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Abstract

Background: Lymph node metastasis (LNM) is critical for treatment decision making of patients with resectable non—small
cell lung cancer, but it isdifficult to precisely diagnose preoperatively. Electronic medical records (EMRs) contain alarge volume
of valuable information about LNM, but some key information is recorded in free text, which hindersits secondary use.

Objective: This study aimsto develop LNM prediction models based on EMRs using natural language processing (NLP) and
machine learning algorithms.

Methods: We developed a multiturn question answering NLP model to extract features about the primary tumor and lymph
nodes from computed tomography (CT) reports. We then combined these features with other structured clinical characteristics
to develop LNM prediction models using machine learning algorithms. We conducted extensive experiments to explore the
effectiveness of the predictive models and compared them with size criteria based on CT image findings (the maximum short
axis diameter of lymph node >10 mm was regarded as a metastatic node) and clinician’s evaluation. Since the NLP model may
extract featureswith mistakes, we al so cal cul ated the concordance correl ation between the predi cted probabilities of modelsusing
NL P-extracted features and gold standard features to explore the influence of NLP-driven automatic extraction.

Results:  Experimental results show that the random forest models achieved the best performances with 0.792 area under the
receiver operating characteristic curve (AUC) value and 0.456 average precision (AP) value for pN2 LNM prediction and 0.768
AUC value and 0.524 AP value for pN1&N2 LNM prediction. And al machine learning models outperformed the size criteria
and clinician’s evaluation. The concordance correlation between the random forest models using NLP-extracted features and
gold standard featuresis 0.950 and improved to 0.984 when the top 5 important NL P-extracted features were replaced with gold
standard features.

Conclusions: The LNM models developed can achieve competitive performance using only limited EMR data such as CT
reports and tumor markersin comparison with the clinician’s evaluation. The multiturn question answering NL P model can extract
features effectively to support the development of LNM prediction models, which may facilitate the clinical application of
predictive models.
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Introduction

Lung cancer remains the leading cause of cancer death
worldwide, representing approximately 1 in 5 (18.0%) cancer
deaths [1]. Non—small cell lung cancer (NSCL C) accounts for
about 84% of lung cancer cases, and its 5-year relative survival
rate is only 25.0% [2], making it one of the biggest threats to
human health.

Staging of NSCLC is a process to determine the extent of the
cancer and is critical to prognosis evaluation and treatment
decision making [3,4]. The TNM stage classification [5] isthe
most widely used staging method in clinical practice; it describes
the anatomic extent of atumor from 3 aspects (ie, T for extent
of the primary tumor, N for involvement of lymph nodes, M
for distant metastases). For patients with resectable NSCLC,
preoperative confirmed N2 (a type of N stage) lymph node
metastasis (LNM) indicates neoadjuvant therapy should be
given before surgery to achieve the best clinical practice [3].
Currently, various advanced noninvasive diagnostic modalities
are available for N staging like chest computed tomography
(CT) and positron emission tomography—computed tomography
(PET-CT). In clinical practice, clinicians commonly use asize
criterion (ie, the maximum short axis diameter of lymph node
>10 mm on CT scan) to discriminate LNM from benign nodes
and yield 55% sensitivity [6]. Another criterion isthe maximum
standardized uptake value (SUVmax) of lymph node >2.5 on
PET-CT scan, which has an 81% sensitivity [7]. Invasive
methods such as mediastinoscopy and endobronchial
ultrasound-guided transbronchial needle aspiration have better
diagnostic abilities than noninvasive methods. However, these
methods are mainly for lymph nodes with indications and not
suitable for patients with severe comorbidities, so they are not
routinely used in clinical practice [8]. One study analyzed data
from 9 clinical trials and found nearly 38% of patients were
misclassified in comparison with their pathological N staging
[9]. Therefore, new reliable LNM prediction methods are
required to alleviate this clinical dilemma.

For precise staging, researchers explored using statistical
analysis or machine learning methods to learn nontrivial
knowledge between the comprehensive patient features and
LNM status [8,10-16]. Recently, with the rapid development
of hospital information systems, a large volume of electronic
medical records (EMR) has become available, and it contains
amost all clinical features about patients. However, some
important features are recorded in the narratives in free text,
such as the size of the tumor and lymph node, tumor density,
pleural indentation, etc, which hinderstheir direct use. Manual
extraction is time-consuming and error-prone. So, one big
challenge is how to extract this information effectively to
support subsequent tasks like LNM prediction [17]. A review
by Garg et al [18] found studies in which users were
automatically prompted to use the system achieved better
performance in comparison with those in which users were
required to actively initiate the system. The finding implicitly
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indicates that the duplicative data entry activity may explain
why the predictive models are not widely adopted in the clinic
despite their potential to improve diagnostic accuracy.
Furthermore, with the prevalence of machine learning models,
more features are required for analysis, making the clinical
application of the models more difficult [19-21].

Natural language processing (NLP) offers the opportunity to
automatically extract information to support the application of
predictive models [17,22]. Many studies used rule-based,
machine learning, or deep learning methods to extract the
cancer-related information from free-text EMR data [22-29],
but only a few included further elaboration on how to exploit
the extracted information. Chen et al [30] extracted information
from various clinical notesincluding CT reports and operative
notesto calculate the Cancer of the Liver Italian Program score.
Martinez et a [31] extracted information from pathology reports
to calculate the TNM and Australian clinicopathological stage
of colorectal cancer. Castro et a [32] developed an NLP system
for automated breast imaging reporting and data system
(BI-RADS) categoriesextraction from breast radiology reports.
Bozkurt et a [33,34] developed an information extraction
pipeline to extract information from mammography reports to
predict the malignancy of breast cancer. Sui et a [35]
constructed an NLP-based feature generaizing to extract
featuresfrom free-text EMR dataand provided the stage of lung
cancer using a Bayesian reasoning network. Yuan et al [36]
used NLP tools to extract multiple features from EMRS to
estimate survival for patients with lung cancer. Although many
studies have explored how to extract the cancer-related
information from varioustypes of free-text narratives and some
also exploit the extracted information for cancer risk evaluation,
diagnosis, and pathological staging, few studies exploit the
extracted information from radiol ogical reportsfor preoperative
LNM prediction, especialy for NSCLC.

In this study, we aim to use EMR data to develop LNM
prediction models for NSCLC patients. We first developed a
multiturn question answering NL P model to extract the features
from CT reports and then combined these features with other
clinical characteristicsto develop the predictive models. Since
the NLP model may produce imperfect extraction results, we
aso conducted experiments to compare the predicted
probabilities between model s using NL P-extracted features and
gold standard features.

Methods

Patients

We retrospectively analyzed EMR data of 794 patients who
underwent surgical resection for NSCLC with systematic
mediastinal lymphadenectomy at the Department of Thoracic
Surgery |1 of Peking University Cancer Hospital from 2010 to
2018. All patients underwent contrast-enhanced chest CT images
within 2 months before surgical resection. We excluded the
patients with preoperative chemotherapy or radiotherapy. The
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collected EMR includes demographic information, medical
history, CT reports, preoperative serum tumor markers, and
pathology reports, which can be analyzed to develop the
prediction model. For each patient, we also collected the clinical
staging that clinicians evaluated before surgery as the baseline
to compare with the LNM prediction models.

Ethics Approval

This study was approved by the Ethics Committee of Peking
University Cancer Hospital (2019KT59).

Clinical and Pathological LNM Evaluation

In this study, al included patients underwent systematic
mediastinal lymphadenectomy during surgical resection. The
lymph node tissues were examined by pathologists, and the
metastasis resultswere recorded in the postoperative pathol ogy
reports. We reviewed the pathology reports to determine the
LNM status and label the pathological N (pN) stage
(PNO/pNL/pN2) for each patient based on the 8th edition TNM
stage classification [5] as the gold standard. We also used the
size criterion (ie, the maximum short axis diameter of lymph
node >10 mm on CT scan as positive) to label the clinical N
(cN) stages (cNO/cN1/cN2) based on the CT-reported lymph
node size. Moreover, we collected the cN stages, which were
determined preoperatively by a thoracic surgeon using all
available patient data including the information used in this
study. The thoracic surgeon has 10 years of experiencein lung
cancer surgery. The cN stages determined by the size criterion
and the thoracic surgeon were regarded as the baselines.

NL P Feature Extraction

As one of the most important preoperative examinations, CT
reports record val uable information about the tumorsand lymph
nodes, whichis of paramount importance for staging. However,
thefree-text nature of CT reports makesit difficult to understand
and analyze them using computer programs. In our previous
work [27], we developed an information extraction system
composed of named entity recognition, relation classification,
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and postprocessing modules to extract valuable information in
a pipeline manner. However, in this pipeline, the subsequent
taskswould beinfluenced by the outputs of former tasks, which
may affect the performance of the whole system. Therefore, to
aleviate this problem, we applied a multiturn question
answering (MTQA) [37] approach to extract information from
CT reports in this study. Using the MTQA strategy, we can
encode the relation into the question query and jointly model
entity and relation in a natural question answering way.

Specifically, wefirst defined 10 questionsrelated to the primary
tumor and lymph nodes. All questions are listed in Table 1.
Notethat there are 2 types of questions (ie, head entity questions
and tail entity question templates). In the model training stage,
we inserted the annotated head entitiesinto the dotsin the tail
entity question templates as the tail entity questions. We then
used 2 specia tokens (ie, CLS and SEP) to concatenate the
questions and sentences in the reports as the inputs and
annotated entities as the answers to conduct the bidirectional
encoder representations from transformers (BERT) model
training. In the model test stage, we first concatenated the head
entity questions and sentences in the reports as the inputs and
applied the trained MTQA model to extract the head entities
(ie, tumor and lymph node). If there were any head entities
recognized, weinserted the extracted head entitiesinto the slots
in the tail entity question templates as the tail entity questions
and combined them with sentences in the reports as the inputs
to drive the tail entity extraction. A case of the MTQA
application is shown in Figure 1. Finaly, the extracted head
and tail entities are organized as triples, and a rule-based
postprocessing algorithm proposed in the previous work [27]
is used to process the triples to aobtain the standardized
NL P-extracted features. Furthermore, the NL P-extracted features
were manually reviewed and corrected by a clinician based on
the report contents as the gold standard features. In this study,
we used BERT [38], an advanced pretrained language
representation model, to tag the answer for each question.

Table 1. Questions and entity types for natural language processing—extracted features.

Question (Chinese) Question (English) Answer notation  Entity type

Head entity question

FEEMINEXBAR A What is the description about the primary tumor? Headl Tumor

MELEREXERRTA? What is the description about the lymph nodes? Head? Lymph node

Tail entity question template

Headl L F At ? Where is Head1 located? Taill Location

Headl BIK/NE % ? What is the size of Head1? Tail2 Size

Headl ISR 242 What is the shape of Head1? Tail3 Shape

Headl VB E 242 What is the density of Head1? Tail4 Density

SHeadl XM RICHIARMH4A?  What isthe description about the pleurainvasion relatedto  Tail5 Pleura
Head1?

SHeadl H8XMMERICHIARMH4?  What isthe description about the vessel invasionrelatedto  Tail6 Vessel
Head1?

Head2 L F Attt ? Where is Head?2 located? Tail7 Location

Head2 BIK/NE % ? What is size of Head2? Tail8 Size
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Figurel. A case of multiturn question answering application. BERT: bidirectional encoder representations from transformers.
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Sentence:

Head entity question:
What i the desaription sbout
the ymph nodes ?

Tail entity question I:
Where b enlerged lymph node
locted?

There are muttiple
enlerged lymph nodes.....

Sentence:
There are multiple
enlerged lymph nodes.....

Tail entity question It
What i the s ze of enlerged

lymph node?

Sentence:
There are multiple
enlarged lymph nodes ...

Tail entity question template:

Where & Head? losted?

Tail entity question template:

What is the size of Head2?

LNM Prediction

Six machine learning algorithms were applied to develop the
LNM prediction models, including logistic regression (LR) [39],
L2-logistic regression (L2-LR) [40], random forest (RF) [41],
LightGBM (LGBM) [42], support vector machine (SVM) [43],
and artificial neural network (ANN) [44]. LR isthe conventional
classification method, and L2-LR is the LR with the L2
regularization for parameters. RF and LGBM are ensemble
methods but with different ways to combine the weak decision
trees. SVM isaclassical agorithm that constructs hyperplanes
in a high- or infinite-dimensional space to classify samples.
ANN isasupervised learning algorithm that can learn nonlinear
functions between features and targets. LR and L2-LR have
good interpretability because the predicted results can be
caculated by a simple linear function and a sigmoid
transformation. RF and LGBM are also interpretable, in which
they can provide the feature importance.

Experimental Setup

In this study, we used the Whole Word Masking version of
BERT [45] pretrained on the Chinese Wikipedia corpus as the
tagging model in the MTQA. An additional 359 annotated CT
reports from our previous work were used to develop and
evaluate the MTQA model. We randomly split 70% of CT
reports as the training set, 10% as the validation set, and 20%
as the test set. A total of 100 of these reports were each
annotated by 2 biomedical informatics engineers to calculate
the interannotator agreement score using the kappa score.
Pipeline methods with bidirectional long short-term memory
(BiLSTM) and BERT were selected as the baseline. To obtain
the NLP-extracted features for LNM prediction, the MTQA
model developed on the 359 reports was used to process the
794 CT reports of included patients. Subsequently, the
NL P-extracted features were manually reviewed and corrected
by aclinician as the gold standard features.

https://medinform.jmir.org/2022/4/e35475
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Univariate analysis was performed using the Mann-Whitney U
test for continuous features and Pearson chi-sgquare test for
categorical features. P<.05 was considered statistically
significant. To obtain robust experimental results, a 10-fold
cross-validation strategy was first performed on the total data
set. The 10-fold cross-validation randomly split the data set into
10 subsets. Each subset was considered as the independent test
set and the remaining 9 subsets were considered asthetraining
set. During each fold, a 5-fold cross-validation was applied on
the training set to find the optimal hyperparameters for the
machine learning algorithmsby agrid search. When the optimal
hyperparameters were selected, we retrained the prediction
model on the training set and tested it on the test set to obtain
the final predictive performance. Using this strategy, we can
ensure that the test set is always invisible during the model
training and hyperparameter tuning and obtain the predicted
probability for each case. The hyperparameter spaces are as
follows:

+  LR:tol O{1e-3, 1le4, 1e-5}, max_iter [0 {500, 1000}

+ L2-LR: C O {10, 1, 0.1}, tol O {1le-3, 1le4, le-5},
max_iter O {500, 1000}

« RF: n_estimators O {50, 100, 200}, max_depth O {2, 3},
min_samples leaf (0 {1, 2}

« LGBM: n_estimators [1 {50, 100, 200} , max_depth O {2,
3}, num_leaves [1 {20, 31, 50}, min_child_samples 0 {1,
2,3}, reg_aphal{2, 3}

« SVM: C {10, 1, 0.1, 0.01}, kernel O {‘linear, ‘rbf;
‘poly’}, tol 00 {1e-3, 1e-4, 1e-5}

« ANN: hidden_layer sizes [0 {5, 10, 30}, learning_rate O
{1le-2, 1e-3, 1e-4}, dpha {1le-3, 1le4, 1le-5}

We applied the receiver operating characteristic (ROC) curve
to evaluate the diagnosti c performances of the machine learning
models. Besides the ROC curve, we also used the
precision-recall (PR) curveto test the models because the ROC
curve pays attention to sensitivity and specificity but ignores
precision. The mean area under the receiver operating
characteristic curve (AUC) and average precision (AP) values
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with standard derivations were calcul ated based on the 10-fold
cross-validation results. We a so drew the ROC curves and PR
curves to compare with the size criterion (maximum short axis
diameter of lymph node >10 mm on CT) and the clinician’s
evaluation. All LNM prediction models were developed using
the Scikit-learn 0.24.1 and LightGBM 3.2.0 Python packages.
All statistical analyseswere conducted using SciPy 1.6.2 Python
package.

Results

Patient Characteristics

Table 2 showsthe characteristics of all 794 patients. Univariate
analysis was performed for all collected features, and 13.2%
(105/794) of patientshad pN2 LNM. Sex, age, drinking history,
family history, and disease history are not significantly

https://medinform.jmir.org/2022/4/e35475
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associated with the pN2. The pN2 occurred more frequently in
smokers (P=.04). Thelong and short axisdiameters of the tumor
in pN2 patients are significantly larger than those in pNO and
pN1 patients (both P<.001). Patients with solid nodules are
more likely to have pN2 (P<.001). Other morphologica
characteristics of tumor-like lobulation and pleural indentation
are more likely to occur in pN2 patients (P=.006 and P=.003,
respectively), but spiculation and vessel invasion present no
significant differences between pN2 and other patients. Using
10 mm as the size criterion, the maximum long and short axis
diameters of the hilar and mediastinal lymph nodes show
significant differences between the 2 groups (P=.008, P<.001,
P<.001, and P<.001, respectively). Among all 6 serum tumor
biomarkers, carcinoembryonic antigen (CEA), carbohydrate
antigen 12-5 (CA125), and neuron-specific enolase (NSE) show
significant differences between the 2 groups (P<.001, P<.001,
and P=.048, respectively).
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Table 2. Patient characteristics.

Total (n=794) LNM? status P value
pN2P (n=105) pNO° or pN19 (n=689)
Age (years), mean (SD) 60.92 (51.48 to 70.36) 60.87 (51.87 to 69.86) 60.93 (51.42 to 70.44) 45
Sex, n (%) _e — — .06
Mae 397 62 335 —
Female 397 43 354 —
Smoking history, n (%) — — — .04
Yes 337 55 282 —
No 457 50 407 —
Drinking history, n (%) — — — .94
Yes 183 25 158 —
No 611 80 531 —
Family history, n (%) — — — .32
Yes 137 14 123 —
No 657 91 566 —
Hypertension, n (%) — — — .18
Yes 232 37 195 —
No 562 68 494 —
Diabetes, n (%) — — — .25
Yes 84 15 69 —
No 710 90 620 —
Pulmonary tuberculosis, n (%) — — — .33
Yes 33 2 31 —
No 761 103 658 —
Cardiovascular disease, n (%) — — — .06
Yes 36 9 27 —
No 758 96 662 —
Cerebrovascular disease, n (%) — — — .35
Yes 29 6 23 —
No 765 99 666 —
Tumor location', n (%) - - — .22
RULY 249 27 222 —
RMLD 59 4 55 —
RLL 150 18 132 —
LuLl 185 31 154 —
LLLK 126 21 105 —
Other 25 4 21 —
TLA" median (IQR) 2.61 (1.20 to 4.01) 3.02 (1.64 t0 4.39) 2.55 (1.15t0 3.94) <.001
TSAM™ median (I0R) 2.03(0.88t03.18) 2.38(1.27t03.48) 1.98 (0.83t03.13) <.001
Spiculationf, n (%) — — — .08
Yes 255 42 213 —
https.//medinform.jmir.org/2022/4/e35475 JIMIR Med Inform 2022 | vol. 10 | iss. 4| €35475 | p. 6
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Total (n=794) LNM? status P value
pN2° (n=105) pNO® or pN19 (n=689)
No 539 63 476 —
Lobulation', n (%) - - - <.001
Yes 211 48 163 —
No 583 57 526 —
Tumor density’, n (%) - - - <.001
pGGO" 124 0 124 —
mGGQ° 96 3 93 —
Solid nodule 574 102 472 —
Vessel invasionf, n (%) - - - 87
Yes 52 6 46 —
No 742 99 643 —
Pleural indentationf, n (%) - - - 001
Yes 406 70 336 —
No 388 35 353 —
HLNLA™P, n (%) - — — .008
>10 mm 148 30 118 —
<10mm 646 75 571 —
HLNSAM, n (%) — — — <.001
>10 mm 66 19 47 —
<10mm 728 86 642 —
MLNLA™ n (%) — — — <.001
>10 mm 191 50 141 —
<10mm 603 55 548 —
MLNSA"S n (%) — — — <.001
>10 mm 72 27 45 —
<10 mm 722 78 644 —
CEA!, median (IQR) 5.31 (-6.66 t0 17.27) 12.66 (-8.44t1033.76)  4.18(-5.17 to 13.54) <.001
CA199". median (IQR) 14.41 (-3.24 t0 32.06) 15.80 (-5.08 to 36.68) 14.20 (~2.90 to 31.29) 47
CA125", median (IQR) 14.46 (0.03 to 28.90) 19.88 (-5.56 t0 45.32) 13.64 (1.96 t0 25.32) <.001
NSEY, median (IOR) 15.81 (8.85t0 22.78) 16.26 (10.19 t0 22.33) 15.75 (8.66 t0 22.83) 048
Cyfra211%, median (IQR) 3.20 (-0.2310 6.62) 3,55 (-0.64 to 7.75) 3.14 (-0.15 0 6.43) .06
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Total (n=794) LNM2gtatus P value
pN2P (n=105) pNO° or pN19 (n=689)
SCCAQY, median (IOR) 0.96 (-0.16 t0 2.08) 1.18 (-0.62 t0 2.99) 0.93 (-0.04 to 1.90) 14

& NM: lymph node metastasis.

pr2: pathological N stage 2.

CpNO: pathological N stage 0.

del: pathological N stage 1.

eNot applicable.

fFeatures recorded in computed tomography reports.
9RUL: right upper lobe.

PRML: right middle lobe.

IRLL: right lower lobe.

ILUL: left upper lobe.

KLLL: Ieft lower lobe.

ITLA: tumor long axis.

MTSA: tumor short axis

"wGGO: pure ground glass opacity.

®mGGO: mixed ground glass opacity.
PHLNLA: hilar lymph node long axis.
9HLNSA: hilar lymph node short axis.
'MLNLA: mediastinal lymph node long axis.
SMLNSA: mediastinal lymph node short axis.
'CEA: carci noembryonic antigen.

UCA199: carbohydrate antigen 19-9.
VCA125: carbohydrate antigen 12-5.

YWNSA: neuron-specific enolase.

*Cyfra211: cytokeratin 19-fragments.
YSCCAGg: squamous cell carcinoma antigen.

Performance of pN2 LNM Prediction Models

As preoperative confirmed N2 indicating neoadjuvant therapy
should be given before surgery, we first developed machine
learning modelsto predict the pN2 LNM. We regarded the pN2
patients as positive and pNO and pN1 patients as negative to
train the predictive models. To obtain reliable models, we used
the gold standard features instead of NL P-extracted featuresin
this section. Table 3 showsthe performances of al models. The
RF model achieved the highest averaged AUC valuewith 0.792
and the LGBM model achieved the highest averaged AP value
with 0.457 while all models' 95% Cl are overlapping with each
other. The LR obtained a competitive performance in

https://medinform.jmir.org/2022/4/e35475

comparison with ANN and SVM. The L2-LR did not obtain
improvements in AUC value and AP value compared with the
LR. To compare with the size criterion and clinician’s
eva uation, we used the probabilities predicted during the 10-fold
cross-validation to draw the ROC and PR curves. Figure 2 shows
the ROC curves and PR curves of pN2 prediction models and
theresults of the size criterion and clinician’s evaluation. From
Figure 2 we can notice al the ROC curves and PR curves are
above the points of size criterion and clinician’s evaluation,
which indicates the devel oped pN2 prediction models not only
have better discriminative ability than the diagnostic size
criterion used in the clinical practice but also may exceed the
clinicianin pN2 LNM evaluation.
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Table 3. Performances of pN2 lymph node metastasis prediction models.
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Model AUCR APP
Mean sD 95% Cl Mean sD 95% Cl

LRC 0.778 0.041 0.747-0.809 0.442 0.075 0.385-0.499
Lo-LRY 0.768 0.038 0.739-0.796 0.413 0.072 0.359-0.467
ANNE 0.769 0.051 0.730-0.808 0.434 0.095 0.363-0.506
suMf 0.771 0.071 0.718-0.825 0.453 0.084 0.389-0.516
RFY 0.792 0.042 0.760-0.825 0.456 0.075 0.399-0.512
LcaM" 0.787 0.044 0.755-0.820 0.457 0.101 0.381-0.534

8AUC: area under the receiver operating characteristic curve.
bAP; average precision.

°LR: logistic regression.

dL2-LR: L2-logistic regression.

€ANN: artificial neural network.

fsvm: support vector machine.

9RF: random forest.

PLGBM: LightGBM.

Figure 2. Thereceiver operating characteristic curve (A) and precision-recall curves (B) of pN2 prediction models.
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Performance of pN1& N2 LNM Prediction Models

Besides predicting pN2 LNM, we also developed machine
learning models to predict the pN1&N2 LNM by regarding
patientswith pN1 or pN2 LNM as positive. The model training
and evaluation processes are the same as pN2 LNM prediction.
Table 4 showsthe performances of the machinelearning models
for pN1&N2 LNM prediction. LGBM obtained the highest

https://medinform.jmir.org/2022/4/e35475
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averaged AUC value with 0.771. The RF model achieved a
comparable performancein comparison with LGBM. Asin pN2
prediction, LGBM and RF obtained better predictive
performancesthan other models. Figure 3 showsthe ROC curves
and PR curves of pN1& N2 LNM prediction models. The curves
of the machine learning models are also all above the points of
the size criterion and clinician’s evaluation.
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Table 4. Performances of pN1& N2 lymph node metastasis prediction models.

Model AUC? AP
Mean sD 95% Cl Mean sD 95% Cl

LRS 0.740 0.035 0.714-0.766 0.467 0.058 0.423-0.510
Lo RY 0.736 0.044 0.704-0.769 0.465 0.058 0.422-0.509
ANNE 0.734 0.047 0.698-0.770 0.479 0.087 0.413-0.545
syMf 0.735 0.023 0.717-0.752 0.474 0.047 0.439-0.509
LGBMY 0.768 0.030 0.745-0.791 0524 0.044 0.491-0.557
RED 0.771 0.026 0.752-0.791 0.524 0.057 0.481-0.567

8AUC: area under the receiver operating characteristic curve.
bAP; average precision.

°LR: logistic regression.

dL2-LR: L2-logistic regression.

€ANN: artificial neural network.

fsvm: support vector machine.

9RF: random forest.

PLGBM: LightGBM.

Figure 3. Thereceiver operating characteristic curve (A) and precision-recall curves (B) of pN1& N2 prediction models.
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Feature Importance

Among all machine learning models, the LR, L2-LR, RF, and
LGBM can provide the feature importance. Table 5 shows the
top 10 important features of LR, L2-LR, RF, and LGBM for
pN2 LNM prediction. The features were ranked by averaging
the weights of models devel oped from 10-fold cross validation.
Notethat the LR and L 2-L R models provide weightswith signs,
so we used the absol ute valuesto rank the features. Because the
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weight magnitudes from different modelsvary greatly, we used
the averaged rankings of features, but not the averaged weights,
to find the most important features among the 4 types of models.
The CEA is ranked as the most important feature to increase
the risk of pN2 LNM by all models. Features recorded in CT
reportsaccount for at least half of thetop 10 important features,
indicating these features are of great importance for pN2 LNM
prediction.
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Table 5. Top 10 important features for pN2 lymph node metastasis prediction.
Renk | g2 L2-LR? RFC LGBMA All
Feature Weight Feature Weight  Feature Weight Feature Weight
1 peeosf -10.383  cgald 3530  CEA 0.229 CEA 46.0 CEA
2 CEA 6.010 CA125" 3.067 CA125 0.094 Age 233 Solid nodule
3 CA1% 4728 pGGO' 1799  oglidnoduled  0.094 Solidnodulef 188 CA125
4 solidnodule 3683 Solidnodule’ 1773 MLNsA 0.073 TLAM 176 Age
5 TLaf —2.701 Age 1315  MLNLAFK 0.072 Tsaf 151 MLNLAS
6  Age -1908  gccag™ 0944  Taf 0.054 CA125 133 TLAf
7 SCCAg 1.763 MLNLA 0896  Tgaf 0.048 Cyfrazi1” 129 pGGO'
8 mGGof° 1.759 Pleural indenta-  0.836 Cyfra211l 0.038 NSEP 12.7 SCCAg
tion'
9 rML -1.729 Cardiovascular  0.807 SCCAg 0.037 MLNLAf 11.6 L obulationf
disease
10 Tsaf 1.601 Lobulation 0.725 Lobulation' 0.036 SCCAg 9.0 TsAf

3_R: logistic regression.

BL2-LR: L2-logistic regression.

°RF: random forest.

4LGBM: LightGBM.

€pGGO: pure ground glass opacity.

"Features recorded in computed tomography reports.
9CEA: carcinoembryonic antigen.

hca12s: carbohydrate antigen 12-5.
IMLNSA: mediastina lymph node short axis.
ITLA: tumor long axis.

KMLNLA: mediastina lymph node long axis.
ITSA: tumor short axis.

MSCCAg: squamous cell carcinoma antigen.
NCyfra211: cytokeratin 19-fragments.
®mGGO: mixed ground glass opacity.

PNSE: neuron-specific enolase.

9RML: right middle lobe.

NL P-Extracted Features Ver sus Gold Standard
Features

In this study, we applied the MTQA model to extract important
features from CT reports to support the development of LNM
prediction models. In this section, wefirst conduct experiments
to explore the effectiveness of the MTQA model on feature
extraction and then analyze the influence of imperfect extraction
results on LNM prediction.

We used an additional 359 annotated CT reportsto develop the
MTQA model. The interannotator agreement score was 0.937
based on the 100 reports annotated by 2 annotators. Table 6
shows the performances of the MTQA model and the pipeline
models on the test set. We can notice that the BERT-MTQA
model achieved significant improvement compared with the
pipeline models.

https://medinform.jmir.org/2022/4/e35475

Table 7 illustrates the performance of the BERT-MTQA model
on the 794 CT reports of included patients. We can natice that
the accuracy values of all extracted features are higher than
0.90. The F1 scores are higher than 0.90 except for lobulation,
tumor density, vessel invasion, and hilar lymph node long axis.
For the NL P-extracted features ranked in the top 10 important
features, the mediastinal lymph node long axis(MLNLA), tumor
long axis (TLA), and tumor short axis (TSA) obtained good
accuracy values and F1 scores, but the F1 scores of tumor
density and lobulation are not higher than 0.90.

Inthisstudy, the MTQA model generatesimperfect extractions,
which may influence the subsequent application. To analyze
the influence on the pN2 LNM prediction, we calculated the
Pearson correlation between the predicted probabilities of
modelsusing NL P-extracted features and gold standard features.
Moreover, we also replaced the NL P-extracted feature with the
gold standard feature one by one according to their importance
in Table 5 to explore the changes in the consistency. Figure 4
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showsthe concordance correlations of the pN2 LNM prediction
models. The RF model obtained ahigh concordance correlation
with 0.950 when using all NL P-extracted featuresin comparison
with using gold standard features, and the correl ation increased
to 0.984 when replacing top 5 important NL P-extracted features.
The correlation values of the LR, L2-LR, LGBM, and SVM

Huetd

models were more influenced by using the NLP-extracted
features. With the replacement of gold standard features, the
correlation values gradually increased and exceeded 0.950. The
ANN model did not achieve a good concordance correlation
even when the top 5 important NLP-extracted features were
replaced.

Table 6. Performance of the multiturn question answering model and baseline models.

Feature BiLSTMpipeline BERTP-pipeline BERT-MTQA®
pd Re = P R F P R F

Tumor density 0.882 0.625 0.732 0.889 0.667 0.762 0.938 0.938 0.938
MLNLAY 1.000 0.640 0.780 1.000 0.720 0.837 1.000 0.960 0.980
TLAD 0.967 0.892 0.928 0.984 0.938 0.961 0.984 0.954 0.969
Lobulation 0.889 0.533 0.667 0.909 0.667 0.769 1.000 0.867 0.929
TSAI 0.967 0.892 0.928 0.984 0.938 0.961 0.984 0.954 0.969
MLNSAJ 1.000 0.750 0.857 1.000 0.750 0.857 1.000 0.938 0.968
Pleural indentation 0.931 0.818 0.871 0.964 0.818 0.885 1.000 0.848 0.918
Tumor location 0.984 0.897 0.938 0.968 0.897 0.931 0.985 0.985 0.985
Spiculation 1.000 0.727 0.842 1.000 0.773 0.872 1.000 1.000 1.000
Vessel invasion 1.000 0.111 0.200 1.000 0.222 0.364 1.000 0.556 0.714
HLNLAK 1.000 0.778 0.875 1.000 0.833 0.909 1.000 1.000 1.000
HLNSA! 1.000 0.750 0.857 1.000 0.750 0.857 1.000 1.000 1.000
Average 0.968 0.701 0.790 0.975 0.748 0.830 0.991 0.917 0.948

8BiL STM: hidirectional long short-term memory.
PBERT: bidirectional encoder representations from transformers.

°MTQA: multiturn question answering.

dp: precision.
R: recall.
fF: F1 score.

I9MLNLA: mediastinal lymph node long axis.

PTLA: tumor long axis.
'TSA: tumor short axis.

IMLNSA: mediastinal lymph node short axis.
KHLNLA: hilar lymph node long axis.
IHLNSA: hilar lymph node short axis.

https://medinform.jmir.org/2022/4/e35475
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Table 7. Performance of the multiturn question answering model for feature extraction.

Feature Accuracy Precision Recall F1 score
Tumor density 0.940 0.875 0.915 0.893
MLNLA? 0.965 0.927 0.927 0.927
TLAP 0.974 0.974 0.974 0.974
Lobulation 0.923 0.993 0.716 0.832
TSAC 0.972 0.972 0.972 0.972
MLNSA® 0.986 0.918 0.931 0.924
Pleural indentation 0.917 0.903 0.938 0.920
Tumor location 0.994 0.990 0.990 0.990
Spiculation 0.979 0.988 0.945 0.966
Vessel invasion 0.982 0.932 0.788 0.854
HLNLA® 0.965 1.000 0.811 0.89%
HLNSA' 0.986 0.982 0.848 0.911

3MLNLA: mediastinal lymph node long axis.
BTLA: tumor long axis.

®TSA: tumor short axis.

IMLNSA: mediastinal lymph node short axis.
EHLNLA: hilar lymph node long axis.
FHLNSA: hilar lymph node short axis.

Figure 4. Concordance correlation values between pN2 prediction models using complete and partial gold standard features. LR: logistic regression;

L2-LR: L2-logistic regression; RF: random forest; LGBM: LightGBM; SVM: support vector machine; ANN: artificial neural network: NLP: natural

language processing; pGGO: pure ground glass opacity; MLNLA: mediastinal lymph node long axis, TLA: tumor long axis; TSA: tumor short axis.
LR -+ L2-LlR —=RF «LGBM -=SVM -=-ANN

il _.-—-'—-_"_-'_-_F-.
095 + /y =
09
L]
= 0.85
©
>
)
L o0s
o
o
o 0.75
O
0.7
0.65
0.6
All NLP features pGGO pGGO & MLNLA pGGO & MLNLA pGGO & MLNLA  pGGO & MLNLA
&TLA & TLA & Lobulation & TLA & Lobulation
& TSA
: : and lymph nodeswere extracted from the CT reportsusing NLP
Discussion ymp &P0 9

technique to support the model devel opment. To the best of our
knowledge, thisisthefirst study to use NL P technique to extract
, o , features to build preoperative LNM prediction models for
In this study, we explored the feasibility of using EMR 10 pqientswith NSCLC. Experimental resultsindicate that the RF

develop machine learning models to predict LNM for patients o4 achieved the best performances with 0.792 AUC value
with NSCLC. The important features about the primary tumor - 4,4 0.456 AP value for pN2 LNM prediction. All machine
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learning models outperformed the size criterion and clinician’s
evaluation.

Among al models, theLR, L2-LR, RF, and LGBM providethe
featureimportanceto show the connections between the patient
featuresand LNM status. CEA, tumor density, CA125, MLNLA,
TLA, lobulation, and TSA wereranked in the top 10 important
features by the machine learning models, which was consistent
with theresults of univariate analysis. Squamous cell carcinoma
antigen (SCCAgQ) was also identified as a top 10 important
feature by the model's, although univariate analysis did not show
significance. However, SCCA(g has been proved to be associated
with LNM in esophageal squamous cell carcinoma [46], anus
sgquamous cell carcinoma [47], oral-cavity squamous cell

carcinoma[48], and cervical sqguamous cell carcinoma[49]. It
isalso apoor prognostic factor of lung squamouscell carcinoma
and upgrading the patient stage is recommended [50,51].
Surprisingly, TLA was identified as an important feature with
negative weight by the LR model, which means the longer the
TLA is, the lower the risk of pN2 LNM the patient may have.
The result is contrary to the result of univariate analysis and
may be caused by multicollinearity or interactions between the
features [52]. In the L2-LR model, the TLA was not ranked in
the top 10 important features, indicating the L2 regularization
can indeed reduce theinfluence of multicollinearity and improve
theinterpretability of the model [53]. In addition, other features
like right middle lobe cardiovascular disease also suffered
interpretability problems, which may be hard to accept in clinical

practice. Therefore, more robust interpretable machinelearning
algorithms are needed to make accurate predictionswhile giving
more reasonable explanations.

Inthisstudy, weinnovatively extracted featuresfrom CT reports
and used them to develop LNM prediction models. The
concordance correlations between the predicted probabilities
of modelsusing NL P-extracted features, partially NL P-extracted
features, and gold standard features indicate that the
automatically developed models can obtain similar predictive
results to those of models using gold standard features. This
finding implicitly indicatesit is possible to build models using
a large amount of unstructured data and update them
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automatically. More importantly, it can also reduce the burden
of manual feature extraction to improve the usability of the
prediction modelsin clinical practice.

Limitations

Although the experimental results show that machine learning
models using CT reports, demographic information, medical
history, and biomarker data can achieve better performances
than the size criterion and clinician’s eval uation on the collected
data, external validation is still needed to further prove the
effectivenessand generalization of the NLPand LNM prediction
models. Note that thewriting stylesof CT reportsfrom different
medical centers may vary greatly, which poses ahuge challenge
tothe NLP model developed using the CT reportsfromasingle
medical center. Transfer learning is a proper strategy to solve
the problem by fine-tuning the model to adapt to CT reports
from other centers. Overall, multicenter data is necessary to
develop a more robust and generalizable NLP and LNM
prediction model.

Furthermore, many studies have proved that there are deep
featuresor radiomicsfeaturesrelated to LNM inthe CT images
[54-60]. Clinicians cannot recognize these with the naked eye,
so these features may provide extra information about the
metastasis status. In thefuture, wewill extract theimagefeatures
and combine them with the features in this study to develop
more robust, accurate multimodal LNM prediction models.

Conclusions

In this study, we used NLP and machine learning methods to
develop the LNM prediction models for patients with NSCLC
using EMRs. The RF model achieved the best performance with
0.792 AUC value and 0.456 AP value for pN2 prediction and
0.768 AUC value and 0.524 AP value for pN1& N2 prediction.
All machine learning models outperformed the size criterion
and clinician’sevaluation. Furthermore, the experimental results
indicate that the NLP model can effectively extract features
from CT reports to support the automatic development and
update of the LNM prediction model and may facilitate the
application of modelsin clinical practice.
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