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Abstract

Background: Electronic medical records have opened opportunities to analyze clinical practice at large scale. Structured
registries and coding procedures such as the International Classification of Primary Care further improved these procedures.
However, a large part of the information about the state of patient and the doctors’ observations is still entered in free text fields.
The main function of those fields is to report the doctor’s line of thought, to remind oneself and his or her colleagues on follow-up
actions, and to be accountable for clinical decisions. These fields contain rich information that can be complementary to that in
coded fields, and until now, they have been hardly used for analysis.

Objective: This study aims to develop a prediction model to convert the free text information on COVID-19–related symptoms
from out of hours care electronic medical records into usable symptom-based data that can be analyzed at large scale.

Methods: The design was a feasibility study in which we examined the content of the raw data, steps and methods for modelling,
as well as the precision and accuracy of the models. A data prediction model for 27 preidentified COVID-19–relevant symptoms
was developed for a data set derived from the database of primary-care out-of-hours consultations in Flanders. A multiclass,
multilabel categorization classifier was developed. We tested two approaches, which were (1) a classical machine learning–based
text categorization approach, Binary Relevance, and (2) a deep neural network learning approach with BERTje, including a
domain-adapted version. Ethical approval was acquired through the Institutional Review Board of the Institute of Tropical
Medicine and the ethics committee of the University Hospital of Antwerpen (ref 20/50/693).

Results: The sample set comprised 3957 fields. After cleaning, 2313 could be used for the experiments. Of the 2313 fields,
85% (n=1966) were used to train the model, and 15% (n=347) for testing. The normal BERTje model performed the best on the
data. It reached a weighted F1 score of 0.70 and an exact match ratio or accuracy score of 0.38, indicating the instances for which
the model has identified all correct codes. The other models achieved respectable results as well, ranging from 0.59 to 0.70
weighted F1. The Binary Relevance method performed the best on the data without a frequency threshold. As for the individual
codes, the domain-adapted version of BERTje performs better on several of the less common objective codes, while BERTje
reaches higher F1 scores for the least common labels especially, and for most other codes in general.

Conclusions: The artificial intelligence model BERTje can reliably predict COVID-19–related information from medical records
using text mining from the free text fields generated in primary care settings. This feasibility study invites researchers to examine
further possibilities to use primary care routine data.

(JMIR Med Inform 2022;10(4):e37771) doi: 10.2196/37771
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Introduction

Electronic medical records (EMRs) have opened the opportunity
to analyze clinical practice at large scale, and to perform
clinical-epidemiological research, which can inform health care
managers and policy makers. Structured registries and coding
procedures such as the International Classification of Primary
Care have improved the way doctors put information into EMR,
which has facilitated the use of its output and accelerated
research using these data. The free text fields also still available
in EMR systems have been hardly used apart from clinical
follow-up. Yet the usage of this information has great potential
to contribute to monitoring and evaluation of clinical practice
and to EMR-driven research. In 2016, US researchers compared
the accuracy for case detection of diagnoses such as dementia,
stroke, diabetes, and depression based upon coded information
versus the procedure including free text, and they found a
significant improvement in algorithm sensitivity in the latter
[1].

This is not surprising since these fields contain the core of
clinical practice captured in the encounter notes. The encounter
notes available in most EMRs have a structured “SOAP” format,
which stands for Subjective (patient’s history), Objective
(physical examination), Assessment (initial differential
diagnosis), and Plan [2]. The main function of these free text
fields is to report the doctor’s line of thought, to remind oneself
and colleagues on follow-up actions, and to be accountable for
clinical decisions. Therefore, they contain the richest data about
the state of the patient and the observations of the doctor. Yet
their use is also challenging. Health care providers tend to write
notes quickly, with personal styles and abbreviations, and they
vary in their completeness and quality of reporting. Therefore,
encounter notes have seldom been used for further analyses and
research.

A 2019 review on the use of free text fields in the EMR [3]
showed that the focus of most studies was on the development
of methods to extract symptom information for disease
classification tasks. For instance, a UK study validated a method
for mining free text fields to link them to frequent medical
conditions such as colic or renal failure [4]. The analysis of
symptoms themselves has been restricted to specific and rather
narrow domains such as neuromuscular diseases [5], psychiatry
[6], and veterinary medicine [7,8]. A recent study demonstrates
the feasibility of extracting information from free text notes and
using this as input to a model for predicting patient outcomes
[9].

To use the information from free text fields at a large scale,
methods to recognize this information need to be developed
and evaluated. A 2012 study found that combination of a
manually created filter and rule learning algorithm yielded the
best performance across two different data sets (radiology
reports and general practitioner [GP] notes) [10], but the
performance for the GP set was considerably lower. The
variation of symptoms and note-taking is peculiar for the GP
domain. This implies that more such studies are necessary to
develop robust methods for data recognition for GP data sets

to improve the reproducibility of data and their value for routine
use.

The relevance for quick information using real time data was
apparent in the COVID-19 pandemic. The collection, evaluation,
and synthesis of information started quickly. Data mainly came
from hospital settings, where most severe cases were admitted,
and where resources could be mobilized quickly, for instance,
to make decision-support algorithms for diagnosis and treatment
based upon models that predict disease outcomes [11]. This
predominant use of data from severely ill patients led to risk of
bias in the models [12]. This underlined the need to develop
methods to extract data quickly and reliably from primary care
health records at large scale.

Our study contributes to this goal. The objective of this paper
was to develop a robust method to transform the primary care
notes into a list of symptoms that could feed improved
COVID-19 prediction models through the development of a
text classifier model that can predict the relevant symptoms
(output) based upon the analysis of the free text fields (input).
If this method proves robust, free text data from primary care
clinical notes about COVID-19–related symptoms can be mined
at large scale quickly and reliably.

Methods

Background
This study is part of the project ID-CoV to develop procedures
for data identification, harmonization, and linkage to develop
robust methodologies to build a risk prediction tool based on
primary care and hospital data for the identification of
individuals at higher risk for severe COVID-19 outcomes
(project id 43639, Funded by University of Antwerp).

Data Collection
The iCAREdata database was used, which is a database of
contacts in out of hours (OOH) care by general practice
cooperatives, triage centers (additional centers organized during
the COVID-19 pandemic to triage between infectious and
noninfectious diseases), pharmacies, and a small number of first
aid departments connected to the system (covering OOH care
of roughly two-thirds of Flanders population) [13]. One OOH
hosts between 80 and 150 different GPs. Data from EMR at
OOH services therefore cover a broad range of different
physicians, with different approaches of medical care and
registration of clinical data, leading to high variability of content,
completeness, quality, and format of information in the data
set, which adds methodological challenges to developing mining
procedures. Nevertheless, the analysis of the data of this segment
of primary care consultations is especially relevant in a
pandemic context [14]. The units of analysis in iCAREdata are
records, each record being one contact (=consultation). Due to
the exploratory nature, sample size was not considered a limiting
factor. We aimed to use as many observations (patient’s
encounters) as possible in a given time period to reduce the
uncertainty of our model estimates. A study database was
created that comprises all records from January 1, 2019, to
November 30, 2020. These are roughly 779,000 records, which
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include a pre–COVID-19 period and a COVID-19 epidemic
period (March 1, 2020, to November 30, 2020).

For each record, 15 fields were extracted (Multimedia Appendix
1). For the data mining study reported in this paper, only 5 fields
were used (Textbox 1). The “field subjective” (physician’s
report on the patient’s account of their problem) and “field
objective” (findings and measurements of the physician) were
explored for relevant text (combinations). We used supervised
machine learning algorithms to classify information into one
or more of predetermined symptoms via the multiclass,
multilabel prediction model described below. Fields
“DiagnTekst” and “DiagnCod” were used as control records
for validation.

The establishment of the symptom list that needed to be the
outcome of the classifier model was started from an initial list
of 23 symptoms identified by the Belgium Public Health
Institute as relevant [15] but was refined driven by the data. A
manual exploration of the data set yielded 62 symptoms most
of them with a negative counterpart, indicating the absence of
that symptom. Negative symptoms were relevant because of
their negative predictive value in a diagnostic or prognostic
algorithm [16]; for instance, the absence of cough contributing
to the likelihood or non-likelihood of a COVID-19 diagnosis.
The skewed distribution led to a regrouping of symptoms,
resulting in a final list of 27 signs or symptoms (Table 1). There
are two types of symptom codes, which are “objective,” based
on the “objectief” text field, and “subjective,” based on the
“subjectief” text field, respectively.

Textbox 1. Relevant fields for input to machine learning algorithm to recognize signs and symptoms.

Machine learning fields

• IdContact: unique id for contact (date, guard post, time)

• Subjectief: subjective text field

• Objectief: objective text field

• DiagnTekst: diagnosis term (thesaurus)

• DiagnCod: diagnosis code from the International Classification of Primary Care [17]
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Table 1. Final list with signs and symptoms to be coded from the free text.

ExplanationFinal symptoms—coded

CoughSa1; SAb1

Upper respiratory tract infection complaintsS100; SA100

Dyspnea and shortness of breathS101; SA101

Thoracic pain or chest painS7; SA7

Loss of taste or smellS102; SA102

History of feverS10; SA10

Pain or stiffness in muscles, joints, or neckS112

Complaints of throat or voiceS109

FatigueS12

HeadacheS15

Gastrointestinal complaintsS103; SA103

Significant acute event or changeS104

Chronic pulmonary complaints; smoking; potentially worseningS105

Other comorbidities or being pregnantS105

Known cardiovascular diseases or hypertension or relevant medicationS106

Known diabetes or diabetes medicationS107

Medication NSAIDc or immunosuppressive drugsS108

Palpitations or dizzinessS113

General complaints as malaise and illnessS110

Mental or sleeping problemsS111

Close contact with a sick person (COVID-19 symptoms) or COVID-19–positive caseS63

Respiratory signs found during physical examinationOd101

Fever measured by health care staffO6

Ear-, nose-, or throat-positive signs during physical examinationO102

Neurological symptomsO104

Circulatory positive signs: abnormal pulse rate, tension, or turgor of capillary refillO103

Impression of being illO19

aS: Subjective.
bA: absence of the symptom.
cNSAID: nonsteroidal anti-inflammatory drugs.
dO: Objective.

Development of a Classifier Model
Classification entails the tasks of predicting the class (or label
of output variable—the list with 27 signs or symptoms) based
upon the input variables (the free text fields). Two approaches
were examined to develop a multiclass, multilabel categorization
classifier, which are as follows: (1) a classical machine
learning–based text categorization approach; and (2) a deep
neural network learning approach based on fine-tuning a
pretrained model for domain adaptation and learning the
classification task. The advantage of the latter approach is that,
in general, less supervised training data (ie, annotated data) are
needed for learning the task. A random sample from the data
set was extracted for annotation, with a distribution of 1/3

records from before the start of the COVID-19 pandemic
(operationalized as March 1, 2020) and 2/3 after that date,
comprising 3957 entries in total. Character encoding problems
in the text data were solved during preprocessing. Empty entries
and entries that did not contain any information (eg, “/”) in
either the subjective or objective fields were removed from the
data set, which left 2313 entries to be used for the experiments.
The subjective and objective text fields were merged into one
text field in order to receive sufficiently large text fragments
for prediction. The same resulting text could be assigned
multiple objective and subjective codes. Negative symptoms
were kept apart by coding them with an A-label; for instance,
SA10 indicated the absence of a history of fever. The A codes
were frequent among the objective text fields. Entries that were
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annotated as irrelevant (without any symptom code) were used
as negative examples for training of the models.

The samples were annotated by 5 medical doctors or researchers.
Inter-annotator variability was checked. All annotators started
annotation of the same set and manually compared
inconsistencies, discussed them, adapted the standard operating
guidelines, and repeated this procedure until agreement of 90%
was achieved. During the annotation phase, the inventory of
symptom tags (classes) evolved, but all annotated data were
made comparable through a common code book and standard
operating procedure in the final data set. The number of entries,

average number of tokens (instances of words and punctuation
marks), and total amount of tokens for the training partition,
test partition, and the total data set are summarized in Table 2.

The distribution of codes (labels) in the data set is shown in
Figures 1 and 2. The majority of the codes are subjective codes;
out of the 55 codes, 43 (78%) are subjective while the remaining
12 (22%) are objective. For the development of the classifier,
experiments were conducted with all codes and only codes
occurring at least 50 times, which meant 35 (63%) out of 55
codes (representing 93% of all used codes).

Table 2. Total number of entries, average amount of tokens per entry, and total amount of tokens for the training, test portions, and the entire data set.

Total tokens, nAverage tokens per entry, nEntries, n (%)Portion

53,929241966 (85)Train

10,77931347 (15)Test

64,708282313 (100)Total

Figure 1. Code distribution in the data set. Codes to the right of the threshold line were removed for the experiments where a frequency threshold was
employed.

Figure 2. Distribution of the percentage of entries in the data set assigned to a particular number of codes.

The baseline accuracies (most frequent class prediction and
random prediction) are 0.15 and 0.08, respectively. In the first
set of experiments, we used classic machine learning methods.
One of the most common approaches to multiclass, multilabel
classification is Binary Relevance. With this method, the

multilabel problem is translated to n binary classification
problems, where n is equal to the number of labels present in
the data set. Binary in this case means that the classifier attempts
to predict whether a class (code) is present (1) or not (0) in the
text. For the binary classifiers, we used the Stochastic Gradient
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Descent classifier [18] and optimized the hyperparameters
(including the loss function) by performing a gridsearch on
them (a search for the best combination of algorithm parameters
on a validation partition of the training data in the context of
5-fold cross-validation). The performance of this method is
measured by taking the mean of all cross-validated results from
the individual binary classifiers.

Further experiments were then conducted with BERTje [19], a
Dutch version of BERT [20]. BERT is a widely used model for
natural language processing, and the availability of a Dutch
version BERTje made it the first choice of the team. BERTje
is an open-source pretrained language model that has been
trained on a large amount of generic (nonmedical) Dutch text
data. Thus, the model already has knowledge about language
patterns before having been trained on data for a specific
problem, in contrast to, for example, the Stochastic Gradient
Descent classifier, which was limited to the training data.
Additionally, we continued the pretraining of BERTje by using
a selection of the text fields of the original data set (part of the
iCAREdata database) in order to “adapt” BERTje to medical
texts. This method has been proven to be successful on a wide
range of tasks [21,22]. For all experiments, the F1 macro score
metric was used for evaluation, which is the average F1 score
(harmonic mean of precision and recall) obtained for the classes.
In our binary relevance setup and the implementation of F1
macro we used, only successful predictions of the minority class
(correctly predicting that the code is present) are taken into
account, which makes it the most critical (but also the most
relevant) evaluation.

For all experiments, we used a stratified train-test split, where
80% of the data were used for training and hyperparameter

optimization, and 20% were used for testing. The best model
on test (BERTje) was then fine-tuned on all annotated data and
applied to the complete (unannotated) data set, predicting
diagnostic codes based on the text fields.

Ethics Approval
Ethical approval was acquired through the Institutional Review
Board of the Institute of Tropical Medicine and the ethics
committee of the University Hospital of Antwerpen (ref
20/50/693).

Results

In the tables below, the results of the experiments on the test
set are summarized. Across all models that were trained and
tested on data with a frequency threshold for the labels, the
normal BERTje model performed the best on the data, reaching
a weighted F1 score of 0.70 and an exact match ratio or accuracy
score of 0.38 (Table 3), indicating the instances for which the
model has identified all correct codes. The results per code can
be found in Table S1 of Multimedia Appendix 1. The other
models achieved respectable results as well, ranging from 0.59
to 0.70 weighted F1. The Binary Relevance method performed
the best on the data without a frequency threshold (Table S2 of
Multimedia Appendix 1).

Regarding the results on the individual codes themselves, the
domain-adapted version of BERTje performs better on several
of the less common objective codes (O101, O102, OA101,
OA102, OA104, and OA6), while BERTje reaches higher F1
scores for the least common labels (S102 and SA102) especially,
and most other codes in general.

Table 3. Average results for the different models on test data with a frequency threshold for the codes (codes occurring at least 50 times).

Weighted F1Weighted recallWeighted specificityWeighted precisionMethod

0.590.520.930.69Binary Relevance (SGDa classifier)

0.700.680.970.77BERTje

0.670.620.960.74BERTje (domain adaptation)

aSGD: Stochastic Gradient Descent.

Discussion

Principal Findings
In this paper, we demonstrated the feasibility of developing a
model to predict symptom codes from primary care clinical text
notes. Across the three models tested, the pretrained neural
network model BERTje performed the best. The reason for the
lower performance of the domain-adapted BERTje needs further
investigation. Neural networks can forget information they
previously learned upon learning new information (catastrophic
forgetting); however, from the current data, we are not able to
explain if this was the reason for the lower performance.

Our model resulted in the ability to predict symptoms from the
free text with a weighted average F score of 0.66 (0.75
sensitivity and 0.97 specificity) on all codes, regardless of
frequency, and an F score of 0.70 (0.77 sensitivity and 0.97

specificity) on codes that occurred more than 50 times in the
data set. Very few studies that have developed mining
techniques for clinical notes, in general [23], and from primary
care, in particular. Yet the incidental other studies show
feasibility and good results [24]. A study using a Repeated
Incremental Pruning to Produce Error Reduction rule learning
model resulted in a sensitivity of 0.91, and a specificity 0.76
[10]. To our knowledge, this is the first study that mined data
from OOH health care organizations.

The strength of our study is that we used a large database
representative of a population of 6 million people in Flanders
and with many different GPs. The major limitation of our study
relates to the quality of the raw data. The data set contained
consultations of OOH primary care consultations. The notes in
these consultations were often very brief, and the completeness
and quality of information varied across entries. This is similar
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in studies from routine primary care [25]; however, in OOH
care, this is likely to be worse, making it more difficult to
develop mining models. This reflects the reality of medical
practice and the limitations of real-world data. Further research
into minimal needs for reporting for both clinical and other
purposes is warranted. Another limitation is that some symptom
codes, for instance SA100 (geen BLWI klachten-no respiratory
tract complaints) could not be learned by the machine learning
models. The explanation for this, as for similar cases, is that
there were too few instances available in the data set for the
model to learn from [9]. For these codes, it would be useful to
investigate the data for more cases to be annotated. Even if more
elaborate annotating will improve the gain, not all free text
fields can be transformed into coded information, which needs
to be taken into account in the interpretation of the output.

Notwithstanding the limitations, our study is relevant for primary
care research and evaluation. Once coded, these symptoms can
be monitored, evaluated, and processed, for the development
and testing of algorithms, for near real time symptom

surveillance [26], or for assessing quality of history taking and
record keeping. Our study focused on symptom detection, but
wider applications of the text mining and natural language
processing can be thought of, such as the analyses of adverse
events or patient-reported experiences [23].

Conclusions
The BERTje prediction models can reliably predicting
COVID-19–related information from medical records using
text mining from the free text fields generated in primary care
settings. The feasibility to convert this rich but largely untapped
source of clinical encounter into data usable for monitoring,
evaluation, and research provides opportunities for
comprehensive analysis of primary care consultations at large
scale, as well as use for monitoring purposes, also in other
primary care settings. This feasibility study invites researchers
to examine further possibilities to use primary care routine data,
for instance, to examine the process of clinical reasoning through
EMR analysis or to assess the input of patient-related
information into the diagnostic process.
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