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Abstract

Background: Preterm birth (PTB), a common pregnancy complication, is responsible for 35% of the 3.1 million pregnancy-related
deaths each year and significantly affects around 15 million children annually worldwide. Conventional approaches to predict
PTB lack reliable predictive power, leaving >50% of cases undetected. Recently, machine learning (ML) models have shown
potential as an appropriate complementary approach for PTB prediction using health records (HRs).

Objective: This study aimed to systematically review the literature concerned with PTB prediction using HR data and the ML
approach.

Methods: This systematic review was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) statement. A comprehensive search was performed in 7 bibliographic databases until May 15, 2021.
The quality of the studies was assessed, and descriptive information, including descriptive characteristics of the data, ML modeling
processes, and model performance, was extracted and reported.

Results: A total of 732 papers were screened through title and abstract. Of these 732 studies, 23 (3.1%) were screened by full
text, resulting in 13 (1.8%) papers that met the inclusion criteria. The sample size varied from a minimum value of 274 to a
maximum of 1,400,000. The time length for which data were extracted varied from 1 to 11 years, and the oldest and newest data
were related to 1988 and 2018, respectively. Population, data set, and ML models’characteristics were assessed, and the performance
of the model was often reported based on metrics such as accuracy, sensitivity, specificity, and area under the receiver operating
characteristic curve.

Conclusions: Various ML models used for different HR data indicated potential for PTB prediction. However, evaluation
metrics, software and package used, data size and type, selected features, and importantly data management method often remain
unjustified, threatening the reliability, performance, and internal or external validity of the model. To understand the usefulness
of ML in covering the existing gap, future studies are also suggested to compare it with a conventional method on the same data
set.

(JMIR Med Inform 2022;10(4):e33875) doi: 10.2196/33875
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Introduction

Background
Preterm birth (PTB), a common pregnancy complication, is
responsible for 1.085 million (35%) of the 3.1 million neonatal

deaths each year and significantly affects approximately 15
million children annually worldwide [1]. Survivors often suffer
from lifetime disabilities, including motor function problems,
learning disabilities, and visual and hearing dysfunctions [2].
In almost all high- and middle-income countries, PTB and its
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adverse consequences are the major leading causes of death in
children aged <5 years [2]. According to the World Health
Organization, PTB is defined as birth before 37 completed
weeks of gestation (<259 days) from the first day of a woman’s
last menstrual period. In general, there is a negative association
between gestational age and poor pregnancy outcomes and
long-term complications such as hospitalization, longer stay in
the neonatal intensive care unit, and death [2]. Long-term
hospitalization and frequent medical services required for PTB
survivors may lead to additional mental distress and extra costs
for the family, and it also imposes more strain on the health
care system [3]. Current screening tests for PTB prediction can
be categorized into three main groups: (1) risk factor evaluation,
(2) cervical measurement, and (3) biochemical biomarker
assessment. However, not all approaches have potential to be
translated into clinical predictive utility, safely and
cost-effectively [4]. They may also be insufficient for detecting
true-positive PTB cases. For example, biochemical assessment
is a costly procedure that may impose physical and mental stress
to the pregnant individual. Risk factor assessment is another
commonly used approach for which information comes from
evidence-based practice that is an end outcome of statistical
hypothesis testing (often including 1 factor to be tested) under
controlled settings, which is a time- and money wasting
approach. The latter may also leave behind many potential risk
factors that did not receive researchers’ attention, advancing to
hypothesis testing. By contrast, previous PTB history is one of
the dominant risk factors, with a relative risk of 13.56, leaving
nulliparous women undetected [3,5]. These findings indicate
the insufficiency of the current methods in predicting high-risk
pregnancies, specifically in those who are experiencing their
first pregnancy. A few predictive systems have also been studied
using series of information including maternal demographics,
medical and obstetrical history, and well-known risk factors;
unfortunately, however, their predictive power has been very
limited [6,7]. This limitation may be because they often rely on
simple linear statistical models that lack the capacity to model
complex problems such as PTB. It is suggested that risk factor
assessment using conventional approaches is insufficient, as
>50% of PTB pregnancies will fail to be identified [8]. Thus,
identifying additional screening tools for covering the gap in
conventional prediction approaches is highly critical, as it helps
guide prenatal care and prepare for potential early interventions
required for poor prognosis. Recently, machine learning (ML)
methods have been applied to further improve individual risk
prediction beyond traditional models. Many ML methods can
model the complex nonlinear relationships between the predictor
features and the outcome. ML techniques can learn the structure
from data without being explicitly programmed for its function
[9]. For the ML approach, a significant volume of data is
required to create robust models with high accuracy.

Objectives
Fortunately, health records (HRs) in most countries contain data
regarding one’s sociodemographic, obstetric, and medical
history. This makes HRs appropriate data sets for ML models
to learn and eventually predict the intended outcome. There has
been growing research on applied ML on HR data to identify
efficient predictive models for the early diagnosis of PTB. Few

systematic or literature reviews, although are informative, are
not focused on PTB [10]. This systematic review article aims
to review the literature that has attempted to use ML on HR
data to predict mothers who are at risk for PTB.

Methods

Overview
This systematic review was conducted in accordance with the
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) statement. A comprehensive search was
performed in bibliographic databases including PubMed,
CINAHL, MEDLINE, Web of Science, Scopus, Engineering
Village (Compendex and Inspec), and IEEE Computer Society
Digital Library, until May 15, 2021, in collaboration with a
medical librarian (Stephen L Clancy). The search terms included
controlled and free-text terms. The search strategy and number
of articles found from each database are shown in Multimedia
Appendix 1. Two review authors (ZSH and JL) independently
performed the title or abstract and full-text screening. Potential
disagreements were resolved by a third independent researcher.
Nonrelevant articles were excluded in the title and abstract
screening, and for the full-text article screen, reasons for
exclusion per article were recorded. References of the identified
articles were also checked for potential additional papers. Data
were extracted by ZSH and confirmed by JL. Discrepancies
were revisited by both authors to guarantee the database
accuracy.

Eligibility Criteria and Study Selection
Studies were included if they aimed to predict PTB risk by using
HR data. The outcome variable was PTB occurrence, which is
globally defined as any pregnancy termination between 20 and
37 weeks of gestation. Although in some studies PTB was
defined differently in terms of age range, all definitions were
aligned under 37 weeks of gestational age. The PTB definition
serves to examine and establish model performance (ie, the
ability of the intended model to distinguish PTB cases from
non-PTB cases). The papers were required to include a statement
of the ML domain or any of its synonyms. To identify any study
that failed to include a ML statement in the title or abstract, an
extensive list of commonly used ML model techniques was
added to the search strategy.

Selection Process
Selected articles were peer reviewed in the Covidence
web-based software [11] by 2 independent reviewers. To assess
relevancy, all studies were screened based on titles, abstracts,
and full texts in two steps. In the first step, the abstracts of all
articles gathered from the databases were screened in terms of
their relevance to our study aim. Next, those articles with
relevant titles or abstracts resulting from the first step underwent
a full-text assessment. To resolve the raised disagreement, a
third reviewer was involved for consulting. All articles that
were concerned with heart rate variability assessment during
pregnancy were included.
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Quality of Evidence
The quality of studies was assessed using the criteria proposed
by Qiao [12]. Although the criteria proposed by Qiao [12] were
too restrictive, no other quality assessment tool was found for
the quality assessment of the studies. In this approach, quality
assessment is based on five different categories: unmet needs,
reproducibility, robustness, generalizability, and clinical
significance. Unmet needs are met if the limits were reported
in current non-ML approaches (eg, current methods have low
diagnostic accuracy). A study is considered reproducible if it
describes used feature engineering methods, platforms and
packages, and hyperparameters. The condition for robustness
is fulfilled if valid methods are used to overcome the overfitting

(k-fold cross-validation or bootstrap: when a data set is large,
splitting it into separate training, validation, and test sets is the
best approach [13], and k-fold cross-validation and bootstrap
are required only with the small data sets when there are not
enough data for a 3-way split [14]) and the stability of results
(variation of the validation statistic) are reported. The
generalizability condition is met if the model is validated using
external data. A study is considered to have clinical significance
if predictors are explained and clinical applications for the model
are suggested. Quality assessment was conducted by providing
a yes or no response for each of the 5 categories. However, in
our study, we attempted to be more descriptive; thus, a short
description was provided for some of the criteria when
applicable in the quality assessment table (Table 1).
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Table 1. Quality assessment.

Clinical significanceGeneralizability
(external valida-
tion data)

RobustnessReproducibilityUnmet
need (ex-
isting
gap)

Study

Suggested
clinical use

Predictor ex-
planation

Stability of
results

Valid meth-
ods to over-
come overfit-
ting

HyperparametersPlatform
package

Feature engi-
neering

NoLogistic re-
gression coef-

NoMinimum
and maxi-

5-fold CVaNoYesYesYesWeber et al,
2018 [15]

ficients and
odds ratios

mum val-
ues report-
ed from the
CV

YesNoNoNoTrain-test
split. Train

Number of neigh-

bors for KNNb,

YesYesYesRawashdeh
et al, 2020
[16] size 237

with 19 posi-
number of hidden

layers for ANNc, tives. Test
number of trees

for RFd
size 37 with
7 positives

YesFeature im-
portance,
odds ratio

NoMinimum
and maxi-
mum val-
ues and CIs

Train-test
split. Train
size 17,607
with 132
positives.

NoNoRepresenting
medical con-
cepts as a bag
of words and
word embed-

YesGao et al,
2019 [17]

Test sizedings, TF-
8082 with 85
positives

IDFe, dis-
cretization of
continuous
features

NoFeature im-
portance (RF
and ANN)

NoNoTrain-test
split. Both
train and test
sets con-

Only neural net-
work architecture
described

YesNoYesLee and
Ahn, 2019
[18]

tained 298
participants

NoNoNoNoA total of 3
different da-

NoYesNoYesWoolery and
Grzymala-

ta sets usedBusse, 1994
[19] in isolation;

50-50 train-
test split was
used with
each data set

NoNoNoNoA total of 3
different da-

NoYesNoYesGrzymala-
Busse and

ta sets usedWoolery,
1994 [20] in isolation;

50-50 train-
test split was
used with
each data set
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Clinical significanceGeneralizability
(external valida-
tion data)

RobustnessReproducibilityUnmet
need (ex-
isting
gap)

Study

Suggested
clinical use

Predictor ex-
planation

Stability of
results

Valid meth-
ods to over-
come overfit-
ting

HyperparametersPlatform
package

Feature engi-
neering

NoFeature im-
portance
(linear

SVMf)

NoNoData separat-
ed timewise
to 3 data
sets, and 80-
20 train-test
split was
used with
each data
set; 5-fold
CV to select
models

NoYesNoYesVovsha et al,
2014 [21]

NoNoNoNoNoNoYesNoYesEsty et al,
2018 [22]

NoNoNoSDs of the
metrics
were report-
ed

Division into
3 data sets
(parous and
nulliparous).
Train-test-
verification
splits

NoYesNoYesFrize et al,
2011 [23]

NoFeature im-
portance

NoNoTrain-test
split (75%-
25%)

NoYesNoYesGoodwin
and Maher,
2000 [24]

YesFeature im-
portance

NoNoTrain-test
split (66%-
33%)

NoNoUnigrams
were created
from free-text
fields after re-
moval of stop
words

YesTran et al,
2016 [3]

YesFeature im-
portance

Yes95% CIs
for metrics

Data set par-
titioned into
4 parts (fea-
ture selec-
tion, train-
ing, valida-
tion, and
test, with
stratified
splits of
10%-70%-
10%-10%)

All hyperparame-
ters described

YesNew features
were created.
Continuous
features were
standardized,
and nominal
features were
one-hot encod-
ed

YesKoivu and
Sairanen,
2020 [9]

NoFeature im-
portance

NoNoTrain-test
split

NoNoImputation
with mode for
categorical
features and
median for
continuous
features

YesKhatibi et al,
2019 [25]

aCV: cross-validation.
bKNN: K-nearest neighbor.
cANN: artificial neural network.
dRF: random forest.
eTF-IDF: term frequency-inverse document frequency.
fSVM: support vector machine.
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Data Synthesis
The reviewed studies were not homogenous in terms of
methodology and data set; thus, a meta-analysis was not
possible. A narrative synthesis was chosen to bring together
broad knowledge from various approaches. This type of
synthesis is not the same as a narrative description that
accompanies many reviews. To synthesize the literature, we
applied a guideline from Popay et al [26]. The steps included
(1) preliminary analysis, (2) exploration of relationships, and
(3) assessment of the robustness of the synthesis. Theory
development was not performed because of the exploratory
nature of the research synthesized. Thematic analysis was
applied to extract the main themes from all the studies. The two
main themes developed in the results represent the main areas
of knowledge available regarding ML models applied for PTB
prediction during pregnancy. These included descriptive

characteristics of the data set (eg, data source, population, case
and control definition, and feature selection) and ML
methodologies (eg, feature selection, model processing,
performance evaluation, and findings). We could not compare
the studies because of the divergence of studies in terms of data
set, ML model processing, and evaluation metric. The quality
of the papers was assessed using the method proposed by Qiao
[12].

Results

Study Selection
After removing duplicates, 732 papers were screened through
title and abstract. Of these 732 studies, 23 (3.1%) were screened
by full text, resulting in 13 (1.8%) papers that met the inclusion
criteria. Reasons for exclusion at this stage were recorded and
are shown in the flow diagram in Figure 1.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) chart.
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Study Characteristics
All the studies were retrospective and used one or more data
sets recorded in clinical settings. Of the 13 studies, 7 (54%)
were conducted in or after 2018 and 9 (69%) originated from
the United States. The time length for which data were extracted
varied from 1 to 11 years, and the oldest and newest data were
related to 1988 and 2018, respectively. Of the 13 studies, 6
(46%) did not report the ethnicity or race of the population
whose data were modeled. Various data sets were used for the
studies, and the number of data sets varied from 1 to 3 in each
study. The types of information included in each data set varied,
including demographic, obstetric history, medical background,
and clinical and laboratory information. Demographic
information was included in almost all of the data sets used in

the included studies. The size of the population whose data have
been used for ML modeling varied from 274 to 13,150,017
people, and the number of features considered for modeling
varied from 19 to 5000 depending on the data set used. PTB
was defined differently from study to study; the cutoff point for
the control and study groups (PTB and non-PTB) was defined
as the 37th week of gestational age for 77% (10/13) of the
studies that matched the standard cutoff point between term and
PTBs. Of the 13 studies, 3 (23%) determined the PTB cutoff
based on the frequency of the newborn death [17], newborn
viability chance [16], or no justification [20]. It was not always
specified whether abortion (pregnancy termination <20 weeks)
was included in the models. Indeed, there was often no clear
discernment of abortion and PTB in the reviewed studies (see
Table 2 for more details).
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Table 2. Descriptive characteristics of studies and feature selection.

DateNumber of se-
lected features

Feature selection pro-
cess and gestational
week for when select-
ed features are related

Study (PTBa), con-
trol groups, and
type of PTB

Population
(birth)

Data source
(number of fea-
tures)

Population character-
istics

Study, country,
and type of
study

2007 to
2011

20Factors with uncertain
and ambiguous values
were excluded, highly

PTB (early sponta-
neous): ≥20 and
<32 weeks; con-
trol: ≥37 weeks

336,214Birth certificate
and hospital
discharge
records: >1000
features

Nulliparous women
with a singleton
birth (<32, ≥20, and
≥37 weeks); non-
Hispanic Black
(n=54,084) and
White (n=282,130)

Weber et al,
2018 [15], Unit-
ed States, retro-
spective correlated features

were collapsed, exclu-
sion of features with

no variation; —b

2003 to
2014

19Unnecessary features
(eg, medical record
numbers) were exclud-
ed

PTB (sponta-
neous): <26 weeks;
control: >26 weeks

274Data from a fe-
tal medicine
unit in a tertiary
hospital in

NSWc: 19 fea-
tures

Australian; pregnan-
cies with cervical
cerclage

Rawashdeh et
al, 2020 [16],
Australia, retro-
spective

2005 to
2017

150Features were ar-
ranged by their infor-
mation gain and top

PTB: <28 weeks;
control: ≥28
weeks; type of

25,689EHRd of Van-
derbilt Universi-
ty Medical Cen-
ter: 150 features

Caucasian (>68%),
Black (16%-21%),
and other (10%-
13%)

Gao et al, 2019
[17], United
States, retrospec-
tive 150 features were re-

tained; —
PTB was not distin-
guished

2014 to
2018

14—PTB (sponta-
neous): >20 and
<37 weeks; con-
trol: ≥37 weeks

596Anam Hospital
in Seoul

Korean; induced
labors were exclud-
ed

Lee and Ahn,
2019 [18], Ko-
rea, retrospec-
tive

1994Data set 1
(n=52), data set

—PTB: <37 weeks;
control: ≥37

18,8903 data sets: 214
features in total

—Woolery and
Grzymala-
Busse, 1994 2 (n=77), andweeks; type of
[19], United data set 3

(n=85)
PTB was not distin-
guishedStates, retrospec-

tive

1994Data set 1
(n=13), data set

—PTB: <36 weeks;
control: ≥36

94803 data sets:153
features in total

—Grzymala-
Busse and
Woolery, 1994 2 (n=73), andweeks; type of
[20], United data set 3

(n=67)
PTB was not distin-
guishedStates, retrospec-

tive

1992 to
1994

24th week
(n=50), 26th
week (n=205),

Logistic regression
with forward selec-
tion, stepwise selec-

PTB (spontaneous
and induced): <32,
<35, and <37

2929NICHDe-MF-

MUf data set:
>400 features

—Vovsha et al,
2014 [21], Unit-
ed States, retro-
spective and 28th week

(n=316)
tion, LASSOg, and
elastic net; —

weeks; control:
≥37 weeks

—520Features with >50%
missing values were

PTB: <37 weeks;
control: ≥37

782,000BORNh and

PRAMSi: 520
features

—Esty et al, 2018
[22], United
States and
Canada, retro-
spective

removed before miss-
ing value imputation;
features come from
before the 23rd gesta-
tional week

weeks; type of
PTB was not distin-
guished

2002 to
2004

19 for parous
and 16 for nulli-
parous

Decision tree (to estab-
lish consistency be-
tween data sets, fea-
tures specific to the

PTB: <37 weeks;
control: ≥37
weeks; type of
PTB was not distin-
guished

>113, 000PRAMS: >300
features

—Frize et al, 2011
[23], United
States, retrospec-
tive

United States were
excluded, eg, Medi-
caid and Women In-
fants Children Pro-
gram); features come
from before the 23rd
gestational week
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DateNumber of se-
lected features

Feature selection pro-
cess and gestational
week for when select-
ed features are related

Study (PTBa), con-
trol groups, and
type of PTB

Population
(birth)

Data source
(number of fea-
tures)

Population character-
istics

Study, country,
and type of
study

1988 to
1997

32 demographic
and 393 clinical

Heuristic techniques
(features related to
week <37 were includ-
ed); —

PTB: <37 weeks;
control: ≥37
weeks; type of
PTB was not distin-
guished

63,167Duke Universi-
ty’s Medical
Center TMR
TM perinatal
data:
4000−5000 fea-
tures

—Goodwin and
Maher, 2000
[24], United
States, retrospec-
tive

2011 to
2015

10Features kept based
on their importance
(top k features; [27]);
the rare features that
occur in <1% of data
points were removed;
features come from
before the 25th gesta-
tional week

PTB (spontaneous
and elective): <34
and <37 weeks;
control: ≥37 weeks

15,814 birthsRNSj, NSWAustralianTran et al, 2016
[3], Australia,
retrospective

CDC: 2013
to 2016;
NYC: 2014
to 2016

26Excluding highly cor-
related features with
correlation analysis
(Pearson); —

PTB: <37 weeks;
control: ≥37
weeks; type of
PTB was not distin-
guished

13,150,017CDCk and

NYCl data sets

White, Black, Amer-
ican Indian or
Alaskan native, and
Asian or Pacific Is-
land individuals

Koivu and
Sairanen, 2020
[9], United
States, retrospec-
tive

2016 to
2017

112Parallel feature selec-
tion and classification
methods including
MR-PB-PFS (features
with nonzero scores
are selected as top
features); —

PTB (spontaneous
and medically indi-
cated): >28 and
<37 weeks; con-
trol: ≥37 weeks

>1,400,000National mater-
nal and neonatal

records (IMaNm

registry): 112
features

IranianKhatibi et al
2019 [25], Iran,
retrospective

aPTB: preterm birth.
bNot reported in the study.
cNSW: New South Wales.
dEHR: electronic health record.
eNICHD: National Institute of Child Health and Human Development.
fMFMU: Maternal-Fetal Medicine Units Network.
gLASSO: least absolute shrinkage and selection operator.
hBORN: Better Outcomes Registry Network.
iPRAMS: Pregnancy Risk Monitoring Assessment System.
jRNS: Royal North Shore.
kCDC: Centers for Disease Control and Prevention.
lNYC: New York City.
mIMaN: Iranian Maternal and Neonatal Network.

Data Selection
Of the 13 studies, 9 (69%) reported at least one piece of
preprocessing information regarding the included data. The
preprocessing step included data mapping, missing data
management, and the class imbalance management in data. For
the feature selection, of the 13 studies, 11 (85%) reported at
least one method for the feature selection process. The number

of features selected for each study varied from 10 to 520 for
final ML modeling. On the basis of the literature surveyed, of
the 13 studies, only 2 (15%) used unsupervised feature selection.
In addition, of the 13 studies, 3 (23%) did not use feature
selection, and some studies did use some heuristics instead.
Owing to the divergency in feature selection, we could not
identify clear trends on how the used approach would affect the
model performance (see Table 3 for more information).
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Table 3. Data processing and machine learning modeling.

FindingsAnalysis soft-
ware and pack-
age

Evaluation
metrics

Dominant
model

ModelPreprocessing dataStudy

Class imbalanceMissing data man-
agement

AUC=0.67, sensitivi-
ty=0.61, specifici-
ty=0.64

Rstudio (ver-
sion 3.3.2), Su-
perLearner
package

Sensitivity,
specificity,

PVPe, PVNf,

and AUCg

No differ-
ence be-
tween mod-
els

Super learning
approach using
logistic regres-
sion, random for-
est, K-nearest

—bMICEaWeber et al,
2018 [15]

neighbors, LRc

(LASSOd, ridge,
and an elastic
net)

Random forest: G-
mean=0.96, sensitivi-

WEKAi (ver-
sion 3.9)

Accuracy,
sensitivity,
specificity,

Random for-
est

Locally weighted
learning, Gaus-
sian process, K-

SMOTEhInstances with miss-
ing values were re-
moved manually

Rawashdeh et
al, 2020 [16]

ty=1.00, specifici-
ty=0.94, accura-AUC, and

G-means
star classifier, lin-
ear regression,
K-nearest neigh-

cy=0.95, AUC=0.98
(oversampling ratio of
200%)bor, decision tree,

random forest,
neural network

AUC=0.827, sensitivi-
ty=0.965, specifici-
ty=0.698, PVP=0.033

—Sensitivity,
specificity,
PVP, and
AUC

RNN ensem-
bled models
on balanced
data

RNNsj, long
short-term memo-
ry network, logis-
tic regression,

Control group
were undersam-
pled

—Gao et al,
2019 [17]

SVMk, Gradient
boosting

No difference in accu-
racy between ANN

Python (version
3.52)

AccuracyNo differ-
ence be-
tween mod-
els

ANNl, logistic re-
gression, decision
tree, naïve Bayes,
random forest,
SVM

——Lee and Ahn,
2019 [18]

(0.9115) with logistic
regression and the
random forest (0.9180
and 0.8918, respective-
ly)

Database 1: accura-
cy=88.8% accurate for

ID3n, LERS
CONCLUS

Accuracy—LERSm——Woolery and
Grzymala-
Busse, 1994
[19]

both low-risk and
high-risk pregnancy.
Database 2: accura-
cy=59.2% in high-risk
pregnant women.
Database 3: accura-
cy=53.4%

Accuracy=68% to
90%

LERSAccuracy—LERS based on
the bucket
brigade algo-

——Grzymala-
Busse and
Woolery,1994
[20] rithm of genetic

algorithms and
enhanced by par-
tial matching

SVM: sensitivity
(0.404 to 0.594),

Rstudio, glmnet
package

Sensitivity,
specificity,
and G-means

—SVMs with linear
and nonlinear
kernels, LR (for-
ward selection,

Oversampling
techniques
(Adasyn)

—Vovsha et al,
2014 [21]

specificity (0.621 to
0.84), G-mean (0.575
to 0.652); LR: sensitiv-stepwise selec-
ity (0.502 to 0.591),tion, L1 LASSO
specificity (0.587 toregression, and
0.731), G-mean
(0.586 to 0.604)

elastic net regres-
sion)
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FindingsAnalysis soft-
ware and pack-
age

Evaluation
metrics

Dominant
model

ModelPreprocessing dataStudy

Class imbalanceMissing data man-
agement

Sensitivity: 84.1% to
93.4%, specificity:
70.6% to 76.9%,
AUC: 78.5% to 89.4%

R software,
missForest
Package,

FANNp library

Sensitivity,
specificity,

and ROCo

—Hybrid C5.0 deci-
sion tree−ANN
classifier

Not clearImputation with the
missForest package
in R

Esty et al,
2018 [22]

Training (P: sensitivi-
ty=66%, specifici-
ty=83%, AUC=0.81;
NP: sensitivi-
ty=62.8%, specifici-
ty=71.7%,
AUC=0.72), test (P:
sensitivity=66.3%,
specificity=83.9%,
AUC=0.80; NP: sensi-
tivity=65%, specifici-
ty=71.3%,
AUC=0.73), and veri-
fication (P sensitivi-
ty=61.4%, specifici-
ty=83.3%,
AUC=0.79; NP: sensi-
tivity=65.5%, speci-
ficity=71.1%,
AUC=0.73)

See5, MAT-
LAB Neural
Ware tool

Sensitivity,
specificity,

ROC for Pq

and NPr cas-
es

—Hybrid decision
tree–ANN

—Decision treeFrize et al,
2011 [23]

No significant differ-
ence between tech-
niques. Neural net-
work (AUC=0.68),
stepwise LR
(AUC=0.66), CART
(AUC=0.65), FactMin-
er (demographic fea-
tures only;
AUC=0.725), Fact-
Miner (demographic
plus other indicator
features; AUC=0.757)

Custom data
mining software
(Clinical Miner
and PVRuleM-
iner, FactMiner)

ROCNo differ-
ence be-
tween mod-
els

Neural networks,

LR, CARTs, and
software pro-
grams called
PVRuleMiner
and FactMiner

—PVRuleMinerl or
FactMiner

Goodwin and
Maher, 2000
[24]

SSLR: sensitivi-
ty=0.698 to 0.734,
specificity=0.643 to
0.732, F-mea-
sure=0.70 0.73,
AUC=0.764 to 0.791,
NPV=0.96 to 0.719,
PVP=0.679, 0.731;
RGB: sensitivi-
ty=0.621 to 0.720,
specificity=0.74 to
0.841, F-mea-
sures=0.693 to 0.732,
NPV=0.675 to 0.717,
PVP=0.783 to 0.743,
AUC=0.782 to 0.807

—Sensitivity,
specificity,

NPVv, PVP,
F-measure,
and AUC

—SSLRt, RGBuUndersampling
of the majority
class

—Tran et al,
2016 [3]
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FindingsAnalysis soft-
ware and pack-
age

Evaluation
metrics

Dominant
model

ModelPreprocessing dataStudy

Class imbalanceMissing data man-
agement

AUC for classifiers:
LR=0.62 to 0.64; deep
neural network: 0.63
to 0.66; SELU net-
work: 0.64 to 0.67;
LGBM: 0.64 to 0.67;
average ensemble:
0.63 to 0.67; WA en-
semble: 0.63 to 0.67

Rstudio (ver-
sion 3.5.1) and
Python (version
3.6.9)

AUC—LR, ANN,

LGBMw, deep
neural network,

SELUx network,
average ensem-
ble, and weighted

average WAy en-
semble

——Koivu and
Sairanen,
2020 [9]

Accuracy=81% and
AUC=68%

—Accuracy
and AUC

—Decision trees,
SVMs and ran-
dom forests, en-
semble classifiers

—Map phase moduleKhatibi et al,
2019 [25]

aMICE: Multiple Imputation by Chained Equations.
bNot reported in the study.
cLR: linear regression.
dLASSO: least absolute shrinkage and selection operator.
ePVP: predictive value positive.
fPVN: predictive value negative.
gAUC: area under the ROC curve.
hSMOTE: Synthetic Minority Oversampling Technique.
iWEKA: Waikato Environment for Knowledge Analysis.
jRNN: recurrent neural network.
kSVM: support vector machine.
lANN: artificial neural network.
mLERS: learning from examples of rough sets.
nID3: iterative dichotomiser 3.
oROC: receiver operating characteristic.
pFANN: Fast Artificial Neural Network.
qP: parous.
rNP: nulliparous.
sCART: classification and regression tree.
tSSLR: stabilized sparse logistic regression.
uRGB: Randomized Gradient Boosting.
vNPV: net present value.
wLGBM: Light Gradient Boosting Machine.
xSELU: scaled exponential linear unit.
yWA: weighted average.

Identified Potential Risk Factors
Although the included features somewhat differed in the studies,
some features were commonly used and considered potential
risk factors that may predict PTB occurrence (Table 4).
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Table 4. Frequency of potential risk factors in the studies (n=13).

Studies, n (%)Potential risk factors

10 (77)Previous PTBa

9 (70)Hypertensive disorders

7 (54)Maternal age

7 (54)Cervical or uterus disorders (cerclage, myoma, or inconsistency)

6 (46)Ethnicity and race

6 (46)Diabetes (eg, gestational, mellitus)

5 (38)Smoking or substance abuse

5 (38)Multiple pregnancy

4 (30)Education

4 (30)Physical characteristics (BMI, weight, and height)

4 (30)Parity

3 (23)Marital status

3 (23)Other chronic diseases (thyroid, asthma, systemic lupus erythematosus, or cardiovascular)

3 (23)PTB symptoms (bleeding, contractions, premature rupture of membranes, etc)

2 (15)Insurance

2 (15)Income

2 (15)In vitro fertilization

2 (15)Stress or domestic violence

1 (7)Infections (gonorrhea, syphilis, chlamydia, or hepatitis C)

1 (7)Biopsy

aPTB: preterm birth.

ML Modeling and Performance Assessment
Various basic and complex ML modeling approaches were used
with different frequencies, including artificial neural network,
logistic regression, decision tree, support vector machine (SVM)
with linear and nonlinear kernels, linear regression (least
absolute shrinkage and selection operator [LASSO], ridge, and
elastic net), random forest, locally weighted learning, gradient
boosting, learning from examples of rough sets, Gaussian
process, K-star classifier, and naïve Bayes (Multimedia
Appendix 2).

Although most studies reported the type of software applied for
the ML analysis, only few of them specified the package they
have used for the analysis. Several evaluation measures were
used to assess the proposed models. These include sensitivity,
specificity, area under the receiver operating characteristic curve,
accuracy, predictive value positive, predictive value negative,
G-mean, F-measure, and net present value, based on the
frequency they have been used in the studies. Owing to the
divergent methodology used for outcome assessment and model
processing, comparison between models was not possible.
However, overall, studies with a cutoff gestational age of 37th
week, regardless of the model used, often showed lower
sensitivity (40%-69%), except for 1 study that showed a
sensitivity of 93% [22]. Those with an earlier cutoff gestational
age of 26th to 28th weeks indicated higher sensitivity
(96%-100%).

Quality Assessment
In general, reviewed studies had satisfactory quality (Table 1).
However, there was substantial variation, as some studies
fulfilled almost every category, whereas others met only a few.
All studies fulfilled the unmet need category, as PTB prediction
is still an unsolved problem. Feature engineering was mentioned
in almost half (6/13, 46%) of the studies [3,9,15-17,25].
Platforms and packages were not mentioned in 23% (3/13) of
the studies [3,17,25]. Hyperparameters were described in only
23% (3/13) of the studies [9,16,18]. According to the criteria
proposed by Qiao [12], of the 13 studies, only 1 (8%) used valid
methods (k-fold cross-validation) to overcome overfitting [15].
However, many of the studies have population sizes of tens of
thousands or higher, which makes the standard train-test split
a valid approach for model evaluation, and there was no need
for k-fold cross-validation. There is no commonly agreed
criterion for sufficiency of data for a single train-test split to be
sufficient, as this depends on factors such as number of features,
relative sizes of the classes, and amount of noise in the data. As
an example, previously, Kohavi [28] studied the accuracy
estimation and model selection with the test set size of 500
instances as the lower limit for a single train-test split being
considered reliable. In 23% (3/13) of the studies, the use of
k-fold cross-validation or bootstrap instead of the train-test split
would have been clearly the better choice because of the small
population size (n<3000) [16,18,21]. The stability of the results
is reported only for 31% (4/13) of the studies [9,15,17,23]. Of
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the 13 studies, only 1 (8%) used external validation data and
met the requirement for generalizability [9]. Predictor
explanation was provided in 62% (8/13) of the studies
[3,9,15,17,18,21,24,25]. Only 31% (4/13) of the studies clearly
suggested a clinical application for their method [3,9,16,17].

Discussion

Principal Findings
Premature birth remains a public health concern worldwide.
Survivors experience substantial lifetime morbidity and
mortality rates. The conventional methods of PTB assessment
that have been used by clinicians seem to be insufficient to
identify PTB risk in more than half of the cases. The
conventional methods that are concerned with health data (HR)
are often statistical modeling, in which, first, input predictive
factors are selected by a researcher and, second, the
multifactorial nature of PTB is ignored. Thus, these methods
suffer from biases and linearities. The linear vision on HR in
conventional approaches is perhaps one of the major barriers
to advancing our understanding of nonlinear interaction
dynamics between potential risk factors of multifactorial PTB.
ML modeling, in contrast to statistical modeling, investigates
the structure of the target phenomenon without preassumption
on data, and automatically and thoroughly explores possible
nonlinear associations and higher-order interactions (more than
2-way) between potential the risk factors and the outcome [29].
ML modeling is expected to discover novel patterns, not
necessarily novel predictive features, which provide an
opportunity to gain insight into the underlying mechanisms of
multifactorial outcomes (in this case PTB), where existing
knowledge is still insufficient for developing a thorough
predictive system [29]. Over the past 26 years, 13 studies have
been published, creating ML-based prediction models using
HR data, with the number of studies increasing over time.

Among the reviewed studies, the performance of various ML
modeling indicated potential for predictive purposes. Owing to
the different evaluation metrics used by studies, performance
comparison across studies was not practical. On the basis of
within-study synthesis, some studies compared nonlinear ML
methods, such as deep neural networks, kernel SVMs, or random
forests, to more basic linear models, such as logistic regression,
LASSO, and elastic net. Of these 13 studies, 4 (31%) concluded
that there was no significant difference between the predictive
performances of the different applied methods [3,9,19,21]. For
example, Tran et al [3] compared stabilized sparse logistic
regression with randomized gradient boosting and found no
significant differences between the methods. The conclusion
that complex ML modeling is not superior to simple logistic
modeling matches the findings of a recent systematic review
conducted for a wider concept of clinical prediction. In the
aforementioned review, Christodolou et al [30] compared the
performance of logistic regression with more complex ML-based
clinical prediction models; they found no evidence of the
superior performance of the ML methods for clinical prediction.
In contrast, some studies indicated a significant difference
among various ML modeling approaches. For example,
Rawashdeh et al [16] showed that random forest has a clear

advantage over linear regression in predicting the week of
delivery; however, the test set used in the study was very small
for a reliable conclusion. Vovsha et al [21] also showed some
improvements for nonlinear SVM over a linear model (linear
SVM, LASSO, and elastic net) when classifying preterm versus
full-term birth for the whole study population but did not find
similar differences when making predictions for only
spontaneous PTB or for first-time mothers. Gao et al [17] and
Koivu and Sairanen [9] reported that deep learning–based
approaches have better performance than logistic regression.
The remaining studies did not include a comparison with a basic
baseline method, such as logistic regression. In conclusion,
these results imply that classical statistical models remain a
competitive approach for predicting PTB. The current limitations
of ML modeling and its infancy may explain its failure to cover
the gaps in classical statistical models for PTB prediction using
HR data. We suggest that more research is still required to
ascertain with confidence whether ML methods, such as those
based on deep learning, can systematically improve the
predictive performance of the model as compared with basic
statistical models.

An HR seems to be a useful data source, including the potential
risk factors from which the ML model can learn the significant
predictors as well as the nonlinear interaction among the
identified risk factors.

A large sample size, as one of the distinct characteristics of HR
data, is a double-edged sword that covers large populations but
consumes time and requires advanced technology. A large data
size can also be used to create validation sets. Most studies in
this review had large sample sizes, including thousands of
pregnant women. Although some studies performed internal
validation, external validation was uncommon, and almost all
studies validated the performance within the same HR. Th lack
of external validity assessment limits generalizability and may
reduce the discrimination validity of the model when applied
in other sites and HR systems. External validation of the model
through its application in a distinct data set may be helpful in
understanding its usefulness and generalizability in different
geographical areas, periods, and settings [31]. Furthermore, half
of the studies in this review did not report the race or ethnicity
of the population, which indicates ignoring the importance of
the ethnic and health disparity in predictive model assessment.
For example, ethnic minority groups, such as Black and Hispanic
women, are more at risk of developing pregnancy complications,
including PTB. Failure to consider ethnicity threatens the
internal validity of ML modeling.

Large data sizes and reflective data types are as important as
large sample sizes. HR data often appear insufficient to precisely
identify risk factors that decrease the accuracy of predictive ML
models. Indeed, small sample size and passive data that are
limited to a few sociodemographic and medical histories seem
insufficient to predict the multifactorial PTB. Enriched data that
include more, time-sensitive, and dynamic characteristics of
each individual (eg, life history, mental distress during various
stages of pregnancy, and biomarker change) may increase the
accuracy and integrity of the applied ML models. For example,
being diagnosed with gestational diabetes is known to be a
strong predictive factor for PTB among the features in ML
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models. However, owing to the dynamic nature of diabetes
(glucose level), which can vary from moment to moment,
particularly during pregnancy, applying a pool of data reflecting
the dynamic glucose change in a person may be more accurate
in predicting PTB in comparison with the presence or absence
of diabetes. The difference in glucose change may also partially
explain why some women with diabetes are at a higher risk of
developing PTB. To achieve this accuracy in HR use, data
should be enriched by more and dynamic features and ML
models should be optimized to analyze the dynamic-natured
potential risk factors that go beyond the clear-cut presence or
absence of a feature [32].

In contrast, a small data size threatens the risk factor distinction
for PTB prediction. There might be an indirect association
between some predictive factors and PTB, falsifying the direct
and actual associations. For example, smoking not only is
introduced as a protective factor against mortality in low–birth
weight and PTB infants but also is identified as a predictive
factor for PTBs. In this case, PTB may not be the result of
smoking directly itself but due to potential mediators, such as
hypertension, which is triggered by smoking. Therefore, if there
is no recorded information about blood pressure, the model may
consider smoking as the actual risk factor. This highlights the
importance of more possible health data to increase the ability
of the ML model to distinguish between mediators and exposure
features.

One of the major challenges in HR-based studies is the presence
of missing data. Although missing data have been an
acknowledged challenge in HR studies, a little more than half
of the studies acknowledged the presence of missing data and
a variety of analytic approaches to manage this absence. On
average, despite its importance, there has been minimal work
in this area, and it is unclear how such biased observations
impact prediction models.

Another important challenge in HR-related models is unbalanced
data between case and control groups. This problem is because
PTB occurs in 10% of all births. Researchers have often applied
oversampling techniques to handle unbalanced data. However,
these techniques create artificial data that may not have much
in common with actual observations. Oversampling techniques
must be used carefully in validating models because if artificial
instances end up in the test set (or test folds in cross-validation),
one may obtain highly overoptimistic performance estimates.

In addition, all reviewed studies approached PTB prediction as
a classification problem. There was often no clear discernment
of abortion and PTB in the reviewed studies. This ambiguity,
if it comes from missing to distinguish abortion from PTB in
actual ML modeling, may threaten the specificity of the model
in predicting PTB. In addition, as PTB and abortion have
different leading causes, the findings of the studies may also be
questionable. In addition, in the defined PTB time window

(20-37 gestational week), classification remains problematic.
In this case, neonates born at week ≤30 are considered to belong
to the same class as those born at week 36 of pregnancy.
However, the former is associated with a much higher risk of
adverse outcomes and requires neonatal intensive care.
Therefore, it could be more beneficial to approach PTB as a
regression problem and try to predict the gestational age (as
weeks or days) at childbirth. This approach could help identify
PTB cases that have the greatest need for care.

Conclusions
Overall, ML modeling has been indicated to be a potentially
useful approach in predicting PTB, although future studies are
suggested to minimize the aforementioned limitations to achieve
more accurate models. Importantly, ML’s ability to cover the
existing gap in conventional statistical methods remains
questionable. To achieve reliable conclusions, our study suggests
some considerations for future studies. First, more studies are
needed to compare ML modeling with existing conventional
methods in the same data set with the same amount of data and
population. Conducting the comparison studies uncovers the
potential superiority of one over the other. Second, the study
population should be distinguished based on parity, particularly
if previous pregnancy data were among the selected features.
Otherwise, the model would probably rely on this strong
predictive factor in multiparous women, leaving nulliparous
women underserved and undetected. In addition, studies should
be transparent to whether they use the same time frame for
feature selection for case (PTB) and control (non-PTB) groups.
For instance, assume that we have a cutoff point of 28 weeks
before which we want our model to identify PTB cases. In this
case, if we include the data for the control group to be after the
cutoff point, which most likely differs from before the cutoff
point, the model may rely on the information after the cutoff
point for PTB prediction. Thus, the model fails to detect the
cases before the specified time point. Third, two cutoff points
should be clarified in model development: (1) the gestational
cutoff week the study targets before the cases are detected and
(2) the gestational time point before the features are selected.
For example, Gao et al [17] determined the 28th week as the
cutoff week before feature selection. However, it is not clear
whether the created model would identify PTB before week 28,
from where the features were collected, or any time before week
37, based on the data related to before the 28th week. The time
interval between identified features and PTB occurrence,
particularly if the PTB is symptomatic, can be more informative
in terms of model specificity and time sensitivity in detecting
symptomatic and asymptomatic PTB.

Enriched data size and optimized data type can also improve
the usefulness of the ML model. Appropriate approaches for
managing missing data and unbalanced control and case groups
are also required to achieve more reliable and accurate results.
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