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Abstract

Background: Lymph node metastasis (LNM) is critical for treatment decision making of patients with resectable non–small
cell lung cancer, but it is difficult to precisely diagnose preoperatively. Electronic medical records (EMRs) contain a large volume
of valuable information about LNM, but some key information is recorded in free text, which hinders its secondary use.

Objective: This study aims to develop LNM prediction models based on EMRs using natural language processing (NLP) and
machine learning algorithms.

Methods: We developed a multiturn question answering NLP model to extract features about the primary tumor and lymph
nodes from computed tomography (CT) reports. We then combined these features with other structured clinical characteristics
to develop LNM prediction models using machine learning algorithms. We conducted extensive experiments to explore the
effectiveness of the predictive models and compared them with size criteria based on CT image findings (the maximum short
axis diameter of lymph node >10 mm was regarded as a metastatic node) and clinician’s evaluation. Since the NLP model may
extract features with mistakes, we also calculated the concordance correlation between the predicted probabilities of models using
NLP-extracted features and gold standard features to explore the influence of NLP-driven automatic extraction.

Results: Experimental results show that the random forest models achieved the best performances with 0.792 area under the
receiver operating characteristic curve (AUC) value and 0.456 average precision (AP) value for pN2 LNM prediction and 0.768
AUC value and 0.524 AP value for pN1&N2 LNM prediction. And all machine learning models outperformed the size criteria
and clinician’s evaluation. The concordance correlation between the random forest models using NLP-extracted features and
gold standard features is 0.950 and improved to 0.984 when the top 5 important NLP-extracted features were replaced with gold
standard features.

Conclusions: The LNM models developed can achieve competitive performance using only limited EMR data such as CT
reports and tumor markers in comparison with the clinician’s evaluation. The multiturn question answering NLP model can extract
features effectively to support the development of LNM prediction models, which may facilitate the clinical application of
predictive models.
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Introduction

Lung cancer remains the leading cause of cancer death
worldwide, representing approximately 1 in 5 (18.0%) cancer
deaths [1]. Non–small cell lung cancer (NSCLC) accounts for
about 84% of lung cancer cases, and its 5-year relative survival
rate is only 25.0% [2], making it one of the biggest threats to
human health.

Staging of NSCLC is a process to determine the extent of the
cancer and is critical to prognosis evaluation and treatment
decision making [3,4]. The TNM stage classification [5] is the
most widely used staging method in clinical practice; it describes
the anatomic extent of a tumor from 3 aspects (ie, T for extent
of the primary tumor, N for involvement of lymph nodes, M
for distant metastases). For patients with resectable NSCLC,
preoperative confirmed N2 (a type of N stage) lymph node
metastasis (LNM) indicates neoadjuvant therapy should be
given before surgery to achieve the best clinical practice [3].
Currently, various advanced noninvasive diagnostic modalities
are available for N staging like chest computed tomography
(CT) and positron emission tomography–computed tomography
(PET-CT). In clinical practice, clinicians commonly use a size
criterion (ie, the maximum short axis diameter of lymph node
>10 mm on CT scan) to discriminate LNM from benign nodes
and yield 55% sensitivity [6]. Another criterion is the maximum
standardized uptake value (SUVmax) of lymph node >2.5 on
PET-CT scan, which has an 81% sensitivity [7]. Invasive
methods such as mediastinoscopy and endobronchial
ultrasound-guided transbronchial needle aspiration have better
diagnostic abilities than noninvasive methods. However, these
methods are mainly for lymph nodes with indications and not
suitable for patients with severe comorbidities, so they are not
routinely used in clinical practice [8]. One study analyzed data
from 9 clinical trials and found nearly 38% of patients were
misclassified in comparison with their pathological N staging
[9]. Therefore, new reliable LNM prediction methods are
required to alleviate this clinical dilemma.

For precise staging, researchers explored using statistical
analysis or machine learning methods to learn nontrivial
knowledge between the comprehensive patient features and
LNM status [8,10-16]. Recently, with the rapid development
of hospital information systems, a large volume of electronic
medical records (EMR) has become available, and it contains
almost all clinical features about patients. However, some
important features are recorded in the narratives in free text,
such as the size of the tumor and lymph node, tumor density,
pleural indentation, etc, which hinders their direct use. Manual
extraction is time-consuming and error-prone. So, one big
challenge is how to extract this information effectively to
support subsequent tasks like LNM prediction [17]. A review
by Garg et al [18] found studies in which users were
automatically prompted to use the system achieved better
performance in comparison with those in which users were
required to actively initiate the system. The finding implicitly

indicates that the duplicative data entry activity may explain
why the predictive models are not widely adopted in the clinic
despite their potential to improve diagnostic accuracy.
Furthermore, with the prevalence of machine learning models,
more features are required for analysis, making the clinical
application of the models more difficult [19-21].

Natural language processing (NLP) offers the opportunity to
automatically extract information to support the application of
predictive models [17,22]. Many studies used rule-based,
machine learning, or deep learning methods to extract the
cancer-related information from free-text EMR data [22-29],
but only a few included further elaboration on how to exploit
the extracted information. Chen et al [30] extracted information
from various clinical notes including CT reports and operative
notes to calculate the Cancer of the Liver Italian Program score.
Martinez et al [31] extracted information from pathology reports
to calculate the TNM and Australian clinicopathological stage
of colorectal cancer. Castro et al [32] developed an NLP system
for automated breast imaging reporting and data system
(BI-RADS) categories extraction from breast radiology reports.
Bozkurt et al [33,34] developed an information extraction
pipeline to extract information from mammography reports to
predict the malignancy of breast cancer. Sui et al [35]
constructed an NLP-based feature generalizing to extract
features from free-text EMR data and provided the stage of lung
cancer using a Bayesian reasoning network. Yuan et al [36]
used NLP tools to extract multiple features from EMRs to
estimate survival for patients with lung cancer. Although many
studies have explored how to extract the cancer-related
information from various types of free-text narratives and some
also exploit the extracted information for cancer risk evaluation,
diagnosis, and pathological staging, few studies exploit the
extracted information from radiological reports for preoperative
LNM prediction, especially for NSCLC.

In this study, we aim to use EMR data to develop LNM
prediction models for NSCLC patients. We first developed a
multiturn question answering NLP model to extract the features
from CT reports and then combined these features with other
clinical characteristics to develop the predictive models. Since
the NLP model may produce imperfect extraction results, we
also conducted experiments to compare the predicted
probabilities between models using NLP-extracted features and
gold standard features.

Methods

Patients
We retrospectively analyzed EMR data of 794 patients who
underwent surgical resection for NSCLC with systematic
mediastinal lymphadenectomy at the Department of Thoracic
Surgery II of Peking University Cancer Hospital from 2010 to
2018. All patients underwent contrast-enhanced chest CT images
within 2 months before surgical resection. We excluded the
patients with preoperative chemotherapy or radiotherapy. The
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collected EMR includes demographic information, medical
history, CT reports, preoperative serum tumor markers, and
pathology reports, which can be analyzed to develop the
prediction model. For each patient, we also collected the clinical
staging that clinicians evaluated before surgery as the baseline
to compare with the LNM prediction models.

Ethics Approval
This study was approved by the Ethics Committee of Peking
University Cancer Hospital (2019KT59).

Clinical and Pathological LNM Evaluation
In this study, all included patients underwent systematic
mediastinal lymphadenectomy during surgical resection. The
lymph node tissues were examined by pathologists, and the
metastasis results were recorded in the postoperative pathology
reports. We reviewed the pathology reports to determine the
LNM status and label the pathological N (pN) stage
(pN0/pN1/pN2) for each patient based on the 8th edition TNM
stage classification [5] as the gold standard. We also used the
size criterion (ie, the maximum short axis diameter of lymph
node >10 mm on CT scan as positive) to label the clinical N
(cN) stages (cN0/cN1/cN2) based on the CT-reported lymph
node size. Moreover, we collected the cN stages, which were
determined preoperatively by a thoracic surgeon using all
available patient data including the information used in this
study. The thoracic surgeon has 10 years of experience in lung
cancer surgery. The cN stages determined by the size criterion
and the thoracic surgeon were regarded as the baselines.

NLP Feature Extraction
As one of the most important preoperative examinations, CT
reports record valuable information about the tumors and lymph
nodes, which is of paramount importance for staging. However,
the free-text nature of CT reports makes it difficult to understand
and analyze them using computer programs. In our previous
work [27], we developed an information extraction system
composed of named entity recognition, relation classification,

and postprocessing modules to extract valuable information in
a pipeline manner. However, in this pipeline, the subsequent
tasks would be influenced by the outputs of former tasks, which
may affect the performance of the whole system. Therefore, to
alleviate this problem, we applied a multiturn question
answering (MTQA) [37] approach to extract information from
CT reports in this study. Using the MTQA strategy, we can
encode the relation into the question query and jointly model
entity and relation in a natural question answering way.

Specifically, we first defined 10 questions related to the primary
tumor and lymph nodes. All questions are listed in Table 1.
Note that there are 2 types of questions (ie, head entity questions
and tail entity question templates). In the model training stage,
we inserted the annotated head entities into the slots in the tail
entity question templates as the tail entity questions. We then
used 2 special tokens (ie, CLS and SEP) to concatenate the
questions and sentences in the reports as the inputs and
annotated entities as the answers to conduct the bidirectional
encoder representations from transformers (BERT) model
training. In the model test stage, we first concatenated the head
entity questions and sentences in the reports as the inputs and
applied the trained MTQA model to extract the head entities
(ie, tumor and lymph node). If there were any head entities
recognized, we inserted the extracted head entities into the slots
in the tail entity question templates as the tail entity questions
and combined them with sentences in the reports as the inputs
to drive the tail entity extraction. A case of the MTQA
application is shown in Figure 1. Finally, the extracted head
and tail entities are organized as triples, and a rule-based
postprocessing algorithm proposed in the previous work [27]
is used to process the triples to obtain the standardized
NLP-extracted features. Furthermore, the NLP-extracted features
were manually reviewed and corrected by a clinician based on
the report contents as the gold standard features. In this study,
we used BERT [38], an advanced pretrained language
representation model, to tag the answer for each question.

Table 1. Questions and entity types for natural language processing–extracted features.

Entity typeAnswer notationQuestion (English)Question (Chinese)

Head entity question

TumorHead1What is the description about the primary tumor?原发肿物的相关描述是什么？

Lymph nodeHead2What is the description about the lymph nodes?淋巴结的相关描述是什么？

Tail entity question template

LocationTail1Where is Head1 located?Head1 位于什么地方？

SizeTail2What is the size of Head1?Head1 的大小是多少？

ShapeTail3What is the shape of Head1?Head1 的形状是什么？

DensityTail4What is the density of Head1?Head1 的密度是什么？

PleuraTail5What is the description about the pleura invasion related to
Head1?

与Head1 相关的胸膜侵犯的描述是什么？

VesselTail6What is the description about the vessel invasion related to
Head1?

与Head1 相关的血管侵犯的描述是什么？

LocationTail7Where is Head2 located?Head2 位于什么地方？

SizeTail8What is size of Head2?Head2 的大小是多少？
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Figure 1. A case of multiturn question answering application. BERT: bidirectional encoder representations from transformers.

LNM Prediction
Six machine learning algorithms were applied to develop the
LNM prediction models, including logistic regression (LR) [39],
L2-logistic regression (L2-LR) [40], random forest (RF) [41],
LightGBM (LGBM) [42], support vector machine (SVM) [43],
and artificial neural network (ANN) [44]. LR is the conventional
classification method, and L2-LR is the LR with the L2
regularization for parameters. RF and LGBM are ensemble
methods but with different ways to combine the weak decision
trees. SVM is a classical algorithm that constructs hyperplanes
in a high- or infinite-dimensional space to classify samples.
ANN is a supervised learning algorithm that can learn nonlinear
functions between features and targets. LR and L2-LR have
good interpretability because the predicted results can be
calculated by a simple linear function and a sigmoid
transformation. RF and LGBM are also interpretable, in which
they can provide the feature importance.

Experimental Setup
In this study, we used the Whole Word Masking version of
BERT [45] pretrained on the Chinese Wikipedia corpus as the
tagging model in the MTQA. An additional 359 annotated CT
reports from our previous work were used to develop and
evaluate the MTQA model. We randomly split 70% of CT
reports as the training set, 10% as the validation set, and 20%
as the test set. A total of 100 of these reports were each
annotated by 2 biomedical informatics engineers to calculate
the interannotator agreement score using the kappa score.
Pipeline methods with bidirectional long short-term memory
(BiLSTM) and BERT were selected as the baseline. To obtain
the NLP-extracted features for LNM prediction, the MTQA
model developed on the 359 reports was used to process the
794 CT reports of included patients. Subsequently, the
NLP-extracted features were manually reviewed and corrected
by a clinician as the gold standard features.

Univariate analysis was performed using the Mann-Whitney U
test for continuous features and Pearson chi-square test for
categorical features. P<.05 was considered statistically
significant. To obtain robust experimental results, a 10-fold
cross-validation strategy was first performed on the total data
set. The 10-fold cross-validation randomly split the data set into
10 subsets. Each subset was considered as the independent test
set and the remaining 9 subsets were considered as the training
set. During each fold, a 5-fold cross-validation was applied on
the training set to find the optimal hyperparameters for the
machine learning algorithms by a grid search. When the optimal
hyperparameters were selected, we retrained the prediction
model on the training set and tested it on the test set to obtain
the final predictive performance. Using this strategy, we can
ensure that the test set is always invisible during the model
training and hyperparameter tuning and obtain the predicted
probability for each case. The hyperparameter spaces are as
follows:

• LR: tol ∈ {1e–3, 1e–4, 1e–5}, max_iter ∈ {500, 1000}
• L2-LR: C ∈ {10, 1, 0.1}, tol ∈ {1e–3, 1e–4, 1e–5},

max_iter ∈ {500, 1000}
• RF: n_estimators ∈ {50, 100, 200}, max_depth ∈ {2, 3},

min_samples_leaf ∈ {1, 2}
• LGBM: n_estimators ∈ {50, 100, 200}, max_depth ∈ {2,

3}, num_leaves ∈ {20, 31, 50}, min_child_samples ∈ {1,
2, 3}, reg_alpha ∈ {2, 3}

• SVM: C ∈ {10, 1, 0.1, 0.01}, kernel ∈ {‘linear,’ ‘rbf,’
‘poly’}, tol ∈ {1e–3, 1e–4, 1e–5}

• ANN: hidden_layer_sizes ∈ {5, 10, 30}, learning_rate ∈
{1e–2, 1e–3, 1e–4}, alpha ∈ {1e–3, 1e–4, 1e–5}

We applied the receiver operating characteristic (ROC) curve
to evaluate the diagnostic performances of the machine learning
models. Besides the ROC curve, we also used the
precision-recall (PR) curve to test the models because the ROC
curve pays attention to sensitivity and specificity but ignores
precision. The mean area under the receiver operating
characteristic curve (AUC) and average precision (AP) values
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with standard derivations were calculated based on the 10-fold
cross-validation results. We also drew the ROC curves and PR
curves to compare with the size criterion (maximum short axis
diameter of lymph node >10 mm on CT) and the clinician’s
evaluation. All LNM prediction models were developed using
the Scikit-learn 0.24.1 and LightGBM 3.2.0 Python packages.
All statistical analyses were conducted using SciPy 1.6.2 Python
package.

Results

Patient Characteristics
Table 2 shows the characteristics of all 794 patients. Univariate
analysis was performed for all collected features, and 13.2%
(105/794) of patients had pN2 LNM. Sex, age, drinking history,
family history, and disease history are not significantly

associated with the pN2. The pN2 occurred more frequently in
smokers (P=.04). The long and short axis diameters of the tumor
in pN2 patients are significantly larger than those in pN0 and
pN1 patients (both P<.001). Patients with solid nodules are
more likely to have pN2 (P<.001). Other morphological
characteristics of tumor-like lobulation and pleural indentation
are more likely to occur in pN2 patients (P=.006 and P=.003,
respectively), but spiculation and vessel invasion present no
significant differences between pN2 and other patients. Using
10 mm as the size criterion, the maximum long and short axis
diameters of the hilar and mediastinal lymph nodes show
significant differences between the 2 groups (P=.008, P<.001,
P<.001, and P<.001, respectively). Among all 6 serum tumor
biomarkers, carcinoembryonic antigen (CEA), carbohydrate
antigen 12-5 (CA125), and neuron-specific enolase (NSE) show
significant differences between the 2 groups (P<.001, P<.001,
and P=.048, respectively).
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Table 2. Patient characteristics.

P valueLNMa statusTotal (n=794)

pN0c or pN1d (n=689)pN2b (n=105)

.4560.93 (51.42 to 70.44)60.87 (51.87 to 69.86)60.92 (51.48 to 70.36)Age (years), mean (SD)

.06———eSex, n (%)

—33562397Male

—35443397Female

.04———Smoking history, n (%)

—28255337Yes

—40750457No

.94———Drinking history, n (%)

—15825183Yes

—53180611No

.32———Family history, n (%)

—12314137Yes

—56691657No

.18———Hypertension, n (%)

—19537232Yes

—49468562No

.25———Diabetes, n (%)

—691584Yes

—62090710No

.33———Pulmonary tuberculosis, n (%)

—31233Yes

—658103761No

.06———Cardiovascular disease, n (%)

—27936Yes

—66296758No

.35———Cerebrovascular disease, n (%)

—23629Yes

—66699765No

.22———Tumor locationf, n (%)

—22227249RULg

—55459RMLh

—13218150RLLi

—15431185LULj

—10521126LLLk

—21425Other

<.0012.55 (1.15 to 3.94)3.02 (1.64 to 4.39)2.61 (1.20 to 4.01)TLAf,l, median (IQR)

<.0011.98 (0.83 to 3.13)2.38 (1.27 to 3.48)2.03 (0.88 to 3.18)TSAf,m, median (IQR)

.08———Spiculationf, n (%)

—21342255Yes
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P valueLNMa statusTotal (n=794)

pN0c or pN1d (n=689)pN2b (n=105)

—47663539No

<.001———Lobulationf, n (%)

—16348211Yes

—52657583No

<.001———Tumor densityf, n (%)

—1240124pGGOn

—93396mGGOo

—472102574Solid nodule

.87———Vessel invasionf, n (%)

—46652Yes

—64399742No

.001———Pleural indentationf, n (%)

—33670406Yes

—35335388No

.008———HLNLAf,p, n (%)

—11830148>10 mm

—57175646≤10 mm

<.001———HLNSAf,q, n (%)

—471966>10 mm

—64286728≤10 mm

<.001———MLNLAf,r, n (%)

—14150191>10 mm

—54855603≤10 mm

<.001———MLNSAf,s, n (%)

—452772>10 mm

—64478722≤10 mm

<.0014.18 (–5.17 to 13.54)12.66 (–8.44 to 33.76)5.31 (–6.66 to 17.27)CEAt, median (IQR)

.4714.20 (–2.90 to 31.29)15.80 (–5.08 to 36.68)14.41 (–3.24 to 32.06)CA199u, median (IQR)

<.00113.64 (1.96 to 25.32)19.88 (–5.56 to 45.32)14.46 (0.03 to 28.90)CA125v, median (IQR)

.04815.75 (8.66 to 22.83)16.26 (10.19 to 22.33)15.81 (8.85 to 22.78)NSEw, median (IQR)

.063.14 (–0.15 to 6.43)3.55 (–0.64 to 7.75)3.20 (–0.23 to 6.62)Cyfra211x, median (IQR)
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P valueLNMa statusTotal (n=794)

pN0c or pN1d (n=689)pN2b (n=105)

.140.93 (–0.04 to 1.90)1.18 (–0.62 to 2.99)0.96 (–0.16 to 2.08)SCCAgy, median (IQR)

aLNM: lymph node metastasis.
bpN2: pathological N stage 2.
cpN0: pathological N stage 0.
dpN1: pathological N stage 1.
eNot applicable.
fFeatures recorded in computed tomography reports.
gRUL: right upper lobe.
hRML: right middle lobe.
iRLL: right lower lobe.
jLUL: left upper lobe.
kLLL: left lower lobe.
lTLA: tumor long axis.
mTSA: tumor short axis
npGGO: pure ground glass opacity.
omGGO: mixed ground glass opacity.
pHLNLA: hilar lymph node long axis.
qHLNSA: hilar lymph node short axis.
rMLNLA: mediastinal lymph node long axis.
sMLNSA: mediastinal lymph node short axis.
tCEA: carcinoembryonic antigen.
uCA199: carbohydrate antigen 19-9.
vCA125: carbohydrate antigen 12-5.
wNSA: neuron-specific enolase.
xCyfra211: cytokeratin 19-fragments.
ySCCAg: squamous cell carcinoma antigen.

Performance of pN2 LNM Prediction Models
As preoperative confirmed N2 indicating neoadjuvant therapy
should be given before surgery, we first developed machine
learning models to predict the pN2 LNM. We regarded the pN2
patients as positive and pN0 and pN1 patients as negative to
train the predictive models. To obtain reliable models, we used
the gold standard features instead of NLP-extracted features in
this section. Table 3 shows the performances of all models. The
RF model achieved the highest averaged AUC value with 0.792
and the LGBM model achieved the highest averaged AP value
with 0.457 while all models’ 95% CI are overlapping with each
other. The LR obtained a competitive performance in

comparison with ANN and SVM. The L2-LR did not obtain
improvements in AUC value and AP value compared with the
LR. To compare with the size criterion and clinician’s
evaluation, we used the probabilities predicted during the 10-fold
cross-validation to draw the ROC and PR curves. Figure 2 shows
the ROC curves and PR curves of pN2 prediction models and
the results of the size criterion and clinician’s evaluation. From
Figure 2 we can notice all the ROC curves and PR curves are
above the points of size criterion and clinician’s evaluation,
which indicates the developed pN2 prediction models not only
have better discriminative ability than the diagnostic size
criterion used in the clinical practice but also may exceed the
clinician in pN2 LNM evaluation.
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Table 3. Performances of pN2 lymph node metastasis prediction models.

APbAUCaModel

95% CISDMean95% CISDMean

0.385-0.4990.0750.4420.747-0.8090.0410.778LRc

0.359-0.4670.0720.4130.739-0.7960.0380.768L2-LRd

0.363-0.5060.0950.4340.730-0.8080.0510.769ANNe

0.389-0.5160.0840.4530.718-0.8250.0710.771SVMf

0.399-0.5120.0750.4560.760-0.8250.0420.792RFg

0.381-0.5340.1010.4570.755-0.8200.0440.787LGBMh

aAUC: area under the receiver operating characteristic curve.
bAP: average precision.
cLR: logistic regression.
dL2-LR: L2-logistic regression.
eANN: artificial neural network.
fSVM: support vector machine.
gRF: random forest.
hLGBM: LightGBM.

Figure 2. The receiver operating characteristic curve (A) and precision-recall curves (B) of pN2 prediction models.

Performance of pN1&N2 LNM Prediction Models
Besides predicting pN2 LNM, we also developed machine
learning models to predict the pN1&N2 LNM by regarding
patients with pN1 or pN2 LNM as positive. The model training
and evaluation processes are the same as pN2 LNM prediction.
Table 4 shows the performances of the machine learning models
for pN1&N2 LNM prediction. LGBM obtained the highest

averaged AUC value with 0.771. The RF model achieved a
comparable performance in comparison with LGBM. As in pN2
prediction, LGBM and RF obtained better predictive
performances than other models. Figure 3 shows the ROC curves
and PR curves of pN1&N2 LNM prediction models. The curves
of the machine learning models are also all above the points of
the size criterion and clinician’s evaluation.

JMIR Med Inform 2022 | vol. 10 | iss. 4 | e35475 | p. 9https://medinform.jmir.org/2022/4/e35475
(page number not for citation purposes)

Hu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Performances of pN1&N2 lymph node metastasis prediction models.

APbAUCaModel

95% CISDMean95% CISDMean

0.423-0.5100.0580.4670.714-0.7660.0350.740LRc

0.422-0.5090.0580.4650.704-0.7690.0440.736L2-LRd

0.413-0.5450.0870.4790.698-0.7700.0470.734ANNe

0.439-0.5090.0470.4740.717-0.7520.0230.735SVMf

0.491-0.5570.0440.5240.745-0.7910.0300.768LGBMg

0.481-0.5670.0570.5240.752-0.7910.0260.771RFh

aAUC: area under the receiver operating characteristic curve.
bAP: average precision.
cLR: logistic regression.
dL2-LR: L2-logistic regression.
eANN: artificial neural network.
fSVM: support vector machine.
gRF: random forest.
hLGBM: LightGBM.

Figure 3. The receiver operating characteristic curve (A) and precision-recall curves (B) of pN1&N2 prediction models.

Feature Importance
Among all machine learning models, the LR, L2-LR, RF, and
LGBM can provide the feature importance. Table 5 shows the
top 10 important features of LR, L2-LR, RF, and LGBM for
pN2 LNM prediction. The features were ranked by averaging
the weights of models developed from 10-fold cross validation.
Note that the LR and L2-LR models provide weights with signs,
so we used the absolute values to rank the features. Because the

weight magnitudes from different models vary greatly, we used
the averaged rankings of features, but not the averaged weights,
to find the most important features among the 4 types of models.
The CEA is ranked as the most important feature to increase
the risk of pN2 LNM by all models. Features recorded in CT
reports account for at least half of the top 10 important features,
indicating these features are of great importance for pN2 LNM
prediction.
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Table 5. Top 10 important features for pN2 lymph node metastasis prediction.

AllLGBMdRFcL2-LRbLRaRank

WeightFeatureWeightFeatureWeightFeatureWeightFeature

CEA46.0CEA0.229CEA3.530CEAg–10.383pGGOe,f1

Solid nodulef23.3Age0.094CA1253.067CA125h6.010CEA2

CA12518.8Solid nodulef0.094Solid nodulef–1.799pGGOf4.728CA1253

Age17.6TLAf,j0.073MLNSAf,i1.773Solid nodulef3.683Solid nodulef4

MLNLAf15.1TSAf,l0.072MLNLAf,k–1.315Age–2.701TLAf5

TLAf13.3CA1250.054TLAf0.944SCCAgm–1.908Age6

pGGOf12.9Cyfra211n0.048TSAf0.896MLNLAf1.763SCCAg7

SCCAg12.7NSEp0.038Cyfra2110.836Pleural indenta-

tionf
1.759mGGOf,o8

Lobulationf11.6MLNLAf0.037SCCAg0.807Cardiovascular
disease

–1.729RMLf,q9

TSAf9.0SCCAg0.036Lobulationf0.725Lobulationf1.601TSAf10

aLR: logistic regression.
bL2-LR: L2-logistic regression.
cRF: random forest.
dLGBM: LightGBM.
epGGO: pure ground glass opacity.
fFeatures recorded in computed tomography reports.
gCEA: carcinoembryonic antigen.
hCA125: carbohydrate antigen 12-5.
iMLNSA: mediastinal lymph node short axis.
jTLA: tumor long axis.
kMLNLA: mediastinal lymph node long axis.
lTSA: tumor short axis.
mSCCAg: squamous cell carcinoma antigen.
nCyfra211: cytokeratin 19-fragments.
omGGO: mixed ground glass opacity.
pNSE: neuron-specific enolase.
qRML: right middle lobe.

NLP-Extracted Features Versus Gold Standard
Features
In this study, we applied the MTQA model to extract important
features from CT reports to support the development of LNM
prediction models. In this section, we first conduct experiments
to explore the effectiveness of the MTQA model on feature
extraction and then analyze the influence of imperfect extraction
results on LNM prediction.

We used an additional 359 annotated CT reports to develop the
MTQA model. The interannotator agreement score was 0.937
based on the 100 reports annotated by 2 annotators. Table 6
shows the performances of the MTQA model and the pipeline
models on the test set. We can notice that the BERT-MTQA
model achieved significant improvement compared with the
pipeline models.

Table 7 illustrates the performance of the BERT-MTQA model
on the 794 CT reports of included patients. We can notice that
the accuracy values of all extracted features are higher than
0.90. The F1 scores are higher than 0.90 except for lobulation,
tumor density, vessel invasion, and hilar lymph node long axis.
For the NLP-extracted features ranked in the top 10 important
features, the mediastinal lymph node long axis (MLNLA), tumor
long axis (TLA), and tumor short axis (TSA) obtained good
accuracy values and F1 scores, but the F1 scores of tumor
density and lobulation are not higher than 0.90.

In this study, the MTQA model generates imperfect extractions,
which may influence the subsequent application. To analyze
the influence on the pN2 LNM prediction, we calculated the
Pearson correlation between the predicted probabilities of
models using NLP-extracted features and gold standard features.
Moreover, we also replaced the NLP-extracted feature with the
gold standard feature one by one according to their importance
in Table 5 to explore the changes in the consistency. Figure 4
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shows the concordance correlations of the pN2 LNM prediction
models. The RF model obtained a high concordance correlation
with 0.950 when using all NLP-extracted features in comparison
with using gold standard features, and the correlation increased
to 0.984 when replacing top 5 important NLP-extracted features.
The correlation values of the LR, L2-LR, LGBM, and SVM

models were more influenced by using the NLP-extracted
features. With the replacement of gold standard features, the
correlation values gradually increased and exceeded 0.950. The
ANN model did not achieve a good concordance correlation
even when the top 5 important NLP-extracted features were
replaced.

Table 6. Performance of the multiturn question answering model and baseline models.

BERT-MTQAcBERTb-pipelineBiLSTMa-pipelineFeature

FRPFRPFfRePd

0.9380.9380.9380.7620.6670.8890.7320.6250.882Tumor density

0.9800.9601.0000.8370.7201.0000.7800.6401.000MLNLAg

0.9690.9540.9840.9610.9380.9840.9280.8920.967TLAh

0.9290.8671.0000.7690.6670.9090.6670.5330.889Lobulation

0.9690.9540.9840.9610.9380.9840.9280.8920.967TSAi

0.9680.9381.0000.8570.7501.0000.8570.7501.000MLNSAj

0.9180.8481.0000.8850.8180.9640.8710.8180.931Pleural indentation

0.9850.9850.9850.9310.8970.9680.9380.8970.984Tumor location

1.0001.0001.0000.8720.7731.0000.8420.7271.000Spiculation

0.7140.5561.0000.3640.2221.0000.2000.1111.000Vessel invasion

1.0001.0001.0000.9090.8331.0000.8750.7781.000HLNLAk

1.0001.0001.0000.8570.7501.0000.8570.7501.000HLNSAl

0.9480.9170.9910.8300.7480.9750.7900.7010.968Average

aBiLSTM: bidirectional long short-term memory.
bBERT: bidirectional encoder representations from transformers.
cMTQA: multiturn question answering.
dP: precision.
eR: recall.
fF: F1 score.
gMLNLA: mediastinal lymph node long axis.
hTLA: tumor long axis.
iTSA: tumor short axis.
jMLNSA: mediastinal lymph node short axis.
kHLNLA: hilar lymph node long axis.
lHLNSA: hilar lymph node short axis.
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Table 7. Performance of the multiturn question answering model for feature extraction.

F1 scoreRecallPrecisionAccuracyFeature

0.8930.9150.8750.940Tumor density

0.9270.9270.9270.965MLNLAa

0.9740.9740.9740.974TLAb

0.8320.7160.9930.923Lobulation

0.9720.9720.9720.972TSAc

0.9240.9310.9180.986MLNSAd

0.9200.9380.9030.917Pleural indentation

0.9900.9900.9900.994Tumor location

0.9660.9450.9880.979Spiculation

0.8540.7880.9320.982Vessel invasion

0.8960.8111.0000.965HLNLAe

0.9110.8480.9820.986HLNSAf

aMLNLA: mediastinal lymph node long axis.
bTLA: tumor long axis.
cTSA: tumor short axis.
dMLNSA: mediastinal lymph node short axis.
eHLNLA: hilar lymph node long axis.
fHLNSA: hilar lymph node short axis.

Figure 4. Concordance correlation values between pN2 prediction models using complete and partial gold standard features. LR: logistic regression;
L2-LR: L2-logistic regression; RF: random forest; LGBM: LightGBM; SVM: support vector machine; ANN: artificial neural network: NLP: natural
language processing; pGGO: pure ground glass opacity; MLNLA: mediastinal lymph node long axis; TLA: tumor long axis; TSA: tumor short axis.

Discussion

Principal Findings
In this study, we explored the feasibility of using EMR to
develop machine learning models to predict LNM for patients
with NSCLC. The important features about the primary tumor

and lymph nodes were extracted from the CT reports using NLP
technique to support the model development. To the best of our
knowledge, this is the first study to use NLP technique to extract
features to build preoperative LNM prediction models for
patients with NSCLC. Experimental results indicate that the RF
model achieved the best performances with 0.792 AUC value
and 0.456 AP value for pN2 LNM prediction. All machine
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learning models outperformed the size criterion and clinician’s
evaluation.

Among all models, the LR, L2-LR, RF, and LGBM provide the
feature importance to show the connections between the patient
features and LNM status. CEA, tumor density, CA125, MLNLA,
TLA, lobulation, and TSA were ranked in the top 10 important
features by the machine learning models, which was consistent
with the results of univariate analysis. Squamous cell carcinoma
antigen (SCCAg) was also identified as a top 10 important
feature by the models, although univariate analysis did not show
significance. However, SCCAg has been proved to be associated
with LNM in esophageal squamous cell carcinoma [46], anus
squamous cell carcinoma [47], oral-cavity squamous cell
carcinoma [48], and cervical squamous cell carcinoma [49]. It
is also a poor prognostic factor of lung squamous cell carcinoma
and upgrading the patient stage is recommended [50,51].
Surprisingly, TLA was identified as an important feature with
negative weight by the LR model, which means the longer the
TLA is, the lower the risk of pN2 LNM the patient may have.
The result is contrary to the result of univariate analysis and
may be caused by multicollinearity or interactions between the
features [52]. In the L2-LR model, the TLA was not ranked in
the top 10 important features, indicating the L2 regularization
can indeed reduce the influence of multicollinearity and improve
the interpretability of the model [53]. In addition, other features
like right middle lobe cardiovascular disease also suffered
interpretability problems, which may be hard to accept in clinical
practice. Therefore, more robust interpretable machine learning
algorithms are needed to make accurate predictions while giving
more reasonable explanations.

In this study, we innovatively extracted features from CT reports
and used them to develop LNM prediction models. The
concordance correlations between the predicted probabilities
of models using NLP-extracted features, partially NLP-extracted
features, and gold standard features indicate that the
automatically developed models can obtain similar predictive
results to those of models using gold standard features. This
finding implicitly indicates it is possible to build models using
a large amount of unstructured data and update them

automatically. More importantly, it can also reduce the burden
of manual feature extraction to improve the usability of the
prediction models in clinical practice.

Limitations
Although the experimental results show that machine learning
models using CT reports, demographic information, medical
history, and biomarker data can achieve better performances
than the size criterion and clinician’s evaluation on the collected
data, external validation is still needed to further prove the
effectiveness and generalization of the NLP and LNM prediction
models. Note that the writing styles of CT reports from different
medical centers may vary greatly, which poses a huge challenge
to the NLP model developed using the CT reports from a single
medical center. Transfer learning is a proper strategy to solve
the problem by fine-tuning the model to adapt to CT reports
from other centers. Overall, multicenter data is necessary to
develop a more robust and generalizable NLP and LNM
prediction model.

Furthermore, many studies have proved that there are deep
features or radiomics features related to LNM in the CT images
[54-60]. Clinicians cannot recognize these with the naked eye,
so these features may provide extra information about the
metastasis status. In the future, we will extract the image features
and combine them with the features in this study to develop
more robust, accurate multimodal LNM prediction models.

Conclusions
In this study, we used NLP and machine learning methods to
develop the LNM prediction models for patients with NSCLC
using EMRs. The RF model achieved the best performance with
0.792 AUC value and 0.456 AP value for pN2 prediction and
0.768 AUC value and 0.524 AP value for pN1&N2 prediction.
All machine learning models outperformed the size criterion
and clinician’s evaluation. Furthermore, the experimental results
indicate that the NLP model can effectively extract features
from CT reports to support the automatic development and
update of the LNM prediction model and may facilitate the
application of models in clinical practice.

Acknowledgments
The publication of this paper was funded by grant 2018YFC0910700 from the National Key Research and Development Program
of China.

Authors' Contributions
DH, SL, XL, and NW conceptualized the study. SL acquired the clinical data. DH and HZ designed and implemented the algorithms
and conducted the experiments. DH, HZ, and SL analyzed the experimental results. DH wrote the manuscript with revision
assistance from SL, XL, and NW. All authors have read and approved the manuscript.

Conflicts of Interest
None declared.

References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021 Feb 04:1 [FREE
Full text] [doi: 10.3322/caac.21660] [Medline: 33538338]

JMIR Med Inform 2022 | vol. 10 | iss. 4 | e35475 | p. 14https://medinform.jmir.org/2022/4/e35475
(page number not for citation purposes)

Hu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
http://dx.doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33538338&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


2. Cancer facts and figures 2021. American Cancer Society. URL: https://www.cancer.org/research/cancer-facts-statistics/
all-cancer-facts-figures/cancer-facts-figures-2021.html [accessed 2021-07-14]

3. Ettinger D, Wood D, Aisner D, Akerley W, Bauman J, Chirieac L, et al. Non-Small Cell Lung Cancer, Version 5.2017,
NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2017 Apr;15(4):504-535 [FREE Full text] [doi:
10.6004/jnccn.2017.0050] [Medline: 28404761]

4. Hu D, Li S, Huang Z, Wu N, Lu X. Predicting postoperative non-small cell lung cancer prognosis via long short-term
relational regularization. Artif Intell Med 2020 Jul;107:101921. [doi: 10.1016/j.artmed.2020.101921] [Medline: 32828458]

5. Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The Eighth Edition Lung Cancer Stage Classification. Chest 2017
Jan;151(1):193-203. [doi: 10.1016/j.chest.2016.10.010] [Medline: 27780786]

6. Silvestri GA, Gonzalez AV, Jantz MA, Margolis ML, Gould MK, Tanoue LT, et al. Methods for staging non-small cell
lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based
clinical practice guidelines. Chest 2013 May;143(5 Suppl):e211S-e250S. [doi: 10.1378/chest.12-2355] [Medline: 23649440]

7. Schmidt-Hansen M, Baldwin DR, Zamora J. FDG-PET/CT imaging for mediastinal staging in patients with potentially
resectable non-small cell lung cancer. JAMA 2015 Apr 14;313(14):1465-1466. [doi: 10.1001/jama.2015.2365] [Medline:
25871673]

8. Zhang C, Song Q, Zhang L, Wu X. Development of a nomogram for preoperative prediction of lymph node metastasis in
non-small cell lung cancer: a SEER-based study. J Thorac Dis 2020 Jul;12(7):3651-3662 [FREE Full text] [doi:
10.21037/jtd-20-601] [Medline: 32802444]

9. Navani N, Fisher DJ, Tierney JF, Stephens RJ, Burdett S, NSCLC Meta-analysis Collaborative Group. The accuracy of
clinical staging of stage I-IIIa non-small cell lung cancer: an analysis based on individual participant data. Chest 2019
Mar;155(3):502-509 [FREE Full text] [doi: 10.1016/j.chest.2018.10.020] [Medline: 30391190]

10. Lv X, Wu Z, Cao J, Hu Y, Liu K, Dai X, et al. A nomogram for predicting the risk of lymph node metastasis in T1-2
non-small-cell lung cancer based on PET/CT and clinical characteristics. Transl Lung Cancer Res 2021 Jan;10(1):430-438
[FREE Full text] [doi: 10.21037/tlcr-20-1026] [Medline: 33569324]

11. Chen K, Yang F, Jiang G, Li J, Wang J. Development and validation of a clinical prediction model for N2 lymph node
metastasis in non-small cell lung cancer. Ann Thorac Surg 2013 Nov;96(5):1761-1768. [doi:
10.1016/j.athoracsur.2013.06.038] [Medline: 23998401]

12. Miao H, Shaolei L, Nan L, Yumei L, Shanyuan Z, Fangliang L, et al. Occult mediastinal lymph node metastasis in
FDG-PET/CT node-negative lung adenocarcinoma patients: risk factors and histopathological study. Thorac Cancer 2019
Jun;10(6):1453-1460 [FREE Full text] [doi: 10.1111/1759-7714.13093] [Medline: 31127706]

13. Verdial FC, Madtes DK, Hwang B, Mulligan MS, Odem-Davis K, Waworuntu R, et al. Prediction model for nodal disease
among patients with non-small cell lung cancer. Ann Thorac Surg 2019 Jun;107(6):1600-1606 [FREE Full text] [doi:
10.1016/j.athoracsur.2018.12.041] [Medline: 30710518]

14. Shafazand S, Gould MK. A clinical prediction rule to estimate the probability of mediastinal metastasis in patients with
non-small cell lung cancer. J Thorac Oncol 2006 Nov;1(9):953-959 [FREE Full text] [Medline: 17409978]

15. Farjah F, Lou F, Sima C, Rusch VW, Rizk NP. A prediction model for pathologic N2 disease in lung cancer patients with
a negative mediastinum by positron emission tomography. J Thorac Oncol 2013 Sep;8(9):1170-1180 [FREE Full text] [doi:
10.1097/JTO.0b013e3182992421] [Medline: 23945387]

16. Song C, Kimura D, Sakai T, Tsushima T, Fukuda I. Novel approach for predicting occult lymph node metastasis in peripheral
clinical stage I lung adenocarcinoma. J Thorac Dis 2019 Apr;11(4):1410-1420 [FREE Full text] [doi: 10.21037/jtd.2019.03.57]
[Medline: 31179083]

17. Yim W, Yetisgen M, Harris WP, Kwan SW. Natural language processing in oncology: a review. JAMA Oncol 2016 Jun
01;2(6):797-804. [doi: 10.1001/jamaoncol.2016.0213] [Medline: 27124593]

18. Garg AX, Adhikari NKJ, McDonald H, Rosas-Arellano MP, Devereaux PJ, Beyene J, et al. Effects of computerized clinical
decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA 2005 Mar
9;293(10):1223-1238. [doi: 10.1001/jama.293.10.1223] [Medline: 15755945]

19. Monteiro M, Fonseca AC, Freitas AT, Pinho E Melo T, Francisco AP, Ferro JM, et al. Using machine learning to improve
the prediction of functional outcome in ischemic stroke patients. IEEE/ACM Trans Comput Biol Bioinform
2018;15(6):1953-1959. [doi: 10.1109/TCBB.2018.2811471] [Medline: 29994736]

20. Desai RJ, Wang SV, Vaduganathan M, Evers T, Schneeweiss S. Comparison of machine learning methods with traditional
models for use of administrative claims with electronic medical records to predict heart failure outcomes. JAMA Netw
Open 2020 Jan 03;3(1):e1918962 [FREE Full text] [doi: 10.1001/jamanetworkopen.2019.18962] [Medline: 31922560]

21. Ali F, El-Sappagh S, Islam S, Kwak D, Ali A, Imran M. A smart healthcare monitoring system for heart disease prediction
based on ensemble deep learning and feature fusion. Inf Fusion 2020;63:208-222 [FREE Full text] [doi:
10.1016/j.inffus.2020.06.008]

22. Datta S, Bernstam EV, Roberts K. A frame semantic overview of NLP-based information extraction for cancer-related
EHR notes. J Biomed Inform 2019 Dec;100:103301 [FREE Full text] [doi: 10.1016/j.jbi.2019.103301] [Medline: 31589927]

23. Si Y, Roberts K. A frame-based NLP system for cancer-related information extraction. AMIA Annu Symp Proc
2018;2018:1524-1533 [FREE Full text] [Medline: 30815198]

JMIR Med Inform 2022 | vol. 10 | iss. 4 | e35475 | p. 15https://medinform.jmir.org/2022/4/e35475
(page number not for citation purposes)

Hu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html
https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1450
http://dx.doi.org/10.6004/jnccn.2017.0050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28404761&dopt=Abstract
http://dx.doi.org/10.1016/j.artmed.2020.101921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32828458&dopt=Abstract
http://dx.doi.org/10.1016/j.chest.2016.10.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27780786&dopt=Abstract
http://dx.doi.org/10.1378/chest.12-2355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23649440&dopt=Abstract
http://dx.doi.org/10.1001/jama.2015.2365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25871673&dopt=Abstract
https://doi.org/10.21037/jtd-20-601
http://dx.doi.org/10.21037/jtd-20-601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32802444&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0012-3692(18)32607-2
http://dx.doi.org/10.1016/j.chest.2018.10.020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30391190&dopt=Abstract
https://doi.org/10.21037/tlcr-20-1026
http://dx.doi.org/10.21037/tlcr-20-1026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33569324&dopt=Abstract
http://dx.doi.org/10.1016/j.athoracsur.2013.06.038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23998401&dopt=Abstract
https://doi.org/10.1111/1759-7714.13093
http://dx.doi.org/10.1111/1759-7714.13093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31127706&dopt=Abstract
http://europepmc.org/abstract/MED/30710518
http://dx.doi.org/10.1016/j.athoracsur.2018.12.041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30710518&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1556-0864(15)31627-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17409978&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1556-0864(15)33473-0
http://dx.doi.org/10.1097/JTO.0b013e3182992421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23945387&dopt=Abstract
https://doi.org/10.21037/jtd.2019.03.57
http://dx.doi.org/10.21037/jtd.2019.03.57
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31179083&dopt=Abstract
http://dx.doi.org/10.1001/jamaoncol.2016.0213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27124593&dopt=Abstract
http://dx.doi.org/10.1001/jama.293.10.1223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15755945&dopt=Abstract
http://dx.doi.org/10.1109/TCBB.2018.2811471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29994736&dopt=Abstract
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/10.1001/jamanetworkopen.2019.18962
http://dx.doi.org/10.1001/jamanetworkopen.2019.18962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31922560&dopt=Abstract
https://doi.org/10.1016/j.inffus.2020.06.008
http://dx.doi.org/10.1016/j.inffus.2020.06.008
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(19)30221-7
http://dx.doi.org/10.1016/j.jbi.2019.103301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31589927&dopt=Abstract
http://europepmc.org/abstract/MED/30815198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30815198&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


24. Yim W, Denman T, Kwan SW, Yetisgen M. Tumor information extraction in radiology reports for hepatocellular carcinoma
patients. AMIA Jt Summits Transl Sci Proc 2016;2016:455-464 [FREE Full text] [Medline: 27570686]

25. Savova GK, Tseytlin E, Finan S, Castine M, Miller T, Medvedeva O, et al. DeepPhe: a natural language processing system
for extracting cancer phenotypes from clinical records. Cancer Res 2017 Nov 01;77(21):e115-e118 [FREE Full text] [doi:
10.1158/0008-5472.CAN-17-0615] [Medline: 29092954]

26. Hassanpour S, Langlotz CP. Information extraction from multi-institutional radiology reports. Artif Intell Med 2016
Jan;66:29-39 [FREE Full text] [doi: 10.1016/j.artmed.2015.09.007] [Medline: 26481140]

27. Hu D, Zhang H, Li S, Wang Y, Wu N, Lu X. Automatic extraction of lung cancer staging information from computed
tomography reports: deep learning approach. JMIR Med Inform 2021 Jul 21;9(7):e27955 [FREE Full text] [doi:
10.2196/27955] [Medline: 34287213]

28. Zheng C, Huang BZ, Agazaryan AA, Creekmur B, Osuj TA, Gould MK. Natural language processing to identify pulmonary
nodules and extract nodule characteristics from radiology reports. Chest 2021 Nov;160(5):1902-1914. [doi:
10.1016/j.chest.2021.05.048] [Medline: 34089738]

29. Sugimoto K, Takeda T, Oh J, Wada S, Konishi S, Yamahata A, et al. Extracting clinical terms from radiology reports with
deep learning. J Biomed Inform 2021 Apr;116:103729 [FREE Full text] [doi: 10.1016/j.jbi.2021.103729] [Medline:
33711545]

30. Chen L, Song L, Shao Y, Li D, Ding K. Using natural language processing to extract clinically useful information from
Chinese electronic medical records. Int J Med Inform 2019 Apr;124:6-12. [doi: 10.1016/j.ijmedinf.2019.01.004] [Medline:
30784428]

31. Martinez D, Pitson G, MacKinlay A, Cavedon L. Cross-hospital portability of information extraction of cancer staging
information. Artif Intell Med 2014 Sep;62(1):11-21. [doi: 10.1016/j.artmed.2014.06.002] [Medline: 25001545]

32. Castro SM, Tseytlin E, Medvedeva O, Mitchell K, Visweswaran S, Bekhuis T, et al. Automated annotation and classification
of BI-RADS assessment from radiology reports. J Biomed Inform 2017 Dec;69:177-187 [FREE Full text] [doi:
10.1016/j.jbi.2017.04.011] [Medline: 28428140]

33. Bozkurt S, Lipson JA, Senol U, Rubin DL. Automatic abstraction of imaging observations with their characteristics from
mammography reports. J Am Med Inform Assoc 2015 Apr;22(e1):e81-e92. [doi: 10.1136/amiajnl-2014-003009] [Medline:
25352567]

34. Bozkurt S, Gimenez F, Burnside ES, Gulkesen KH, Rubin DL. Using automatically extracted information from mammography
reports for decision-support. J Biomed Inform 2016 Aug;62:224-231 [FREE Full text] [doi: 10.1016/j.jbi.2016.07.001]
[Medline: 27388877]

35. Sui X, Liu T, Huang Q, Hou Y, Wang Y, Kang G, et al. P2.09-29 Automatic lung cancer staging from medical reports
using natural language processing. J Thor Oncol 2018 Oct;13(10):S772. [doi: 10.1016/j.jtho.2018.08.1326]

36. Yuan Q, Cai T, Hong C, Du M, Johnson BE, Lanuti M, et al. Performance of a machine learning algorithm using electronic
health record data to identify and estimate survival in a longitudinal cohort of patients with lung cancer. JAMA Netw Open
2021 Jul 01;4(7):e2114723 [FREE Full text] [doi: 10.1001/jamanetworkopen.2021.14723] [Medline: 34232304]

37. Li X, Yin F, Sun Z, Li X, Yuan A, Chai D, et al. Entity-relation extraction as multi-turn question answering. 2019 Presented
at: Proc 57th Annu Meet Assoc Comput Linguist; 2019; Florence p. 1340-1350. [doi: 10.18653/v1/p19-1129]

38. Devlin J, Chang M, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding.
Arxiv. Preprint posted online Oct 10, 2018 2018:1 [FREE Full text]

39. Hosmer D, Lemeshow S, Sturdivant R. Applied Logistic Regression. 3rd ed. Hoboken: John Wiley & Sons; 2013.
40. Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970

Feb;12(1):55-67. [doi: 10.1080/00401706.1970.10488634]
41. Breiman L. Random forests. Mach Learn 2001;45(1):5-32 [FREE Full text] [doi: 10.1023/A:1010933404324]
42. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. LightGBM: a highly efficient gradient boosting decision tree.

2017 Presented at: 31st Conf Neural Inf Process Syst (NIPS 2017); 2017; Long Beach URL: https://papers.nips.cc/paper/
2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

43. Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995 Sep;20(3):273-297. [doi: 10.1007/BF00994018]
44. Jain A, Mao J, Mohiuddin K. Artificial neural networks: a tutorial. Computer (Long Beach Calif) 1996;29(3):31-44. [doi:

10.1109/2.485891]
45. Cui Y, Che W, Liu T, Qin B, Yang Z. Pre-training with whole word masking for Chinese BERT. IEEE/ACM Trans Audio

Speech Lang Process 2021;29:3504-3514. [doi: 10.1109/taslp.2021.3124365]
46. Shimada H, Nabeya Y, Okazumi S, Matsubara H, Shiratori T, Gunji Y, et al. Prediction of survival with squamous cell

carcinoma antigen in patients with resectable esophageal squamous cell carcinoma. Surgery 2003 May;133(5):486-494.
[doi: 10.1067/msy.2003.139] [Medline: 12773976]

47. Williams M, Swampillai A, Osborne M, Mawdsley S, Hughes R, Harrison M, Mount Vernon Colorectal Cancer Network.
Squamous cell carcinoma antigen: a potentially useful prognostic marker in squamous cell carcinoma of the anal canal and
margin. Cancer 2013 Jul 01;119(13):2391-2398 [FREE Full text] [doi: 10.1002/cncr.28055] [Medline: 23576077]

JMIR Med Inform 2022 | vol. 10 | iss. 4 | e35475 | p. 16https://medinform.jmir.org/2022/4/e35475
(page number not for citation purposes)

Hu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://europepmc.org/abstract/MED/27570686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27570686&dopt=Abstract
http://cancerres.aacrjournals.org/cgi/pmidlookup?view=long&pmid=29092954
http://dx.doi.org/10.1158/0008-5472.CAN-17-0615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29092954&dopt=Abstract
http://europepmc.org/abstract/MED/26481140
http://dx.doi.org/10.1016/j.artmed.2015.09.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26481140&dopt=Abstract
https://medinform.jmir.org/2021/7/e27955/
http://dx.doi.org/10.2196/27955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34287213&dopt=Abstract
http://dx.doi.org/10.1016/j.chest.2021.05.048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34089738&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(21)00058-7
http://dx.doi.org/10.1016/j.jbi.2021.103729
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33711545&dopt=Abstract
http://dx.doi.org/10.1016/j.ijmedinf.2019.01.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30784428&dopt=Abstract
http://dx.doi.org/10.1016/j.artmed.2014.06.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25001545&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(17)30081-3
http://dx.doi.org/10.1016/j.jbi.2017.04.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28428140&dopt=Abstract
http://dx.doi.org/10.1136/amiajnl-2014-003009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25352567&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(16)30055-7
http://dx.doi.org/10.1016/j.jbi.2016.07.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27388877&dopt=Abstract
http://dx.doi.org/10.1016/j.jtho.2018.08.1326
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/10.1001/jamanetworkopen.2021.14723
http://dx.doi.org/10.1001/jamanetworkopen.2021.14723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34232304&dopt=Abstract
http://dx.doi.org/10.18653/v1/p19-1129
https://arxiv.org/abs/1810.04805
http://dx.doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
https://papers.nips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://papers.nips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1109/2.485891
http://dx.doi.org/10.1109/taslp.2021.3124365
http://dx.doi.org/10.1067/msy.2003.139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12773976&dopt=Abstract
https://doi.org/10.1002/cncr.28055
http://dx.doi.org/10.1002/cncr.28055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23576077&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


48. Lin W, Chen I, Wei F, Huang J, Kang C, Hsieh L, et al. Clinical significance of preoperative squamous cell carcinoma
antigen in oral-cavity squamous cell carcinoma. Laryngoscope 2011 May;121(5):971-977. [doi: 10.1002/lary.21721]
[Medline: 21520110]

49. Xu D, Wang D, Wang S, Tian Y, Long Z, Ren X. Correlation between squamous cell carcinoma antigen level and the
clinicopathological features of early-stage cervical squamous cell carcinoma and the predictive value of squamous cell
carcinoma antigen combined with computed tomography scan for lymph node metastasis. Int J Gynecol Cancer 2017
Nov;27(9):1935-1942. [doi: 10.1097/IGC.0000000000001112] [Medline: 28914639]

50. Kinoshita T, Ohtsuka T, Yotsukura M, Asakura K, Goto T, Kamiyama I, et al. Prognostic impact of preoperative tumor
marker levels and lymphovascular invasion in pathological stage I adenocarcinoma and squamous cell carcinoma of the
lung. J Thorac Oncol 2015 Apr;10(4):619-628 [FREE Full text] [doi: 10.1097/JTO.0000000000000480] [Medline: 25634009]

51. Kinoshita T, Ohtsuka T, Hato T, Goto T, Kamiyama I, Tajima A, et al. Prognostic factors based on clinicopathological data
among the patients with resected peripheral squamous cell carcinomas of the lung. J Thorac Oncol 2014 Dec;9(12):1779-1787
[FREE Full text] [doi: 10.1097/JTO.0000000000000338] [Medline: 25226427]

52. Tolles J, Meurer WJ. Logistic regression: relating patient characteristics to outcomes. JAMA 2016 Aug 02;316(5):533-534.
[doi: 10.1001/jama.2016.7653] [Medline: 27483067]

53. Marquardt DW, Snee RD. Ridge regression in practice. Am Statistician 1975 Feb;29(1):3-20. [doi:
10.1080/00031305.1975.10479105]

54. Gu Y, She Y, Xie D, Dai C, Ren Y, Fan Z, et al. A texture analysis-based prediction model for lymph node metastasis in
stage Ia lung adenocarcinoma. Ann Thorac Surg 2018 Jul;106(1):214-220. [doi: 10.1016/j.athoracsur.2018.02.026] [Medline:
29550204]

55. Hosny A, Parmar C, Quackenbush J, Schwartz LH. Artificial intelligence in radiology. Nat Rev Cancer 2018
Dec;18(8):500-510 [FREE Full text] [doi: 10.1038/s41568-018-0016-5] [Medline: 29777175]

56. Cong M, Feng H, Ren J, Xu Q, Cong L, Hou Z, et al. Development of a predictive radiomics model for lymph node
metastases in pre-surgical CT-based stage IA non-small cell lung cancer. Lung Cancer 2020 Jan;139:73-79 [FREE Full
text] [doi: 10.1016/j.lungcan.2019.11.003] [Medline: 31743889]

57. Zhao X, Wang X, Xia W, Li Q, Zhou L, Li Q, et al. A cross-modal 3D deep learning for accurate lymph node metastasis
prediction in clinical stage T1 lung adenocarcinoma. Lung Cancer 2020 Jul;145:10-17. [doi: 10.1016/j.lungcan.2020.04.014]
[Medline: 32387813]

58. Wang X, Nan W, Yan S, Li Q, Guo N, Guo Z. MA05.11 radiomics analysis using SVM predicts mediastinal lymph nodes
status of squamous cell lung cancer by pre-treatment chest CT scan. J Thor Oncol 2018 Oct;13(10):S374. [doi:
10.1016/j.jtho.2018.08.357]

59. He L, Huang Y, Yan L, Zheng J, Liang C, Liu Z. Radiomics-based predictive risk score: a scoring system for preoperatively
predicting risk of lymph node metastasis in patients with resectable non-small cell lung cancer. Chin J Cancer Res 2019
Aug;31(4):641-652 [FREE Full text] [doi: 10.21147/j.issn.1000-9604.2019.04.08] [Medline: 31564807]

60. Yoo J, Cheon M, Park YJ, Hyun SH, Zo JI, Um S, et al. Machine learning-based diagnostic method of pre-therapeutic
F-FDG PET/CT for evaluating mediastinal lymph nodes in non-small cell lung cancer. Eur Radiol 2021 Jun;31(6):4184-4194.
[doi: 10.1007/s00330-020-07523-z] [Medline: 33241521]

Abbreviations
ANN: artificial neural network
AP: average precision
AUC: area under the receiver operating characteristic curve
BERT: bidirectional encoder representations from transformers
BiLSTM: bidirectional long short-term memory
BI-RADS: breast imaging-reporting and data system
CA125: carbohydrate antigen 12-5
CEA: carcinoembryonic antigen
cN: clinical N stage
EMR: electronic medical record
LGBM: LightGBM
LNM: lymph node metastasis
LR: logistic regression
L2-LR: L2-logistic regression
MLNLA: mediastinal lymph node long axis
MTQA: multiturn question answering
NLP: natural language processing
NSCLC: non–small cell lung cancer
NSE: neuron-specific enolase

JMIR Med Inform 2022 | vol. 10 | iss. 4 | e35475 | p. 17https://medinform.jmir.org/2022/4/e35475
(page number not for citation purposes)

Hu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1002/lary.21721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21520110&dopt=Abstract
http://dx.doi.org/10.1097/IGC.0000000000001112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28914639&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1556-0864(15)32364-9
http://dx.doi.org/10.1097/JTO.0000000000000480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25634009&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1556-0864(15)30757-7
http://dx.doi.org/10.1097/JTO.0000000000000338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25226427&dopt=Abstract
http://dx.doi.org/10.1001/jama.2016.7653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27483067&dopt=Abstract
http://dx.doi.org/10.1080/00031305.1975.10479105
http://dx.doi.org/10.1016/j.athoracsur.2018.02.026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29550204&dopt=Abstract
http://europepmc.org/abstract/MED/29777175
http://dx.doi.org/10.1038/s41568-018-0016-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29777175&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0169-5002(19)30717-2
https://linkinghub.elsevier.com/retrieve/pii/S0169-5002(19)30717-2
http://dx.doi.org/10.1016/j.lungcan.2019.11.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31743889&dopt=Abstract
http://dx.doi.org/10.1016/j.lungcan.2020.04.014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32387813&dopt=Abstract
http://dx.doi.org/10.1016/j.jtho.2018.08.357
http://europepmc.org/abstract/MED/31564807
http://dx.doi.org/10.21147/j.issn.1000-9604.2019.04.08
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31564807&dopt=Abstract
http://dx.doi.org/10.1007/s00330-020-07523-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33241521&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


PET-CT: positron emission tomography–computed tomography
pN: pathological N stage
PR: precision-recall curve
RF: random forest
ROC: receiver operating characteristic curve
SCCAg: squamous cell carcinoma antigen
SUVmax: maximum standardized uptake value
SVM: support vector machine
TLA: tumor long axis
TSA: tumor short axis

Edited by C Lovis; submitted 22.12.21; peer-reviewed by YH Kim, V Rajan; comments to author 27.03.22; revised version received
31.03.22; accepted 11.04.22; published 25.04.22

Please cite as:
Hu D, Li S, Zhang H, Wu N, Lu X
Using Natural Language Processing and Machine Learning to Preoperatively Predict Lymph Node Metastasis for Non–Small Cell
Lung Cancer With Electronic Medical Records: Development and Validation Study
JMIR Med Inform 2022;10(4):e35475
URL: https://medinform.jmir.org/2022/4/e35475
doi: 10.2196/35475
PMID:

©Danqing Hu, Shaolei Li, Huanyao Zhang, Nan Wu, Xudong Lu. Originally published in JMIR Medical Informatics
(https://medinform.jmir.org), 25.04.2022. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete
bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license
information must be included.

JMIR Med Inform 2022 | vol. 10 | iss. 4 | e35475 | p. 18https://medinform.jmir.org/2022/4/e35475
(page number not for citation purposes)

Hu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://medinform.jmir.org/2022/4/e35475
http://dx.doi.org/10.2196/35475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

