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Abstract

Background: A regular task by developers and users of synthetic data generation (SDG) methods is to evaluate and compare
the utility of these methods. Multiple utility metrics have been proposed and used to evaluate synthetic data. However, they have
not been validated in general or for comparing SDG methods.

Objective: This study evaluates the ability of common utility metrics to rank SDG methods according to performance on a
specific analytic workload. The workload of interest is the use of synthetic data for logistic regression prediction models, which
is a very frequent workload in health research.

Methods: We evaluated 6 utility metrics on 30 different health data sets and 3 different SDG methods (a Bayesian network, a
Generative Adversarial Network, and sequential tree synthesis). These metrics were computed by averaging across 20 synthetic
data sets from the same generative model. The metrics were then tested on their ability to rank the SDG methods based on
prediction performance. Prediction performance was defined as the difference between each of the area under the receiver operating
characteristic curve and area under the precision-recall curve values on synthetic data logistic regression prediction models versus
real data models.

Results: The utility metric best able to rank SDG methods was the multivariate Hellinger distance based on a Gaussian copula
representation of real and synthetic joint distributions.

Conclusions: This study has validated a generative model utility metric, the multivariate Hellinger distance, which can be used
to reliably rank competing SDG methods on the same data set. The Hellinger distance metric can be used to evaluate and compare
alternate SDG methods.

(JMIR Med Inform 2022;10(4):e35734) doi: 10.2196/35734

KEYWORDS

synthetic data; data utility; data privacy; generative models; utility metric; synthetic data generation; logistic regression; model
validation; medical informatics; binary prediction model; prediction model

Introduction

Interest in synthetic data generation (SDG) has recently grown.
Synthetic data are deemed to have low privacy risks in practice
because there is no one-to-one mapping between synthetic
records and real people [1-8]. Recent evidence supports the low

privacy risk claim [9]. This enables synthetic data to be used
and shared for secondary purposes without the need for further
consent [10]. In addition to meeting privacy requirements,
synthetic data must also have sufficient utility. This utility can
be evaluated using utility metrics. Utility metrics are important
in hyperparameter tuning of the generative models during
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training and communicating data quality to the synthetic data
users and for researchers and analysts when ranking different
SDG methods to select the best one. Our focus in this paper is
on the ranking of SDG methods.

Utility metrics can be defined as narrow or broad [11]. Narrow
metrics are specific to an analysis that is performed with the
synthetic data and are also sometimes referred to as
workload-aware utility metrics. For example, if the objective
is to build a model between a predictor and a binary outcome,
controlling for multiple confounders, then the difference in
accuracy of real versus synthetic model predictions on holdout
data sets would be a workload-aware utility metric. There have
been multiple studies evaluating narrow metrics [12-16]. Narrow
metrics represent what the data user is ultimately interested in.
Data users want synthetic data sets that score highly on narrow
utility metrics.

Researchers and analysts need to rank SDG methods. For
example, a developer of an SDG method may use an ensemble
of techniques and then select the one with the highest utility as
the final result, or analysts may evaluate multiple SDG methods
available in the marketplace to select one for their own projects.
However, all workloads are typically not known in advance.
Therefore, researchers and analysts cannot evaluate the narrow
utility of the SDG methods directly. Instead, they need to use
broad utility metrics during the SDG construction and evaluation
process. A key requirement is that broad utility metrics are
predictive of narrow utility metrics for plausible analytic
workloads.

Some studies utilized broad metrics, for example, to compare
and improve SDG methods [17-19]. However, many of the
broad utility metrics currently used have not been validated.
This means that there is a dearth of evidence demonstrating that
they are predictive of narrow utility metrics under realistic
decision-making scenarios.

The realistic decision-making scenario that we are considering
here is the comparison and ranking of SDG methods. Finding
the best SDG method is becoming a more common need in the
literature, and we need reliable metrics to be able to draw valid
conclusions from these comparisons. Furthermore, in practice,
users of SDG methods need to have good metrics to select
among a number of these methods that may be available to
them.

Utility metrics can be classified in a different way, which is
relevant for our purposes. They can pertain to a specific
synthetic data set or to the generative model (“data set–specific”
and “model-specific” utility metrics). Because SDG is stochastic,
the utility of synthetic data sets generated from the same
generative model will vary each time the generative model is
run, and sometimes that variation can be substantial. Data
set–specific utility metrics are useful when one wants to
communicate how good the particular generated data set is to
a data user. However, these utility metrics are not necessarily
useful, for example, for comparing different generative models
because of the stochasticity. A model-specific utility metric
reflects the utility of the generated synthetic data sets on average,
across many data sets that are generated from the same model.

Such a metric is more useful in our context, where we want to
compare and rank SDG methods.

Our focus in the current study is to perform a validation study
of broad model-specific utility metrics for structured (tabular)
health data sets. While there have been evaluations of generative
model utility metrics in the past, these have focused on images
rather than structured data [20]. One previous more relevant
evaluation considered propensity mean squared error (pMSE)
[21,22] as a model utility metric whereby its correlation with
binary prediction accuracy on synthetic data was empirically
assessed [23]. The authors found that when used as a broad
model-specific utility metric, by averaging across multiple
synthetic data sets, this metric had a moderate correlation with
narrow model-specific utility metrics. However, the correlation
between a broad metric and a narrow metric across many data
sets for a single SDG technique does not reflect an actual
decision-making scenario. In practice, we have a single data set
and multiple SDG techniques. Therefore, the extent to which
the results from that previous study would be informative to
our scenario of interest is unclear.

We build on this previous work by considering other types of
broad model-specific utility metrics beyond pMSE and adjust
the methodology to more closely model a practical
decision-making scenario of an analyst selecting among multiple
SDG methods to identify the one with higher narrow utility on
logistic regression prediction tasks. This type of prediction task
is used often in health research.

Methods

The protocol for this study was approved by the CHEO Research
Institute Research Ethics Board (number CHEOREB# 21/144X).
Our objective was to answer the following question: Which
broad model-specific utility metrics can be used to rank SDG
methods in terms of the similarity of prediction performance
between real and synthetic data? In the following sections we
describe the methods that were followed.

Data Sets
For our analysis, we used the 30 health data sets that are
summarized in Appendix S1 in Multimedia Appendix 1. These
data sets are available publicly or can be requested from the
data custodians. Many of these data sets have been used in
previous evaluations of SDG techniques [12,15,23], and
therefore we can ensure some consistency across studies in this
domain. These data sets also represent a heterogeneous set of
clinical situations (providing care, observational studies, clinical
trials, and registries), a wide range of data set sizes (87-44,842
patients), and variation in data set complexity (as measured
using average variable entropy), which allow our evaluations
to be more generalizable.

The Broad Utility Metrics Considered
Broad utility metrics compare the joint distributions of the real
and synthetic data sets. Many metrics have been proposed to
compare joint distributions [24]. We only focus on 6 multivariate
metrics that have been used in previous work to evaluate the
utility of synthetic data sets.
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Maximum Mean Discrepancy
The maximum mean discrepancy metric is one way to test
whether samples are from different distributions [25]. In our
implementation, we used a radial basis function kernel. This
metric has been applied to assess the utility of synthetic health
data [26,27]. It is also widely used in the training of deep
learning models and evaluation of the quality of synthetic data.
Recent work on a recurrent Generative Adversarial Network
(GAN) and recurrent conditional GAN made use of maximum
mean discrepancy to assess whether the time series generated
by the generative model implicitly learns the distribution of the
true data [28]. Another study evaluated synthetic data in the
smart grid context, in which a GAN is used to learn the
conditional probability distribution of the significant features
in the real data set and generates synthetic data based on the
learnt distribution [29].

Multivariate Hellinger Distance
The Hellinger distance [30] has been shown to behave in a
consistent manner as other distribution comparison metrics,
specifically in the context of evaluating disclosure control
methods [31], when comparing original and transformed data.

The Hellinger distance can be derived from the multivariate
normal Bhattacharyya distance and has the advantage that it is
bound between 0 and 1 and hence is more interpretable [32].
We constructed Gaussian copulas from the original and synthetic
data sets [33] and then computed the distance between them.
The concept of comparing the distance between 2 multivariate
Gaussian distributions has been used to train GAN-based SDG
methods [34]. Additional details on its calculation are provided
in Appendix S2 in Multimedia Appendix 1.

Wasserstein Distance
The W1 Wasserstein distance [35] is often applied to the training
of GANs [36]. It has resulted in a learning process that is more
robust by alleviating the vanishing gradient issue and mode
collapse.

While GANs have been used extensively as an SDG technique,
they very often still have trouble capturing the temporal
dependency of the joint probability distributions caused by
time-series data. The conditional sig-Wasserstein GANs
proposed for time series generation is aimed at addressing this
problem [37]. Here, the authors combine the signature of paths,
which statistically describe the stream of data, and the W1

distance, to capture the joint law of time series. By employing
the sig-W as the discriminator, sig-Wasserstein GAN shows an
ability to generate realistic multidimensional time series.
Additional details on its calculation are provided in Appendix
S2 in Multimedia Appendix 1.

Cluster Analysis Measure
The original cluster metric [21] was first purposed as a global
measure of the data utility of original data and masked data.
The cluster analysis has 2 steps: first, merge the original data
(O) and masked data (M); then, given a certain number of groups
G, perform cluster analysis on the merged data. The measure
can be calculated as:

Where, nj denotes the number of observations in the jth cluster
and njo denotes the number of observations in the jth cluster
that are from the original data (O). The c value is defined as:

A large Uc value indicates the disparities of the underlying latent
structure of the original and masked data. The weight wj can
reflect the importance of certain clusters. This cluster analysis
measure is used in the evaluation of synthetic data by simply
replacing the original data with real data and the masked data
with synthetic data [17].

Distinguishability Metrics
These broad metrics are based on the idea of training a binary
classifier that can discriminate between a real and synthetic
record [38,39]. That ability to discriminate is converted into a
score.

A propensity mean square error metric has been proposed to
evaluate the similarity of real and synthetic data sets [21,22], a
perspective adopted from the propensity score matching
literature [40], which we will refer to as propensityMSE. To
calculate the propensityMSE, a classifier is trained on a stacked
data set consisting of real observations labelled 1 and synthetic
observations labelled 0. The propensityMSE score is computed
as the mean squared difference of the estimated probability from
the average prediction where it is not possible to distinguish
between the 2 data sets. If the data sets are of the same size,
which is the assumption we make here, and indistinguishable,
then the average estimate will be 0.5.

Another related approach that has been used to evaluate the
utility of synthetic data is to take a prediction perspective rather
than a propensity perspective. This has been applied with
“human discriminators” by asking a domain expert to manually
classify sample records as real or synthetic [41-43]. This means
that a sample of real records and a sample of synthetic records
are drawn, and the 2 sets are shuffled together. Then the shuffled
records are presented to clinicians who are experts in the
domain, and they are asked to subjectively discriminate between
the records by indicating which is real versus synthetic. High
distinguishability only occurs when the human discriminator
can correctly classify real and synthetic records.

The use of human discriminators is not scalable and therefore
we can use machine learning algorithms trained on a training
data set and that make predictions on a holdout test data set.
This approach mimics the subjective evaluations described
above. We will refer to this metric as predictionMSE. Also note
that this calculation is different from the calculation of
propensityMSE where the training data set is also used to
compute the probabilities. Additional details on the calculations
are provided in Appendix S2 in Multimedia Appendix 1.

Workload Aware (Narrow) Metrics
To assess whether the utility metrics are useful, we evaluated
whether they can accurately rank SDG methods on workload
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aware metrics. This section describes these workload aware
metrics.

We built a logistic regression (LR) model for each data set. LR
is common in health research, and a recent systematic review
has shown that its performance is comparable to that of machine
learning models for clinical prediction workloads [44].
Furthermore, an evaluation of the relative accuracy of LR
models compared to that of other machine learning techniques,
such as random forests and support vector machines, on
synthetic versus real data sets across multiple types of SDG
methods showed that LR models are only very slightly different
[23]. Therefore, we would expect that the results using LR
would provide broadly applicable and meaningful results.

We evaluated the prediction accuracy using 3-fold
crossvalidation. Accuracy was measured using the area under
the receiver operating characteristic curve (AUROC) [45] and
the area under the precision-recall curve (AUPRC) [46]. For
outcomes that had multiple categories, we used the average of
pairwise AUROC values [47]. The AUPRC values for
multicategory outcomes were macroaveraged. This was
performed for each real and each synthetic data set.

To assess the similarity between the AUROC and AUPRC for
the real and synthetic data sets, we computed the absolute
difference between them. This provides a measure of how
similar the real results are to the synthetic results.

Evaluation Methodology
For each of the 30 real data sets, we generated 20 synthetic data
sets. The utility metrics and the absolute AUROC difference
and absolute AUPRC difference were computed on each of the
20 synthetic data sets, and each of these was averaged.
Therefore, for each of the data sets, we had 1 average utility
metric value for each of the 6 utility metrics, 1 average AUROC
difference value, and 1 average AUPRC difference value. These
values are tabulated in Appendix S3 and S4 in Multimedia
Appendix 1.

SDG Methods
The main hypothesis that we wanted to test was whether the
utility metrics can be used to rank the SDG methods by their
AUROC and AUPRC differences. The SDG methods were
chosen to achieve representativeness, applicability, and
variation.

1. Representativeness. The methods should reflect those that
are often used in the community of practice and by
researchers.

2. Applicability. The methods are those that an analyst would
likely want to compare and select from to be consistent
with our motivating use case.

3. Variation. The utility results among the chosen SDG
methods should have variation sufficient for utility metrics
to detect differences.

Three generative models were used: conditional GAN [48], a
Bayesian network [49], and a sequential synthesis approach
using decision trees [19]. The Bayesian network implementation
uses a differential privacy approach. These 3 methods were
selected for the following reasons: they each represent a class

of methods that is often used in the literature (eg, sequential
synthesis has been used on health and social sciences data
[50-58], as well as Bayesian networks [26,59] and GANs
[2,60,61]), they use very different approaches and therefore
represent plausible SDG methods that an analyst would want
to compare, and they are expected to exhibit large utility level
variation given that different SDG methods tend to be better at
modeling certain types of variables and relationships. For these
3 reasons, this set of SDG methods was suitable for this study
on validating utility metrics.

Individual Utility Metric Ranking
We used the Page test to determine whether the utility metric
prediction was correct [62]. For that, we specified 3 groups for
each utility metric: an “L” group where the utility metric
indicates low utility (ie, has the highest value since they are all
distance-type metrics), an “H” group where the utility metric
indicates high utility (ie, has the lowest value), and an “M”
group in the middle. This process is repeated for each utility
metric. For any particular data set, the generative model with
the lowest utility is put in the “L” group, the generative model
with the highest utility is put in the “H” group, and the third
generative model is in the “M” group. Each generative model
in a group is replaced with its AUROC or AUPRC difference
value, depending on which workload aware metric is under
evaluation.

The null hypotheses we were testing are therefore that:

H0AUROC: median(AUROC_DiffL) = median(AUROC_DiffM)
= median(AUROC_DiffH)

H0AUPRC: median(AUPRC_DiffL) = median(AUPRC_DiffM)
= median(AUPRC_DiffH)

where the subscript indicates the group. Against the alternatives:

H1AUROC: median(AUROC_DiffL) ≥ median(AUROC_DiffM)
≥ median(AUROC_DiffH)

H1AUPRC: median(AUPRC_DiffL) ≥ median(AUPRC_DiffM)
≥ median(AUPRC_DiffH)

Where at least one of the inequalities is strict. To compute the
test statistic, L, the data are put in a matrix with 30 rows, one
for each data set, and 3 columns, one for each group. The
accuracy scores are used to assign a rank to the values in each
row. Then the ranks are summed per column Rj where j=1…3.
The L statistic is then the sum: L = R1 + 2R2 + 3R3. The larger
that value, the greater the evidence supporting the ranking
conclusion.

Because of the relatively small sample size, we used an exact
test of statistical significance. This also does not make
distributional assumptions on the data, and for the number of
data sets we have, this gives us a high-powered test.

If the test is significant, then the broad utility metric can be used
to correctly rank SDG techniques based on their workload
(narrow) metrics. Since we were comparing multiple utility
metrics, a Bonferroni adjustment was made to the α level of
.05 to account for multiple testing.
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The maximum L value can be used to identify the utility metric
that is best at ranking the SDG methods by prediction accuracy
difference. This is particularly useful if more than one metric
is found to be statistically significant.

Aggregate Ranking
Because each utility metric is expected to rank the SDG methods
differently, we wanted to test whether an aggregate ranking
would provide a better result than any of the individual utility
metric rankings. We hoped to find an “ideal” ranking that has
minimal distance to each of the individual rankings on the utility
metrics. This can be performed for each data set separately, and
then the ideal rankings across all the data sets would be
evaluated on the Page test. The result would give us the
performance of the aggregate ranking, and we can contrast that
with the quality of individual utility metric rankings.

The distance we used is the Spearman footrule [63]. With this
approach, if method A has a higher ranking than method B more
often than not, method A should rank higher than method B in

the ideal ranking. Given the relatively small data set, full
enumeration rather than an optimization algorithm was used to
find the ideal ranking.

Given that the predictionMSE and propensityMSE are strongly
related, the former was removed so as to not give that particular
ranking a higher weighting in the aggregation.

Results

The results of the ranking of the SDG methods are shown in
Table 1. All metrics are statistically significant in that the null
hypothesis of no difference was rejected. The broad utility
metric rankings were close enough to the correct rank, so the
relationship was quite strong.

The test statistic, the L value, indicates the strength of the
ordering of data. The Hellinger distance had the highest L value
among all the utility metrics, suggesting that it has an advantage
in ordering the SDG methods based on their narrow utility
metrics.

Table 1. Page test results for each of the utility metrics and prediction accuracy

AUPRCb differenceAUROCa differenceUtility metric

P valueL valueP valueL value

<.001c392.00104c384Maximum mean discrepancy

<.001c409<.001c398Hellinger distanced

<.001c403<.001c392Wasserstein distance

<.001c405<.001c396,Cluster analysis

<.001c394<.001c390Propensity mean squared error

<.001c397<.001c396Prediction mean squared error

<.001c408<.001c400Aggregated

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cStatistically significant at a Bonferroni adjusted α level of .05.
dHighest metric on the test statistic.

The boxplots in Figure 1 descriptively show the trend for the
Hellinger distance. There is a clear trend of higher utility on the
narrow AUROC and AUPRC metrics as the Hellinger distances

get smaller. The boxplots for the remainder of the utility metrics
are included in Appendix S5 in Multimedia Appendix 1, and
they all show trends similar to those seen in Figure 1.
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Figure 1. The relationship between the Hellinger distance versus the AUROC and AUPRC. The 3 SDG methods were ordered based on their relative
Hellinger distance values into the “H,” “M,” and “L” groups. AUROC: area under the receiver operating characteristic curve; AUPRC: area under the
precision-recall curve; SDG: synthetic data generation.

The results for the aggregate ranking are shown in Table 1 and
Figure 2. As can be seen from the L statistic and the boxplots,
there is only a slight difference between using the Hellinger
distance and the aggregate ranking from 5 different utility

metrics. In a post-hoc analysis, we removed each of the metrics
in turn in a leave-one-out fashion and recomputed the aggregate
rank, but these did not produce better results than the one
presented here.
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Figure 2. The relationship between the aggregate ranking versus the AUROC and AUPRC. AUROC: area under the receiver operating characteristic
curve; AUPRC: area under the precision-recall curve.

Discussion

Summary
The purpose of our study was to identify the most useful, broad
generative model utility metrics. These are different from utility
metrics calculated for a particular synthetic data set. Generative
model utility characterizes the average utility across synthetic
data sets that are produced from a generative model. Given the
stochasticity of SDG, such utility metrics are more appropriate
for evaluating, comparing, and selecting among SDG models
on the same real data set. Single synthetic data set utility metrics,
on the other hand, are useful for communicating synthetic data
utility to a data user because these pertain to the particular
synthetic data set that is being shared.

We performed our analysis using 3 types of generative models:
a conditional GAN, a Bayesian network, and sequential decision
trees. These 3 cover a broad cross-section of types of techniques
that are used in practice, which would enhance the applicability
and generalizability of the results.

In this study, we evaluated 6 different model-specific utility
metrics to determine whether they can be used to rank SDG
methods. This is a practical use case that reflects a decision that
an analyst using SDG methods would want to make. For
example, there are multiple SDG techniques that have been
published in the literature, and our ranking results can help an
analyst determine the one that would work best on their real
data sets.
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We defined workload-aware utility as the ability to develop
binary or multicategory prediction models that have similar
prediction accuracy, measured by the AUROC and the AUPRC,
between the real and synthetic data sets. The construction of
binary or multicategory prediction models is an often-used
analytical workload for health data sets. We used logistic
regression to compute the absolute AUROC and AUPRC
differences on real and synthetic data sets.

Our results based on an evaluation on 30 heterogeneous health
data sets indicated that all the utility metrics proposed in the
literature will work well. However, the multivariate Hellinger
distance computed over the Gaussian copula has a slight
advantage in that it provides better utility ordering. Further
examination of an aggregate ranking using multiple utility
metrics showed only a negligible difference from the results of
the Hellinger distance for the AUROC metric, and therefore the
simplicity of a single utility metric would be preferred.

Our results would allow a researcher or analyst to select the
SDG method with the highest utility defined in a narrow sense.
However, maximum utility does not imply that the privacy risks
are acceptably low. As there is a trade-off between utility and
privacy, higher utility will increase the privacy risks as well.

Therefore, when evaluating SDG methods, it is important to
also consider the privacy risks.

Now that we have validation evidence for a broad utility metric,
it can be combined with a privacy metric to provide an overall
ranking of SDG methods. For example, membership disclosure
metrics for generative models [64,65] can be considered along
with the multivariate Hellinger distance when SDG methods
are ranked. Metrics combining these 2 risk and utility metrics
would be a good avenue for future research.

Limitations
An analyst may need to make other kinds of decisions, such as
evaluating different SDG models for the purpose of
hyperparameter tuning. Our study did not evaluate that specific
use case, and therefore we cannot make broader claims that the
Hellinger distance metric is suitable for other use cases.

Our study was performed by averaging the broad and narrow
utility across 20 synthetic data sets (iterations). A larger number
of iterations was evaluated (50 and 100), and we noted that the
differences were not material. We opted to present the smaller
number of iterations as these still give us meaningful results
and would be faster computationally for others applying these
results.
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