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Abstract

Background: Enabling the use of spatial context is vital to understanding today’s digital health problems. Any given location
is associated with many different contexts. The strategic transformation of population health, epidemiology, and eHealth studies
requires vast amounts of integrated digital data. Needed is a novel analytical framework designed to leverage location to create
new contextual knowledge. The Geospatial Analytical Research Knowledgebase (GeoARK), a web-based research resource has
robust, locationally integrated, social, environmental, and infrastructural information to address today’s complex questions,
investigate context, and spatially enable health investigations. GeoARK is different from other Geographic Information System
(GIS) resources in that it has taken the layered world of the GIS and flattened it into a big data table that ties all the data and
information together using location and developing its context.

Objective: It is paramount to build a robust spatial data analytics framework that integrates social, environmental, and
infrastructural knowledge to empower health researchers’ use of geospatial context to timely answer population health issues.
The goal is twofold in that it embodies an innovative technological approach and serves to ease the educational burden for health
researchers to think spatially about their problems.

Methods: A unique analytical tool using location as the key was developed. It allows integration across source, geography, and
time to create a geospatial big table with over 162 million individual locations (X-Y points that serve as rows) and 5549 attributes
(represented as columns). The concept of context (adjacency, proximity, distance, etc) is quantified through geoanalytics and
captured as new distance, density, or neighbor attributes within the system. Development of geospatial analytics permits contextual
extraction and investigator-initiated eHealth and mobile health (mHealth) analysis across multiple attributes.

Results: We built a unique geospatial big data ecosystem called GeoARK. Analytics on this big table occur across resolution
groups, sources, and geographies for extraction and analysis of information to gain new insights. Case studies, including telehealth
assessment in North Carolina, national income inequality and health outcome disparity, and a Missouri COVID-19 risk assessment,
demonstrate the capability to support robust and efficient geospatial understanding of a wide spectrum of population health
questions.

Conclusions: This research identified, compiled, transformed, standardized, and integrated multifaceted data required to better
understand the context of health events within a large location-enabled database. The GeoARK system empowers health
professionals to engage more complex research where the synergisms of health and geospatial information will be robustly studied
beyond what could be accomplished today. No longer is the need to know how to perform geospatial processing an impediment
to the health researcher, but rather the development of how to think spatially becomes the greater challenge.
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Introduction

Health researchers need integrated social, environmental, and
infrastructural information to extend the scope of health care
and address the complex questions and contextual relationships
surrounding health outcomes. Any given location is associated
with different contexts—physical, biological, environmental,
infrastructural, economic, social, and cultural—all of which can
affect population health, disease risk, and access to health care.
Geographic context plays a growing role in connecting
heterogeneous geoenabled information, especially in health
research [1-4]. Spatial context includes elements and interactions
with both the societal and the physical infrastructures associated
with an individual’s daily activities. This includes accessibility,
surrounding natural and built environments, social behaviors,
and any related location-specific exposures, understanding that
these elements change across geographic areas, scales, and time.
Impactful health research that can be applied to real-world issues
and problems must be grounded within the context of place
[5-7]. Location and the location’s context both matter [8-10]!

The strategic transformation of population health, epidemiology,
and eHealth studies require vast amounts of integrated digital
data to create understanding that can then support decisions
[11]. Questions asked today are more complex than ever before,
implicitly tied to understanding context [12-18]. Health
researchers have used the Geographic Information System (GIS)
to identify, mitigate, and address a myriad of factors affecting
health disparities [19-22], health assessments [23-26],
health-environment interactions [27-32], health-cultural
interactions [33-35], and health service access [36-42]. GIS
analysis is expanding within health analysis, but its use is often
focused on thematic single-variable maps and their visualization
[43-45]. Medical researchers who study health disparities tend
to focus on demographic, social, or economic variables from
local to national levels, both cross-sectional and over time, that
are available from the decennial census or the American
Community Survey (ACS). Although there are exceptions [46],
far fewer use variables related to the natural, physical, or built
environment, primarily because they are more challenging to
obtain.

Although advancement is evident in the various web-mapping
sites across the federal health realm (the Centers for Disease
Control [CDC] and Prevention’s Heart Disease and Stroke Maps,
the National Institutes of Health [NIH] and National Cancer
Institute’s Cancer Atlas and state profiles, and the Environmental
Protection Agency’s [EPA] EnviroAtlas), several issues persist.
Although integrated information sources available for
researchers are growing [47-49], they each portray only a
specific view of that entity’s mandated purview. Most provide
visualization of singular attributes at a time and rely on the user
to mentally synthesize these pieces of information to generate
understanding. It remains a challenge for health researchers to
locate and evaluate what specific attributes exist and at what

geographies. Moreover, many health researchers “don’t know
what they don’t know” with regard to geospatial data. The ability
to create new hypotheses is missed if researchers are not aware
of the availability of data or the types of questions that could
be posed that could further expand their research. More
importantly, development of contextual relationships among
variables could be discovered through spatial analytics. In
addition, the quantification of interactions of health,
demographics, infrastructure, and environmental elements in
terms of interplay and synergy remains elusive.

Needed is a novel analytical framework designed to leverage
location to create new contextual knowledge and associations
among otherwise disjointed data. This would aid evidence-based
exploration of relationships among layers, discover patterns of
interaction, and support clinical sampling designs where
quantification and location are interwoven. This paper outlines
a new big data approach to building and evolving such a
geoenabled health information system. The Geospatial
Analytical Research Knowledgebase (GeoARK) is an
informatics and data science solution that uses advanced
complex contextual queries across multiresolution locational
information to geoenable health research.

The objective of GeoARK is to transform attitudes and empower
health research where real-world problems are examined in
geoenabled context. We can gain efficiencies through integrated
heterogeneous public information sources and the establishment
of context through geospatial measures, such as proximity,
adjacency, network analysis, and spatial analysis. These then
form a new complex of attributes within a single geoenabled
knowledgebase. It can support a broad spectrum of health
research, including health disparities, telemedicine,
communicable disease management, zoonotic disease
surveillance, environmental health, and health access policy
making. It enables eHealth researchers to bring their own
collection of eHealth or mobile health (mHealth) events and
have user-selected attribute data compiled at those points or
output artificial intelligence/machine learning (AI/ML)-friendly
databases for further analysis. The contextualization of existing
research would enhance the scope of that research.

Methods

GeoARK Design
This paper describes GeoARK and its potential to greatly extend
eHealth research. It outlines how the system was designed and
demonstrates how its design leads to its potential within health
research. The GeoARK system (Figure 1) comprises multiple
components that interact to form a complete process for the
integration, documentation, and spatial registration of data into
a single queryable big table that we call GeoARK-Big Table
(GeoARK-BT) in this paper. It can be used by health researchers
to accelerate the use of spatial data and exploit local context
within analyses.
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Figure 1. Geospatial Analytical Research Knowledgebase (GeoARK) System design.

The actual spatial framework of GeoARK-BT is based on a
dense distribution of points across the United States. The spatial
base is a hexagon tessellation of points blanketing the United
States at a spacing of 161 m (1/10th of a mile, or 528 ft).

Centroids of census blocks with an area less than 67,261 m2

(16.6 acres) are integrated into the tessellation to better capture
features in more densely populated areas. Proximal polygons
are calculated for each point that allows for area totals as well
as aggregation into user-specified geographies to occur. These

units form a coherent framework for cataloging data over
geographical space. The point locations create the sampling
framework through which GeoARK captures and encodes the
locational variability that exists across the databases integrated.
For the United States, there are 162 million points with basic
information (5549 attributes) in our current system. Each point
is a row, with all attributes associated with that location
becoming columns in the database, while each attribute is a
column with 162 million rows, with each element of the column
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representing a specific location’s attribute. The points are stored
in a Hadoop Distributed File System (HDFS). The total size is
12.5 TB. The data loading process for all 5549 attributes across
the 50 states took 2585 min using a Dell PowerEdge
R740xdcompute node with a dual Intel(R) Xeon(R) Gold 6138
CPU (80 cores) and 384 GB memory.

Data Sourcing and Metadata
The GeoARK system integrates interdisciplinary public data
existing in a wide variety of formats (tabular, raster, point, line,
and polygon). This increases the efficiency of research since
many data elements and sources are challenging for researchers
to compile and uniformly integrate for analysis. The
GeoARK-BT includes demographic, social, economic,
educational, cultural, infrastructure, and environmental attributes
from a growing variety of sources, as listed in Multimedia
Appendix 1.

A sourcing tool was developed to standardize the collection,
documentation, and logging of each data source being added
into the GeoARK-BT collection to ensure data quality and
integrity for long-term tracking and maintenance. Once a data
source is identified, it is added to the GeoARK source table and
then data set information is collected and compiled into the data
set descriptive listing (ie, data use agreements, constraints,
URLs). The metadata database then catalogs and records
individual attribute information from these data sets. The
metadata database includes sources, metadata (for both data
sets and their associated attributes), and attribute links for the
GeoARK-BT. The NIH’s Findable, Accessible, Interoperable,
Reusable (FAIR) initiative [50] provides a use area for this
metadata. Data added to the big table use the attribute lookup
table to set attribute field names. Data sources and attribute
fields have also been assigned to an International Organization
for Standardization (ISO) 19115 thematic category [51]. Natural
language tags describing each attribute were also added. Once
attributes are loaded, these metadata elements facilitate
discovery, query, crediting, and reuse, with all metadata fields
being searchable using MongoDB Query Language. Once
attribute selection is performed by the researcher, and a data
extract is created, a report summarizing the data source
information for all data elements contained in the selection is
generated. This facilitates the methodological aspects of data
collection and documentation for researchers.

Data Ingestion
Relevant open data sources are ingested to the GeoARK system
as tabular information or as relative geographic locations.
Although these data independently have great singular value,
combining these data, using location as the linkage between
data sets, is the power of geospatial analysis and the
underpinning for the GeoARK system. Data carpentry and
preprocessing are required for some data sources and elements.
Attributes being used as links need to be standardized, and
categorical data need to be transformed. In some cases, new
derived attributes are calculated through aggregation of existing
attributes. Precalculations of percentages, densities, means,
quantile breaks, and the results of spatial-based analyses further
extend the database. By transforming the raw numeric counts
into density measures (ie, population, race, ethnicity, or other

density per km2), we can then tally the points and their areas
that are within the area of interest or meet a selection criterion,
and derive estimated values for these attributes. This can be
accomplished without the need for standard spatial layer
intersection procedures where calculation of crossing vectors
is required. The process is simply a point in polygon selection.
This process allows GeoARK great flexibility in context
quantification for applied digital health research.

Tabular data linkage was obtained by a common attribute. Each
GeoARK-BT point has been identified as being within a specific
Census 2010 block, Census 2020 block, 5-digit zip code, and
specific watershed code. Any data sharing a common key could
then be added. Data collected at a native geographic level, such
as county, zip code, or tract, are loaded directly. For information
cataloged at finer units such as block groups and blocks, the
associated data are loaded into the GeoARK-BT using the
appropriate census link for each point. Scripts for ingestion to,
or update of, the GeoARK-BT for recurring data sources (ie,
ACS updates) include extract, transform, and load processes
for these sources. The data are synced with the GeoARK system
to add new, updated, or changed elements.

For geospatial data, linkage was obtained by the X-Y location.
Line-based spatial data, such as road networks, and point-based
data, such as hospitals, nursing homes, and public health clinics,
have been integrated within the GeoARK-BT. To do so, these
files needed processing so as to align with the GeoARK points.
Data that were spatially analyzed for contextual measures
(buffers, Euclidean distance, network time, etc) were converted
into polygon form or a raster representation. These layers were
then associated with each GeoARK-BT point and the travel
time or distance for the feature assigned. Some data may be
categorical (ie, land cover or soils) or continuous in nature (ie,
elevation or precipitation), further effecting ease of integration.
Such files were directly assessed against the GeoARK-BT
proximal polygon representation to generate a series of attributes
that capture the values’ variability at that location for these data
types.

Context Measures
An innovative aspect of GeoARK is that it has precalculated
spatial context measures for many features. The simplest
contextual measure is presence within a geography or gridded
cell. In another form, context is represented as proximity
between a location and features of interest (ie, distance from
the stroke unit). It can also take the form of a distance from a
linear object (ie, power lines). Proximity can also be derived
from network modeling to obtain measures of remoteness,
isolation, and accessibility (ie, time or distance).

Density measures utilize a grid or distance to tally the number
of points, total length of lines, etc, to generate per area metrics.
Data such as block-level population, transmission lines,
railroads, confined animal feeding operations, and drinking
water wells would be cataloged into artificial grids for this
density mapping.

Context is also quantified by identifying first- and second-order
spatial relationships within geographic levels. These can be
thought of as adjacent neighbors and are identified using spatial

JMIR Med Inform 2022 | vol. 10 | iss. 4 | e35073 | p. 4https://medinform.jmir.org/2022/4/e35073
(page number not for citation purposes)

Haithcoat et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


analytics. For a given county, the first order is all counties
adjacent to this base county. The second order for that same
county is all the counties that are adjacent to the first-order
counties. These attributes quantify geospatial adjacencies that
health researchers can exploit.

Finally, geographic summary levels that are commonly used in
research and mapping are precompiled. Although many

attributes can be directly related using relational joins at a
specific geographic level (county, tract, zip code), other
attributes such as distance measures, land cover, elevation, and
climate need to be aggregated from the GeoARK-BT points to
generate a summary attribute (ie, mean distance to parks) from
these features for any region (Figure 2).

Figure 2. This example shows how GeoARK point processing based on a single attribute (Distance to Parks) can be used to generate summaries at
various geographic levels. a) Shows GeoARK point layer with parks data superimposed. b) Shows GeoARK points colorized to show distance from
parks inherent in their attribution. c-e) Show dark outlines of tract, zip code, and user defined interest - voting wards (respectively) superimposed on
the colorized GeoARK points and below each is their resulting geographic summary for mean Distance to Parks. GeoARK: Geospatial Analytical
Research Knowledgebase.

GeoARK Utility
The collection, integration, and use of diverse data are
foundational to answer today’s health problems. Significant
disparities exist and can vary across scales from blocks to
neighborhoods to regions [3]. In addition, a complex myriad of

factors that can affect disparities also exists [52]. In rural
contexts [19,36], aging populations, health care access [12,13],
sparse populations, environmental exposures [14,15,28], and
infrastructure [20] are proven critical factors. In urban contexts,
food-deserts [21], crime density and stress [53], and pollution
(air, water, light, and noise) [16,54] play possible roles. How
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do these factors interact? At what scale are these associations
important? Where are these findings located, and are they
clustered?

The proposed web portal will provide tools to enable and
catalyze a health researcher’s ability to move their question into
the spatial realm and analyze their area of interest against the
broad spectrum of data within the GeoARK-BT. An
investigator’s area of interest could be an actual physical area
(ie, neighborhood, zip code, place) or a collection of health
events as X-Y coordinate pairs with which to associate GeoARK
attributes. Complex queries can be used to create and refine
data extracts that focus on a researcher’s question of interest.

To support research, flexible access and powerful interrogation
of the GeoARK-BT are required. One of the major strengths of
GeoARK is the streamlining of access across data sources and
the provision of complex analytic query across multiple
timestamps and sources. The query is simply a projection on
selected columns within the GeoARK-BT using MongoDB.
Indexes were built off-line on each attribute to allow for more
efficient on-demand retrieval of information. A single-attribute
index takes 623 min to build, and a composite index with 5
attributes takes 791 min. Each index, respectively, has, on
average, a 0.66 and 1.05 GB memory footprint for a single and
a composite index. Open source analytical tools are to be added
to provide further analytical functionality to include descriptive,
exploratory, inferential, causal, and predictive approaches to

targeted spatial analytical research as GeoARK matures. Points
can be selected based on user-defined areas of interest and then
aggregated to create a surrogate representation of that area and
used to extract user-selected attributes from GeoARK to create
a subset for further analysis. The design leverages a big data
table where we can have high throughput for data transactions.

The 7 query types, listed in Table 1, range from simple attribute
selection to queries that utilize the distance to or from a specific
feature type to those that require network travel time or distance.
Others might include multitemporal queries concerning what
has changed since a particular event or point in time. Still others
inquire about features and elements around a particular place
or location and the associations found between those factors.
Finally, other queries can be built to determine or assess how
scale or geographic extent may impact conclusions. Output from
each of these types of queries can produce AI/ML-ready data
sets leveraging GeoARK’s spatial bins and analytical
associations.

There is no equivalent system currently available with which
to provide side-by-side analytics. When the times presented are
compared to the time savings a researcher would obtain through
the system’s integrated and spatially contextualized information,
they provide great value. In addition, through further testing of
indexing schemas and optimization of query and search designs,
these times are expected to decrease.

Table 1. Examples of query types and their run times when executed against the national GeoARKa database. These can range from national to local
studies. The first 3 query examples are standard selections based on attribute values or thresholds. The next 3 query examples illustrate the use of the
unique spatial dimensional attributes added through the GeoARK system to provide greater geoanalytical power to selections. The final example
demonstrates GeoARK’s ability to select contextual elements that surround another feature of interest.

Query time (min)Query exampleQuery type

13.03Select all records for the state of Missouri, Federal Information Processing Standard (FIPS) code=29.Simple geography

5.81Select all county records with a nonmetro flag (2013)=1 in Missouri.Simple variable

5.47Black/African American % of total population of zip code >30% AND % total population in poverty
>15% AND % households with a single female head of household with children under 18 years of age
receiving food stamps >5%.

Complex variable

0.17Select points with a road density greater than 1500 m (4921 ft) per square kilometer.Density

0.14Select points with a distance to closest park greater than 400 m (1312 ft).Proximity

0.07Select points having 15 min or less travel time to the nearest hospital.Travel time

1.23Given a cluster of 3 counties with high cancer incidence, compile and extract all surrounding counties’
exposome variables associated with those locations.

Contextual

aGeoARK: Geospatial Analytical Research Knowledgebase.

Results

Case Studies
Results are presented as 3 case studies (Figure 3) utilizing the
GeoARK system. The case studies cover (1) the development
of new uniformity measures providing insight into health

outcomes (blue), (2) telehealth program evaluation of both
growth and impact on rural health access and equity (green),
and (3) the development of COVID-19 risk factor assessments
(orange). These examples demonstrate the GeoARK system’s
utility and practical application in support of health research
questions.
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Figure 3. Case study examples of GeoARK attributes, processes, and outcomes. Each case study is given a color. Attributes used in their respective
analyses are likewise color coded. Those attributes derived from spatial analytics are further noted. GeoARK: Geospatial Analytical Research
Knowledgebase.

Case Study 1: Associations - Gini Index Example -
Geography: County and State
Complex questions: How do health outcomes relate to
geographic clustering of income inequality within the United
States? Can a new spatial uniformity measure be created to aid
understanding of income inequality?

This case study merged geospatial analytics with big data
approaches to maximizing the use of the Behavioral Risk Factor
Surveillance System (BRFSS) [55] and the ACS [56]. This
study examined the income inequality hypothesis using cluster
and outlier spatial analysis [57]. We applied this geospatial
approach to create 3 innovative measures that captured
uniformity in income inequality. We examined the ways that
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the Gini coefficient and 3 new spatial uniformity measures were
associated with health outcomes. Specifically, the uniformity
measures capture the extent to which (1) inequality is uniformly
distributed spatially in states regardless of whether the level is
high or low, (2) the extent to which states are more uniformly
high in inequality across space, and (3) the extent to which they
are more uniformly low in inequality. We conclude that residents
of states that have more uniformly high inequality across space
are more likely to report worse outcomes across several health
measures. This case study showed that geospatial big data
approaches can extend research on public health topics involving
traditional survey data [58]. This also demonstrated how even
1 variable (in this case the Gini index), when spatially analyzed,
can create new and useful insights into health investigations
and their interpretation.

Case Study 2: Health Equity - Telemedicine Program
Reach - Geography (Zip Code Tabulation Areas)
Complex questions: Who and where are the most vulnerable
populations in terms of social inequity? Does the telehealth
program address these vulnerable populations?

Utilizing aggregated telehealth use data, this case study
evaluated a telehealth program’s reach, growth, and potential
to address equity issues in rural areas. Significant inequities
exist and can vary across scales from blocks to neighborhoods
to regions [18]. From the occurrence data, the demand for
receiving care via the program steadily increased over the 4
quarters, especially in rural areas. Three geospatially based
health measures were created to assess and describe context:
the social inequity score, the access inequity score, and a
combined inequity score. In total, 11 measures, including social
determinants (n=7, 64%) and access measures (n=4, 36%), were
compiled from 5 sources and tabulated at the zip code level.
GeoARK permits selection of both social elements and
infrastructure-related accessibility elements. The social elements
were pulled from multiple census sources, while the accessibility
measures were created through geoanalytics and compiled into
zip code boundaries for comparison. To assess the overall
context of the delineated reach of the program, a mean combined
inequity score was calculated for each zip code and for all zip
codes. In zip codes where telemedicine encounters occurred,
the population served had higher levels of social inequity and
lower access in comparison to both state and rural levels. This
telehealth program assessment of health inequity and access in
rural regions demonstrated the program’s promising reach to
vulnerable populations, as associated with the social and
accessibility factors measured. These results supported
maintaining and continued development of policies for
affordable and on-demand telemedicine programs for providing
care to rural populations facing inequities [26].

Case Study 3: Population Health - COVID-19 Risk -
Geography (County)
Complex questions: What are the magnitudes of select risk
factors, and where are they most prevalent in Missouri? What
are the areas of compounded impacts, and do they cluster?

Studies of this COVID-19 pandemic require vast amounts of
integrated data to create understanding that can then support
decisions. We utilized GeoARK to extract and create 6 distinct
thematic risk assessment databases for Missouri. The risk areas
assessed included individual susceptibility or risk, potential
transmission or community risk, socioeconomic contextual risk,
accessibility constraints, health culture risk, and, finally, the
exposure risk based on current case loads of COVID-19 at the
county level. The goal of this project is to support data-driven
decision-making processes across levels of government and
health care providers to enable incorporation of significant risk
factors associated with their specific populations and potential
synergies and enable preparation for resilience and mitigation
efforts across rural counties.

The GeoARK data extraction and build for these risk databases
included a selection of 325 (5.91%) elements from the current
catalogue of 5500, integrating 35 different sources. A subset
(total of 91 [28%] across all 6 areas) were then selected for use
in the calculation of total risk scores for each assessment area.
More specifically, components included known and possible
comorbidities and age breaks; commuting, migration, worker
types, group gatherings, and living situation; race, ethnicity,
disability, insurance status, veteran status, and education level;
development and inclusion of various hospital, nursing homes,
and telehealth access measures; and broadband metrics. Ordinary
least squares regression was used to evaluate combinations of
explanatory variables. Selected variables within each risk
category then had quintiles calculated to create comparative
categorical groups for each risk variable, with higher values
assigned to worse risk. Cumulative risk scores were assembled
for each risk category, as well as an overall composite risk score.
These values were then analyzed using Local Moran’s I,
similarity analysis, and spatially constrained multivariate
clustering to inform regional grouping outcomes. Through
spatial analytics, differences in both the magnitude of risk and
the substance of that risk, among and between rural and urban
counties, were found. Missouri’s spatial diversity is evident in
the variability of overall risk across the 6 factor areas developed
as well as the 6 region-based groups of counties sharing similar
risk traits. The results are queryable through the Geo-Context
and COVID-19 website (Figure 4) [59].

These research results enhance the understanding of COVID-19
behavior and enable preparation for resilience in rural
populations. It is important to understand the context and
interrelationships of various risk factors occurring within the
state in order to better understand the potential pathways for
disease as well as what nuances in mitigation strategies are
needed to address specific populations. There is no 1-size-fits-all
solution for the diversity found through spatial analysis of risk.
The ability to address issues that are most influencing the health
of a particular region or population is paramount to equality in
care.
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Figure 4. Screen capture of the "Geo-Context and COVID-19 in Missouri" dashboard interface populated with GeoARK parameters. GeoARK:
Geospatial Analytical Research Knowledgebase.

Discussion

Principal Findings
There are unique innovations interwoven within the design of
the GeoARK system. It has taken the multilayered world of
typical GIS analysis and flattened it. The incorporation at each
location of keys (ie, geographic-level Federal Information
Processing Standard [FIPS] code, zip code) creates bridges for
associated attribution to be incorporated into the GeoARK-BT.
Other information is integrated through geospatial location,
leveraging the fact that the information occupies the same
location on the earth’s surface. For each point, the various scales,
resolutions, information, and accuracies are captured as
associated attributes of the particular data ingested. Through
the integrated data services and analytical tools of this project,
complex queries can be posed and associations explored. This
is enabled only when spatial contexts have been quantified and
thousands of factors associated spatially.

The enhanced analytics can provide a catalyst for health
researchers to move beyond basic thematic mapping. In many,
if not most, cases, the true benefit of using location is in the
creation of new associations between data elements and
subsequent creation of new information. The generation of this
new quantified, tabular information is the real power of
geospatial information and GeoARK.

Benefits and Opportunities
The GeoARK system facilitates the use and integration of
geoinformatics within the broad health-based user community.
There is a high level of effort and expertise required to locate,
compile, transform, standardize, and then integrate the
multifaceted data required to adequately understand the context

of eHealth events. It is critically important that health research
be buoyed with access to the GeoARK system as it decreases
duplication of effort, allows comparisons across a much broader
set of potential variables, and extends the breadth and scope of
investigations beyond the boundaries of conventional variable
thematic mapping.

The linkage of results to a specific geographic scale, and the
concurrent interpretation of them in context, is a growing
requirement of sociological and health research. Because the
GeoARK system has precalculated and captured the
distance-based relationships of neighbors, features, and other
spatial context, the project will aid researchers in development
of comparable populations at varying scales. This could be
within a certain aspect of interest (rural-urban) or geography
(county, zip code, or tract).

A focus of potential benefit will be the use of the GeoARK
system in research design. Meaningful health analytics typically
address developing and testing hypotheses to contrast and
compare 1 group (reference) to another (comparison). The ability
to “know” and possibly choose to control for “outside” variables
(eg, environmental, social, cultural, infrastructure, or other
factors) during the design of a study or trial may provide a
clearer picture of the health aspect under investigation. The
ability to tighten the research question or clinical trial, and its
reference groups, leads to higher potential to achieve significant
insights.

Challenges and Limitations
The patient protections provided through the implementation
and interpretation of the Health Insurance Portability and
Accountability Act of 1996 (HIPAA) impacts the geographic
scales at which we can investigate the detailed distributions of
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disease and health effects. Although all disease occurs as events,
the way in which aggregation, compilation, and subsequent
roll-up of these events into geographies has a dampening effect
on most, if not all, attempts to drill deeper into the spatial
context and phenomenology of diseases.

Variability and uncertainty exist within all data collected by
organizations as it was in the pursuit of a mandated purpose.
Biases, ethical issues, and errors complicate the systematic
integration of heterogeneous information into any database. By
using location, it is hoped that these biases and other issues will
be more clearly brought to light.

The modifiable areal unit problem has the potential to create
problems with representation of certain types of data. By
assembling these data across a variety of raster resolutions, the
scales of representation can be tested and understood so that
use of these data at any scale would be accompanied by a
“fitness of use” measure that can be presented to the user.
Because a range of geographies is captured upon integration
within the design of GeoARK, these comparisons can also be
tested for stability and significance across a range of scales.
This allows researchers to evaluate at what level the component
of interest manifests itself and therefore permit identification
of the proper level for intervention (as well as what determinants
are amenable to this process) or information that can be used
for avoidance of a particular type of disparity in a particular
area.

The evolution of the GeoARK-BT to the fully envisioned system
as a web-based portal with robust data and research services
has many hurdles to overcome. These include data usage
agreements, compute scaling, cloud service strategy,
data-as-a-service management strategy, security and compliance
adjustments, performance tuning, build out of analytics, and
cost constraints.

However, the biggest challenge remaining for health researchers
is to learn to think spatially about their problems and broaden
their research questions into the multifactor, multiscale arenas
of investigation that the GeoARK system supports.

Conclusion
This paper describes and outlines the design, compilation, and
assembly of the GeoARK system, a spatially referenced data
table that facilitates the integration and standardization of
sociocultural, infrastructural, environmental, and health-related
data into a common, extractable, and analytical framework.

The GeoARK system provides the ability to identify, mitigate,
and contextualize health disparities. It provides health
researchers with an integrated big data repository that can be
searched to enable stronger research designs, for example,
develop sampling/surveillance approaches or clinical trial focus.
Using context across a broad range of data, research topics
surrounding avoidance, fairness, equity, justice, and
acceptability within, or for, a given location can be pursued.
GeoARK supports user-based query, contextual analysis, and
visualization to investigate relationships among the integrated
data layers as well as discover patterns of interest for health
research.

There are myriad ways that the GeoARK system, as a service,
can be used in future analyses in order to better understand
health disparities and other research issues. This system enables
researchers to draw deeper and more broadly applicable
empirical evidence for health research and associated outcomes,
as well as supporting AI/ML-friendly data extracts that can then
leverage new spatial associations.

This framework provides benefit to eHealth-related research,
applications, and policy evaluation by the broader health
community and has the potential to transform health research
from a layer-based mentality to an interactive integrated
contextual knowledge platform.
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