction, n (%)

1113 (26)3941 (31.5)5054 (30.1)Admission via emergency department, n (%)

3161 (74)8578 (68.5)11,739 (69.9)Admission via outpatient clinics, n (%)
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Table 3. Baseline clinical characteristics of the external validation set.

External validation setCharacteristics

Coronary artery bypass
grafting surgery (n=209)

Percutaneous coronary

intervention (n=3950)

Total population (n=4159)

62.7 (10.9)61.6 (9.4)61.7 (10.9)Age (years), mean (SD)

134 (64.1)2779 (70.3)2913 (70)Male sex, n (%)

23.8 (6.4)24.0 (5.2)24.0 (5.4)Body mass index (kg/m2), mean (SD)

96 (45.9)1851 (46.8)1947 (46.8)Hypertension, n (%)

83 (39.7)1195 (30.2)1278 (30.7)Diabetes mellitus, n (%)

56 (26.7)1098 (27.7)1154 (27.7)Hyperlipidemia, n (%)

51 (24.4)1234 (31.2)1285 (30.9)Current cigarette smoker, n (%)

15 (7.1)265 (6.7)280 (6.7)Prior myocardial infarction, n (%)

13 (6.2)220 (5.5)233 (5.6)Previous cerebrovascular accident, n (%)

5 (2.3)71 (1.7)76 (1.8)History of congestive heart failure, n (%)

4 (1.9)45 (1.1)49 (1.1)Peripheral vascular disease, n (%)

9 (4.3)18 (0.4)27 (0.6)Valvular heart disease, n (%)

7 (3.3)123 (3.1)130 (3.1)Chronic renal insufficiency, n (%)

3 (1.4)143 (3.6)146 (3.5)Chronic lung disease, n (%)

8 (3.8)193 (4.8)201 (4.8)Chronic liver disease, n (%)

9 (4.3)183 (4.6)192 (4.6)History of malignancy, n (%)

43 (20.5)1314 (33.2)1357 (32.6)Presentation with acute myocardial infarction, n (%)

72 (34.4)1634 (41.3)1706 (41)Admission via emergency department, n (%)

137 (65.5)2316 (58.6)2453 (58.9)Admission via outpatient clinics, n (%)

Performance in Predicting 30-Day Mortality
Figure 3 demonstrates the discrimination and calibration results
of 5-fold cross-validation obtained by evaluation with each
technique. GBM showed the highest AUROC with a value of
0.99 (95% CI 0.97-0.99, P<.001) and RF showed similar
AUROC of 0.98 (95% CI 0.96-0.0.99, P<.001) (see Figure 3A).
The AUROCs of FNN and LR were slightly lower at 0.96 (95%

CI 0.93-0.99, P<.001) and 0.93 (95% CI 0.87-0.99, P<.001),
respectively. GBM had the highest AUPRC with a value of
0.80, and AUPRCs of RF, LR, and FNN were 0.73, 0.68, and
0.63, respectively (see Figure 3B). In terms of model calibration,
all models showed low Brier scores of less than 0.1, indicating
an excellent fit of the ML-based models (see Figure 3C).
Calibration plots for each model also confirmed good agreement
between the estimated predicted risk and observed risk.

Figure 3. Five-fold cross-validation of performance of each machine model in predicting 30-day mortality after invasive treatment. A. Area under the
receiver-operator characteristic curve, B. Area under the precision-recall curve, and C. Calibration plot with Brier score.

On external validation using the data set of the Ulsan University
hospital, maximal predictive performance was observed with
GBM (AUROC 0.90, 95% CI 0.86-0.95; P<.001), followed by
FNN with AUROC of 0.85 (95% CI 0.81-0.92, P<.001) (see
Figure 4A). LR and RF showed slightly lower AUROCs of 0.80

(95% CI 0.73-0.87, P<.001) and 0.79 (95% CI 0.74-0.84,
P<.001), respectively. The AUPRCs of GBM, LR, and FNN
showed similar values of 0.47, 0.42, and 0.41, respectively;
however, that of RF was lower at 0.33 (see Figure 4B). All
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models showed low Brier scores of <0.1, indicating a good fit of the ML-based models (see Figure 4C).

Figure 4. External validation of performance of each machine model in predicting 30-day mortality after invasive treatment. A. Area under the receiver
operator characteristic curve, B. Area under the precision-recall curve, and C. Calibration plot with Brier score.

Figure 5A illustrates the predictive performance of each data
category in GBM, which showed the highest AUROC. Among
the individual categories, laboratory values demonstrated the
highest AUROC with a value of 0.98. Medications and vital
signs showed the second highest AUROCs with a value of 0.95.
In contrast, static data such as diagnosis and comorbidities

category, data, and medical history showed low AUROCs of
<0.80. GBM using combinations of feature categories showed
progressive improvement in performance, while dynamic
time-series data was gradually included on top of the basic static
data, after which subtle improvement was seen when adding
cardiac-specific data (see Figure 5B).

Figure 5. Prediction performance of the gradient boosting machine model assessed by area under the receiver operator characteristic curves. A. Each
data category, B. Combination of data categories. AUROC: area under the receiver operator characteristic curve.

Performance in Predicting MACE
The performance of the ML models for predicting 30-day
MACE is demonstrated in Table 4. The maximal predictive
performance was observed with GBM (AUROC 0.88, 95% CI
0.85-0.90; P<.001). RF and FNN showed a similar performance
with AUROCs of 0.85 (95% CI 0.83-0.88, P<.001) and 0.85

(95% CI 0.83-0.88, P<.001), respectively, while the AUROC
of the LR was lower at 0.83 (95% CI 0.82-0.88, P<.001). In
terms of the AUPRC, GBM showed the highest value of 0.50,
followed by FNN, RF, and LR with values of 0.41, 0.39, and
0.37, respectively. All models showed low Brier scores of less
than 0.1, indicating a good fit of the ML-based models.

Table 4. Performance of machine learning models for predicting major adverse cardiac events.

Brier scoreArea under the precision-re-
call curve

P value95% CIArea under the receiver operating character-
istic curve

Model

0.060.37<.0010.82-0.880.83Logistic regression

0.060.39<.0010.83-0.880.85Random forest

0.050.50<.0010.85-0.900.88Gradient boosting machine

0.060.41<.0010.83-0.880.85Feedforward neural network
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Calculating the Importance of Feature Variables in
Mortality-Prediction Models
The rank of important variables in the models for predicting
30-day mortality is presented in Table 5. In LR, systolic blood
pressure was identified as the most important variable. RF

indicated serum aspartate aminotransferase as important, while
GBM and FNN indicated serum protein and serum phosphorus
important, respectively. Overall, vital signs and several
laboratory values such as arterial blood pH, O2, and CO2

concentration were mainly identified as important variables
across the different ML methods.

Table 5. Top 10 important variables of each machine learning model.

Feedforward neural networkGradient boosting machineRandom forestLogistic regressionRank

Serum phosphorusSerum proteinSerum aspartate aminotransferaseSystolic blood pressure1

PaCO2AgePaCO2Diastolic blood pressure2

HemoglobinSerum phosphorusArterial pHRespiratory rate3

Systolic blood pressureSystolic blood pressurePaO2PaCO24

Normal sinus rhythm in electrocar-
diogram

PlateletSerum alanine aminotransferaseArterial pH5

Estimated glomerular filtration rateSerum aspartate aminotransferaseTotal bilirubinPaO26

Serum glucosePaO2Creatine kinase-myocardial bandAspartate aminotransferase7

PlateletSerum albuminWhite blood cellPulse rate8

PaO2Pulse rateSerum sodiumBlood urea nitrogen9

Arterial pHActivated partial thromboplastin
time

PlateletSerum phosphorus10

Discussion

Principal Findings
This was a retrospective study that applied ML to structured
and unstructured patient data from the EMR of a large
quaternary hospital to develop a risk prediction model for 30-day
adverse cardiac events in patients who underwent PCI or CABG.
We comparatively evaluated the performance of several models;
all models demonstrated outstanding results with AUROCs
more than 0.90 with excellent calibration. On external validation,
the performance in predicting 30-day mortality decreased;
however, it remained favorable. Dynamic time-series data,
including laboratory values, vital signs, and medications,
demonstrated the best performances, which mainly contributed
to outstanding performance of the models.

Traditional risk prediction models are derived from a small set
of selected risk factors based on the significant univariate
relationship with the end point on LR, which might deteriorate
the predictive performance. Moreover, it is difficult to include
new and more discriminatory risk factors into the traditional
models, which limits their extension ability [12]. Advances in
big data solutions allow for storage, management, and mining
of large volumes of structured and semistructured data such as
complex health care data [22]. Along the emergence of big data,
ML provides an alternative approach to establish prediction
modeling that might address the current limitations. In this
context, we aimed to develop and validate ML models by using
longitudinal and heterogeneous data of various EMR parameters
to predict mortality or MACE at 30 days after PCI or CABG.
In addition, we explored a general framework for constructing
models by categorizing the data set into static basic data,
dynamic time-series data, and disease-specific data to examine

the potential applicability. This study revealed encouraging
results, which indicate that ML-based models for predicting
adverse events after invasive coronary treatment might be
feasible and applicable as a clinical decision supporting system
in hospitals with fully implemented EMR protocols.
Furthermore, this approach can be extended to various disease
entities or clinical events for improvement in quality of care
and patient outcomes.

In this study, we found that the algorithms developed from a
large single-center EMR database were reliable for use in the
population of a different hospital, albeit with a relatively low
performance. Of note, different hospitals serve dissimilar patient
populations and have divergent clinical practice patterns;
therefore, the EMR data reflecting the real-world clinical
practice in each hospital has its own distinct characteristics.
Hence, a somewhat low performance of the proposed prediction
models in a different cohort can be anticipated. Ideally, a model
that achieves the highest possible level of generalizability is
desirable. However, there have been concerns about whether a
model developed at 1 center can be applied to another center
[9]. In medicine, there are too many practice patterns and other
local idiosyncrasies that make learning a broadly applicable
model effectively difficult [23,24]. In respect that the ultimate
application of prediction models built with EMR data is
integration with the clinical decision support system for
personalized medicine, optimizing individual centers’particular
prediction model may be more important rather than extending
generalizability. Hence, although the developed algorithms from
a single-center EMR database can be used with the database of
a different hospital, individual prediction models based on the
EMR data of each single hospital would be preferable for highly
optimized performance.
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Predictive models with EMR data frequently rely on structured
data. However, given the volume and richness of data available
in unstructured clinical notes or reports, ML models might
benefit from leveraging text mining tools to enhance the model
[22,25]. Hence, we text-mined various cardiac-specific data
such as image and functional studies and detailed information
about PCI and CABG, although the process required diverse
strategies and tasks. In this study, text-mined cardiac-specific
data showed a fair ability to predict 30-day mortality risk.
Although valuable, there are still some challenges in applying
text-mined data in ML, particularly owing to the vagueness,
impreciseness, and uncertain clinical information in EMR data
[12]. In contrast, utilizing structured data is simple if the
database and automated process system for extraction,
transformation, and loading of data are well-established.
Algorithms with only time-series dynamic data, which is the
typical large-volume structured data, outperformed and primarily
contributed to the excellent final results. Intuitively, it is believed
that the learning model will perform better if more data are
integrated into learning [26]. Our results indicate that using only
large amount of reliable structured data of EMR could offer an
opportunity to develop proper risk prediction models. However,
although improvement in clinical data collection processes is
necessary, fundamentally, significant clinical information should
be recorded digitally in a cohesive and standardized manner in
the EMR system.

Limitations
Several limitations of this study should be noted. First, the
cardiovascular event rates, including mortality, might be
underestimated because events were captured only from a
single-center EMR database. Linking it with the national claim
data or health insurance data might possibly capture the events
more accurately. Second, although ease of interpretation is vital
for evaluation of the models [27,28], the black box nature of
ML makes it difficult to be used in health care. Hence, we tried

to assess the importance of the variables through several
experiments; however, there is still a lack of “explainability”
of the prediction models. For ML methods to be readily adopted
in real-world clinical practice, they must be interpretable without
compromising on accuracy [29]. Future works focusing on
developing explainable ML models are necessary to provide
tailored feedback to physicians. Third, other ML methods such
as recurrent neural networks, which have shown advantage in
leveraging the dynamic features, were not investigated in this
work; this needs to be explored in future studies [26,29]. Fourth,
although EMR data within 1 year before index procedures were
used for all populations, different EMR follow-up times prior
to index procedures were not taken into account to develop
models. Finally, we did not conduct external validation for
MACE. Because physician adjudication of myocardial
infarction, stroke, or repeat revascularization events is
resource-intensive and time-consuming in a large-scaled record
cohort, comprehensive source reviews and final ascertainment
were substantially challenged. In order to expand the use of the
EMR-based ML approach, optimization for computerized
detection and adjudication of clinical outcomes will require
considerable investment of time and collaboration with
institutional information technology and bioinformatics
professionals.

Conclusion
Exploiting the diverse parameters of EMR data sets, we
developed and validated ML models for predicting the 30-day
mortality risk following PCI or CABG. The ML algorithms
showed excellent performance, and the applied framework can
be generalized for various health care prediction models. This
study suggests that ML using the real-word clinical data set can
provide a substantial method of developing risk prediction
models. Future studies are warranted to establish the clinical
effectiveness of this approach and real-time application at the
point of care.
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Abstract

Background: The COVID-19 pandemic has changed the usual working of many hospitalization units (or wards). Few studies
have used electronic nursing clinical notes (ENCN) and their unstructured text to identify alterations in patients' feelings and
therapeutic procedures of interest.

Objective: This study aimed to analyze positive or negative sentiments through inspection of the free text of the ENCN, compare
sentiments of ENCN with or without hospitalized patients with COVID-19, carry out temporal analysis of the sentiments of the
patients during the start of the first wave of the COVID-19 pandemic, and identify the topics in ENCN.

Methods: This is a descriptive study with analysis of the text content of ENCN. All ENCNs between January and June 2020
at Guadarrama Hospital (Madrid, Spain) extracted from the CGM Selene Electronic Health Records System were included. Two
groups of ENCNs were analyzed: one from hospitalized patients in post–intensive care units for COVID-19 and a second group
from hospitalized patients without COVID-19. A sentiment analysis was performed on the lemmatized text, using the National
Research Council of Canada, Affin, and Bing dictionaries. A polarity analysis of the sentences was performed using the Bing
dictionary, SO Dictionaries V1.11, and Spa dictionary as amplifiers and decrementators. Machine learning techniques were
applied to evaluate the presence of significant differences in the ENCN in groups of patients with and those without COVID-19.
Finally, a structural analysis of thematic models was performed to study the abstract topics that occur in the ENCN, using Latent
Dirichlet Allocation topic modeling.

Results: A total of 37,564 electronic health records were analyzed. Sentiment analysis in ENCN showed that patients with
subacute COVID-19 have a higher proportion of positive sentiments than those without COVID-19. Also, there are significant
differences in polarity between both groups (Z=5.532, P<.001) with a polarity of 0.108 (SD 0.299) in patients with COVID-19
versus that of 0.09 (SD 0.301) in those without COVID-19. Machine learning modeling reported that despite all models presenting
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high values, it is the neural network that presents the best indicators (>0.8) and with significant P values between both groups.
Through Structural Topic Modeling analysis, the final model containing 10 topics was selected. High correlations were noted
among topics 2, 5, and 8 (pressure ulcer and pharmacotherapy treatment), topics 1, 4, 7, and 9 (incidences related to fever and
well-being state, and baseline oxygen saturation) and topics 3 and 10 (blood glucose level and pain).

Conclusions: The ENCN may help in the development and implementation of more effective programs, which allows patients
with COVID-19 to adopt to their prepandemic lifestyle faster. Topic modeling could help identify specific clinical problems in
patients and better target the care they receive.

(JMIR Med Inform 2022;10(5):e38308)   doi:10.2196/38308

KEYWORDS

electronic health records; COVID-19; pandemic; content text analysis

Introduction

On March 11, 2020, the World Health Organization declared
COVID-19 a global pandemic [1]. SARS-CoV-2 presented a
great capacity for contagion, spread, and high mortality, which
collapsed health care systems worldwide [2,3]. Owing to the
sudden spread of the virus, health care professionals have
undergone a huge, rapid, and profound change in their
professional workplace to combat COVID-19.

In this context, receiving a diagnosis of COVID-19 and being
admitted to hospital, often in intensive care units for periods of
weeks or even months, provoked a sense of helplessness and
near death. This situation has led to an increased prevalence of
mental health problems owing to a high rate of prevalence of
anxiety and depression among patients with COVID-19 [4],
which approached 30% [5] and led to posttraumatic stress in
up to 96.2% of those affected [6]. Medical activity has focused
primarily on the treatment of the disease [7] and research has
focused on epidemiological [8,9], clinical, and
pathophysiological factors [10,11].

During the COVID-19 pandemic, electronic health records
(EHRs) have provided an agile response to the needs of health
care workers and researchers through useful data exploitation
[12,13] by presenting information quickly and efficiently, for
primary and secondary uses in clinical care [14]. This system
allowed having complete and coherent information regardless
of where or by whom it was generated, enabling it to follow the
timeline of the patient’s disease, including symptoms, acute
events, or changes in their treatment or health status [15], which
was especially key given the high rotation of health care
workers. On the other hand, a fundamental point in EHRs is
correct recording of the information in order to be able to make
effective and safe clinical decisions for the patient [16]. Previous
studies show how the lack of registration of information on the
diagnostic process, identification, and listing of events on care
and treatment can affect the monitoring of the quality, safety,
and efficacy of health care interventions [17]. These clinical
notes can be only written by EHR users responsible for patient
care, such as doctors, nurses, and assistant nurses [18,19].
Wisner et al [20] showed that the absence or limitation in
nursing clinical narratives, comments, and clinical notes hinders
clinical reasoning and decision-making along with the
transmission of information between the different shifts.

Electronic nursing clinical notes (ENCN) are documents in
which nurses describe health status, nursing care, medication,
and other observations about patients [21]. In these texts, they
also describe their observations and opinions in an attempt to
better understand the patients' condition and opinions [22] and
among them, the feelings perceived during their interaction
[21]. The appropriate use of ENCN can help improve both
physical and mental health care of hospitalized patients [23].

Much of the relevant information is recorded in ENCN in the
form of free text (unstructured), known as clinical notes, which
makes analysis and decision-making very difficult. This has
stimulated the development of semantic analysis methods
[24,25] that allow in-depth exploration of the clinical
information potentially available in health services [26] and
determine the amount of information collected about a clinical
process or condition [18-20] and the content of that information
regarding specific topics.

Sentiment or opinion analysis allows the analysis of positive or
negative sentiments in a text by using precalibrated dictionaries
of terms [27]. Polarity facilitates the qualification of these
sentiments in the context of sentences; for example, the term
“happy” denotes a clearly positive sentiment, but if it is preceded
by “not happy” in the sentence, the polarity is reversed toward
a negative value [28]. Sentiment analysis in the health care
domain has been used in the analysis of social networks [29,30],
suicide notes [31], or radiology notes [32], as well as nursing
notes [33]. The application of this type of analysis provides
insight into patients' attitudes toward the contextual polarity of
ENCN and assesses symptoms related to their mental health,
which may not have been detected through direct analysis [22].

Latent Dirichlet Allocation (LDA) thematic pattern analysis is
a technique to detect hidden topics in a corpus of texts [34]. It
assumes topics with word clusters in which the distribution of
words within each topic is taken into account, along with the
distribution of topics throughout the corpus [35]. This technique
has been used in social network analysis, news [36,37], or in
response to government policies [38]. Biomedical terms have
been found to form specific topics [39,40]; so, this analysis can
provide useful clinical information [35].

To our best of knowledge, there are currently no studies
describing the use of ENCN for the determination of sentiment
and polarity (rejection-acceptance) as well as the identification
of clinical practices of interest of hospitalized patients during
the start of the first wave of the COVID-19 pandemic.

JMIR Med Inform 2022 | vol. 10 | iss. 5 |e38308 | p.206https://medinform.jmir.org/2022/5/e38308
(page number not for citation purposes)

Cuenca-Zaldívar et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.2196/38308
http://www.w3.org/Style/XSL
http://www.renderx.com/


Therefore, the objectives of this study were the following: (1)
analysis of patient´s sentiments through the analysis of the free
text of the ENCN, (2) comparison of the sentiments and polarity
of hospitalized patients in post–intensive care units for
COVID-19 with those hospitalized in non–COVID-19 wards,
(3) temporal analysis of the patients´ sentiments during the first
wave of the pandemic (January to June 2020) through the
ENCN, and (4) identification of the contents and topics that
appear in the ENCN.

Methods

Design
This is a descriptive study that involves an analysis of the textual
content of the ENCN [41]. Through the analysis of narrative
texts, the positive and negative sentiments of patients can be
described and analyzed [42]. The object of the textual analysis
studies is to understand how a certain event affects the attitudes
and behaviors of people. This study focuses on the ENCN of
the nurses who worked during an outbreak of the COVID-19
pandemic in a Spanish hospital [41].

Ethical Considerations
This study was approved by the Clinical Research Ethics
Committee at the Hospital Universitario Puerta de Hierro
Majadahonda de Madrid (07/400080.9/22). Also, for reviewing
clinical histories and data, we had approval from the
Guadarrama Hospital Center Management. At all times, the
confidentiality of the information was preserved, thus ensuring
responsible use of the data, as established by current Spanish
regulations and in accordance with the tenets of the Declaration
of Helsinki.

Setting, Sample, and Data Collection Tools
All clinical notes contained in the ENCN registered between
January and June 2020 at Guadarrama Hospital were extracted
from the CGM Selene EHR System (CompuGroup Medical
Deutschland AG). Guadarrama Hospital is a mid-term stay
hospital in the Community of Madrid, with 144 beds, and
provides rehabilitation and long-term care to patients with
chronic pathologies; however, during the COVID-19 pandemic,
it also provided care to patients with a COVID-19 infection.

The analyzed records collect follow-up data from the day of
admission until discharge or death, collecting up to 3 records

per day in each work shift (morning shift from 8 AM to 3 PM,
afternoon shift from 3 PM to 10 PM, and night shift from 10
PM to 8 AM). ENCN from two groups of nurses were analyzed:
one from nurses working with hospitalized post–intensive care
unit patients with COVID-19 and a the other from nurses
working in non–COVID-19 wards. The hospital´s physicians
diagnosed and confirmed COVID-19 and assigned patients to
the different wards.

Statistical Analysis
For the statistical analysis, the R package (version 3.5.1; R
Foundation for Statistical Computing) was used. The level of
significance was established at P<.05.

Sentiment Analysis
Previously, the text was standardized by lemmatizing it and
cleaning up the stop words. A sentiment analysis was performed
on the text using the National Research Council of Canada’s
(NRC’s) Emotion Lexicon [43], Affin [44], and Bing [45]
dictionaries. All three of these lexicons are based on unigrams
or single Spanish words that assign scores for positive or
negative sentiment. In addition, the NRC dictionary categorizes
words into emotional categories of anger, anticipation, disgust,
fear, joy, sadness, surprise, and trust, while the Affin lexicon
assigns words with a score between –5 and +5, with negative
values indicating negative sentiment and positive values
indicating positive sentiment. The presence of significant
differences between ENCN in groups of patients with and those
without COVID-19 was verified using the Pearson chi-square
test, with Bonferroni correction for post hoc analysis. The
temporal evolution of sentiments in both groups was evaluated
using the Dynamic Time Warp test, which allows comparing
time series of different lengths using the normalized Euclidean
distance.

Polarity Analysis
In addition, a polarity analysis (Textboxes 1 and 2) of the
sentences was performed using the Bing dictionary, the SO
Dictionaries V1.11, and Spa [46-48] dictionary as amplifiers
and decrementators, and those proposed by Vilares et al [49] as
deniers. The Mann-Whitney U test was used between the two
groups of patients to test significant differences after verifying
the nonnormal distribution of polarity using the
Kolmogorov-Smirnov test with Lilliefors correction.

Textbox 1. The polarity calculation process.

Four phases were used progressively for the analysis of acceptance-rejection (polarity):

Phase 1. We created a file with the text of the interviews broken down by phrases for textual analysis.

Phase 2. We calculated polarity using the Bing Sentiment Dictionary, the amplifiers and deamplifiers from SO Dictionaries V1.11 and Spa, and the
negators proposed by Vilares et al [49].

Phase 3. We calculated the scatterplot of the sentences in the text regarding neutrality to identify positive or negative trends.

Phase 4. The evolution of the emotional valence (positive-negative) would be shown throughout the interviews. We applied Fourier transformation
to confirm the polarity trend.
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Textbox 2. Formula and dictionaries used to calculate polarity.

The analysis was carried out using the Bing dictionary [28]. The Bing dictionary determines the positivity (acceptance) or negativity (rejection) of
each word used. Also, the amplifiers and deamplifiers of SO Dictionaries V1.11 and Spa dictionary [29-31] were used, along with negators proposed
by Denecke et al [32].

To calculate the polarity (δ), a context cluster of words (xT
i ) is formed around each polarized word using the Bing dictionary [28], taking by default

4 words before and 2 words after it (if there is any comma in the cluster, it will only include the words that are after the comma), and those will be
treated as valence shifters.

The words in this cluster are labeled as neutral (x0
i), negators (xN

i), amplifiers (xa
i) or de-amplifiers (xd

i) using the dictionary SO Dictionaries V1.11
Spa2 [47] and the negators proposed by Hu and Liu [48]. Neutral words do not add to the equation but affect the word count (n).

Each polarized word (negative or positive) is weighted (w) on the basis of the context cluster weights (xT
i) and further weighted by the number and

position of the valence shifters directly surrounding it. A weight (c) can be added and applied to both amplifiers and deamplifiers (with a default value
of 0.8 and a lower limit for the deamplifiers of –1).

Finally, the context cluster (xT
i) is added and divided by the square root of the number of words (√n) to generate a polarity score (δ) that, by default,

is not limited in value.

The final result is the following formula:

Where:

ENCN Comparison
Machine learning enables the automation of large amounts of
text by model training [50]. Machine learning techniques were
applied in order to evaluate the presence of significant
differences in the ENCN among patients with and those without
COVID-19. For this, the models were created on a random
subsample of 75% of the text, applying them to the remaining
25%. The applied models were Support Vector Machine,
Naive-Bayes, random forest, and neural network. The quality
of the models was evaluated using the area under the curve
(AUC), sensitivity and specificity, the κ index, and accuracy
with its level of significance. Values above 0.8 and significant
P values (P<.05) were considered the cutoff point.

Topic and Content Analysis
A structural analysis of thematic models (STM) was performed
to study the abstract topics that occur in the comments, using
LDA topic modeling but allows their inclusion as covariates in
the model, the temporal evolution, and the presence of the of
ENCN in groups of patients with subacute COVID-19 and those
without COVID-19 [33]. The optimal number of topics was
determined while considering exclusivity [34] and semantic
coherence [35] as criteria. Exclusivity evaluates if the top words
for the topics appear within top words of other topics, while

semantic coherence shows if the words that are most associated
with the corresponding themes occur equally within the
documents; in both cases, higher values are better. The effect
of the topics of the final model between ENCN in patients with
and those without COVID-19 was analyzed, along with the
temporal evolution in the prevalence of the appearance of global
themes between both groups. The interaction graph was used
to determine the presence of significant differences in the
evolution of prevalence between both groups. An analysis of
the content of the topics and the differences in themes between
both groups was carried out, while the network graph allowed
for the detection of the presence of categories between topics.

Results

A total of 37,564 records were analyzed, after eliminating
24,101 duplicates (ie, ENCN that had been copied and pasted
from previous ones). ENCN were produced by 77 nurses
distributed by working shift, hospital unit, and months (Table
1).

These records correspond to 710 patients, whose baseline
demographics and clinical data are shown depending on whether
or not they were infected with SARS-CoV-2 (sociodemographic
data in Multimedia Appendix 1).
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Table 1. Distribution of electronic clinical nursing notes by working shift, units, and time (in months).

Electronic nursing clinical notes for the non–COVID-19
group, n (%)

Electronic nursing clinical notes for the COVID-19 group,
n (%)

Working shift

10,791 (28.7)5161 (13.7)Morning

7931 (21.1)3637 (9.6)Afternoon

6050 (16.1)3992 (10.6)Night

Month

7360 (19.5)161 (0.4)January

6225 (16.5)466 (1.2)February

4104 (10.9)2457 (6.5)March

396 (1.0)5467 (14.5)April

2093 (5.5)3245 (8.6)May

4594 (12.2)994 (2.6)June

Sentiment Analysis
The differences in the sentiments expressed in the ENCN
between both groups were significant in the NRC dictionary

(χ2
9=360.6, P<.001), Afinn lexicon both in the scores

(χ2
8=385.3, P<.001) and polarity (χ2

1=232.7, P<.001), and Bing

dictionary (χ2
1=368.9, P<.001). Post hoc tests showed

significant differences among all levels (Multimedia Appendices
2 and 3).

In the ENCN of patients with COVID-19, there is a higher
proportion of positive sentiments than that in the
non–COVID-19 group. The most frequently expressed emotion
is sadness, which was greater in the non–COVID-19 group,
followed by trust, which appears to be similar in both groups.
Sentiments with negative scores (–2) are more frequent in the
non–COVID-19 group, while that of positive sentiments was
higher in the COVID-19 group (+2) (Table 2).

The evolution of the sentiments expressed in the ENCN was
similar in both groups, revealing a drastic reduction during April
and May in the non–COVID-19 group, consistent with the peak
of the pandemic (Multimedia Appendix 4).

However, higher values were generally observed in the
sentiments expressed in the COVID-19 group when they were
analyzed with the Afinn dictionary, where the emotional
valences doubled those of patients without COVID-19 and
where we observed a clear asymmetry in the distribution of the
most negative sentiments (scores of –5).

The distances between both time series are generally small; that
is, <0.2. The NRC dictionary showed the greatest differences
between the 2 groups in the emotions of surprise and sadness,
in the positive sentiments of the Bing dictionary, and in the
negative ones of the Afinn dictionary (Multimedia Appendix
5).
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Table 2. Sentiment scores by dictionary.

P valueElectronic nursing clinical notes for the
non–COVID-19 group, mean

Electronic nursing clinical notes for the
COVID-19 group, mean

Dictionaries

<.001National Research Council of Canada dictionary

2.72.8Anger

8.58.7Anticipation

3.93.3Disgust

7.36.6Fear

4.65.2Joy

18.017.1Sadness

2.93.6Surprise

10.410.6Trust

21.320.0Negative

20.622.0Positive

<.001Afinn dictionary

0.00.0–5

0.10.1–4

1.72.1–3

43.436.0–2

18.318.7–1

6.66.2+1

29.236.0+2

0.70.9+3

0.00.0+4

<.001Afinn dictionary (positive-negative)

63.556.9Negative

36.543.1Positive

<.001Bing dictionary

40.434.3Negative

59.665.7Positive

Polarity Analysis
Polarity scores were nonnormally distributed between the
COVID-19 and non–COVID-19 groups (P<.001).

There are significant differences in polarity between both groups
(Z=5.532, P<.001): 0.108 (SD 0.299) in patients with COVID-19
versus 0.09 (SD 0.301) in those without COVID-19.

When both groups were compared, we verified how the polarity
presents a clear upward trend in ENCN of the non–COVID-19
group, while in ENCN of the COVID-19 group, the most
positive value was attained in April to decrease later with higher
values than those of the non–COVID-19 group (Figure 1).
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Figure 1. Polarity of patients' comments.

STM
The selected model contains 10 topics. The topics tend to be
assigned to a few comments, which indicates a high specificity

in their content. The presence of the following concepts was
hypothesized on the basis of the selected topic weights (see
Textbox 3 and Figure 2)

Textbox 3. Topics identified from electronic nursing clinical notes.

Topic 1: Incidents in each working shift.

Topic 2: Application of pressure ulcer treatments.

Topic 3: Blood glucose level and insulin pattern.

Topic 4: Presence or absence of fever in relation to general condition.

Topic 5: Pharmacotherapy treatment and vital signs control.

Topic 6: Administration of the treatment schedule.

Topic 8: Taking the medication.

Topic 7: Incidents that affect the general well-being of the patient.

Topic 9: Baseline oxygen saturation.

Topic 10: Incidents related to the appearance of pain.
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Figure 2. Topic weights and the 5 most frequent words by topic.

An increase in the prevalence of topics was observed in the
second half of the semester, which coincided with the time of
admission of patients with COVID-19. Over time, patients with
COVID-19 showed a higher prevalence of items 9 (baseline
oxygen saturation) and 7 (general well-being), with a lower
proportion of items 2 (pressure ulcer treatments), 3 (insulin), 5
(drug therapy and vital sign control), and 10 (pain control) than
those without COVID-19. Our findings reported that the main
problems among patients with COVID-19 were related to initial
oxygen saturation and general well-being, while in those without
COVID-19, problems were related to pressure ulcer treatment,
pain, diabetes, and drug therapy. The analysis shows different
nuances between patients with and those without COVID-19
in the topics of the model. Control of baseline oxygen saturation,
blood glucose level, and ingestion, as well as fever, are of
greater importance to patients with COVID-19; while among
those without COVID-19, pain, insulin dose, pressure ulcer
treatment, and pharmacotherapy were the priority topics. In
both groups, there is a common concern for the general condition
and well-being of the patients, as well as for the control of the
treatment regimen.

These differences are significant between both groups over time,
as shown in the interaction graph, with an increase in the

proportion of topics in the second half of the semester in the
COVID-19 group, while in the first half of the semester, this
proportion is higher in the non–COVID-19 group. Topics 9
(baseline oxygen saturation) and 2 (pressure ulcer treatment)
present the greatest and significant effects between both groups,
while topics 8 and 1 do not show any significant effect.

There was a high correlation among topics 2, 5, and 8 (pressure
ulcer care, vital sign control, and pharmacotherapy treatment),
topics 1, 4, 7, and 9 (incidences related to working shift, fever
and well-being state, and baseline oxygen saturation), and topics
3 and 10 (blood glucose level and pain), while topic 6
(administration of treatment schedule) remains uncorrelated.

Machine Learning Modeling
Although all the models show high values, the neural network
showed the best indicators (>0.8) and with significant P values.
The worst model was the random forest model, which was
clearly overfitting (Table 3).

This result coincides with the findings of the thematic model
analysis and may indicate significant differences in the type of
nursing comment based on the presence or absence of a
COVID-19 infection, with the neural network showing excellent
values of sensitivity and specificity, as well as precision.
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Table 3. Machine learning models quality.

Accuracy (P value)Accuracy (95% CI)SpecificitySensitivityArea under the curveModel

<.0010.77 (0.76-0.78)0.500.910.70Support vector machine

<.0011 (1-1)1.01.01.0Random forest

<.0010.79 (0.79-0.80)0.820.780.80Naive-Bayes

<.0010.97 (0.96-0.97)0.920.990.96Neural network

Discussion

Principal Findings
Our findings report a higher proportion of positive sentiments
among patients with subacute COVID-19 than that of those
without COVID-19. Groups also differed on the polarity of their
narratives (P<.001). Among the machine learning models, the
neural network presented the best indicators. In addition, the
final STM containing 10 topics with high correlations among
topics 2, 5, and 8 (pressure ulcer and pharmacotherapy
treatment), topics 1, 4, 7, and 9 (incidences related to fever and
well-being state, and baseline oxygen saturation), and topics 3
and 10 (blood glucose level and pain).

Previous studies show the presence of positive sentiments during
the pandemic, reflected in gratitude toward health care workers
and community support for vulnerable people [51]. Our results
show a higher proportion of positive sentiments in the ENCN
of the COVID-19 group than that of the non–COVID-19 group.
These results are consistent with those reported by Sahoo et al
[52] as the patients had been in the intensive care unit for more
than 40 days. The authors suggest that patients tend to become
progressively more relaxed and that the experience of the ward
environment changes, with situations perceived as positive
becoming more frequent. The emotion most frequently
expressed in ENCN was sadness, which was observed in the
non–COVID-19 group. Most patients without COVID-19 were
in the functional recovery unit—these patients are characterized
as being older adults with a prolonged hospital stay and with
comorbidities often associated with physical pain. The feeling
of sadness could be related to physical pain, according to Shirai
and Soshi [53]. Age is also considered a predisposing factor
according to Wu et al [54], where hospitalized older adults are
at a higher disposition to sadness.

Among the 10 main topics of the model selected for ENCN, the
topics with the greatest weight were the application of treatments
for pressure cutaneous lesions in the non–COVID-19 group and
baseline oxygen saturation in the COVID-19 group. In both
groups of patients, there was a common concern for the general
condition and well-being of the patients, as well as for control
on the treatment regimen. The relevant issues detected in the
ENCN in the COVID-19 group were the stability of vital signs
(fever and oxygen saturation), glucose control, and diet. The
importance of oxygen saturation is justified by the respiratory
involvement by SARS-CoV-2 infection [55]. Glucose control
could be explained by its relationship with diabetes mellitus
being a metabolic syndrome considered as high risk with respect
to COVID-19 severity; it may also be related to the use of
corticosteroids for the anti-inflammatory treatment of respiratory

infection [56]. Regarding diet, the frequency of ENCN could
be associated with irregular or low intakes due to the acute
phase, with anosmia and ageusia being typical symptoms of
SARS-CoV-2 infection [55].

In the ENCN in the non–COVID-19 group, the presence of skin
lesions as a topic of interest could be explained by the
prevalence of dependence in hospitalized patients, the rate of
which is 8.7% in Spain. Furthermore, pressure injuries account
for 7%, according to the fifth Spanish National Study of
Prevalence of pressure ulcers and other chronic wounds [57].
In addition, patients in the non–COVID-19 group present risk
factors for skin lesions, such as advanced age, comorbidity,
prolonged hospitalization, functional limitations, and urinary
incontinence [58]. Other topics of interest in the ENCN for the
non–COVID-19 group were insulin dose and pharmacotherapy.
The presence of comorbidities, such as diabetes mellitus, is a
common concern for nurses in both groups. In Spain, this disease
has a prevalence of 12.5% in adults, mostly affecting older
adults [59]. Other records referred to the assessment and control
of pain, a symptom that is usually associated with rehabilitation
processes [56,60].

Text analysis of unstructured ENCNs has been used with success
previously to determine the quality of the registry [61] and in
other unstructured texts such as patient experience [62]. This
type of analysis is considered useful to capture the perception
of an event, demonstrating reliability in health sciences and
COVID-19 issues [51,62]. The ability to identify new topics of
interest and detect areas for improvement is also considered
important [63]. Regarding the dictionaries used in this study,
all of them (NRC, Affin, and Bing) yielded significant results;
hence, the selected words can be considered sensitive and useful
in the care of patients with and those without COVID-19.

The application of text mining techniques on clinical text may
be a valid source for evaluating the sentiments of hospitalized
patients and detecting problems related to their mental health
(anxiety, depression, and posttraumatic stress), which may
influence the evolution of their illness. These results may help
establish early and more effective recovery programs that
address these issues and allow those affected to return more
quickly to their prepandemic lifestyle.

Finally, topic modeling has made it possible to obtain relevant
clinical information from the clinical notes, allowing the
identification of clinical problems in providing care to patients
with and those without COVID-19, which are clearly
differentiated, and which may help guide their care more
effectively.
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Limitations
This study has limitations. The main outcome could not be
compared more broadly owing to the absence of studies on
polarity and sentiment in ENCN during the start of first wave
of the COVID-19 pandemic. The patients´ sentiments before
and during the pandemic could be different; hence, the results
of the comparisons between patients with and those without
COVID-19 must be interpreted with caution.

Conclusions
ENCN can provide very useful real-time information, identifying
the patient’s sentiments and their polarity (rejection-acceptance).
Additionally, it may serve to identify relevant issues based on
the care of different groups of patients, both with and those
without COVID-19. This can present an opportunity to direct
health care strategies in accordance with the needs detected in
hospitalized patients, based on real word data, and may help
develop and implement preventive programs.
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Abstract

Background: Public engagement is a key element for mitigating pandemics, and a good understanding of public opinion could
help to encourage the successful adoption of public health measures by the population. In past years, deep learning has been
increasingly applied to the analysis of text from social networks. However, most of the developed approaches can only capture
topics or sentiments alone but not both together.

Objective: Here, we aimed to develop a new approach, based on deep neural networks, for simultaneously capturing public
topics and sentiments and applied it to tweets sent just after the announcement of the COVID-19 pandemic by the World Health
Organization (WHO).

Methods: A total of 1,386,496 tweets were collected, preprocessed, and split with a ratio of 80:20 into training and validation
sets, respectively. We combined lexicons and convolutional neural networks to improve sentiment prediction. The trained model
achieved an overall accuracy of 81% and a precision of 82% and was able to capture simultaneously the weighted words associated
with a predicted sentiment intensity score. These outputs were then visualized via an interactive and customizable web interface
based on a word cloud representation. Using word cloud analysis, we captured the main topics for extreme positive and negative
sentiment intensity scores.

Results: In reaction to the announcement of the pandemic by the WHO, 6 negative and 5 positive topics were discussed on
Twitter. Twitter users seemed to be worried about the international situation, economic consequences, and medical situation.
Conversely, they seemed to be satisfied with the commitment of medical and social workers and with the collaboration between
people.

Conclusions: We propose a new method based on deep neural networks for simultaneously extracting public topics and sentiments
from tweets. This method could be helpful for monitoring public opinion during crises such as pandemics.

(JMIR Med Inform 2022;10(5):e34306)   doi:10.2196/34306
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Introduction

Background
Pandemics caused by emerging pathogens are public health
emergencies. They have dramatic consequences for the
population (mortality, morbidity, social life) and the economy
[1]. The number of outbreaks has increased in recent decades,
and this trend is expected to intensify [1] in the next years. In
particular, when the first cases of pneumonia caused by the
SARS-CoV-2 pathogen were declared in Wuhan, Hubei
Province, China [2,3], the virus rapidly spread around the world,
leading the World Health Organization (WHO) to declare a
pandemic on March 11, 2020, and announced it on Twitter with
the tweet: “BREAKING “We have therefore made the
assessment that #COVID19 can be characterized as a
pandemic”-@DrTedros #coronavirus.” With this declaration
occurring on social media, Twitter remains an ideal medium to
study public opinion on the declaration of the COVID pandemic.

Utility of Social Networks for Identifying Sentiments
and Topics of the Population During Pandemics
As public engagement is a key element for mitigating pandemics
[4-6], several studies have already mined social media since the
beginning of the COVID-19 pandemic but with distinct
objectives (eg, infoveillance) [7-9] or during different periods
(eg, when first important measures were taken in the United
States) [7,10-14]. To our knowledge, there is no study analyzing
public opinion in the immediate reaction just after the WHO
announcement.

Social networks have largely been used to capture public
opinion, especially during outbreaks (eg, Ebola [15], H1N1
[16]). The methods used to analyze texts from social networks
have considerably improved over time: manual analysis first,
followed by natural language processing (NLP) approaches
based on syntactic-semantic or statistical techniques [17], and
more recently, deep learning approaches [18,19]. Deep learning
methods provide new perspectives on text analysis since they
give the possibility to (1) integrate semantic information around
text (eg, with pretrained word embedding, which allows higher
semantic information as the input for the neural network rather
than a one-hot encoder [20]) and (2) analyze a significantly
larger corpus of text nearly in real time, making it possible to
discover new evidence faster [21]. These approaches [7,8,22-26]
have already been used to capture topics (eg, for the Covid
Infoveillance study [7] or insulin pricing concerns in the United
States [27]) or sentiments (eg, on social network posts or on
health care tweets [17,28-30]).

Prior Work With Topic Extraction
Several approaches have been used for topic extraction,
including qualitative analysis, descriptive analysis, and topic
analysis.

Qualitative Analysis
Qualitative analyses [22,23,31] capture common themes from
manual analysis, fragmentation, and labelling of text. This
method has demonstrated its capacity to accurately capture new
and complex topics [32] but with some major issues: It requires

human coders, time, and resource consumption and is not
suitable for use with high-dimensional data.

Descriptive Analysis
Descriptive analyses [8] capture the distribution of word
frequencies by studying the repetition of words among topics
identified from the internet. It allows researchers to correlate
the importance of a topic to the volume of searches among this
peculiar topic. The main pitfall of this method is the inability
to consider the context around the word.

Topic Analysis
Topic analysis is a method used to discover topics that occur
in a collection of documents and has largely been used to mine
social media. This method aims at identifying patterns in
documents using NLP approaches. Two main categories of topic
analyses are commonly used: topic classification [33] and topic
modeling [34].

Topic classification uses supervised learning algorithms (eg,
Naïve Bayes [19], support vector machine [SVM] [35]) that
need to be trained beforehand with labeled documents,
consequently requiring a priori knowledge of corpus topics.
These algorithms can achieve variable performance, with a
precision varying from 44.9% to 93.3% [19], depending on the
methods used.

On the contrary, topic modeling uses unsupervised learning
algorithms that do not need to be trained beforehand. They are
thus less work-intensive than supervised learning algorithms
since they do not need human-labelled data but often require
larger data sets and are less precise than supervised learning
algorithms. Latent semantic analysis is the traditional method
for topic modeling [36]. It is based on the distributional
hypothesis and assumes that words with close meaning will
occur in similar pieces of text [37]. This assumption enabled
the development of algorithms such as latent Dirichlet allocation
(LDA) [7,25,26,38], which is popular in the medical domain
[39]. This algorithm identifies latent topics from words tending
to occur together and outputs n clusters of words grouped
together by similarity. The topics are then manually labelled
according to the interpretation of the set of words within each
cluster [7,40]. However, LDA requires the investigator to
predefine the number of topics and does not consider the
sequence of words [39]. Topic modeling has been poorly
assessed, perhaps a result of the difficulty comparing the clusters
obtained with a gold standard. To overcome this lack of
evidence, Zhang et al [38] proposed an original approach for
assessing LDA: They compared the topics extracted from LDA
to those collected through a national questionnaire survey and
reported a kappa concordance coefficient of 0.72.

Prior Work With Sentiment Analysis
Several approaches have been used for sentiment analysis,
including lexicon-based methods, supervised machine learning
methods, and hybrid methods.

Lexicon-Based Methods
Lexicon-based methods are unsupervised methods that do not
require training an algorithm and depend only on existing
dictionaries [29]. These methods assume that the polarity of a
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text (positive or negative) can be obtained by characterizing the
constituent words within [29]. A key argument for their adoption
was the fact that they only compute the number of positive and
negative words [41] and thus are faster to implement. They are
also easily adaptable to various languages by using
language-specific dictionaries [42]. However, they present some
limitations that come with language analysis, especially
regarding negation, sarcasm, or words with different meaning
[28,29]. Furthermore, they are essentially limited by the size,
coverage, and quality of the dictionary [17]. Interestingly,
lexicon-based methods can achieve an accuracy up to 94.6%
[43], depending on the dictionary used [43-46].

Supervised Machine Learning Methods
Supervised machine learning methods, which require time to
be trained, have also been used [47]. Naïve Bayes often better
operates on well-shaped data, whereas SVM often achieves
better results with low-shaped data. As social media are
poor-quality data, due to very varying length of tweets,
colloquial language, and numerous spelling mistakes, larger
training data sets are needed to achieve good performance, and
the complexity of these methods may impact training time [48].
They can achieve variable performance, with reported accuracies
ranging from 48% to 91% [47,49,50], depending on the
algorithm used.

Hybrid Approaches
Hybrid approaches combine both previous methods. In a recent
literature review, Drus and Khalid [29] demonstrated that
hybridized approaches to sentiment analysis often outperform
lexicon-based or machine learning–based approaches alone.
For example, Hassan et al [47] used lexicon annotation and
multinomial Naïve Bayes for depression measurement from
social networks and reported an accuracy rate of 91%; Zhang
et al [51] used lexicon annotation and SVM to annotate
sentiments from tweets and reported an accuracy of 85.4%.

Prior Work Aiming to Capture Both Topics and
Sentiments
Few methods based on topic-sentiment models have been
developed, including the joint sentiment topic (JST) model,
Topic-Sentiment Mixture (TSM) model, and Time-aware Topic
Sentiment (TTTS) model.

Joint Sentiment Topic Model
The JST [52] model is a probabilistic modelling framework that
extends LDA with a new sentiment layer. JST is fully
unsupervised and extracts both topics and sentiments at a
document level [52]. However, JST ignores the word ordering
(bigrams or trigrams [52]). Reverse JST [53] is derived from
JST with an inversion of the order of the topic and sentiment
layers. The Aspect and Sentiment Unification Model (ASUM)
[54] is close to JST but focuses on the sentence level. These
models have been poorly assessed and were essentially applied
on nonmedical data sets, with an accuracy varying from 59.8%
to 84.9% for JST [52,53] and 69.5% to 75.0% for reverse JST
[53].

Topic-Sentiment Mixture Model
TSM [55] is based on the probabilistic latent semantic indexing
model and includes an extra background component and 2
sentiment subtopics. It has been assessed on various weblog
data sets [55] but suffers from problems of inferencing on new
documents and overfitting data [52] and requires postprocessing
to obtain the sentiment [56].

Time-Aware Topic Sentiment Model
More recently, the TTTS model [57] is a joint model for
topic-sentiment evolution, based on LDA and allowing analysis
of topic-sentiment evolution over time [57].

Strengths and Weaknesses of Previous Work
Many approaches have proven useful for identifying public
topics alone but without the associated sentiment. Other works,
especially hybrid approaches, have proven useful for sentiment
detection alone but cannot capture the topics alongside sentiment
detection.

In both cases, this makes the results less informative and useful
[52]. Simultaneously capturing topics and sentiments would be
more relevant for better comprehension of public opinion [52],
especially in a time of crisis. Topic-sentiment models have been
proposed for the simultaneous capture of public opinion and
sentiments but may require prior domain knowledge and have
not been applied yet to the medical and social media domains
[52,53,55].

Potential for a Neural Network–Based Approach to
Advance This Area of Research
Neural networks have achieved impressive performances in
many NLP tasks, such as sentiment prediction [58-60].
Furthermore, the probabilities generated by neural networks
could be used to represent sentiment intensity through a
quantitative scale leading to more precise information than basic
sentiment classification into dual qualitative classes (negative
or positive). Surprisingly, to our knowledge, they have not been
used yet for the simultaneous capture of public topics and
sentiments from social media.

Here, we propose incorporating convolutional neural networks
(CNNs) in conjunction with sentiment lexica to simultaneously
capture public topics and sentiments in a hybridized approach
[18,29]. The simultaneous capture of public topics and
sentiments, without prior knowledge, would be very useful
during crises, such as the COVID-19 outbreak.

Methods

Preparation of the Tweet Data Set for Use as an Input
for Neural Networks

Data Collection
To analyze the immediate effect of the announcement of the
COVID-19 pandemic by the WHO, we focused on tweets
relating to coronavirus posted on Twitter the day after the
announcement. We collected all tweets containing the keywords
“coronavirus” or “COVID” posted in English as recognized by
Twitter services on March 12, 2020 (ie, from 00:00:01 to
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23:59:59). For each tweet, we extracted the tweet ID, text
content, and time stamp. We also filtered them using the
language parameter of Twint Python Library [61] to allow the
extraction of English-written tweets only. We verified the
absence of tweets in other language by using common stop
words of these languages, resulting in only finding foreign city
names or family names.

We extracted 1,386,496 tweets from Twitter’s database with
the Twint Python library and stored them in the JSON format.

Ethical Approval
Ethic approval was not needed as analysis of large bodies of
text written by humans on the internet and in some social media
such as Twitter (eg, quantitative analysis such as infodemiology
or infoveillance studies or for qualitative analysis) is not
considered “human subjects research.”

Data Preprocessing
We removed 241,506 (17.5%) duplicate tweets and retweets to
limit the risk of overrepresentation of one person’s view. Twitter
elements (URLs, links to pictures, hashtags, mentions),
punctuation, isolated letters, and typographic UTF-8 characters,
such as stylized commas or apostrophes, were also removed.
Likewise, stop words from Porter’s list [62] were removed using
the Python library Natural Language Toolkit (NLTK) [63], with
orthographic variations. Tweet content was then lower-cased,
and “coronavirus” and “COVID” were mapped under a unique
term.

Figure 1 provides a flow chart of tweet collection, preprocessing,
and splitting into the training and testing sets.

Figure 1. Study flowchart.

Sentiment Annotation
Each tweet was automatically annotated with 3 sentiment labels
from 3 different sentiment lexicons from R package tidytext
[64] (AFINN [44], BING [43], and NRC [45,46]). These
lexicons have largely been used in previous works [30,42,44].
Each lexicon provided a numerical value for each sentiment
word in the tweet, and these values were summed to annotate
the general sentiment of the tweet for each lexicon considered,
as described in other works [41,42]. Thus, for each annotation,
the sum value could be positive, equal to 0, or negative resulting
in positive, neutral, or negative annotation by the considered
sentiment lexicon.

Annotation conflicts were handled using a simple rule-based
algorithm to compute a single annotation for each tweet. This

algorithm is based on the majority vote method and produced
a unique qualitative annotation as “positive,” “neutral,” or
“negative.” If a majority vote was not obtained (ie, if each
algorithm returned a different statement), the tweets were
excluded from the data set.

The automatic annotation of included tweets was controlled on
50 randomized tweets, using a manual revision of tweet
annotation, resulting in an overall agreement of 86% between
algorithm and manual annotation, resulting in a kappa coefficient
score of 0.73.
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Deep Neural Networks for Simultaneously Capturing
Public Topics and Sentiments

Tokenization, Word Embedding, and CNN Architecture
CNN architecture was chosen as it is known to consider Ngrams,
making various levels of analysis possible.

All words in each tweet were tokenized, and tweets were
postpadded for use as input into the pretrained embedding layer
of the neural networks, which encoded semantic properties for
each token. We used a 25-dimension Global Vector for word
representation (GloVe) embedding trained on 2 billion tweets
to shorten training time and achieve better results. This
embedding is available from the GloVe project page [65].

The resulting vectors were then passed to a convolutional unit
composed of a convolutional layer (able to analyze unigrams,

bigrams, or trigrams), global max pooling layer, dense layer,
and dropout layer for regularization and prevention of
overfitting. A final dense layer composed of 3 units alongside
a softmax activation function computed the probabilities of the
tweet belonging to each class of sentiment (positive, neutral,
negative). Early stopping was used to prevent overfitting when
training our models.

To perform the supervised learning step, the data set was split
using stratification over sentiment annotation, allocating 80%
(915,993 tweets) for training and 20% for validation (228,997
tweets; Figure 1). The best model was found after 10 training
iterations and used a kernel size of 2 on the convolutional layer.
The accuracy was 81%, and the F1 score was 81% on the
validation data set (Table 1).

Table 1. Performance of the neural network for sentiment prediction.

TotalNegativeNeutralPositivePerformance measure

81%82%80%83%Accuracy

81%81%82%79%F1 score

82%79%85%77%Precision

81%83%80%82%Recall

Neural Network Outputs: Sentiment Intensity Score and
Weighted Word Capture
For each tweet, we captured the dominant sentiment as a
sentiment intensity score that was calculated from the 3
probabilities predicted by the CNN:

SIS = P(POSITIVE) x 1 + P(NEUTRAL) x 0 +
P(NEGATIVE) x (–1)

where SIS, P(POSITIVE), P(NEUTRAL), and P(NEGATIVE)
are sentiment intensity score and probabilities for a tweet to
belong to the positive, neutral, and negative sentiment classes,
respectively, according to the neural network.

Applying this formula allowed us to distinguish 21.82%
(249,796/1,144,990) of the tweets as positive, 49.41%
(565,782/1,144,990) as neutral, and 28.77% (329,412/1,144,990)
as negative. The sentiment intensity score of each tweet was
then represented on a scale from –100% (totally negative) to
+100% (totally positive), permitted by using the softmax
activation function.

As the CNN architecture alternates convolutional and pooling
layers, it allows, first, aggregation of the numerical input coming
from each word separately until a hidden layer and then
combination of the values of this hidden layer until the output
of the CNN. Hence, this hidden layer encompasses a value for
each word, and this value can be seen as a contribution score
(or a weight) of each word in the computation of the final output
of the CNN [66]. As the output of the CNN is used to compute
the dominant sentiment intensity of the whole tweet, the
intermediate values extracted from the hidden layers make it
possible to associate “weighted words” to the sentiment intensity
score of the tweet. Figure 2 summarizes the capture of the
sentiment intensity score and of the weighted words.

In previous steps, the weighted words and sentiment intensity
score were captured at the individual tweet level. At the tweet
data set level, we computed the average weight of each word
for each sentiment intensity score by gathering similar words
from distinct tweets and applying a mean function. The resulting
matrix contained the weighted words for each given sentiment
intensity score.
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Figure 2. Neural network outputs, where P(POSITIVE), P(NEUTRAL), and P(NEGATIVE) are the probabilities for a tweet to belong to the positive,
neutral, and negative sentiment classes, respectively, according to the neural network. Please note that the convolutional neural network (CNN) is
represented here as a simple perceptron to facilitate reading, and each word’s contribution score is represented with colored neurons.

Visualization of Neural Network Outputs
We developed a Shiny [67] application (available at [68]) based
on word cloud representation to visualize the weighted words
for each sentiment intensity score. This application provides 2
panels: On the right panel, the word cloud displays the weighted
words for a given sentiment intensity score. On the left panel,
the word cloud can be customized through options specifying
the sentiment intensity score, the number and type of words to
display (coronavirus or sentiment-related terms), and the
esthetics (eg, palette of colors, total percentage of vertical words,
and use of a radial gradient).

To generate our word clouds, we replaced the use of word
frequencies to summarize text documents by the weights
calculated in our matrix. The visualization was made clearer by
grouping all lexical variants of a word together, using the word
lemmatizer from the R package textstem [69]. We also
implemented options allowing the user to ignore all sentiment
words and emojis, to choose the word count threshold for

display, and to choose the precision of the sentiment score
(integer or float to 1 or 2 decimal places).

Identification of the Main Topics Discussed by the Public
and Their Associated Sentiment Intensity
Using the Shiny interface, we captured the highest weighted
words for the most extreme sentiment intensity scores (negative
sentiment: –100; positive sentiment: +100). Author A Boukobza
then manually analyzed the top 100 words for both extreme
sentiments using string-matching techniques and identified main
negative and positive topics within tweets. Each topic was
assigned by the manual analysis of these words. Then, we
calculated the number of tweets discussing each topic within
the data set.

In the results section, we replaced the real names of politicians,
political parties, websites, and media with anonymous epithets
such as “politicianX,” “politicalPartyX,” “webX,” “mediaX.”

Figure 3 summarizes the general method used for extracting
weighted words and their associated sentiments from Twitter
data.
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Figure 3. Method used for simultaneously extracting weighted words and their associated sentiments from tweets. An example of a tweet at each step
is provided, from initial preprocessing to sentiment intensity scale classification (here, the tweet sentiment score is +100%) and final output as a word
cloud.

Results

Visualization of Neural Network Outputs With an
Interactive Interface
Neural network outputs were visualized with an interactive
interface displaying a word cloud composed of the weighted
words for each sentiment intensity score.

The analysis of the top 100 most important words for each class
allowed us to predistinguish main themes retrieved for positive,
negative, and neutral classes. In the totally positive class (ie,
+100 sentiment intensity score), the top 100 words included
words such as “happiness,” “democratic,” “ethical,”
“quarantine,” or “expertise.” Concerning the neutral class (ie,
0 sentiment intensity score), the top 100 words included names
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(eg, “François,” “Eliott”), adverbs (eg, “thankfully,” “formally”),
or scientific words (eg, “petri,” “aneurysm”). In the totally
negative class (ie, –100 sentiment intensity score), the top 100

words included words such as “job,” “economy,” “afraid,”
“panic” (Figure 4).

Figure 4. Interactive web application for visualizing neural network outputs. The real names of politicians, political parties, websites, and media were
replaced by anonymous epithets such as “politicianX,” “politicalPartyX,” “webX,” “mediaX.”.

Identification of Public Topics and Associated
Sentiment Intensity
Using word cloud analysis, we captured the topics for both
extreme positive and negative sentiment intensity scores that
were discussed in Twitter in immediate reaction to the
announcement of the pandemic by the WHO. The analysis of

these topics revealed that public opinion was extremely negative
about the consequences of the pandemic on the economy and
health care system. Conversely, public opinion was extremely
positive regarding the mutual aid and cooperation between
people and the public health measures taken against the spread
of COVID-19. More details are given in the following sections,
and example tweets are provided in Table 2.
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Table 2. Main positive and negative topics, with highest weighted words, illustrative tweets, and the number of tweets containing the weighted word.

Number of tweets
containing weighted
words for each topic

Example of an original tweetWeighted words identified by the
neural network

TopicsID

Negative topics

11,297Italy is already today worse affected by Covid-19
than China. (...)

italian, china, eu, euro, italy, polit-
ican1, politicalParty1, politicalPar-
ty2, politician2, president, govern-
ment, politician3, incompetence,
fascist

International situation1

3486(...) The markets are trash, every industry is freaking
out, and people are losing their jobs because it’s
stalling the economy and no one is hiring. (...)

job, impact, industry, yougov, hire,
financial, market, livelihood, diar-
rhea, recession, economy

Economy2

1428Signed out of my media1. (...) Media2 is a HORRI-
BLE thing to be on with this damn Coronavirus (...)

media1, media2, americanMedia and social me-
dia

3

Can the media be declared enemies of the people?
They (...) lie to us, (...) and fail to report news/statis-
tics that Americans need to know. (...)

media1, media2, americanMedia and social me-
dia

4

1411The (...) most dreadful thing we might face is ra-
tioning or triaging who gets ventilators. Emergency
rooms across the U.S (...) have limited capacity and
supplies (...)

ventilator, paramedic, triage, ra-
tion, supply

Medical situation5

8396The EU travelban (...) I must admit is terrible deci-
sion extremely terrible (...)

stay, senior, travel, indoor, cancel,
ban

Public health mea-
sures

6

1680(...) the Fake News Media are fabricating the hype
and panic to destroy the economy (...) #Pandumbic
#coronavirusHoax

coronavirusHoax, fake, conspira-
cy, propaganda

COVID-19 origin7

Positive topics

2178(...) Freer and more democracy countries can do this
if they take needed measures.

italy, nhs, democracy, gov, politi-
cian4

International situation8

745We would like to extend our heartfelt appreciation
to all of our clients and partners working on the front-
lines (...)

client, colleague, customer, compa-
ny

Economy9

4803Put all your money and resources into getting the
cure for the Coronavirus you look like a hero and
win the election

mask, research, health, healthy,
resources, healthcare, doctor, ap-
plause, hero

Medical situation10

6642Good graphic on social distancing and how it can
help healthcare capacity, especially important for a
country like ours with minimal quality ICU #pan-
demia #coronavirus #KoronawirusWPolsce #koron-
avirus #koronawirus

stay, control, announce, interper-
sonal, family, canceleverything,
relative, country, precaution, sani-
tation, icu, measures, prevention,
protect

Public health mea-
sures

11

470(...) Communities who work together to ensure the
health and well-being of their fellow neighbor will
be stronger and healthier than those who don’t.
#Coronavirus

collaborative, togetherMutual aid and cooper-
ation

12

The 6 Main Negative Public Topics Discussed on
Twitter in Immediate Reaction to the Announcement
of the Pandemic by the WHO
Regarding the international situation, Twitter users were worried
about the situation in Italy (eg, the number of cases exceeding
those in China; Table 2, ID 1) or the risk of punishment or
imprisonment for Italians not respecting lockdown. They also
discussed travel bans and their consequences, such as the US
decision to ban all flights to Europe at a time at which only Italy
had a major COVID-19 epidemic. Crisis management and
decisions taken by politicians, such as decisions relating to

paramedical staff management, were also highly criticized.
Regarding economy, Twitter users expressed their fears about
the economic consequences of COVID-19. They were worried
about the shortages induced by panic buying, such as those
leading to a shortage of toilet rolls, and anxiety about the
possibility of losing their jobs and being unable to pay their
debts (Table 2, ID 2). They also mentioned a potential global
recession crisis, caused partly by flight limitations. Regarding
media and social media, Twitter users were angry with the media
and social media, which they blamed for amplifying fears and
stress relating to COVID-19 (Table 2, ID 3), and for not
reporting COVID-19 statistics (Table 2, ID 4). Regarding the
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medical situation, Twitter users were concerned about the
medical situation, particularly the management of paramedical
staff and materials. They expressed worries about the small
number of ventilators available and the likely consequences in
terms of equality of access to health care (Table 2, ID 5).
Regarding public health measures, Twitter users complained
about the limitations of personal liberties, such as the prohibition
of flights to Europe (Table 2, ID 6) and the canceling of many
events. Regarding the COVID-19 origin, Twitter users talked
about “CoronavirusHoax.” They suggested that the pandemic
was a hoax and that COVID-19 was a fake disease and evoked
a conspiracy theory driven by economic and political motives
(Table 2, ID 7).

The 5 Main Positive Public Topics Discussed on Twitter
in Immediate Reaction to the Announcement of the
Pandemic by the WHO
Regarding the international situation, Twitter users expressed
their satisfaction with the actions and decisions taken by some
countries, such as Japan, Hong Kong, Singapore, South Korea
(Table 2, ID 8), or Denmark (eg, the decision to impose a
lockdown at the right timing). They also highlighted the efficient
measures taken by some countries such as the United Kingdom
to overcome the negative effects of lockdown (eg, National
Health Service access or online courses for students). Regarding
the economy, Twitter users were very grateful to all those who
worked during the crisis (Table 2, ID 9). Public workers were
even described as “people working hard for ensuring population
security.” Twitter users were also informed about the continuity
of services ensured by some private companies despite the crisis.
They were satisfied with the health measures taken by these
companies (eg, social distancing, sanitizing measures, provision
of masks). Regarding the medical situation, Twitter users
maintained their trust and hope regarding the medical situation.
They highly appreciated the work of medical and paramedical
staff and their involvement in communicating reliable
information about COVID-19 to the population. They
highlighted the importance of developing telemedicine and
evoked the possibility of a COVID-19 vaccine and its potential
consequences for health policies (Table 2, ID 10). They also
discussed the production and free distribution of infographics
and masks to health professionals by private companies.
Regarding public health measures, Twitter users encouraged
the respect of national measures, social distancing, and
lockdowns to allow people to protect themselves and their
families. They also appreciated the graphics providing guidance
on the changes in behavior required to limit the spread of
coronavirus (Table 2, ID 11). Regarding mutual aid and
cooperation, Twitter users were satisfied with the level of
cooperation between people in front of the coronavirus crisis
(Table 2, ID 12). They were grateful to workers and medical
and paramedical staff.

Discussion

Principal Findings
We proposed here an original new approach based on deep
neural networks for the simultaneous capture of public topics
and sentiments from Twitter data. We trained a CNN on a

training data set of 915,993 tweets and achieved a performance
of 81% for both accuracy and F1 score. The trained neural
network was able to capture the weighted words and their
associated sentiment intensity score. These outputs were then
visualized through an interactive and customizable web interface
displaying the weighted words as a word cloud representation.
The trained model was then used to analyze public topics and
sentiments in reaction to the announcement of the COVID-19
pandemic by the WHO.

Strengths and Limitations
Our study has several strengths. We combined lexicons and
deep learning approaches to improve sentiment prediction. We
used CNN to capture simultaneously weighted words associated
with sentiment intensity score and to compare unigrams,
bigrams, and trigrams during training. We also tried to improve
the explicability of the model and to limit the black box effect
[70,71] by displaying the outputs of the neural networks through
an interactive word cloud interface. The word cloud
representation is easily understandable and made it possible to
consider the outputs attributed by the neural networks to each
word according to sentiment intensity score. Our study has also
several limitations. First, our method was developed on a data
set of tweets in English and needs to be adapted for other
languages [72] and assessed with other extensive data sets
[49,73]. Another limitation is the finite set of inclusion
keywords, resulting in a potential lack of information due to
the total number of keywords used. Further works should
concentrate on the diversification of keywords used to provide
better sensibility. Furthermore, duplicate tweets and retweets
were removed during preprocessing to limit the risk of
overrepresenting one person’s view, but this may have also led
to underestimating the weights of some words. Second, class
imbalance was checked before training, and early stopping was
used to prevent the neural network from overfitting the data set.
This resulted in good performance, with a model accuracy of
81%. Published studies have reported accuracies ranging from
48% to 91% [47,49,50] with the use of supervised learning
techniques such as SVM, Naïve Bayes, logistic regression, or
word2vec models. However, these performances were measured
for binary sentiment classification (ie, negative vs positive
sentiment). Here, we decided to consider neutral sentiments
too, because it has been shown that tweets can be associated
with neutral sentiments [74]. This choice allowed us to give
more explicability and granularity but remains an issue because
of our inability to compare our results with those of other
studies.

Comparison With Prior Work

Use of Social Media to Capture Public Opinion
Approaches other than social media mining have been described.
Focus groups provide a good understanding of public opinion
and sentiments but are time-consuming and not necessarily
representative of the whole population [4,6,75] as shown by
Rowe et al [76] during the avian influenza crisis. Telephone
and web-based surveys are expensive and time-consuming [77].
Systematic reviews analyze studies capturing public opinion
[75] but are inappropriate in pandemic conditions as they require
multiple skill sets (eg, experts on the topic, systematic review
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methodologists) and are hardly usable for real-time monitoring.
Unlike these approaches, social media mining captures a large
range of opinions from a large sample, rapidly and for a
reasonable cost [38,75]. It also has proven useful for
understanding the attitudes and behavior of the public during a
crisis [78]. For example, before the COVID pandemic, Chew
et al [16] used Twitter to extract public perceptions of H1N1
during the H1N1 pandemic. However, some limitations are
inherent to social media: The studied population is limited to
social media users [79], the geographic location of users cannot
be assumed with absolute certainty [80], and analyses are limited
to a given language and source (eg, Twitter). Our study
illustrates that, despite these issues, social media mining remains
an efficient way to capture the thoughts, feelings, and fears of
part of the population during a pandemic.

Research Perspectives
As the detection of topics and sentiments is directly related to
neural network accuracy, more options could be explored to
obtain higher scores, such as replacing word2vec embedding
with Embeddings from Language Models (ELMo) [75] or
Bidirectional Encoder Representation from Transformers
(BERT) [14], which have proven useful for aspect-based
sentiment classification [4,76]. The development of a
Twitter-specific version of sentiment lexicons integrating
web-specific elements such as emojis, abbreviations, or hashtags
might also improve results [77]. Future research should
concentrate on adding more granularity to the emotion expressed
in tweets, by using emotion-specific lexicons to annotate the
tweets with specific emotions such as fear, sadness, or happiness
[21]. Newly developed initiatives such as the Linguistic Inquiry
and Word Count (LIWC) dictionary [81] could also fulfill this
task as they provide a dictionary able to recognize emotional
words and automatically categorize them as more granular
emotions in a hierarchical way (ie, each granular emotion, such

as anger, is a child of a top-level emotion like a negative
emotion).

Implications for Public Health
Our method could be used to guide public health decisions [77].
Besides factual parameters such as the disease characteristics
or the burden it poses to the health care system [77], public
opinion must also be considered to ensure that public health
decisions are in line with the beliefs and priorities of the public
[77]. Since many people use social media to share opinions and
sentiments [79], they could provide policy makers and clinicians
an opportunity to understand, in real time, the expectations,
beliefs, and behaviors of the population and to adapt public
health decisions accordingly [82,83]. They can also be used to
communicate timely messages to the population [84] and thus
to increase the chance of successful adoption of measures by
the population. The development of indicators based on the
real-time tracking of health-related conversations on social
media is becoming crucial [9,85-87]. A major contribution of
this study is to show the usefulness of deep learning methods
to simultaneously capture public opinion and associated
sentiments from large amounts of social media data.

Conclusions
We developed a new approach to conduct both sentiment and
topic analyses on social media data by leveraging deep neural
networks in conjunction with lexicons. We visualized the outputs
of the neural network through a word cloud web interface
displaying the weighted words associated with each sentiment
intensity score. We demonstrated the utility of our method by
applying it to a COVID-19 data set and identifying the main
positive and negative topics discussed on Twitter in reaction to
the announcement of the pandemic by the WHO. Future studies
should concentrate on improving neural network performance
and adding granularity to emotion detection. Our method may
eventually prove useful for developing indicators for monitoring
public opinion during pandemics.
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Abstract

Background: With hundreds of registries across Europe, rare diseases (RDs) suffer from fragmented knowledge, expertise,
and research. A joint initiative of the European Commission Joint Research Center and its European Platform on Rare Disease
Registration (EU RD Platform), the European Reference Networks (ERNs), and the European Joint Programme on Rare Diseases
(EJP RD) was launched in 2020. The purpose was to extend the set of common data elements (CDEs) for RD registration by
defining domain-specific CDEs (DCDEs).

Objective: This study aims to introduce and assess the feasibility of the concept of a joint initiative that unites the efforts of the
European Platform on Rare Disease Registration Platform, ERNs, and European Joint Programme on Rare Diseases toward
extending RD CDEs, aiming to improve the semantic interoperability of RD registries and enhance the quality of RD research.

Methods: A joint conference was conducted in December 2020. All 24 ERNs were invited. Before the conference, a survey
was communicated to all ERNs, proposing 18 medical domains and requesting them to identify highly relevant choices. After
the conference, a 3-phase plan for defining and modeling DCDEs was drafted. Expected outcomes included harmonized lists of
DCDEs.

Results: All ERNs attended the conference. The survey results indicated that genetic, congenital, pediatric, and cancer were
the most overlapping domains. Accordingly, the proposed list was reorganized into 10 domain groups and recommunicated to
all ERNs, aiming at a smaller number of domains.

Conclusions: The approach described for defining DCDEs appears to be feasible. However, it remains dynamic and should be
repeated regularly based on arising research needs.

(JMIR Med Inform 2022;10(5):e32158)   doi:10.2196/32158
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Introduction

Background
Patient registries and databases are fundamental instruments
for increasing knowledge on rare diseases (RDs), supporting
clinical, epidemiological, and basic research, and improving
patient care and health care planning [1,2]. With >600 registries
across Europe [3], RDs suffer from fragmented knowledge,
scattered expertise, and research duplication [1]. Data are not
collected in a uniform way throughout Europe, and there are no
shared standards to analyze the information [3]. The use of
international coding and nomenclature, minimal common data
sets, and good practice guidelines enhances the interoperability
and maximizes the utility of RD registries. This allows data to
be efficiently pooled to reach sufficient sample sizes for clinical
and public health research focusing on disease etiology,
pathogenesis, diagnosis, and therapy [1,2].

On the Rare Disease Day (2019), the European Commission
announced a new web-based knowledge-sharing platform to
promote better diagnosis and treatment for >30 million patients
with RD. Developed by the Joint Research Centre (JRC) of the
European Commission, the EU RD Platform aims to bring
together European RD registries, thus overcoming fragmentation
and promoting interoperability between existing and new
registries. Moreover, the platform seeks to standardize data
collection and data exchange at the EU level, thereby supporting
quality RD research, enhancing diagnosis and treatment
outcomes, and improving the lives of patients and their families
[4]. The efforts of European Reference Networks (ERNs) toward
establishing ERN-wide registries are also implicitly supported
by the platform [3], mainly by offering a patient
pseudonymization and privacy-preserving linkage service.

By delivering EU standards for data collection and data sharing,
the EU RD Platform is a significant asset for the European Joint
Programme on Rare Diseases (EJP RD) [5], which aims to
establish an innovation network for rapidly translating research
results into clinical and health care applications [3]. The EJP
RD brings together over 130 institutions from 35 countries to
collaboratively build infrastructure and digital platforms, which
promote cross-border sharing of clinical data and expertise. The
ultimate goal is to overcome the fragmentation of RD resources
and to foster RD care and medical innovation. The EJP RD also
aims to use, support, and connect already-funded tools operating
within the field of RD research and adapt them to the needs of
end users through implementation tests in real settings [6].
Through EJP RD, the EU RD Platform resources can be
disseminated to future research projects and exposed to a wider
community of RD researchers, clinicians, and patients in Europe
and elsewhere [3].

Aiming to make RD registries and their data searchable and
findable, the EU RD Platform comprises the European Rare
Disease Registry Infrastructure (ERDRI) [7], which includes
the European Directory of Registries (ERDRI.dor), the Central
Metadata Repository (ERDRI.mdr), and the pseudonymization
tool. Details on their infrastructure and functioning will be
published elsewhere. However, we focus here on the set of
common data elements (CDEs) for RD registration [8], which

is another important building block of the platform. Developed
by experts from various EU projects (eg, European Union
Committee of Experts on Rare Diseases Joint Action
[EUCERD], European Platform for Rare Disease Registries
[EPIRARE], and RD-Connect) related to common data sets,
the set of CDEs was released by the EU RD Platform as the
first practical instrument toward increasing the interoperability
of RD registries [9]. The set recommends the collection of 16
data elements by all European RD registries, as they are
considered essential for RD research. The 16 CDEs are classified
into various groups, including personal data, diagnosis, disease
history, care pathway, information for research purposes, and
a disability profile. Exemplary CDEs include age (date of birth),
sex (male, female, undetermined, or fetus), status (alive, dead,
lost to follow-up, or opted-out), and RD diagnosis
(ORPHAcode) [9].

Although CDEs constitute a common basis for characterizing
patients with RD across all 24 ERNs, many overlaps between
ERN domains are not clearly defined. For instance, there are 3
oncological (ERN PaedCan, ERN EURACAN, and ERN
EuroBloodNet) and 3 neurological (ERN EpiCare, ERN-RND,
and ERN EURO-NMD) ERNs, among others, with numerous
diseases covered by each of them being treated jointly. The list
of the 24 initially funded ERNs that have been considered in
the context of this work can be found in Multimedia Appendix
1. Furthermore, beyond CDEs, many ERN registries collect
data elements that may be commonly used by others working
in the same domain. However, no standards exist for
categorizing such commonalities. Domain-specific CDEs
(DCDEs) are designed for use in studies or registries of a
particular topic, disease or condition, body system, or other
classifications (eg, cancer, Parkinson disease, Alzheimer disease,
diabetes, or ophthalmology). Some domains are broadly
applicable to a wide range of studies, whereas others are more
useful in specific fields of clinical research [10]. Therefore, the
definition of DCDEs for the various RD domains is expected
to standardize data collection, thus enhancing the interoperability
and facilitating the discoverability of data stored in RD
registries.

In 2019, the EJP RD formed an expert workforce to assist the
ERN Registry Task Force (TF) on interoperability and
standardization issues [11,12]. Extracted from the data
dictionaries of the first 4 ERN registries (ERKReg [ERKNet],
U-IMD [MetabERN], EURRECA [ENDO-ERN], and DATA
WAREHOUSE [ERN-LUNG]), a Common Data Dictionary
(CDD) was introduced as a tool to avoid fragmentation and
ensure registry interoperability. Accordingly, the TF committed
to the use of the CDD as part of the group’s efforts to develop
ERN registries in full compliance with the FAIR principles
(findability, accessibility, interoperability, and reusability).
Therefore, these efforts are expected to improve research
transparency and facilitate knowledge discovery for both humans
and machines [11,13].

Rationale
To achieve semantic interoperability between RD registries, a
joint initiative of the EU RD Platform, the ERN Registry TF,
and the EJP RD registry interoperability work focus group was
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launched in 2020. Driven by the research needs of ERNs, the
purpose was to extend the set of CDEs for RD registration by
defining DCDEs, that is, ones that are considered necessary
within each particular ERN domain. This idea was first
expressed at an ERN Registry TF meeting in Brussels around
mid-2019, when some ERNs indicated that they had already
collected a small number of data elements that commonly exist
in registries of their domain.

To this end, a joint conference took place in December 2020,
bringing together the EU RD Platform team members, ERN
representatives and registry owners, and EJP RD partners to
discuss the concept of DCDEs cooperatively. The conference
also aimed to tackle core questions, such as whether all ERNs
already had a defined data set in place, and for which reasons
they believed DCDEs would be necessary. Medical experts
were also intended to indicate, during and after the conference,
whether some domains could already be derived from existing
overlaps and consider experts who could take charge of such
domains. Exploring how harmonized lists of DCDEs could be
produced was planned at a later stage, as well as identifying
appropriate standards, ontologies, and terminologies to finally
annotate DCDEs and integrate them into CDE semantic
modeling activities of EJP RD.

Led by the ERN Registry TF, initial efforts were already made
by 4 ERNs (ERKNet, MetabERN, ENDO-ERN, and
ERN-LUNG) toward the creation of a CDD, mainly collecting
common data fields among their registries in an Excel (Microsoft
Inc) table. In continuation to these efforts, the plan is to have
medical experts from all 24 ERNs drive this initiative toward
the following:

• Forming ERN domain groups
• Defining DCDEs for each domain group by identifying

commonalities among relevant ERNs
• Harmonizing, modeling, and publishing DCDEs and adding

them to ERDRI.mdr

Objectives
This study introduces the concept of a collaborative initiative,
which aims to prevent duplicated efforts by uniting and
coordinating the activities of the EU RD Platform, ERN Registry
TF, and EJP RD on topics such as the CDEs, CDD, and common
metadata and data model of the EJP RD. Moreover, the initiative
aims to further standardize RD registration by extending the set
of CDEs with DCDEs, thereby improving the semantic
interoperability of RD registries and enhancing the quality of
RD research. The study also assesses the feasibility of the
concept by examining previous efforts to define (D)CDEs and
exploring if and how DCDEs can benefit the RD field from the
perspective of the ERNs.

Methods

Conference Participants
All 24 ERNs were invited to attend the conference. Speakers
included participants from the JRC/EU RD Platform as well as
EJP RD experts from various backgrounds, particularly focusing
on common data sets and FAIRification. ERN representatives
were preferably required to have a medical background and

considerable involvement in registry activities. These were
considered necessary requirements to identify essential ERN
domains as well as existing overlaps, if any, thus paving the
way for creating lists of DCDEs. The EJP RD previously built
a database of experts involved in registry design and
construction, listing their names, institutions, contact details,
and expertise. Although not yet complete, the database included
experts from all 3 parties (JRC/EU RD Platform, ERNs, and
EJP RD) who indicated working with registries. Therefore, it
was intended for use, together with other resources, to identify
appropriate participants for the next steps.

Preconference Tasks
Before the conference, a Forms (Microsoft Inc) survey was
prepared and communicated to all 24 ERNs through the
FAIRification stewards of the EJP RD. The survey proposed a
list of medical domains and requested ERNs to identify those
that generally fit their activities. The list comprised 18 domains,
mainly suggesting the specialties indicated in the name of each
ERN (eg, ERN-EYE—Sight, ERKNet—Renal, and
EURACAN—Cancer). The main survey item read, “To which
domain(s) do you think your ERN fits?” and enabled checking
multiple answers. Another optional item asked if any of the
suggested domains could be grouped together and allowed for
text answers (eg, cancer and congenital). The deadline for
completing the survey was set on the day of the conference.
However, we also planned to collect any missing answers during
or shortly after the conference.

The Conference
Organized by the EJP RD, the conference comprised three
40-minute sessions, the second of which was dedicated to
DCDEs. The first presentation was held by the EU RD Platform
team, providing some findings collected in preparation for their
originally planned ERN workshop in March 2020.
Unfortunately, this event was cancelled because of the
COVID-19 pandemic. The team also expressed interest in having
2 specific questions answered, namely, whether each of the
ERNs already had their data set in place (at the ERN level) and
for which specific purpose they believed DCDEs were
necessary. The survey results were then presented by EJP RD
experts, giving some exemplary purposes to illustrate the
importance of DCDEs and accordingly suggesting a scoring
method for rating the importance of every identified DCDE
within a particular domain. It was also indicated that a technical
phase would follow the definition of DCDEs. Therefore, both
EJP RD and EU RD Platform experts would guide the ERNs
through harmonizing and modeling identified DCDEs, in
preparation for adding them to ERDRI.mdr and extending
semantic data modeling activities of the EJP RD.

Postconference Tasks
Following the conference, the remaining ERNs, which had not
completed the survey, were requested to provide their answers,
and the following 3-phase plan was jointly drafted:

1. Formation of ERN domain groups
• EJP RD experts group suggested domains and request

ERNs to review the groups
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• EJP RD experts request ERNs to reorganize the
suggested groups, if necessary, aiming for a minimum
number of domain groups and a minimum number of
ERNs per group

• ERNs elect relevant experts/curation team members
for each group

2. Definition of DCDEs
• Elected ERN experts suggest, curate, and define

DCDEs by comparing their data dictionaries and
identifying relevant commonalities for every domain
group (the EJP RD can support if the data dictionaries
are shared)

• The EU RD Platform and EJP RD experts offer support
by providing necessary templates for DCDE lists,
scheduling domain meetings, and ensuring that
everything is harmonized

• The EU RD Platform and EJP RD experts prioritize
DCDEs using the scoring method proposed by EJP RD,
in case long lists are identified

3. Technical phase
• EU RD Platform and EJP RD experts guide ERNs to

extend the semantic data modeling activities of the EJP
RD: harmonization, modeling, and mapping of DCDEs

• EU RD Platform and EJP RD experts guide the ERNs
in publishing DCDEs alongside CDEs and inclusion
in ERDRI.mdr

• New registries implement both CDEs and DCDEs

Scoring Method
Completed DCDE lists were planned to be sent to medical
experts for review using a structured feedback method, allowing
them to rate an arranged set of statements designed to indicate
the relevance of each DCDE within a certain domain group. To
ease the adoption of identified DCDEs by all RD registries, it
was initially recommended that the rating statements address
the following aspects: (1) importance of each DCDE for the
integrity of a registry within a certain domain group, (2)
reliability of data collection in each DCDE, (3) necessity of a
DCDE for the analysis of the primary outcome of the registry,
and (4) the time and cost required to collect each DCDE [14].
Other categories that might arise in discussions during or after
the conference were also to be incorporated. On the basis of the
feedback of experts, individual scores could eventually be
calculated for every identified DCDE, thus reflecting the
importance of each DCDE within each domain group. These
scores could also be used by curation teams to prioritize their
DCDEs, if their efforts culminated in prolonged lists.

Domain Representation
To visually represent the domains, several diagrams were
prepared and circulated before and during the conference. Figure
1 illustrates this concept by showing domain overlaps and
classifying DCDEs. Neurology, cancer, and cardiology were
used for exemplary purposes, with N suggesting an unknown
number of domains expected to be identified by the initiative.
The CDEs of the EU RD Platform were placed in the center,
ensuring that they would remain the basis for all DCDE lists.

Figure 1. Domain-specific common data elements (DCDEs) classification and domain overlaps. CDE: common data element; RD: rare disease.

To illustrate the concept further, and how it is intended to
classify registries, Figure 2 depicts an example of 4 ERN
registries belonging to 2 exemplary domains, namely cancer
and neurology. Numbered blocks were used to represent the

data elements of a registry, whereas colors were applied to
characterize the different types of data elements. In an ideal
world, the registry data elements could be classified into the
following:
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1. CDEs, that is, ones that would commonly exist in all RD
registries

2. DCDEs, that is, ones that would commonly exist in all
registries of a particular RD domain

3. Registry-specific data elements, that is, ones considered
specific for each registry’s purpose, thus would commonly
differ from one registry to another

This classification was also illustrated by the occurrence of navy
blue data elements (CDEs) among all registries, regardless of

their domain, as opposed to the green and orange elements
present only in registries of the cancer and neurology domains,
respectively. Furthermore, the presence of both the green and
orange elements in registry 3 was used to indicate that a registry
could belong to more than one domain, thereby incorporating
DCDEs of both the cancer and neurology domains. Notably,
the marked cancer DCDEs ensured that CDEs would constantly
remain the basis for all domains while complemented by
domain-specific extensions.

Figure 2. Classification of registries and their data elements. CDE: common data element; DCDE: domain-specific common data element; RDE:
registry-specific data element.

Expected Outcomes
Lists of DCDEs for every identified ERN domain group were
set as expected outcomes for the first and second phases. The
technical phase was planned to harmonize these lists, thus
removing duplicates, if any, and ensuring identical definitions
of DCDEs and their values. The harmonized version would then
be published in PDF format on the EU RD Platform and added

to ERDRI.mdr to allow reusability. EJP RD experts would also
explore existing ontologies and terminologies for annotating
and incorporating the harmonized lists into the registry codebook
of the EJP RD [15] and CDE semantic data model [16]. This is
expected to enhance the interoperability of RD registries and
boost RD research, which is the main objective of this project.
Figure 3 shows a visualization of the concept, portraying the
connections among the different members of the initiative.
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Figure 3. Technical vision. CDE: common data element; EJP RD: European Joint Programme on Rare Diseases; ERDRI: European Rare Disease
Registry Infrastructure; ERN: European Reference Network; EU RD Platform: European Platform on Rare Disease Registration; MDR: Metadata
Repository.

Ethics Approval
Any data examined do not relate to specific individuals, which
means that no personal harm can occur to individuals.
Accordingly, the review by an ethics committee was not
required.

Results

Results Overview
All 24 ERNs attended the conference. Most participants
indicated that they already had their data sets in place. However,
the main purpose for defining DCDEs could not be recognized.
The EJP RD experts, however, presented three potential
purposes that emphasized the importance of DCDEs: increasing
interoperability, allowing data comparisons in joint research
projects, and improving data discoverability.

A Scoring Method for the Nomination of
Domain-Specific Common Data Elements
A scoring method was also presented, suggesting a way for
medical experts to rate the importance of each DCDE based on
these 3 purposes. Figure 4 shows the proposed scoring system
using a 4-point scale. On the basis of the feedback of 3 experts,
exemplary scores were also provided for the 2 DCDEs belonging
to the cancer domain. For each item, the average of all expert
scores was calculated to provide an overall item score. The
overall DCDE score was then determined as the average of all
3 overall item scores. In this particular example, the score of
DCDE 1 slightly exceeded that of DCDE 2, suggesting that it
is somewhat more important for the cancer domain. Similarly,
individual tables are meant to be constructed for each of the
domains identified by the initiative.
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Figure 4. Proposed scoring system and example. DCDE: domain-specific common data element; ERN: European Reference Network.

First Proposal of Domains and Domain Groups
EJP RD experts also presented the survey results, indicating the
genetic, congenital, pediatric, and cancer domains as the most
overlapping and adding to the importance of defining DCDEs.
For the first survey item, which requested ERNs to select
relevant domains from a list of 18 suggestions, responses from
22 (92%) ERNs were received and are presented in Table 1.
The second survey item was answered by 14 (58%) ERNs.
However, no patterns could be identified in the suggested
domain groups.

Following the conference, the EJP RD experts and FAIRification
stewards grouped some of the suggested domains, aiming at a
minimum number of domain groups. The initially proposed

domains were reorganized into 10 domain groups, and the
survey answers were used to identify relevant ERNs. Table 2
shows the suggested list of domain groups as well as the
corresponding ERNs. As shown, a single domain group could
comprise multiple related ERNs and a single ERN could belong
to various relevant domain groups. The list was communicated
once more to all ERNs, requesting them to edit, merge, add, or
move their ERN between domains as they saw necessary. They
were also requested to elect, for every domain group, a person
in charge and members of a data element curation team. This
constitutes selected members, from every ERN of a particular
domain group, intended to be in charge of drafting a DCDEs
list, sending it to medical experts for review using the
aforementioned scoring method, and accordingly agreeing on
final definitions.
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Table 1. Survey responses.

ERNsa, n (%)Domain

20 (83)Genetic

18 (75)Pediatrics

14 (58)Congenital

7 (29)Cancer

6 (25)Endocrine and metabolism

6 (25)Neurology

6 (25)Renal

6 (25)Immune disorders

5 (21)Skin

4 (17)Gastroenterology and hepatology

4 (17)Lung

4 (17)Other

3 (13)Muscle, bone, and skeletal diseases

3 (13)Cardiovascular

3 (13)Hematological disorders

3 (13)Urology

2 (8)Respiratory

1 (4)Head and neck

1 (4)Sight

aERN: European Reference Network.

Table 2. Suggested domain groups.

Relevant ERNsaDomain group

ERN-EYE, RARE-LIVER, ERNICA, ERKNet, ERN ITHACA, ERN GUARD-Heart, EPICARE, PaedCan,
VASCERN, EuroBloodNet, Endo-ERN and ERN-BOND, MetabERN, ERN-TransplantChild, ERN-Skin, ERN
CRANIO, ERN GENTURIS, RITA, and ERN Eurogen

Genetic

ERN-EYE, ERNICA, ERN ITHACA, VASCERN, Endo-ERN and ERN-BOND, MetabERN, ERN-TransplantChild,
ERN-LUNG, ERN-Skin, ERN CRANIO, RITA, and ERN eUROGEN

Congenital

ERN-EYE, RARE-LIVER, ERNICA, ERN ITHACA, EPICARE, PaedCan, VASCERN, Endo-ERN and ERN-
BOND, MetabERN, ERN-TransplantChild, ERN-LUNG, ERN-Skin, ERN CRANIO, ERN GENTURIS, RITA,
ERN eUROGEN, and ERKNet

Pediatrics

RARE-LIVER, PaedCan ERN, ERN-EuroBloodNet, Endo-ERN and ERN-BOND, eUROGEN, ERN-Skin, and
ERN GENTURIS

Cancer

ERKNet, EPICARE, ERN-RND, MetabERN, ITHACA, ERN Eurogen, and EURO-NMDNeurological

RARE-LIVER, EPICARE, ERN-EuroBloodNet, ERN-TransplantChild, ERN-Skin, RITA, ERKNet, VASCERN,
and ReConnet

Immune and blood

ERKNet, EPICARE, ERN-RND, Endo-ERN and ERN-BOND, MetabERN, ITHACA, ERN eUROGEN, ERN-Eu-
roBloodNet, and ERN-TransplantChild

Renal and urological

VASCERN, ERN-EuroBloodNet, ERN-TransplantChild, ERN-LUNG, and ERNICARespiratory and lung

eUROGEN, ERN CRANIO, and ERN-TransplantChildSurgical

Endo-ERN and ERN-BOND, ITHACA, RITA, and EURO-NMDMuscle, bone, and skeletal

aERN: European Reference Network.
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Sustain the DCDE Implementation and Evolution
Upon receiving feedback from ERNs, the EJP RD and the EU
RD Platform teams plan to offer support by organizing domain
group meetings and providing templates for listing and
describing DCDEs. In this sense, the EU RD Platform team
formed a cancer working group, composed of cancer-related
ERNs, to focus on identifying cancer DCDEs. The FAIRification
stewards of the EJP RD also aim to ask all ERNs to share their
data dictionaries to compare them and support the identification
of commonalities within every domain group. Comparisons are
meant to follow the approach and format of the existing CDD,
previously performed for 4 ERNs and currently only listing
CDEs. Following the conference, EJP RD also started organizing
weekly web-based meetings (coffee rounds) as well as technical
workshops, aiming to answer the ERNs’ frequently asked
questions on several topics of interest. Relevant topics included
the definition and use of CDEs, CDEs minimal data set, CDEs
semantic model, and modeling DCDEs. The plan is to eventually
expand the semantic model of the EJP RD with identified
DCDEs, publish them on the EU RD Platform alongside CDEs,
and add them to ERDRI.mdr.

Discussion

Overview
This paper presented a series of joint activities aiming to extend
the EU RD Platform’s CDEs with DCDEs. The series starts
with a strict medical phase, seeking to compile lists of DCDEs
that commonly exist among registries of every ERN domain.
A technical phase then follows in which a mix of medical and
technical expertise primarily tackles harmonization and
standardization issues. The results of each phase will be
published separately. However, it is promising to review here,
some of the previous efforts related to defining CDEs and
identify connections to the current EU RD Platform, ERN, and
EJP RD initiatives, if any.

Previous Work
The term CDEs has been first introduced to the RD field by the
US initiative National Institutes of Health/National Center for
Advancing Translational Sciences Global Rare Diseases Patient
Registry Data Repository Program [17]. Aiming at better data
standardization and interoperability for RD registries, the
program defined 75 database fields required for the
establishment of any RD registry [18,19]. On the basis of these
attributes, the RD-Connect and EPIRARE projects developed
minimum data sets for patient data entry to be used in their own
framework. They also encouraged continuous alignment with
the Minimal Data Elements of the European Union Committee
of Experts on Rare Diseases (EUCERD) Joint Action initiative,
thereby improving cooperation among RD registries at the
European level [17,20-22].

Although not strictly focused on RDs, the National Institute for
Neurological Disorders and Stroke initiated the Common Data
Elements Project in 2005, seeking to identify the core CDEs
necessary for collection in all neuroscience clinical research
studies [23]. To collect CDEs, the project used case report forms
(CRFs) from various clinical studies and indicated that their

work was dynamic and would continue to evolve over time
based on arising needs. In addition to publishing core CDEs on
their website [24], they continued to identify disease-specific
CDEs using a 10-step process. Similar to what has been
proposed for our joint activities, their steps involved a domain
working group, a draft DCDEs list, and a review process.
However, deeper steps toward data standardization were also
involved. In addition to defining general DCDEs for the
neurological domain, they have complemented those over the
years with more specific DCDEs for diseases such as epilepsy,
stroke, Parkinson disease, multiple sclerosis, and headache [23].
To date, the National Institute for Neurological Disorders and
Stroke CDEs project has collected data standards for 24
neurological diseases and disorders [25].

Other efforts to define DCDEs have also been made by the
National Cancer Institute, which sought to identify CDEs for
cancer research, thereby facilitating data interchange and
interoperability between cancer research centers [20,26]. DCDEs
have also been collected in a joint initiative between the
Radiological Society of North America and the American
College of Radiology, producing a data dictionary of radiology
CDEs for various domains. These included cardiac radiology,
breast imaging, chest radiology, and head and neck imaging.
The initiative aimed to foster the interoperability of data present
in radiologic reports and images throughout different radiologic
information systems, ultimately improving research and clinical
practice [27,28]. The US National Library of Medicine has also
compiled a repository of >20,000 data elements, seeking to
improve data quality and facilitate data comparisons among
various research studies. Furthermore, it aimed to allow for
opportunities to compare and combine data from multiple studies
with those stored in electronic health records [20,29].

In an effort to facilitate finding necessary expertise, as well as
sufficient numbers of patients for RD research, the French
national minimal data set has been introduced. After
systematically reviewing the scientific literature on RD CDEs,
58 data elements were represented in the data set. These were
considered the clinical data standard for all French RD centers
as part of the French National Plan for Rare Diseases. The
methodology used to identify the minimal data set adopted the
Global Rare Diseases Patient Registry Data Repository CDEs
as a gold standard and also implemented many common steps
with our proposed approach. These included a first working
group to put together an initial CDEs draft, submitting the draft
to a panel of experts, and receiving validation via a survey
instrument [20,30].

Synergies With Other Activities Within the EJP RD
Our proposed approach could then be regarded as a continuation
to previous efforts on DCDEs, seeking to expand the EU RD
Platform’s CDEs standard at the European level. It also supports
ongoing and future efforts in various areas within the EJP RD.
For instance, it aligns with the project’s ERN-related activities,
planning to hold 2 workshop series following the identification
of DCDEs. The first series addresses various aspects of
FAIRification, providing a set of discoverability metadata fields
(metadata CDEs) that are considered the basis for describing
resources and making them findable. The second series focuses
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on patient matchmaking, providing a means for querying
scattered patient data sets to locate similar patients with RD,
either within a single ERN or across multiple ERNs. In such
workshops, having DCDEs would allow the identification of
discoverability metadata to be focused on certain domains.
Moreover, identified DCDEs, in addition to CDEs, would
present the basic parameters for queries aimed at finding similar
patients. This is also the focus of the Query Builder activities
of the EJP RD, running 2 pilot projects on federated discovery
of resources (eg, registries and biobanks) and record-level data
(eg, patients and samples). However, details of these pilots are
outside the scope of this paper and will be published elsewhere.

Our approach also integrates with FAIRification activities of
the EJP RD, expanding the scope of the CDEs codebook and
semantic model to include DCDEs, and facilitating data
exchange among institutions that use different electronic data
capture software. Together with an interoperable CRF generator
tool [31], the codebook content could be used by all 24 ERNs
to create and reuse interoperable CRFs, sparing the need to
design new electronic CRFs while implementing their registries,
at least for commonly used data elements. Therefore, by
incorporating DCDEs, the codebook adheres to the EU RD
Platform’s standard, requiring and enabling new registries to
include both CDEs and DCDEs. Our efforts to define DCDEs
could also take the ERN Registry TF’s initiative toward a CDD
further, leading to an updated version that includes DCDEs in
addition to CDEs, ensuring it is harmonized among participating
ERNs, and extending it to all 24 ERNs.

Conclusions
This paper presented a joint initiative of the ERNs, EU RD
Platform, and EJP RD, aiming to define DCDEs for RD

registration. The initiative comprises a medical and a technical
phase, seeking to compile lists of DCDEs and tackle
harmonization and modeling issues, respectively. Although this
paper remains at a conceptual level, it starts a discussion around
the importance of DCDEs and launches a series of publications
presenting the methods and findings of each planned phase.
From early results, based on an ERN survey and a joint
conference, DCDEs seem to be an essential extension to CDEs
to increase interoperability, improve discoverability, and
facilitate joint research collaborations. However, at this stage,
ERN registries do not seem to have clear lists of DCDEs. The
approach described for defining DCDEs appears to be feasible,
as it shares many common steps with previous fruitful efforts
on RD CDEs, as well as with others from outside the RD field.
However, it remains dynamic and should be repeated regularly
by curation teams, as DCDEs are expected to evolve over time
based on arising research needs.

DCDE lists will be published, alongside CDEs, on the EU RD
Platform in PDF format and added to ERDRI.mdr, the technical
tool serving the purpose of a data dictionary. Semantic data
modeling activities of the EJP RD, which currently focus on
CDEs, can also be extended to DCDEs. The number of identified
domains, as well as DCDEs per domain, should remain
optimally minimal, as this eases their incorporation with CDEs
in all new RD registries. However, in order to avoid differences
in their interpretation and implementation across ERN registries,
the EU RD Platform and EJP RD both have the role of raising
greater awareness and encouraging the culture change necessary
for their uptake and wide use.
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Abstract

Background: With the continuous spread of COVID-19, information about the worldwide pandemic is exploding. Therefore,
it is necessary and significant to organize such a large amount of information. As the key branch of artificial intelligence, a
knowledge graph (KG) is helpful to structure, reason, and understand data.

Objective: To improve the utilization value of the information and effectively aid researchers to combat COVID-19, we have
constructed and successively released a unified linked data set named OpenKG-COVID19, which is one of the largest existing
KGs related to COVID-19. OpenKG-COVID19 includes 10 interlinked COVID-19 subgraphs covering the topics of encyclopedia,
concept, medical, research, event, health, epidemiology, goods, prevention, and character.

Methods: In this paper, we introduce the key techniques exploited in building COVID-19 KGs in a top-down manner. First,
the schema of the modeling process for each KG in OpenKG-COVID19 is described. Second, we propose different methods for
extracting knowledge from open government sites, professional texts, public domain–specific sources, and public encyclopedia
sites. The curated 10 COVID-19 KGs are further linked together at both the schema and data levels. In addition, we present the
naming convention for OpenKG-COVID19.

Results: OpenKG-COVID19 has more than 2572 concepts, 329,600 entities, 513 properties, and 2,687,329 facts, and the data
set will be updated continuously. Each COVID-19 KG was evaluated, and the average precision was found to be above 93%. We
have developed search and browse interfaces and a SPARQL endpoint to improve user access. Possible intelligent applications
based on OpenKG-COVID19 for further development are also described.

Conclusions: A KG is useful for intelligent question-answering, semantic searches, recommendation systems, visualization
analysis, and decision-making support. Research related to COVID-19, biomedicine, and many other communities can benefit
from OpenKG-COVID19. Furthermore, the 10 KGs will be continuously updated to ensure that the public will have access to
sufficient and up-to-date knowledge.

(JMIR Med Inform 2022;10(5):e37215)   doi:10.2196/37215

KEYWORDS

knowledge graph; linked data; COVID-19; knowledge extraction; knowledge fusion; natural language processing; artificial
intelligence; data set; schema modeling; semantic search
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Introduction

On February 11, 2020, the World Health Organization
announced the official name of the 2019 novel coronavirus as
COVID-19. Meanwhile, the International Committee on
Taxonomy of Viruses named this novel coronavirus
SARS-CoV-2 [1]. The infection caused by SARS-CoV-2 is now
affecting almost every country in the world. By October 24,
2021, more than 4.95 million people have died from COVID-19,
raising concerns of widespread fear and increasing anxiety in
individuals. At present, the epidemic continues to spread, and
there are many questions that continue to plague the public
about this disease, including: How can we obtain an overall
understanding of the knowledge about COVID-19 facing such
large amounts of information coming from various media every
day? What are the variants of SARS-CoV-2 and how should
they be treated or prevented? What is the state of supplies, hot
events, and frontline health care workers in this invisible war
worldwide? How can we find drugs or vaccines, and further
learn more? What travel restrictions do local policies apply
during the epidemic? What are the requirements regarding the
various means of transport?

During this pandemic, artificial intelligence (AI) has served as
an enabler to combat COVID-19, such as successful attempts
in predicting epidemic trends [2] with sophisticated models,
accelerating computer tomography detection [3] for more
efficient diagnosis by computer vision, participating in drug
development [4], and automatically answering epidemic-related
natural language questions [5-7]. Besides deep learning, the
knowledge graph (KG) concept has drawn increasing attention
from both academia and industry since it was first proposed by
Google in 2012. As the key to the evolution of AI toward
cognitive intelligence, a KG enables machines to better organize,
reason, understand, and explain information.

The success of the above applications heavily depends on the
scale and quality of the underlying KGs, regardless of whether
they exist in the open or in a specific domain. Well-known
general-purpose KGs include DBpedia [8], Yago [9], Freebase
[10], Wikidata [11], and the Chinese linked open data effort
Zhishi.me [12]. All of these KGs leverage Wikipedia, one of
the largest encyclopedia websites in the world, as an important
source. WordNet [13], BabelNet [14], and Linguistic Linked
Open Data [15] are examples of linguistic KGs. Regarding
domain-specific KGs, we here mainly focus on life science or
health care fields. The KG Linking Open Drug Data [16] surveys
the publicly available data about drugs and creates linked
representations of the data sets. The project Open PHACTS
[17] aims to deliver and sustain an open pharmacological space
using and enhancing state-of-the-art semantic web standards
and technologies. Bio2RDF [18] uses semantic web technologies
to provide the largest network of linked data about the life
sciences. However, none of the above KGs is specific to
COVID-19. Although it is possible to extract a
COVID-19–relevant subgraph from general-purpose KGs, this
approach will suffer from low coverage of domain knowledge

and the sparsity of properties describing this knowledge (eg,
viruses and diseases).

The White House, in collaboration with publishers and tech
firms, has launched the CORD-19 data set [19], which contains
more than 59,000 published articles and preprints. Although
CORD-19 is considered to be the largest single collection of
COVID-19 knowledge amassed to date, the majority of the data
set contains unstructured data, and more than 60% of the
included papers do not mention search terms such as
“coronavirus” and “SARS-CoV” [20]. The existing COVID-19
Knowledge Graph [21] is an expansive cause-and-effect network
constructed from the scientific literature on SARS-CoV-2,
aiming to provide a comprehensive view of its pathophysiology.
However, there are only 10 entity types and 9484 facts within
this KG. Coronavirus Knowledge Graph [22] only has 27
relation types. The CovidGraph project [23] built a COVID-19
graph that stores publications, case statistics, and molecular
data in a Neo4j database, which enables exploring the underlying
knowledge for finding specific genes, authors, articles, patents,
proteins, existing treatments, and medications relevant to the
entire family of coronaviruses. However, key aspects such as
health care, epidemiology, antiepidemic goods, related events,
and frontline workers fighting the epidemic have not yet been
considered.

To capture richer and more diverse topics of COVID-19 so as
to offer more useful knowledge for the public, we have extended
these previous efforts [24-26] to construct OpenKG-COVID19,
a linked data set of COVID-19 KGs, covering 10 aspects ranging
from encyclopedia, concept, medical, health, prevention, goods,
research, epidemiology, and character to events.
OpenKG-COVID19 was launched by OpenKG [27], which is
the largest Chinese open KG community pushing for the
development of public KGs, open-source tools, and best
practices in vertical sectors in China since the middle of
February 2020. We are the first to mainly focus on constructing
high-quality pandemic KGs in China. Moreover,
OpenKG-COVID19 is open to the public with continuous efforts
to ensure that it contains up-to-date information. The publishing
and maintenance of such a large-scale KG can help researchers
around the world to understand, study, and even fight
COVID-19. An overview of OpenKG-COVID19 is depicted in
Figure 1. Each KG, its sources, and possible applications are
listed in Textbox 1.

Moreover, several key steps have been used to construct
OpenKG-COVID19, namely modeling, extraction, and fusion
of knowledge. Among them, knowledge modeling mainly
involves schema design. The schema knowledge of each data
set in OpenKG-COVID19 is described in the Methods section.
The other steps are executed automatically with the human in
the loop. In particular, we present the technical details of
knowledge extraction and then describe how the curated KGs
are further linked together at both the schema and data levels.
We further present the results of experimental validation of
OpenKG-COVID19, and discuss the access interfaces along
with the possible applications of the linked COVID19 KGs.
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Figure 1. Overview of OpenKG-COVID19. KG: knowledge graph; NCBI: National Center for Biotechnology Information; Q&A: question and answer.

Textbox 1. Sources, knowledge graphs (KGs), and application prospects of OpenKG-COVID19.

• The encyclopedia KG (Bilingual Encyclopedia Knowledge Graph [BEKG]) is based on multiple encyclopedia sources, which helps to gain a
basic understanding of SARS-CoV-2 and COVID-19.

• Targeting the question and answer (QA) system, both the medical KG and the health KG consider data sources from industrial companies and
official treatment plans, which have included COVID-19–related symptoms, diseases, drugs, and treatment options.

• The prevention KG not only provides authoritative guidance on individuals’ protection and public prevention, but also contains knowledge about
vaccines and nucleic acid tests.

• The goods KG provides the current status of materials used in the epidemic, including information of daily protective equipment, medical
diagnosis, treatment devices, and therapeutic drugs.

• The research KG aims to assist in the discovery of drugs or vaccines, and its data are derived from virus-related scientific research databases and
literature.

• The epidemiology KG helps to trace the source of infection and explore contacts. These data come from the case flow information published by
provincial health committees.

• The character KG sorts out heroic deeds and assists in the dynamic display of character information, including the individual’s resume, achievements,
and related events about combating the epidemic.

• The event KG organizes hot events about the epidemic with the when, where, who, and what factors incorporated.

• The concept KG uses automatic web-mining technologies to collect a large number of fine-grained COVID-19–related entities and their
corresponding hypernyms from web text, which has been applied in medical-related virtual assistants to address complex user information needs.

Methods

Schema of OpenKG-COVID19
A schema defines a specific, clear, high-level structure of a KG.
It is necessary to model a sound schema to accurately offer a
clear understanding of KG content. New data added to the KG
will not be allowed if the data do not conform to the defined
schema. We designed a total of 10 schemata for each subgraph:
concept, encyclopedia, medical, health, research, prevention,
goods, event, character, and epidemiology. The details of the
schemata are described in further detail elsewhere [28]. In brief,
three methods were employed to develop the schemata:

manually defined by medical experts (manual), extracted from
encyclopedic websites or COVID-19–related medical websites
(site data), and mined automatically from the web (automatic
mining). The design method of each KG is displayed in the left
part of Table 1.

Within OpenKG-COVID19, the schemata of most KGs (eg,
medical, epidemiology) have been designed by domain experts.
Taking the epidemiology KG as an example, its schema defines
the basic concepts of epidemiology such as epidemic, pathogen,
host, epidemic situation, epidemiological survey, survey method,
survey population, surveyed individual, and survey report. The
relations between these concepts contain “cause,” “is-part-of,”
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“includes,” “uses,” and similar. The entire schema diagram is
illustrated in Figure 2. Note that even though the schema shown
here was manually constructed, we can boost the entire process
by recommending users’domain keywords or related ontologies
in the same or similar field as a prototype for reuse.

Another method for schemata design is to treat semistructured
information as categories and properties in “infoboxes” as
schemata. This method was used for the design of the schemata
for the encyclopedia and research KGs. Specifically, the schema
modeling process during construction of the encyclopedia KG
is shown with a red color border in Figure 3. We further used

BabelNet [29] and Zhishi.schema [30] to expand the concepts
with multilingual labels.

We also tried to automatically mine schemata from the web.
Specifically, we performed nonlinear mapping between one
concept to another (its hypernym) based on popular embedding
technology to obtain a large number of fine-grained hypernyms
from search engines, encyclopedias, and word morphology. The
hierarchical structure (“is-a” relation) was constructed by
measuring the semantic broadness between concepts as well as
between an instance and a concept. Therefore, the data-level
knowledge was also extracted during schema design.

Table 1. Classifications of schema design and knowledge extraction of COVID-19 knowledge graphs.

Knowledge extractionSchema designKnowledge graph

Plain textSemistructuredStructuredAutomatic miningSite dataManual

✓✓✓Concept

✓✓✓✓Encyclopedia

✓✓Medical

✓✓✓Health

✓✓✓Research

✓✓✓✓Prevention

✓✓Goods

✓✓Event

✓✓Character

✓✓Epidemiology

Figure 2. Schema diagram of the epidemiology knowledge graph.
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Figure 3. Construction process of the encyclopedia knowledge graph (KG).

Knowledge Extraction for COVID-19 KGs
Construction

Overview
This section introduces methods for the classification of
knowledge extraction based on different data types. In general,
sources of knowledge extraction include structured data (eg,
linked data), semistructured data (eg, tables and infoboxes), and
unstructured data in the form of plain text. Sources of each KG
in OpenKG-COVID19 are listed in the right part of Table 1.
There exist correlations between schema design and sources for
knowledge extraction. For example, if a KG extracts its
knowledge from semistructured data sources, its schema is
usually obtained from site data. Graph mapping is leveraged to
extract a domain-specific subgraph from linked data, whereas
the “D2R” tool is used to transform relational data of a Database
into Resource Description Framework (RDF) triples. Moreover,
wrappers are used for semistructured data and information
extraction to convert plain text into structured knowledge.

Extraction from Structured Data Sources
Structured data represent the main data source of KG
construction. Our research KG focuses on information from the
virus field. It contains five subgraphs, which are the virus
taxonomy KG, SARS-CoV-2 gene-protein KG, antiviral drug
KG, SARS-CoV-2 phylogeny KG, and SARS-CoV-2 literature
extraction KG. The construction of the first four KGs fits within
this method.

Specifically, we analyzed some data of related biodatabases
(eg, National Center for Biotechnology Information [NCBI]
[31], GISAID [32], China National Center for Bioinformation
[33], DrugBank [34], and Nextstrain [35]) and related biological
KGs such as SNAP [36] at Stanford University. Moreover, we
have established in-depth collaborations with some biological
institutes in the vertical field to ensure that the research KG is
professional. We converted data in different formats from the
above sources into a unified graph structure based on the
designed schema.

The SARS-CoV-2 gene-protein KG is mainly built from the
virus data in the NCBI database. By looking up “SARS-CoV-2”
in NCBI, various types of related information are returned, such
as genome, gene, and protein. Two example triples are
(SARS-CoV-2, Virus-express-Gene, NS6) and (SARS-CoV-2,
Virus-produce-Protein, nonstructural protein NS6).

The antiviral drug KG is based on four structured databases:
DrugBank, Virus Pathogen Database [37], VirHostNet 3.0 [38],
and VISDB [39]. The KG demonstrates interaction relationships
among various types of viruses, human proteins, antiviral drugs,
and diseases. For further integration, we linked the data through
the taxonomy ID of the virus, the UniProt ID of the protein, and
the generic name of the drug. Several extracted example triples
are: (Human immunodeficiency virus 1, Virus-alias-String,
HIV-1), (Enfuvirtide, Drug-effect-Virus, Human
immunodeficiency virus 1), and (H31, HostProtein-belong
to-Host, Human).

We also extracted the virus taxonomy tree from NCBI to build
the corresponding KG. Similarly, the SARS-CoV-2 phylogeny
KG was constructed by referencing Nextstrain metadata.

Extraction From Semistructured Sites
We mainly leveraged semistructured data for building the KGs
of concept, encyclopedia, health, prevention, goods, and
character. Taking the encyclopedia KG as an example, its
knowledge in the form of RDF triples is extracted from the
integration of several encyclopedia sites (eg, Baidu Baike,
Hudong Baike, Chinese Wikipedia). We particularly considered
the following four types of semistructured data for knowledge
extraction: internal links, infoboxes, categories, and
classification trees. For an infobox, the page title is treated as
a subject, each attribute of the infobox is treated as a predicate,
and the corresponding attribute value is treated as the object.
For an internal link, we also treat the title entity as a subject,
the target entity that the internal link refers to as the object, and
the relation (defined in the schema) matching the text between
the subject mention and the object mention as the predicate. For
a category that a page belongs to, the title entity, typeOf, and
the given category form a triple. For a classification tree, a
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high-level concept can be linked with any of its ancestors in a
triple using the hyponym as the predicate. Figure 4 shows

examples for all four types of semistructured data and their
corresponding extracted triples.

Figure 4. Extraction of various types of semistructured data.

Extraction From Plain Texts
Plain texts are widely available for human consumption but are
hard for machines to understand, which hinders construction of
a KG from these unstructured data. We applied regular
expressions to extract fact triples for the six subgraphs shown
in the right part of Table 1 from plain texts. When detecting
knowledge by regular expressions, we paid more attention to
the precision of information extraction rather than the recall to
ensure that the COVID-19 knowledge managed into
OpenKG-COVID19 is relatively accurate. Finally, the average
precision of our regex matching methods was found to be
96.34% and the average recall was 87.63%. However, there are
large amounts of diverse information and complex semantic
relations in the research literature, which required more
advanced methods during the construction of the research KG.
In recent years, there has been great progress in applying
machine reading comprehension to the knowledge extraction
task on plain texts [40,41]. The basic idea is to extract the
candidate entities from sentences by a subject extraction
network, and then extract the object of a triple based on
candidate entities and a predefined predicate using a joint
predicate-object extraction network. Pretrained language models
such as bidirectional encoder representations from transformers
(BERT) [42] are employed for encoding in both networks, which
alleviates the amount of labeled data required to train a model.

Inspired by the above work, we applied the same technique in
building COVID-19 KGs from various text sources. The labeling
process can be further relieved by distant supervision [43],
where the subject and object of a triple are automatically labeled
in one sentence and the sentence context is captured to check
whether the predicate holds. After extraction and sampled

manual check, triples such as (SARS-CoV2,
Virus-interaction-Human Protein, ACE2), (SARSCoV-2,
Virus-cause-Disease, human respiratory disease), and
(nelfinavir, Drug-effect-Virus, SARS-CoV2) are returned from
the medical literature.

Interlinking Knowledge from Different COVID-19
KGs

Overview
Following the linked data principles, we connected these KGs
to promote the integration and sharing of knowledge about
COVID-19. We observed that schemata in these KGs, except
for that of the concept KG, are of relatively small scale.
Therefore, we first used an automatic ontology matching
approach to align schema-level knowledge (ie, concepts and
properties) and then asked domain experts to validate the results,
and finally leveraged the validated schema matches to align
data-level knowledge (ie, entities).

Schema Matching
Because there is no central schema for the COVID-19 KGs, we
decided to conduct pairwise schema matching. We reused
Falcon-AO [44], which is an automatic ontology matching tool.
Its main strengths lie in the integration of various powerful
matchers exploiting linguistic and structural features.
Furthermore, due to the naming issue, many schemata use
sequential IDs to name their concepts and properties. To avoid
their interference with the matching process, we disabled the
comparison of local names in Falcon-AO. The details of the
naming convention are introduced below.
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Entity Alignment
Similar to schema matching, we conducted pairwise entity
alignment. We used the property matches from schema matching
to make the properties in each pair of KGs uniform. We

observed that most matched properties are data-type properties.
Therefore, we leveraged literal similarity measures to align
entities. Since the true matches are unavailable, we deployed
the crowdsourced entity resolution approach [45] to find entity
matches, and the workflow is depicted in Figure 5.

Figure 5. Workflow of entity alignment.KG: Knowledge graph.

Similarity Computation
For each entity pair, we used similarity measures to construct
a similarity vector, where each real value in the vector represents
the similarity of the values of each pair of aligned properties.
For numerical values, the absolute difference similarity measure
was used. For textual values, the Jaccard similarity measure
was applied. Moreover, the entity-type values were converted
to texts based on their labels. Note that a few KGs are
multilingual; therefore, we used a character-level bigram to
tokenize textual values.

Match Inference
Based on similarity vectors of entity pairs, we used the partial
order assumption to infer matches and nonmatches. Once an
entity pair is judged as a match by a human, each entity pair
such that all similarity values are not less than those of the match
is inferred as a match. By contrast, once an entity pair is judged
as a nonmatch, each entity pair such that all similarity values
are not greater than those of the nonmatch is inferred as a
nonmatch. When the similarity measures evaluate the value
within the threshold range, these inference rules are
approximately true [46].

Question Selection
To save both human labor and time, the total number of
questions (ie, unresolved entity pair for validation) is required
to be minimized. However, the true answers for questions are
unknown. Alternatively, we maximized the inference power of
a new question in each step. The question-selection algorithm
iteratively chooses each unresolved pair that has the greatest
number of possible inferred matches and nonmatches.

Human Labeling
Some KGs contain a lot of medical details (eg, drugs in research,
posthospital medications, limitations, special diets); thus,
common workers from the crowdsourcing platforms may not
have sufficient domain knowledge to manage a large amount
of medical information. To ensure a data set of high quality and
benefit to downstream tasks such as question answering, we
employed expert sourcing instead of crowdsourcing to collect
answers for questions pairs. In detail, we asked one domain
expert to judge each unresolved pair as a match or a nonmatch,
and randomly sampled some labeled question pairs for further
review to obtain the final result.

Results

Data Evaluation

Data Statistics
OpenKG-COVID19 is a linked data set of COVID-19 KGs
consisting of 10 subgraphs derived from different sources such
as research publications, medical guidelines, and encyclopedia
websites. As of October 24, 2021, the data set has knowledge
of more than 2572 concepts, 329,600 entities, 513 properties,
and 2,687,329 facts. Moreover, the data set will be updated
continuously along with the occurrence of COVID-19. The
detailed statistics of each KG are listed in the left part of Table
2, demonstrating that the research KG contains the largest
numbers of both entities and facts, and all KGs have relatively
rich properties, except for the concept KG that only defines two
properties (ie, typeOf and subClassOf) but has the highest
number of concepts.
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Table 2. Detailed statistics and quality of each subgraph.

Precision (%), mean (SD)Correct, nEvaluation, nProperties, nEntities, nConcepts, nFacts, nKnowledge graph

95.52 (0.58)477850006054,31850261,154Encyclopedia

94.81 (1.71)620652921035542857Medical

99.96 (0.03)8555855664221,131312,281,797Research

96.35 (1.69)198200212291427,388Event

99.65 (0.35)570570401057211902Character

97.20 (1.25)6306462434,85911328,651Prevention

97.83 (1.42)359365571321653738Goods

98.78 (0.91)483487104711059251,575Health

98.08 (1.92)200200472163558336Epidemiology

92.31 (4.96)9610024784148719,391Concept

Accuracy Evaluation
It is crucial to assess the quality of each KG in
OpenKG-COVID19. Since no ground truths are available, we
performed manual evaluation. Owing to the large number of
facts, we adopted a similar method as that of Yago with respect
to the sampling strategy and labeling process.

For sampling, we evaluated a chosen sample of facts for each
property defined in OpenKG-COVID19. Since the fact number
of each property is not evenly distributed, we used different
sampling coefficients (ranging from 0 to 1) for different
properties. If the fact number of one property is lower than the
minimal sample number k (k=20 in our setting), it was set to 1.
Otherwise, we selected a random coefficient to ensure that the
returned samples are more than k.

For labeling, we invited three postgraduate students focusing
on KGs as their main research area to review the same sampling
data for each subgraph. They were offered three choices to
annotate each sample: agree, disagree, and unknown. If more
than one annotator made a certain choice, then the sample was
labeled as that choice. If there were three different annotations
for one sample, we asked the annotators to reconsider the choice
through acquiring further knowledge about the sample and
obtain a result. However, discrepancies only accounted for 6%
of all samples according to the record of the labeling process.
After the labeling process, 98.35% of the sampled facts were
considered to be correct by consensus. To generalize our results
on the subset to the whole data set of COVID-19 KGs, the
Wilson interval at α=5% was computed.

The precision value of each COVID-19 KG is reported in the
right part of Table 2. We found that all KGs achieved an average
precision of more than 93%, except for the concept KG with
knowledge extracted by automatic web mining, which indicates
the high quality of OpenKG-COVID19. After the error analysis,
we found two typical patterns of wrong facts. One is that there
exists a mistake of either the head entity or the tail entity, and
the other is that the relation between the entity pair does not

conform to the fact. For example, it is inappropriate to regard
“judgment basis” as the relation between “confirmed cases”
and “shock,” because this is simply a possible clinical
manifestation of patients with COVID-19.

Results and Quality of Interlinking
The schema matching results are shown in Table 3,
demonstrating overlaps between different schemata, although
such overlaps are limited. Regarding entity alignment, we found
1055 matches among five KGs. The encyclopedia KG had the
greatest number of matches with other KGs (ie, 836 with the
health KG, 55 with the medical KG, 11 with the character KG,
and 2 with the goods KG) because it contains various types of
entities (eg, drugs and hospitals). We also noted some entity
matches but no schema matches between the encyclopedia KG
and the character KG, because some shared properties (eg,
rdfs:label) are used to align entities but these properties are not
included in schema matching. We also found some duplicated
entities in the encyclopedia KG because these entities are
extracted from different websites. There were few matches
between the goods KG and other KGs because most entities in
the goods KG are medical devices, which do not appear in the
other KGs. Since some entities in the character KG are hospitals,
there were 19 matches with the health KG. The remaining
matches were mostly related to drugs.

We recruited three students with a major in Semantic Web to
evaluate the precision, recall, and F1-score of the schema
matching and entity alignment results. As shown in Table 4,
the schema matching achieved high recall, but relatively low
precision. Most false matches were caused by the similarity
measure (eg, the pair “determination of protein” and “protein”
was wrongly judged as a match). We observed that the entity
alignment achieved perfect results in all KG pairs except for
health-character with precision, recall, and F1-score of 88.2%,
100.0%, and 93.8%, respectively. The high performance of
entity alignment was attributed to the fact that the literal
information in KGs is of high quality and most matches share
exactly the same information.
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Table 3. Results of schema matching.a

CharacterGoodsEventEpidemiologyMedicalResearchHealthConceptPreventionEncyclopediaKnowledge graph

000164900—bEncyclopedia

1171602000—0Prevention

0000000—737Concept

0113133—4109Health

00103—2602Research

1036—442524Medical

400—3031804Epidemiology

016—1000150Event

0—200061810Goods

—0135501120Character

aThe numbers below the diagonal are class matches and the numbers above the diagonal are property matches.
bNot applicable.

Table 4. Performance of schema matching.

Property (%)Class (%)Knowledge graph

F1-scoreRecallPrecisionF1-scoreRecallPrecision

85.085.085.080.085.775.0Encyclopedia

97.1100.094.486.7100.076.5Prevention

———a80.090.172.0Concept

82.188.576.769.994.755.4Health

70.6100.054.588.2100.078.9Research

84.490.079.489.191.187.2Medical

88.0100.078.687.7100.078.1Epidemiology

95.8100.091.9100.0100.0100.0Event

98.5100.097.173.176.070.4Goods

83.383.383.3100.0100.0100.0Character

90.095.085.682.291.574.6Overall

aNot applicable.

Knowledge Access, Sustainability, and Possible
Applications

Naming Convention
For considerations of readability and interoperability, we
followed the RDF naming convention, which helps to quickly
locate and understand the topic and the meaning of each triple.
The convention is composed of three major parts.

The first is the resource identifier, in which each resource (ie,
concept, entity, property) is identified by a global ID that is an

integer number prefixed by a letter. That is, classes are prefixed
by C (eg, C1), entities are prefixed by R (eg, R122), and
properties are prefixed by P (eg, P31). The second is the uniform
resource identifier (URI) pattern. All URIs should follow a
pattern such as [URL]/[graphname]/[type]/[resource], where
graphname is the name of the subgraph (eg, medical, research),
type takes on an enumerable value representing the URI type
(ie, class, resource, property), and resource is the global
identifier described in the resource identifier part. The third part
is the predicate usage; the COVID-19 KGs use the set of
predicates shown in Table 5 to illustrate the schema model.
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Table 5. Primary predicates used in the OpenKG-COVID19 schemata.

DescriptionPredicate

Local name statement of all URLsrdf:label

The hypernym-hypernym relationship between two classesrdfs:subClassOf

Domain class of a propertyrdfs:domain

Range class or literal data types of a property, which can be multivaluedrdfs:range

Synonym relationship between two resourcesowl:sameA

Search and Browse Interfaces
Since the published KGs in OpenKG-COVID19 comply with
the creative commons-by share-alike license, users can feel free
to download any of them [47]. The left part of Figure 6 shows
a snapshot of the data set search interface, where 10 KGs and

a schema data set about OpenKG-COVID19 are found.
Moreover, users can search for a particular entity and browse
the detailed information of that entity in the OpenBase website
[48]. As shown in the right part of Figure 6, the search results
contain various properties of Nanshan Zhong, a famous doctor
combating the COVID-19 epidemic in China.

Figure 6. Data set search interface (left) and entity search interface (right).

SPARQL Endpoint
The SPARQL endpoint [49] of OpenKG-COVID19 is built
upon a scalable graph database, gStore [50], which provides
extendable distributed storage management as well as efficient
implementations of complex queries and update operations
based on SPARQL for RDF data sets with up to billions of
triples. Users can submit SPARQL queries to the endpoint where
relevant results are returned in the form of a table. Users can
also choose to download the results packaged in a JavaScript
Object Notation (JSON) file by clicking “Click to Download.”
As of May 22, 2020, we have recorded over 20,000 accesses to
the endpoint.

Sustainability and Knowledge Review
OpenKG-COVID19 KGs are maintained by the OpenKG
community. We are collecting questionnaires considering users’

needs and updating our KGs accordingly. COVID-19 KGs are
particularly important for timely updates because users’ needs
may change as the epidemic develops (eg, from source to
treatment).

The data quality as well as the interlinking quality of
OpenKG-COVID19 are manually evaluated. OpenBase is a
knowledge crowdsourcing platform powered by blockchain
technologies for provenance tracking and credit incentive. We
uploaded a part of the data that may contain errors due to the
sampling method, and created many microtasks for reviewing
the correctness of triples. The reviewers were volunteers
certified by possession of one specific domain knowledge. They
were able to not only review the KG data but to also commit
data corrections. All volunteers participating in knowledge
reviewing via either a web-based interface or the WeChat mini
app (see Figure 7) received a corresponding reward of credit
for their contributions to improving our KGs.
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Figure 7. Knowledge review on the web (left) and WeChat mini app (right) of OpenBase.

Possible Intelligent Applications
OpenKG-COVID19 is the basis of various intelligent
applications, whose release will help to fight against this global
plague. OpenKG-COVID19 benefits from intelligent question
answering, semantic search, recommendation systems, as well
as the abilities for visualization, mining more associations,
predicting future events, and assisting in decision-making. More
specifically, we here take the event KG, research KG, medical
KG, and overall OpenKG-COVID19 as examples.

The event KG includes the forward and reverse indexing of
events about COVID-19 in time, and provides the development
context of a series of events, which can support the verification
and traceability of hot events. Furthermore, the event KG
combined with blockchain technology could identify whether
or not an event is true.

Based on the research KG, Huawei Cloud has developed a
personalized visual query system, displaying knowledge points
and their relations, which can quickly trace the source of
information and directly locate relevant documents and
paragraphs. The research KG facilitates scientific research on
virus mechanisms and viral protein interactions, and assists drug
developers in more accurate and effective drug target research
and vaccine development.

Starting from the cases of diagnosis and treatment to research
progress, the medical KG is developed by extracting knowledge
from the existing standard documents and the web. The
epidemiology, symptoms, laboratory indicators, treatments,
drug development, and vaccines of COVID-19 could be
conveniently consulted making use of question answering based
on the medical KG. Drugs that alleviate symptoms and potential
therapeutic drugs, such as the repurposing of old drugs for a
new use, can also be mined by the medical KG.

Moreover, OpenKG-COVID19 is an enabler to accelerate the
development of bioinformatics. The network structures of
COVID-19 KGs can be used to predict relations such as
host-virus, drug-virus, or interactions between viruses and the
host protein, which will help to reveal the underlying mechanism
of COVID-19. In particular, the combination of protein-protein
interactions, drug–protein target interactions, and the
polypharmacy side effects could predict unknown side effects.

Discussion

Principal Results
In this study, we constructed OpenKG-COVID19, one of the
largest existing KGs about COVID-19. We first presented the
schema design process of OpenKG-COVID19. We then
introduced the comprehensive techniques for knowledge
extraction and knowledge fusion. Moreover, we provided an
evaluation of the quality of OpenKG-COVID19. This paper
also provides an introduction of various access interfaces
covering searching, browsing, querying, and knowledge review,
and discusses the possible applications of OpenKG-COVID19.
Our efforts can benefit KG, biomedicine, and many other
communities. New knowledge for the 10 KGs will be updated
continuously through the processes described above to maintain
and update OpenKG-COVID19 for improving its quality and
coverage.

Limitations
Although OpenKG-COVID19 is updated continuously, the
update frequency is not daily, which may result in some
information not being up to date, causing inconvenience for
downstream tasks. Moreover, it is also very necessary to control
the data set version, which is future work to be considered.

We randomized a chosen sample of facts for each property
defined in OpenKG-COVID19 to evaluate the data quality. In
some cases, the number of samples may be small, which will
lead to a less reliable evaluation result. Therefore, we plan to
further improve the quality of data by selecting a new method
to sample more triples of each property.

Conclusion
A KG is an effective technique to provide well-organized data,
and is also beneficial for intelligent question answering,
semantic search, recommendation system, visualization analysis,
and decision-making support. OpenKG-COVID19 includes rich
and diverse topics of COVID-19, covering 10 aspects ranging
from encyclopedia, concept, medical, health, prevention, goods,
research, epidemiology, and character to events. The publishing
and maintenance of OpenKG-COVID19 can help researchers
around the world to better understand, study, and even fight
COVID-19.
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Abstract

Background: As the COVID-19 pandemic progressed, disinformation, fake news, and conspiracy theories spread through many
parts of society. However, the disinformation spreading through social media is, according to the literature, one of the causes of
increased COVID-19 vaccine hesitancy. In this context, the analysis of social media posts is particularly important, but the large
amount of data exchanged on social media platforms requires specific methods. This is why machine learning and natural language
processing models are increasingly applied to social media data.

Objective: The aim of this study is to examine the capability of the CamemBERT French-language model to faithfully predict
the elaborated categories, with the knowledge that tweets about vaccination are often ambiguous, sarcastic, or irrelevant to the
studied topic.

Methods: A total of 901,908 unique French-language tweets related to vaccination published between July 12, 2021, and August
11, 2021, were extracted using Twitter’s application programming interface (version 2; Twitter Inc). Approximately 2000 randomly
selected tweets were labeled with 2 types of categorizations: (1) arguments for (pros) or against (cons) vaccination (health measures
included) and (2) type of content (scientific, political, social, or vaccination status). The CamemBERT model was fine-tuned and
tested for the classification of French-language tweets. The model’s performance was assessed by computing the F1-score, and
confusion matrices were obtained.

Results: The accuracy of the applied machine learning reached up to 70.6% for the first classification (pro and con tweets) and
up to 90% for the second classification (scientific and political tweets). Furthermore, a tweet was 1.86 times more likely to be
incorrectly classified by the model if it contained fewer than 170 characters (odds ratio 1.86; 95% CI 1.20-2.86).

Conclusions: The accuracy of the model is affected by the classification chosen and the topic of the message examined. When
the vaccine debate is jostled by contested political decisions, tweet content becomes so heterogeneous that the accuracy of the
model drops for less differentiated classes. However, our tests showed that it is possible to improve the accuracy by selecting
tweets using a new method based on tweet length.

(JMIR Med Inform 2022;10(5):e37831)   doi:10.2196/37831
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Introduction

Background
The COVID-19 pandemic has profoundly affected our society
and social activity worldwide. Part of this change is perceptible
through messages exchanged on social media platforms,
specifically on the topic of vaccination. Since the measles,
mumps, and rubella vaccine controversy in 1998 [1], vaccine
hesitancy has grown on the internet [2,3] and subsequently on
social media platforms such as Facebook and Twitter [4,5]. In
the same way, as the pandemic progressed, disinformation,
“fake news,” and conspiracy theories spread [6] through many
parts of society. However, the disinformation spreading through
social media is, according to the literature, “potentially
dangerous” [7] and is one of the causes of increased COVID-19
vaccine hesitancy [8,9]. Another cause mentioned in the
literature is the loss of confidence in science among the public
[10].

In this context, social media analysis is particularly important,
but the large amount of data exchanged over social networks
requires specific methods. This is why machine learning and
natural language processing (NLP) models are becoming
increasingly popular for studying social media data. The most
used and “most promising method” [11] is sentiment analysis.
For example, sentiment analyses were conducted on messages
posted on Twitter (tweets) to measure the opinions of Americans
regarding vaccines [12] and evaluate the rate of hate tweets
among Arab people [13]. Additionally, another method, opinion
mining, is used and has obtained an equal level of maturity [14].
Both methods attempt to identify and categorize subjective
content in text, but it is not an easy task to correctly identify
such concepts (opinion, rumor, idea, claim, argument, emotion,
sentiment, and affect). The fields of psychology and philosophy
have extensively studied these concepts but have raised the
difficulty of defining their boundaries. This is why stance
detection has grown to be considered “a subproblem of
sentiment analysis” [15]. In addition, according to Visweswaran
et al [16], performing a sentiment analysis on tweets is a
challenge because tweets contain short text (280 characters or
less), abbreviations, and slang terms. However, few studies
focus on the difficulties encountered by a neural network
according to the chosen categories [17]. The aim of this paper
is to provide additional methodological reflection.

Objective
The aim of this study is to examine the capability of the
CamemBERT model to faithfully predict the elaborated
categories while considering that tweets about vaccination are
often ambiguous, sarcastic, or irrelevant to the studied topic.
Based on the resulting analysis, this paper aims to provide a
methodological and epistemological reflection on the analysis
of French-language tweets related to vaccination.

A State-of-the-art French-Language Model
The CamemBERT model was released in 2020 and is considered
one of the state-of-the-art French-language models [18] (together
with its close “cousin” flauBERT [19]). It makes use of the
Robustly Optimized BERT Pretraining Approach architecture

of Liu et al [20], which is an improved variant of the famous
Bidirectional Encoder Representations From Transformers
(BERT) architecture of Devlin et al [21]. The BERT family of
models consists of general, multipurpose, pretrained models
that may be used for different NLP tasks, including the
following: classification, question answering, and translation.
They rely heavily upon transformers, which have radically
changed the performance of NLP tasks since their introduction
by Google researchers in 2017 [22]. They have been pretrained
on a large corpus ranging from gigabits to terabits of data, using
considerable computing resources.

Although multilingual models are plentiful, they usually lag
behind their monolingual counterparts. This is why, in this study,
we chose to employ a monolingual model to classify
French-language tweets. As far as we are concerned,
CamemBERT comes in 6 different “flavors,” ranging from
small models with 110 million parameters trained on 4 GB of
text up to mid-size models with 335 million parameters trained
on 135 GB of text. After testing them, we found that better
results were obtained with the largest size model that was
pretrained on the Criss-Cross Network corpus.

All these models require fine-tuning on specific data to achieve
their full potential. Fine-tuning or transfer learning have been
common and successful practices in computer vision for a long
time, but it is only in the last 3 years or so that the same
approaches have become effective for solving NLP problems
on specific data. This approach can be summarized in the
following 3 steps:

1. A model language such as BERT is built in an unsupervised
manner using a large database, removing the need to label
data.

2. A specific head (such as dense neural network layers) is
added to the previous model to make it task-specific.

3. The new model is trained in its entirety with a small learning
rate on specific data.

The first step is usually performed by large companies, such as
Google or Facebook, or public research centers that make their
model freely available on internet platforms. The second and
third steps form a process that is generally referred to as
fine-tuning, and this is what we will do in this study.

Methods

Data Collection
French-language tweets published between July 12, 2021, and
August 11, 2021, were extracted using the Twitter application
programming interface ([API] version 2; Twitter Inc; Figure 1)
with a Python (Python Software Foundation) script request
(vaccin lang: fr), and several elements (tweet content, tweet ID,
author ID, and creation date) were stored in a document-oriented
database (MongoDB, MongoDB Inc). As queries can only
contain a limited number of terms (1024 characters), it was
more relevant to search for the word vaccin (“vaccine”),
knowing that related terms were included by the Twitter API
version 2 search tools since November 15, 2021, rather than
selecting a nonexhaustive keyword list. Indeed, Twitter’s query
tool collected all words containing the base word vaccin in
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French (ie, vaccin, vaccins, vaccination, vaccinations, vaccinat,
vacciner, vaccinés, vaccinées, vaccinerait, vaccineraient,
pro-vaccin, anti-vaccin, #vaccin, #vaccinationobligatoire). The
goal of this approach was to collect all tweets containing the
base word vaccin to explore their content using a bottom-up
approach without additional inclusion or exclusion criteria. A
total of 1,782,176 tweets were obtained, including 901,908
unique tweets (29,094 tweets per day) published by 231,373

unique users. To fully test the CamemBERT model, only unique
tweets were included in the analysis. When dealing with the
analysis of text (such as tweets), it is important to keep a large
amount of variability (eg, vocabulary, syntax, and length) to
strengthen deep learning algorithms. This variability will
guarantee the power of model generalization. This is why, in
this study, the 1851 tweets that comprise the data set were drawn
randomly from a set of 901,908 unique tweets.

Figure 1. Flow chart of methodology steps. API v2: application programming interface version 2.

Labeling
A total of 1851 unique tweets were randomly selected and
manually labeled by 2 people (1451 for training and validation
and 400 for testing). When doubt arose about labeling, which
occurred for 87 of the 1851 tweets (4.7%), a discussion occurred
to determine the relevant label for each tweet (see examples in
Multimedia Appendix 1). Note that no duplicates were identified
by the automated verification performed.

A total of 2 classifications were developed to examine arguments
for (pros) or against (cons) vaccination (health measures
included) and examine the type of tweet content (scientific,
political, social, or vaccination status). The classifications and
definitions used to label tweets are provided in Table 1 with
translated examples of tweets for each label. In accordance with
Twitter's terms of use under the European General Data
Protection Regulation, original tweets cannot be shared [23].
Therefore, the translations have been adjusted to ensure the
anonymity of Twitter users.
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Table 1. Classification criteria for tweets and definitions.

Translated examples (French to English)DefinitionType of tweet

Classification problem 1

The Emmanuel Macron effectUnclassifiable or irrelevant to the topics of vaccination or
health measures

Unclassifiable

I have to ask my doctor for the vaccineNeutral or without explicit opinion on vaccination and/or
the health pass

Noncommittal

Personally, I am vaccinated so nothing to fear, on the other
hand, good luck to all the anti-vaccine, you will not have
the choice now??

Arguments in favor of the health pass

Arguments in favor of the COVID-19 vaccine and/or the
health pass (efficiency, safety, relevance)

Pros

I am against the vaccine I am not afraid of the virus but I
am afraid of the vaccine

Arguments against vaccination or doubts about the effec-
tiveness of COVID-19 vaccines, fear of side effects, and
refusal to obtain the health pass

Cons

Classification problem 2

A vaccineIrrelevant to the topic or unclassifiableUnclassifiable

The vaccine is 95% efficient, a little less in fragile people.
The risk is not zero, but a vaccinated person has much less
chance of transmitting the virus.

Scientific or pseudoscientific content that uses true beliefs
or false information

Scientific

Basically the vaccine is mandatory, shameful LMAOComments on legal or political decisions about vaccination
or health measures

Political

“Pro vaccine” you have to also understand that there are
people who do not want to be vaccinated.

Comments, debates, or opinions on the report to other
members of society

Social

Example 1: I am very glad to have already done my 2
doses of the vaccine, fudge

Example 2: I don't want to get vaccinated. Why? Well, you
know, we don't know what's in this vaccine, it can be dan-
gerous.

Explicit tweet about the vaccination status of the tweet
author

Comments on the symptoms experienced after COVID-19
vaccination

Explicit refusal to receive a COVID-19 vaccine

Vaccination status

Classification Method
This study followed the general methodology of machine
learning to guarantee a rigorous building of the model. To ensure
that the model did not overfit or underfit the data set, the
following steps were taken:

1. The data set was divided into training (n=1306), validation
(n=145), and testing (n=400) data sets.

2. The training loss was represented as a function of the
number of epochs to monitor the correct learning of the
model and select its optimal value.

3. The validation accuracy is represented as a function of the
number of epochs to ensure that the model was not
overfitting or underfitting the data.

4. The final model was evaluated on a testing data set that had
not been previously used to build or validate the model.

A total of 2 fully connected dense neural network layers with
1024 and 4 neurons (for classification problem 1) or 5 neurons
(for classification problem 2) were added to the head of the
CamemBERT model, adding another 1.6 million parameters.
Furthermore, to prevent overfitting, a 10% dropout was applied

between those 2 layers. A small learning rate of 2 × 10-5 was
used for fine-tuning, and adaptive moment estimation with a
decoupled weight decay regularization [24] was chosen as the
optimizer (see full code used on GitHub [25]). The parameters
were adjusted by minimizing the cross-entropy loss, which is
a common choice when dealing with a classification problem.

Fine-tuning was performed on a data set consisting of the 1451
labeled French-language tweets, 90% (n=1306) of which were
used for training and the remaining 10% (n=145) for validation.
Once the model was built, it was tested on a new set of 400
labeled tweets from which a statistical analysis was performed.
A total of 2 classification models were built from the same data
set, 1 with 4 labels (unclassifiable, neutral, positive, or negative)
related to a tweet author’s opinion about vaccination and 1 with
5 labels related to the type of content in a tweet (unclassifiable,
scientific, political, social, vaccination status, or symptoms).
The proportion of tweets classified into each label for these 2
problems is given in Table 2. We see that the data set is slightly
imbalanced. As such, it does not require special treatment.

One of the main hyperparameters to be tuned for the training
of the model is the number of epochs. As a rule of thumb, to
prevent overfitting, the number of epochs is usually chosen
based on when the abruptness of the slope of the loss changes
while maintaining a low rate of misclassification on the
validation data set. Figure 2 shows that 7 epochs should lead to
the best result.

This was confirmed by computing the precision, recall, and
F1-score at 3 different epochs (7, 15, and 20), as shown in Table
3. The reported results were computed on the test data set with
400 tweets. The average results over the classes were weighted
to account for imbalanced classes in the data set. As expected,
the highest score was obtained with 7 epochs, however, not by
a wide margin (Table 3).
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A similar study for the second classification problem determined
that 6 epochs were enough to prevent overfitting. The
performance of the model was also measured by computing the
weighted precision, recall, and F1-score, as shown in Table 4.

The size of the data set is quite similar to those of Kummervold
et al [17] (1633 tweets for training and 544 for testing) and
Benítez-Andrades et al [26] (n=1400 for training and n=600 for
testing). Furthermore, the benefit of using a pretrained model

such as the CamemBERT is that a large data set is not required
to obtain good results. We also tried to build a neural network
model from scratch with the same data set, but the classification
performance of the model was significantly lower than the
results presented in this paper with the CamemBERT model.
For classification problem 1, we reached an accuracy of 33%
(versus 59% with the pretrained model) and for classification
problem 2, we reached an accuracy of 40% (versus 67.6% with
the pretrained model).

Table 2. The proportion of tweets assigned to each label in the data set for classification problems 1 and 2 (n=1451).

TweetsClassification problem

Classification problem 1, n (%)

189 (13)Unclassifiable

354 (24.4)Neutral

392 (27)Positive

516 (35.6)Negative

Classification problem 2, n (%)

226 (15.6)Unclassifiable

441 (30.4)Scientific

316 (21.8)Political

353 (24.3)Social

115 (7.9)Vaccination status

Figure 2. Training loss (a) and validation accuracy (b) of the model over 20 epochs for classification problem 1.

Table 3. Classification performance of the model for classification problem 1.

F1-scoreaRecallaPrecisionaEpochs, n

55.355.3597

53.25356.615

55.254.556.920

aThese data are provided as percentages.

JMIR Med Inform 2022 | vol. 10 | iss. 5 |e37831 | p.264https://medinform.jmir.org/2022/5/e37831
(page number not for citation purposes)

Sauvayre et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Classification performance of the model for classification problem 2.

F1-scoreaRecallaPrecisionaEpochs, n

62.964.567.66

61.362.862.715

56.559.560.620

aThese data are provided as percentages.

Results

Statistical Analysis
From the results of the previous section, we see that it is
significantly more difficult to build a performant classifier based
on the 4 vaccine sentiment labels (unclassifiable, noncommittal,
pros, and cons), with the maximum F1-score reaching 55.3%
in this case. On the other hand, the classifier built from the same
tweets but with 5 different labels based on content type
(unclassifiable, scientific, political, social, vaccination status,
or symptoms) achieved a much higher F1-score (62.9%).

To analyze the strength and weakness of a model more
specifically, it is always instructive to represent it using a
confusion matrix [27], as shown in Figure 3.

Since the values in these matrices are percentages, their
interpretation requires some care. For the first problem,
summing figures line-by-line in the matrix shows that out of

100 tweets from the test data set, on average, 11.25 are
unclassifiable, 35.50 are noncommittal, 13.25 are pros, and
40.00 are cons. It is then possible to compute the proportion of
tweets correctly classified by the model, label-by-label. The
results are shown in Table 5. We see that the model can
accurately classify the tweets labelled as pros and cons. It
misclassifies a large number of the unclassifiable tweets and,
to a lesser extent, noncommittal tweets. Looking back to the
confusion matrix, for the last 2 labels, we observe that the model
tends to classify the tweets as being pros.

For the second problem, as expected, in line with the higher
F1-score found in the previous section, the model achieves much
better classification performance. It excels at classifying
scientific and political tweets and is also good at classifying
social tweets. It still has some difficulties classifying
unclassifiable tweets and, in a larger proportion, vaccination
status tweets. Looking back to the confusion matrix, for the last
2 labels, we observe that the model tends to classify them as
being social tweets.

Figure 3. Confusion matrix for classification problems 1 and 2 (n=400).
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Table 5. The number of tweets correctly classified for each label in classification problems 1 and 2 (n=400).

TweetsClassification problem

Classification problem 1, n (%)

10 (22.2)Unclassifiable

62 (43.7)Noncommittal

36 (67.9)Pros

113 (70.6)Cons

Classification problem 2, n (%)

27 (40.3)Unclassifiable

67 (79.8)Scientific

93 (82.3)Political

58 (66.7)Social

13 (26.5)Vaccination status

Text Size Analysis
To improve the performance of the fine-tuned CamemBERT
model, a hypothesis about the influence of tweet length on model
accuracy was tested. A Mann-Whitney U test generated
statistically significant results for classification problem 2
(U=21,202; P=.004) but not for classification problem 1
(U=19,284; P=.79). As Figure 4 shows, the correctly predicted
tweets are significantly longer for classification problem 2. A

second analysis carried out on a dichotomous variable created
from the tweet text length (greater than or less than 170
characters) confirmed this significance for classification problem
2. A tweet was 1.86 times more likely to be incorrectly predicted
by the model if it contained less than 170 characters (odds ratio
[OR] 1.86; 95% CI 1.20-2.86). Therefore, the significance
obtained using these 2 analyses (Mann-Whitney U test and OR)
allows us to rigorously validate [28] our hypothesis.

Figure 4. Tweet text length as a function of the accuracy of the fine-tuned CamemBERT model conducted on classification problems 1 and 2
(Mann-Whitney U test).

Long Tweet Test
The finding of the previous section is further supported after
carrying out the following experiment. Tweets with more than
170 characters were selected from the 400-tweet data set.
Classification model 2 was then tested with these 168 tweets to
see if its accuracy increased.

As shown in Table 6, the accuracy improved from 64.5% to
73.2% (an 8.7% increase), confirming our hypothesis. The
F1-score also increased by approximately the same amount.

The confusion matrix generated from the comparison between
the model-classified and the manually classified 168 long tweets

is shown in Figure 5. From this matrix, it is possible to compute
the percentage of correct classifications for each label, the results
of which are shown in Table 7. The increase in accuracy is
significant for the vaccination status label (an increase of 9.2%),
followed by the political label (an increase of 7.7%) and the
unclassifiable label (an increase of 6%).

As already pointed out using the Mann-Whitney U test and OR,
the model for the second problem has much better classification
performance with long tweets. It should be noted that the rate
of correct classification of political tweets reached an impressive
90% (45/50).

JMIR Med Inform 2022 | vol. 10 | iss. 5 |e37831 | p.266https://medinform.jmir.org/2022/5/e37831
(page number not for citation purposes)

Sauvayre et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 6. Classification performance of the model for classification problem 2, limited to long tweets (170 or more characters).

F1-scoreaRecallaPrecisionaClassification problem

72.473.272.62

aThese data are provided as percentages.

Figure 5. Confusion matrix for classification problem 2 limited to long tweets (n=168).

Table 7. The proportion of correct classifications for each label in classification problem 2, limited to long tweets (170 or more characters; n=168).

Number of tweetsType of problem

Classification problem 2, n (%)

6 (46.3)Unclassifiable

42 (79.2)Scientific

45 (90)Political

25 (65.8)Social

5 (35.7)Vaccination status

Discussion

Principal Findings
A total of 2 types of classification were examined. The accuracy
of the model was better with the second classification (67.6%;
F1-score 62.9%) than the first classification (59%; F1-score
55.3%). This accuracy is slightly higher than that obtained by
BERT for the same topic (vaccines) [17] and in the same range
as previous findings [16,29]. However, CamemBERT obtained
a better accuracy (78.7%-87.8%) in a study using dichotomous
labels for tweets about eating disorders and using a
preprocessing step, reducing the initial number of tweets by 2

[26]. However, by limiting the analysis to long tweets (170 or
more characters, in accordance with the statistical analysis
conducted on the performance of the model), the accuracy of
classification model 2 improved significantly (from 62.9% to
72.4% for the F1-score).

Therefore, as shown by Kummervold et al [17], the classification
choices have a significant influence on the accuracy of a model.
As in other research areas, the vaccine hesitancy debate
crystallizes the opposition. Individuals from the pro and con
sides debated on Twitter after the announcement of the
implementation of a health pass in July 2021 by the French
president. The mobilized arguments were scientific or
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pseudoscientific to justify or contest this political decision.
Several Twitter users participated in the debate to convince
anti-vaccine proponents to become vaccinated. Another group
of users participated by joking about or ironizing the positions
of each side.

Consequently, tweet content is so varied that it remains difficult
to manually categorize, and this has been reflected in the model
predictions. On the one hand, considering classification problem
1, tweets containing characteristic terms of the anti-vaccine
position, such as “5G,” “freedom,” “phase of testing,” “side
effect,” and “#passdelahonte” (“shameful pass”), were found
to be easier to label and predict. However, because antivaccine
proponents spread disinformation more widely on social media
[30], the position of provaccine individuals is less polarized [7],
which reduces the model’s precision because the terms are less
singular. On the other hand, considering classification problem
2, the classes were more distinctive since their lexical fields did
not overlap. Indeed, when Twitter users commented on political
decisions, the terminology used was different from that used to
mobilize scientific or pseudoscientific arguments. Moreover,
the scientific and political labels were best predicted by the
model (67/84, 79.8% and 93/113, 82.3%, respectively).

Finally, relevant tweets for a topic may be rare in a data set. In
some studies, the corpus is halved [13], while in others, only
0.5% (4000/810,600) of downloaded tweets were included in
the analysis [16]. It would be interesting to find an objective
method to improve model predictions without drastically
reducing the data set. The approach of limiting tweet length can
be an option, as we have demonstrated in this paper.

Limitations
Several limitations can be highlighted, including the following:
(1) the data were only provided from a single social media
platform (Twitter); (2) all tweets containing the term “vaccine”
and its derivatives were included without preselection; (3)
several categorization classes were unbalanced; (4) a larger
training set could provide contrasting results; (5) the
categorization choices could affect the performance of
CamemBERT, as seen in the confusion matrix; and (6) the
suggestions provided (limiting the number of tweet characters)
may only apply to tweets on the topic of vaccination, so further
studies are needed to confirm the relevance of our conclusions.

Conclusions
In this study, we tested the accuracy of a model (CamemBERT)
without preselecting tweets, and we elaborated an
epistemological reflection for future research. When the vaccine
debate is jostled by contested political decisions, tweet content
becomes so heterogeneous that the accuracy of the model
decreases for the less differentiating classes. In summary, our
analysis shows that epistemological choices (types of classes)
can affect the accuracy of machine learning models. However,
our tests also showed that it is possible to improve the model
accuracy by using an objective method based on tweet length
selection. Other possible avenues for improvement remain to
be tested, such as the addition of features provided by Twitter
(conservation ID, number of Twitter users following or
followers, user public metrics listed count, user public metrics
tweet count, or user ID).
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